
DrinkWizard: Automated
Drink Dispensing System

Michael Amaral, John Brushwood, Reginald
Fergerson, and Zachary Kirby

Dept. of Electrical Engineering and Computer
Science, University of Central Florida, Orlando,

Florida, 32816-2450, USA

Abstract — The objective of this project is to design and
build an automated drink dispensing system. This system will
utilize our groups electrical and computer engineering
background to design an Android application that will
control and dispense the user’s choice of adult beverage. The
group chose this idea for our senior design project because
we felt we could design an automated system at a lower price
point than the current solutions available on the market.

Index Terms — Android application, Bluetooth,
breathalyzer, LCD screen, microswitches, peristaltic pump,
and ultrasonic sensor.

I. INTRODUCTION

The American population consumes alcohol, as a whole,
in vast quantities. The consumption of alcohol can survive
through a depression, good times, bad times, and it can
even prosper through a prohibition. Needless to say,
Americans love their alcoholic beverages. We created the
DrinkWizard to capitalize on the love the American
population has for drinking.

To give some insight on how much alcohol the
American population consumes, let’s look at some
statistical data. Thirty percent of the population does not
drink at all, another thirty percent drink, on average, less
than one drink per week. On the other hand, the top ten
percent of American drinkers, about twenty-four million,
consume on average about seventy-four drinks per week,
or a little more than ten drinks per day. [1]

The DrinkWizard is not the first drink-dispensing
machine available on the market. There are already several
systems available to the consumer. Some of these systems
include: Smartender ($25,000), Monsieur ($2,699), and
Bar2D2 ($2,000 & DIY). All of these have a price point
above $2,000 and will be out of the price range of most
Americans.

Our goal with the DrinkWizard is to design the system
at a price point lower than the current competitors. If we

can get the price point down to $1,000 dollars per unit, we
become very competitive in the current market. If we can
capture one percent of the twenty-four million Americans
that heavily drink, we will have 240,000 customers. At a
price point of $1,000 per unit this leaves us at $240
million gross, which is our major driving factor for this
project.

Some of the key features of the DrinkWizard are that
we have a nine-bottle capacity, four mixers and five
alcohols. We will be running an Android based tablet and
phone application to allow the customer to order drinks
while within Bluetooth range. This application will allow
the customer to create custom drinks based on their taste
preference as well as select from over thirty classic drink
choices. A Breathalyzer will be incorporated to aid the
user in determining their intoxication level. The
DrinkWizard team wants the customer to have a
dependable experience where their drink of choice is made
correctly and consistently every time. We have
incorporated peristaltic pumps to achieve this accuracy.
We also do not want wasted product so ultrasonic sensors
are incorporated to determine when a cup is present and
when the cup is full of the correctly made beverage.

All of the funding for the DrinkWizard came from the
four group members. For this reason we wanted to keep
the cost as low as possible. We set a price point of $500 as
our goal that also allows us to achieve a greater net profit
once we bring the DrinkWizard to market.

II. DRINKWIZARD PROFILE

A. Vending Unit Design

The DrinkWizard is a vending unit based off of a soda-
dispensing machine. The vending unit is a rectangular unit
containing two drawers. The bottom drawer will house
space for the battery storage as well as contain storage for
whatever the customer would like to store there. Our
intention was for it to be used to store ice.

B. Liquid Dispensing

 The upper drawer will contain the nine containers, four
of which will contain the mixers and five will contain the
alcohols. The liquid in the containers is fed up through
two different diameters of tubing using nine peristaltic
pumps. We used two different pumps: one set for the
mixers and the other for the alcohols. These nine tubes are
fed to a hockey puck that has nine holes for the tubes,
which is located right above where the cup is to be placed.

C. Sensors

Before dispensing any liquid from the nine containers,
an ultrasonic sensor will determine if a cup is present.
Once a cup is present the liquid will dispense, and a
second ultrasonic sensor will ensure that the cup is not
overfilled.

