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1 Introduction

1.1 Motivation
On the market today, there exists a subset of a common computer

peripheral meant to boost a basic end-user’s productivity. This product is the
programmable mouse. The concept is simple; it is a computer mouse that
contains several extra buttons that the user can map to any shortcut or command
which he/she chooses. The added convenience of these extra buttons means
that a user can save valuable time when performing common, repetitive tasks.

Currently, this type of device only exists for the mouse, but not for the
trackpad which has millions of users every day. This is where our project comes
in. Our purpose in creating the Programmable Trackpad is to bring this type of
technology to the trackpad, for users who prefer to use a trackpad over a mouse.
Our trackpad will contain a suite of macro keys and rotary encoders, all of which
end users can program themselves. With these, trackpad users will be granted
the same convenience and functionality as programmable mouse users in a
compact and ergonomic package. This device is intended to completely replace
the default trackpad on a traditional laptop.

1.2 Problem Statement
The guiding principle of our development process is this: create a system

which, when connected to a PC, can act as a trackpad and a macro keypad. In
order to accomplish this, we will create a hardware device with input systems
(trackpad and keypad) and a software application which the PC will use to
interpret the hardware’s output. Additionally, the device’s firmware will manage
communication between the device and the PC. The requirements for these
systems, as well as the technology used to accomplish these tasks, will be
expanded upon in further sections. At a basic conceptual level, however, the
system can be described using the diagram below.

Figure 1: System Concept



2 Project Description

2.1 Goals and Objectives
The major goal of this project is to take a task from people’s daily use of

their PCs and attempt to create an overall convenience and improved efficiency
in their work. Whether they use their computer for personal or work use, this
project strives to reduce the steps taken in repetitive and common tasks done on
the computer. The project aims to create an external trackpad device that exists
outside of the computer that is compact and portable, yet also purposeful and
meaningful in its functionality.

To reach the goals of this project, there are certain objectives that need to
be met based on specific design choices in hardware and software. The following
table lays out the general goals that guided our team’s design process, as well as
the specific objectives that we accomplished as a means to reach each goal.

Figure 2: Project Goals and Objectives
Goal Objective (how we achieved said goal)

Reduce common and
repetitive tasks

Add buttons with macro key capabilities that
are programmable.

Convenient and Ergonomic Manages and runs all Hotkey macros within a
Graphical User Interface and has them
operational even after termination of the
application.

Ergonomic Supports ambidextrous users.

Low Learning Curve - Application with a user-friendly interface to
program macro keys.
- Only have to run one executable file, the user
doesn’t need Python or AutoHotKey installed.

Customizable for user Hardware - Ability to easily remove keys to the
user’s liking.
Software - Application is be able to create and
store to run on the device

2.2 Function
In order to accomplish the goals of the project, our system will include

many interrelated functions. On a high level, these functions can be summarized
with a list of the interfaces with which the user will interact. While the inner
workings of the device will be expanded upon in further sections, the following
table is a general look at the device from a user’s perspective.
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Figure 3: Project Functions
Function Description

4 Mechanical Keys Capable of macro and keybind
function.

3 Rotary Encoders
Capable of audio mixer, adjusting
windows, etc. functions,
(per-application functionality).

USB Connection For charging the battery or having a
wired connection.

Bluetooth Connection Main connection for using the device.

Touchpad/Trackpad Mouse replacement offering
ergonomics.

4 Mouse Buttons Availability changes based on
dominant hand usage.

Power Switch Turn the device on or off.

Application User Interface Main ability to program and customize
hardware keys with macros

2.2.1 Device Layout
The intended way to use the Programmable Trackpad is for the user to

place the device on his/her desk next to the PC’s keyboard. For right-handed
users, the Programmable Trackpad will be placed on the right of the keyboard,
while left-handed users will place the device to the left of the keyboard. The
following diagram shows how the device’s components are arranged for
right-handed users.

3



Figure 4: Device Layout for Right-handed Users

For left-handed users, the same device can be used slightly differently.
Rotating the Programmable Trackpad 180 degrees, the device’s layout becomes
as shown in the diagram below. Note that the mouse click buttons that were
unused in the previous diagram become the primary mouse click buttons in this
layout.

Figure 5: Device Layout for Left-handed Users

Note that the USB connector is on the side of the device. Standard PC
peripherals will often position the USB connector or wire on the back of the
device so that the wire will lead directly to the PC, and the user will have minimal
contact with it. In the case of this device, positioning the USB connector on the
back would be impossible because the back side of the device becomes the front
side of the device when the orientation is switched.
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2.2.2 Orientation Switching
The previous section alluded to the ability of the device to switch between

modes for left-handed and right-handed users. For the sake of the device’s
layout, all the user needs to do is rotate the device 180 degrees to change the
orientation. If this is done, however, the trackpad inputs will be upside-down, and
it will be impossible to use the trackpad regularly. In order to solve this problem,
there is a physical sliding switch on the side of the Programmable Trackpad that
toggles between left-handed mode and right-handed mode. When switched from
one position to another, the trackpad will automatically adjust itself through
firmware, and the PC will not read the inputs upside-down.

The orientation switch is positioned on the side of the Programmable
Trackpad so that it is not likely to be in the user’s way at any time. Note that the
power switch and orientation switch are specifically positioned on the far side of
the device from the touchpad (adjacent to the USB connector). This is because
the user’s wrist tends to rest on the near side of the touchpad. This setup
ensures that the user will not be bothered by the switches, and also that the user
will not accidentally toggle the switches during ordinary use.

2.3 Requirements
The requirements for this project should highlight the system’s technical

needs, which will determine our estimated budget for the overall design. The
specifications we are aiming to achieve support our aforementioned goals of
convenience, flexibility, and programmability.
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Figure 6: Project Requirements
Requirement Justification

Device dimensions 5” x 5” x 2”
Device should be portable and have a
small form factor accentuating
ergonomic qualities.

Device weight should be ≤ 1 lb Device should be light and portable.

Device trackpad latency ≤ 48 ms
Device should have a low latency for
an accurate and precise experience
for the user.

Hot-swappable switches User customization.

4 mechanical switch inserts Optimal amount of macro keys to
provide efficiency.

3 rotary encoders
Users should be able to control audio
and customize sliders based on
programmability.

USB connection
Users should have a usable
connection when Bluetooth doesn’t
work.

Bluetooth connection
Users should have wireless
connection for ease of use and less
cable clutter.

Battery lifetime should be ≥ 10 hours
of average usage

Users should be able to use the
device during a full day of wireless
utilization without having to plug it in or
charging.

Battery charging time should be < 3
hours

Charging does not need to be fast
because it can be used while
charging. However, it is reasonable to
expect it to fully charge within a
certain time frame.
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2.4 Constraints and Standards
The constraints and standards highlight the implied limitations caused by

budget, environment, or market standards.

Figure 7: Project Constraints and Standards
Constraint/Standard Reasoning

Micro USB Type-B
Standard in consumer technology for
wired connections due to its fast
transfer speeds and power efficiency.

Bluetooth 5.0-5.3 Low bandwidth, reliable and fast
speeds over air.

Human Interface Device (HID)
Standard in modern operating
systems for mouse/keyboard
communication.

JTAG The standard for uploading firmware
to ARM devices.

Serial Wire Debug (SWD)
A specification within the JTAG
standard that is particularly compatible
with our project’s hardware.

… ≤ 400 for development budget
Due to limited budgeting of the group,
we must keep the development
budget low for the whole project.

Total budget for the project should not
exceed $1000

We wanted the device to be budget
friendly while also having the
development of the project be efficient
and cost effective based on other
market items.

2.5 House of Quality
The following diagram is a house of quality, a graphic representation of the

various requirements of our design and how each one interacts with each other.
Plus signs represent positive correlation between quantities; minus signs
represent negative correlation. Each column represents a requirement of the
design process; each row represents a consumer requirement.
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Figure 8: House of Quality

This graphic, though not a set of immutable rules to follow, can serve as a
guideline for our design process. The most noteworthy tradeoffs to examine in
the design process are those that affect the device’s portability and development
costs. As the device grows in size, it becomes less portable, which is a strong
negative for the product. As the battery lifetime increases, the cost of the device
greatly increases, which is another negative for the product. Ideally, we would
find a balance between high-quality electronics and low-cost development, and
we would use the numerical data suggested above as the baseline for this
decision-making process.

3 Technology Investigation
The first step in the development process for our project was researching

the existing technology relevant to the product we are creating. This section will
detail our findings from this research process.

Initial research was focused on existing consumer products comparable to
our vision. This research is important because it provides context for the niche
that our product fills. We were able to draw inspiration from what existing
products on the market succeed at doing, as well as what they fail to do.

8



Further research was focused on the hardware and software technology
that our project can leverage in order to fulfill its purpose. This section contains a
review of hardware devices, computer chips, firmware programming systems,
and software packages that may be useful in the development of our system.

3.1 Market Analysis
Millions of PC users use trackpads every day, largely due to their standard

presence in laptop computer design. Many consumers who use laptop computers
at stationary desks, however, still prefer to use their trackpads over the traditional
mouse. Mac users, in particular, commonly prefer trackpads to mice. This trend is
due to the prevalence of Apple’s Magic Trackpad, a relatively high-end external
trackpad. It is safe to conclude that there is a market for external trackpads
among Mac users, and there would likely be a similar market among Windows
users if more convenient options were commonly available.

As mentioned previously in this document, the programmable mouse is
the market standard solution to the goals prescribed in our project. The following
table shows a few popular options currently available. Each of these mice
interfaces with a PC application to program the various buttons on the device.

Figure 9: Market Programmable Mice
Name Image Price

Logitech MX Master[1]

$99.99

Razer Deathadder v2[2]

$69.99

Microsoft Surface Precision
Mouse[3]

$99.99
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A broad description of the market niche we intended to fulfill was the
market for any peripheral trackpad device that interfaces with PC software to
facilitate custom button inputs. The following is a list of the devices currently on
the market that are most comparable to our own.

Figure 10: Market Trackpads
Name Image Price Similarities

to our
design

Differences
from our
design

Apple Magic
Trackpad[4]

$129.99 Fits
conveniently
on a desk.

No physical
customizable
buttons.

Mousetrapp
er Advance
2.0[5]

$200-$300
(Not
currently
available
for
purchase
from
manufactur
er)

Fully
programmab
le physical
buttons,
ergonomic.

Too large to be
comparable to
a mouse, wired
only.

Keymecher
MANO-703
UB[6]

$39.99 Includes
macro
buttons, fits
conveniently
on a desk.

Macro buttons
are hard-coded
for specific
purposes (not
customizable).

While there exist many comparable products, there is no single device that
meets all of the goals for our project currently on the market.

3.2 Hardware
The following section is an overview of the various hardware technologies

that were incorporated in the design of the Programmable Trackpad.

3.2.1 Power
The basic power requirements of the system are simple. It is designed to

be wireless, therefore it must be powered by a battery. Because it is expected to
be used over a period of years, the battery must be rechargeable. Since the
device can communicate with a PC over wired USB, it is also reasonable to
design it so that the battery charges over the same USB connection as the data
transmission. Thus, it must remain functional while charging. Finally, charging
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should be automatic. As soon as the device is plugged into a power source, the
battery should begin charging up to its charge limit.

