A.S.R.
The Autonomous Sentry Robot

Department of Electrical Engineering and Computer Science
University of Central Florida
Summer 2015
Senior Design Il
Group #9

Project Sponsored By Boeing

Brian Dodge (EE) bdodge@knights.ucf.edu
Nicholas Musco (EE) nmusco@knights.ucf.edu
Trevor Roman (CpE) troman360@gmail.com

Executive Summary

Project Description
2.1. Motivation
2.2. Objectives and Goals
2.3. Requirements and Specifications
2.3.1. Form Factor
2.3.2. Sensors
2.3.3. power
2.3.4. Processing

Research
3.1. Similar Projects
3.1.1. T-100 Watchdog
3.1.2. KnightCop
3.1.3. RHINO
3.14. Minerva
3.1.5. Heatseekr
3.2. Autonomous Vehicles
3.3. SLAM
3.3.1. RGBDSLAM
3.3.2. GMapping
3.3.3. HectorSLAM
3.3.4. BreezySLAM
34. Sensors

3.41. Kinect
3.4.2. Lidar
3.4.3. Sonar

3.4.4. Tactile
3.4.5. Webcam
3.5. Microprocessors
3.5.1. Specification Comparison
3.5.2. Benchmarks
3.6. Microcontrollers

3.6.1. ATmega328P vs. ATmega2560

3.7. Operating Systems
3.7.1. Raspbian
3.7.2. ROS
3.8. Memory
3.9. Wireless Communication
3.10. Movement
3.10.1. Tank Drive
3.10.2. Car Steering
3.10.3. Holonomic Drive Systems
3.10.4. “H” Drive
3.11. Wheels
3.11.1. Traction Wheels
3.11.2. Tank Treads
3.11.3. Mecanum Wheels
3.11.4. Omni Wheels
3.12. Motors

—_

WWWNNN = -

OO ~NOOOTOh~WW

3.13.

3.14.

3.15.

3.16.

3.12.1. DC Motors
3.12.1.1. Brush DC
3.12.1.2. Brushless DC

3.12.2. AC Motors
3.12.21. Induction Motor
3.12.2.2. Synchronous Motors
3.12.2.3. Linear

Control and Navigation

3.13.1. Autonomous Control
3.13.1.1. SONAR
3.13.1.2. Tactile Sensor
3.13.1.3. Finite State Machine
3.13.1.4. Flood Fill Algorithm
3.13.1.5. Dijkstra’s Algorithm

3.13.2. User Control
3.13.21. Remote Access
3.13.2.2. Internet Application or Mobile Application

Batteries
3.14.1. Sealed Lead-Acid
3.14.2. LiFePO4

3.14.3. NiCd
3.14.4. NiMH
3.14.5. LiPO

Voltage Regulators
3.15.1. Linear Voltage Regulators
3.15.2. Switching Voltage Regulators
Chassis

Related Standards

41.
4.2.

Standards Search
Design Impact

Design Constraints

5.1.
5.2.
5.3.
5.4.

Cost
Time
Size
Power Consumption

Hardware Design

6.1.

6.2.

Mechanical System
6.1.1. Chassis
6.1.2. Drive System
6.1.3. Wheels
6.1.4. Motors
Electrical System
6.2.1. Battery
6.2.2. Charger
6.2.3. Power Distribution
6.2.4. Microcontroller
6.2.5. Sensors
6.2.6. Status LEDs

36
37
40
42
42
43
45
45
45
47
47
48
48
49
49
49
50
52
53
54
55
56
57
58
58
58
59

61
61
62

63
63
63
63
63

64
64
64
65
65
67
68
68
69
70
71
72
72

7. Software Design 73

71. High Level Software System Architecture 73

7.2. State Manager 74

7.3. Autonomous Navigation and Obstacle Avoidance 76

74. Manual Navigation 76

7.5. Motion Detection 77

7.6. Mapping and Localization 78

7.7. Open-Source Libraries 78

8. Prototype Construction 79
8.1. PCB 80

8.2. Coding Plan 81

9. Prototype Testing 82
9.1. Hardware Testing 82

9.1.1. Environment 82

9.1.2. Chassis 82

9.1.3. Wheels 83

9.1.4. Power Distribution 83

9.1.5. Sensors 84

9.1.6. Microcontroller 85

9.1.7. Server Laptop 86

9.1.8. Hardware Integration Testing 87

9.2. Software Testing 88

9.2.1. Environment 88

9.2.2. Terminal Application 89

9.2.3. State Manager 90

9.24. Autonomous Navigation 91

9.2.5. Manual Navigation 93

9.2.6. Software Integration Testing 94

10. Systems Operation 94
10.1. Hardware Setup 94

10.2. Software Setup 95

10.3. Troubleshooting 96

11. Administrative 96
11.1. Project Milestones 97

11.2. Project Budget 97

12. Personnel 99
Appendices Appendix - 1
A. Copyright Permissions Appendix - 1

B. Works Cited Appendix - 14

C. Large Diagrams Appendix - 16

1. Executive Summary

Robots are becoming more prevalent in the world. They are no longer seen just in
movies. They are being used for industrial purposes, and research projects. Robots can
be found being used by the military and police departments as drones for aerial
surveillance or Explosive Ordnance Disposal. Robots are now found in the home as
toys, such as the MIP or Sphero, and cleaning assistants like the iRobot Roomba
vacuum cleaner. They can be found in hospitals, being used for surgery. Robots are
being developed in labs that can map and localize themselves. Most of the robots
mentioned are teleoperated by humans, or perform simple, repetitive tasks. There is an
area which seems to not be well covered in consumer robotics. The area is land based,
autonomous surveillance robots that implement mapping and localization. The goal of
this project is to create a robot that does this.

The Autonomous Sentry Robot is an automated home surveillance system with
mapping and motion detection capabilities, powered by ROS and OpenCV. The ASR
utilizes a kinect for it's depth sensor and webcam, two ultrasonic sensors and four tactile
sensors for it's reactive navigation system, and a laptop which acts as a server. The
user is alerted through an email containing the time-stamped frame where motion
occurred.

2. Project Description

In this section, we will provide an overview of the project. We will give details for our
motivation for the project as well as goals and specifications that is should obtain.

2.1 Motivation

The motivation of this project is to expand our knowledge of robotics and computer
vision. Our group consists of two students studying electrical engineering and one
studying computer engineering. We knew that we wanted to do a robotics project, one
that had both hardware and software components. We did not want to solely design a
teleoperated robot, we wanted one that would be autonomous. We also wanted to build
a platform that could be useful as a product, one that had not been widely seen.

We wanted to work on a project that combined our experience in the two fields. For the
electrical engineering students, we wanted to learn how to design and build electrical
subsystems for the project, such as the power distribution board and charging station.
We also wanted to increase our knowledge of embedded systems programming, since
we will be using microprocessors to interface with the motors, sensors, and the
computer. The computer engineering student wanted to increase his knowledge and
skills in computer vision, robotics programming, and software engineering.

2.2 Objectives and Goals

The main goal for the project is to create a robot can autonomously map and navigate
enclosed areas. The robot will be able to map an unknown room and localize itself on
the map. It will also be able to determine if motion has occurred in the room. Once the
motion is detected, it will alert the user. The user can then assume control of the robot
or take other action. The project has the following main objectives to help with these
goals: Autonomous Control, Mapping and Localization, Object Avoidance, Motion
Detection, and Remote Control.

A main objective for this project is Autonomous Control. The robot must be able to
perform its tasks without user control. It must implement Mapping and Localization,
Motion Detection, and Object Avoidance. It must map the enclosed area and localize
itself in that area, while avoiding any obstacles in its way. It must be able to detect
motion, like humans entering the room, and alert the user when motion is found. The
alert can include an image, or video, of what the robot discovered.

Another main objective is Remote Control. Once motion is detected, the user will be
alerted and be given the option to take control of the robot. The user will be able to
control the robot on a computer, and if we have time, via a phone app.

2.3 Requirements and Specifications

The basic requirements and specifications for the project will be listed below. The
requirements and specifications will be our guide to successfully achieving the goals
and objectives stated in the previous section. The requirements and specifications will
be split into several categories. The categories are: Form Factor (Section 2.3.1),
Sensors (Section 2.3.2), Power (Section 2.3.3), and Processing (Section 2.3.4).

2.3.1 Form Factor

Table 2.3.1, shown below, lists the requirements for the ASR’s form factor.

Requirement ID Requirement Description

FF1 The chassis must be low profile, no more than 1ft high, and 1.5ft wide.

Table 2.3.1: Form Factor requirement

2.3.2 Sensors

Table 2.3.2, shown below, lists the requirements for the ASR’s sensors.

Requirement ID Requirement Description

S1 The robot’s sensors must be able to detect obstacles that are 2cm away.

Table 2.3.2: Sensors requirement

2.3.3 Power

Table 2.3.3, shown below, lists the requirements for the ASR’s power.

Requirement ID Requirement Description

PW1 The robot must be able to operate for at least 2 hours on a full charge.

Table 2.3.1: Power requirement

2.3.4 Processing

Table 2.3.4, shown below, lists the requirements for the ASR’s processing.

Requirement ID Requirement Description

P1 The robot must reliably operate, react, and make decisions within 1-3 seconds.
P2 The robot must have 75% certainty of detections before alerting its user.

P3 The user must receive alert notifications from ASR within 5 seconds of detection.

Table 2.3.1: Processing requirement

3. Research

Research was divided among group members by our own sense of individual expertise
and interest. Our EEs investigated primarily the hardware systems of our robot, while
our CpE investigated the software systems.

3.1 Similar Projects

We have found several similar projects to ours. There have been several robotics
projects that have covered a few of the goals we plan to achieve. There are some that

cover several to all of the goals we plan to achieve. Some of the projects are
autonomous, some are manually controlled. Some do mapping and localization, some
only do object detection and tracking. While we have ideas on how to obtain our goals,
we have looked to these projects for insight on how to help achieve them.

3.1.1 T-100 Watchdog

The T-100 Watchdog, shown in Fig. 3.1.1, is a University of Central Florida (UCF)
Senior Design project from 2014. The project was the work of Ismael Rivera, Journey
Sumlar, Chris Carmichael, and Warayut Techarutchatano. The T-100 Watchdog is a
home security robot. The group designed a robotic system that could detect and track
targets. One of the goals of the project was to use OpenCV algorithms and a thermal
camera to detect movement and then track a specific target. As the vehicle tracks and
moves towards the targets, it autonomously maneuvers across a room while avoiding
obstacles that might be in its way.

The Watchdog also has a webcam to relay images and video to the user via a wireless
communication system. The user can take control of the robot via a mobile application.
While this project has many similar goals to ours, like autonomous control, obstacle
avoidance, target detection and tracking using OpenCV, wireless communication, and
user alert and control, it does not share one of our main goals, mapping and
localization. Another difference is that the Watchdog only reacts to movement, where
our robot would actively patrol rooms.

Fig. 3.1.1: T-100 Watchdog
(Reprinted with Permission from Ismael Rivera)

3.1.2 KnightCop

KnightCop, shown in Fig.3.1.2, is another UCF Senior Design project, from 2013. It was
the work of Elean Atencio and Nitin Kundra. KnightCop was meant to be a tool for law
enforcement to use in life threatening scenarios. It is equipped with a video camera,
temperature sensors, ambient light sensors, lights, proximity sensors, which will give the
user feedback, and a robotic arm that will allow the user to interact with the
environment. The proximity sensors are used to add some autonomous functionality,
while the robot is mainly teleoperated. Teleoperation is done over Wi-Fi. While this
project seems similar to ours, it is not. Its meant to be controlled mainly by a user,
allowing them access to life threatening environments while allowing to manipulate their
surroundings with the robotic arm. It does not autonomously patrol and map its
surroundings, which is the focus of our project.

Fig.3.1.2: KnightCop
(Reprinted with Permission from Wesley Edmund)

3.1.3 RHINO

RHINO, shown in Fig.3.1.3, was the University of Bonn’s entry to the 1994 AAAI,
Association for the Advancement of Artificial Intelligence, Robotic Competition and
Exhibition. RHINO was based on the B21 mobile robot platform from Real World
Interface Inc. It is equipped with a sonar ring and a camera system for sensors. For
processing, it had two onboard 486 computers and communicated with two SUN
Sparcstations via tetherless Ethernet link. RHINO was a fully autonomous robot, with a
neural network learning to adapt to “its sensors and the environment.” [1].

The key features of RHINO’s control software are Autonomy, Learning, Real-time
operation, and Reactive control and deliberation. Rhino was designed to operate
completely autonomously and used a neural network to interpret sonar data. It could act
in real-time continuously with anytime algorithms to make decisions. During navigation,
it would use a reactive obstacle avoidance algorithm with “knowledge- and computation
intense map building and planning algorithms.”[1] Our project will share some of the
same features, but it will not incorporate any learning for interpretation. We plan on

using sensor data to reactively avoid obstacles, and a control algorithm to determine
how it should do so.

Fig. 3.1.3: Rhino [1]

3.1.4 Minerva

Minerva, shown in Fig.3.1.4 (a) and (b), was an interactive tour-guide for the
Smithsonian Museum for two weeks. It was designed by the same team as RHINO. It
goes beyond RHINO’s key features in several ways. Minerva had the ability to learn
maps. For localization, it used ceiling mosaics. Its path planner took uncertainty into
account, so it would avoid featureless spaces. Robotic Programming language, RPL,
was used for high level control. According to Thrun et al., RPL used learning for creating
tours “on-the-fly, and execution monitoring to accommodate exceptions.” [2]

Minerva has able to interact with people using “emotional” states and used learning to
develop its interactions. Minerva could use facial expression to convey “emotions.” Fig.
3.1.4(b) Is a closer view of its face. Minerva was designed for face to face human
interaction, while our project will have comparatively minimal human interaction, via an
app. Our project will also use mapping and localization, while Minerva could compare
what its camera saw to a stored map for localization, we will be using a SLAM,
Simultaneous Localization and Mapping, algorithm to map and determine the robot’s
position.

Fig. 3.1.4: (a) Minerva. (b) Minerva’s Face [2]

3.1.5 Heatseekr

Heatseeker, shown in fig. 3.1.5, is another UCF Senior Design project, from 2013. It
was the design of Matt Erdelac, Erik Ferreira, Armin Sadri, and Bernadeau Charles.
They designed Heatseekr to be an autonomous robot that detects and extinguishes fire.
It uses ultraviolet radiation detectors to detect fires. Once a fire was detected by an
ultraviolet sensor in a room, Heatseekr would respond to it. The fire sensors alert the
robot as to which room it needs to find. Heatseekr has the ability to put out a small fire
with an onboard tank of water and water pump. While it is an autonomous robot, it
navigates by a line following algorithm following tracks and reading addresses printed
next to the tracks. Heatseekr's autonomous movement is reliant on tracks and printed
addresses for localization, it does not keep track of its location or map its surroundings.
Our Autonomous Sentry Robot does both of these things in both its autonomous and
teleoperated modes.

Fig. 3.1.5: Heatseekr
(Permission pending)

3.2 Autonomous Vehicles

Autonomous vehicles are one kind of robotic system. They are robotic systems that can
move themselves without human input. A robotic system consists of three components:
Perception, Cognition, and Action. For an autonomous vehicle, its sensors would be
used for perception. Cognition is the part where the robot takes the information that is
has perceived and uses it to create maps, determines its location, and decides on how
to act. Action is the component where the robot manipulates its environment , moves,
and/or navigates. There are different robotic architectures that can be used for cognition
or control. Robotic architecture “provides a principled way of organizing a control
system. However, in addition to providing structure, it imposes constraints on the way
the control problem can be solved.”[3] The three main robotic architectures are
deliberative control architecture, reactive control architecture, and hybrid control
architecture. In deliberative control, a robot builds a model of the world, deliberates over
the model, and then acts on it.

In other words, the robot senses, use that data with a planner, and then acts based on
what the planner has determined. For reactive control, the robot simply senses and then
acts or reacts. It has no maps or states. Its behavior is based on what it senses. If its
design is to wander and it senses an obstacle, it will move to avoid the obstacle.
However, it does not keep track of previous states, so it will not “remember” where the
obstacle was. Hybrid control, also called three-tiered architecture, is a combination of
deliberative and reactive. This also a robot to have a model of the world, remember
previous states, and quickly react to sensor data. For example, a robot that has been
programmed to map an area can map it while quickly reacting to any obstacles that may
be in its way. This architecture is by most real world robotic systems and will be the
architecture that will be used in our project.

3.3 SLAM

SLAM (Simultaneous Localization and Mapping) is the basis of our project. We seek to
make a robot which can be released into a room, and without any outside knowledge,
navigate and output a map of that room. After this first stage, the robot will enter its
second stage, patrol mode, where it uses the map to plan a path through the room and
watch for unexpected stimuli. SLAM is not so much an algorithm as it is a concept, there
are no SLAM algorithms, but rather implementations of the concept. The only input from
SLAM is from sensors, like Lidar or a Kinect point cloud, to measure distance of the
robot relative to other objects. From this the robot will create a map (mapping), and
determine its “pose” within the environment (localization). For the purposes of our
project we do not seek to reinvent the wheel. This is not a project about inventing a new
SLAM algorithm. Rather, we would like to utilize existing libraries to implement SLAM on
our robot. There are many open source options available, and we should theoretically
be able to tweak them to our needs.

For our SLAM implementation we are most interested in using a Kinect sensor. The
reason for this is because not only do we want to map and navigate, but we would also
like to detect motion, and possibly, humans from the camera feed. The Kinect is an
RGBD camera capable of both of these, where depth is measured via a 3D point cloud.
Our idea right now is to take a horizontal slice of this point cloud to get something like a
Lidar scan. Depending on how things go during the development phase, we may end up
just using a Lidar. Because of this, we have focused our research on SLAM
implementations that use Kinect or Lidar. OpenSLAM.com provides descriptions,
documentation, and repositories for various SLAM algorithms, some of which have
actually been integrated into ROS. The following examples are from OpenSLAM. It's
hard to say what will be most useful until we start digging into the code, but based on
the documentation these seem like good candidates to work with and focus on. We will
most likely implement some combination of the three, or simply use them as models for
our own approach.

3.3.1 RGBDSLAM

RGBDSLAM is a graph based approach which generates 3D models of objects and
indoor scenes using the Kinect, but hand-held and not on a robot. Therefore, it does not
appear to use odometry data to evaluate error. It uses SURF or SIFT to match
landmarks, and RANSAC to estimate the transformation between them. The graph is
then optimized using HOG-Man. It was developed on Ubuntu with ROS Diamondback.
RGBDSLAM is now available as a ROS package, but it does not indicate that it is still
being maintained. Figure 3.3.1 below illustrates how RGBDSLAM operates.

: e <.

. 2 T YRR
Figure 3.3.1: RGBDSLAM 3D Scan Output (Left), Camera Image (Center), Camera
Image with Keypoints Visible (Right)

(Permission Pending)

At a glance from the images, RGBDSLAM is not quite so much a map generator as it is
a 3D scanner. Nowhere does the documentation indicate that it cannot be used for
mapping however. For our purposes we probably wouldn’t use it to map but, rather to
learn more about how they used the Kinect as a sensor. Since the code is open source,
we may be able to modify or translate it to suit our purposes. Our current plan is to

generate 2D maps, but should we decide to step our approach to modeling the rooms
themselves, RGBDSLAM may provide us with the means to do so.

3.3.2 GMapping

GMapping is a Rao-Blackwellized particle filter that generates grid-based maps from
laser data, where each particle carries it's own map of the environment. The maps
generated are 2D, it utilizes odometry data and requires a mounted laser range-finder.
GMapping was developed on Linux with the Carmen Robot Navigation Toolkit. It has
already been used to successfully autonomously map old mining tunnels. The full library
is available and can be modified, but only in C++. Gmapping is still being maintained
and is available as a ROS package. GMapping examples are shown in Figure 3.3.2
below.

Figure 3.3.2: Examples of GMapping Final Map Outputs
(Reprinted with Permission from Cyril Stachniss and Wolfram Burgard)

The output of GMapping is much closer to what we imagine for our implementation of
SLAM, since we desire 2D maps. None in our group are familiar with C++, so this would
ramp our difficulty in terms of working with the code. Since a Lidar was used, we would
have to figure out how to slice the point cloud if we decide to try it with a Kinect.

3.3.3 HectorSLAM

HectorSLAM is a 2D grid based approach that can be used with or without odometry
data. It uses Lidar to generate maps at a low computational cost. HectorSLAM has
already been implemented on several unmanned ground, surface, and quadcopter
vehicles. It is still being maintained and is available as a ROS package and coded in
C++. Examples of HectorSlam are shown in figure 3.3.3 below.

10

s I‘

Figure 3.3.3 Examples of HectorSLAM Intermediate and Final Map Outputs
(Reprinted with Permission from Stefan Kohlbrecher)

HectorSLAM is much the same as GMapping in terms of output, but interesting because
of its computational efficiency. It can generate poses for the robot at the same refresh
rate as the Lidar sensor used. Since we are planning to process on the robot, most
likely on a Raspberry Pi 2, it would be advantageous for our SLAM approach to be as
efficient as possible. This would hopefully also result in lower power consumption.

3.3.4 BreezySLAM

BreezySLAM is self described as a “simple, efficient, multiplatform, and open source
Python library” for SLAM. It utilizes C extensions for Python, which allow it to work off of
already existing SLAM implementations as a base. It is marketed as being accessible to
students for quick and efficient use. BreezySLAM builds 2D maps with a Lidar scanner
and has an easy to understand open source API. A paper written by the authors of
BreezySLAM indicates that one of it’s requirements was that the processing be done via
SoC, just like what we require for our ASR. With this requirement, the SLAM
implementation they chose to wrap was TinySLAM (aka. CoreSLAM), a SLAM
implementation written in 200 lines of C code that is light on memory usage. It provides
three Python classes: Robot, which translates odometry to velocity, Laser, which takes
in parameters describing the lidar being used, and Odometry, which is measured at
each instant. These three classes are the only one’s that need to be modified by a
coder who wants to use BreezySLAM, as everything else is CoreSLAM wrapped to
Python. Everything about BreezySLAM is attractive for our robot. It's light, efficient,
meant to be run on a SoC, coded in Python, 2D, open source, and built with
accessibility in mind. Examples of maps generated follow below in figure 3.3.4.

