Autonomous Sentry Robot Group 9 Brian Dodge - EE Nicholas Musco - EE Trevor Roman - CpE

Motivation

 We wanted to do a project that applied, and expanded, our knowledge of robotics and computer vision.

- Since we are two electrical and one computer engineering students, we wanted to do a project that had both hardware and software components and a robot is a perfect choice.
- We thought it would be an interesting idea to have an autonomous mobile security system for your home.

Goals and Objectives

- Autonomous Control must be able to perform its tasks without user control
- Remote Control user must be able to take control of the robot
- Mapping and Localization must map an enclosed area and determine its position
- Object Avoidance must avoid obstacles while moving
- Motion Detection must be able to detect motion and then alert the user

Form Factor

Requirement ID	Requirement Description
FF1	The chassis must be low profile, no more than 1ft high, and 1.5ft wide.
FF2	The chassis must be able to hold all of the electronics, battery, and sensors.

Wheels and Motion

Requirement ID	Requirement Description		
WM1	The robot must be able to move forward, backwards, and turn using wheels.		

Control

Requirement ID	Requirement Description
C1	The robot must move smoothly with low vibration to keep the camera steady
C2	The robot must make turns smoothly in autonomous and user control modes.
C3	The robot must be able to be controlled autonomously.
C4	The robot must be able to be controlled by an user.

Sensors

Requirement ID	Requirement Description
S1	The robot's sensors must be able to detect collisions, distance, and depth.
S2	The robot's sensors must be equipped with sufficient sensors to build a reliable map of its environment.
S3	The robot's sensors must be able to detect motion or changes in the environment instantaneously.
S4	The robot must be able to operate reliably in light or darkness.
S5	The robot's sensors must be able to detect pitfalls, stairs, and other obstacles from which it cannot escape.

Processing

Requirement ID	Requirement Description
P1	The robot must be able to autonomously navigate and map in real time.
Ρ2	The robot must reliably operate, react, and make decisions within 1-3 seconds.
Р3	The robot must be able to find its docking station and successfully dock to charge.
Ρ4	The robot must have 75% certainty of detections before alerting its user.
Р5	The user must receive alert notifications from ASR within 5 seconds of detection.
P6	The robot must alert user if damaged or stuck.
P6.1	If stuck, must attempt extricate itself for at least 10 seconds before alerting user, then continuing to try and escape
P7	If successful at extrication, the robot must alert user within 10 seconds.

Power

Requirement ID	Requirement Description				
PW1	The robot must be able to operate for at least 5 hours on a full charge.				

Design Constraints

- Low Cost
- Low Power
- Lightweight
- Small Form Factor
- Less Time

Related Standards

Standard Number	Scope	Title	BSR/IEEE 1873-201x	Mapping	Standard for Robot Map Data Representation for Navigation	
IEEE 802.11n-2009	WiFi	IEEE Standard for Information technology -Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements Part 11: Wireless LAN Medium Access Control (MAC)	IEC 60335-2-29 Ed. 4.2 b:2010	Battery Charger	Household and similar electrical appliances - Safety - Part 2-29: Particular requirements for battery chargers	
		and Physical Layer (PHY) Specifications Amendment 5: Enhancements for Higher Throughput	IEC 62676-1-1 Ed. 1.0 b:2013	Video Surveillance	Video surveillance systems for use in security applications - Part 1-1: System requirements -	
IEC 62680-1 Ed.	USB	Universal serial bus interfaces for data and power - Part 1: Universal serial bus specification, revision 2.0			General	
1.0 6:2013			IEC 62676-2-2	IP video	Video surveillance systems for use in security	
IEC 62680-2 Ed. 1.0 b:2013	USB	Univ. serial bus interfaces for data and power - Part 2: Universal serial bus - Micro-USB cables and connectors specification, revision 1.01	Ed. 1.0 0.2013		protocols - IP interoperability implementation based on HTTP and REST services	

Hardware Design

Overall Block Diagram

Peripherals

Ultrasonic Sensor - HC-SR04

Middle layer of obstacle avoidance Four Ultrasonic Sensors Two on the front corners Two on the back corners Working Curr

Working Voltage (V)	5
Working Current (mA)	15
Minimum Range (cm)	2
Maximum Range (M)	4
Measuring Angle	15 degree
Price (\$)	8.99/2

Tactile Sensor

• Used as last layer of obstacle avoidance.