3.2.1.1 USB Power Standard
Different USB standards vary slightly in the amount of power supplied over

the power wires, but they all supply 5 volts. Typical USB ports in a computer
supply a maximum of 500 mA. This figure can be used as a maximum for our
purposes because in typical use, the trackpad will be plugged into a standard
computer USB port.

The current supplied over USB is irrelevant to the functionality of the
device because the USB cable will only be supplying power to the battery, not to
the computer components of the device. Therefore, the battery’s maximum
current needs only be sufficient to supply the necessary current to all
components. The current supplied over USB instead is used to determine how
quickly the battery can be charged.

Most components used in this device are rated for lower than 5 volts, so it
is reasonable to use a battery that supplies lower than 5 volts. Since USB power
is fixed at 5 volts, the charging system must account for this and lower the
voltage at which it charges the battery.

3.2.1.2 Power Calculations
The following equation can be used to determine the amount of time a

battery will last starting from a full charge, going to a full discharge.

Figure 11: Discharge Time Equation

𝑇 =  𝑄
Σ 𝑖

𝑛

𝑇 =  𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑡𝑜 𝑓𝑢𝑙𝑙𝑦 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 (ℎ)
𝑄 =  𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 (𝐴ℎ)

Σ 𝑖
𝑛
 =  𝑇ℎ𝑒 𝑠𝑢𝑚 𝑜𝑓 𝑡𝑦𝑝𝑖𝑐𝑎𝑙 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑠 𝑑𝑟𝑎𝑤𝑛 𝑏𝑦 𝑒𝑎𝑐ℎ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑛 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑒𝑣𝑖𝑐𝑒 (𝐴)

Conversely, the following equation can be used to determine the amount
of time it will take for a battery to charge fully from empty assuming that it is
being constantly supplied 500 mA.

Figure 12: Charge Time Equation

𝑇 =  𝑄
0.5 𝐴

Note that in practice, “full charge” and “full discharge” will not be exactly as
rated by the manufacturer. The age of the battery and conditions of operation will
affect these numbers. These equations should only be used to determine a
baseline for the charge and discharge time.
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3.2.1.3 Battery Technology
The key attributes that we looked for in a battery are that it is

rechargeable, it has built-in circuit protection, and that it is low-profile. High
capacity and high current output are not priorities because the device consumes
relatively little power, and it is reasonable to assume that it will be charged
regularly. The following table compares various technologies of rechargeable
batteries.

Figure 13: Battery Technology Comparison
Technology Size Capacity Efficienc

y
Cost Protectio

n

Lead-acid Largest Medium Medium Lowest None

Lithium Ion Medium Medium Best Highest None

Lithium Polymer Smallest Medium Best Highest Built-in

Nickel Metal
Hydride

Medium Best Medium Medium None

Based on the nature of our device, it is imperative that the battery is as
low-profile as possible. The only commercially available batteries that suit our
purposes are lithium polymer (LiPo) batteries.

Consumer LiPo batteries have a maximum voltage of 4.2 volts and an
average working voltage of 3.7 volts. It is possible to discharge them beyond 3.7
volts, but the built-in protection cuts off current flow at 3.0 volts. The following
table shows the relationship between discharge and voltage in LiPo batteries.
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Figure 14: Discharge Profile of LiPo Batteries[7]

3.2.1.4 Battery Management Boards
For prototyping, we procured two USB charging boards intended to

interface with lithium batteries. Both purport to offer circuit protection as well as a
USB Type-C female connector. Neither board includes a breakout option for the
data pins, which will be necessary for the trackpad to transmit data to the PC.

The first battery management option uses the TP4056 chip, which
provides constant current (up to 1 amp) and constant voltage at 4.2 volts[8]. This
voltage value is the typical upper limit for LiPo batteries, so it should protect our
battery. The constant current value can be adjusted by adjusting the resistance
on pin 2 of the chip. In the pre-built board that we used for testing, this current
value was set to the maximum value of 1 amp.

The second battery management board uses the MCP7383X-2 chip,
which provides constant current (up to 500 mA) and constant voltage of 4.2
volts[9]. Like the previous chip, this one’s constant current value is adjusted by
adjusting the resistance on pin 5, and the pre-built board uses the maximum
current.
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Figure 15: Battery Management System Prototype Boards

While the TP4056 does allow for higher current (and consequently faster
charging), the MCP7383X-2 is simpler and has better documentation. We will be
using the latter in our design.

3.2.1.5 Voltage Converter
As has been noted in previous sections, USB operates at 5 volts, and LiPo

batteries operate between 3.7 and 4.2 volts. In order to compensate for this
difference, a battery management system is necessary to convert USB voltage to
battery voltage. The onboard electronic components of the Programmable
Trackpad are rated for 3.3 volts, which is significantly lower than the voltage of
the battery. Therefore, it is also necessary to convert the battery’s voltage to 3.3
volts before powering the device’s electronics. A simple voltage converter can be
connected to the device to accomplish this.

Buck converters with variable output voltage are very common on the
market. These devices accept an input voltage on one pin and output a voltage
on another pin. The output pin must be connected through resistors to achieve
the desired voltage. This would be a valid solution for our device to achieve 3.3
volts, but since 3.3 volts is a common voltage level anyway, it would be simpler to
use a buck converter with fixed output voltage of 3.3 volts. The following table
provides an overview of some simple buck converters that could suit the needs of
this project.
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Figure 16: Voltage Converter Comparison
Part number Input Voltage Current Output Number of extra parts

(inductors and
capacitors) needed per
documentation

TPS62203[10] 2.5-6 volts 300 mA 3

AP63203[11] 3.8-32 volts 2000 mA 4

LM3671[12] 2.7-5.5 volts 600 mA 3

All three of these converters are fixed-voltage (3.3 volts) versions of
generic buck converters. Each one has thorough documentation including
example circuits demonstrating the proper way to set up the converter with
capacitors and inductors. While the AP63203 has the best current output at 2000
mA, its input voltage is rated for a minimum 3.8 volts, which is greater than the
minimum voltage of the device’s battery (3.7 volts). The LM3671, on the other
hand, is specifically designed to work with lithium batteries, so its input voltage
aligns with the voltage of the device’s battery. For this reason, our team has
opted to use the LM3671 in our design.

For prototyping purposes, our team acquired a simple LM3671 breakout
board produced by Adafruit[13]. This board’s electrical schematic is available
online and can be used to inform the design of our own device.

In addition to the 3.3 volt buck converter that will be necessary to convert
the battery voltage for use by the electronics, another consideration during
development was the possibility that the device might require a 5 volt boost
converter to ensure a steady voltage from the PC to the USB devices. The need
for this device is elaborated upon in the prototyping section. Some popular
options for 5 volt converters are the TPS61023 and the ME2108. The following
table compares these two options.

Figure 17: 5 Volt Converter Comparison
Chip Input Voltage Number of external

components required

TPS61023 0.5-5.5 volts 3

ME2108 0.9-6.5 volts 4

Because the input voltage for this chip would be coming directly from the
PC’s USB port, it is expected that these voltage ranges would be acceptable.
The PC’s USB ports are intended to support 5 volts at all times, so they should
never dip far below this level. The complexity of implementing these chips is
comparable, as well. Therefore, there are no significant differences between the
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chips, and either one would be acceptable for prototyping a solution in our
device.

In practice, it was experimentally determined that the 5 volt boost
converter is not necessary to make our design function. As such, neither the
TPS61023 nor the ME2108 was used.

3.2.1.6 Power Switch
Because the device can operate wirelessly, it must have a method for the

user to turn it on or off. This will be solved with a simple on/off switch that will
connect the battery to the rest of the electronics in the device. Such a switch can
be seen below.

Figure 18: Generic Power Switch

Because the voltage converter represents a constant draw on the battery,
it is important that the converter is fully disconnected from the battery when the
device is off. Therefore, the power switch connects the battery’s positive terminal
to the voltage converter when closed (in the ON position). The battery should not,
however, be disconnected from the battery management system when the device
is turned off. The battery should always be connected to the battery management
system so that the battery can be charged while the device is off. In this case,
because the battery is connected to the battery management system, it charges,
but because it is not connected to the voltage converter, the device’s computer
electronics will remain off.

3.2.2 Touchpad
While conducting research, we came across 3 possible options for touch

pads. Each of these three options had unique functionalities and interfaces so
determining exactly what we wanted from a touchpad was critical. The 3
possibilities were Adafruit’s Resistive Touch Screen, AliExpress’s RGB TFT
Touch LCD Display module, and DFRobot’s Capacitive Touch Kit for Arduino.
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The initial search criteria was any resistive or capacitive touchpad that could be
integrated into our own printed circuit board design. That is to say, we wanted a
touchpad that was modular.

In narrowing our options, our first consideration was the dimensions of the
touchpad. One of the key features of our project is that it should be compact and
easy to fit on a users desk. Therefore, the touchpad should not be excessively
large, but still big enough to be used comfortably by an average sized adult. In
our initial design render, we decided that an optimal size for the touchpad itself
would be around 3.7” diagonally, so that is the metric we used for evaluation.

Our second consideration was power drain. In its completed state, the
Programmable Trackpad should have a wireless operation mode. With this, it's
extremely important to take into account the power drain of each individual
component. If we choose a touchpad that draws a large amount of power, then
the battery life of the device will be shortened.

Our third consideration was ease of integration into our printed circuit
board design. Different touchpads interface in a variety of different ways. The
number and position of pins on the touchpad influence how we design not only
the printed circuit board, but the entire housing of the device as well. Pins layouts
could lead to drastic design changes.

3.2.2.1 AliExpress RGB TFT Touch LCD Display Module
Our first candidate was the AliExpress RGB TFT Touch LCD Display

Module[14]. This screen is unique in that it is not merely a touchpad, but an LCD
touchscreen. The screen is 16-bit and has a resolution of 480x320. It interfaces
via 9 pins on its board, communicates via SPI, and uses 3.3V for its logic inputs.
This option allows us to graphically display information to the user on the screen,
in addition to acting as a touchpad. However, it is important to note that including
this screen means that this unit will draw more power and deplete the battery
faster. While we did not originally intend for the Programmable Trackpad to have
an integrated screen, we can envision the many uses for it. As for the touchpad
capabilities, the usable area will be approximately 4.5 inches across diagonally.
This is a little larger than we would like, and would potentially require 3D printing
a larger housing for the device than we originally intended. This would harm our
efforts to make the device compact and desk-friendly. In addition, this touchpad
would be medium in terms of ease of integration. All we would have to do is
account for 9 through-holes on our PCB design so that we can solder the header
pins onto it. We would also have to ensure that through-holes are in a central
position relative to the whole device so that the touchpad will be positioned such
that it can be used properly. This option would also be on the pricier side. It
comes out to approximately $15. This touchpad is pictured directly below.
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Figure 19: AliExpress RGB TFT Touch LCD Display Module

3.2.2.2 DFRobot Capacitive Touch Kit for Arduino
The next candidate that was considered was the DFRobot Capacitive

Touch Kit for Arduino[15]. This touchpad comes as part of a larger kit, and is
strictly a capacitive touchpad. Since it comes as part of a larger kit, it is the most
expensive option that we have reviewed thus far. It comes out to approximately
$20. In the kit are other neat components, but none of them are relevant to this
project. This touchpad has a functional area of 3.2 inches diagonally. This is
slightly below our target of 3.7 inches diagonally. We believe that any size below
this will lead to difficulties and inconveniences when a user goes to operate the
touchpad, so we would prefer a bigger size than that. We also do not foresee this
touchpad to be a large power drainer. This touchpad only has to poll for finger
touches. This touchpad is also medium difficulty in terms of PCB integration. It
has a total of 12 pins that need to be soldered onto the board. Similar to the
AliExpress option, we would have to incorporate through holes on our PCB
design, then solder the touchpad onto our PCB afterwards. This touchpad is
pictured below.
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Figure 20: DFRobot Capacitive Touch Kit