D. LCD and Microswitches

Also incorporated into the DrinkWizard, is an LCD
display to inform the user when one of the containers is
empty. In order to detect that a container is empty, nine
microswitches will be used. Once the microswitch is
triggered it will turn on an LED beneath the bottle as well
as trigger the LCD display to inform the customer that a
bottle is out of liquid. With power turned on and all nine
containers filled, users will enjoy a delicious adult
beverage made the same way every time.

III. HEART OF THE DRINKWIZARD: MSP430

A. Selection of microcontroller

During the design of this vending unit several
microcontrollers were evaluated before a final decision
was made. The first microcontroller our group reviewed
was the Atmel Atmega16, which is a very popular and
versatile microcontroller. The Atmega16 has 32 I/O pins,
16 KB flash memory, 1024 bytes of ram and a current
draw of 1.1 mA. The Atmega16 meets all the needs of this
project, however this chipset was the most expensive out
of the ones we reviewed. Since the cost is of concern, this
microcontroller was ruled out.

The second microcontroller reviewed was the Microchip
Pic24FJ16MC101. The Pic24 was very similar to the
Atmega16; it has a 16-bit architecture, 15 I/O pins, 1024
bytes ram, 16 KB flash memory, and 1 mA current draw.
An interesting feature of the Pic24, which was considered
for future use, is the chipset feature to support capacitive
touch sensing. The Pic24 also has three comparators on
board and each can have up to four inputs that are a great
advantage for comparing the liquid levels of our
containers. The Pic24 is an ideal microcontroller for this
project and is the cheapest microcontroller reviewed.
However, due to the unfamiliarity of this chipset and the
additional cost of purchasing a programmer this
microcontroller was ruled out.

The last microcontroller reviewed was the
MSP430G2553. The MSP430 has the lowest instruction
count, coming in at 51 instructions. This makes coding up
the microcontroller, for this project, much easier. The
MSP430 has 16 I/O pins, 512 bytes, 16 KB flash memory,
and 230 µA current draw. The familiarity with this
microcontroller is ultimately why it was selected.

B. MSP430

The MSP430 was ultimately chosen for its familiarity,
however the MSP430 has a few drawbacks. One of the
drawbacks of the MSP430 is that the maximum voltage
that the microcontroller can safely handle at an I/O pin is
Vcc to 0.3 V. This becomes a problem due to the fact that
our sensors output a maximum voltage of 5 V. This will
require additional hardware to interface these sensors with
the MSP430. However, the additional hardware required
was as easy as a simple voltage divider circuit. The
voltage divider circuit will reduce the input voltage to the
MSP430 to a manageable voltage level of around 2.5 V.
The second drawback of the MSP430 is that it contains the
least amount of RAM and using a lot of registers could
present a huge problem. Luckily, this negative
characteristic will not be an issue with this project.

The DrinkWizard will use three MSP430s. The first
MSP430(1) is to control the peristaltic pumps and
Bluetooth communication, the second MSP430(2) will
control the microswitches and LCD display, and the third
MSP430(3) will control the ultrasonic sensors. Since all
three of the MSP430s were already owned by each one of
the group members, it will not add to the cost of the
project. If we were to purchase the MSP430, we could
purchase three MSP430s for about the same cost as one
Atmega16.

The first MSP430(1) will use the 16 KB of built in
storage to hold the code for all of the different drink
recipes. The 16 KB is more than enough storage to hold
the recipe list. The MSP430(1) will use nine of the 16 I/O
pins to turn on the individual liquid pumps. The I/O Pins
1.3 to 1.6 are used for the four mixer bottle pumps; the I/O
pins 2.0 to 2.4 are used for the five liquor pumps. Pins 1.1
and 1.2 are used for UART communication. The UART
communication will communicate via Bluetooth with the
Android device. The MSP430(1) will use pins 2.6 and 2.7
for the external sensor circuits. The external sensor circuit
communication is for liquid level sensors and cup sensors.
The pins can be seen below in Figure 1.
Fig. 1. MSP430(1) Pin Assignment

The second MSP430(2) is monitoring the nine
microswitches using nine of the sixteen I/O pins. When
the MSP430(2) receives a 5-volt high signal on one of the

nine I/O pins, indicating that one of the liquid containers is
empty, this will trigger an LED to illuminate under the
bottle that triggered the 5-volt high signal. This 5-volt
high signal will also trigger the second MSP430(2) to tell
the first MSP430(1), the one controlling the pumps, to
stop all pumps and production of the current drink. At the
time of a triggered event the MSP430(2) will also signal
the LCD to display to the user that one of the bottles is
empty.