11

Figure 3.3.4: Examples of BreezySLAM Intermediate Mapping Outputs
(Reprinted with Permission from Dr. Simon Levy)

3.4 Sensors

The robot will need a combination of sensors to successfully achieve all of its goals. It
will need sensors for obstacle avoidance and collision detection. It will need sensors for
implementing SLAM. It will also need a camera to send images and video for when the
robot alerts the user. In the next few sections we have listed several sensors that we
have considered.

3.4.1 Microsoft Kinect

One of the sensors that is being considered for the vision portion of the project is the
Microsoft Kinect. The Kinect was is a motion sensing device designed by Microsoft for
their Xbox 360 game console. It allows controllerless control of games via gestures and
spoken commands. According to Microsoft, the Kinect has four sensors, as seen below
in Fig.3.4.1: a RGB camera, an infrared (IR) emitter and an IR depth sensor, a
microphone array, and a 3-axis accelerometer. The Kinect also has a tilt motor. The
camera stores three channels of data in a 1280x960 resolution. The IR emitter emits a
speckled pattern which the IR depth sensor can sense the reflected beams and convert
that into depth information. The microphone is a multi-array microphone that contains
four microphones. This array can be used to record audio while also finding the source
and direction of the sound. The 3-axis accelerometer can be used to determine the
orientation of the Kinect. [5]

12

IR Emitter Color Sensor

IR Depth Sensor

Tilt Motor

Microphone Array

Fig.3.4.1: Microsoft Kinect
(Reprinted with Permission from Microsoft)

The Kinect has several components that can be used for SLAM. If we were to use the
Kinect, we would be using the camera and the IR emitter and IR depth sensors. If we
have time, we might be able to use the microphone array to help determine the location
of an intruder. A used Kinect and an adapter can be purchased for less than $50,
making it very economical for all of the features it has.

3.4.2 LIDAR

LIDAR is another technology that is being considered for the mapping and localization
portion of our project. LIDAR is a sensing technology that uses a laser(s) to measure
ranges. LIDAR stands for Light Detection and Ranging. A LIDAR scanner consists of a
laser(s), a sensor(s) to detect the reflected laser beam(s) and one or more motors to
move the laser and scanner. A LIDAR system measures the time-of-flight of light to
determine distances to objects. LIDAR is used in 2D and 3D mapping. A 2D system will
return a discrete line of points of data, while a 3D system will return a discrete point
cloud of data. An example of a 3D point cloud can be seen below in Fig.3.4.2.

13

Fig. 3.4.2: Graphical example of a LIDAR point cloud
(Permission Pending)

LIDAR is where useful for SLAM and is used by many roboticists. It is very accurate.
We would only be using it for 2D mapping. However, LIDAR systems can be very
expensive, especially when compared to the Kinect. Systems can range from thousands
of dollars to tens of thousands of dollars.

3.4.3 SONAR

SONAR, Sound Navigation And Ranging, is being considered for obstacle avoidance.
The SONAR sensors that would be considered are ultrasonic range finder. The sensors
emit ultrasonic sound waves and measure the time of flight for the for a returning wave.
Some sensors have a range from 2 centimeters to 3 meters. This would work well for
obstacle avoidance and mapping small rooms, but not mapping large rooms. To get the
best results, the sensor should be perpendicular to a surface or else false readings can
occur as shown in Fig.3.4.3 below. To overcome this many robotics projects use
multiple sonars and/or a ring of sonars around the robot. There are many ultrasonic
distances sensors to choose from. Three have been listed below in Table 3.4.3, along
with their specifications.

14

Lateral resolutiwon

-]

v

(a) Sonar providing an

accurate range
measurement

(b-c) Lateral resolution is not
very precise; the closest object in
the beam’ s cone provides the

response

(d) Specular reflections
cause walls to disappear

(e) Open corners produce
a weak spherical wavefront

(f) Closed corners measure to
the corner itself because of

multiple reflections --> sonar ray

tracing

Fig. 3.4.3: Sonar Sensing
(Permission Pending)

Sensor HC-SR04 LV-MaxSonar-EZO PING))) Ultrasonic
Distance Sensor

Working Voltage (V) 5 2.5-5.5 5

Working Current (mA) 15 2 35

Minimum Range (cm) 2 15.2 2

Maximum Range (M) 4 6.45 3

Measuring Angle 15 degree varies 20 degrees

Price ($) 8.99/2 27.95 29.99

Table 3.4.3 Ultrasonic Rangefinders and Specifications

The HC-SR04 and PING Ultrasonic Distance Sensor can detect objects as close as 2
cm, while the LV-MaxSonar-EZ0 cannot. However, it can detect objects further than the

other two.

That would be useful for mapping, but these sensors are not being

considered for mapping. The HC-SR04 and PING have comparable specifications, but
vary greatly in price. The lower cost, with similar specifications, makes the HC-SR04
the more attractive of the two.

15

3.4.4 Tactile

Another type of sensor that is being considered for obstacle avoidance are tactile
sensors. Tactile, or bump, sensors are useful for detecting objects that the other
sensors might miss. They are considered the last resort. Bump sensors are switches,
they are activated when they are pressed by running, or bumping, into an object or wall.
Since they will be part of the reactive control, as soon as they are activated, the robot
will move away from the object.

The VEX chassis kit that is being taken into consideration has some bump switches,
seen in Fig. 3.4.4-1 (a), as well as limit switches, seen in Fig. 3.4.4-1 (b), that also can
be used to detect bumping into something. SparkFun also has a limit switch, seen in
Fig. 3.4.4-2, designed for their RedBot robot. The SparkFun limit switch act like
whiskers, and have a longer range on the sides of the robot. If sonar is used for close
range obstacle avoidance, the longer whiskers will not be needed. The VEX tactile
sensors would make more sense to use. especially if we use the VEX chassis kit which
comes with them.

Fig.3.4.4-1: (a) Vex Bumper Sensor and (b) Vex Limit Switch
(Reprinted with Permission from Vex)

Fig. 3.4.4-2: SparkFun RedBot with limit switches.
(Reprinted with Permission from Sparkfun)

16

3.4.5 Webcam

Since computer vision is a goal of our project, the robot will need a video camera to
supply images for object detection and possibly for mapping. The images and video
from the camera must be of a high enough resolution to detect changes in its
environment. There are three cameras that we are considering: the Logitech c¢310
webcam, the Logitech ¢920 HD webcam, and the webcam from the Microsoft Kinect.
We are considering the Logitech ¢310 webcam since we have one from a previous
robotics project. The Logitech ¢920 is a recommended web camera for robot vision
projects from several places on the internet and that is why it is being considered.
Since we are considering using a Microsoft Kinect for SLAM, we are considering using
its camera to help simplify the design of our robot. We have compared the three in
Table 3.4.5.

Camera Logitech c310 Logitech c920 Microsoft Kinect

Video Resolution | 1280x720 1920x1080 1280x960

Photo Resolution | Up to 5 megapixels | Up to 15 1.3 megapixels
megapixels

Price ($) 49.99 99.99 25.00(used)

Table 3.4.5 Webcam Specifications

The ¢c920 is clearly the best in terms of video resolution and photo resolution, but is the
most expensive. The Kinect has a slightly higher video resolution that the ¢310, but the
c310 has better photo resolution. If we were to consider the overall package, including
price, the Kinect is the clear winner since it's a more robust sensor than a webcam and
it costs less than either of the Logitech cameras.

3.5 Microprocessors

Onboard image processing, mapping, navigation, and programming necessitates
something more powerful than a simple microcontroller. A good microprocessor will
allow our robot to have a full OS, more RAM, and greater processing power. The
increasing popularity of ARM architecture for small electronics makes it the obvious
choice to focus on. We already see it’s use in phones, tablets, TVs, and countless other
applications. There are now several open source single board computers available for
less than $100.00, all compatible with various ARM-based distributions of Linux.
Raspberry Pi and BeagleBone products are familiar to the members of our group and
are widely documented with tutorials and guides.

17

3.5.1 Specification Comparison

Since low cost is one of our goals we are interested getting the best processing to price
ratio possible. The first board considered is the Raspberry Pi 1 Model B and its
information is displayed below in Table 3.5.1a.

Released February 2012

Price $35 USD

(01] Linux, RISC OS, FreeBSD, NetBSD, Plan9, Inferno
SoC Broadcom BCM2835 (CPU, GPU, DSP, SDRAM, 1 USB)
CPU 700 MHz single-core ARM1176JZF-S

GPU Broadcom Videocore IV 250MHz, OpenGL ES 2.0
RAM 512MB SDRAM

Storage MicroSDHC

Network 10/100 Mbit/s Ethernet (8P8C)

Video Output HDMI 640x350 - 1920x1200

USB 4x USB 2.0

Power 5V, 600mA, 3.0 W

Size 85.6mm x 56.5mm

Weight 459

Table 3.5.1a Raspberry Pi 1 Model B+ Specifications
The Raspberry Pi 1 Model B+ has a new model that was recently released. The

Raspberry Pi 2 Model B is an impressive upgrade of the 1 B+ for the exact same price.
Its specifications can be seen in Table 3.5.1b below.

18

Released February 2015

Price $35 USD

(01 Linux, Windows 10, RISC OS, FreeBSD, NetBSD, Plan9, Inferno
SoC Broadcom BCM2836 (CPU, GPU, DSP, SDRAM, 1 USB)

CPU 900 MHz quad-core ARM Cortex-A7

GPU Broadcom Videocore IV 250MHz, OpenGL ES 2.0

RAM 1GB SDRAM

Storage MicroSDHC

Network 10/100 Mbit/s Ethernet (8P8C)

Video Output

HDMI 640x350 - 1920x1200

usB

4x USB 2.0

Power 5V, 800mA, 4.0 W
Size 85.6mm x 56.5mm
Weight 459

Table 3.5.1b Raspberry Pi 2 Model B Specifications

A popular competitor to the Raspberry Pi is the BeagleBlone, which we will examine
next. The specifications of the BeagleBone can be seen in Table 3.5.1¢ below.

Released October 2011

(0 1] Linux

SoC AM3358/9 (CPU, GPU, DSP)

CPU 720Mhz Cortex-A8 + 2xPRU(200Mhz)
GPU 200Mhz PowerVR SGX53

RAM 256MB DDR2

Storage MicroSD

Network MIl Based “Fast Ethernet” 100Mbit/s

Video Output

None, must be peripheral

usB

1x Standard, 1x Mini

Power

5V, 300-500mA, 1.5-2.5W

Table 3.5.1c BeagleBone Specifications

The BeagleBone Black is a newer version of the BeagleBone with overall better
specifications. The BeagleBone Black will be examined next in Table 3.5.1d.

19

Released April 2013

(1] Linux

SoC AM3358/9 (CPU, GPU, DSP)

CPU 1000Mhz Cortex-A8 + 2xPRU(200Mhz)
GPU 200Mhz PowerVR SGX53

RAM 512MB DDR3

Storage MicroSD

Network MIl Based “Fast Ethernet” 100Mbit/s
Video Output MicroHDMI

uUsB 1x Standard, 1x Mini

Power 5V, 210-460mA, 1.05-2.3W

Size 86.4mm x 53.3mm

Weight 39.68¢g

Table 3.5.1d BeagleBone Black Specifications

3.5.2 Benchmarks

After researching benchmarks for our boards of interest, some very clear results
emerged. One enthusiast, David Hunt ran four sysbench tests on five boards, three of
which we are interested in. He covers the Raspberry Pi 1 B+, Raspberry Pi2 B,
BeagleBone Black, Intel Edison, and Imagination MIPS Creator C120. The first figure
shows the specs for each of these microprocessors. Figure 3.5.2a shows the
specifications for various microprocessors below.

PilB+ Pi2B BBB Edison ci2o
CPU Armll Cortex A7 Cortex A8 Atom + Quark MIPS
Cores i 4 | 2+1 2
Clock 700MHz 900MHz 1000MHz 500MHz 1200MHz
GPU Videocore |V Videocore IV |PowerVR 5GX530 None PowerVR SGX540
Memory 512MB 1GB 512MB 1GB 1GB
USB Ports 4 4 2 1* 2
Flash None None 2GB 4GB 8GB
Storage microsD microSD microsSD microSD* sD
Network 10/100 10/100 10/100 None 10/100
GPIO 40-pin 40-pin 2x%46-pin 70-pin Hirose 40-pin
Wifi No No No Yes Yes
Bluetooth No No No Yes Yes
RRP 535 535 549 585 SE5

Figure 3.5.2a: Table of Specs for Various Microprocessors

(Reprinted with Permission from David Hunt)

The following images shown in in figures 3.5.2b-3.5.2e are benchmark tests were
performed across all of the microprocessors in the above figure. A discussion of the

results will follow.

20

syshench (cpu)

600
'gsoo
4 ﬁaoo x
82300 §
o v cﬁ
PT0
-‘%-100 H il K syshench (cpu)
Q‘\\' Q’\"' Q\%& &L’D{\ (99
& @) N
§ &5 5 ¢
’b" ,.3’-7 o AN
@ %@%
Figure 3.5.5b: Sysbench CPU
Benchmark
(Reprinted with Permission from David
Hunt)
sysbench (Storage Random Read)
14
=12
III% 1
2308 "
Q= £
$a00
EDA b | K sysbench (Storage
=02 1 Random Read)
: fa huh
Y N Q
A Q}e‘} 3’\6’0‘\ &
¢ o & @
& & F T
g

3.5.5d: Sysbench Random Read
Benchmark
(Reprinted with Permission from David
Hunt)

sysbench (memory)

{smaller is better)
L] L ~a o E=N wn L=} -4

U syshench (memory)

Figure 3.5.5c: Sysbench Memory
Benchmark

(Reprinted with Permission from David

Hunt)

sysbench (Storage Random Write)

50

a5

35 7

w
o

N
Ll

(smaller is better)

W sysbench (Storage
Random Write)

r
o

15

10

3.5.5e: Sysbench Random Write
Benchmark

(Reprinted with Permission from David

Hunt)

21

The results indicate that the Edison performs best, but only slightly better than the
Raspberry Pi 2 overall. Our most important metric is CPU performance, and for these
they are nearly identical. Reading and writing from memory are slightly less important to
us, but we may be accessing memory often as we update our map and localize our bot
within it, so it is important to consider. The BeagleBone Black’s performance in random
memory read and write is quite poor, but we're not sure how this differs from the normal
memory test, where the BeagleBone Black performs on par with the Pi 2 and Edison.

The clear winner for us is the Raspberry Pl 2 B because it performs nearly as well as
the Edison, which costs twice as much. The Pi 2 B far outperforms the Pi 1 B+ in every
test, but costs the same amount. The BeagleBone Black performs less than half as well
in all but the memory test, in comparison to the Pi 2 B, but costs more. What further
makes the Pi 2 B attractive is the fact that it has twice as much RAM as the BeagleBone
Black, and 4 cores. If we are able to optimize our SLAM algorithm for parallel
processing we could potentially gain a performance boost.

3.6 Microcontrollers

Our robot will be using a microcontroller to interface with the sensors, motors, and the
microprocessor. One of its functions will be to use sensor data and react to obstacles
by avoiding them. The other function is to send/receive sensor data to/from the
microprocessor. It will use the data received from the microprocessor to move the
motors. Due to the popularity of Arduino, and the are lots of resources and libraries to
use. Arduino also has a simple programming environment. That is why we are
considering the ATmega328P and ATmege2560. both with an Arduino bootloader. We
have shown in the figures and tables below the pinouts for each chip, along with some
specifications, compiled from each of the microcontrollers’ datasheets [4], that we used
to consider for the design of our robot.

3.6.1 ATmega328P vs. ATmega2560

Appendix C: Fig.3.6-1: ATmega328 (with Arduino bootloader) Pinout
Appendix C: Figure 3.6-2: ATmega2560 Pinout

As seen in the table below, the ATMega328P has a faster clock frequency, but less
Program Memory, less RAM, less I/O pins, and less USARTs/SPIs. They both have the
same maximum operating voltage, 5.5 Volts. According to the Atmel datasheets for
each microcontroller, they both have a maximum throughput of 1 million instructions per
second per MHz. For our robot, the ATmega328P will be the microcontroller. It has
more than enough 1/0 pins than we need. It runs faster than the ATmega2560, and will
not need the larger memory of the ATmega2560. Since we are counting on the
microcontroller to control the robot’'s reactive architecture, using a faster processor

22

should help the robot react to sensor data more quickly. Table 3.6-1 below illustrates
the difference between the two microcontrollers.

Microcontroller ATmega328 ATmega2560
Architecture (bits) 8 8

Frequency (MHz) 20 16

Max Operating Voltage (V) 5.5 5.5

Program Memory (KB) 32 256

RAM (KB) 2 8

USART/SPI 11 2/4

12C 1 1

1/0 Pins 23 86

Analog to Digital Convertors 8 ch, 10-bit 16 channels, 10-bit

Table 3.6-1 - ATmega328P Specifications

3.7 Operating Systems

Our choice of operating system is most directly affected by our choice of
microprocessor. Since we opted for the Raspberry Pi 2, we have a wide variety of
choices at our disposal. The Raspberry Pi 1 is a popular platform, and many ARM
distributions of linux have been made to work with it, some even made specifically for it.
The Raspberry Pi 2 is still very new, so not all of these distributions have been ported
over to work with the new SoC in the Pi 2. There are however, still several linux options
available. Even Microsoft has pledged to make a Pi 2 compatible version of Windows
10, however it is still in development. The linux distributions currently available are
Raspian, OpenELEC, OSMC, Snappy Ubuntu Core, and Debian. OpenELEC and
OSMC are for creating media centers, so we won’t be interested in them for this project.
Raspbian, Debian, and Snappy Ubuntu Core are the only feasible options for the
requirements of this project. Raspbian is our distribution of choice, and while not
technically an operating system, ROS will also be explored as a robotics framework for
our project,

3.7.1 Raspbian

Due to the fact that we desire ease of programming, and maximum compatibility, we are
interested primarily in Raspbian. Raspbian is a free, unofficial port of Debian Wheezy
for ARM, optimized for use with Raspberry Pi 1 and 2 hardware. Both Raspbian and
Debian are recognized for their stability by the Raspberry Pi and Linux community, and
is recommended by the Raspberry Pi Foundation. After trying it out ourselves we found
it to be very responsive and extremely easy to set up. It comes with around 35,000
packages by default, with most of the basic functionality one would expect from a
normal Linux distribution.

23

3.7.2 ROS

From the ROS website: “ROS is an open source, meta-operating system for your robot.
It provides the services you would expect from an operating system, including hardware
abstraction, low-level device control, implementation of commonly-used functionality,
message-passing between processes, and package management. It also provides tools
and libraries for obtaining, building, writing, and running code across multiple
computers. ROS is similar in some respects to ‘robot frameworks'...”. ROS distributes
processes across “nodes” which represent different functionality for a robot. The benefit
of this is that we can simultaneously code, test, and implement different parts of our
robot’s core functionality without worrying about collisions with other functions.

We will also be able to take advantage of ROS’s vast library of robotics functions for
anything from mapping to locomotion. Because ROS is open source we can also work
with the code directly and make modifications to suit our own needs. SLAM is a very
difficult problem to solve, and probably out of our scope to code up from scratch. ROS
has multiple implementations of SLAM using different sensors and algorithms, so
having these at our disposal makes ROS a very attractive option. Additionally, ROS is
compatible with Python, which is our desired programming language.

3.8 Memory

Memory will be a necessary addition to the microprocessor we choose. While they all
have RAM, most have no on-board memory for storing an OS or software that might be
used, but they do have MicroSDHC slots. The external memory card of our robot is
important because it constrains the size of our OS, libraries we may import, drivers for
other hardware, stored navigation or mapping data, and any other software we may
implement. In addition to that, the read and write speeds need to be sufficient so that
accessing memory isn’t too costly. There are a plethora of affordable high quality SD
cards available, and so we won’t worry too much about the individual sizes of OS
installations or packages. Most ARM OS distributions recommend at least a 2GB SD
card, so this will be at least our minimum. We will aim for more memory than we could
hope to use, and instead focus on quality, cost, and transfer speed. Since read/write
speed is important we will only be interested in speed class 10 (greater than or equal to
10 MB/s), or UHS MicroSDHCs. We will narrow our focus to two brands, Sandisk and
Samsung, this choice is mostly arbitrary, but they are popular brands and known for
their reliability. Figure 3.8a below displays the comparison of SDHC cards.

24

Brand and MicroSDHC Card Max Transfer | Size (GBs) | Cost
Model (Model No.) Speed (MB/s) (USD)
Samsung Evo | MB-MP32DA/AM 48 16, 32,64 |11,17,33
Samsung Pro | MB-MG32DA/AM 90 16, 32,64 |19, 28, 55
Sandisk Ultra | SDSDQUAN-032G-G4A | 48 8, 16, 32, 7,12, 16,

64 33
Sandisk SDSDQXN-032G-G46A | 60 16, 32,64 |15, 23,45
Extreme

Figure 3.8a: Comparison of SDHC Cards

The transfer speeds above represents the maximum capabilities of the card, however
there are other factors which constrain and bottleneck our speed. The microprocessor
itself will throttle this speed. Benchmarks on a variety of different microSDHC cards
have already been performed on the Raspberry Pi and Pi 2. Since we are already
certain we’ll be using the Pi 2, and since the Pi 1 and 2 have a similar design, we’ll
assume that these would be at least approximate for the Pi 2 as well. The following
benchmarks are from crowdsourced data. We will only be interested in cards similar to
or matching those listed above, and if available, tested on the Raspbian Linux
distribution. Figure 3.8b below illustrates the difference between memory cards.