3.2.2.3 Adafruit Resistive Touch Screen
Another touchpad that was considered was the Adafruit Resistive Touch

Screen[16]. This touchpad is by far the cheapest option that we have encountered.
This part is approximately $6. This option is a resistive touchpad, as the name
implies. This touchpad has a functional area of 3.7 inches diagonal, which
matches our initial design renders exactly. In terms of power drain, this touchpad
will drain the least amount of power on a battery operated system. This candidate
interfaces via an FFC (flat flex cable) with 4 pins. To integrate this module into
our PCB, we would have to solder on an FFC socket onto it. Given the length of
the cable, placement should be no issue. Therefore, this touchpad would be very
easy to integrate. This touchpad is pictured below.
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Figure 21: Adafruit Resistive Touch Screen

3.2.2.4 Touchpad Comparison
Below is a table that compares and contrasts each of the three touchpads

that were considered during our technology research

Figure 22: Touchpad Comparison
Touchpad Size Price Integration LCD

Display
Power Drain

AliExpress
RGB TFT
Touch LCD
Display
Module

4.5”
Diagonal

$15 9 Through-Hole
Pins

Yes High

DFRobot
Capacitive
Touch Kit
for Arduino

3.2”
Diagonal

$20 12 Through-Hole
Pins

No Medium-Low

Adafruit
Resistive
Touch
Screen

3.7”
Diagonal

$6 4 Pin Flat Flex
Cable

No Low
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Upon review of these choices, we ended up choosing the Adafruit
Resistive Touch Screen. Of the three, this touchpad was exactly the size that we
were looking for, and came at the cheapest price point. Given its barebones
nature, we also anticipate this touchpad to have the lowest power drain of the
group which lends itself well to wireless devices.

3.2.3 Touchpad Controllers
A resistive touchpad controller chip is a possible way of handling the

inputs that will come in from the touchpad. These chips provide a way of
accepting inputs from the user and delivering them to the microcontroller unit in a
monitored way. Using one of these chips is also a good way to save on
microcontroller pins. Using one of these chips requires two pins, while hooking
up the touchpad directly to the microcontroller will require 4 pins.

3.2.3.1 AR1100 Chip
The AR1100 chip is a universal resistive touchpad controller, and it is an

option that we had considered to process the touch inputs from our touchpad.
This chip stood out to us because it is a very common and cheap way to
interface with a touchpad. Not only this, there also exists a large amount of
documentation and detailed circuit schematics for this board which will help with
its integration into our printed circuit board. This chip also allows us to have the
most flexibility in how we want to utilize the incoming data. The chip can be
configured by downloadable software to be more or less sensitive, sample faster
or slower, enter a sleep mode etc. After doing so, the AR1100 chip will store
these configured settings in non-volatile memory so that it will not have to be
re-configured every time it loses power, which is highly convenient for the user.
This means that this chip will be configured once by us in the development
process, and the end-user will not have to worry about these settings.

After conducting several experiments we decided that there was no added
benefit in using the AR1100 in our design. All input processing is done via the
firmware running on our MCU, so having a hardware element serves no purpose.
Therefore, we eliminated this chip very early in the prototyping stage.
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Figure 23: AR1100 Chip[17]

Figure 24: AR1100 Schematic

3.2.3.2 STMPE610
The STMPE610 chip is another option that we considered. The

STMPE610 works in a similar manner to the AR1100 in that it will accept user
inputs from the touchpad, process them, then route them elsewhere. For
communication, this chip can use either I2C or SPI protocols, and operates on
1.8 - 3.3Vs. With this chip, there exists an option to purchase it on a breakout
board first which would be used in the prototyping stage. If we decided that we
wanted to move forward with this chip, we would then have to buy it individually
and mount it to our PCB.
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Figure 25: STMPE610 Chip Pictured on a Breakout Board

Figure 26: STMPE610 Schematic[18]

3.2.3.3 Touchpad Direct Connection
In lieu of the AR1100, we decided to connect the touchpad directly to the

MCU. This was fairly straightforward, as the touchpad only required 4
connections, 2 analog and 2 analog or digital. The Touchscreen.h library for
Arduino handled all of the heavy lifting when it came to translating finger presses
on the touchpad to usable data. Upon a finger press, a data structure is
instantiated that contains the X and Y coordinates of the press, as well as the
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pressure of the press. Using these values, it was simple to send commands to
the PC to move the mouse to those X and Y values using the TinyUSB Mouse
and Keyboard library.

3.2.4 Input Units
An important concern of the project is to provide for the consumer with

options to change aesthetics and convenience. There is a market out there for
custom keycaps, rotary knobs, switches, etc. and we wanted to reach out to
those niche communities. One thing to do this was to implement hot-swappable
sockets. This allows the consumer to switch up the mechanical switches with
ease, eliminating the pain of soldering each switch. Another aspect that comes
with the implementation of mechanical switches is being able to switch up the
keycaps.

The common part used as a mechanical switch for keys on PCBs is
known as the Kailh hot-swappable socket. Since this is standard, we have used it
in our device.

Figure 27: Kailh Hot-Swappable Socket

For the default switches we opted for Boba U4Ts which offers the user an
actuation force of 62 grams with a quiet gentle sound level when pressed. Of
course, the user could change the switch depending on their preference. We
went for these because for the general public, it would be the perfect balance
between tactile feedback and quiet experience while also being a cheaper option
in production. Some other cheaper options would include the more clicky
switches, gateron blues, or the more quiet and linear feeling switches, the
gateron yellows.

24



Figure 28: Mechanical Switch Comparison
Mechanica
l Switch

Actuation
Force

Travel
Distance

Behavior Sound
Level

Price
(pack of
10)

Gateron
Red

45 grams 4 mm linear Quiet $8.50

Gateron
Brown

55 grams 4 mm tactile Slightly
audible

$8.50

Gateron
Blue

60 grams 4 mm clicky Very
audible

$8.50

Boba U4T 62 and 68
grams
options

4 mm tactile Slightly
audible

$11.99

Gateron
Black Ink
v2

60 grams 4 mm linear Slightly
audible

$7.50

Kailh Box
Jade

65 grams 3.6 mm clicky Very
audible

$10.99

Durock
Poms

48 grams 4 mm tactile Slightly
Audible

$6.99

Glorious
Panda

67 grams 4 mm tactile Slightly
more
audible

$16.99

Boba U4
Silents

62-68
grams
options

4 mm tactile Silent $23.99

As for the rotary encoders, there weren’t that many to choose from since
they all serve the same purpose and don’t have many features to improve upon.
One we came across was a 24-pulse encoder with detents and a very nice haptic
feedback. This would allow us to know the current position of the encoder
through the microcontroller using how many clicks are left from its current
position. If we were to determine its rotational position, then a potentiometer
would be a better option in this case, which could be a potential route we might
encounter when prototyping, but, since the rotary encoder could be mapped to
many different thing the user might choose, it would most likely be the better
option. The main difference between the two is that the rotary encoders have a
fully continuous rotation in either direction using digital signals whereas a
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potentiometer has a set direction in a clockwise or counter-clockwise direction
using analog signals.

For the touchpad buttons we wanted them to be integrated within the
parameters of the touchpad we had selected. Initially a route we had considered
was using mechanical switches that fit the flat design of the touchpad, those
would be using low profile mechanical switches, though we came to the
conclusion we wanted the user to have a feeling of using a traditional touchpad.
To do this, we decided on using some tactile switch buttons where they would be
placed below some sort of metal plate similar to a traditional touchpad and it has
some flex to press the button but still have the structure to hold itself. These
tactile switch buttons range in different styles and tactile feedback and we
needed one that would reach up to the elevated touchpad while also not having
the possibility of being accidentally pressed.

Figure 29: Generic Rotary Encoder and Tactile Switch Button

Figure 30: Mouse Button Implementation Sketch

The last input device included on the Programmable Trackpad is the
orientation switch. This is a physical switch that the user can toggle between
right-handed-mode and left-handed mode. Any simple toggle switch can be used
for this purpose. It must be located on the outside of the hardware so that the
user can access it.
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Figure 31: Orientation Switch

3.2.4.1 Stretching The Objective
The macropad industry is quite abundant in the market and it’s very

obtainable to the average consumer. We eventually wanted to offer a different
type of experience in efficiency and convenience for the users. On paper there’s
not much you can change with the inputs but we have seen things like Logitech
or Elgato that integrate some type of convenience for the user. These examples
can be seen below with Logitech’s MX Master 3 and the hidden and convenient
button on the thumb rest, and with the newly released stream deck with rotary
encoders and a customizable LCD screen and haptic LCD screen buttons.

Figure 32: Stretch Goal References for Input Devices
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Both of these are perfect examples of what benefits and increases
productivity for the user, and that is what we wanted to achieve. While we aimed
to do just that, one thing we wanted to eventually improve on was the aesthetic of
the input devices without sacrificing functionality, convenience, and the haptic
feedback.

3.2.5 USB
USB is the most common market standard for wired PC peripherals

(including mice/trackpads), as well as for charging electronic devices. Therefore,
it is the obvious choice for our device to use USB for wired PC connection.

Previously in this document, the USB power standards were reviewed. In
this section, data transmission over USB is examined. USB uses four wires, two
power wires and two data wires. However, various USB connectors include more
than 4 pins, including the two most common USB connectors for PC peripherals,
Micro-USB and USB Type-C.

Figure 33: USB Pinout Diagram[19]

As can be seen in the pinout diagram above, both of the common
connector standards have more pins than simply 5v, GND, Data+, and Data-.
However, those four pins do exist on both connectors, meaning that they can be
broken out onto a PCB. Since the Programmable Trackpad’s connection needs
are very simple, we can do exactly that. The GND pin can be routed to the
device’s battery’s GND. The 5v pin can be routed to the battery management
system to charge the device. The Data+ and Data- pins can be routed to our
device’s control system.

Since both standard connectors are viable as solutions for our device’s
wired interface, we should use whichever one suits developer and consumer
needs the best.
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Figure 34: USB Technology Comparison
Technology Cost Can be used for

mouse/keyboard
Market state

Micro-USB Cheap Yes Currently being
phased out

USB Type-C Cheap Yes Current standard

Considering the lightweight requirements of our device, both Micro-USB
and USB Type-C are powerful enough to meet the device’s requirements. Since
consumer technology is currently in the process of phasing out Micro-USB in
favor of USB Type-C, our initial designs and prototypes used USB Type-C.
However, a review of the technology used by USB Type-C revealed that it would
add more design concerns to our circuit board than the Micro-USB connector.
Therefore, we chose to use Micro-USB in the final product.

3.2.6 Microcontroller
The device’s main functionality is as an input/output device. It takes in

input from the touchpad, encoders, and buttons. It produces output in the form of
Windows commands that simulate mouse movement or key presses. There are
only a few other miscellaneous computing functions that the device needs to
handle: it needs to be able to route its output to either USB or Bluetooth, and it
needs to be able to translate electrical inputs to meaningful signals that can be
read by Windows. To accomplish these computing tasks, the device will use a
programmable microcontroller.