The third MSP430(3) is monitoring the three ultrasonic
sensors. The MSP430(3) will detect the duration of the
logic high-level on a general purpose I/O pin. The
MSP430(3) will monitor this high-level I/O pin for a
duration of time for the x-axis. If this time interval is
within the tolerance of the DrinkWizard, the MSP430(3)
will then move on to the y-axis and then finally the z-axis.
This process will cycle and continue to cycle until the
MSP430(3) detects the proper tolerance on all three axes.
Once all three axes are within tolerance, the MSP430(3)
will use another general purpose I/O pin to send a high-
level one out to the MSP430(1). This will signal to turn on
the pumps.

The market had other solutions available that could
have incorporated all the functions of the three MSP430s
into one board. However, we chose not to do that for
several reasons. The first reason is the cost; we had three
free MSP430s and there was no need to add additional
cost. The second reason we chose to use three MSP430s is
that we wanted a MSP430 for each of the different
subsystems. Having an individual MSP430 for each
subsystem allowed the troubleshooting of any issues to be
completed in a more efficient manor. Also the use of
multiple microcontrollers allowed us to expand the
capabilities of the DrinkWizard down the road.

IV. LCD, PUMPS, SENSORS, AND SWITCHES

A. LCD

The DrinkWizard uses a New Haven 4x20 LCD serial
display. The LCD is used by the DrinkWizard to inform
the user that all bottle levels are good, “All bottles good”
or it will inform the user that bottle levels are low, “Check
bottle level”.

 The MSP430(2) is monitoring the nine microswitches.
When the MSP430(2) receives a high-level signal, VCC
5+ volts, on one of its I/O pins this will trigger the UART
to the ASCII code for “Check bottle level” to the LCD
controller. If the MSP430(2) does not detect any high-
level signals on the I/O pins then it will signal the LCD
controller to display the “All bottles good” on the screen.

These messages will stay on the screen until an event
occurs. One possible event would be that one of the
bottles is empty, so the screen changes. Once this bottle is
filled up, as long as no other bottles are empty, the screen
will update to “All bottles good”. This updating process
will continue until the wall power cord is disconnected
and the power switch is switched off.

B. Peristaltic Pump

The DrinkWizard uses two different types of peristaltic
pumps. Peristaltic pumps were selected because of their
accuracy. The pumps turn and pinch the tube; the rotation
and amount of liquid released will be the same every time.
The same amount of liquid is dispensed every time, so to
perform our recipes we will determine the length of time
each pump needs to be on to exactly make these recipes.

 The two different peristaltic pumps will both operate at
12 volts. The reason for two different types of pumps is
that one type is for the liquors and the other type is for the
mixers. The main difference between the two types is the
rate at which they pump. The pumps for the mixers can
pump at a rate of 500-mL per minute and the pumps for
the liquors can pump at a rate of 100-mL per minute. The
majority of recipes for mixed drink have more of one
mixer than actual liquor, by having a faster pump on the
mixers we can reduce the time it takes to make the
cocktails.

The first time the pump is used, or after a line is cleared,
the pump will need to be primed. Nine push button
switches will be installed to individually prime each
pump. Pushing the priming button will turn on the pump
which then begins rotating and pinching the tube. This is
in effect the same thing as putting your finger over your
straw and drawing liquid out of a cup. Once primed the
pump will never loose pressure unless there is a hole in
the tubing.

Additional tubing is needed to bring the liquid up from
the bottle storage area to the individual pumps. The tubing
used for the liquor bottles is Tygon E-3603 which is
approved for food and beverage use. The diameter for this
tubing is 3/32 for the inner diameter and the outer
diameter is 5/32. The tubing for the mixer pumps is
Watts’s 3/8 inch clear vinyl tubing. The inner diameter is
¼ inch and 3/8 inch is the outer diameter. The individual
tubing will also run from the pumps to the dispensing
nozzle.

