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Abstract  —  The objective of this project is to create a 
land based, autonomous surveillance robot that implements 
mapping and localization.  The Autonomous Sentry Robot is 
a multifaceted security system for use in enclosed buildings. 
The ASR will be equipped with a variety of sensors and a 
Microsoft Kinect, allowing it to autonomously navigate and 
dynamically map its place in space. The ASR will then patrol 
the space and alert the user in the event of detected motion. 
The group chose this project because we have a mutual 
interest in robotic systems and we wanted to develop a cost 
effective solution for a robotic sentry. 

 Index Terms  —  Computer vision, intelligent robots, 
motion detection, power distribution, robot control, 
simultaneous localization and mapping. 

 

I. INTRODUCTION 

Robots are becoming more prevalent in the world. 

 They are no longer just in movies. They are being used 

for industrial purposes, and research projects. Robots can 

be found being used by the military and police 

departments as drones for aerial surveillance or robots for 

Explosive Ordnance Disposal. Robots are now found in 

the home as toys, such as the MIP or Sphero, and cleaning 

assistants like the iRobot Roomba vacuum cleaner. They 

can be found in hospitals, being used for surgery.  Robots 

are being developed in labs that can map and localize 

themselves. Most of the robots mentioned are teleoperated 

by humans, or perform simple, repetitive tasks.  There is 

an area which seems to not be well covered in consumer 

robotics. The area is land based, autonomous surveillance 

robots that implement mapping and localization.  The goal 

of this project is to create a robot that does this.   

The Autonomous Sentry Robot is a multifaceted 

security system for use in enclosed buildings. As 

previously stated, the ASR will be equipped with a variety 

of sensors and a Microsoft Kinect, allowing it to 

autonomously navigate and dynamically map its place in 

space. It will take the sensor data, and either use an 

onboard processor or a local computer to use the data for 

mapping and localization. From this map, it will plot an 

efficient path to patrol within this space, and its camera 

and vision capabilities will detect changes in the 

environment or motion. If changes are detected, the 

ASR’s owner will be alerted through a mobile app, and 

they will be able to access its camera feed, as well as take 

control of its movement.  

The robot is meant to be fully functional even when 

operating autonomously. When no users are around, it will 

need to keep track of its power level and return to the 

charging station when necessary. The robot must also be 

able to account for objects that are not picked up by the 

camera. Sonars and tactile sensors will be employed to 

ensure the robot doesn’t drive over an unseen object. 

Above all, the ASR must be low power, low maintenance, 

low latency, easy to operate, and able to map, navigate, 

and detect reliably. 

II. HARDWARE DESIGN 

The ASR is made up of both mechanical and electrical 

hardware systems. These systems must work together in 

order for the ASR be successful. That being said, it is 

important to design the system components to be 

independent so that if a part needs to be modified or 

replaced it can be taken care of without affecting the 

entire system. This section contains the decisions made for 

the mechanical and electrical hardware of the robot as 

well as the reasons for those decisions.  

A. Mechanical System 

The mechanical system of the ASR contains the 

sections related to the chassis, the drive system, wheels, 

and the motors. The system has been designed to be as 

simple as possible. 

1. Chassis 

The chassis is the main hub for the entire robot. It must 

be able to accommodate every subsystem. Our team 

decided to go with the VEX medium chassis kit for the 

ASR. The kit is extremely well designed and something 

we have worked with in the past. The kit is 12.592” x 

12.92” and can be cut to be smaller if necessary. The 

dimensions of the medium kit are well within the form 

factor chosen for the ASR but it is also not too small. The 

chassis is also relatively inexpensive. As system 

compatibility is important for the ASR, the factors listed 

and discussed below also played an important role in 

choosing the medium VEX chassis.  

 

 



2. Drive System 

Our project requires the ASR to be able to maneuver 

around many obstacles. For this purpose a highly mobile 

drive system would generally be preferred. However, as 

our software would already be challenging, we decided 

not to add to the difficulty by selecting a complicating 

drive system. This narrowed our choice down to only one 

option. A tank drive system was chosen for the ASR due 

to its simplicity and effectiveness in achieving our overall 

goal. 
It is a very simple design to implement as it is 

essentially a rectangle with four wheels. Each wheel in our 

system is individually powered to allow the ASR to carry 

a larger load. In a tank drive system, the left side of the 

robot and the right side of the robot each act as one. This 

cuts down on computation needed to figure out which 

motion would be best for a holonomic system to navigate 

a room. The VEX chassis is a perfect fit for this drive 

system. The chassis comes with 4 rails and two bumpers 

for mounting wheels and motors. Those components are 

for the four main drive wheels.  

