
Autonomous Sentry Robot

Brian Dodge, Nicholas Musco and Trevor

Roman

Dept. of Electrical Engineering and Computer

Science, University of Central Florida, Orlando,

Florida, 32816-2450

Abstract — The objective of this project is to create a
land based, autonomous surveillance robot that implements
mapping and localization. The Autonomous Sentry Robot is
a multifaceted security system for use in enclosed buildings.
The ASR will be equipped with a variety of sensors and a
Microsoft Kinect, allowing it to autonomously navigate and
dynamically map its place in space. The ASR will then patrol
the space and alert the user in the event of detected motion.
The group chose this project because we have a mutual
interest in robotic systems and we wanted to develop a cost
effective solution for a robotic sentry.

 Index Terms — Computer vision, intelligent robots,
motion detection, power distribution, robot control,
simultaneous localization and mapping.

I. INTRODUCTION

Robots are becoming more prevalent in the world.

 They are no longer just in movies. They are being used

for industrial purposes, and research projects. Robots can

be found being used by the military and police

departments as drones for aerial surveillance or robots for

Explosive Ordnance Disposal. Robots are now found in

the home as toys, such as the MIP or Sphero, and cleaning

assistants like the iRobot Roomba vacuum cleaner. They

can be found in hospitals, being used for surgery. Robots

are being developed in labs that can map and localize

themselves. Most of the robots mentioned are teleoperated

by humans, or perform simple, repetitive tasks. There is

an area which seems to not be well covered in consumer

robotics. The area is land based, autonomous surveillance

robots that implement mapping and localization. The goal

of this project is to create a robot that does this.

The Autonomous Sentry Robot is a multifaceted

security system for use in enclosed buildings. As

previously stated, the ASR will be equipped with a variety

of sensors and a Microsoft Kinect, allowing it to

autonomously navigate and dynamically map its place in

space. It will take the sensor data, and either use an

onboard processor or a local computer to use the data for

mapping and localization. From this map, it will plot an

efficient path to patrol within this space, and its camera

and vision capabilities will detect changes in the

environment or motion. If changes are detected, the

ASR’s owner will be alerted through a mobile app, and

they will be able to access its camera feed, as well as take

control of its movement.

The robot is meant to be fully functional even when

operating autonomously. When no users are around, it will

need to keep track of its power level and return to the

charging station when necessary. The robot must also be

able to account for objects that are not picked up by the

camera. Sonars and tactile sensors will be employed to

ensure the robot doesn’t drive over an unseen object.

Above all, the ASR must be low power, low maintenance,

low latency, easy to operate, and able to map, navigate,

and detect reliably.

II. HARDWARE DESIGN

The ASR is made up of both mechanical and electrical

hardware systems. These systems must work together in

order for the ASR be successful. That being said, it is

important to design the system components to be

independent so that if a part needs to be modified or

replaced it can be taken care of without affecting the

entire system. This section contains the decisions made for

the mechanical and electrical hardware of the robot as

well as the reasons for those decisions.

A. Mechanical System

The mechanical system of the ASR contains the

sections related to the chassis, the drive system, wheels,

and the motors. The system has been designed to be as

simple as possible.

1. Chassis

The chassis is the main hub for the entire robot. It must

be able to accommodate every subsystem. Our team

decided to go with the VEX medium chassis kit for the

ASR. The kit is extremely well designed and something

we have worked with in the past. The kit is 12.592” x

12.92” and can be cut to be smaller if necessary. The

dimensions of the medium kit are well within the form

factor chosen for the ASR but it is also not too small. The

chassis is also relatively inexpensive. As system

compatibility is important for the ASR, the factors listed

and discussed below also played an important role in

choosing the medium VEX chassis.