C. Breathalyzer Sensor

The DrinkWizard uses Micro4you Studio MQ-3 ethanol
sensor to monitor users intoxication level. The ethanol
sensor interfaces with the android tablet through the
tablets USB port. Two of the pins receive power and

ground from the tablet, and the other two pins were analog
out and digital out. The VCC is 5+ volts and the analog
out is 0 to 3 volts.

The digital out has an adjustable potentiometer that
would send out a digital high based on the sensitivity of
the sensor. The DrinkWizard takes advantage of the
digital out. The ethanol sensor is calibrated to send out a
digital high when a reading is equivalent to a .08
intoxication level. This calibration is determined by
adjusting the potentiometer as ethanol is blown across the
sensor. A Breathalyzer that can be purchased at any
electronic store was used to confirm our calibration specs
of .08.

Once the android tablet receives the digital high, a
window pops up in the DrinkWizard app to inform the
user that they are at an intoxication level that is not safe to
drive. They are then required to check a box saying they
are going against the recommendations to stop drinking.
After checking the box the responsibility is put on them.

D. Ultrasonic Sensors

The DrinkWizard uses three MicroPic HC-SR04
ultrasonic sensors. All three sensors are used to detect
when a cup is present and one of the sensors is also used
to detect if the cup is full of liquid. There are four pins on
the sensor; two are VCC 5+ volts and ground. The last two
are trigger pulse input and echo pulse output. The
ultrasonic ranging module receives I/O trigger for at least
10 mS on the trigger pulse input. Then the module
automatically sends 8 40 kHz pulses and detects if there is
a pulse signal back.

If there is a received pulse signal, the echo pulse output
terminal goes high for an interval of time. This interval of
time is from when the pulse was sent to the time when the
pulse was received. This interval of time can be used to
determine the distance the object is from the ultrasonic
module. The distance is determined by the time duration
of the high-level times the velocity of sound (340
meters/second) divided by 2. This will give the distance in
meters.

If the distance is within the DrinkWizard’s tolerance for
a cup present, the other sensor will then detect if the cup is
already full. If this ultrasonic sensor is within the tolerance
of the DrinkWizard the MSP430(3) will send out a high
level 1 to the MSP430(1) to signal the peristaltic pumps to
turn on. If one of the ultrasonic sensors goes out of
tolerance the MSP430(3) turns off the high level 1 out and
this signals the MSP430(1) to shut off the peristaltic
pumps.

E. Microswitches

The microswitch used for the DrinkWizard was the
Mulon M8 Precision switch, microswitch. This
microswitch contains three pins, N.C (normally closed),
N.O (normally open), and ground. Conventionally you
would use ground on the ground pin and then when the
switch is pressed down the ground connects to the
normally open pin. Our needs needed this to be wired up
differently.

The MSP430(2) is looking for a 5-volt high signal, so
for our needs we connected a 5-volt high signal to the
ground pin of the microswitch. The microswitch at rest
has the normally closed pin connected to the ground pin;
In our project we are using the microswitch to monitor if a
container is full or empty so normally closed for our
scenario would be a full bottle and the microswitch lever
pressed down.

The lever pressed down has the ground pin connected to
normally open pin. For our project, the bottle is empty
which then puts the microswitch in a normal state and has
the normally closed pin connected to the ground pin,
which is our 5-volt high signal. This then triggers the
MSP430(2) to send out its appropriate signals and the
LED under the empty bottle to illuminate.

V.DRINKWIZARD ANDROID APPLICATION

The Android application has three major activities in
which the user can interact with. They are labeled Main
Activity, Order Activity, and Custom Drink Activity.
These three govern the entire application and make
simplify the processes of connecting to Bluetooth,
ordering a drink, and creating a custom drink. There is
another activity called Paired List Activity but it is only
used for pairing with devices, breaking bonds with
devices, and connecting to bonded devices and shouldn’t
be accessed as often. The user interface was designed with
the layout editor in Android Studio. The following
diagram outlines how the three major activities interact
with each other.