25

MicroSDHC Read | Write Distro Kernel Notes
Card (MB/s) | (MB/s)
Samsung 17.33 13.1 Raspbian | Linux raspberrypi Tested on Pi
microSDHC OS from 3.18.7-v7+ #755 2 Model B by
16GB Class 10 NOOBS SMP PREEMPT FastEddie 19
(MB-MP16DA/ v1.4.0 Thu Feb 12 Mar 2015;
AM) 17:20:48 GMT More Details
2015 armv7I
GNU/Linux
Samsung PRO [17.5 11.3 Debian Linux raspberrypi Model B+
microSDHC Wheezy 3.12.35+ #730
16GB Class 10 "Raspbian" | PREEMPT Fri Dec
(MB-MGAGB) 19 18:31:24 GMT
2014 armvol
GNU/Linux
SanDisk Ultra 18.9 16.73 Debian Linux raspberrypi Raspberry Pi
microSDHC Wheezy 3.18.5+ #744 B,
32GB class 10 "Raspbian" | PREEMPT Fri Jan | 2015-02-12
"48MB/s" 30 18:19:07 GMT
(SDSDQUAN- 2015 armvol
032G-C4A) GNU/Linux
SanDisk 19.8 24.7 OSMC Linux osmc Raspberry Pi
Extreme 16GB Alpha 4 3.18.5-v7+ #225 2
UHS-I/U3 SMP PREEMPT Fri
Micro SDHC Jan 30 18:53:55
Memory Card GMT 2015 armv7I
Up to 60MB/s GNU/Linux
Read with
Adapter-
SDSDQXN-01
6G-G46A

Figure 3.8b: Crowdsourced Raspberry Pi Read/Write Speed Benchmarks with Different

Memory Cards

Beyond what is listed here, across all cards tested, the read and write speeds seem to
range from 2.5MB/s to 24.7MB/s. From this, we can assume that regardless of the card
used, we will never achieve much better than 24.7MB/s. Immediately we can see that
even though the stated transfer speed of all these cards is well beyond 20MB/s, we’re
getting less than that in all but the SanDisk Extreme. SanDisk seems to have clear the
edge as far as write speed goes, but is only slightly better in terms of read speed. In
terms of cost at comparable maximum transfer speeds, all cards are nearly the same,

26

http://skippingpebbles.com/Pi/Samsung-Class10.html

but when we take into practical transfer speed, SanDisk has far better speed per cost.
This data isn’t 100% reliable in that it is user reported, and all on separate models of the
Pi 1 and 2. The SanDisk Extreme test was also also not run on Raspbian Linux. These
numbers are more to give an approximation, or get a general idea of how the different
cards might perform in practice. We will end up going with one of SanDisk cards listed,
probably between 16 or 32 GBs so that we can have a comfortable buffer for extra data.

3.9 Wireless Connectivity

While our robot may be autonomous in its primary use case, we are also interested in
wireless connectivity for the sake of the user assuming manual control, as well as
observing various outputs from the robot. There are also practical reasons, such as
remote programming during development. To establish wireless connectivity is as
simple as buying a wireless USB adapter, also known as a NIC (network interface card),
however there are important considerations, such as data rate, frequency band, range,
cost, security, and compatibility. The below table has three options. We will compare the
merits of each and consider which device best fits our needs. Operating system and
architecture compatibility is not considered because all three options are known to be
compatible with Linux, specifically Raspbian on the Raspberry Pi. The differences
between NICs is shown in Figure 3.9 below.

NIC Max Data Rate Frequency Security Cost

PAUO5 300Mbps 802.11n 2.4GHz 64b/128bit $16
WEP, WPA and
WPA2
(TKIP+AES)

PAUOG 300Mbps 802.11n 2.4Ghz 64b/128bit $20
+ 5dBi antenna WEP, WPA and
WPA2
(TKIP+AES)

EW-7811Un | 150Mbps 802.11n 2.4Ghz 64/128bit WEP $10
Encryption and
WPA-PSK,
WPA2-PSK
security; WPS

Figure 3.9: Comparison of NICs

Everything is fairly standardized across these NICs, differing only in cost and data rate.
The cost difference is so small, it needn’t factor heavily into our decision. All are
802.11n compliant, which means they are backward compatible with older routers. No
specific range could be found, but the additional antenna of the PAUOG is a nice bonus.
Since our focus is on a single room, wireless range shouldn’t be that big of an issue,
assuming the router is local to the room. If we factor in the situation that the router is

27

located a great distance away, it would be wise to choose a NIC with an antenna, or buy
one separately.

3.10 Movement

The style of movement for the Autonomous Sentry Robot is extremely important. The
robot must be able to maneuver around several obstacles in a room that could be in
different positions each time they are passed. Paths could be narrower or the robot
could encounter obstacles that weren’t there before. The robot will need to be able to
move around the room efficiently in order to function properly as a sentry vehicle. Our
team has researched many different types of drive systems. They include:

e Tank Drive
e (Car Steering
e Holonomic Drive Systems

3.10.1 Tank Drive

Tank drive is a very simple drivetrain. From the name it is clear that the system is
modeled off of tanks. Tank drive is where the left side of the robot, whether it be
individual wheels or wheels attached together by tank tread, moves in the same
direction. The same goes for the right side. The robot responds as if there is one
moving part on either side to propel it. This drive system has many pros to it. This drive
system is very easy to program for simple movement. As there are essentially only two
moving parts, the left and right side, motion is controlled by changing the speed and
direction of motion for each side. For this system to move forward and backwards, both
sides move in the same direction. When the robot wants to turn ninety degrees left or
right, the left side moves one way and the right side moves a different way. If the robot
needs to either side then the speed can be reduced on one side of the robot to force the
robot to slowly turn in that direction.

Although this method is easy to manipulate it doesn’t have the best maneuverability. If
the robot encounters an unexpected obstacle immediately in front of it, the robot would
need to turn ninety degrees left or right to move around it or back up and then turn
wasting time and power. In general this method would be hard to make autonomous as
homes have narrow hallways and the margin for error when turning is very small. This
method works better when under user control as it is intuitive and easy to learn. Figure
3.10.1-1 below illustrates how a tank drive system works. Note that the image is for a
two wheel differential drive system. The concept is the same for a multi wheel system
as the left side and right side each move as one.

28

]
Forward Reverse

Right turn

Spin left turn Spin right turn

Figure 3.10.1-1: Differential Drive Example
(Reprinted with Permission from Robotoid)

3.10.2 Car Steering

Car steering is exactly as it sounds. For most cars, the front two wheels turn and point
in the direction the car is trying to go. If the robot needs to turn right, the wheels point
diagonally right. If the robot needs to turn left, the wheels point to the left. This drive
system is great because it is simple and once again intuitive for when the ASRis under
user control. This type of drive system is more suited for turning corners smoothly than
a traditional tank drive. If obstacles are never encountered at close range this drive
system is incredibly maneuverable. However, it faces a similar drawback if an obstacle
is encountered directly in front of the vehicle.

The robot will need to back up, and turn to get around the object as it doesn’t have the
ability to strafe. There are two ways to create a car steering robot. The first is to have a
steering motor attached to each of the front steering wheels. The motors will be
attached in a way that causes the wheels to turn. The second way is using a rack and
pinion system that physically connects the wheels. A single steering motor would be
used to control the rack and pinion and turn the wheels together. This way is much
easier to program. An example of the rack and pinion method is shown below in Figure
3.10.2-1. Note that the two methods function identically.

29

Steering) . Hinge
wheels — .. Steering Motor
Rack & _
Finion
Chassis ©

; "= Traction Motor
Traction wheels -~

Figure 3.10.2-1: Car Steering
(Reprinted with Permission from lkalogic)

3.10.3 Holonomic Drive Systems

A holonomic drive system is a drive system that can move in any direction at any time.
These drivetrains are generally more complicated but their maneuverability is
unmatched. With this drive system, strafing becomes available. This means if an object
is detected immediately in front of the robot, it can safely slide to the left or the right and
continue on its way. There are a few drawbacks to this type of system. The first
drawback is that it is complex to create. The system generally requires careful
placement and fine tuning to run as expected. The drive system is also heavier due to
the more complex components.

The final drawback is it is more difficult to program and control. Being able to move in
any direction is great but for the robot to be perfectly efficient its decision making must
be very strong. There are two different types of holonomic drive systems our team has
considered for the Autonomous Sentry Robot. The first is a swerve drive. A swerve
drive works by turning all wheels in the direction that the robot wants to go. This works
using steering motors for each of the drive wheels. When the robot needs to move in a
different direction the wheels are adjusted accordingly. The drive system is modular and
an example of this is in figure 3.10.3-1 below.

30

Figure 3.10.3-1: Swerve Module
(Reprinted with Permission from AndyMark)

For this drive system, each wheel would need to use this module in order for the robot
to run properly. This type of system allows for more traction than the others as it uses
normal tread wheels to maneuver. However it is generally the most complicated and
heaviest of the holonomic drives. As each wheel can spin completely around this drive
system requires incredible programming and feedback to ensure no wheels are
misaligned. However, if it was fully functional the ASR would be able to surveil and map
a home with great speed.

The next type of holonomic drives are based on fixed wheel designs. The wheels
themselves are special and that is what allows for the holonomic motion. With these
fixed wheel designs, varying which motors are active is how the robot moves. In
general, the wheels of the robot fight each other in order to move forwards. The
specifics of the wheels themselves will be discussed in the next section. Figure 3.10.3-2
below gives a general idea how a mecanum drive is implemented. Notice how the robot
can maneuver in several different directions based on which wheels are active.

31

side way diagaral

CONCE rlﬂlng- Turn round Turn of reap axis

Figure 3.10.3-2: Mecanum Drive
(Reprinted with Permission from VEX Robotics)

Figure 3.10.3-3 below is a holonomic drive system that uses omni wheels. This is only
one variation as it is possible to use these wheels in many different ways.

Holonomic Drive

Figure 3.10.3-3: Omni Wheel Drive
(Reprinted with Permission from VEX Robotics)

3.10.4 “H” Drive

The “H” drive drivetrain is designed to allow for normal tank drive steering as well as the
added bonus of being able to strafe. This is accomplished by using four omni wheels in

32

place of traction wheels in a tank style setup. Then, a fifth omni wheel is placed in the
center creating the “H” drive. This wheel is also powered and its sole purpose it to allow
the robot to strafe left and right. This drive system has increased mobility compared to
the tank drive without the complexity of a fully holonomic system. The layout of the “H”
drive is shown in Figure 3.10.3-10.

Figure 3.10.3-4: “H” Drive System
(Reprinted with Permission from VEX Robotics)

3.11 Wheels

The wheels chosen for a robot are just as important as the drive systems they are
implemented in. In this section we will discuss the pros and cons of several wheel types.

3.11.1 Traction Wheels

Traction wheels are your standard wheel for everyday use. They are on cars, trucks,
machines, and many other things. Unless used in a swerve drive system, these wheels
are not designed to be holonomic. Their purpose in robotics is to reduce slippage. When
slippage occurs, the torque from the robot’s motors is essentially wasted and the robot
becomes less efficient. These wheels are designed to ensure the robot continues to
move in the intended direction even at high speeds and in adverse conditions. An
example of a traction wheel in consideration for use on the ASR is shown in Figure
3.11.1-1 below.

33

Figure 3.11.1-1: Traction Wheel
(Reprinted with Permission from VEX Robotics)

3.11.2 Tank Treads

Tank treads were designed for a similar purpose as the traction wheels. However they
perform much better in adverse conditions. They are designed to get as much of the
torque from the motors to the ground as possible. The tread’s themselves are used to
put as much surface area on the ground as possible to facilitate this. The more contact
there is with the ground the more traction the robot has. An example of tank tread can
be seen in the photo below.

3.11.3 Mecanum Wheels

Mecanum wheels are designed to allow omni-directional movement. This is done by
placing smaller wheels or rollers around the outside of a wheel at forty-five degree
angles. These wheels work in a four wheel tank drive system. The wheels are designed
to carry a large amount of weight even though they have high mobility. This is helpful in
robotics as weight capacity is very important. For the ASR weight capacity is not as
important but mobility certainly is. Moving through a room requires a good range of
motion that mecanum wheel can provide. Figure 3.11.3-1 below shows mecanum
wheels designed by VEX robotics.

34

Figure 3.11.3-1: VEX Mecanum Wheel
(Reprinted with Permission from VEX Robotics)

3.11.4 Omni Wheels

Omni wheels are designed to provide increased mobility much like mecanum wheels.
However, these wheels use rollers/smaller wheels at ninety degree angles, instead of
forty-five, around the outside of the main wheel hub. This allows them to move forward
as normal traction wheels do. These wheels have less friction when turning which
allows for greater mobility. They can also be configured to allow the robot to move side
to side by placing one or two omni wheels perpendicular to the main drive wheels. The
perpendicular wheels would also have drive motors to allow the robot to move left and
right. The wheels can also be configured to move in any direction as shown above in
section 3.11.3 on holonomic drive systems. The system with the perpendicular wheels
would work very well for the ASRas it would be less complicated to program. The robot
would also be able to strafe which is incredibly helpful when navigating obstacles.
Figure 3.11.4-1 below illustrates an omni wheel that could be used on the ASR.

Figure 3.11.4-1: VEX Omni Wheel
(Reprinted with Permission from VEX Robotics)

35

3.12 Motors

Choosing the proper electric motor for the project is essential. There are many different
types of motors available for use. They are broken down into two main categories. They
are: DC motors and AC motors.

3.12.1 DC Motors

DC motors are used in many engineering applications. The motors run off of DC
voltage. Some of these include textiles, conveyor systems, aircraft, speed control,
automobile, marine, and elevators. They allow for incredibly precise control. The precise
control leads to most servo motors being DC motors. Control is a very important aspect
of the ASR. If the robot is not precisely controlled, navigation of the environment will
prove to be incredibly difficult. These motors are also generally smaller than their AC
motor counterparts. This makes them ideal for the ASRas space is limited. The main
disadvantage for all DC motors is that they are expensive in comparison to their AC
counterparts. All DC motors use a mechanical switch or commutator to turn the constant
current to alternating current in machines. Therefore, DC machines are also known as
commutating machines. Figure 3.12.1 below shows the different types of DC motors
available.

DT Motors

Brugh DC Brushless
DC

— Shunt Wound

— Separately Excited |

== Series Wound

| Compound Waund

— Permanent Maegnet

Servomotor

] Universal

Figure 3.12.1: DC Motor Types
(Reprinted with Permission from Electrical-Knowhow)

36

3.12.1.1 Brush DC

From the image one can see that there are two subcategories of DC motors. The first
category is Brush DC motors. A brushed DC motor is commutated internally. They are
run using a DC power source. They are very versatile motors with several applications
including robotics. These motors are relatively inexpensive making them ideal for our
project. They also come in several shapes and sizes which allows for flexibility in the
chassis design for the ASR. The motors are also very easy to drive. Figures 3.12.1.1-1
and 3.12.1.1-2 below illustrate the design of a brush DC motor.

Field Winding /"
Pole Piece

_ Commutator
Carbon Brush

Figure 3.12.1.1-1: Brush DC Motor Internals
(Reprinted with Permission from Electrical-Knowhow)

Frame Stator
\ -

_Commutator

7 Brush
_Assembhy

- Armature

Figure 3.12.1.1-2: Brush DC Motor Assembly
(Reprinted with Permission from Electrical-Knowhow)

37

Brush DC motors do not require controllers to switch the current. Instead, the
commutator mechanically switches the current. Carbon brushes move against the
commutator to create a dynamic magnetic field[13]. The motion is important as it
creates wear on the brushes and the commutator itself. Figure 3.12.1.1-3 below
illustrates the operation of the commutator.

=

Commutator I_

*——Brushes

H1NOS

Axle

Armature

To Battery

Magnet

Figure 3.12.1.1-3: Commutator Operation
(Reprinted with Permission from Electrical-Knowhow)

Brush DC motors do have some disadvantages. The brushes are needed to connect to
the rotor winding. This can lead to brush wear which decreases the use of the robot.
This effect is intensified when the motor is in low pressure environments. This means
that the ASR would be less effective as altitude increases. The sparks created by DC
motors can also be dangerous. If explosive materials are in the area the sparks can
ignite causing a possible explosion [13]. This is a factor as many homes use natural gas
for cooking, heating, and other applications. A leak could cause major issues if the
ASRis roaming the house. The brushes also create RF noise. The noise can interfere
with televisions and other electronic devices. For our purpose the RF noise should have
no effect as the ASR is meant to patrol the house at night or when no one is home to be
watching TV.

There are many types of brush DC motors available. We researched a few of the
options to find out what the best possible option was for the ASR. The first is the
permanent magnet. These motors have some advantages of the other types. The
motors can be smaller because they do not need field windings. As previously stated,
smaller motors allow for lighter weight and take up less space. They are also used in
low power applications [13]. This means that they do not take as much power to run so
the ASR can run longer. There are some disadvantages to these motors though.
Excessive heat can demagnetize the permanent magnets. This would cause the motor
and the ASR to fail. Excessive heat can be an issue with robotics. If the robot were to
get stuck while traversing the environment the motors could continue to run and build up

38

heat due to the stall. These motors also have another disadvantage as they cannot
produce as much torque as some of their counterparts. Less torque means that the
robot cannot move as much weight. Figure 3.12.1.1-4 below shows the design of a
permanent magnet motor.

O=
T Armature

DC
Voltage
Supply !
L Permanent
Magnet Poles

Brush

O-

Figure 3.12.1.1-4: Permanent Magnet Motor Design
(Reprinted with Permission from Electrical-Knowhow)

The next type of motor we researched are called series-wound motors. These motors
are designed for high-torque applications [13]. They are commonly found on cranes,
hoists, electric cars and elevators. The advantage to this motor is the high torque.
During the research phase we thought about having the ASR be able to carry a load for
the user. These motors would have been extremely helpful in increasing the load.
However, the motors do not have precise speed control and the speed is limited.
Precision is essential in a robot that maps the room making that a very large drawback.
The design of a series-wound motor is shown in Figure 3.12.1.1-5 below.

%} Sré?lgs

Field
DC
Voltage Armature
Supply
¢ Brush/
C}_

Figure 3.12.1.1-5: Series-Wound Motor Design
(Reprinted with Permission from Electrical-Knowhow)

39

The final type of brushed DC motor we researched are servo motors. Servo motors are
a special type of motor that consist of a DC motor, internal position sensor, and a gear
system. Servo motors are very good for several reasons. The motors have superior
position control when compared to most other motors. Position control is very important
for the ASR. Navigation through space can be very difficult. If the motors do not move
precisely, the robot could become stuck or crash into an object. Moving into the
charging station would also become difficult as the robot must align itself accurately in
order to enter the charger.

Servo motors are designed to consistently move to the position the user tells them to go
to making environment traversal much easier. Servo motors also have good speed
control. They can move very quickly or very slowly. For the ASR this means that the
robot can patrol at one speed and dock at another. When under user control the robot
can go as fast or slow as the user would like. Finally, servo motors are able to move
large loads. They can be configured to have high torque. With a high torque servo
motor, the ASR would be able to carry more weight. This would be useful if more
sensors or functionality were to be added in future models. Figure 3.12.1.1-6 below
illustrates the inner workings of a standard servo motor.

G
I ——

<D

Push / Pull Rod Shaft Screw

+ !— Servo Wheel / Ann
Gear Train = i

% Servo Ouiput

Shaft

Mounting
Tabs

s Mount
Tabs

Gear Set
Potentiometer

Plastic
Box

Electronics

3- Wires
Motor . S=Signal

W

R, -, _
Standard Servo Motor X-ray View =

Figure 3.12.1.1-6: Servo Motor Design
(Reprinted with Permission from Electrical-Knowhow)

3.12.1.2 Brushless DC

Brushless DC motors have several advantages over their brushed counterparts. These
include:

Higher Efficiency

Longer Operating Life
Noiseless Operation

Higher Speed Capabilities
Higher Dynamic Response
Better Torque to Weight Ratio

40

These characteristics make brushless DC motors ideal for use on the ASR [13].
Efficiency is key as the battery only has so much capacity. Poor efficiency can drain
battery power unnecessarily. The ASR is designed to patrol over a long period of time
which makes efficiency important. The motors will also last longer as they do not have
brushes. The noiseless operation is a nice bonus as well. The objective of the ASRis to
patrol an area and alert the owner to any changes or if anyone is in the area that
shouldn’t be. If the ASR can silently traverse its environment, then it can alert the owner
to any suspicious activity without alerting the person in the room. The torque to weight
ratio is also a great feature. The motors can move loads that are very heavy even
though the motors remain smaller than the brushed DC motors. Figure 3.12.1.2-1 below
shows the internal components of brushless DC motors.

Stator Windings

Hall Sensors
LY

Accessory Shaft |_ Rotor Magnet N

r
Hall Sensor Magnets

Driving End of the Shaft

Figure 3.12.1.2-1: Brushless DC Motor Design
(Reprinted with Permission from Electrical-Knowhow)

Typical applications for these motors include[13]:
e Constant Load
e Varying Load
e Positioning Applications
The ASR falls in line with these positioning applications. The dynamic speed response

being very important in controlling the robot. Figure 3.12.1.2-2 below shows
summarizes the differences between brushed and brushless DC motors.

41

Feature BLDC Motor Brushed DC Motor
Commutation Flactronic commutation basad on Hall H:_]Mé}éh?ﬁ;fﬁﬁﬁﬁﬁEa_ﬁﬁﬁ?ﬂa_h_riﬁ
Maintenance Less required due to absence of brushes. iF’cerdir_ maintenance is required.
|Life |Longer. [Shorter.
SpeadTorque Flat — Enables operation at all speeds with rated load |Modarately flat — At higher speeds, brush friction
Charactenstics |increases, thus reducing useful torque
|Efficiency High — Mo vollage drop across brushes. ‘;M-:Jnlenme. |
Output Power/ High — Reduced size due to supericr thermal | Modarate/Low — The heat produced by the armature
Frame Si1ze charactenstics. Because BLDC has the windings on (15 dissipated in the air gap, thus increasing the
the statar, which is connected to the case, the heat [temperature in the air gap and limiting spacs on the
dissipation is better. ;c-Lrlpui powerfframe size.
Fotor Inerba Low, because it has permanent magnets on the rolar. | Higher rotar inertia which hmits the dynamic
This improves the dynamic responsa | characteristics
Speed Range Higher = No mechanical limitation imposed by :LGWEI - Mechanical hmitations by the brushes.
brushes/commutator |
Electric Moise Low | Arcs in the brushes will generate noise causing EMI
Generabion [in the equipment nearby.
Cost of Building Higher — Since it has permanent magnets, building | Low
costs are higher.
Cantrol Complex and expensive. §5|rl1ple and Inexpensve
Control Requirements | A controller is always required to keep the motor | Mo controdler is required for fixed speed: a controller
running. The same controller can be used for vanable [i1s required only if vanable speed is desired.
speead control.

Figure 3.12.1.2-2 BLDC and Brushed DC Comparison
(Reprinted with Permission from Electrical-Knowhow)

3.12.2 AC Motors

AC motors run on alternating current as the name suggests. There are three main types
of AC motors. These include [13]:

e Induction (asynchronous) Motors
e Synchronous Motors
e Linear Motors

3.12.2.1 Induction Motors

These are the most common motors used in industry. The voltage is induced in the rotor
so there are no brushes involved. The motors have many advantages. They are low
cost, low maintenance motors. In a robotic system, like the ASR, low maintenance is
important. The robot is designed to work without much interaction if that is what the
owner desires. The motors are also able to run at a constant speed without much
consideration for the load. The motors have a unique ability to run at full speed with a
full load or no load [13]. The motors are also very robust.