2. Drive System

Our project requires the ASR to be able to maneuver

around many obstacles. For this purpose a highly mobile

drive system would generally be preferred. However, as

our software would already be challenging, we decided

not to add to the difficulty by selecting a complicating

drive system. This narrowed our choice down to only one

option. A tank drive system was chosen for the ASR due

to its simplicity and effectiveness in achieving our overall

goal.
It is a very simple design to implement as it is

essentially a rectangle with four wheels. Each wheel in our

system is individually powered to allow the ASR to carry

a larger load. In a tank drive system, the left side of the

robot and the right side of the robot each act as one. This

cuts down on computation needed to figure out which

motion would be best for a holonomic system to navigate

a room. The VEX chassis is a perfect fit for this drive

system. The chassis comes with 4 rails and two bumpers

for mounting wheels and motors. Those components are

for the four main drive wheels.

3. Wheels

The chassis design was factor in our wheel choice. The

tank style drivetrain really works effectively with traction

wheels. The traction wheels will allow the robot to turn

and strafe with more friction than any of the other wheels

we looked into. This means that there will be less slippage

to worry about allowing our encoders to give us better

data. There are many types of traction wheels available.

However, we decided to look at choices that VEX

robotics had to offer as they would be directly compatible

with our chassis.
All of the VEX wheels are designed to support the VEX

chassis and required electronics. As the ASR is not meant

to carry a large load, there is no need to compare load

specifications for the following wheels. The first option

we looked into are 2.75 inch traction wheels. The second

option we looked into are 4 inch traction wheels. The

ASR may need to be able to move over thresholds to

effectively map a space. If the ASR cannot enter a room

because it cannot make it over a threshold, it loses much

of its functionality. The 2.75 inch traction wheels are

sufficient to move over standard thresholds. Therefore the

ASR should be able to enter any room with ease. The 2.75

inch wheels were also more cost effective which helps us

with our goal of creating a low cost, mapping robot.

These wheels were chosen to work with the chassis. The

chassis uses 0.182” standard VEX holes for mounting and

the wheels use 0.125” square bars for shafts. The shafts of

the wheels will properly fit though the chassis holes for

mounting. Bearings and a shaft collars from VEX robotics

will be used to hold the wheels in place.

4. Motors

The motors chosen need to be able to support the

weight of the robot and all of its components. The robot

should weigh no more than 15 lbs. This means that the

motors need to have a stall torque greater than 0.85 N-M

in order to run properly. The torque value is based on the

weight of the robot and the radius of the wheels. The

motors should also not have a large current draw in order

to maximize battery life. After conducting our motor

research, we have chosen to use a DC motor. Having

chosen the VEX robotics chassis, we decided that looking

at VEX motors would be a good start for system

compatibility. The VEX motors we researched are shown

in Table 1below.

Motor RPM
Needs

Controller

Stall

Current

(A)

Stall

Torque

(N-M)
Price

($)

393 100 Yes 4.8 1.67 14.99

3 wire 100 No
Not

Listed Not Listed
Not

Listed

269 100 Yes 2.6 0.972 12.99
Table 1: Motor Comparison

The 3 wire motors are motors that we already have. The

third wire is for PWM signals and therefore it doesn’t

need a motor controller. However, there is not a lot of

data available on them and we only have three. This

eliminates them from being used on the ASR. The 2 wire

269 motors are less expensive than the 2 wire 393 motors.

Therefore we have chosen to go with the VEX two wire

393 motors. The motor is a DC motor meaning it runs

using DC voltage. That makes it ideal for our system as

we are using a battery. DC motors are very easy to control

which is a necessity for the ASR. The motors are shown in

figure 1 below.

Figure 1: VEX 2 Wire motor 393 [1]

With these motors having two wires it is necessary to

get a motor controller for them. As our microcontroller is

able to generate PWM signals we have chosen to get the

VEX motor controller 29. The motor controller is

specifically designed to work with the VEX two wire 393

motors. The motor and motor controller combo is priced

at $24.98 on the VEX website making it a great low cost

option for our project.

B. Electrical System

The electrical system of the ASR contains the sections

related to the power system, the microcontroller, and the

sensors. The system has been designed to be as simple as

possible.