Fig. 2. Three Activities of the Application

Main Activity handles administrative activities such as

connecting to Bluetooth and building the database of
drinks. It is able to turn Bluetooth on and off, pair with a
visible device, show the currently connected devices, and
take the user to Order Activity. If Bluetooth is turned off
when the user attempts to show the connected devices, the
application will alert the user that Bluetooth is not enabled
and present the option to turn it on.

Order Activity provides the major functionality the
Drink Wizard application was designed for. It is familiar,
intuitive and allows the user to order a drink. It also
updates the user when their drink is being created and
when it is finished. It will also have the option to go back
to Main Activity in case an administrative action needs to
be performed. This may happen if the Android device
loses the connection to the mixer for any reason. Another
point about Order Activity is that it keeps a private
instance of the Drink List class, which has an Array List
of objects, which hold the information about the
ingredients, which compose a drink. This ensures that the
Drink Wizard Android application will be able to store
over two billion drink combinations. The number of
combinations that can be created defines a more practical
limit. Currently the application will only allow
combinations of ingredients, which will create an 8oz
drink.

Finally, Custom Drink Activity is used to create new
drinks. The user is allowed to add ingredients to a
beverage of their choice. Sliders are displayed and can be
moved back and forth to add or remove a liquid. Should
the user craft a drink that the developer’s feel is not safe, a
warning will be displayed, which will tell the user why it
is unsafe and ask if they wish to proceed. The Drink
Wizard application will never disallow a drink from being
made and the responsibility is left to the user to continue
creation or go back and edit the drink. This activity will
also allow the user to return to Order Activity without

creating a drink, completing the cyclical structure of the
application.

A. Bluetooth Functionality

Android requires permissions to keep applications from
accessing unnecessary features on the device. When the
application installed, the user is shown a list of the
included permissions. This serves as a security measure
and keeps applications from gaining access to personal
information. Bluetooth also requires permissions. There
are two permissions, which must be written into the
Android Manifest called Bluetooth and Bluetooth Admin.
The Bluetooth permission is needed for all Bluetooth
actions such as data transmission and connection
management. Bluetooth Admin handles administrative
capabilities such as allowing the device to be discovered
and discovering devices in the area. Without these two
permissions, the application would not be able to
communicate through with the DrinkWizard mixer and
would likely crash.

B. Communication from the Android Perspective

Fig. 3. Bluetooth Communication Class Diagram

Threads are used for connecting and sending and
receiving data via Bluetooth. Connect Thread is the link
between the application and the serial port through which
data travels. When the thread is started, the application
attempts to create a radio frequency communication socket
with the device the user requests to connect to. To do this,
a Universal Unique Identifier (UUID) is used. For safety,
a fallback socket is also created. A connection is
established with this socket only if an exception is thrown
by when the application attempts to connect to a remote
device. Without the fallback socket, if a connection is not
made, the application cannot communicate with the mixer.
The following class diagram shows the relationship
between Main Activity and the threads for sending and
receiving data via a Bluetooth connection.

After a successful connection has been made, the
application will begin listening for data from the mixer.
Constantly listening will cause the central processing unit
(CPU) usage to remain at relatively high levels for the
duration of the application’s run time. To remedy this, the
device will only begin listening to the channel once an
order for a drink has been submitted. This is possible
because the mixer should not be transmitting any data to
the application when it is idle (when no drinks are being
made). A class, which extends Runnable called Receive
Runnable, handles the incoming data from the mixer.
Upon running this class, a method called readChannel() is
called. This method attempts to get the length (the number
of the bytes) of the incoming data then iterate through the
bytes one by one and add each one to an array, which will
later be turned into a human-readable string. If a delimiter
is found, the bytes are copied from the buffer they were
being appended to and decoded to a readable string. The
data is now ready to shown to the user.