The MCU that we use in the device must be able to accommodate all of
the functions described above. It must be capable of accepting input from four
macro keys, four click buttons, one touchpad (four pins), and two rotary
encoders. Additionally, it must be capable of sending output to two distinct
channels (USB and Bluetooth). Finally, it must be programmable so that, in the
manufacturing process, it can be configured to control the device according to
specifications. Any MCU that does not meet all of these requirements will be
insufficient for this project.

3.2.6.1 Microcontroller Technologies
The method through which an MCU typically receives input from hardware

devices is known as General Purpose In-Out (GPIO). This simple technology can
measure if a digital input device is in one of two states. This technology is
sufficient for the Programmable Trackpad’s macro keys, which will either be in
the state of pressed or not pressed.

The most basic form of serial communication, UART, is another protocol of
which typical microcontrollers are capable. When a microcontroller is outputting
information serially, this is the technology it will most likely use.
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USB communication is a different protocol than UART; therefore, simple
MCUs require a peripheral component to convert UART data to USB before it
can be interpreted by USB devices, such as a PC. Some MCUs have built-in
UART-USB translation. These MCUs are typically larger-scale
System-on-chip (SoC) devices that include several other functionalities in
addition to USB compatibility.

In total, the microcontroller that we use must support at minimum enough
GPIO pins to cover each input component on the device, a UART output to send
data serially to a UART-USB converter, some type of compatible input to receive
data from a touchpad controller chip, and enough other pins to support a
Bluetooth connection and a programming interface. The following table lists the
devices that will require microcontroller pins.

Figure 35: Microcontroller Pin Requirements
Device MCU Technology Number of pins

Macro Keys GPIO 4

Rotary Encoders GPIO 6

Mouse Buttons GPIO 2

Touchpad ADC 2

GPIO 2

Orientation Switch GPIO 1

USB Data USB 2

Programmer SWD 2

3.2.6.2 Market Microcontrollers
When exploring the MCUs that we could potentially implement in our

project, our chief concerns were that the MCU fulfill all of the minimum
requirements listed in the previous section, that the MCU be easily compatible
with the other technologies that we intend to use (Bluetooth, USB), and also that
the MCU have a significant base of documentation and existing open-source
libraries that we could employ. These criteria led us to explore the following MCU
options listed in the table below.
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Figure 36: Microcontroller Comparison
MCU GPIO Pins Bluetooth USB Programmin

g Method

ATMega32[20] 32 None None Arduino IDE,
Microchip
Studio

nRF52840[21] 48 On-chip On-chip nRF5 SDK,
Arduino IDE,
CircuitPython

ESP32[22] 34 On-chip On-chip Arduino IDE

All of these options fit the minimum specifications for our project. The
ATMega32 was considered because of its ease of use and thorough
documentation publicly available. However, it is significantly less powerful than
the other options. Among the keyboard community, it is one of the most
widespread microcontrollers that is used because of its qualities featuring an
AVR RISC-based processor, on-board full USB module, etc.; however it does not
come with Bluetooth or Wi-Fi capability. Seeing this immediately had us
uninterested in this microcontroller

The ESP32 is known for its design for portable devices including mobile
phones and such. It also comes with the integration of WiFi and Bluetooth 4, so
it also became a strong contender for our microcontroller selection. The included
peripheral interfaces included 34 GPIOs, 12-bit SAR ADC, 10 touch sensors,
UART, SPI, I2S, and I2C capabilities, and many more. Programming the chip
also came with beginner friendly options including Arduino and CircuitPython.
Seeing the capabilities of this microcontroller was very promising, however some
of the qualities of the wireless connectivity were not as up to date as we wanted
as per our standards.

Another popular option used for the niche layout of split keyboards is the
nRF52840, and is found on many popular market keyboards due to its
specifications. It features a 64 Mhz ARM Cortex-M4 FPU, bluetooth 5.3
capability, 2.4 GHz Wi-Fi, flexible power management with a 1.7V to 5.5V supply
voltage range and a 1.8V to 3.3V regulated supply for peripherals. On the Nordic
website, it also gave a suggestion of applications of the usage of the micotroller
including but not limited to computer peripherals (mouse, keyboard, multi-touch
trackpad), electronic wearables (health watches and wireless payment devices),
IoT (smart home electronics), and entertainment devices. With all this information
in mind the nRF52840 became the strongest contender for our testing and final
build.

The nRF52840 and ESP32 are both powerful SoC devices that could
streamline the Programmable Trackpad’s hardware design by implementing
several functions in one chip. Because our research into Bluetooth had already
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led us to the nRF52840, and because it is the more powerful chip, that is the
microcontroller we have chosen to pursue.

3.2.7 Bluetooth
Initially, the Programmable Trackpad’s primary connection method was

intended to be wireless via Bluetooth. We had brainstormed this because
Bluetooth is the most common standard for wireless connections between
end-user devices. There are also several different standards for Bluetooth.
Typical Bluetooth devices may support several of these standards. However, due
to unforeseen difficulties with our programming environment, we ended up
having to cut Bluetooth functionality from the final product. The final device only
works via a wired connection. The following sections detail the investigations into
Bluetooth that we did in Senior Design I.

3.2.7.1 Bluetooth Standards
The main concerns we needed to consider were a microcontroller that

supported some type of Bluetooth microchip and a Bluetooth module that fit our
requirements. Due to our requirements and technological constraints, we needed
to get the best support for these modules. The most recent iteration of Bluetooth
was a must, especially the low energy counterpart. This was for making sure we
had desirable power consumption and since we weren’t really transferring large
amounts of important data, Bluetooth low energy does the job perfectly. With the
release of Bluetooth 5 in 2016 Bluetooth LE provided up to 2 Mbps of transfer
and introduced an extended advertising mode further allowing more data bytes to
be put in a single advertising packet. It wasn’t until the release of 5.1 where there
was Angle of Arrival of a received packet allowing better connectivity and
identifying where the communication is coming from. This is important in our
implementation in an environment of multiple Bluetooth connections. In the
release of 5.3, there were updates to the extended advertising process being
able to filter out messages in the controller stack without needing the host stack
and it allowed peripheral devices, such as ours, to provide the list of preferred
channels to a central device. This leads to improved throughput and reliability.
Because of this we decided to use the most reliable and recent iteration of BLE.

3.2.7.2 Bluetooth Modules
The nRF52840 chip has a built-in Bluetooth module. Using this, it is

possible to connect to devices wirelessly. However, the manufacturer
recommends using a separate Bluetooth antenna to bolster the wireless
connection. Third-party manufacturers produce modules with the MCU and
antenna together in one piece that can be soldered directly onto circuit boards.

Looking for a Bluetooth module wasn’t very difficult to find. By referencing
some Bluetooth keyboard PCBs we had in hand or just a simple Google search,
we were able to find one cheap and effective. All of the Bluetooth modules
considered are extensions of the nRF chip with a wireless antenna connected.
The following table shows the differences between each of the Bluetooth
modules considered.
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Figure 37: Bluetooth Module Comparison
Bluetooth Module Bluetooth

Type Support
Voltage
Supply

Storage

MDBT50Q-1MV2[23] Bluetooth 5.2 1.7V-3.3V 1MB flash and
256 KB SRAM

MDBT40-256RV3[24] Bluetooth 4.2 1.8V-3.6V 256KB flash
memory

MDBT42Q-512KV2[25] Bluetooth 5.2,
5.1, 5, 4.2

1.7V-3.6V 512KB flash
memory

Seeed Studio XIAO[26] Bluetooth 5.0 1.7V-3.3V 1 MB flash and
256 kB RAM

Of these modules, the MDBT50Q and Seeed Studio XIAO are the only
ones that use the nRF52840. The other modules use earlier editions of the nRF
chip. Because we chose to use the nRF52840 for our microcontroller, the other
modules cannot be used for Bluetooth.

The Seeed Studio XIAO is intended to be the most user-friendly of the
Bluetooth modules. It includes through-holes for easy soldering and a USB
Type-C port for programming. While this makes the module an attractive option
for hobbyists, it is not appropriate for our purposes.

Figure 38: Seeed Studio and MDBT42Q Side by Side
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Because of the reasons stated above, the MDBT50Q is the module we will
be using for our device. The following diagram shows the layout of solder pads
used to connect this module to a PCB.

Figure 39: MDBT50Q Module PCB Footprint
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3.2.8 PCB
The various electrical components of the Programmable Trackpad will be

routed to each other using a printed circuit board (PCB). Design challenges
associated with the PCB include selecting an appropriate PCB manufacturer and
arranging components on the PCB using CAD software.

3.2.8.1 PCB Plate
Making the PCB and finding an affordable manufacturing option was also

not as difficult. An open source online PCB maker called Ergogen generates
unrouted PCBs based on the user's desires. The software also emphasizes the
ergonomics in a keyboard and allows the user to map out their own layout based
on their own hand shape, of course within the limitations of the PCB plausible.
This allowed us to work off of a baseline where we can expand on including our
other requirements including rotary encoders and the touchpad while also having
the option of playing around with the design. By laying out a design with a
schema file, we are able to get all the .dxf files that are needed for the PCB as
well as a section where the microcontroller breakout board would be placed,
shown in Figure 40. Although not one of the most necessary parts of designing
the PCB but does make the beginning of creating one more streamlined.

Figure 40: Ergogen Output

There are many things that contribute to having a functional and effective
PCB, and we need to consider some things when developing it. First is the actual
material of the PCB. Typically polytetrafluoroethylene and advanced polyimide
substrates are some of the best materials used as they offer flexibility and are
what is used in the industry for phones and the medical field. As for the cladding,
we should be using copper that meets the tolerance standards under the IPC.
This ensures better control on the dielectric layer thickness, and with that being
said, it in turn increases performance. Hole wall thickness should also be
considered for resisting expansion, it typically should be about 25 microns thick.
One last thing among others is the quality of the solder resist layer. An
appropriate thickness of solder resistance should tolerate enough to support
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electrical insulation. This can reduce the risk of peeling and any other mechanical
disasters. The IPC recommends UL approved solder resist material for better
insulation to avoid things like corrosion.

3.2.8.2 PCB CAD Software
To design our final printed circuit board, we plan on using a circuit CAD

software to generate a schematic, which we will then have manufactured. There
are a number of circuit CAD programs on the market today, and we performed
research on a few of the most popular ones to see which one would be best
suited to our needs.

The first CAD program we looked at was EAGLE. This program was
initially our go-to because all members of the team have used EAGLE previously
in the Junior Design class. EAGLE is a product offered by AutoDesk and has
both a free version and a premium version. The free version is scaled back in
terms of features and functionality, but still allows the user to create complex
circuit schematics albeit limited by board area. To gain access to the premium
version, users have the pricing options of $70/month, $545/year, and $1,555/3
years. There also exists an Education version of the software which is granted to
students/professors if they can prove they belong to a pre-approved University.
The Education version of EAGLE gives users access to all of the premium
features for free. If we elect to use this software, we will acquire the Education
version so we will not have to pay out of pocket. EAGLE offers a lot of convenient
features such as auto-routing, which will automatically create routes on a board
based on the nets in its schematic. Features like that save time and make it a
great option.