3. Wheels 

The chassis design was factor in our wheel choice. The 

tank style drivetrain really works effectively with traction 

wheels. The traction wheels will allow the robot to turn 

and strafe with more friction than any of the other wheels 

we looked into. This means that there will be less slippage 

to worry about allowing our encoders to give us better 

data. There are many types of traction wheels available. 

However, we decided to look at choices that VEX 

robotics had to offer as they would be directly compatible 

with our chassis.  
All of the VEX wheels are designed to support the VEX 

chassis and required electronics. As the ASR is not meant 

to carry a large load, there is no need to compare load 

specifications for the following wheels. The first option 

we looked into are 2.75 inch traction wheels. The second 

option we looked into are 4 inch traction wheels. The 

ASR may need to be able to move over thresholds to 

effectively map a space. If the ASR cannot enter a room 

because it cannot make it over a threshold, it loses much 

of its functionality. The 2.75 inch traction wheels are 

sufficient to move over standard thresholds. Therefore the 

ASR should be able to enter any room with ease. The 2.75 

inch wheels were also more cost effective which helps us 

with our goal of creating a low cost, mapping robot.  

These wheels were chosen to work with the chassis. The 

chassis uses 0.182” standard VEX holes for mounting and 

the wheels use 0.125” square bars for shafts. The shafts of 

the wheels will properly fit though the chassis holes for 

mounting. Bearings and a shaft collars from VEX robotics 

will be used to hold the wheels in place.  

4. Motors 

The motors chosen need to be able to support the 

weight of the robot and all of its components. The robot 

should weigh no more than 15 lbs. This means that the 

motors need to have a stall torque greater than 0.85 N-M 

in order to run properly. The torque value is based on the 

weight of the robot and the radius of the wheels. The 

motors should also not have a large current draw in order 

to maximize battery life. After conducting our motor 

research, we have chosen to use a DC motor. Having 

chosen the VEX robotics chassis, we decided that looking 

at VEX motors would be a good start for system 

compatibility. The VEX motors we researched are shown 

in Table 1below. 

 

Motor RPM 
Needs 

Controller 

Stall 

Current 

(A) 

Stall 

Torque 

(N-M) 
Price 

($) 

393 100 Yes 4.8 1.67 14.99 

3 wire 100 No 
Not 

Listed Not Listed 
Not 

Listed 

269 100 Yes 2.6 0.972 12.99 
Table 1:  Motor Comparison 

 
The 3 wire motors are motors that we already have. The 

third wire is for PWM signals and therefore it doesn’t 

need a motor controller. However, there is not a lot of 

data available on them and we only have three. This 

eliminates them from being used on the ASR. The 2 wire 

269 motors are less expensive than the 2 wire 393 motors. 

Therefore we have chosen to go with the VEX two wire 

393 motors. The motor is a DC motor meaning it runs 

using DC voltage. That makes it ideal for our system as 

we are using a battery. DC motors are very easy to control 

which is a necessity for the ASR. The motors are shown in 

figure 1 below.  

 



 
Figure 1: VEX 2 Wire motor 393 [1] 

 
With these motors having two wires it is necessary to 

get a motor controller for them. As our microcontroller is 

able to generate PWM signals we have chosen to get the 

VEX motor controller 29. The motor controller is 

specifically designed to work with the VEX two wire 393 

motors. The motor and motor controller combo is priced 

at $24.98 on the VEX website making it a great low cost 

option for our project.  

B. Electrical System 

The electrical system of the ASR contains the sections 

related to the power system, the microcontroller, and the 

sensors. The system has been designed to be as simple as 

possible. 

1. Battery 

The battery is an important aspect of the ASR. It needs 

to have a high capacity and it should be designed for deep 

cycling. The battery must be able to discharge enough 

current to run the motors and electronics on the robot. It 

also shouldn’t be affected by the memory effect. After 

careful research we chose to go with a NiMH battery 

because they don’t require any special care and are safer 

than Lithium batteries [2]. They also have a higher 

capacity than NiCd batteries. After that decision was 

made, two batteries were under consideration. The 

batteries’ specifications can be seen in table 2 below. 