A class handles sending data, which is also a child of
Runnable. When the thread is started the data needed to
make a beverage will be prepared. Once it is ready to be
interpreted by the MCU, it will be sent using the open
socket’s output stream. This completes the Bluetooth-
related functionality of the Drink Wizard Android
Application. The application is now connected to the
mixer and data to make a drink can be sent to the mixer.
Likewise, information can also be received by the Dink
Wizard application.

 C. Ordering from the Android Perspective

The Drink List class contains an Array List object that
holds all the drinks in the application. A getter method for
the list of drinks has been included for convenience and so
has a method to get an individual drink by name. The most
used method in this class is the addDrink() method which
takes in all the necessary information for a drink, creates it

in the application, and adds it to the master list. The
addDrink() method creates Drink objects. This class Drink
holds all the information about a given drink that is sent to
the mixer when an order is placed. It includes how much
of each ingredient goes into the drink. Possible ingredients
are vodka, tequila, rum, whiskey, peach schnapps, orange
juice, cranberry juice, pineapple juice, and sour mix. For
convenience a method has also been included to get the
index of a drink. Getter methods for how much of each
ingredient goes into a drink have also been included.
Setters are also in the class and are used by the
application’s database. The database is used for storing all
custom drinks so they are saved when the application is
stopped.

D. Storing Custom Drinks

Without a database, custom drinks would immediately
be deleted whenever the device was shut off or even when
the application was closed. Because new data can be
actively generated at almost any point in Order Activity’s
lifetime, developers decided to either write new drink data
to a file or keep a dedicated database for the data. Instead
of keeping track of a file, which could easily be deleted by
going through the file system of the device, it was decided
that a true database should be used. For this reason, an
Android SQLite database is used to keep track of all
custom drinks.

VI. POWER SUPPLY

The DrinkWizard will connect to a normal 15 amp
duplex receptacle, three prong 120-volt outlet. The wall
connection will run through a 6.4-amp 12-volt step down
transformer. After the step down transformer, the power
will run through a bridge rectifier capable of handling 12
amps. The rectification stage is a full wave rectifier so it
will need to be smoothed out, so the power will run
through two 6800-µF capacitors capable of voltages up to
63 volts. These capacitors will smooth out the final output
to 12-volt DC. From the 12-volt DC input the voltage will
be stepped down to 5-volts DC and 3.3-volts DC.

A. 3.3-volt Load

The lowest step-down from the 12-volt input is the 3.3-
volt DC load. This 3.3-volt load will be used to power up
the microprocessor’s as well as the Bluetooth module. To
step-down the voltage from the 5-volt supply the Texas
Instruments LM21215, 15-amp high efficiency point of
load synchronous buck regulator, is used. The LM21215
has an adjustable output voltage from 0.6-volts to Vin.
The input voltage or Vin can range from 2.95-volts to 5.5
volts. The voltage can be adjusted by using a simple

voltage divider circuit with the middle node connected to
the Vfb, which is pin 19 of the HTSSOP-20 package.

B. 5-volt Load

The second to lowest step-down from the 12-volt input
is the 5-volt DC load. This 5-volt load will be used to
power the cup sensors, liquid level sensors, and LCD
module while also feeding the 3.3-volt load. For the
DrinkWizard to step-down the voltage from the 12-volt
DC input the Texas Instruments LM22678-ADJ, 5-amp
SIMPLE SWITCHER® step-down voltage regulator is
used. The LM22678 has a wide voltage input range, 4.5 to
42-volts. The LM22678 has an adjustable output voltage
with outputs as low as 1.285 volts. The voltage can be
adjusted by using a simple voltage divider circuit with the
middle node connected to the Vfb, which is pin 6 of the
TO-263 package.

C. 12-volt Load

The last voltage needed is 12-volts DC to power the
peristaltic pumps used to dispense the liquid from the nine
bottles. The DrinkWizard is using a 12-volt lead acid
battery to power the DrinkWizard when an A/C output is
not available, such as when the user is at a tailgating
event. The 12-volt lead acid battery will always be
connected in parallel with the system so this will be used
to regulate the 12-volt supply needed for the peristaltic
pumps.