The second CAD software we considered was KiCAD. This is another
fairly common program that is widely available. It works in a very similar way to
EAGLE, you start with a schematic, begin adding components and nets, then at
the push of a button you can turn that schematic into a board layout. A unique
feature of KiCAD is that you can generate a 3D model of the board once it is
created. This would be very helpful when it comes to visualizing the complete
chassis of our device. Having a model of not only the plastic chassis, but the
completed PCB as well would give us the most complete render of how our
device will look in its final and completed state. This would allow us to make
tweaks and revisions to the chassis ensuring that all of our components will fit
together cleanly. KiCAD is completely free to download and use.

The third CAD software we looked into was OrCAD. It works in a very
similar manner to the software mentioned previously. You start with a schematic,
add components, then generate a board layout from that schematic. A feature
unique to OrCAD, however, is the ability to run signal simulations. Once a user
has created a valid schematic and board design, they can then apply simulated
signal inputs to the board. From here, the user can “probe” the board view output
waveforms at various different points. While this is an interesting feature, we do
not think it will be of too much use to us. OrCAD comes with the heaviest price
tag of them all at $2,300. It seems like this software is geared more towards
commercial use, and as such is way out of our budget.
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Figure 41: PCB CAD Software Comparison
EAGLE KiCAD OrCAD

Cost Free (With Education
License)

Free $2,300

Auto-Routing Yes No Yes

3-D PCB
Render

No Yes No

PCB Area Unlimited 4 m x 4 m 40 in x 30 in

Supports
Library

Expansions

Yes Yes Yes

Auto Design
Synchronizatio

n

Yes No No

Max Number of
Layers

16 16 6

Simulation No No Yes

After writing this section of the paper in Senior Design I, we had to pivot to
an entirely new software called Fusion 360. This is because of licensing issues
we ran into when attempting to use EAGLE (Our first choice). AutoDesk had
phased out EAGLE to make way for Fusion 360. Fusion 360 is another powerful
software that easily filled the role of EAGLE.

3.3 Firmware
The following section is an overview of the various technologies bridging

the gap between hardware and software that inform the design of the
Programmable Trackpad.

3.3.1 Keyboard Profiles
To make the macros work, the device requires a way to map the keys for

the application software to interpret. This is where the selected firmware comes
in. There must be a method to flash the hardware with firmware that specifies a
mapping of macros to the keys and rotary encoders.

By mapping traditionally unused keys (such as the extended function keys
F13-F24) to the inputs of the device, the consumer is able to use the macro keys
without having to interfere with their regular keyboard. There are a few options to
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do that, but each comes with guidelines and limitations revolving around the
hardware.

3.3.1.1 Human Interface Device Specification
All modern PCs use the Human Interface Device (HID) specification for

mouse and keyboard control. HID exists for both USB and Bluetooth, the two
methods of communication supported by our device. In order to use the
Programmable Trackpad as a mouse device without the need for special drivers,
it must be configured as an HID device.

The HID Usage Tables define the standard by which HID devices
communicate[27]. In these tables, there is a definition for every key on a keyboard,
as well as the buttons and axes on a mouse. These definitions explain how a
hardware device can signal to a host PC that a key is pressed or a mouse is
moving. The Programmable Trackpad’s firmware will be programmed to send the
signals specified in these tables to the PC. At a base level, the device will send
these exact same signals regardless of how this is implemented in firmware. In
the most extreme case, we would program the device manually to generate each
particular signal based on user input. However, there exist many streamlined
methods of programming mouse/keyboard profiles. The following sections
elaborate on possible implementations.

3.3.1.2 Quantum Mechanical Keyboard (and Derivatives)
A particular application called Quantum Mechanical Keyboard (QMK) is

used to flash market PCBs with keyboard profiles. It is an open source
community that supports computer input devices including keyboards, mice, and
MIDI devices. We sought this route because it was familiar and because of the
documentation, there was plenty to go off of. However when it came to
implementing Bluetooth, we found that QMK was not the way to go. This affected
the compatible AVR microcontrollers we had in mind for prototyping. QMK was
mostly used for wired connections, and although it was kind of Bluetooth
compatible, the latency was undesirable. This was due to the technical limitations
since QMK was built on hardware abstraction layers for LUFA (8-bit ATMEGA),
ChibiOS (ARM), and V-USB (ATMEGA), which were chips that did not support
Bluetooth. If it were to happen, we would need a Bluetooth chip communicating
over SPI which makes it bad for latency and power consumption.

There is another keyboard profile flashing program based on QMK called
ZMK. It is another open-source program, and it supports many other features that
QMK could not achieve. Since this firmware was built on Zephyr RTOS, it
included Bluetooth support with low latency and low power usage; however, we
were to take a small detour in selecting some of our PCB parts due to ZMK
supporting mostly ARM chips. Since this isn’t your ordinary macropad, we also
needed to take into account how to integrate the touchpad and the mouse keys
with it. The route we were planning to go with this was either use the innate
Windows API to get the touchpad and mouse keys working or rather just include
some of its functionality within the firmware and eventually be able to edit the
keys in the software. With a little bit of scouring on the internet, ZMK tends to
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have a hard time with implementing mouse keys into the firmware, this is where
another keyboard firmware comes in called KMK.

KMK is also an open source firmware flasher that emphasizes its
user-friendliness. The firmware is built around CircuitPython and since it has
many similarities with ZMK, we would not have to derail off of choosing a different
microcontroller. The advantage with this firmware flasher was also its
compatibility with mapping mouse keys which is what the other ones lacked. The
KMK software allows us to configure the macro keys and rotary encoders as
function keys without writing our own code. This requires a KMK-compatible
MCU that is connected to a PC with the KMK software over USB. The following
flowchart is a step-by-step outline of how the KMK firmware is programmed to
the MCU. Note that this process is done in the assembly step of development,
after the PCB is soldered, but before the device is consumer-ready.

Figure 42: KMK Flowchart

While KMK does seem to be a better option than QMK or ZMK, it still does
not fulfill all of our needs, so we will need a different firmware flashing program
that supports mouse functionality as well as key presses. However, it could offer
an option of giving the user a more accessible way of uploading their own
firmware.

3.3.1.3 Circuit Python for Bluetooth Connection
Circuit Python is a programming language built off of Python made as a

beginner friendly option to program microcontrollers. With the most recent
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version, it offers support for the nRF52840, the microcontroller at the center of
the Programmable Trackpad. Using the Adafruit Bluetooth LE libraries, we are
able to use the provided libraries and code up a connectivity where we can
transfer data. Using the microcontroller board to test functionality, we can
connect it to an app on the phone and test the capabilities of the chip and
connection. In our case we can use a premade Circuit Python code for the HID
keyboard and map out the pins to the key that is being pressed. We can also use
the HID mouse example and take the serial information from that for our trackpad
use.

3.3.1.4 Arduino HID Library
The well-documented Arduino firmware for AVR microcontrollers includes

an HID library that allows for very developer-friendly implementation of mouse
and keyboard technology in a microcontroller. When the HID library is used, it
begins by establishing the device’s USB interface as an HID device, and from
there, any HID commands can be sent over the same USB connection.

The simplicity and ease of use associated with this firmware is appealing;
however, it has certain drawbacks. Much of the Arduino code base has been
translated for use with other microcontrollers, including our microcontroller, thus
allowing us to use it as part of the device’s development.

3.3.2 Serial Wire Debug
The microcontroller that we selected for this project, the nRF52840, is

based on the ARM architecture. In order to configure the microcontroller with the
firmware specifications of our product, it is necessary for our development team
to use a programming interface compatible with the ARM device. The most
common standard for programming and debugging ARM-based chips is JTAG.
JTAG specifies particular pins to connect to a microcontroller for the purpose of
debugging, but it is also often used for programming.

The JTAG standard has a derivative standard known as Serial Wire Debug
(SWD), which is often a more attractive option due to the low number of pins
necessary. SWD only specifies 2 mandatory pins, SWCLK and SWDIO (one
clock and one bi-directional data). The nRF52840 was designed with this
standard in mind. There are two pins on the chip specially designated as SWCLK
and SWDIO. Because these pins exist and are the standard for programming,
our team will use SWD to program the system firmware. The table below shows
a list of some considered debuggers/programmers.
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Figure 43: SWD Programmers Comparison
Programmer/Debugger Price

SEGGER J-Link EDU - JTAG/SWD
Debugger

$69.95

SEGGER J-Link BASE - JTAG/SWD
Debugger

$449.95

SEGGER J-Link EDU Mini -
JTAG/SWD Debugger

$19.95

nrf52840 DK $57.18

These debuggers were recommended on the Adafruit website, but
because of trading, shipping, and availability issues, they are currently out of
stock. Especially with the prices of these devices, we had to look for options that
were within our budget. The main thing we really needed was the J-Link
functionality as it allows us to enable the use of common IDEs. In our case for
the nRF52840 we need to install the bootloader for CircuitPython using the
Segger Embedded Studio or the Arduino IDE, that way the Adafruit libraries can
be implemented. For alternatives to the sold-out devices, we sought to look for a
third party device that was J-Link compatible. The J-Link software will allow us to
configure our microcontroller and activate the bluetooth capabilities. To start
testing we ended up purchasing the third party device shown in the figure below.
We purchased this specific one through Aliexpress and they had many options to
choose from when it came to third party debuggers/programmers. This was one
of many that was capable of doing what we needed as it was capable of being
compatible with the installation of SDK, Arduino, CircuitPython software for our
microcontroller. This was our best option due to not being able to justify
purchasing $500+ SEGGER debuggers for the sole purpose of the
microcontroller. This one includes the ARM OB motherboard, a microUSB cable,
and a 4 pin SWD download cable. The only thing lacking compared to the
original OB debugger, is the JTAG interface and only retains the SWD interface
for debugging. All microcontrollers with an SWD interface are supported. Some
other features of this third-party device include compatibility with traditional V8
emulators, support for 3.3V output where maximum output current is up to 300
MA making it very convenient for users to debug and download the target board,
self-recovery fuse provides short-circuit prevention and makes debugging safer,
ESD protection device, and of course its very portable size.
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Figure 44: Third-Party J-Link Debugger

Figure 45: Third-Party J-Link Debugger Diagram

Through further research and testing we found that the 3rd party
programmer was unable to do what we wanted it to do and we had to look to an
official programmer, this led us to using the PCA10056.
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3.4 Application Software
In addition to communicating with the computer sending various key

presses, mouse movements, etc.; There needs to be an application interface with
which the user of this product would interact. The interface should be running as
a program on the user’s computer where it will receive and send data to the
device as well as provide the user with an interface to customize and program
the macro key functionality. The responsibility of the firmware is to map the keys
for the computer to interpret, whereas the software application should be able to
reprogram function keys to different macros. The user should be able to control
and customize what macros they desire. The software should present some
default macros, making it quick and easy for the user if he/she wants to use a
common macro. This information needs to be stored within the software and can
be re-generated at runtime; however, the user should also have the ability to
create their own custom macros. The only catch for the application software itself
is for this customized input from the user, it must be stored where they should be
able to have access to these custom macros even after termination of the
software.

We are limited to the number of physical keys on the device itself, hence
the software should be able to store as many custom macros as the user wants
where they should be interchangeable.

3.4.1 Coding Language Consideration
There are many different coding languages out there to consider when it

comes to application design. The programming language that will best fit this
project and efficiently achieve objectives is one that is very compatible with other
aspects of this project such as the firmware. As well as a number of built-in
libraries and/or open source libraries that are maintained by larger developers.