- Four Vex Bumper Switches
 - Two on the front corners
 - Two on the back corners
 - \$12.99 for two

Microsoft Kinect

- Developed for the Xbox 360
- RGB camera with a resolution of 1280x960
- Infrared (IR) emitter and an IR depth sensor
- Microphone array
- 3-axis accelerometer
- Tilt Motor
- Requires a power adapter to work with a computer
- Costs \$20.00 (used)

Wireless Connectivity

- The Raspberry Pi 2 will be a server
- Plug and play USB WiFi NIC
- Connect via SSH
- Use a remote desktop client for headless access
- Chose the EW-7811, the cheapest option

NIC	Max Data Rate	Frequency	Security	Cost
PAUO5	300Mbps 802.11n	2.4GHz	64b/128bit WEP, WPA and WPA2 (TKIP+AES)	\$16
PAUO6	300Mbps 802.11n + 5dBi antenna	2.4Ghz	64b/128bit WEP, WPA and WPA2 (TKIP+AES)	\$20
EW-7811Un	150Mbps 802.11n	2.4Ghz	64/128bit WEP Encryption and WPA-PSK, WPA2-PSK security; WPS	\$10

Microcontroller / Microprocessor

Microcontroller

- ATmega328P
- Arduino Bootloader
- Will use a 28 pin DIP socket on the PCB.
- Program with a Mintduino kit which comes with an FTDI programmer.

Architecture (bits)	8
Frequency (MHz)	20
Max Operating Voltage (V)	5.5
Program Memory (KB)	32
RAM (КВ)	2
USART/SPI	1/1
120	1
I/O Pins	26 max
Price per Unit	\$3.38 (Digi-Key)

PCB Schematic

PCB Layout

Microprocessor

- Raspberry Pi 2
- Cheap, powerful, trusted platform
- Compatible with ROS

Released	February 2015
Price	\$35 USD
OS	Linux, Windows 10, RISC OS, FreeBSD, NetBSD, Plan9, Inferno
SoC	Broadcom BCM2836 (CPU, GPU, DSP, SDRAM, 1 USB)
CPU	900 MHz quad-core ARM Cortex-A7
GPU	Broadcom Videocore IV 250MHz, OpenGL ES 2.0
RAM	1GB SDRAM
Storage	MicroSDHC
Network	10/100 Mbit/s Ethernet (8P8C)
Video Output	HDMI 640x350 - 1920x1200
USB	4x USB 2.0
Power	5V, 800mA, 4.0 W
Size	85.6mm x 56.5mm
Weight	45g

Microprocessor Benchmarks

Smallest number is

Pi 2 outperforms or

expensive boards in

performs nearly as

well as more

all benchmarks

•

best

Motor Controller and Motors

VEX Motor Controller 29

Small form factor

<2" in length
<1" width and height

Inexpensive

\$10.00 x 4

Uses Pulse Width Modulation

Speed Control
Direction Control

Vex 2-Wire Motor 393

- Runs on 7.2V
- Multiple Gear Ratios
- \$14.99 x 4

Compatible with the VEX Chassis

	Output Stage Driving Gear	Output Stage Driven Gear	Output Speed (RPM)	Output Stall Torque (N*m)	IME Ticks per Revolution
Standard Motor 393 Gearing	10t	32t	100	1.67	627.2
High Speed Option (included with Motor 393)	14t	28t	160	1.04	392
Turbo Gear Set (sold separately)	18t	24t	240	0.7	261.333

Wheels

Wheel Type	Mecanum	Omni	Traction
Image			
Price	\$60.00 for 4	\$25.00 for 2	\$10.00 for 4
Advantage	 Best Mobility Can move in any direction 	 Reduces Friction Greater Mobility 	 Simple Inexpensive Great traction
Disadvantage	 Slippage Complexity Price 	SlippagePrice	• Lacks mobility

Chassis

Medium Chassis Kit - VEX Robotics

- Rectangular Form Factor
- 12.6" X 12.6"
 - Acceptable Size
 - Adjustable width
- Polycarbonate top
- Chassis only \$21.35
- Suitable for tank drive

Power

5 Volt Regulator

Voltage Regulator	LM2576-ADJ
Max Input Voltage (V)	40
Output Voltage (V)	1.23 to 37
Peak Current (A)	3

Figure 21. Fixed Output Voltage Versions

Reference Schematic from TI's LM2576 Datasheet

Nickel-Metal-Hydride Battery

	30–40 percent higher capacity than a standard NiCd			
Advantages	Less prone to memory than NiCd			
	Simple storage and transportation; not subject to regulatory control			
	Environmentally friendly; contains only mild toxins			
	Nickel content makes recycling profitable			
	Limited service life; deep discharge reduces service life			
	Requires complex charge algorithm			
	Does not absorb overcharge well; trickle charge must be kept low			
Limitations	Generates heat during fast-charge and high-load discharge			
	High self-discharge; chemical additives reduce self-discharge at the expense of capacity			
	Performance degrades if stored at elevated temperatures; should be stored in a cool place at about 40 percent state-of-charge			

Nickel-Metal-Hydride Battery Cont.