D. 12-volt Battery

The DrinkWizard is designed to run off a 12-volt, 7 Ah,
lead acid battery. The max current draw is 2.5 amps with
everything running at once. We could run the pumps
straight for about 2.5 hours before we would have to
recharge the battery. The only reason everything would be
on at the same time for 2.5 hours would be under a stress
test condition, so this was ruled out for normal operation.
A single lead acid battery was used to save cost as well as
weight. The lead acid battery was the battery of choice for
the low initial cost, low maintenance cost and the size and
weight were perfect for our application. The only
disadvantage for the lead acid battery is the long charging
times.

To counteract the long charging times of the lead acid
battery, the power supply circuit was designed to
continuously charge the battery while plugged into the
120-volt wall outlet.

E. Battery Charging Circuit

To properly charge a lead acid battery we need to
monitor overcharge and undercharge. One conventional
way to charge the lead acid battery is to use a current-

limited power supply circuit that maintains a constant
voltage across the battery, on average 2.4-volts per cell.
Once the charging current drops below a current tolerance,
defined by the capacity of the battery, the battery charger
is placed in a trickle-charge mode. The proper charging
voltage is a give and take between cell lives versus
charging time. While we could charge at high voltage this
minimizes the time required, however at a full charge this
produces a large overcharging current. This overcharging
current shortens the battery’s life. Lowering the current
via decreasing the charging voltage can save the battery’s
life. This decreasing of the charging voltage lengthens the
time it takes to charge the battery back up.

To get the best of both worlds we can charge the battery
at high voltage until the current drops to .12 amps or
below this point. At that time the voltage can be lowered
to maintain a low trickle charge current of about 120 mA
and this trickle-charge will continue until the current rises
back above the .12 amps.

Fig. 4. MAXIM MAX668

To get to the proper voltage to charge the lead acid

battery a boost converter, Maxim MAX668 Step-Up
Controller, applies a constant voltage of nominal 15.4-
volts to the lead acid battery. Once the lead acid battery is
fully charged the voltage is lowered to about 13.4-volts to
maintain a trickle charge. We decided to use a flyback
transformer instead of an inductor to isolate the battery
away from Vin. This will allow Vin to range above and
below the charging voltage.

Maxim > Design Support > Technical Documents > Application Notes > Battery Management > APP 621

Keywords: lead-acid batteries, battery, trickle-charge, boost converter, flyback converter, converter

APPLICATION NOTE 621

Simple Circuit Charges Lead-Acid Batteries
Aug 26, 2011

Abstract: A flyback converter implements a current-limited power supply to charge lead-acid batteries. The
MAX668 PPM controller limits the output current, and the flyback transformer provides isolation and flexibility for
input voltages both above and below the battery voltage. The MAX4375 current-sense amplifier monitors the
charging current and uses its internal comparator that below a designed threshold the flyback converter can
switch to a lower charging voltage for trickle-charge mode.

The circuit shown in Figure 1 charges lead-acid batteries in the conventional way: A current-limited power
supply maintains a constant voltage across the battery (approximately 2.4V/cell, as specified by the battery
manufacturer) until the charging current decreases below a current threshold defined by the capacity of the
battery. At this point, the charger is placed in a trickle-charge mode. The current threshold is typically 0.01C,
where C refers to the battery capacity, specified in ampere-hours. When charging a battery, the term "C rate"
refers to the current required, in theory, to charge a battery to its full battery capacity C in one hour. In actuality,
power lost during the charge cycle ensures that all batteries charged at their C rate take more than an hour to
reach full charge. Ideally, you could charge a 5A-hr battery in one hour if the charge current is 5A. Also, ideally,
a C/10 charge rate (500mA) charges the same battery in 10 hours. However, the power loss mentioned
previously increases these charge times beyond the two time spans stated above.

Figure 1. This lead-acid-battery charger applies high voltage (15V) until the battery is charged and then applies
13.4V to maintain a small trickle charge.