42

The ASR will have sensors to avoid obstacles but collisions will most likely still occur.
Robustness is an important quality in motor selection. The motors also create no sparks
as they have no brushes. This means they can be used safely in a hazardous
environment. Figure 3.12.2.1-1 below shows the many different types of induction
motors available today.

Induction

Motor
Squirrel Cage Wound Rotor
] 1
| | —
38 14 1@
[pedaih Shaded Pole nd |: Repulsion
y 2 Split Phase
| Resss £ i Repulsion
Start
|| Desipnt | || Capacitor Start
1 Repulsion
F — Capacitor Run =
| Design D B | Induction |
[Permanent-Split
Eapacitor)
| | Capacitor Start/Run
L Resistance Start

Figure 3.12.2.1-1: AC Motor Types
(Reprinted with Permission from Electrical-Knowhow)

Induction motors have major drawbacks. It is very difficult to have variable speed
control. They require a complicated variable frequency power-electronic drive to have
optimal speed control. They also have power lag issues. These issues would be
detrimental to the ASR. Variable and precise speed control is necessary when
traversing the environment.

3.12.2.2 Synchronous Motors

In synchronous motors, the rotor tries to line up with the magnetic field in the stator. The
motor runs at a constant speed caused by the frequency of the system. These motors

43

require a direct current for excitation.There are many advantages to synchronous
motors. Synchronous motors are designed to improve the power factor of a system.
This helps to stabilize the systems voltage[13]. The motors run at the same speed no
matter what load is applied. The ASR would be able to carry any load and continue to
operate full if these motors were in use. Many of the synchronous motors are “DC
excited” Figure 3.12.2.2-1 below shows the operation of the DC excited synchronous
motor.

DC motor e—oi% oo
—o”

s 1]

Three-phase power
to the stator

Figure 3.12.2.2-1: DC Excited Motor
(Reprinted with Permission from Electrical-Knowhow)

These motors are more complicated as they require a DC excitation to operate and will
not function without it. Another type of synchronous motor is the stepper motor. This
type of motor is very common. It is designed to rotate by a specific number of degrees
per electrical impulse. Stepper motors are often compared to servo motors as they are
used in precise control applications. Advantages of a stepper motor include[13]:

Inexpensive

No feedback is required
Great holding torque
Brushless

Durable

Precise precision control
Do not need tuning

The motors would be great for the ASR they are inexpensive and have great precision.
Traversing the environment and docking to charge would be made easy by these
motors. The motors are brushless and durable meaning they are low maintenance. This
lines up with the project goal of having the robot operate without much, if any,

44

interaction from the owner. The motors are also ready to go out of the box meaning they
don’t have to be tuned first. This would be useful when constructing the ASR and for
ease of programming. However, the motors are not without disadvantages. These
include[13]:

Noise level

Poor torque at high speeds

Can stall without a control loop
Limited size availability
Consumption of current without load
Poor performance at low speeds

The noise level is bad because the point of the ASRis to patrol an area. If someone has
broken into your house the ASR would never get close as the intruder would hear it
coming. Losing torque with higher speed is also an issue. The ASR will not weigh a lot
but it may not be able to run at a high speed at its weight. The issue with low speed
operation is also problematic. When docking the robot will need to move fairly slowly in
order to successfully dock. The robot needs to complete the docking process in a
smooth motion.

3.12.2.3 Linear Motors

During the research phase on motors our team came across linear motors. Linear
motors are what propel magnetic levitation trains [13]. They are essentially rotary
motors that have been cut in half and rolled out. They are sometimes used for creating
large rotary motion. In our case these motors would be nearly unusable as the ASR is
designed to find its own path around the environment and not run on a track.

3.13 Control and Navigation

Our robot will have two modes of control. First and foremost, it's primary mode of
control will be autonomous. The main usage of our bot is intended to be as a sentry
which will alert the user when exposed to various stimuli. This requires that the bot roam
and navigate on it's own accord, without any intervention from the user. There are,
however, certain situations where the user’s intervention may be necessary. Because of
this, we wish to include the ability for the user to assume control and receive a streamed
view from the robot’s camera.

3.13.1 Autonomous Control

As stated above, the purpose of our bot is to be used as a mobile security system. For it
to be fully autonomous, we require it to have a phase of operation for mapping out the
room, then using that map to plan a path for the patrol phase. In the mapping phase, a

45

reactive exteroceptive sensor environment combined with a simple navigation algorithm
will be implemented. A state machine with sonar, bump, and if possible Kinect depth
sensor data as inputs will be relied upon for obstacle avoidance (note that this Kinect
data is already being used elsewhere to generate the map). At this stage the map can't
be relied upon for obstacle avoidance because it will be incomplete. Instead, we will rely
on this sublayer of sensors to split up the computation. In the event that the bot falls into
an infinite cycle, getting stuck navigating the same segment of the room over and over,
the map may be referenced to determine a new orientation. With this approach, we
should be able to simultaneously navigate, localize, and map autonomously.

Typically reactive architectures include modules (perceptual
schema) specialized for sensor processing

T
Sensor ‘n._ l-' rc pt N

active
medium

Observation %L rcept u'!l\ o Motor \ o
ar Image = ‘ac hr_ na .\ : \ “Schemas

SENSORTRANSDUCER ey BEHAWION ety ACTION

Figure 3.13.1: Reactive Behavior Model
(Reprinted with Permission from Dr. Gita)

The patrol phase differs from the mapping phase in that there is already a fully
developed map. The robot no longer needs to wander blind, but will still rely upon its
sensors to avoid obstacles as it traverses the map. There are many different ways this
map could be used and that navigation could be performed. Our goal for this project is
to build a patrolling sentry, so ideally the robot should travel on a closed loop and report
any important events on the way. There are two possibilities for how this can be
handled. The first case is handled automatically by the robot. A flood fill algorithm can
be implemented to create a navigation mesh for the map, where a certain amount of
space in the coordinate system will represent a node which can be traversed by the
robot. After the flood fill, all traversable space will be known. A pathfinding algorithm can
then be used to find the best possible loop through the environment from node to node,
either in terms of shortest/longest distance, or most observed area. Simultaneously,
object avoidance and security algorithms will run and detect events such as motion.

The second case gives the user more control. After the map is generated, the user
should be able to view it in the paired application. Rather than having the robot spend
time on expensive computation, the user could simply plot navigation nodes through the
areas that they desire from the application Ul. They could specify a start and stop node,

46

and indicate the direction of travel or sequence of nodes they wish to be traveled. In this
way, the robot can simply seek directly toward nodes while falling back on it's sensors
for obstacle avoidance. This approach is overall much simpler and would probably be
more appealing from a user standpoint, it also lowers the chance of the robot finding a
bad path or getting stuck in an infinite cycle..

3.13.1.1 SONAR

Sonar sensors emit sound, and wait some span of time for return echoes. This time can
be used to calculate distance to the objects which reflected the sound. The math to
calculate this distance is simple.An illustration of how sonar works can be seen in
Figure 3.13.1.1 below.

s: speed of sound in air, ~343 meters per second
ghost echo
t: amount of time it took to send sound and receive
echoes, seconds
eChO sonar
d: approximate distance of object from sensor, robot
meters
ostecho

Distance Equation:
s*(t/2)=d Example of How Sound Waves

Bounce Back to the Sonar

Sensor
(Permission Pending)

Figure 3.13.1.1 Sonar Explanation

Sonar is not the most reliable due to ghost echoes, and different materials’ ability to
absorb sound waves. Should we be able to get our depth data from the kinect at the
same time it is being used to generate the map, we will most likely drop sonar
altogether.

3.13.1.2 Tactile Sensor

Bump sensors are basically simple switch circuits. A mechanical button fixed to a
“feeler” shorts the circuit when the feeler comes into contact with another object. They
essentially have an on or off state; on means we’ve hit something, off mean’s we
haven’t. We can use an array of them fixed to different sides of the robot to detect
collisions from all angles. Bump sensors will be our our last line of defense in the case
that our bot has taken a bad path, and our sonar/kinect distance estimation has failed.

47

In the event that we run straight into a wall, we want the robot to react, stop, and
reorient itself, otherwise it would just continuously drive into the wall.

Wi W

l\ Voltage Voltage
vout goes high vout goes low
with contact with contact
D
GHD —"/oo More efficient switch for 3 lead switches

{use for microswitches)
W out

Figure 3.13.1.2: Example of Tactile Sensor Circuit
(Permission Pending)

3.13.1.3 Finite State Machine

An abstract mathematical model for designing sequential logic via a finite set of states,
where certain conditions force the transition of one state to the next. In our case,
conditions would be things like specific, or ranges of sensor values, and our states
would be what directions to move in, or what phase of operation the robot is in such as
mapping or patrolling.

3.13.1.4 Flood Fill Algorithm

The flood fill algorithm determines what areas are connected in a multidimensional array
by traversing all possible connected locations. It can be implemented in various ways
and tailored to suit the needs of its application. In generic terms, it has only three
parameters. A starting node, a color to be searched for, and a color to replace searched
nodes with. The basic algorithm is as follows:

Flood Fill
1. If target color = replacement color, return
2. If color of node is not equal to target color, return
3. Set the color of node to replacement color
4. Perform Flood Fill recursively, one step in each direction (N, NE, E, SE, S, SW, W, NW)
5. Return

This algorithm is recursive and will overflow the stack given a large map, so this must
be taken into account during implementation.

48

3.13.1.5 Dijkstra’s Algorithm

Dijkstra’s Algorithm is a search algorithm used for finding the shortest path in a graph.
Dijkstra utilizes nodes and weights between vertices to make this calculation, and its
worse case performance is bounded by O(Edges + Vertices * log(Vertices). In our case,
the nodes of the graph would be a connected navigation mesh projected onto our map,
and the edges would the relative distance between points. The algorithm is as follows:
Dijkstra:

1. Select a starting node, set tentative distance to all other nodes to infinite and the distance of this
node to zero. Mark the starting node as visited and add all other nodes to the unvisited set.

2. Calculate tentative distance to this nodes neighbors, compare the current distance to each neighbor
to its assigned distance and set the distance to the assigned distance to the smaller value.

3. After all neighbors are considered, mark this node as visited and remove it from the unvisited set so

that it is never checked again.

If all nodes have been marked visited, algorithm complete

5. Otherwise select the node from the unvisited set with the current smallest distance and start again

from step 2.

3.13.2 User Control

B

User control will be an entirely different system from autonomous control. There is no
need for sensors. Instead, the user will be able to remotely control the locomotion of the
robot while viewing a video feed from the robot’s camera. We’d like to allow this to occur
during both mapping phase, and the patrol phase so that the user can map the room
themselves if desired. The camera will either be the Kinect’'s built in camera, or a
separate camera, depending on the unexpected limitations of our approach. The user
will have access to basic directional controls: forward, backward, strafe right, strafe left,
turn right, turn left. We also expect the user to have the ability to send the robot to it's
docking station for recharging, and to turn the robot on and off. The implementation of
this could come in multiple forms:

3.13.2.1 Remote Access

Our robot will most likely be utilizing a Raspberry Pi 2, which can easily be set up as a
server that can be SSH'd into, or be remotely accessed and have it's graphical desktop
viewed and interacted with from a different computer. We can develop a simple program
that the user can run, and be granted access to the features outlined above. We would
also include controls for switching between robot states, so that the user can put the
robot back into autonomous mapping/patrol mode. We would also like the user to be
able to see the map as it's being generated, and the robot’s location within that map.
Should the user remote into the system, we don’t expect it to interrupt any running
processes on the robot. Rather, the user will be able to access the system during any
state, and provide directives, or just check on the robot’s status, should they desire.
This approach would allow for robust control and operation of the robot, which would be

49

beneficial for power users and technically-inclined, computer literate people. It would
also be easier on us from a coding and implementation standpoint. However, this
approach would be nearly impossible for the average person, who is not familiar with
remote access, Linux, and is unfamiliar with the system and it’s innerworkings.

3.13.2.2 Internet Application or Mobile Application

An alternative for the less technically inclined would be a simple mobile application, or
web-based application. With this approach, more tasks would be automated and
streamlined. The user would open the app, and immediately get a camera feed of
whatever the robot is viewing. This access would be preconfigured so the user does not
need to worry about SSH or remote access. We would try and keep the number of
options as minimal as possible. We would have a button for initiating the mapping
phase, initiating the patrol phase, assuming control of the robot and driving it around
manually, pausing, powering down, powering on, and charging. Should the user pick
any of these options, what is displayed on screen would change. For example, if the
user takes control, all other options would be cleared off the screen and and Ul for
maneuvering the robot would appear. Figure 3.13.2.2a below shows the percentage of
market share for browsers.

Other: 0.07 %

Android Browser: 0.02 % — =T |

27 0

Proprietary or Undetectable: 0.33 % =

Opera: 1.15% ~
i
Safari:5% ~/
o s
Firefox: 11.89 % ~

T Microsoft Internet Explorer: 56.54 %
Chrome: 24 .99 %

Figure 3.13.2.2a: Market Share for Browsers - 3/15/2015
(Permission Pending)

The above chart displays the market share of popular browsers as of March 15, 2015.
With this knowledge, if we decide to go with the web based implementation, we know
that we should target at least Internet Explorer for compatibility. This would enable over
50% percent of internet users the ability to use our application. If we target Chrome as
well, we could capture over 75% of users. Figure 3.13.2.2b shows the mobile
development market share.

50

Cther: 0.08 %

Kindle: 0.06 % ——=
BlackBerry: 101% —— 7 @
Windows Phone: 2.57 % =/
Symbian: 3.31 %),/

/

Java ME: 3.49 % -

i0S:41.97 %

\

]

— Android: 47.51 %

Figure 3.13.2.2b: Market Share for Mobile Operating Systems
(Permission Pending)

The above chart is the market share of each popular mobile operating system as of
March 2015. If we go the route of a mobile application, we know we should target at
least Android to capture the majority of mobile users. If we implement the app for iOS
users as well, we can capture almost 90% of mobile users.

0.4%

2.2 Froyo 8

233~ Gingerbread 10 6.4%
23.7

4.0.3- Ice Cream 15 5.7%
4.04 Sandwich

41.x Jelly Bean 16 16.5%
A.2.x 17 18.6%
4.3 18 5.6%
4.4 KitKat 1e A41.4%
5.0 Lollipop 21 5.0%
5.1 22 0.4%

Figure 3.13.2.2c: Market Share of
Android Versions
(Permission Granted via Creative
Commons Attribution)

The right chart (Figure 3.13.2.2d) shows
the market share of each iOS version as
of March 2015. If we target iOS 8, we
know we can capture at least 78% of the
iOS version market share. While it would
be nice to deal with only one version of
an OS, iOS is expensive to develop for
and none of us own Mac hardware to
develop on, so for now this will not be an
option for us.

The left chart (Figure 3.13.2.2c) shows
the market share of each version of
Android as of April 2015. If we target
Android 44 - 5.1, we know we can
capture at least 45% Android’s version
market share. Android doesn’t require an
special permissions, hardware, or money
to develop for, so it is also a more
desirable option overall.

78% of devices are using

05 8.
Earliar
2%
i0OSs 7
20%
i0OS B
T8%
As measured by the App Store

R e
on March 30, 2015

Figure 3.13.2.2d: Market Share of iOS
Versions
(Permission Pending)

51

3.14 Batteries

Power is an essential component of the Autonomous Sentry Robot. As the vehicle is
meant to move throughout a large area, a power source must be included as there is no
practical way to receive power on the go. We have chosen to use a battery for this
purpose. There are many things that are important when selecting a power source.
These include:

Capacity
Recharging Ability
Memory Effect
Nominal Voltage
Current

Capacity: The capacity of a battery is an incredibly important part of selecting a battery.
Battery capacity is measured in Amp-hours. Amp hour rates are generally normalized to
be 20 hour rates as a high discharge current lowers actual capacity. This means a 100
AH battery will be able to supply 5 amps for 20 hours. But it would more than likely not
be able to supply 100A for 1 hour as that puts a lot of stress on the battery. For the
purpose of the

Recharging Ability: The Autonomous Sentry Robot is designed to move around on its
own with little to no interaction with people. This means that it must have a battery that
is rechargeable. With a rechargeable battery, the robot can move around the room and
complete all of its tasks with no human interaction. When the tasks are complete or the
batteries are low, the robot can find its way to the charging station and dock itself to
charge. If the robot were to use non rechargeable batteries, it would need to find the
owner in order for its batteries to be removed and replaced.

Memory Effect: The memory effect is an important factor to consider when selecting a
rechargeable battery. When a battery is not fully discharged between cycles, the battery
has the possibly to “remember” the lower capacity [9]. This is known as the memory
effect. If this is done several times. The battery will not store the proper amount of
charge and the battery will become less efficient and effective. This is the newer term
for voltage depression. Voltage depression is the over charging of a battery.
Overcharging the battery can change the crystal structure of some batteries which
results in a lower voltage. If a battery is chosen that can be adversely affected by the
memory effect then it is important to only have the robot return to the charging station
when the battery is considered to be low.

Nominal Voltage: The voltage, or more specifically nominal voltage, of a battery is also
an important starting factor in selecting a proper battery. The nominal voltage is the
reference voltage of the battery as well as the normal operating voltage. This is
extremely important when selecting a battery to run the various components on the

52

Autonomous Sentry Robot. For example if the motors on the robot require 12V to run,
anything less would reduce the performance of the robot or would cause the robot to not
run at all. The battery chosen will need to maintain the required voltage over the entire
operation period, around five hours, until it can return to the charging station.

Current: For batteries there are three very important current specifications to consider.
The first is the standard discharge current. This is the discharge current that will allow
the battery to use its fully listed capacity. Any discharge current that is higher will
decrease available capacity and any value lower will extend it. If the battery capacity is
lowered, the robot may not run for the required duration. The discharge rate is listed as
a C-rate A 1C rate for a battery means that it is going to discharge the entire battery in
one hour. The second important specification is the maximum continuous discharge
current. This is the maximum value of discharge current that a battery can handle
without damaging the battery.

This specification is important because a battery must be chosen that can handle the
current draw of the Autonomous Sentry Robot. The final specification is the maximum
charge current. The ASR will employ rechargeable batteries. Batteries have different
charging rates. It is important to select a battery charger that is rated within the safe
charge rate for the particular battery chosen. It is also important to select a charger with
a high enough current that will allow the battery to charge at a reasonable pace. The
ASR is only useful when on patrol. If it takes to much time to charge it reduces the
robot's effectiveness.

3.14.1 Sealed Lead-Acid

Lead acid batteries were the first rechargeable batteries meant for commercial use [10].
The lead acid battery is still very common today being used in many automobiles,
forklifts, and marine vehicles. The sealed lead acid battery is designed to be
maintenance free. These specific lead acid batteries have a control valve to help vent
gasses during a stressful charge or discharge. The batteries are also designed to be
used in any orientation as the plates are no longer submerged in liquid. A moistened
separator is used instead. This battery type is well known for being very dependable
and inexpensive which makes it a great option for the Autonomous Sentry Robot. These
batteries also have the ability to discharge a high amount of current at a time.

53

However, there are still many drawbacks to batteries of this type. These batteries are
extremely heavy in comparison to other battery chemistries. Therefore they have a poor
weight to energy ratio. These batteries also take a very long time to charge. Our system
is designed to be on the move most of the time so spending ten plus hours to charge
would be a large setback. Any backup batteries must be stored in a charged state as
leaving batteries uncharged causes sulfation which can damage the battery. These
batteries also have a lower limit to how many times they can be deep cycled, meaning
that most of the capacity is used before it is charged again. These battery types are also
not environmentally friendly. The advantages and limitations of SLA batteries are shown
in figure 3.14.1-1 below.

Inexpensive and simple to manufacture; low cost per watt-hour
Low self-discharge; lowest among rechargeable batteries

Advantages
High specific power, capable of high discharge currents

Good low and high temperature performance

Low specific energy; poor weight-to-energy ratio

Slow charge; fully saturated charge takes 14 hours

Must be stored in charged condition to prevent sulfation
Limitations Limited cycle life; repeated deep-cycling reduces battery life
Flooded version requires watering

Transportation restrictions on the flooded type

Not environmentally friendly

Figure 3.14.1-1: Advantages and Limitations of SLA Batteries
(Permission Pending from Battery University)

3.14.2 LiFePO4

Lithium iron phosphate batteries are a type of Lithium-ion battery. They are very energy
dense meaning that they are extremely light in comparison to sealed lead acid batteries
with the same capacity rating. These batteries also have a very low self discharge
meaning they have a great shelf life after being charged [11]. The batteries also don’t
share the sulfate problem that can adversely affect SLA batteries and are
environmentally friendly. These batteries also contain no liquid so they can be mounted
in any position. This is extremely useful in robotics projects where it may be necessary
to mount a battery on its side instead of having it stand straight up.

These batteries are specifically designed to be deep cycled meaning that there is no
need to worry about damaging the battery from discharging almost the entire capacity
between each charge. This property would allow the Autonomous Sentry Robot to

54

continue its patrols for longer periods of time. LiFePO4 batteries also can be charged
very quickly so not only would the ASR be able to patrol for longer, it would be able to
get back to its patrols more quickly. The largest drawback to this battery is that they are
very expensive. Figure 3.14.2 illustrates advantages and limitations for all lithium-ion

batteries below.

Advantages

High specific energy and commendable energy density

Available in Energy Cells and Power Cells

Rapid charge and high load capabilities

Sealed cells; format choices provide good flexibility

Long cycle and extend shelf-life; no maintenance

High coulombic efficiency; good energy efficiency

Low self-discharge (less than half that of NiCd and NiMH)

Limitations

Requires protection circuit to limit voltage and current

Possibility of venting and thermal runaway if stressed

Degrades at high temperature and when stored at high voltage

No rapid charge possible at freezing temperatures (<0°C, <32°F)
Transportation regulations required when shipping in larger quantities

Higher cost than most other nickel and lead-based systems

Figure 3.14.2-1: Advantages and Limitations of Lithium Batteries
(Permission Pending from Battery University)

3.14.3 NiCd

Nickel-cadmium batteries were initially used in two-way radios, emergency medical
equipment, video cameras, and power tools. They were improved to have a much larger
capacity but they ended up with a shorter life cycle [12]. The batteries are very rugged
which is a great advantage for use in a robot. However they need proper care to attain
any sort of longevity. They batteries are extremely susceptible to the memory effect.

Figure 3.14.3-1 below shows advantages and limitations of NiCd batteries.