Safety is the number one priority
NiMH was chosen over Lithium Ion due to the charging station
When the system is perfected a switch to Lithium Ion could occur for greater battery life

Nickel-Metal-Hydride Battery Cont.

- Price was also important
- Designed to be as cost effective as possible
- 5000mAh will allow our battery to run for an acceptable amount of time

Battery (Chemistry)	Capacity (mAh)	Price (\$)	Voltage (V)
Tenergy (NiMh)	5000	32.99	7.2
Tenergy (Li-Ion)	5000	55.00	7.4

Charging Station

Designed to be an end table

- Utilizes a Tenergy Universal Smart Charger
 - Used for 6-12V Batteries
 - Used with NiMH and NiCd
- Wood construction
- Vented for safety

Charging Station

Battery charger leads will be enclosed and insulated to prevent shock
The lead enclosure will open when the ASR enters the station
The station entrance will be just larger than the robot

Software Design

High Level Software Architecture

Development Environment

- Laptop running Ubuntu Linux
- Raspberry Pi 2 running Raspbian Linux

ROS

- SLAM
- Hardware Drivers
- General Framework
- OpenCV
 - Computer Vision Systems

SLAM

Simultaneous Localization and Mapping Original approach Modify BreezySLAM Didn't originally plan on using ROS New Approach - Experimental • Use available ROS packages for SLAM HectorSLAM - Uses No Odometry GMapping - Uses Odometry

SLAM Examples

HectorSLAM

BreezySLAM

GMapping

SLAM With Kinect

Problem Kinect supplies 3D depth clouds Our SLAM choices output 2D grids Solution Slice the depth cloud

 Trick SLAM into thinking the kinect is a laser scanner

R.O.S. is Awesome

Our idea was available as a ROS node Here it is, already working:

R.O.S. is Awesome

While we're at it, here's our prototype of the SLAM system "working" as well:

R.O.S.

"The Robot Operating System (ROS) is a flexible framework for writing robot software. It is a collection of tools, libraries, and conventions that aim to simplify the task of creating complex and robust robot behavior across a wide variety of robotic platforms."

R.O.S.

- "Meta" Operating System Topics
- Open-source under BSD License
- C++, Python, Java, Lisp
- Network of nodes (processes)
- ROS Core
 - ROS Master
 - Parameter Server
 - rosout

- Stream-like Communication
- TCP/IP or UDP
- Publishers
- Subscribers
- Services
 - TCP/IP or UDP
 - Function-like Communication
 - Server
 - Client

Control - Option A

- Design a simple user-facing application
- Only necessary buttons, options, and features
- Persistent camera frame
- Web or mobile version
- Constrained by time and knowledge, but better for users

Camera Feed	Displays the current view from the camera Provides options for pausing and resuming execution, powering off, and backtracking through menus	Camera Feed	Camera feed, options, and alerts remain persistent between modes	Camera Feed	Camera feed and options remain persistent in Autonomous Mapping mode.
Alerts Notifications	Displays any alerts pushed from the robot, scrollable	Alerts Notifications	Displays any alerts pushed from the robot, scrollable	Current Map	User selects Autonomous Map, robot initiates autonomous mapping and navigation state. View of map in progress replaces bottom options.
Control Mode (Manual Controls Autonomoas Controls	User selects what mode they wish to operate in	Autonomous Mode Map Patrol Dock	User selects Autonomous Control. Patrol and Dock remain grayed out until mapping is complete		When map is complete, robot goes on standby and sends an alert to the user. They can now select Patrol mode.

Control - Option B

- Treat the ASR more like a remote access computer
- SSH in, give instructions through the command line
- Integrate ROS visualization tools
- Easier for us, more time for other systems
- Worse for user
- Ex) Start autonomous mapping procedure

pi@raspberrypi ~ \$ asr mapping -a

Web vs. Mobile

Figure 3.13.2.2a: Market Share for Browsers - 3/15/2015

Best Option:

Chrome / Firefox Compatible Web App

 Capture 81.53% of market

 Android 4.1 - 5.1 Compatible App

 Capture 47.5% of mobile market
 Capture 87.5% of Android market

2.2	Froyo	8	0.4%
2.3.3 - 2.3.7	Gingerbread	10	6.4%
4.0.3 - 4.0.4	Ice Cream Sandwich	15	5.7%
4.1.x	Jelly Bean	16	16.5%
4.2.x		17	18.6%
4.3		18	5.6%
4.4	KitKat	19	41.4%
5.0	Lollipop	21	5.0%
5.1		22	0.4%