Our application will allow users to select and choose from various macros
to reassign the device’s keypads to these macros. The keypad will be reading as
additional function keys such as F13 or any other unused keys on the keyboard.
Hence, we will need software integration and/or scripts to run that can change
the functionality of that key press to something that they would desire.

This reassigning macro software integration must be compatible with the
selected coding language. For replicating this project in the future, we found that
with our limited amount of time it was more efficient to have our design plans
focus on importing an open source library to integrate our program with rather
than reinventing the wheel so to speak.

The application must also have some sort of small database setup to store
the user’s preset macros. For example, say a user designs and creates a number
of macro presets but they might not want to “upload” them to the keypads right
away. Hence, even if they quit the application running, compiling (or running it
since Python isn’t a compilation language) it again should still show all of their
presets. The coding language must have an integration with an existing database
language or create our own database system such as writing to a text file.
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Figure 46: Python vs Java Comparison
Python Java

Built-in Libraries Yes Yes

AHK Compatible Yes Not clear documentation
from AHK themselves

Write files to text file Yes Yes

SQLite Compatible Yes Yes

3.4.1.1 Python
Python has an extensive amount of built-in libraries as well as updated

open-source libraries that are regularly updated. It is very compatible with
connecting via hardware and software as well as showing data to the user in an
graphical way.

For changing the functionality of a function key, further discussion and
considerations are expressed in the programmable macros section. However,
briefly we considered Python in this scenario with the well documented, resource
heavy, and extremely compatible AutoHotkey (AHK) integration with Python.
These scripting languages benefit us where the main design aspect can be
focused on the scripting to change the macro key functionality where all Python
has to do is open the scripts and run them (along with a few library imports).

This integration is very efficient where during the software design phase
more time can be spent on something like the graphical interface that the user
sees and interacts with. Python has very extensive GUI libraries where some
even have drag and drop design tools where this will increase user satisfaction
as well as overall usability of the application software.

Towards the end of this project as we are wrapping up the software design
aspect, the final application product should be given as an executable file. In the
real world industry this might be done in effort to hide your source code from
competitors but that doesn’t apply to us in this university setting. Therefore, the
main reason for this goal of converting the code into an executable is to avoid
having the user install any of the developer tools such as Python in order to run
the application. We have to assume that the user doesn’t know anything about
Python where we have to limit their experience to just to the user interface of the
application.

Since Python is not a compiled programming language, there isn’t a
built-in feature of converting your code into an executable file (.exe). Hence, an
open-source library such as PyInstaller should be used to convert the code into
system instructions and commands. However, since our program will involve
running other scripting languages (such as AutoHotkey); we considered
something a little more user friendly. Auto Py To Exe is an open source library
that uses PyInstaller and presents the different options PyInstaller has to offer
through a Graphical User Interface (GUI).

44



3.4.1.2 Java
Java has a number of built-in libraries that can connect and communicate

with a variety of devices as well as a built-in GUI library to display and interact
with particular data and other functions. The GUI isn’t exactly modern where the
overall design might appear dated, potentially causing user dissatisfaction and/or
confusion.

The documentation is fairly large but is outdated where it is harder to find
open source libraries and software that are regularly maintained by reputable
developers. There may be difficulty getting this frontend interface to interact with
the firmware and might not be extremely compatible.

For the integration of scripting languages to remap function keys to
different macros, the documentation isn’t as extensive and along with the
community not being resource heavy for Java. If this language is chosen you
might have to rely on online forums and community examples to integrate Java
with AutoHotkey (AHK) for example.

We also found that Java was compatible with both of our Data Storage
considerations. With the ability to read/write to text files, as well as the ability to
connect and send queries to a SQLite database.

3.4.2 Programmable Macros/Changing Key Press
Functionality

Since the application’s purpose is for creating macros and assigning them
to the device’s keypad, there needs to be software considerations ensuring that
the operating system performs an automated feature after the key press.

Reviewing our firmware considerations, this application should
communicate with the keypads themselves so whenever the user presses the
keypad the Operating System will recognize that a function key (assigned to
extra keys such as F13-F24) has been pressed. This is where the firmware
functionality ends, the firmware can map and change which key was pressed but
can not implement the automation functionality the shortcut macro offers. For
example, one of the macro keys will always be recognized by the operating
system as F13 due to the firmware, but there needs to be a software integration
that will change what the function key F13 can do (what macro it will execute).

This software functionality could be written from the ground up, reinventing
the wheel, so to speak. However, to greatly benefit this project we determined
that using an open source software that can communicate directly with Windows
(or other Operating Systems) should be used to perform the shortcut macro.
Hence, the focus during the design phase can be on creating files using these
scripting softwares to create more complex and useful macros for the user to
choose from. A stretch goal would be to design a scripting program ourselves,
but after reviewing the considerations, we didn’t find a significant benefit that it
would bring to the project. With the use of scripting software, the more complex
macros that could be designed would improve overall user satisfaction and
usability of the application software.
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Overall, after these scripting software are considered and we have
reached the design phase of the project; the main focus for software design is
coding up the scripts that perform both simple and complex macros. For
example, once the user decides to save their new macro to the PC and clicks the
save button, the application program should open and run these scripts to update
the device’s functionality.

3.4.2.1 Microsoft PowerToys
When considering other technologies to create macro automation scripts

for particular keys, Microsoft PowerToys stood out due to Microsoft having
created this product. We considered this early on during our technology
investigation where we understood that we needed software to communicate with
the Operating System such as Windows to reassign the functionality of a
particular key press.

But under further investigations we found the documentation for this tool to
be very minimal where the documentation focused on enhancing and changing
the Windows experience rather than creating scripts for custom macros. We
found documentation on remapping keys to another key press, changing
shortcuts, and launching apps based on shortcuts. However, the ability to easily
map these keys to a complex macro is not present in our investigations where
more logic and software work must be done to meet the goals of this project.

3.4.2.2 AutoHotkey
One popular option for PC users to create their own macros is an

open-source program called AutoHotkey (AHK). This program defines a simple
language for writing scripts that work on an OS level. Each script begins with a
trigger, which is defined as some particular input to the computer. After the
trigger, the script prescribes a function to be executed when the macro is
triggered. The functions available with AutoHotkey are numerous, and they would
certainly cover the scope of what a user may want to accomplish with our
Programmable Trackpad.

Because AHK is open-source, it would be possible for our application
software to come packaged with an installation of AHK. When the user starts up
our application, it could simultaneously start the AHK process, automatically
bringing all of the user’s macros online. The following flow chart illustrates how
this process would work.
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Figure 47: Flowchart of AutoHotkey Implemented in Application Software

Due to the flexibility and open-source nature of AHK, our team has
decided to use it as the basis for macro functionality in our application.

3.4.3 Graphical User Interface (GUI)
In order for this device and associated software to be user friendly and to

have a low learning curve, the frontend technology must be simple enough yet
detailed. Any buttons should be self explanatory or at least a description
indicating its functionality.

47



Figure 48: GUI Library Comparison
Library
Name

Coding
Language

Advantages Disadvantages

PyGUI Python - Available on all
platforms
- Open source

- Not pre-installed

PyQT Python - Drag and drop
design tools
- Available on all
platforms
- Advanced widgets
to if app upgrades
into higher scale

- Large and complex
- Documentation is
very minimal
- Not free and not
open source

Tkinter Python - Built into Python
- Open Source
- Lots of resources
and documentation

- No design tools
(QT designer)
- Too simple,
difficulty when
program expands

Kivy Python - Drawing tool
- Modern GUI
- Open source

- Minimal
documentation and
resources
- Not pre-installed

javax.swing Java - Simple
- Decent
documentation
- Old but abundant
resources

- Forces us to use
Java where
compatibility with
other tech is not
guaranteed.

After considering these different GUI libraries and the two coding
languages, we are heavily leaning towards the Python language with the
abundant libraries it has to offer. Further testing and prototyping will need to be
done to determine the best GUI library to use and what tools it offers to improve
and quicken the GUI design phase of the project.

3.4.4 Macro Preset Storage Considerations
During the process of creating a macro-key, the user will have a variety of

options to design their own presets of their favorite automation macros. Instead
of learning a new scripting language, reading through different documentation
and online forums on how to create this automation process; the user will simply
have to interact with a few buttons and dropdowns to create their own macros.
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In this application, an example workflow would be to create a new macro,
select the “Run (user-specified program)” preset, give the macro a name, assign
a macro key to this script, and click save. The user would then have a functional
macro without having to understand the AHK scripting language. The macros
that the user creates will be used many times over an unknown time period, so it
is important that they are stored on the PC for future use. Therefore, for this
section we will be considering how to store these user presets on the application
program to further improve the user’s experience. If we didn’t implement this
feature, the user would be forced to recreate all of their macros all over again if
they swap them out frequently. This way, it is as simple as selecting a previously
created macro from a dropdown list.

Running the application, this macro information shouldn’t only be stored
just in RAM. Presuming the macro is stored in various string variables, the user
should be able to store as many macros as he/she wants. This data must be
stored and written on the computer where it should be present even after
terminating the program and/or restarting the computer. This is important for our
goal of creating a user-friendly application. For example, say you want to switch
a key to a new custom macro; even though the old macro is being overwritten, it
should be stored and selectable for the user in case the user ever wants to swap
back.

There are various different methods of storing and writing data to the
computer where each has its own technical advantages and disadvantages. For
the goals of this project, an online database will not be considered extensively
due to forcing the user to have an internet connection to modify his/her
Programmable Trackpad. The benefits of an online database are only significant
if there are multiple concurrent users. This wouldn’t apply for this product since
there is only one local hardware device. Therefore, the variety of databases that
will be considered will be found locally on the user’s computer.

3.4.4.1 Text File Storage
The simplest way to store data in case of termination/exit of our

application program, is to store strings and write it into a text file. Then after
restarting the application during initial runtime, the data is then read from the file
and put into variables.

However, for someone to replicate this project without the limits of a
university setting (limited time and budget), it would be much more difficult to
expand upon or upgrade the application software with this text file based
database setup. If we have more variables that need to be stored, the older
text-file does not contain these new variables. If no action is taken such as
rewriting the text database or including additional logic in the code; the data
could be read incorrectly causing inaccurate macros for example.

For this project, if we limit the software to a single user, the text-based
storage is advantageous for its simplicity. However, if we pursue our advanced
goal of having multiple users per device, there would have to be more thought
and effort in storing and retrieving data accurately for all users. For example, if
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John has 20 custom macros, Susie shouldn’t be able to see any of those and
vice versa.

Lastly, regarding the previous sections on the different programming
languages we considered; both Java and Python support creating a text file and
then being able to read and write text which can be then interpreted into data
through programming logic.

3.4.4.2 SQLite Database
Even though we may not be storing extensive information in these custom

macro presets, if not designed correctly the software storage design will be very
limited and un-scabable. To ensure future software features within this
application, there is assumed new data that must be stored for the associated
user. Hence, a pre-built and extensively tested database language such as SQL
could benefit this project.

SQL was first developed in the 70s where it is reliable having very minimal
bugs where thousands of developers use and consistently test. For this project,
we found that SQL could offer stability, high performance, and compatibility with
our other considered technologies. SQLite is compatible with both Python and
Java where we could integrate data created within the application, make a
connection to the local database, and send queries to retrieve or store preset
macro information.