55

Fast and simple charging even after prolonged storage

High number of charge/discharge cycles; provides over
1,000 charge/discharge cycles with proper maintenance

Good load performance; rugged and forgiving if abused
Advantages Long shelf life; can be stored in a discharged state

Simple storage and transportation; not subject to regulatory control
Good low-temperature performance

Economically priced; NiCd is the lowest in terms of cost per cycle

Available in a wide range of sizes and performance options

Relatively low specific energy compared with newer systems
Memory effect; needs periodic full discharges

Limitations Environmentally unfriendly; cadmium is a toxic metal and cannot be
disposed of in landfills

High self-discharge; needs recharging after storage

Figure 3.14.3-1: Advantages and Disadvantages of NiCd Batteries
(Permission Pending from Battery University)

3.14.4 NiMH

Nickel-metal-hydride batteries have several advantages over other battery types. The
batteries have a higher specific energy than NiCd batteries and use no toxic materials.
They also have advantages in price and safety over Li-ion batteries [12]. Hybrid vehicle
makers state that these batteries cost about one third of a Li-ion system. However the
batteries are not robust enough for hybrid vehicles as they have about one third less
capacity than current consumer batteries. The batteries also have a high self discharge
of about twenty percent of its capacity within twenty four hours. Figure 3.14.4-1 below
shows the advantages and limitations of NiMH batteries.

56

30-40 percent higher capacity than a standard NiCd

Less prone to memory than NiCd

Advantages Simple storage and transportation; not subject to regulatory control
Environmentally friendly; contains only mild toxins

Nickel content makes recycling profitable

Limited service life; deep discharge reduces service life

Requires complex charge algorithm

Does not absorb overcharge well; trickle charge must be kept low
Limitations Generates heat during fast-charge and high-load discharge

High self-discharge; chemical additives reduce self-discharge at the
expense of capacity

Performance degrades if stored at elevated temperatures; should be stored
in a cool place at about 40 percent state-of-charge

Figure 3.14.4-1: Advantages and Disadvantages of NiMH Batteries
(Permission Pending from Battery University)

3.14.5 LiPO

Lithium polymer batteries are created by using a solid polymer electrolyte. The result
was that the batteries could be created that are as thin as a credit card. The batteries
could actually be made into almost any shape. The ultra thin batteries are still able to
have a relatively good capacity. They are very light and safer than their Li-ion
counterparts. The batteries also share charge and discharge characteristics with
lithium-ion batteries allowing them to share chargers. However the batteries are a lot
more expensive and are less energy dense making them less useful for a robot like the
Autonomous Sentry Robot. Flgure 3.14.5-1 below shows just how small a lithium
polymer battery can be.

Figure 3.14.5-1: Size of a LiPO Battery
(Reprinted with Permission from Powerstream)

57

3.15 Voltage Regulators

We plan to power the vehicle and all of its subsystems with a single battery. Since the
motors, sensors, microcontroller, and microcomputer may require different voltages to
operate than supplied by the battery, we will need to design a power distribution board
to supply the correct voltages. We will consider common components for a power
distribution board, such as linear voltage regulators, switching voltage regulators, and
power boost converters, in the case of components needing a higher voltage than
supplied.

3.15.1 Linear Voltage Regulator

Using a Linear voltage regulator is one way to convert a higher supplied voltage to a
lower one used by components. Linear voltage regulators take any input voltage, within
a range, and outputs a regulated voltage. For the microcontrollers and the sensors that
we are considering, we will need an output of 5 V t0 5.5 V. We have experience with a
5 V voltage regulator from the Electronics Il laboratory Experiment #3. In that lab, we
used a LM7805. Some characteristics for the LM7805 are listed below in Table 3.15.1.

Voltage Regulator LM7805
Max Input Voltage (V) 35
Output Voltage (V) 5

Peak Current (A) 2.2

Table 3.15.1: LM7805 Characteristics [6]

According to Digikey’s web article, “Understanding the Advantages and Disadvantages
of Linear Regulators,” efficiency is high for small differences between input and output
voltages. [7] We can see this in the power dissipation equation for the voltage
regulator:

PREG = PIN - POUT = (VIN - VOUT)*IL + IQ*VIN

Where P is the power dissipated by the voltage regulator, P, is the input power, Pq ;

is the out power, V is the input voltage, V; is the output voltage, |, is the load current,
l is the and quiescent current.

3.15.2 Switching Voltage Regulator

Switching regulators are another way to convert voltages. They can step up (boost),
step down (buck), and invert voltages. For our project, we would need a step down
regulator. They tend to be more expensive and more complex than linear voltage

58

regulators. We also have experience with a switching voltage regulator from Electronics
Il laboratory Experiment #4. In that lab, we used a LM2576-ADJ. Some characteristics
for the LM2576-ADJ are listed below in Table 3.15.2. Since the LM2576-ADJ is an
adjustable switching voltage regulator, we can adjust the output voltage to what we
require. Figure 3.15.2 is an example of a circuit that has an output voltage of 5V.

Figure 21. Fixed Output Voltage Versions

FEEDBACK

LM2576HV- |* -
T 1 ADJ OUTPUT u 5.00V

IO0 ¢

100 uH I+ B

D1 1000 ufF L3
MBR360

Wiy

- GOV] 100 pF
JNREGULATED

DC INPUT

|

Wout = VREF |“ ' Eﬂ

eno [3 GRsorr |5

AN A AA
W\
2 el
=]

E

where
VREF = 1.23V, R1 between 1k and Sk

Fig. 3.15.2: Circuit with a 5V output
(Reprinted with Permission from Texas Instruments)

Voltage Regulator LM2576-ADJ
Max Input Voltage (V) 40

Output Voltage (V) 1.23 to 37
Peak Current (A) 3

Table 3.15.2: LM2576-ADJ Characteristics [8]

According to Digikey, efficiency is high “except at very low load currents” where the
“‘quiescent current is usually higher.”[7] In our lab we learned that the power
dissipated in the switching regulator comes from when the MOSFET in the regulator is
on, when it is off, no power is dissipated. The power dissipated is:

-1 2 *
I:)MOSFET - IL RDS

Where P,,oseer is the power dissipated by the MOSFET, | is the load current, and Ry is
the drain to source resistance of the MOSFET.

3.16 Chassis

The chassis is an important part of every robotic vehicle. There are many factors to
consider when designing or selecting a chassis. The chassis for the ASR must be large
enough to contain all of the electronics required for the robot, but also small enough to

59

maneuver around obstacles with ease. The chassis should be easy to assemble and
disassemble for maintenance purposes. The cost of the chassis is also an important
factor to consider. In our case the robot is not meant to bear much more weight than the
electronics required to drive it.

This means that minimizing component weight is not an issue for us. The largest
component, other than the chassis and battery, is the Microsoft Kinect sensor we plan
to use to map the environment. The Kinect weighs right around 2 Ibs so our design will
be able to handle it perfectly as we plan to use metal in our construction. For the ASR,
our team decided that it would be best to purchase a chassis kit or easy to assemble
chassis components rather than build one from scratch. We considered two different
options for the ASR.

Actobotics Chassis: The first chassis we considered was from Sparkfun. Sparkfun has
created a robotic building system under the name Actobotics. Actobotics has many pre
made aluminum channels that can intuitively come together to create a solid chassis.
The components are relatively inexpensive and are designed for ease of use. The
components come with two standardized hole patterns for use with any of Actobotics’
components and many others. Figure 3.16-1 below is of the 12” aluminum channel with
the easy mounting hole pattern.

Figure 3.16-1: 12” Aluminum Channel
(Reprinted with Permission from SparkFun)

VEX Chassis: The second chassis we considered was the VEX chassis kit. They come
in several different sizes which allowed for flexibility in design. The components are very
similar in design to the actobotics parts. They are designed with a single hole pattern for
uniformity across the entire VEX robotics product line. The chassis kit comes with four
rails and two bumpers. the rails are used for mounting wheels and motors. The inner
rails can be moved closer to the outer rails or more towards the center to allow for larger
or smaller wheels. The bumpers act as the front and the back chassis plates. Figure
3.16-2 below shows the assembled VEX chassis kit medium.

60

-
Figure 3.16-2 Chassis Kit Medium
(Reprinted with Permission from VEX Robotics)

4. Related Standards

This section covers everything having to do with standards that relate to our project, and
how they impact our design.

4.1 Standards Search

In Table 4.1, see below, are related standards that were found by searching
WWW.NSSN.org.

61

http://www.nssn.org/

Standard Scope Title

Number

IEEE WiFi IEEE Standard for Information technology

802.11n-2009 -Telecommunications and information exchange
between systems - Local and metropolitan area
networks - Specific requirements Part 11:
Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) Specifications
Amendment 5: Enhancements for Higher
Throughput

IEC 62680-1 Ed. | USB Universal serial bus interfaces for data and

1.0 b:2013 power - Part 1: Universal serial bus specification,
revision 2.0

IEC 62680-2 Ed. | USB Univ. serial bus interfaces for data and power -

1.0 b:2013 Part 2: Universal serial bus - Micro-USB cables
and connectors specification, revision 1.01

BSR/IEEE Mapping Standard for Robot Map Data Representation for

1873-201x Navigation

IEC 60335-2-29 Battery Household and similar electrical appliances -

Ed. 4.2 b:2010 Charger Safety - Part 2-29: Particular requirements for
battery chargers

IEC 62676-1-1 Video Video surveillance systems for use in security

Ed. 1.0 b:2013 Surveillance applications - Part 1-1: System requirements -
General

IEC 62676-2-2 IP video Video surveillance systems for use in security

Ed. 1.0 b:2013 applications - Part 2-2: Video transmission

protocols - IP interoperability implementation
based on HTTP and REST services

Table 4.1: Related Standards

4.2 Design Impact

Our design considerations were not greatly impacted by the standards that we have
found. This is the case since we will not be manufacturing hardware and will be using
established software libraries. We will be using standard hardware components for this
project, while only designing our own printed circuit board for power distribution and the
microcontroller and a housing for the battery charger.

62

5. Design Constraints

Listed below are several design constraints that our project will be facing. Many of the
constraints pertain to restriction of design options due to cost, time, size, and etc. We
do not foresee many constraints due to regulations or standards.

5.1 Cost

Cost is a major factor in our design. In our initial budget, we understood this and were
determined to use parts that we either had, were low cost, or could combine
functionality. For our initial budget, we determined that we would need $901.77, which
is what we requested from a Boeing sponsorship. We have been approved for funding
from Boeing for $580.11. This is less than what we requested, however we are
fortunate to be in possession of some of the parts that we require to complete the
project.

5.2 Time

Time is another main constraint. Since our section of Senior Design Il will be held during
UCF’s summer term, we will have less time to work than if it were during the fall or
spring terms. We will have twelve weeks compared to sixteen weeks.

5.3 Size

We have constrained the size of our robot in requirement FF1 to a maximum height of 1
foot and a maximum width of 1.5 feet. According to the specifications of the VEX kit
which one of us owns, the chassis rails are 8 inches long and the chassis angles are 7.5
inches long. For the VEX medium chassis kit that we are considering, the chassis rails
are 12.598 inches long. And according to the Actobotics specifications, the other
chassis kit we are considering, the chassis channel lengths are 4.5 inches, 6 inches, 9
inches, 12 inches, 15 inches, 18 inches, or 24 inches.

5.4 Power Consumption

Power consumption is an extremely important factor for the ASR. In our initial project
description we listed that the battery was to last for 2 hours. If the budget was no
concern this would be achievable. However, with a limited budget and limited space we
felt that it was necessary to compromise on this factor. For example, a robot drawing
10A of continuous current would need a battery with a capacity of 50Ah to run for 5
hours. We expect our robot to draw around 10A of current. Therefore we have chosen

63

to modify our run time to about a half hour. That means that we will need a battery with
a capacity of 5Ah or more to achieve our new goal.

6. Hardware Design

The ASR is made up of both mechanical and electrical hardware systems. These
systems must work together in order for the ASR be successful. That being said, it is
important to design the system components to be independent so that if a part needs to
be modified or replaced it can be taken care of without affecting the entire system. This
section contains the decisions made for the mechanical and electrical hardware of the
robot as well as the reasons for those decisions.

6.1 Mechanical System

In this section we will discuss the various components of the mechanical system. The
mechanical system must be able to support the weight of all components and be simple
to construct. The mechanical components should interface with each other easily to
allow for design simplicity.

6.1.1 Chassis

The chassis is the main hub for the entire robot. It had to be able to accommodate every
subsystem. Our team decided to go with the VEX chassis kit for the ASR. The kit is
extremely well designed and something we had worked with in the past. There were
three different kits to choose from. The specifications for each kit we considered are
shown in figure 6.1.1-1 below.

Chassis Kit Dimensions (in) Weight (Ibs) Price ($)
Small 8.092x7.598 0.84 18.99
Medium 12.592x12.592 1.3 21.35
Large 17.592x17.598 1.8 24.95

Table 6.1.1-1: Chassis Kit Comparison

From the specifications above we chose the medium chassis kit for the ASR. The
dimensions of the medium kit are well within the form factor chosen for the ASR but it is
also not too small. The chassis is also relatively inexpensive. As system compatibility is
important for the ASR, the factors listed and discussed below also played an important
role in choosing the medium VEX chassis.

64

6.1.2 Drive System

Our project requires the ASR to be able to maneuver around many obstacles. For this
purpose a highly mobile drive system was initially preferred. However, we determined
through our testing that the SLAM algorithm worked much better without any fancy
movement. Holonomic drives are incredibly complex and allow for a level of mobility that
was not needed in our project. Our team determined that even the ability to strafe while
navigating and mapping was unnecessary and the only motion we needed was provided
by a more standard drive system. Therefore our team elected to use the tank drive
system for the ASR.

It was a very simple design to implement as it operates exactly like a tank where the left
side acts as one unit and the right side acts as one unit. This cut down on computation
needed to figure out which motion would be best for a the ASR if a holonomic system
had been chosen to navigate the room. The VEX chassis was a perfect fit for this drive
system. The chassis came with 4 rails and two bumpers for mounting wheels and
motors. Those components are for the four main drive wheels. The chassis is very
modular and components can be added to change the design. Figure 6.1-1 below
illustrates the chassis design.

Legend
Light Blue: Mounting Plastic
for Electronics
- - - _
Grey: VEX Chassis Frame
Black: Wheels and Axles

White: Wheel Space

Figure 6.1.2-1: Tank Style Chassis Design

6.1.3 Wheels

The chassis design was a factor in our wheel choice. The tank style drivetrain really
works effectively with omni wheels and traction wheels. The omni wheels would have
allowed the robot to turn with less friction than any of the other wheels we looked into.
The traction wheels have more friction when trying to strafe as they do not have rollers.

65

However, the traction wheels are less expensive which follows our goal of a cost
effective system. Therefore, we chose to use traction wheels for our project. There were
many types of traction wheels available to use. However, we decided to look at choices
that VEX robotics had to offer as they would be directly compatible with our chassis.

All of the VEX wheels are designed to support the VEX chassis and required
electronics. As the ASR was not meant to carry an extremely large load, there was no
need to compare load specifications for the following wheels. The first option we looked
into were 2.75 inch traction wheels. The second option we looked into were 3.25 inch
traction wheel. The final set of traction wheels we looked into had a diameter of 4
inches. An example of the 2.75” and 4” wheels are shown in figure 6.1.3-1 below.

Figure 6.1.3-1: VEX Traction Wheels: 2.75” (Left) and 4” (Right)
(Reprinted with Permission from VEX robotics)

Wheel (All Traction) |Weight (lbs) Shaft Price

2.75" 0.074 0.125" Square Bar [$9.99 (for four)
3.25" 0.154 0.125" Square Bar [$19.99 (for four)
4" 0.232 0.125" Square Bar |$19.99 (for four)

Table 6.1.3-1: Traction Wheel Comparison

In the table it can be seen that the smaller 2.75” wheels are less expensive and lighter
than the 4” wheels. After consideration we chose to use the 2.75” wheels. We
determined that the price of the wheels made this choice extremely cost effective. The
wheels are half the price of the others and perform the same function. The wheels are
the lightest of our three options. The heavier the robot the more power it takes to move
it as well as the more torque we need. Being lightweight is extremely important in
robotic platforms and essential for the ASR to work properly.

66

If the ASR had been unable to enter a room because it couldn’t make it over a
threshold, it would have lost some of its functionality. We determined that even using
the smaller diameter wheels allowed the robot to cross standard thresholds. The ASR
should be able to enter any room with ease so this was an easy decision with such an
low price. As we need four wheels total we bought one kit leading to a total price of
about $10.00. These wheels were chosen to work with the chassis. The chassis uses
.182” standard VEX holes for mounting and the wheels use 0.125” square bars for
shafts. The shafts of the wheels properly fit though the chassis holes for mounting.
Bearings and a shaft collars from VEX robotics will be used to hold the wheels in place.

6.1.4 Motors

The motors chosen needed to be able to support the weight of the robot and all of its
components. The robot weighs no more than 15 Ibs. This meant that the motors needed
to have a stall torque greater than 0.85 N-M in order to run properly. The torque value is
based on the weight of the robot and the radius of the wheels. The motors should also
not have a large current draw in order to maximize battery life. After conducting our
motor research and tests, we chose to use a DC motor. Having chosen the VEX
robotics chassis, we had decided that looking at VEX motors would be a good start for
compatibility. The VEX motors we researched are shown in table 6.1.4-1 below.

Motor |RPM [Needs Controller |Stall Current (A) |Stall Torque (N-M) (Price ($)
393 [100 |Yes 4.8 1.67 14.99
3 wire {100 [No Not Listed Not Listed Not Listed
269 (100 |Yes 26 0.972 12.99

Table 6.1.4-1: Motor Comparison

The 3 wire motors are motors that we already had. The third wire is for PWM signals
and therefore it doesn’t need a motor controller. However, there was not a lot of data
available on them and we only had three. This eliminated them from being used on the
ASR. The 2 wire 269 motors were less expensive than the 2 wire 393 motors. However,
they had much lower stall current and stall torques. Therefore we chose to go with the
VEX two wire 393 motors. The motor is a DC motor meaning it runs using DC voltage.
That made them ideal for our system as we were using a battery. DC motors are very
easy to control which is a necessity for the ASR. The motors are shown in figure 6.1.4-1
below.

67

Figure 6.1.4-1: VEX 2 Wire motor 393
(Reprinted with Permission from VEX Robotics)

With these motors having two wires it was necessary to get a motor controller for them.
As our microcontroller is able to generate PWM signals we chose to get the VEX motor
controller 29. The motor controller is specifically designed to work with the VEX two wire
393 motors so we chose not to look into any other options. The motor and motor
controller combo is priced at $24.98 on the VEX website making it a great option for our
project.

6.2 Electrical System

The electrical system of the ASR contains the sections related to the power system, the
microcontroller, and the sensors. The system has been designed to be simple.

6.2.1 Battery

The battery is an important aspect of the ASR. It needed to have a high capacity and it
needed to be designed for deep cycling. The battery needed to be able to discharge
enough current to run the motors and electronics on the robot. It also couldn’t be
affected by the memory effect. After careful research we chose to go with a NiMH
battery because they don’t require any special care and are safer than Lithium batteries.
They also have a higher capacity than NiCd batteries. After that decision was made,
three batteries were under consideration. The batteries’ specifications can be seen in
table 6.2.1-1 below.

Battery Brand Voltage (V) Capacity (mAh) Price ($)
Tenergy 7.2 3800 23.99
Tenergy 7.2 2000 9.99
Tenergy 7.2 5000 32.99

Table 6.2.1-1 Battery Comparison

68

For the ASR we chose the Tenergy 7.2V 5000mAh NiMH battery. We chose this battery
because it has a higher capacity than most other 7.2V batteries. The battery is able to
deliver 40A of current which is well above what the ASR can draw. The battery is
designed to not be affected by the memory effect. Therefore it can be charged at any
stage instead of only when it has been completely discharged. The battery is 7.2V
making it perfect for running the motors we have chosen. The battery is relatively
inexpensive and costs $32.99. The battery is pictured in figure 6.2.1-1 below.

Figure 6.2.1-1 Tenergy 5000mAh NiMh Battery
(Reprinted with Permission from Tenergy)

6.2.2 Charger

After selecting the battery there were two different options available to us for a charger.
The first option was to design our own. The team decided that it would be safer to
purchase a charger for the ASR battery as the robot is intended to complete many
cycles. The chargers available to purchase are rigorously tested so we know they are
safe to use with the NiMH battery. That left only the second option, purchase a charger,
available to us. There were two charges under consideration for purchase. Table
6.2.2-1 below is a comparison of the two chargers.

Brand Voltage (V) Charge Rate (A) Price ($)
Tenergy 7.2-12 1.8 21.49
Tenergy 6-12 2 22.99

Table 6.2.2-1 Battery Charger Comparison

From the table it can be seen that the price difference was negligible and the voltage
rating for both is perfect for our battery. Therefore, our group chose to go with the
second charger with the charge rate of 2A. This allowed for a slightly faster charge time
to get the ASR back out into the room for its patrol. The battery charger is able to detect
the battery voltage to ensure a proper charge and is equipped with a temperature
sensor to ensure that the battery doesn’'t overheat. The charger is shown in figure
6.2.2-1 below.

69

Figure 6.2.2-1 NiMH Battery Charger
(Reprinted with Permission from Tenergy)

6.2.3 Power Distribution

The ASR’s batteries will essentially have three loads, one load from the motors at 7.2 V,
one load from the microcontroller, microcomputer, and sensors at 5 V, and one from the
Microsoft Kinect at 12 V. Fig. 6.2.3-1, shown below, is a block diagram of how the
power distribution will be organized.

Battery
Te2v
v v v
Motor Controllers 5 V regulator 12 V regulator
v h i v
Motors Microcontroller Kinect

Sensors

Fig. 6.2.3-1: Power Distribution Flow Chart

Our battery is 7.2 V and our motors run at 7.2 V with a maximum current draw of 19.2 A
(4 x stall current). The motor controllers will be connected directly to the battery.

70

The ATmega328P, Raspberry Pi 2, Microsoft Kinect, tactile sensors, and ultrasonic
sensors all run at 5 V. The maximum current draw from them is 1.10 A. Since we have
experience from a previous laboratory with 5 V voltage regulation, we decided to use
what we know. We decided to use the LM2576-5, 5V switching voltage regulator, as
shown below in the Fig. 6.2.3-2. We will be using the reference design provided in the
data sheet.