1. Battery

The battery is an important aspect of the ASR. It needs

to have a high capacity and it should be designed for deep

cycling. The battery must be able to discharge enough

current to run the motors and electronics on the robot. It

also shouldn’t be affected by the memory effect. After

careful research we chose to go with a NiMH battery

because they don’t require any special care and are safer

than Lithium batteries [2]. They also have a higher

capacity than NiCd batteries. After that decision was

made, two batteries were under consideration. The

batteries’ specifications can be seen in table 2 below.

Battery

Brand
Voltage

(V)
Capacity

(mAh) Price ($)

Tenergy 7.2 3800 23.99

Tenergy 7.2 2000 9.99

Tenergy 7.2 5000 32.99
Table 2: Battery Comparison

For the ASR we chose the Tenergy 7.2V 5000mAh

NiMH battery. We chose this battery because it has a

higher capacity than most other 7.2V batteries. The

battery is able to deliver 40A of current which is well

above what the ASR can draw. The battery is designed to

not be affected by the memory effect. Therefore it can be

charged at any stage instead of only when it has been

completely discharged. The battery is 7.2V making it

perfect for running the motors we have chosen. The

battery is relatively inexpensive and costs $32.99. The

battery is pictured in figure 6.2.1-1 below.

Figure 2: Tenergy 5000mAh NiMh Battery [3]

2. Charger

Our group has chosen to go with the Tenergy Universal

Smart Charger with the charge rate of 2A. This will allow

a slightly faster charge time to get the ASR back out into

the room for its patrol. The battery charger is able to

detect the battery voltage to ensure a proper charge and is

equipped with a temperature sensor to ensure that the

battery doesn’t overheat. The charger is shown in figure 3

below.

3. Power Distribution

The ASR’s batteries will essentially have three loads,

one load from the Microsoft Kinect at 12 V, one from the

motors at 7.2 V, and one load from the microcontroller,

microcomputer, and sensors at 5 V. Since the motors run

on the same voltage as the batteries, they will not require a

separate power distribution board. However, we will need

a power distribution for both 12 V and 5 V.
The ATmega328P, tactile sensors, and ultrasonic

sensors all run at 5 V. The maximum current draw from

them is 1.10 A. Since we have experience from a

previous laboratory with 5 V voltage regulation, we

decided to use what we know. We decided to use the

LM2576, a 5V switching voltage regulator. We will be

using TI reference design [3], since it does exactly what

we need, as shown below in the Figure 3.

Figure 3: Microcontroller and Sensor Power Supply

For the Microsoft Kinect Sensor, we will require a 12 V

voltage regulator. We designed one in TI Webench

Power Architect as seen in Figure 4. The voltage

regulator uses a LM2587.

Fig. 4: 12 V Power Supply

4. Microcontroller

From our research, we saw that the ATMega328P has a

faster clock frequency, but less Program Memory, less

RAM, less I/O pins, and less USARTs/SPIs than the

ATmega2560. Since we do not plan to do anything

complex with the microcontroller and need for it to react

to obstacles quickly, we decided on using the

ATmega328P. We will be using it with an Arduino

bootloader to simplify the programming required, thus

saving us some time. All the microcontroller needs to do

is take movement commands and send the commands to

the motor controllers, and take sensor data from the tactile

sensor, ultrasonic sensors, and motor encoders and then

send movement commands to the motors, if needed. The

faster clock frequency actions for the robot.

5. Sensors

To be successful, our robot will require long range,

medium range, and short range sensors. For the short

range sensors, we choose the VEX bumper sensor. It will

complement the HC-SR04 ultrasonic distance sensor. It’ll

work well for a medium range sensor with a range of 2 cm

to 4 m. The bumper sensor can handle anything that is

missed. We will have two bumper sensors in the front of

the robot, along with one ultrasonic sensor. These sensors

should be able to handle close to medium range object

detection. If they are triggered, the microcontroller will

react and move the robot away from the object. We will

also have the same configurations on the back of the

robot. This will cover the cases when the robot backs up

and it’ll ensure that it does not run into anything while

backing up.