If we went with the other consideration of simply storing data in a text file,
we are leaving ourselves open to potential bugs and/or unintended features
when designing all of the logic could cause inaccurate information displayed.
Hence, extensive testing would be required for a text file storage where with
SQLite we only have to test a few queries such as select, insert, and delete. SQL
might be overkill for the scope of this application where the only challenge would
be creating the database and ensuring that we could receive and update data
accurately. However, overcoming this challenge could bring a lot of efficiency and
value to this project.

3.5 Chassis and 3D printing
One of the aspects we wanted for the programmable trackpad, was to

have a chassis that was affordable, light, non-obstructive, and easy to produce.
For this, we looked to 3D printing. Through some of the preliminary designs we
needed areas for the mechanical switches, rotary encoders and trackpad to be
easily accessed without obstructing each other. Initially we thought a more simple
approach by putting the PCB in between some acrylic plates and having
standoffs on the corners support the structure but we felt that it didn’t look
consumer friendly. The final design for the chassis we ended up using was an
enclosure with openings for each of the functionalities: the rotary encoders,
mechanical switches, and the trackpad. The materials we considered for the
chassis were PLA and PETG each coming with their pros and cons. Both are
very good options, but there were also some other elements that we were able to
consider.
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Figure 49: 3D Printing Material Comparison
PLA PETG

Renewable and made of natural raw
materials, makes it biodegradable

Thermoplastic made of PET making it
recyclable but not biodegradable

Weaker than PETG but stronger than
ABS and stiffer than both

Water, chemical, and fatigue resistant,
making it more durable

Slightly cheaper Can get pretty pricey

Lower extrusion temperature High extrusion temperature

Figure 50: Chassis Sketches

To actually access the PCB for production or testing, the bottom of the
chassis will be attached to the top using screws. Inside of the casing will also be
standoffs to hold the PCB in place. The chassis will be a flat design to
accommodate for the user’s dominant hand. As we are all slightly unfamiliar with
CAD-ing, some research on the structure of the chassis will be heavily
researched.

Through this research there are many things that should be considered
when building an enclosure, and the material used affects the parameters we
make for the enclosure. The table below is a list of things we should consider as
well as a description of why.
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Figure 51: Chassis Design Considerations Table
Guidelines/Suggestions Reason

2 mm wall thickness Enclosure structure

Radii/fillets to corners Helps reduce stress at corners and
edges, also offers ease in printing

0.5 clearance for internal electronics Compensation for distortion,
expansion, shrinkage or internal
components

Extra 0.25 mm to diameter of screw
and fastener holes

Allows for extra clearance for self
drilling screws

Subtract 0.25 mm from diameter Self taping holes, allows screws to bite
to the casing

2 mm port clearance Ease of placing internal electronics

Add lugs, lips, and cut outs (5 mm in
width)

Aids in alignment of the enclosure

Ribs and gussets Improves integrity and reduces stress

Bosses (1 hole diameter around the
hole as a start)

Reduces likelihood of bulging,
distortion, fracturing around screw
holes

Uniform wall thickness Good design practice

Possible stretch goals we explored were higher quality metals as the
material for the chassis and maybe get into plates in between the top and the
PCB which will enhance the acoustics of the device. Some other materials for the
chassis would include aluminum, stacked acrylic, or even polycarbonate; as for
the plates, aluminum, brass, FR4, and polycarbonate are all potential options.

4 Design Details

4.1 Preliminary Designs
We went through a few iterations when coming up with the design for the

Programmable Trackpad. Finding the balance between functionality and a
desired form factor was part of the motivation for the design. The functionalities
we wanted to implement ended up being a part of the final design but the unit to
achieve said functionalities narrowed down to a few input units. For example,
some audio sliders were considered since they could also be programmed a
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certain way, but there were some complications with the firmware and the input
converters.

Figure 52: Initial Concept Sketches

Our main functionalities we ended up sticking with were macro control,
rotary encoders, and a trackpad control. From there, it was a matter of how much
we should have on a unit which would decide its form factor. Another aspect that
was explored was the ergonomics for both right-handed and left-handed users.
This is where the Bluetooth implementation comes in handy allowing the user to
place it anywhere that is comfortable for them without the hindrance and
limitations of a wired connection. Eventually we came up with the final design
that caters to our desired functionalities, ergonomics, and a portable form factor.
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Figure 53: Initial Concept CAD Model

4.2 Hardware
The Programmable Trackpad’s hardware is the first element of the product

with which users will interact. It’s important that its design is user-friendly and
functional. The following sections go into depth on the design of each element of
the system’s hardware.

4.2.1 Power System
The device’s power system is made up of three major components: the

battery management system, the battery, and the voltage converter. The battery
management system provides constant current and constant voltage to the
battery. The battery is the static source of power for the entire device. The
voltage converter provides constant current and constant voltage to the device
electronics. The general flow of the power system as it pertains to our design is
that there is a charging system and a power delivery system. The electronic
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components in between exist to regulate voltage and current for the next stage.
This flow is shown in the chart below.

Figure 54: Generalized Power System Flow Diagram

4.2.1.1 Battery Management System Electrical Schematic
The chip used for the battery management system is the MCP73831. That

part’s documentation includes a circuit diagram showing its typical application as
a lithium battery charger. Since that application is identical to our goal, we
replicated the circuit in our device. The given circuit diagram is shown below.
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Figure 55: MCP73831 Circuit Diagram from Datasheet

The VDD pin of the MCP chip is the input pin, which accepts USB voltage.
The VBAT pin is the output pin, which supplies 4.2 volts. It is recommended to
connect both of these pins to 4.7 µF capacitors to ground. The PROG pin sets
the current regulation value based on the value of the resistor connected to the
pin, according to the equation below.

Figure 56: MCP73831 Current Regulation Equation

𝐼
𝑅𝐸𝐺

 =  1000𝑉
𝑅

𝑃𝑅𝑂𝐺

A 2 kilohm resistor attached to the PROG pin results in a maximum output
current of 500 mA, which is also the maximum current of USB. The VSS pin sets
the ground for the rest of the chip. Finally, the STAT pin is used to signal when
the battery is charging. If an LED is connected to this pin, then it will light up
during the charging process and extinguish when the charging process is
complete. This functionality could be applied to the Programmable Trackpad, but
we chose not to. As such, in our design, the STAT pin is left open. The following
schematic shows how the chip is connected in our circuit board.
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Figure 57: MCP73831 Circuit Schematic

4.2.1.2 Voltage Converter Electrical Schematic
The voltage converter used to step-down the battery voltage to 3.3 volts is

the LM3671 chip. The documentation for this component includes a circuit
diagram for the typical application of using the chip as a buck converter. This
circuit was replicated in our own design. The given circuit is shown below.

Figure 58: LM3671 Circuit Diagram from Datasheet

The VIN pin on this chip connects to the voltage supply (the LiPo battery in
this case). In practice, this voltage ranges from 3.7-4.2 volts. The FB pin on this
chip is the output pin, which supplies a constant 3.3 volts. It is recommended that
the input is attached to a capacitor of at least 4.7 µF, and the output is attached
to a capacitor of at least 10 µF. The SW pin is used to specify the chip’s mode of
operation. It is recommended to use a 2.2 µH inductor to connect this pin to the
output voltage. The EN pin enables or disables the device. It is recommended
that the device only be enabled when the input voltage is greater than 2.7 volts. It
is specifically recommended that this pin not be left floating. For our design, we
attached this pin to the input voltage through a 100 kilohm resistor because this
is how it is connected in the development board we used for our prototype.
Similarly, our device uses the capacitance values from this prototype board for
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the input and output capacitors. The following schematic shows how we connect
this chip in our circuit board.

Figure 59: LM3671 Circuit Schematic

Note that the VIN pin on this chip is connected to the battery indirectly
through a switch. This physical switch is the on/off switch for the whole device.
As stated previously, the switch opens or closes the circuit between the battery
and the voltage converter because the voltage converter draws current when
connected. When the device is turned off, the battery is disconnected to save
energy.

4.2.2 Microcontroller
The device electronics outside of the power system are centered around a

microcontroller, the nRF52840. This device accepts input from the macro keys,
rotary encoders, and touchpad. It then processes this input and outputs HID
commands.

The microcontroller has a built-in USB output and a built-in Bluetooth
module on the chip itself. Because these systems are integrated in the
microcontroller, there is no need to connect separate chips with these functions
to the microcontroller. The only connections that the microcontroller has on the
circuit board are to the input devices (and associated controllers), output,
programming, and power.

The touchpad communicates using analog signals on ADC pins, and all
other input devices connect to the MCU with GPIO. The microntroller’s output is
connected to two channels, the internal USB interface and the internal Bluetooth
interface. The Bluetooth interface has no connections on the PCB because it is a
wireless device. The USB interface in the MCU connects to the USB connector
on the PCB. There are multiple inputs for the microcontroller which include up to
51 GPIO pins with respective functionalities, some being also analog inputs, and
having trace data functionalities.

Two pins on the MCU are designated for SWD, the programming interface
for the chip. These two pins will ordinarily be left floating. However, during the
development process, they can be connected to a PC through an external SWD
programmer.
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The following figure illustrates all of these internal and external
connections that the MCU makes.

Figure 60: nRF52840 Connection Diagram

4.2.2.1 Bluetooth Module
The MDBT50Q-1MV2 is the Bluetooth module used for the final iteration

of the PCB. It uses the nRF52840 microcontroller and integrates the antenna
solution for Bluetooth. It features 48 general purpose I/O pins and a Bluetooth
antenna with an excellent connection of up to 2 Mbps data rate through Bluetooth
5. The following table describes the features of this module that were concerns
when designing the device.
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Figure 61: MDBT50Q-1MV2 Technical Specifications
Module Bluetooth Available

Interfaces
Dimensions

(mm)
Supply
Voltage

MDBT50Q-1
MV2

Protocol
Support: BT
5.3

GPIO, SPI,
UART, I2C,
I2S, PMD,
PWM, ADC,
NFC, and
USB

15.5 x 10.5 x
2.05

1.7V to 5.5V

The documentation for the MDBT50Q includes several useful diagrams,
including a circuit diagram suggesting how to connect the module to a circuit
board and the PCB layout of the module. The circuit diagram was used as a
reference for our own schematic. This diagram is shown below.

Figure 62: MDBT50Q Circuit Diagram from Documentation
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This schematic shows how to connect the pins of the MDBT50Q for
necessary functions. In the documentation, it is explained that the “optional”
crystal component is necessary to regulate input voltage with the module’s LDO
mode. Our circuit uses an external voltage regulator, so the optional crystal setup
was ignored in our design. Additionally, the schematic shows how to connect an
NFC device to the microcontroller’s NFC pins. This functionality was not included
in our design, so this component and its associated capacitors were ignored. The
USB pins (VBUS, D+, and D-) are shown to connect to a USB connector in the
schematic. The data pins are connected through 27 ohm resistors, and the VBUS
pin is connected to a 10 µF capacitor. The VDD and VDDH pins are shorted and
connected to a 10 µF capacitor to ground. These pins are connected to the
constant 3.3 volt supply from the buck converter. All of these pins are used in our
design as they are used in this schematic.

Additionally, the GPIO pins on the module are connected to each of the
input devices on the Programmable Trackpad. Remaining GPIO pins are left
floating. The following schematic shows how the module is connected in our
design.