Figure 3.13.2.2c: Market Share of Android Versions

State Manager

Autonomous Exploration

Figure 7.5.1: Autonomous Exploration State Architecture

Autonomous Patrol

Figure 7.5.2: Autonomous Patrol State Architecture

Autonomous Docking

Figure 7.5.1: Autonomous Docking State Architecture

Manual Exploration / Patrol

Figure 7.6.2: Manual Patrol State Architecture

Motion Detection

Figure 7.8: Motion Detection State Architecture

Administrative Content

Work Distribution

Name	Electrical System	Hardware Assembly	Hardware Programming	Software Systems
Brian	Р	S	P	S
Nick	S	Р	Т	Т
Trevor	T	Т	S	Р

- P primary S Secondary
- T Tertiary

Development Budget

Part	Quantity	Unit Price	Expected Cost	Actual Cost
Robot Chassis - Vex medium chassis	1	\$21.35	\$21.35	\$21.35
3.25 inch Vex Wheels	4	\$19.99 (for four)	\$19.99	\$0.00- Already Owned
Microsoft Kinect	1	\$20.00 (Used)	\$20.00(Used)	\$0.00 - Already Owned
Ultrasonic Module HC-SR04 Distance Sénsor	4	\$8.99 (for two) \$17.98		\$8.99 - Already Own 2
VEX Bumper Switch	4	\$12.99 (for two)	\$25.98	\$12.99 - Already Own 2
ATmega328P	1	\$3.70	\$3.70	\$0.00 - Already Owned
Mintduino	1	\$24.99	\$24.99	\$0.00 - Already Owned
Raspberry Pi 2 Model B	1	\$35.00	\$35.00	\$0.00 - Already Owned
Vex 393 Motors and Motor Controller 29	5	\$24.98	\$124.90	\$124.90
РСВ	1	\$66.00	\$66.00	\$66.00
Edimax EW-7811UN WiFi transmitter	1	\$14.99	\$14.99	\$0.00 - Already Owned
Tenergy 7.2V 5000mAh NiMH battery	1	\$89.00 (set of two)	\$89.00	\$89.00
Tenergy Battery Charger	1	\$22.99	\$22.99	\$22.99
Power Regulators components	N/A	N/A	\$50.00	\$50.00
Grand Total			\$536.87	\$396.22

Build Budget

Part	Quantity	Unit Price	Total
Robot Chassis - Vex medium chassis	1	\$21.35	\$21.35
3.25 inch Vex Wheels	4	\$19.99 (for four)	\$19.99
Microsoft Kinect	1	\$20.00 (Used)	\$20.00(Used)
Ultrasonic Module HC-SR04 Distance Sensor	4	\$8.99 (for two)	\$17.98
VEX Bumper Switch	4	\$12.99 (for two)	\$25.98
ATmega328P	1	\$3.70	\$3.70
Raspberry Pi 2 Model B	1	\$35.00	\$35.00
Vex 393 Motors and Motor Controller 29	5	\$24.98	\$124.90
РСВ	1	\$66.00	\$66.00
Edimax EW-7811UN WiFi transmitter	1	\$14.99	\$14.99
Tenergy 7.2V 5000mAh NiMH battery	1	\$89.00 (set of two)	\$89.00
Tenergy Battery Charger	1	\$22.99	\$22.99
Power Regulators components	N/A	N/A	\$50.00
Grand Total			\$511.88

Financing

Project sponsored by Boeing

 \$580.11

 Partially financed ourselves

Progress

Progress Research Design Protoyping Testing Total 25 50 75 100 0

Percentage

Plans to Complete the Project

Hardware:

- Finish ordering parts
- Order PCB
- Prototype power distribution
- Test components
- Build robot
- Build Charging Station

Software:

- Prototype each subsystem
 - a. Mapping (Done)
 - b. Navigation
 - c. Motion Detection
 - d. State Manager
- Integrate into full software system
- Integrate into full hardware system

Issues

ROS

- Extremely powerful and reliable
- Inexperienced, have to learn from scratch
- Have to rethink some systems to work with ROS
- Remote Access
 - Can the Pi 2 handle computing SLAM and other systems?
 - If not, what's the most efficient way to transmit data and compute on a more powerful machine?

Issues

Charging station interface with battery charger

- Heat dissipation
 - Will venting be enough?
- Battery level sensor for when to return to dock and to leave for patrol
- PCB Design Design software doesn't have all of the components, need to find libraries or alternative software

Questions?