 

Battery 

Brand 
Voltage 

(V) 
Capacity 

(mAh) Price ($) 

Tenergy 7.2 3800 23.99 

Tenergy 7.2 2000 9.99 

Tenergy 7.2 5000 32.99 
Table 2: Battery Comparison 

 
For the ASR we chose the Tenergy 7.2V 5000mAh 

NiMH battery. We chose this battery because it has a 

higher capacity than most other 7.2V batteries. The 

battery is able to deliver 40A of current which is well 

above what the ASR can draw. The battery is designed to 

not be affected by the memory effect. Therefore it can be 

charged at any stage instead of only when it has been 

completely discharged. The battery is 7.2V making it 

perfect for running the motors we have chosen. The 

battery is relatively inexpensive and costs $32.99. The 

battery is pictured in figure 6.2.1-1 below. 

 
Figure 2:  Tenergy 5000mAh NiMh Battery [3] 

 

2. Charger  

Our group has chosen to go with the Tenergy Universal 

Smart Charger with the charge rate of 2A. This will allow 

a slightly faster charge time to get the ASR back out into 

the room for its patrol. The battery charger is able to 

detect the battery voltage to ensure a proper charge and is 

equipped with a temperature sensor to ensure that the 

battery doesn’t overheat.  The charger is shown in figure 3 

below.  

3. Power Distribution 

The ASR’s batteries will essentially have three loads, 

one load from the Microsoft Kinect at 12 V, one from the 

motors at 7.2 V, and one load from the microcontroller, 

microcomputer, and sensors at 5 V.   Since the motors run 

on the same voltage as the batteries, they will not require a 

separate power distribution board.  However, we will need 

a power distribution for both 12 V and 5 V. 
The ATmega328P, tactile sensors, and ultrasonic 

sensors all run at 5 V.  The maximum current draw from 

them is 1.10 A.  Since we have experience from a 

previous laboratory with 5 V voltage regulation, we 

decided to use what we know.  We decided to use the 

LM2576, a 5V switching voltage regulator.  We will be 



using TI reference design [3], since it does exactly what 

we need, as shown below in the Figure 3. 

 

 
Figure 3: Microcontroller and Sensor Power Supply 

 
For the Microsoft Kinect Sensor, we will require a 12 V 

voltage regulator.  We designed one in TI Webench 

Power Architect as seen in Figure 4.  The voltage 

regulator uses a LM2587. 

 
Fig. 4: 12 V Power Supply 

 

4. Microcontroller 

From our research, we saw that the ATMega328P has a 

faster clock frequency, but less Program Memory, less 

RAM, less I/O pins, and less USARTs/SPIs than the 

ATmega2560.  Since we do not plan to do anything 

complex with the microcontroller and need for it to react 

to obstacles quickly, we decided on using the 

ATmega328P.  We will be using it with an Arduino 

bootloader to simplify the programming required, thus 

saving us some time.  All the microcontroller needs to do 

is take movement commands and send the commands to 

the motor controllers, and take sensor data from the tactile 

sensor, ultrasonic sensors, and motor encoders and then 

send movement commands to the motors, if needed.  The 

faster clock frequency actions for the robot. 

 

 

5. Sensors 

To be successful, our robot will require long range, 

medium range, and short range sensors.  For the short 

range sensors, we choose the VEX bumper sensor.  It will 

complement the HC-SR04 ultrasonic distance sensor. It’ll 

work well for a medium range sensor with a range of 2 cm 

to 4 m.  The bumper sensor can handle anything that is 

missed.  We will have two bumper sensors in the front of 

the robot, along with one ultrasonic sensor.  These sensors 

should be able to handle close to medium range object 

detection.  If they are triggered, the microcontroller will 

react and move the robot away from the object.  We will 

also have the same configurations on the back of the 

robot.  This will cover the cases when the robot backs up 

and it’ll ensure that it does not run into anything while 

backing up. 

III. SOFTWARE DESIGN 

The ASR is a complex system of interconnected sub-

subsystems. The overall system has distinct inputs and 

outputs, and so should the individual subsystems. With 

this approach in mind, our design attempts to be as 

modular as possible. This way modifications can be made 

to one system without too much impact on other systems. 

This approach allows us to utilize ROS as a general 

purpose framework. First, a high level view of the overall 

system architecture will be presented. Following this, each 

system will be looked at in more depth. ROS requires the 

use of many different nodes and packages for things like 

creating coordinate transforms between sensor frames, 

viewing data, and performing navigation procedures using 

a map. Since these are features of ROS itself and not 

modules we will be programming, they will not be 

discussed. 