Page 1 of 3

. MAXIM
MAX4375F

The, Maxim MAX4375F will do monitoring of the

battery charging current. The, MAX4375F, measures the
current by gernerating a proportional voltage at the OUT
terminal, pin 2. The drop across our output resistor
produces a voltage at pins 3 and 4. At the point that the
charging current drops below .12 amps, the voltage
crosses the internal comparator threshold and drives
COUT1, pin 8, low and sets COUT2, pin 7, to high
impedance. Disconnecting COUT2, pin 7, the feedback
level is shifted and thus changes the charging voltage to
roughly 13.4-volts. Our maximum available charging
current depends on our voltage, Vin, and our current-sense
resistor R1. This will allow us to charge our lead acid
battery continuously without overcharging the lead acid
battery, which ultimately will allow us a greater life span
of our battery.

VII. CONCLUSION

All of the aforementioned systems comprise a collection
of components needed for the design and implementation
of the DrinkWizard vending unit. This reading covers
multiple components and subsystems that when in
synchronization allows the flawless execution of the
DrinkWizard and the user or users can have the ultimate
experience and enjoyment from our system. We look
forward to seeing a DrinkWizard in your home or at a
tailgating event soon.

ACKNOWLEDGEMENT

Michael Amaral, a senior student of the electrical
engineering department at the University of

Central Florida Florida. Michael is currently an employee
at Mtron PTI, specializing in RF filter design. Michael
plans on continuing his employment at Mtron PTI while
pursing and developing his career in the electrical
engineering field.

John Brushwood is a senior student of the electrical

engineering department at the University
of Central Florida. John is looking
forward to pursing a career in the
electrical engineering profession. John
would like to specialize in the RF filter
design field.

Reginald Fergerson is a senior student of the computer
engineering department at the University of Central
Florida. Reginald is looking forward to pursing a career in
the computer engineering profession. Reginald would like
to specialize in the defense contract sector.

Zachary Kirby is a senior student of

the computer engineering department at
the University of Central Florida. Zachary
is currently a Master certified car audio
installer. Zachary looks forward to
pursing his career in the computer
engineering profession and specializing in

the car audio sector.

REFERENCES
[1] Ingraham, Christopher. “Think
you Drink a Lot? This Chart Will Tell You.”
Web log post. Washingtonpost. N.p., 25
Sept. 2014. Web. 30 May 2015.

http://www.washingtonpost.com/blogs/wonkblog/wp/2014/
09/25/think-you-drink-a-lot-this-chart-will-tell-you/

Maxim > Design Support > Technical Documents > Application Notes > Battery Management > APP 621

Keywords: lead-acid batteries, battery, trickle-charge, boost converter, flyback converter, converter

APPLICATION NOTE 621

Simple Circuit Charges Lead-Acid Batteries
Aug 26, 2011

Abstract: A flyback converter implements a current-limited power supply to charge lead-acid batteries. The
MAX668 PPM controller limits the output current, and the flyback transformer provides isolation and flexibility for
input voltages both above and below the battery voltage. The MAX4375 current-sense amplifier monitors the
charging current and uses its internal comparator that below a designed threshold the flyback converter can
switch to a lower charging voltage for trickle-charge mode.

The circuit shown in Figure 1 charges lead-acid batteries in the conventional way: A current-limited power
supply maintains a constant voltage across the battery (approximately 2.4V/cell, as specified by the battery
manufacturer) until the charging current decreases below a current threshold defined by the capacity of the
battery. At this point, the charger is placed in a trickle-charge mode. The current threshold is typically 0.01C,
where C refers to the battery capacity, specified in ampere-hours. When charging a battery, the term "C rate"
refers to the current required, in theory, to charge a battery to its full battery capacity C in one hour. In actuality,
power lost during the charge cycle ensures that all batteries charged at their C rate take more than an hour to
reach full charge. Ideally, you could charge a 5A-hr battery in one hour if the charge current is 5A. Also, ideally,
a C/10 charge rate (500mA) charges the same battery in 10 hours. However, the power loss mentioned
previously increases these charge times beyond the two time spans stated above.

Figure 1. This lead-acid-battery charger applies high voltage (15V) until the battery is charged and then applies
13.4V to maintain a small trickle charge.

Page 1 of 3