S FEEDBACK
(80V for HY) +‘J|N LM2576/ |

UNR%@”%:;S? LM2576HV— L1 +5V
OUTPUT TR REGULATED
5 £ OUTPUT
IN 3| enD 5 K "‘_ COUT 3A LOAD
I 100 uF ‘ UN/OFF D1

1N5822 | 1000 uF

Fig. 6.2.3-2: Microcontroller and Sensor Power Supply
(Reprinted with permission from Texas Instruments)

The Microsoft Kinect requires 12 V to operate. We designed a 12 V boost converter in
Texas Instruments Webench Power Architect, as in in Fig. 6.2.3-3 below. The 12 V
regulator will connect to the battery boost the 7.2 V to 12 V for the Kinect.

Rfb1

VIV

150 KOhm

Rfb2
ANINN

13.0 KOhm

VinMin=7.2V L1 D1 Vout=12V

VinMax =84V YYym lout=1A
100 uH 0.500 |
FEEDBACK m 2004

LM2587

u1 SWITCH

7.40:Cin
R =485m0 uF
0.440 Ohm

+ Cout
—1.00mF
0.012 Ohpx

lout
(O

00
160V

Fig. 6.2.3-3: Microsoft Kinect 12 V Power Supply

6.2.4 Microcontroller

From our research, we saw that the ATMega328P has a faster clock frequency, but less
Program Memory, less RAM, less I/O pins, and less USARTs/SPIs than the
ATmega2560. Since we do not plan to do anything complex with the microcontroller
and need for it to react to obstacles quickly, we decided on using the ATmega328P.
We will be using it with an Arduino bootloader to simplify the programming required,

71

thus saving us some time. All the microcontroller needs to do is take movement
commands from the laptop and send the commands to the motor controllers, and take
sensor data from the tactile sensor and ultrasonic sensors and then send movement
commands to the motors, if needed. The faster clock frequency would result if faster
reactive actions for the robot.

6.2.5 Sensors

To be successful, our robot will require long range, medium range, and short range
sensors. For the short range sensors, we choose the VEX bumper sensor. It will
compliment the HC-SRO04 ultrasonic distance sensor. It'll work well for a medium range
sensor with a range of 2 cm to 4 m. The bumper sensor can handle anything that is
missed. We will have two bumper sensors in the front of the robot, along with one
ultrasonic sensor. These sensors should be able to handle close to medium range
object detection. If they are triggered, the microcontroller will react and move the robot
away from the object. We will also have the same configurations on the back of the
robot. This will cover the cases when the robot backs up and it’ll ensure that it does not
run into anything while backing up.

6.2.6 Status LEDs

The ASR to this point is a good robotics platform. However, we felt that it would be a
better system if we were able to add or swap some features. To do this we decided to
add a TLC5940NT common anode LED driver. We chose this chip in particular because
not only does it have the ability to drive LEDs, it can drive anything that runs on a PWM
signal. This would allow the user to add motors for a grabber or to make the robot move
faster if they so choose. The TLC5904NT has 16, 12 bit grayscale PWM output
channels allowing for a ton of flexibility. The chip uses serial communication with our
second atmega328. It has the ability to sink up to 12 (Vcc>3.6V) which is great for
running LEDs. The chip also has Dot correction which is for LED signs. LEDs vary in
brightness and if you have a large amount of them it is very noticeable. Dot correction
makes the brightness uniform across all of the LEDs.

For our design we chose to run seven LEDs. The outer LEDs turned on and stayed on
constantly while the inner LEDs ran in a scanning pattern from left to right and then
back again. The LEDs were designed to be feedback for when the robot was on. Figure
6.2.6-1 below shows the LED hardware.

72

~ M
n,
! ",
=il
H e
= 11
17] 1t e
g k]
L~
~d

:
AREFERER

Figure 6.2.6-1: Status LED Hardware

7. Software Design

The ASR is a complex system of interconnected subsystems. The overall system has
distinct inputs and outputs, and so should the individual subsystems. With this approach
in mind, our design attempts to be as modular as possible. This way modifications can
be made to one system without too much impact on other systems. This approach
allows us to utilize ROS as a general purpose framework. First, a high level view of the
overall system architecture will be presented. Following this, each system will be looked
at in more depth. ROS requires the use of many different nodes and packages for
things like creating coordinate transforms between sensor frames, viewing data, and
performing navigation procedures using a map. Since these are features of ROS itself
and not modules we will be programming, they will not be discussed.

7.1 High Level Software System Architecture

The overall system is contained within and being executed on a laptop running Ubuntu
Linux. The subsystems are, manual navigation, autonomous navigation, mapping and
localization, motion detection, and the state manager. The inputs to the system are the
map, streams of data from various sensors, and input from the user. The outputs of the
system are the current generated map which is fed back in as an input, alerts which are
pushed to the user's Gmail account, and locomotion data to the motors. Figure 7.1-1
below illustrates the high level software architecture.

73

Laptop - Ubuntu Linux

-~ Inputs ™~ User Input

Kinect » Map and Position Current Map-

I—TAD{ Sensor Data Stream

R Sonar,
\ _/ ® Directional Depth Tactile, Webcam Feed
Input Odometry

State Manager

PC or Mobile Device

State Transition
Commands

> Gmail Account ¥ ¥

Odometry,
Tactile,
Sonar Manual Navigation

Autonomous
Navigation

Alert

Meas:jge Locomotion Data Locomotion Data

Camera > v v

Frame
{ Outputs \ Mapping and

Localization

Updated Map and | New Landmarks,
Paosition . Estimated Position

Alerts < Alert Fiag, Motion Detection |«
Camera Frame

Mi N Locomation 75
- Instructions N

—
Figure 7.1-1 - High Level Software Architecture

The above diagram does not demonstrate the order of execution in the system, but the
relationship of inputs and outputs to each subsystem, and the overall system itself.
Arrows flowing in are inputs, arrows flowing out are outputs. The type of I/O data is
indicated on each line. Some of these subsystems are running concurrently, so
dedicated threads are necessary, luckily ROS safely handles this. For instance, if the
user decides to map autonomously, both the autonomous navigation and
mapping/localization subsystems will be executing. The map will be being updated while
the robot is planning its path, and sending locomotion instructions to the robot’s wheel
controller. The black dots provide no functionality, but instead indicate connected
branches for better clarity.

7.2 State Manager

The state manager is a singleton class which sets the given state of the robot based on
input from the user to the terminal. Abstract states like “Autonomous Mapping Mode”
selected in the state manager are not actually representative of a single state in the
manager, but rather two states operating simultaneously. This approach helps us
eliminate redundancy and keep code more modular for ease of modification. The State
Manager class is simple in terms of methods and variables. The SetState() method

74

takes in a boolean array which flags states that are to be set active and inactive. The
current state can be retrieved with GetState() which retrieves the global variable flags|],
containing whatever states were last set. The global variable mapComplete is set when
the mapping state has completed and is used by the state manager to decide which
options are available to the user. The state manager needs no knowledge of sensors or
any other input besides user input, as these are inputs to the classes of the
subsystems. It needs no output except for other classes to be able to retrieve the
current state for lower level decision making. Flags can be set by subclasses when
certain procedures have been completed. Figure 7.2-1 below shows the State Manager

Architecture.

flags(] : [autonomous_nav,

Input from Terminal

State Manager

manual_nav, + SetState(bool|] }: void
slam, + GetState(): bool[]
docking,
motion_detect
' ’ SetState (flags]]) + flags: booll]
standby | + mapComplete: bool
State Manager
Autonomous Autonomous Manual Pause Manual
Patrol Mode Mapping Mode Mapping Mode Selected Patrol Mode
v I v I L ¥
Autonomous Mapping and i
Mavigation ® Localization Manual Navigation
L 4
Autonomous Autonomous
Mapping Patrol Standby
Mode Mode
L 4 L4 L 4

Obstacle Avoidance

Motion Detection

Figure 7.2-1: State Manager Architecture

75

7.3 Autonomous Navigation and Obstacle Avoidance

Autonomous navigation functions like a finite state machine. Autonomous navigation
would occur when the user sets the ASR to either Autonomous Mapping mode or
Autonomous Patrol mode. The only difference between these two modes is that during
Autonomous Patrol mode, the ASR will periodically stop and engage the motion
detection systems. Autonomous navigation starts by immediately moving forward while
checking on sensor data, if no obstacles are detected it will briefly switch to the
locomotion state to transmit motion data, then return to the wander state and repeat. If
any obstacle avoidance warnings are triggered, then it will immediately trigger the stop
state, switch to locomotion and transmit data, then return and switch to the avoid
obstacle state. The avoid obstacle state contains logic for determining and calculating a
new heading. Once the heading is calculated, it switches to the locomotion state and
transmits data to reflect the new heading. Following this, it returns to the wander state
and repeats the whole process. The wander state also checks if the standby flag has
been triggered. If it has, the robot is told to stop and then exit this state and wait for
instructions. Figure 7.3-1 below illustrates the autonomous navigation state machine.

Autonemous Navigation
(Input Stream \
> L First
Stop Mction If standby
Stop | flag
el triggered
Tactile Data If Minimum |
Ly Distance Betori
i o Avoid Obstacle
(End) Reset Curmrent
ScnarData State and Transition
Avoid Obstacle and to Standby State
\ / (Start) Wander Face Furthest .
Space
Turn Until
[fLeftClear Furthest Open

global flags[]: Slight Left Space
autonomous == 1) Y
manual ==0 |23$Ighht§|zﬂr o Serial
mapping ==0or 1 ightRight ___,, Locometion ~ p------ MlctﬁiLthn 52; -4----» Microcontroller
motion_.d_e_tection =0or1 ¥ Forward Clear——>1 2 %
standby == 0 Move Forward

Figure 7.3-1: Autonomous Navigation State Architecture

7.4 Manual Navigation

Like the autonomous navigation system, the manual navigation system is a state
machine. Manual navigation would occur if the user set the ASR to Manual Mapping
mode or Manual Patrol mode. By default the robot sits and listens for instructions from
the user. We use a WASD control scheme where W moves forward, A rotates left, D
rotates right, and S moves backward. Manual navigation input occurs in it's own
terminal separate from the main terminal which sets the state of the ASR. If the ASR is

76

in patrol mode, in the main terminal, the user can type ‘capture’ to capture a frame from
the ASR’s camera. Figure 7.4-1 below illustrates the manual navigation state machine.

Input From Manual Navigation
User Application

ey L W e Output_______ » Email Image to
UserInput Image User

User Supplies
Capture Command

: If standby (End) Lock Current
globalflags[]: (Start) User Input flag ——{State and Transition
autonomous ==0 RRjRor triggered to Standby State
manual == 1 |
mapping == 0 or 1 User Supplies
motion_detection == 0 or 1 Movement Command
standby ==0

Output

Locomotion ~ fp------- Ser.'al ------- »| Microcontroller
Motion
Data

Figure 7.4-1: Manual Navigation State Architecture

7.5 Motion Detection

Like the other systems, the motion detection system is a state machine. Motion
detection only occurs during the Autonomous Patrol mode. Motion detection starts by
capturing two raw RGB frames from the camera. It then converts them to grayscale, and
performs differential imaging on them. The image produced is then thresholded, blurred,
and thresholded again. It then looks for contours in this image. Contours indicate
movement in the image. If any contours are present then motion has been detected.
The largest contour is selected as the moving object and a crosshair is edited into the
image at the contours origin. This image is then sent to the user’'s GMail account with a
timestamp and a message indicating that motion was detected. Depending on how the
user's computing devices are set up, they will see this email immediately and take
action. If no motion was detected, the procedures continue for a specified time interval
and then exit. Figure 7.6-1 below illustrates the Motion Detection State Architecture.

77

'/_ Input Stream K. Motion Detection

[T AT Camera______ (End) ResetC 4
-~ Frames 3 “—Continue i e o
Webcam Feed Cettlgri::ine(s) State and Transition
naieldts L to Standby State
—>Standby Flag
i AY v Triggered
global flags[]:
autonomous == 0 or 1 Convert to
manual==0or 1 Grayscale
mapping ==0
motion_detection == 1
standby == 0
h 4
Get Differential
Image

+—1

Thresheld

|

Blur

Y

A

If Contours : Submit Alert and
Detect Contours [~ Exist, Get ™ i ILD[EC-ltIDr'I » Original Frames
Of Motion iyt
Largest to User Application

Figure 7.5-1: Motion Detection State Architecture

7.6 Mapping and Localization

We take a black box view of SLAM because we’re not writing any of the code to actually
implement it. Instead we utilize the hector_slam stack that is part of ROS. With
hector_slam we have a verified SLAM algorithm with easily accessible inputs and
outputs. It's only input is the formatted depth data from our Kinect, as well as the current
map. It's output is the updated map, which some other states have access to. The depth
data is formatted into a faked laser scan with the depth_image_to_laserscan node that
is part of ROS.

7.7 Open-Source Libraries

ROS is the framework which holds our whole robot together. It is responsible for
threading the programs we developed for the ASR, as well as the open-source
programs and libraries we utilized. In addition to ROS we used OpenCV, Arduino
libraries, and yagmail, a python-gmail interface. We will summarize what we used and
how we used it in the table 7.8-1 below:

78

Source | Code/ Libraries Used Description

ROS hector_slam Used for mapping and localization systems.

ROS depthimage_to_laserscan Used to slice Kinect depth cloud into a fake
laser scan.

ROS ros_arduino_bridge Drivers for communicating with Arduino and
sensors through ROS. We customized it for
our hardware and tuned it's PID controller.

ROS libfreenect_stack Kinect drivers

ROS tf Used for visualizing sensor data on the
correct planes in RVIZ

ROS map_server Hosts and saves map

ROS rviz Used as a base to customized a user
interface

Arduino | Vex 29 Motor Controller Drivers | Provides an easy interface with our motor
controllers

Arduino | Vex 393 Encoder Drivers Provides an easy interface with our motor
encoders

Arduino | NewPing Provides an easy interface with our sonar
sensors

OpenCV | Image processing functions Used in the motion detection system

yagmail | Python-Gmail client Used to report alerts from the motion

detection system

8. Prototype Construction

Table 7.7-1: Open SOurce Libraries

The following sections discuss the logistics of building our robot. First we discuss our
plan for a high level PCB design as well as how we plan to manufacture the PCB. Last
we discuss the order in which we plan to implement our software systems.

79

8.1 PCB

Designing our own circuits on a PCB, printed circuit board, is a requirement for Senior
Design |. This will be a learning experience for us since there are no classes that teach
printed circuit board, PCB, design. We will be using the online PCB design program
Upverter.com. Upverter offers free membership for students. It is a PCB design site
that let’s one design a circuit and PCB with a large database of parts, create a BOM, bill
of materials, from the design, and export the design to numerous formats. Will be
ordering our board from Advanced Circuits’ website, www.4pcb.com. They have
student discounts for PCBs. They offer 2-layer PCB’s for $33 each and 4-layer PCB’s
for $66 each. They also offer free PCB layout software.

To reduce costs, we will be using one PCB. The PCB will contain the both voltage
regulation circuits and the ATmega328P along with ports for the sensors. We will also
add add power ports for the motors to connect to. Fig. 8.1, seen below, is a high level
design of our PCB.

‘ Battery Line ‘

" Microcontroller,) ()
Microprocessor, and Motor Voltage Motar Power Port
Sensors Voltage Regulator

Regulator

J

- ¥ s —
ATmegal2aP 0—»{ Ports ‘

Fig. 8.1: High Level PCB Design

80

http://www.4pcb.com/

8.2 Coding Plan

A coding plan is necessary to establish which systems will be implemented first, but it
also helps us determine what systems are most important. We've already determined
that we're going to try and implement everything in Python, and that we will be using
GitHub for source control. The following is our plan for the order in which we will
implement our systems, followed by some justifications.

1.

Sensor Processing
a. All systems rely on input to be formatted in a way that is easy for us to
interpret, so this is critical to make implementing other subsystems easier.

. Manual Navigation

a. Manual navigation will allow us to move the robot around fairly simply and
enable us to start working on SLAM and testing some of our hardware
functionality.

b. Since no user application exists a primitive debugger type placeholder
application will be used.

Mapping and Localization

a. This will be the hardest to implement as we will be trying to understand
someone else’s code, and how it will fit into ours.

b. It's important to start early because this will most likely be the lengthiest
system to implement.

Autonomous Navigation

a. This system will also be difficult and time consuming to implement as it will
require more advanced algorithms.

b. Paves the way for motion detection system

Motion Detection

a. Our scheme is fairly simple and shouldn’t be difficult to implement later in

development
State Manager

a. After all our systems are in place we can finally implement the logic to
control which ones will be active and when.

b. Necessary for the user application.

User Application

a. This system basically requires everything else to be finished as it will be
responsible for sending instructions to the state manager.

b. Will be fairly complex to implement, but not totally necessary to prove that
our robot works. For this reason we will be willing to sacrifice it if we are
running low on time.

81

9. Prototype Testing

In this section we will discuss the testing procedures of the ASR. We will begin by
discussing the testing environment. We will continue by discussing the testing of the
individual hardware components. Then we will discuss the testing procedure of the
testing of integrated hardware. Next we will discuss our methods for testing the
individual software components. Then we will discuss the software integration testing.

9.1 Hardware Testing

This section includes the testing procedures for the individual mechanical and electrical
hardware components as well as the fully integrated system hardware system.

9.1.1 Environment

The testing environment will consist of the team members’ homes as well as the senior
design lab. The senior design lab will be used for testing the electrical components of
the ASR due to the available equipment. The other subsystems can be tested at in the
individual homes. The software and mechanical components do not require any special
special equipment to be tested properly.

9.1.2 Chassis

This section contains the hardware test for the chassis.

Test Name Strength Test

Objective To ensure the chassis will support the weight of the electronics.
Supplies 1. Constructed VEX Medium Chassis

2. Lexan (for electronics)

3. 10Ib weight

Preparation | Place the chassis on the ground with the lexan facing up.

Procedure 1. Place weight in the center of the first lexan sheet

2. Wait to see if it breaks or bends and touches the ground

3. Place the weight in the center of the second lexan sheet

4. Wait to see if it breaks or bends and touches the ground
Expected The weight simulates the electronics that will be utilized on the
Result chassis. The lexan should be able to support the weight without

bending too much or breaking entirely. The electronics should not
weigh more than 10 Ibs so this should be a good test.

82

9.1.3 Wheels

This section contains the hardware test for the wheels.

Test name Spin Test
Objective To ensure that the small wheels spin properly
Supplies Omni Wheels
Preparation | N/A
Procedure 1. Pick up wheel
2. Spin each of the small wheels by hand to ensure that they
move
3. Repeat with the other omni wheels
Expected Each individual small wheel should spin freely. This ensures that the
Result omni wheels are not damaged.

9.1.4 Power Distribution

This section contains the hardware test for the power distribution of the PCB.

Test Name Power Test
Objective To ensure that the power distribution components of the PCB output
5V and 12V.
Supplies 1. PCB with power regulation circuitry
2. Battery
3. Multimeter

Preparation

. Charge the battery before testing.

Procedure 1. Connect the battery to the PCB
2. Use multimeter to measure output of the motor voltage
regulator.
3. Use multimeter to measure output of the microcontroller,
microcomputer, etc. voltage regulator
Expected The output of the motor voltage regulator is 7.2 V. The output of the
Result microcontroller, microcomputer, etc. voltage regulator is 5 V.

83

9.1.5 Sensors

This section contains the hardware test for the Sensors.

Test Name

Sensor test

Objective

To ensure that the bumper switch, ultrasonic distance sensor, and
Microsoft Kinect are working properly.

Supplies

abhwp=

4 bumper switches

2 ultrasonic distance sensors
Arduino Uno

Computer

Arduino IDE

Preparation

S

Connect sensors to the Arduino Uno.
Connect Arduino Uno to to computer.
Start Arduino IDE and load Ping sensor example code.
Open a second window and load Button example code.

Procedure

—_—

w N

Load Ping sensor code to Arduino UNO.

. Open Serial monitor.

Place hand in front of ultrasonic sensor and check results in
serial monitor.

4. Repeat for 50 cm intervals up to 4 m.
5.
6. Press Bumper switch and check serial monitor for results.

Load Button example code.

Expected
Result

For the ultrasonic sensor test, the serial monitor should display the
distance that the hand is blocking sensor. For the Bumper switch test,
the serial monitor should display that a button is pressed when the
bumper is pressed, and the button is not pressed when the bumper is
not pressed.

84

9.1.6 Microcontroller

This section contains the hardware test for the microcontroller.

Test Name | Microcontroller Test
Objective To see if the microcontroller is working and can have a program
loaded onto it.
Supplies 1. ATmega328P
2. Breadboard
3. Jumper Wires
4. Power Supply
5. FTDI programmer
6. USB cable
7. Computer
Preparation 1. Setup ATmega328P on the included breadboard.
2. Plug jumper wires for ground and VCC and connect to power
supply.
3. Plug in jumper wires to the Rx and TX wires on the Arduino.
4. Connect those wires to the Tx and Rx of the FTDI programmer.
5. Connect jumper wires to VCC and ground on the FTDI
programmer to the power supply
6. Connect FTDI programmer to USB cable.
7. Connect that USB cable to the computer.
8. Open Arduino IDE
9. Load Hello World sketch.
Procedure 1. Turn on power supply and setitto 5V DC.
2. Load sketch to the ATmega328P
Expected In the serial monitor on the computer, “Hello World” will be displayed.
Result

85

9.1.7 Server Laptop

This section contains the hardware test for the server laptop.

Test Name | Server Laptop Test
Objective To check to see if the laptop on the ASR is in working condition.
Supplies 1. Server Laptop

2. Power cable
Preparation 1. Remove the laptop from the ASR

2. Plug in the power cable to the laptop
Procedure 1. Turn on laptop.

2. Let laptop boot.

3. Log into the laptop.
Expected The laptop will boot to the Ubuntu desktop.
Result

86

9.1.8 Hardware Integration Testing

This section contains the hardware integration test.

Test Name Hardware Integration Test
Objective Test all of the hardware components together.
Supplies . PCB with power regulation circuitry

1

2. Battery

3. 4 bumper switches

4. 2 ultrasonic distance sensors
5.
6
7
8
9
1

ATmega328P

. Breadboard
. Jumper Wires
. FTDI programmer

USB cable

0.Server Laptop

Preparation

1.

2.

Use the preparation and procedure from the Power Distribution
Test.

Use the preparation from the Microcontroller Test, but instead
of using a power supply, use the Power Distribution circuit's 5 V
output as the power supply.