A. High Level Software System Architecture 

The overall system is contained within and being 

executed on a laptop running Ubuntu Linux. The 

subsystems are, manual navigation, autonomous 

navigation, mapping and localization, motion detection, 

and the state manager. The inputs to the system are the 

map, streams of data from various sensors, and input from 

the user. The outputs of the system are the current 

generated map which is fed back in as an input, alerts 

which are pushed to the user’s Gmail account, and 

locomotion data to the motors. 
 



 
Figure 5:  High Level Software Architecture 

 
The above diagram does not demonstrate the order of 

execution in the system, but the relationship of inputs and 

outputs to each subsystem, and the overall system itself. 

Arrows flowing in are inputs, arrows flowing out are 

outputs. The type of I/O data is indicated on each line. 

Some of these subsystems are running concurrently, so 

dedicated threads are necessary, luckily ROS safely 

handles this. For instance, if the user decides to map 

autonomously, both the autonomous navigation and 

mapping/localization subsystems will be executing. The 

map will be being updated while the robot is planning its 

path, and sending locomotion instructions to the robot’s 

wheel controller. The black dots provide no functionality, 

but instead indicate connected branches for better clarity. 

1. State Manager 

The state manager is a singleton class which sets the 

given state of the robot based on input from the user to the 

terminal. Abstract states like “Autonomous Mapping 

Mode” selected in the state manager are not actually 

representative of a single state in the manager, but rather 

two states operating simultaneously. This approach helps 

 us eliminate redundancy and keep code more modular for 

ease of modification. The State Manager class is simple in 

terms of methods and variables. The SetState() method 

takes in a boolean array which flags states that are to be 

set active and inactive.  
The current state can be retrieved with GetState() which 

retrieves the global variable flags[ ], containing whatever 

states were last set. The global variable mapComplete is 

set when the mapping state has completed and is used by 

the state manager to decide which options are available to 

the user. The state manager needs no knowledge of 

sensors or any other input as these are inputs to the classes 

of the subsystems. It needs no output except for other 

classes to be able to retrieve the current state for lower 

level decision making. Flags can be set by subclasses 

when certain procedures have been completed. 
 

 
Figure 6: State Manager Architecture 

 

1. Autonomous Exploration 

During autonomous exploration, the autonomous_nav 

and slam flags are marked true, therefore, the 

Autonomous Navigation and SLAM subsystems are both 

active and executing. This is the state that occurs when the 

user selects Autonomous Mapping in the state manager. 

The autonomous navigation states essentially function like 

a finite state machines. Autonomous exploration starts by 

immediately moving forward while checking on sensor 

data, if no obstacles are detected it will briefly switch to 

the locomotion state to transmit motion data, then return 

to the wander state and repeat.  
If any obstacle avoidance warnings are triggered, then it 

will immediately trigger the stop state, switch to 

locomotion and transmit data, then return and switch to 

the avoid obstacle state. The avoid obstacle state contains 

logic for determining and calculating a new heading. Once 

the heading is calculated, it switches to the locomotion 

state and transmits data to reflect the new heading. 



Following this, it returns to the wander state and repeats 

the whole process. The wander state also checks if the 

standby flag has been triggered. If it has, the robot is told 

to stop and then exit this state and wait for instructions.  
 

 
Figure 7: Autonomous Exploration State Architecture 

 

2. Autonomous Patrol 

During autonomous patrol, the autonomous_nav and 

motion_detect flags are marked true, therefore, the 

Autonomous Navigation and Patrol subsystems are both 

active and executing. This is the state that occurs when the 

user selects Autonomous Patrol in the state manager. First, 

the set of patrol nodes are read in from the user so that the 

nearest node can be determined. Nodes are essentially just 

coordinates on the map, so calculation is fairly simple. 

Once a goal node is determined, the navigation state is 

triggered.  
In the navigation state, obstacle avoidance sensors are 

checked. If no warnings are triggered, the locomotion 

state is triggered and motion data is transmitted; moving 

the robot a unit of distance towards the goal, then 

returning to the navigation state. If an obstacle is detected 

or the standby flag is triggered, this state functions the 

same as in the autonomous exploration state. If the robot 

arrives at the node, it stops itself completely and 

transitions itself to the detect motion state. Motion 

detection is described later in the design section. Once 

motion detection is complete, it returns to the starting state 

and determines a new node to travel to, repeating the 

whole process. 
 