III. SOFTWARE DESIGN

The ASR is a complex system of interconnected sub-

subsystems. The overall system has distinct inputs and

outputs, and so should the individual subsystems. With

this approach in mind, our design attempts to be as

modular as possible. This way modifications can be made

to one system without too much impact on other systems.

This approach allows us to utilize ROS as a general

purpose framework. First, a high level view of the overall

system architecture will be presented. Following this, each

system will be looked at in more depth. ROS requires the

use of many different nodes and packages for things like

creating coordinate transforms between sensor frames,

viewing data, and performing navigation procedures using

a map. Since these are features of ROS itself and not

modules we will be programming, they will not be

discussed.

A. High Level Software System Architecture

The overall system is contained within and being

executed on a laptop running Ubuntu Linux. The

subsystems are, manual navigation, autonomous

navigation, mapping and localization, motion detection,

and the state manager. The inputs to the system are the

map, streams of data from various sensors, and input from

the user. The outputs of the system are the current

generated map which is fed back in as an input, alerts

which are pushed to the user’s Gmail account, and

locomotion data to the motors.

Figure 5: High Level Software Architecture

The above diagram does not demonstrate the order of

execution in the system, but the relationship of inputs and

outputs to each subsystem, and the overall system itself.

Arrows flowing in are inputs, arrows flowing out are

outputs. The type of I/O data is indicated on each line.

Some of these subsystems are running concurrently, so

dedicated threads are necessary, luckily ROS safely

handles this. For instance, if the user decides to map

autonomously, both the autonomous navigation and

mapping/localization subsystems will be executing. The

map will be being updated while the robot is planning its

path, and sending locomotion instructions to the robot’s

wheel controller. The black dots provide no functionality,

but instead indicate connected branches for better clarity.

1. State Manager

The state manager is a singleton class which sets the

given state of the robot based on input from the user to the

terminal. Abstract states like “Autonomous Mapping

Mode” selected in the state manager are not actually

representative of a single state in the manager, but rather

two states operating simultaneously. This approach helps

 us eliminate redundancy and keep code more modular for

ease of modification. The State Manager class is simple in

terms of methods and variables. The SetState() method

takes in a boolean array which flags states that are to be

set active and inactive.
The current state can be retrieved with GetState() which

retrieves the global variable flags[], containing whatever

states were last set. The global variable mapComplete is

set when the mapping state has completed and is used by

the state manager to decide which options are available to

the user. The state manager needs no knowledge of

sensors or any other input as these are inputs to the classes

of the subsystems. It needs no output except for other

classes to be able to retrieve the current state for lower

level decision making. Flags can be set by subclasses

when certain procedures have been completed.

Figure 6: State Manager Architecture

1. Autonomous Exploration

During autonomous exploration, the autonomous_nav

and slam flags are marked true, therefore, the

Autonomous Navigation and SLAM subsystems are both

active and executing. This is the state that occurs when the

user selects Autonomous Mapping in the state manager.

The autonomous navigation states essentially function like

a finite state machines. Autonomous exploration starts by

immediately moving forward while checking on sensor

data, if no obstacles are detected it will briefly switch to

the locomotion state to transmit motion data, then return

to the wander state and repeat.
If any obstacle avoidance warnings are triggered, then it

will immediately trigger the stop state, switch to

locomotion and transmit data, then return and switch to

the avoid obstacle state. The avoid obstacle state contains

logic for determining and calculating a new heading. Once

the heading is calculated, it switches to the locomotion

state and transmits data to reflect the new heading.

Following this, it returns to the wander state and repeats

the whole process. The wander state also checks if the

standby flag has been triggered. If it has, the robot is told

to stop and then exit this state and wait for instructions.