Use the preparation from the Sensor Test and plug them into
the same pins on the ATmega328P instead of the Arduino Uno.
Use the preparation from the Microcomputer Test, but instead
of using the USB charger as a power supply, use the Power
Distribution circuit's 5 V output as the power supply.

Procedure

aobrwbd~

Turn on monitor.

Plug in the battery to the Power Distribution test circuit.
Let laptop boot.

At the Ubuntu Desktop, start the Arduino IDE.

Do the Sensor Test Procedure.

Expected
Result

The laptop will boot to Ubuntu Desktop. Once Sensor Test procedure
is completed, the Arduino serial monitor will show the results from the
sensor tests.

87

9.2 Software Testing

Our software system is built up of smaller subsystems with known inputs and outputs,
states, and use cases. Because of this, the following unit tests will be written in terms of
those subsystems, which, at this prototyping stage, are still slightly high level
representations. Our unit tests will be no different. Being that this a robotics project,
hardware and software are very highly integrated in terms of functionality. Because of
this, there may be some overlap between hardware testing and software testing, but we
will do our best to separate the two areas. For ease of testing and to reduce the burden
of how integrated our system is, our tests will be executed in a special testing mode
which will output to our console as well as display any relevant material directly, rather
than communicating it to one of the other subsystems.

9.2.1 Environment

Our testing environment will simply be whatever workstations our team members have
for personal use. Software development is portable so there is no need for a restricted
lab area. The server laptop will be running Ubuntu linux, must have adequate
processing power for development and testing, and internet access. The server laptop
is responsible for running all of the ASR’s software systems. We will utilize GitHub for
source control, keeping our repository on GitHub’s servers to eliminate the possibility of
losing code through hard drive failures or other unexpected issues. This will also allow
us to easily manage conflicts and collisions in our code, and always have the most up to
date version of the project for testing. Being that we are processing sensor data,
whoever is currently performing tests must have access to the relevant sensors. We
won’t have multiple sensors of the same type, so these will have to be traded among
the members of the group when necessary.

88

9.2.2 Terminal Application

This section contains the software tests for the terminal application.

Test Name | User Input and Menu Transition

Objective Verify that the application is receiving user input, and that the correct
menus and options are displayed for the selections that the user
makes.

Supplies 1. Server Laptop

Preparation

1. Turn on laptop
2. ASR software is installed

Procedure 1. Open the application
2. Make a selection in one of the menus
Expected The correct menu state is transitioned to for the selection you have
Result made.
Test Name | Camera Feed
Objective Verify that the camera feed is being displayed in the terminal
application
Supplies 1. Server Laptop
2. Kinect
Preparation 1. Laptop is set up with kinect
2. ASR software is installed
Procedure 1. Open the application
2. View the camera feed window
3. Move camera around
Expected Feed from the camera is visible to the user through the user
Result application.

89

Test Name | Map Display
Objective Verify that the map is displayed during the mapping state.
Supplies 1. Server Laptop
2. Kinect
Preparation 1. Laptop is set up with Kinect
2. ASR software is installed
Procedure 1. Open the application
2. Select autonomous or manual mapping mode
Expected Mapping view is displayed in user application, and map is updated as
Result the kinect sensor moves

9.2.3 State Manager

This section contains the software tests for the state manager.

Test Name | State Manager
Objective Verify that the state manager changes robot state given the correct
boolean state flags.
Supplies 1. Server Laptop
Preparation 1. Laptop is on
2. ASR software is installed
Procedure 1. Open application terminal
2. Type one of the ASR’s modes into the application terminal
3. Relevant subsystems should engage
4. Relevant Ul elements should be displayed
5. Current mode should be declared in the application terminal
Expected The state manager subsystem selects the correct state given
Result corresponding state mode given by the user. Nonexistent states return

an error warning.

90

9.2.4 Autonomous Navigation

This section contains the software tests for the autonomous modes of the ASR.

Test Name

Autonomous Mapping

Objective

Verify the state behavior of the autonomous mapping subsystem.

Supplies

pON~

Server Laptop
Sonar sensor
Tactile sensor
Kinect sensor

Preparation

wn =~

Laptop is on
Sensors are set up
ASR software is installed

Procedure

Noahkowh=

Open application terminal

Execute 'map -a’

Allow it to run for a few moments

Place an object in front of the sonar sensor

Allow it to run for a few more moments

Touch the tactile sensors

Observe console and current map output at all times

Expected
Result

State machine state will be displayed in console. Begins with
alternation between wander state and locomotion. When sonar is
blocked, switches to stop state, locomotion, obstacle avoidance,
locomotion, and finally wander again. When tactile sensor is touched,
switches to stop state, locomotion, obstacle avoidance, locomotion,
and finally wander again. Meanwhile the map is generated the whole

time.

91

Test Name

Autonomous Patrol

Objective

Verify the state behavior of the autonomous mapping subsystem.

Supplies

Server Laptop
Sonar sensor
Tactile sensor
Kinect sensor

pON =

Preparation

Laptop is on

Sensors are set up

ASR software is installed
Internet connection

o=

Procedure

Open application terminal

Execute patrol -a’

Allow it to run for a few moments

Place an object in front of the sonar sensor

Allow it to run for a few more moments

Touch the tactile sensors

Observe console data and verify distances

After time interval passes, wave hand in front of camera

N~ LON =

Expected
Result

State machine state will be displayed in console. Begins with
alternation between wander state and locomotion. When sonar is
blocked, switches to stop state, locomotion, obstacle avoidance,
locomotion, and finally wander again. When tactile sensor is touched,
switches to stop state, locomotion, obstacle avoidance, locomotion,
and finally wander again. After the time interval has passed, the ASR

detects motion and any registered motion is sent to the user's email.

92

9.2.5 Manual Navigation

This section contains the software tests for the manual modes of the ASR.

N =

Test Name | Manual Mapping
Objective Verify the state behavior of the manual mapping subsystem.
Supplies Server Laptop

Kinect sensor

N =

Preparation 1. Laptop is on
2. Sensors are set up
3. ASR software is installed
Procedure 1. Open application terminal
2. Execute 'map -m’
3. Allow it to run for a few moments
4. Press WASD to move
5. Observe console and current map output at all times
Expected Map is generated as Kinect sensor is moved
Result
Test Name | Manual Patrol
Objective Verify the state behavior of the manual patrol subsystem.
Supplies Server Laptop

Kinect sensor

Preparation

wn =

Laptop is on
Sensors are set up
ASR software is installed

Procedure

Ok wh =

Open application terminal

Execute patrol -m’

Allow it to run for a few moments

Press WASD to move

Execute ‘capture’

Observe console and camera feed the whole time

Expected
Result

Movement commands are properly displayed and captured images are
present in user’'s email account

93

9.2.6 Software Integration Testing

This section contains the software integration tests for the ASR.

Test Name

Robot State Control

Objective

Verify that a selection made in the terminal application manifests the
correct state in the robot.

Supplies

abhwN =

Client Laptop
Server Laptop
Sonar sensors
Tactile sensors
Kinect sensor

Preparation

abwn =

Computers are on

VNC viewer and server are properly configured
Internet connection is available

ASR software is installed

Sensors are set up

Procedure 1. Open application terminal

2. Repeat previous unit tests

3. Observe output and behavior
Expected Expected result of each unit test is the same.
Result

10. Systems Operation

This section describes how to use the ASR from an end-user or technician perspective.
First we will discuss how to setup the hardware systems of the ASR, then the software
systems. Finally, we will discuss issues a user might run into and how to solve them.

10.1 Hardware Setup

aorwbd~

Connect battery to battery charger.

Plug in battery charger.

When battery is finished charging, disconnect from charger.

Connect battery to ASR’s power connectors.

Plug in FTDI programmer to USB cable and to the programmer pins on the

Microcontroller board.

o

Plug in other end to the computer

94

7.

8.

9.

Put Microsoft Kinect onto robot and attach to the velcro strips. Secure with zip
ties.

Plug Kinect into the Kinect data/power cable.

Plug Kinect data/power cable’s USB end into computer.

10.Turn on robot by flipping On/Off switch to ON.

10.2 Software Setup

-_—

s

8.

. Turn on your client laptop

Use a VNC viewer of your choice to remote desktop into the ASR’s server laptop.
a. Ex) TightVNCViewer
Once connected to the ASR, the ASR’s desktop should be visible.
Open up a terminal and execute the shell command ‘./asr.sh’.
A new terminal will open and text will roll across it indicating that the ASR’s
various hardware drivers and software systems have launched successfully.
a. The State Manager terminal and Manual Navigation terminal should now
be visible
b. RVIZ should launch with the ASR’s configuration. A map, and two image
frames will be visible. the top image frame is is the feed from the webcam.
The bottom image frame should display ‘No Image’ this is where the
motion detection images will be displayed when that system is active.
Close your original terminal
The state manager will display all possible commands and explain their use.

a. map -a - Autonomous Mapping Mode
b. map-m - Manual Mapping Mode

Cc. map -r - Reset current map

d. map -s - Save current map

e. patrol -a - Autonomous Patrol Mode

f. patrol -m - Manual Patrol Mode

g. standby - Standby Mode

h. report_alerts - Toggle reporting of alerts

i. shutdown - Shut system down

Type one of these commands into the terminal to engage that mode or function.

95

10.3 Troubleshooting

In this section we will list some solutions to some common issues that may arise.

1. ASRis not moving.

a.
b.
c.

Check to see that battery is charged.
Check to see that the battery is connected to the ASR.
Check to see if the power switch is set to “On”.

2. One or more of the motors are the ASR are not moving.

a.
b.

Check the connection to the motor controller.
Check the motor controller's power connection to the terminal block.

3. One or more of the motors are moving in the wrong direction.

a.

Reverse the connection of that motor to the motor controller.

4. Kinect is not found at launch

a.
b.

Unplug and plug back in from USB, wait for several seconds
If it’s still not found, restart the system and check connections

5. Arduino is not found at launch

a.

Shut down system

b. Unplug Arduino from USB and plug back in
C.
d
e

Restart system

. Repeat at least two more times if this doesn’t work.
. If the drivers still don’t load, check the power and USB connections as well

as the battery level

6. Alert reporter is caught in a loop of restarting and shutting down

a.
b.

C.

You probably don’t have an internet connection

If a connection is not available, go to the application terminal and execute
‘report_alerts False’

This will save images locally instead of trying to make a connection to
GMail servers.

7. Most software bugs can be resolved by simply restarting the application.

11. Administrative

The following sections detail the administrative aspects of our project. First we establish
a timeline of our goals, marked with specific milestones to accomplish. Then we discuss

our budget.

96

11.1 Project Milestones

Below is a rough estimate of our project milestones. All dates are subject to change
depending on revaluation of goals. We would like to spend the majority of our time
researching this Spring, and prototyping this Fall, while still allowing adequate time for
writing our reports and testing. We decided to begin our reports while in the process of
designing and testing because they are the last task for each respective season. This
should maximize our available information while also distributing our workload, allowing
us a better chance to finish the project on time. Table 11.2-1 below lllustrates our

Project Milestones

Task Begin Date Deadline Duration
Brainstorm Ideas 1/12/2015 1/26/2015 14 Days
Define Project 1/26/2015 2/2/2015 7 Days
Research 2/2/2015 3/14/2015 40 Days
Design 3/4/2015 4/3/2015 20 Days
Finish Report 1 3/4/2015 4/30/2015 57 Days
Prototyping 5/18/2015 7/7/12015 50 Days
Testing 7/7/12015 8/1/2015 25 Days
Finish Report 2 7/7/12015 8/6/2015 30 Days

Table 11.2-1 lllustrates Project Milestones

11.2 Project Budget

Our project has received sponsorship from Boeing.
$580.11 from Boeing to cover the cost of parts. This is less than we requested. Our
initial budget estimate was $901.77, almost twice than what we were approved. We
have updated our budget, as seen below in Table 10.1, with the parts that we have
selected after researching them.

We have been approved for

97

Part Amt. | Unit Price Total
Ultrasonic Module HC-SR04 Distance Sensor 2 $8.99 (for two) $8.99
VEX Bumper Switch 4 $12.99 (for two) $25.98
Microsoft Kinect 1 $20.00 (Used) $20.00(Used)
Vex Motor 393 Motor Encoders 4 $29.99 (for two) $59.98
ATmega328P 1 $3.70 $3.70
PCB 1 $21.75 (for three) | $21.75
Vex 393 Motors and Motor Controller 29 5 $24.98 $124.90
3.25 inch Vex Wheels 4 $19.99 (for four) | $19.99
Robot Chassis - Vex medium chassis 1 $21.35 $21.35
Tenergy 7.2V 5000mAh NiMH battery 1 ?M?g).oo (setof $89.00
Tenergy Battery Charger 1 $22.99 $22.99
Power Regulators and LED circuit components N/A N/A $20.00
Grand Total $437.63

Table 10.1: Parts and Budget

We have been able to reduce our budget to $437.63, by using parts that we owned. We
funded most of the project ourselves so that we could keep the ASR intact.

98

12. Personnel

Our team consists of three members: Brian Dodge, Nicholas Musco, and Trevor
Roman.

Brian researched and designed the circuit board and power
distribution system for the ASR. He also helped design the
ASR’s reactive system. Brian is currently a senior at the
University of Central Florida, and will be receiving his Bachelor’s
of Science in Electrical Engineering in August of 2015. He hopes
to pursue a career in electrical engineering and/or robotics, He is
a member of Tau Beta Pi and Eta Kappa Nu.

Nicholas Musco researched, designed, and constructed the
mechanical system, and propulsion system for the ASR. He also
designed the hardware and software for the status LEDs. Nick is
currently a senior at the University of Central Florida, and will be
receiving his Bachelor of Science in Electrical Engineering in
August of 2015. Nick will pursue a career in Electrical
Engineering and hopes to focus on robotics, theme parks, or
anything space related.

Trevor Roman researched, designed, and programmed the
ASR's software systems. Trevor is currently a senior at the
University of Central Florida, and will be receiving his Bachelor of
Science in Computer Engineering in August of 2015. Trevor will
pursue a career in software engineering and hopes to focus on
robotics, computer vision, Al, or other interesting software.

99

Appendices
Appendix A - Copyright Permissions

Fig.3.1.1 T-100 Watchdog: Permission Obtained

Re: Senior Design Copyright Permission

0 DELETE €=REPLY =>FORWARD aee

ismaeljrivera <ismaeljrivera@knights.ucf.edu> Markas (inread
Tue 4/28/2015 7:21 PM

To: M Erian Dodge;

Go right ahead.

Good luck with project.

Ismael

On Apr 28, 2015 3:26 PM, Brian Dodge <bdodge@knights.ucf.edu> wrote:

Hello,

My name is Brian and [am a student at the University of Central Florida. I am currently working on a robotics project in my senior
design class. On behalf of my team I requesting permission to use an image from your Senior Design Project, T-100 Watchdog. This
project is for educational use and not for commercial use.

Thank you for your help!

Brian Dodge

Fig.3.1.2: KnightCop: Permission Obtianed

Mark as unread

To: M Brian Dodge:

Hello Brian
Yes, you have both my permission and best wishes for you and your group members.
Wesley Edmund

On Tue, Apr 28, 2015 at 4:52 PM, Brian Dodge <bdodge@knights.ucf.edu> wrote:

I'm sorry, | mistakenly stated your project was Heatseekr, but meant KnightCop. | apologize for the mistake.

From: Brian Dodge

Sent: Tuesday, April 28, 2015 4:38 PM

To: Wesley.B.Edmund@gmail.com

Subject: Senior Design Copyright Permission
Hello,

My name is Brian and Iam a student at the University of Central Florida. I am currently working on a robotics project in my senior design class. On behalf of my team I requesting permission to use an image from your Senior
Design project, Heatseekr.. This project is for educational use and not for commercial use. We will reference your work.

Thank you for your help!

Brian Dodge

Appendix-1

Fig. 3.1.5: Heatseekr: (Permission Pending)

Senior Design Copyright Permission

W DELETE £=REPLY €E=REPLY ALL =3 FORWARD T

Brian DDdge Mark as unread
T 156 P

To: [ferik:

Hello,

My name is Brian and I am a student at the University of Central Flonida. I am currently working on a robotics project in my senior

design class. On behalf of my team I requesting permission to use an image from your Senior Design project, Heatseekr.. This project

is for educational use and not for commercial use. We will reference your work,

Thank you for your help!

Brian Dodge

Fig. 3.3.1: RGBDSLAM 3D Scan Output (Left), Camera Image (Center), Camera Image
with Keypoints Visible (Right)
Permission Pending

Request to use images on your website v

me to hess

Hello Mr./Dr. Hess,

My name is Trevor Roman. I'm a student at the University of Central Florida working on a group robotics project for
academic and research purposes. While researching SLAM implementations | found RGBDSLAM and ended up discussing
it in our research paper. With your permission I'd like to use a few of the images on your website in my paper to
demonstrate the differences between different mapping approaches.

I've attached a screen capture of the images I'm interested in. Proper credit will be given should you say yes. Thank you for
your time and ceonsideration.

Appendix-2

Fig. 3.3.2: Examples of GMapping Final Map Outputs
Reprinted with Permission from Cyril Stachniss and Wolfram Burgard

Request to use your images from OpenSLAM

6 ”
Hello, My name is Trevor Roman. I'm a student at the University of Central Florida w
e Cyrill Stachniss
Greatl Use whatever helps you. If you want, | can also provide vide
e‘ Wolfram Burgard to me, Giorgio, Cyrill 3:23 AM
Trevor,

Wonderful, thanks for your interest in our work.

Appendix-3

Fig. 3.3.3 Examples of HectorSLAM Intermediate and Final Map Outputs
Reprinted with Permission from Stefan Kohlbrecher

Reguestto use your images

@ me Apr 28
e Stefan Kohlbrecher io me 12:50 AM

Hi Trever,

Yes, of course you can do that :)

regards,
Stefan

Sent from my tablet

Stefan Kohlbrecher
kohlbrec herf@sim.tu-darmstadt de

Simulation, Systems Optimizatien and Robotics Group

Phone: ++49 (0) 6151-16-4722
Fax: ++49 (0) 5151-16-6643

Technische Universitaet Darmstadt
Hochschulstr. 10 (52 02/D206)
D-54289 Darmstadt, Germany

http:/fwww . sim tu-darmstadt de

Figure 3.3.4: Examples of BreezySLAM Intermediate Mapping Outputs
Reprinted with Permission from Dr. Simon Levy

Request to use your images

@ me
‘ @ Simon Levy

Appendix-4

Fig.3.4.1: Microsoft Kinect

Permission Obtained

Permission from Microsoft Developer Services Agreement:
https://msdn.microsoft.com/en-us/cc300389

Below is a image of the pertinent section

3. Microsoft Content.

All Microsoft Content is the copynghted work of Microsoft or its suppliers, and is governed by the terms of the license agreement that accompanies or is included with the
Microseft Content. If the Microsoft Content does not include a license agreement, then you may make a reasonable number of copies of the Microsoft Content for your
internal use in designing, developing, and testing your software, products and services that is made available to you on the Documentation Portals without 2 license
agreement. You must preserve the copyright notice in all copies of the Microsoft Content and ensure that both the copyright notice and this permission notice appear in
those copies, Accredited educational institutions, such as K-12 schools, universities, and private or public colleges may download and reproduce Microseft Content for
distribution in the classroom for educational purposes.

Fig. 3.4.2: Graphical example of a LIDAR point cloud
Permission Obtained

Fig. 3.4.3: Sonar

Fig. 3.13.1: Reactive Behavior Model

Permission Obtained

Re: Senior Design Copyright Permission
Tl DELETE ~ €=REPLY E=REPLY ALL =DFORWARD sue

gitars@gmail.com on behalf of Gita Sukthankar <gitars@eecs.ucf.edu> Nipeksmimmmnd

Wed 4/29/2015 837 AM

Inbaox

To: M Brian Dodge;

Hi Brian,
That should be fine. Most of the class images came from various textbooks.
-Gita

On Tue, Apr 28, 2015 at 5:16 PM, Brian Dodge <bdodge@knights.ucf.edu> wrote:
Hello Dr. Gita,

My name is Brian and [am a student at the University of Central Florida. I am currently in your Robotic Systems class and was enrolled
in your Intro. to Robotics class last semester. Tam currently working on a robotics project in my senior design class. On behalf of my
team, I requesting permission to use a couple of images from your Intro to Robotics lectures in our Senior Design paper. Specifically
from Lecture 12: Perception and Sensors. This project is for educational use and not for commercial use.

Thank you for your help!

Brian Dodge

Appendix-5

https://msdn.microsoft.com/en-us/cc300389

Fig. 3.4.4-2: SparkFun RedBot with limit switches. Permission Obtained

“Photos: Please feel free to use our product photos in your project documentation or
reports. If you would like to use a photo for a commercial venture, please contact us first
at partnerships@sparkfun.com. You can also find SparkFun photos on our Flickr page.”

Figure 3.5.5a: Table of Specs for Various Microprocessors -We Only Consider the First
Three

Figure 3.5.b-e:Microprocessor Benchmarks

Reprinted with Permission from David Hunt

o

6 Dave Hunt to me
Sure Trevor. Feel free to use them for your research.

Regards,

O

Figure 3.6-1:ATmega328 (with Arduino bootloader) Pinout. Permission Obtained
Figure 3.6-2: ATmega2560 Pinout. Permission Obtained

Permission obtained from:

http://www.arduino.cc/en/Main/CopyrightNotice

Copyright Notice

Editorial contents of the arduino.cc website, such as texts and photos, are released as Creative Commons Attribution

ShareAlike 3.0.

This means you can use them on your own derived works, in part or completely, as long as you also adopt the same

license. You find the complete text of the license here
Arduino brand, Arduino logo, design of the website and design of the boards are copyright of Arduino LLC and cannot be

used without formal permission. For informations about the right way to use them, please write to

trademark@arduino.cc

Appendix-6

https://www.flickr.com/sparkfun
http://www.arduino.cc/en/Main/CopyrightNotice

Fig 3.13.1.1: Example of How Sound Waves Bounce Back to the Sonar Sensor
Fig 3.13.1.2: Example of Tactile Sensor Circuit
Permission Pending

SoR - Request to use images from your site in a research paper

@ me to robots@s
Hello,

My name is Trevor Roman. I'm a student at the University of Central Florida working on a group robetics project for
academic and research purposes. While researching sonar and tactile sensors | found Society of Robots and ended up
finding some images | liked on your website. With your permission I'd like to use these images in our research paper

I've attached a screen capture of the images I'm interested in. Proper credit will be given should you say yes. Thank you for
your time and consideration.