 
Figure 8: Autonomous Patrol State Architecture 

 

3. Manual Navigation 

During manual exploration, the manual_nav and slam 

flags are marked true, therefore, the Manual Navigation 

and SLAM subsystems are both active and executing. This 

is the state that occurs when the user selects Manual 

Mapping in the state manager. This state is very simple. 

The starting state listens for user input from the state 

manager. The input is in the form of directions which the 

user wants the robot to move. If a command is received, 

the locomotion state is triggered, motion data is 

transmitted, and then it returns to the listener. If the 

standby flag is triggered, this state is exited and the robot 

waits for instruction. 
 

Figure 9: Manual Exploration State Architecture 
 

 

 



 

4. Manual Patrol 

During manual exploration, only the manual_nav flag is 

marked true, therefore, the Manual Navigation subsystem 

is active and executing. This is the state that occurs when 

the user selects Manual Patrol in the state manager. This 

state state functions exactly the same as the Manual 

Exploration state, except that the user has the additional 

option to capture a frame from the webcam if they wish to 

take a picture. 
 

 
Figure 10: Manual Patrol State Architecture 

 

5. SLAM 

We take a black box view of SLAM because we’re not 

writing any of the code to actually implement it. Instead 

we utilize the hector_slam stack that is part of ROS. With 

hector_slam we have a verified SLAM algorithm with 

easily accessible inputs and outputs. It’s only input is the 

formatted depth data from our Kinect, as well as the 

current map. It’s output is the updated map, which some 

other states have access to. The depth data is formatted 

into a faked laser scan with the depth_image_to_laserscan 

node that is part of ROS. 

6. Motion Detection 

Motion detection is a subsystem of autonomous 

navigation. Our design uses differential image 

comparisons to detect changes in a video feed on a per-

frame basis. Motion detection becomes active during the 

autonomous patrol state, when the motion detection sub-

state is triggered. This state looks for motion for a set 

amount of time, then rotates 90 degrees, after it has 

rotated 360 degrees, motion detection is complete. This 

state starts by opening the video feed and grabbing three 

frames from the webcam. Following this, it converts the 

three images to grayscale, then calculates the differential 

of the first two. It then thresholds and blurs those images, 

thresholds them again, and looks for contours in the 

image. If any are found then motion was detected. 

Otherwise no motion is present. OpenCV functions are 

utilized for some of the image processing procedures. 
If a certain number of white pixels are discovered, then 

motion has been detected, so submit an alert with this 

image to the user’s Gmail account. If motion wasn’t 

detected, transition to the wait state. During the wait state 

it checks how long motion detection at this angle has been 

running. If the time limit hasn’t been reached, then 

continue the loop of motion detection, reading in another 

frame and repeating the process. If the time limit of this 

detection has been reached, then instruct the robot to 

rotate 90 degrees and repeat the process like above. If the 

robot has rotated 360 degrees, then motion detection is 

complete, exit this state and return to the autonomous 

patrol state. If the standby flag is triggered, the robot exits 

this state and waits for instructions.   
 

 
Figure 11: Motion Detection State Architecture 

 



IV. CONCLUSION 

A project of this magnitude ushers in an entirely new 

perspective on working as a team. This project required 

that all members be able to contribute effectively in order 

to create a good project. From the software perspective, 

our overall design and framework was implemented 

effectively. However ROS has proven to be very tricky. 

ROS helped immensely with concurrency, hardware 

drivers, visualization, communication, and the many open-

source nodes and stacks made implementing some 

features very simple. However, ROS has an extremely 

steep learning curve and can be incredibly cryptic. Many 

of the available packages aren’t documented well or it 

isn’t clear how to use them. The majority of development 

time was spent trying to understand how ROS works, 

debug ROS errors, and crawling through ROS Answers 

for solutions to problems. The navigation stack has been 

particularly difficult to understand as we are still having 

issues with autonomous navigation. The cryptic nature of 

ROS also made it hard to explain the software systems to 

other team members and made code collaboration almost 

impossible. As a result, some of our software systems fell 

short of what we wanted, but we will continue to work on 

them until our deadline. As of the writing of this 

document, the systems fully operational are the state 

manager, manual navigation, SLAM, motion detection, 

and alert reporting. Autonomous navigation is still a work 

in progress. From a hardware perspective, the biggest 

issue has been working with the Kinect. Initially we 

intended to run the Kinect on 5V which would have 

required internal modification to surface mount 

components. In the end we decided due to time that it 

would be best to add the 12V regulator to our design.  
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