Figure 7: Autonomous Exploration State Architecture

2. Autonomous Patrol

During autonomous patrol, the autonomous_nav and

motion_detect flags are marked true, therefore, the

Autonomous Navigation and Patrol subsystems are both

active and executing. This is the state that occurs when the

user selects Autonomous Patrol in the state manager. First,

the set of patrol nodes are read in from the user so that the

nearest node can be determined. Nodes are essentially just

coordinates on the map, so calculation is fairly simple.

Once a goal node is determined, the navigation state is

triggered.
In the navigation state, obstacle avoidance sensors are

checked. If no warnings are triggered, the locomotion

state is triggered and motion data is transmitted; moving

the robot a unit of distance towards the goal, then

returning to the navigation state. If an obstacle is detected

or the standby flag is triggered, this state functions the

same as in the autonomous exploration state. If the robot

arrives at the node, it stops itself completely and

transitions itself to the detect motion state. Motion

detection is described later in the design section. Once

motion detection is complete, it returns to the starting state

and determines a new node to travel to, repeating the

whole process.

Figure 8: Autonomous Patrol State Architecture

3. Manual Navigation

During manual exploration, the manual_nav and slam

flags are marked true, therefore, the Manual Navigation

and SLAM subsystems are both active and executing. This

is the state that occurs when the user selects Manual

Mapping in the state manager. This state is very simple.

The starting state listens for user input from the state

manager. The input is in the form of directions which the

user wants the robot to move. If a command is received,

the locomotion state is triggered, motion data is

transmitted, and then it returns to the listener. If the

standby flag is triggered, this state is exited and the robot

waits for instruction.

Figure 9: Manual Exploration State Architecture

4. Manual Patrol

During manual exploration, only the manual_nav flag is

marked true, therefore, the Manual Navigation subsystem

is active and executing. This is the state that occurs when

the user selects Manual Patrol in the state manager. This

state state functions exactly the same as the Manual

Exploration state, except that the user has the additional

option to capture a frame from the webcam if they wish to

take a picture.

Figure 10: Manual Patrol State Architecture

5. SLAM

We take a black box view of SLAM because we’re not

writing any of the code to actually implement it. Instead

we utilize the hector_slam stack that is part of ROS. With

hector_slam we have a verified SLAM algorithm with

easily accessible inputs and outputs. It’s only input is the

formatted depth data from our Kinect, as well as the

current map. It’s output is the updated map, which some

other states have access to. The depth data is formatted

into a faked laser scan with the depth_image_to_laserscan

node that is part of ROS.

6. Motion Detection

Motion detection is a subsystem of autonomous

navigation. Our design uses differential image

comparisons to detect changes in a video feed on a per-

frame basis. Motion detection becomes active during the

autonomous patrol state, when the motion detection sub-

state is triggered. This state looks for motion for a set

amount of time, then rotates 90 degrees, after it has

rotated 360 degrees, motion detection is complete. This

state starts by opening the video feed and grabbing three

frames from the webcam. Following this, it converts the

three images to grayscale, then calculates the differential

of the first two. It then thresholds and blurs those images,

thresholds them again, and looks for contours in the

image. If any are found then motion was detected.

Otherwise no motion is present. OpenCV functions are

utilized for some of the image processing procedures.
If a certain number of white pixels are discovered, then

motion has been detected, so submit an alert with this

image to the user’s Gmail account. If motion wasn’t

detected, transition to the wait state. During the wait state

it checks how long motion detection at this angle has been

running. If the time limit hasn’t been reached, then

continue the loop of motion detection, reading in another

frame and repeating the process. If the time limit of this

detection has been reached, then instruct the robot to

rotate 90 degrees and repeat the process like above. If the

robot has rotated 360 degrees, then motion detection is

complete, exit this state and return to the autonomous

patrol state. If the standby flag is triggered, the robot exits

this state and waits for instructions.

Figure 11: Motion Detection State Architecture

IV. CONCLUSION

A project of this magnitude ushers in an entirely new

perspective on working as a team. This project required

that all members be able to contribute effectively in order

to create a good project. From the software perspective,

our overall design and framework was implemented

effectively. However ROS has proven to be very tricky.