Fig 3.13.2.2a: Market Share for Browsers - 3/15/2015
Fig 3.13.2.2b: Market Share for Mobile Operating Systems
Permission Pending

Request to use images of market share data from your site

@ me to sales, partner-support, services Apr 28
Helle,

| wasn't sure of the right email to contact so | apolegize for spamming all of them. My name is Trever Reman. I'm a student
at the University of Central Florida working on a group robetics project for academic and research purposes. While

researc hing market share information | found netmarketshare com. With your permission I'd like to use images of the pie
charts generated on your website in my discussien of browser, and mobile market shares.

I've attached a screen capture of the images I'm interested in. Proper credit will be given should you say yes. Thank you for
your time and consideration.

Figure 3.13.2.2c: Market Share of Android Versions
Permission Granted via Creative Commons Attribution

Except as noted, this content is licensed under Creative Commans Attribution 2.5. For details and restrictions, see the Coment License

About Android | Legal | Support

Appendix-7

Figure 3.13.2.2d: Market Share of iOS Versions
Permission Pending

A copyright is a property right in an original work of authorship. Copyright is recognized in most countries of the world
by statutory copyright laws. Learn more about copyright.

To help us process your request, please complete the following fields.

First Name

Trevor

Last Name

Roman

Email Address

troman360@gmail.com

Company Name

University of Central Florida

Title/Position

Undergraduate

Phone Number
Fax

Describe your Request

While researching market share information | found a chart = =
showing the percentage of devices on each version of i0S
located at (https://developer.apple.com/support/appstore/).
With your permission I'd like to use it in my paper's

discussion of O5 market shares.

Proper credit will be given should you say yes. Thank you for

your time and consideration. o

Appendix-8

Fig. 3.15.2: Circuit with a 5V output. Permission Obtained
Permission from Texas Instruments’ Terms of Use webpage:
http://www.ti.com/corp/docs/legal/termsofuse.shtml

Use Restrictions and Termination of Access to Tl Services

TI Services on this site are protected by copyright laws, international copyright treaties, and other intellectual property laws and
treaties. Except as stated herein, no Tl Service, nor any part of any Tl Service, may be reproduced, duplicated, mirrored, modified,
displayed, distributed, copied, sold, resold, visited, or otherwise exploited for any purpose without express prior written consent
of Tl

You agree not to use Tl Services in a manner that viclates any applicable law or regulation; to stalk, harass, or harm another
individual; to impersonate any person or entity or otherwise misrepresent your affiliation with a person or entity: to interfere
with or disrupt Tl Services or servers or networks connected to Tl Services; use any data mining, robots, or similar data gathering
or extraction methods in connection with Tl Services; frame or utilize framing techniques to enclose any trademark, logo,
proprietary, or other information (including datasheets, images, text, page layout, or form); and attempt to gain unauthorized
access to any portion of Tl Services or any other accounts, computer systems, or networks connected to Tl Services, whether
through hacking, password mining, or any other means.

Subject to any Service Terms that may apply. Tl grants you permission to download, reproduce, display, and distribute Ti Services
on this site solely for non-commercial or personal use, provided that you do not medify such Tl Services, and provided further
that you retain all copyright and proprietary notices as they appear in such Tl Services.

Tl further grants to K-12 educational institutions, universities, and community colleges permission to download, reproduce,
display, and distribute T| Services on this site solely for use in the dlassroom, provided that such institutions identify Tl as the
source of Tl Services and include the following credit line: "Courtesy of Texas Instruments.” Unauthorized use of any Tl Service is
expressly prohibited by law, and may result in civil and criminal penalties. This grant of permission terminates if you breach any
provision in these Terms of Use or Service Terms. Upon termination, you agree to destroy any materials relating to Tl Services
obtained from this site.

Tl reserves the right, in its sole discretion, to terminate, suspend, or modify your registration with, or access to, all or any part of
TI Services, without notice, at any time and for any reason.

VEX Robotics: Permission Granted

Figure 3.10.3-2 Mecanum Drive, Figure 3.10.3-3 Omni Wheel Drive, Figure 3.10.3-3 “H”
Drive System

Figure 3.11.1-1 Traction Wheel

Figure 3.11.3-1 VEX Mecanum Wheel

Figure 3.11.4-1 VEX Omni Wheel

Figure 3.16-2 Chassis kit medium

Figure 6.1.3-1: VEX Omni Wheels

Figure 6.1.4-1 VEX 2 Wire motor 393

Grant Cox grant_cox@vex.com via innovationfirst.com 3:47 PM (1 hour ago) LN W
fo Katie, me =
Hi Nick -

Thank you for contacting VEX Robotics regarding permission to use product images in your senior design project. VEX digital
resources are freely available for private or promotional use, most commonly applied to competition team recruiting or apparel.
A senior design project (that is not being used for commercial sale) definitely falls under this allowance.

Out of curiosity, would you be willing to share more details about the project itself? We are always interested in hearing about
unique ways that students utilize VEX components!

- Grant

Grant J. Cox
Marketing Manager
VEX Robotics, Inc.
Office - (903) 453-0874

On Mon, Apr 27, 2015 at 8:00 AM, VEX Sales <sales@vexrobotics. com> wrote:

Appendix-9

http://www.ti.com/corp/docs/legal/termsofuse.shtml

SparkFun: Permission Granted

Figure 3.16-1 12” Aluminum Channel

“Photos: Please feel free to use our product photos in your project documentation or
reports. If you would like to use a photo for a commercial venture, please contact us first
at partnerships@sparkfun.com. You can also find SparkFun photos on our Flickr page.”

AndyMark: Permission Granted

Figure 3.10.3-1 Swerve Module

“Copyright:The entire content included in this site, including but not limited to text,
graphics or code is copyrighted as a collective work under the United States and other
copyright laws, and is the property of AndyMark, Inc.. The collective work includes
works that are licensed to AndyMark, Inc.. Copyright 2003, AndyMark, Inc. ALL RIGHTS
RESERVED. Permission is granted to electronically copy and print hard copy portions
of this site for the sole purpose of placing an order with AndyMark, Inc. or purchasing
AndyMark, Inc. products. You may display and, subject to any expressly stated
restrictions or limitations relating to specific material, download or print portions of the
material from the different areas of the site solely for your own non-commercial use, or
to place an order with AndyMark, Inc. or to purchase AndyMark, Inc. products. Any
other use, including but not limited to the reproduction, distribution, display or
transmission of the content of this site is strictly prohibited, unless authorized by
AndyMark, Inc.. You further agree not to change or delete any proprietary notices from
materials downloaded from the site.”

Battery University: Permission Pending

Figure 3.14.1-1 Advantages and Limitations of SLA Batteries
Figure 3.14.2-1 Advantages and Limitations of Lithium Batteries
Figure 3.14.3-1 Advantages and Disadvantages of NiCd Batteries
Figure 3.14.4-1 Advantages and Disadvantages of NiMH Batteries

Copyright Permission for UCF Senior Design

n |
5]

Nicholas Musco <nicholasmusco@gmail.com> Apr 26 (2 days ago) LY N
to isidor.buchmann |~

Hello,

My name is Nicholas Musco and | am a student at the University of Central Florida. My team and | are currently creating a
battery powered robot for our senior design project. On behalf of my team | am requesting permission to use the information on
various batteries from battervuniversity.com. | was also hoping to get permission to use the advantages and limitations charts
for each battery in the website's articles. This project is meant to be for educational purposes only and we do not plan to utilize
the information for profit. The links to the articles we hope to have permission for are listed below.

Sealed Lead-Acid: http:/batteryuniversity.com/learn/article/lead_based_batteries

Lithium Base batteries:
hitp://batteryuniversity.com/learn/article/lithium_based_batteries

Nickel based batteries: NiCd and NiMH -
http://batteryuniversity.com/learn/article/nickel based batteries

Thank you for your help!

Appendix-10

https://www.flickr.com/sparkfun

Senior Design Copyright Permission Inbox

Nicholas Musco <nicholasmusco@gmail.com>
to 2friends

Hello,

My name is Nick and | am a student at the University of Central Florida. | am currently working on a senior design paper and on
behalf of my team | was hoping to get permission to use an image from powerstream.com. The image is of the "Ultrathin

Rechargeable Lithium Polymer Batteries from PowerStream"

commercial use. The image we would like to use is in the link below.

Battery Image: http://www.powerstream.com/z/Ultrathin1.jpg

Thank you for your help!

Pavel Brovkin <brovchin@powerstream.com>

to me, 2friends

| think it is no problem

Best regards

Pavel Brovkin

Sales Engineer

Lund Instrument Engineering/DBA Powerstream
1163 S. 1680 W. Orem Utah 84858

Robotoid: Permission Granted
Figure 3.10.1-1 Differential Drive Example

Gordon McComb <gmccomb@cox.net>
to me

You have our permission. Thanks for asking.

Gordon McComb
Robotoid.com

X =
1:25 PM (5 hours ago) LN X
". This project is for academic purposes only and is not for
6:56 PM (0 minutes ago) L 2

2:39 PM (11 minutes ago)

At 01:50 PM 4/28/2015 -0400, Nicholas Musco wrote:

>>>>

Hello,A

My name is Nick and | am a student at the University of Central Florida. |
am currently working on a robotics project in my senior design class. On
behalf of my team | requesting permission to use an image from your
website. This project is for educational use and not for commercial use.

The image is shown in the link below.A

Differential Steering:A

<http://www.robotoid.com/my-first-robot/images/differential-steering.png>htt

p://www.robotoid.com/my-first-robot/images/differential-steering.png

Thank you for your help!
-Nicholas Musco

<<

Appendix-11

Ikalogic: Permission Granted
Figure 3.10.2-1 Car Steering

Senior Design Copyright Permission Inbox x &=

Nicholas Musco 2:18 PM (1 hour ago)
Hello, My name is Nick and | am a student at the University of Central Florid...

Ibrahim Kamal <ika@ikalogic.com> 3:18 PM (22 minutes ago) ~ v
to me, contact |~
Hello,

Yes, you may use that picture,

Thank you for asking.

Best regards,

Ibrahim Kamal
C.E.0./P.D.G.
TEL: (+33) 555 358 028

ikalogic.com GSM: (+33) 641 742 484
FAX: (+33) 972 125 830

IKALOGIC S.A.S. - 1 Avenue d'ESTER
87069 Limoges CEDEX FRANCE SIRET# 522 847 250

Appendix-12

Electrical-Knowhow: Permission Granted

Figure 3.12.1 DC Motor Types

Figure 3.12.1.1-1 Brush DC Motor Internals

Figure 3.12.1.1-2 Brush DC Motor Assembly
Figure 3.12.1.1-3 Commutator Operation

Figure 3.12.1.1-4 Permanent Magnet Motor Design
Figure 3.12.1.1-5 Series-Wound Motor Design
Figure 3.12.1.1-6 Servo Motor Design

Figure 3.12.1.2-1 Brushless DC Motor Design
Figure 3.12.1.2-2 BLDC and Brushed DC Comparison
Figure 3.12.2.1-1 AC Motor Types

Figure 3.12.2.2-1 DC Excited Motor

Senior Design Copyright Permisison

a |
|

Nicholas Musco <nicholasmusco@gmail.com> 2:54 PM (0 minutes ago) *~ ;
to ali1973hassan |~

Hello,

My name is Nick and | am a student at the University of Central Florida. |

am currently working on a robotics project in my senior design class. On

behalf of my team | requesting permission to use images from your

website pertaining to the various motor types. We found your site to be incredibly helpful when it came to learning more about
motors. This project is for educational use and not for commercial use.

Thank you for your help!

Tenergy: Permission Granted
Figure 6.2.1-1 Tenergy 5000mAh NiMh Battery
Figure 6.2.2-1 NiMH Battery Charger

Senior Design Copyright Permisison Inbox X =
Nicholas Musco 3:03 PM (8 minutes ago)
Hello, My name is Nick and | am a student at the University of Central Florid...
Tenergy Service <service@tenergy.com> 3:06 PM (5 minutes ago) LY >

tome |~
Dear Nicholas,

Please go ahead use those images. Thank you for choosing Tenergy products.

Appendix-13

Appendix B - Works Cited

[1] J. Buhmann, W. Burgard, A. Cremers, D. Fox, T. Hofmann, F. Schneider, J. Strikos
and S. Thrun, "'The Mobile Robot RHINO', Al Magazine, vol. 16, no. 1, 1995.

[2] Thrun, S.; Bennewitz, M.; Burgard, W.; Cremers, A.B.; Dellaert, F.; Fox, D.; Hahnel,
D.; Rosenberg, C.; Roy, N.; Schulte, J.; Schulz, D., "MINERVA: a second-generation
museum tour-guide robot," Robotics and Automation, 1999. Proceedings. 1999 IEEE
International Conference on, vol.3, no., pp.1999,2005 vol.3, 1999

[3] Mataric, M.J. Behavior-based control: Main properties and implications. In:
Proceedings, IEEE International Conference on Robotics and Automation, Workshop on
Architectures for Intelligent Control Systems, pp. 46-54

[4] ATmel “ATMEL 8-BIT MICROCONTROLLER WITH 4/8/16/32KBYTES IN-SYSTEM
PROGRAMMABLE FLASH” ATmega48A/PA/88A/PA/168A/PA/328/P datasheet, Oct.
2014

[5] Msdn.microsoft.com, 'Kinect for Windows Sensor Components and Specifications',
2015. [Online]. Available: https://msdn.microsoft.com/en-us/library/jj131033.aspx.
[Accessed: 29- Apr- 2015].

[6] Fairchild “3-Terminal 1 A Positive Voltage Regulator,” LM78XX/LM78XXA datasheet,
Sept. 2004

[7]1 Digikey.com, 'Understanding the Advantages and Disadvantages of Linear
Regulators DigiKey', 2015. [Online]. Available:
http://www.digikey.com/en/articles/techzone/2012/may/understanding-the-advantages-a
nd-disadvantages-of-linear-regulators. [Accessed: 29- Apr- 2015].

[8] Texas Instruments, “LM2576/LM2576HV Series SIMPLE SWITCHER® 3A
Step-Down Voltage Regulator ,” LM2756/LM2576HV datasheet, June 1999 [Revised
April 2013]

[9] Zbattery.com, 'Memory Effect - What it is and what you can do about it', 2015.
[Online]. Available: http://www.zbattery.com/Battery-Memory-Effect. [Accessed: 29- Apr-
2015].

[10] Batteryuniversity.com, 'Lead-based Batteries Information — Battery University',
2015. [Online]. Available: http://batteryuniversity.com/learn/article/lead_based_batteries.
[Accessed: 29- Apr- 2015].

[11]B. Steve Degeyter, 'BatteryStuff Articles | Lithium Iron Phosphate Battery FAQ',
Batterystuff.com, 2015. [Online]. Available:
http://www.batterystuff.com/kb/frequently-asked-questions/powersports-batteries-fag/lith
ium-iron-faq.html. [Accessed: 29- Apr- 2015].

Appendix-14

[12] Batteryuniversity.com, 'Nickel-based Batteries Information — Battery University',
2015. [Online]. Available:
http://batteryuniversity.com/learn/article/nickel_based_batteries. [Accessed: 29- Apr-
2015].

[13] Electrical-knowhow.com, 'Classification of Electric Motors ~ Electrical Knowhow',
2015. [Online]. Available:
http://www.electrical-knowhow.com/2012/05/classification-of-electric-motors.html.
[Accessed: 29- Apr- 2015].

Appendix-15

Appendix C - Large Diagrams

ATmega328 Pin Mapping

Arduino function
reset (PCINT14/RESET) PCS[
digital pin 0 (RX) (PCINT16RXD) PDO]2
digital pin 1 (TX) (PCINTY?/TXD) PD1[
digital pin 2 (PCINT18/NTO) PD2]+
digital pin 3 (PWM) (PCINT18/0C2B/NT1) PD3[]s

Arduino function
a1 PCS5 (ADCSSCUPCINT13) analog input 5
z7[] PCA (ADCA/SDA/PCINTIZ) analog input 4
] PC3 (ADCAPCINT11) analog input 3
=7 PC2 (ADC2PCINT1D) analog input 2
2] PC1 (ADC1/PCINTG) analog input 1

digital pin 4 (PCINT20CK/TD) PDA[]e s PCO (ADCOPCINTSE) analog input 0
vCC veooyr 2] GND GND
GND GND[]e #[] AREF analog reference
crystal (PCINTE/XTALVTOSC) PESo =[] AVCC VCC
crystal (PCINTT/IXTAL2TOSC2) PBT W] PBS (SCK/PCINTS) digital pin 13
digital pin 5 (PWM) (PCINT21/0C0B/T1) PDS[C)n w[] PB4 (MISQUPCINTA) digital pin 12

digital pin 6 (PWN) (PCINT22/0COA/AING) POS]2
digital pin 7 (PCINTZM/AINY) PO
digital pin 8 (PCINTO/CLKOACP1) PBO]

Degital Pins 11, 12 & 13 are used by the ICSP header for MISO,
MOSI, SCK connections (Atmega 168 pins 17, 18 & 19). Avoid low-
impedance loads on these pins when using the ICSP header.

Fig.3.6-1: ATmega328 (with Arduino bootloader) Pinout.
(Reprinted with Permission from Arduino.cc)

] PB3 (MOSMOC2A/PCINTS) digital pin 11 (PWHM)
8|7 PB2 (SS/OC1B/PCINTZ) digital pin 10 (PWM)
1111 PB1 (OC1APCINT 1) digital pin 8 (PWM)

Appendix-16

Digital pin 4 (PWM)
Digital pin 0 (RX0)
Digital pin 1 (TX0)

Digital pin 5§ (PWM)
Digital pin 2 (PWM)
Digital pin 3 (PWM)

vCC
GND
Digital pin 17 (RX2)
Digital pin 16 (TX2)

Digital pin & (PWM)
Digital pin 7 (PWM)
Digital pin 8 (PWM)
Digital pin 8 (PWM)
Digital pin 53 (SS)
Digital pin 52 (SCK)
Digital pin 51 (MOSI)
Digital pin 50 (MISO)
Digital pin 10 (PWM)
Digital pin 11 (PWM)
Digital pin 12 (PWM)

VCC

[Elavee

Analog Reference

Analog pin 0
Analog pin 1
Analog pin 2
Analog pin 3
Analog pin 4
Analog pin 5
Analog pin 6
Analog pin 7
Analog pin 8
Analog pin 9
Analog pin 10
Analog pin 11
Analog pin 12
Analog pin 13
Analog pin 14
Analog pin 15
Digital pin 22

GND
GND
vece

[Z] PF4 (ADC4/TMK)

[Z] PF5 (ADC5TMS)

[Z] PF6 (ADCE/PCINT14)
[E]PF7 (ADCT/PCINT15)
[E] PKO (ADC8/PCINT16)
[E]PK1 (ADCY/PCINT17)
[Z] PK2 (ADC10/PCINT18)
|Z] PK3 (ADC11/PCINT19)
[%] PK4 (ADC12/PCINT20)
[E]PK5 (ADC13/PGINT21)
[Z] PK6 (ADC14/PCINT22)
[E]PK7 (ADC15/PCINT23)
(=] GND

[Z]PFO (ADCD)
[BlPF1 (ADC1)
[B]PF2 (ADC2)
(€] PF3 (ADC3)
[]PAO (ADO)

[] GND
(%] AREF
& vee
[E]PJ7

Digital pin 23

Digital pin 24

[3) pat (AD1)

[3]PA2 (AD2)

PG5 (OCOB) [T

PEO (RXDO/PCINTS) [Z]
PE1 (TXDO) [3]

PE2 (XCKO/AINO) [4]
PE3 (OC3A/AINT) [5]
PE4 (OC3B/INT4) [§]
PES5 (OC3C/INTS) [7]
PE6 (T3/INT6) [2]

PE7 (CLKO/ICP3/INT7) [3]
vee [i]

GND [11]

PHO (RXD2) [12]
PH1(TXD2) [13]

PH2 (xCK2) [1]

PH3 (0c4A) [15]

PH4 (0C4B) [18|

PH5 (0c4c) [17]

PH6 (0C2B) [T

PBO (SS/PCINTO) [19]
PB1 (SCK/PCINT1) [20]
PB2 (MOSIPCINT2) [2]
PB3 (MISO/PCINT3) [22]
PB4 (OC2A/PCINT4) [23]
PB5 (OC1A/PCINTS) [24]
PB6 (OC1B/PCINTS) [25]

%INDEX CORNER

PB7 (OCOA/OCIC/PCINTT)

Digital pin 13 (PWM)

Mega 2560

(3] [eof Tao] [a1] [42] [a=] [sl [4¢]
T L oN S S5 S8 Ny R i e el e
F G TOY Lo <o 09N ST AdmT =
EO S d0 = a o Bw o E E = oo
T8 38> 6o gctoo o Zz5 525065
IO o X T Ty 298 Jx =32
nE 2% 333 332283
g = et F3id CEERER
. 2 85 8w
e a 2o
o
- -
0 o9
w -4
c = R I P R N
B> 6EE T SSsEET gL
4 XX £ £ 2% 2c@82F
a.a.n&&mg_n,__,g;;
E £ 0oy v8 2L R <
2 22 3T Yo 2 c cc ke
O 6o £ EaDb0agaa
aal & = 8 - -
— w ETE S
] s 252 @
=3 =3 a80 8
B 2 8o

Figure 3.6-2: ATmega2560 Pinout

PD6 (T1)

PD7 (T0)

Digital pin 38

PA3 (AD3)

PA4 (AD4)

PAS5 (ADS)

PAB (ADS)

PA7 (AD7)
PG2 (ALE)

PJ6 (PCINT 15)
PJ5 (PCINT14)
PJ4 (PCINT13)
PJ3 (PCINT12)
PJ2 (XCK3/PCINT11

PJO (RXD3/PCINT9)
GND

vee

PC7 (A15)
PC6 (A14)
PC5 (A13)
PC4 (A12)
PC3 (A11)
PC2 (A10)
PC1 (A9)
PCO (A8)
PG1 (RD)
PGO (WR)

(Reprinted with Permission from Arduino.cc)

Digital pin 25

Digital pin 26
Digital pin 27

Digital pin 28
Digital pin 29

Digital pin 39

)

PJ1 (TXD3/PCINT10) Digital pin 14 (TX3)

Digital pin 15 (RX3)
GND
vece
Digital pin 30
Digital pin 31
Digital pin 32
Digital pin 33
Digital pin 34
Digital pin 35
Digital pin 36
Digital pin 37
Digital pin 40
Digital pin 41

Appendix-17