ROS helped immensely with concurrency, hardware

drivers, visualization, communication, and the many open-

source nodes and stacks made implementing some

features very simple. However, ROS has an extremely

steep learning curve and can be incredibly cryptic. Many

of the available packages aren’t documented well or it

isn’t clear how to use them. The majority of development

time was spent trying to understand how ROS works,

debug ROS errors, and crawling through ROS Answers

for solutions to problems. The navigation stack has been

particularly difficult to understand as we are still having

issues with autonomous navigation. The cryptic nature of

ROS also made it hard to explain the software systems to

other team members and made code collaboration almost

impossible. As a result, some of our software systems fell

short of what we wanted, but we will continue to work on

them until our deadline. As of the writing of this

document, the systems fully operational are the state

manager, manual navigation, SLAM, motion detection,

and alert reporting. Autonomous navigation is still a work

in progress. From a hardware perspective, the biggest

issue has been working with the Kinect. Initially we

intended to run the Kinect on 5V which would have

required internal modification to surface mount

components. In the end we decided due to time that it

would be best to add the 12V regulator to our design.

ACKNOWLEDGEMENT

The authors wish to acknowledge the assistance and

support of Dr. Samuel Richie.

REFERENCES

[1] Vexrobotics.com, 'Motion - Robot Accessories - Products -
VEX EDR - VEX Robotics', 2015. [Online]. Available:
http://www.vexrobotics.com/vex/products/accessories/moti
on?ref=home. [Accessed: 23- Jul- 2015].

[4] Batteryuniversity.com, 'Nickel-based Batteries Information –

Battery University', 2015. [Online]. Available:

http://batteryuniversity.com/learn/article/nickel_based_bat

teries. [Accessed: 23- Jul- 2015].

[3] Tenergy.com, 'Smart Universal Charger for NiMH / NiCd

Battery pack 6V - 12V', 2015. [Online]. Available:

http://www.tenergy.com/01025. [Accessed: 23- Jul- 2015].

[4] TEXAS INSTRUMENTS, “LM2576/LM2576HV SERIES

SIMPLE SWITCHER® 3A STEP-DOWN VOLTAGE

REGULATOR ,” LM2756/LM2576HV DATASHEET, JUNE

1999 [REVISED APRIL 2013]

Biography

BRIAN DODGE IS

CURRENTLY A SENIOR AT

THE UNIVERSITY OF

CENTRAL FLORIDA, AND

WILL BE RECEIVING HIS

BACHELOR’S OF SCIENCE IN

ELECTRICAL ENGINEERING

IN AUGUST OF 2015. BRIAN

 HOPES TO PURSUE A

CAREER IN ELECTRICAL

ENGINEERING AND/OR

ROBOTICS, HE IS A MEMBER

OF TAU BETA PI AND ETA

KAPPA NU.

NICHOLAS MUSCO IS A

SENIOR ENGINEERING

STUDENT. NICHOLAS HOPES

TO PURSUE A CAREER IN

ROBOTICS AND

ELECTRONICS HARDWARE

FOR EITHER THEME PARKS

OR SPACE EXPLORATION. HE

JOINED LUNAR KNIGHTS AT

UCF AS THE POWER

MANAGER FOR THE 2014-

2015 NASA RMC AND IS

INVOLVED WITH THE

LIMBITLESS SOLUTIONS LEG

TEAM.

TREVOR ROMAN IS

CURRENTLY A SENIOR AT

THE UNIVERSITY OF

CENTRAL FLORIDA, AND

WILL BE RECEIVING HIS

BACHELOR’S OF SCIENCE IN

COMPUTER ENGINEERING IN

AUGUST OF 2015. TREVOR

WILL PURSUE A CAREER IN

SOFTWARE ENGINEERING

AND HOPES TO FOCUS ON

ROBOTICS, COMPUTER

VISION, AI, OR OTHER

INTERESTING SOFTWARE.