Figure 63: MDBT50Q Circuit Schematic

The following table lays out the same pinout described by the schematic
above, but with explanations of the pins in use in our design.
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Figure 64: MDBT50Q Pin Description Table
Pin Type Connection Explanation

0.04, 0.05, 0.06,
0.08, 0.26, 0.27

GPIO

Rotary Encoders These GPIO pins
were selected
according to the
datasheet for

least interference
with the Bluetooth

antenna.

0.13, 0.14, 0.15,
0.16 Macro Keys

1.08 Orientation Switch

0.17, 0.19 Mouse Clicks

0.03, 0.29, 0.30,
0.31 ADC Touchpad

The touchpad’s
four pins send

variable
resistance values

to the MCU,
which decodes
the signals using

ADC.

SWDIO,
SWDCLK SWD Programmer

Programmer
attaches to these
pins to upload
firmware to the

device.

D-, D+ USB
USB Connector

On-chip USB
interface allows

for USB
connection to
these pins.

VBUS

Power

5-volt power
directly from PC.

VDD, VDDH 3.3 volt

VDDH is used to
determine if

voltage regulation
is necessary.

When shorted to
VDD, no voltage
regulation is
necessary.

GND/2/3/4/5 Ground
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4.2.3 USB
The only physical component needed for the USB system is a Micro USB

Type-B female connector. This connector is soldered onto the PCB in a position
where it is accessible for the user. From there, the user can plug a cable into it.

The Micro USB Type-B female connector part has 5 connections. Only
four of these connections are necessary; the remaining pin is unused. The
unused connection is not wired into the MCU on the PCB. The following diagram
shows which connections will be soldered and which will remain open.

Figure 65: USB Breakout Diagram

In this diagram, each rectangle above the connector represents a
connection. The blue connection is connected on the ground plane. The red
connection is connected to the MCU on a 5 volt node. The orange connections
labeled “Data+” and “Data-” connect to the USB interface on the MCU.

The USB system can be simplified into a device with four pins (5V, GND,
Data+, and Data-). This system interacts with several other subsystems within
the device, as shown in the following diagram.
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Figure 66: USB Block Diagram

4.2.4Touchpad Control
The touchpad uses resistive technology to isolate the location of a finger

press on the device. This location is expressed in x and y-coordinates through 2
x-labeled pins and 2 y-labeled pins. These pins connect to ADC pins on the
microcontroller, which then interprets the signals in firmware.

4.2.5 Miscellaneous Input Units
As mentioned in previous sections, one of the goals of the Programmable

Trackpad is that it be accessible to right-handed and left-handed users alike.
Because of the layout of buttons on the device, it may not be comfortable for
everyone in one orientation. For the purpose of hardware design, the relevant
information is that a basic switch on the device informs the microcontroller
whether the device is in left-handed mode or right-handed mode.

Additionally, the circuit board includes three rotary encoders for macro
inputs and four Kailh hot-swappable sockets for the macro keys. The mouse
buttons are controlled by four basic buttons on the PCB (two left clicks and two
right clicks). The schematics for all of these devices are shown below.

64



Figure 67: Circuit Schematic for Macro Keys

Figure 68: Circuit Schematic for Mouse Buttons
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Figure 69: Circuit Schematic for Rotary Encoders

Figure 70: Circuit Schematic for Orientation Switch

Note that all of these input units are referenced to ground in these
schematics. The typical application of input devices such as these requires
pull-up resistors on each of the input pins to reference the open state of the input
device. These resistors are absent from our schematics because they are
configured internally in the microcontroller through firmware.
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4.3 Firmware
The hardware of the Programmable Trackpad includes multiple computing

devices which are responsible for processing input and output. The design
challenges associated with such devices include writing code for programmable
devices and selecting communication protocols for the devices to use. The
following sections detail the device’s firmware design.

4.3.1 Establishing Connection
When the device is powered on, it immediately begins searching for a

Bluetooth device with which to pair. The user must configure this Bluetooth
connection on the PC. As long as the device stays on and the PC does not sever
the connection, then the Programmable Trackpad will stay paired with the PC.
The following flowchart explains the pairing process that the microcontroller must
facilitate.

Figure 71: Bluetooth Pairing Process Flowchart

4.3.2 Hardware Control
The majority of the input/output functionality of the Programmable

Trackpad is handled by an nRF52840 microcontroller. Its responsibilities include:
processing input from input devices, translating input into meaningful output, and
routing output to Bluetooth or USB. The following chart explains how each of
those responsibilities is carried out.
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Figure 72: Hardware Control Flow Diagram

4.3.3 Firmware Uploading
Once the microcontroller’s code is written and compiled, it must be loaded

onto the chip in a process known as “flashing.” In order to flash the firmware, the
microcontroller must have dedicated programming pins connected to a PC over
SWD.

The keyboard profile that is loaded into the MCU in order to map MCU
pins (and by extension their attached input devices) to various Windows
functions is programmed into the device one time during the development
process, and then it is never programmed again. In order to ensure that the
device is not reliant on any background-running application to fulfill its basic
mouse functionality, the mouse movement is handled in firmware.

4.4 Application Software
Through using the Python GUI libraries, we have made a user friendly

software interface that is both efficient and has a sleek modern design. We
started off with a baseline and referenced many other applications that allowed
users to customize their device. Some of what we looked at included Logitech’s
LGHUB software, the Elgato Stream Deck, and VIA. We wanted the user to be
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able to select the key or encoder shown in the UI and options will be shown on
what they want the selected input device to do whether it be a macro that either
is a combination of keys or be able to open a program/application. As for the
rotary knobs, we wanted to present options such as desktop volume, mic volume,
monitor brightness, etc. Shown in the figure below, there are also presets found
in the application folder. Ultimately, we want the application to be easy to
navigate and provide full customizability for the device.

Figure 73: Application Layout Mockup

4.4. AutoHotkey
AutoHotkey (AHK) is a scripting language designed for Windows that

focuses on creating macros and other various automated features with hotkeys
or shortcuts. With these script files in place, containing simple to complex
macros; the user application simplifies this process of creating a macro and
“mapping” it to one of the external keypads. The application triggers these
AutoHotkey scripts to change the functionality of F13 to something new like Open
Chrome. AutoHotkey can be used standalone, but we have designed our own
pre-made scripts for the user to choose from. This way, they don’t have to spend
all of their time reading up on AHK forums to code up a script where instead they
can just have their favorite macro right away. In the figure below, we showcase
how AutoHotkey interacts with other software technologies in this project.
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Figure 74: AutoHotkey Block Diagram

4.4.2 User Interface
For the UI, there aren't too many complicated features where we mainly

allow the user to create a macro, delete a macro, and upload a macro to the
keypads. The frontend displays these features in a simple way where the
user can select preset macros in a dropdown and search bar. The background
then interacts with a scripting language to change the function keys macro
automation shortcut feature. Below is a diagram of how the UI is laid out and how
it interacts with other technologies within the project.
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Figure 75: User Interface Block Diagram

In the design figure below, the main user interface function is the frontend
design menu that allows them to create a macro preset. The user is able to give
the preset a custom name and then choose from a list of default shortcuts or
macros. All of this can be found in the left side of the ‘Create New Preset’ popup
menu where the custom name gives the application a personal touch and gives
the user familiarity with their macros. On the right side of the menu is where the
macro is assigned to on the board. If the user decides that the preset shouldn’t
be on the board but would like to save the macro for a later time, this menu
allows them to do that.

The color design was different from the initial mockup where we didn’t
want to set in stone a theme that overall wouldn’t be beneficial and/or pleasing to
look at for the user. To give the user more customizability in the application, they
can select a Light or Dark Theme mode in the settings. This pushes towards our
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advanced goal of giving the user more ability to customize their macro
experience. If this project would be expanded upon and was replicated with a
team without the constraints of being in an university environment, having these
customizable settings could improve usability and user friendliness. Having
software that appears outdated or looks too complex at first glance will heavily
decrease the amount of daily users where that would be very negative if the
device was placed in a real world business or marketing environment.

Figure 76: Creating New Macro Preset Menu Design

With the previous figure, we are able to see how the user can customize
their macro experience by creating any number of presets they want without
having the limitations of the number of keys on the device itself. It is also
essential for the user to edit them after the initial saving and creating of the
preset. As seen in the figure below, the design has a lot of the same features as
the Create Preset menu except for of course the Delete button.

Another design feature this diagram showcases is the additional option
that appears after selecting the ‘Run Chrome’ macro. This example is showing
that some macros give the user an additional parameter where they can go even
further in their macro customization. So in this case the macro will open chrome
and immediately go to UCF’s webcourses site.
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Figure 77: Editing Existing Macro Preset Menu Design

4.4.3 Macro Generation and Saving
When a user creates a macro in the GUI, that macro is saved locally as an

AutoHotkey file. AHK files use a special syntax to specify scripts. Since the user
is not writing these scripts, the application itself must generate the scripts. To do
this, the application has a built-in list of strings that it can add to the AHK file.
When the user selects a macro function, he/she is choosing from this list of
strings.

Because the user only interacts with a GUI, the application is responsible
for writing the code that will be run using AutoHotkey. Once the macro is finished,
the application then saves it to a .ahk file stored in the user’s local data. All
macros are stored in the same location on a user’s PC so that the application can
access them on subsequent uses. At this point, the application has generated a
single .ahk file remapping the functionality of the device’s keys. The application
will then compile the .ahk file into an executable using the built-in AHK compiler
“Ahk2Exe”. The application will then run this executable to produce the desired
macro functionality. The following flow chart illustrates this process in greater
detail.
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Figure 78: Macro Generation Flow Chart

Along with the essential feature of creating and writing an .AHK script file
for the macros to run on the user’s computer, there are also a number of other
text files that are read and written to that give the user some quality of life
features. Meaning it enhances their experience with the app but if this feature
wasn’t there it would break the overall functionality expected from the app.

The first file that is created and read into is the text file that stores all of the
macros that you created during execution of the program. During this execution
period of the program, the custom macros data is stored in an object array
containing the macro’s name, type, user input, and a unique ID. All of this data is
used at some point during the application whether it’s to send it to the .AHK
script, display the macro name for the user to understand in the table and
dropdown, and an ID to uniquely identify the macro so we can ensure to
efficiently edit or delete the macro.

On exit of the program, the program goes through a function that takes
that object array and stores all of the data in a format most similar to JSON. Due
to the object’s simplicity and not much variation between them we decided not to
actually use a JSON library. However, if this project was going to be expanded
upon with more and more complex data and macros it might be essential to swap
to a more efficient data storage method such as using JSON files or having a DB
file where we are using SQL queries to fetch and store data.

Therefore, once we stored the macros on a file, naturally the next function
that was implemented was during initial load of the program that reads the data
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on the file and then creates that same object array for the user to use like they
never even closed the program. The only other issue that was presented later is
if the user selects a number of macros and “programs” them to the board, they
would of course have all of their macros listed but they wouldn’t know which ones
were selected after restarting the app. Therefore, another file was created to
store the unique IDs associated with the selected macros which are then
pre-populated into the dropdowns on the home screen.

Since all of the data is being successfully stored where each macro has a
UUID (Universally Unique Identifier) on its creation, the last main functionality
was to give the user the ability to delete and edit their macros after it’s creation.
Overall the functions wouldn’t be very lengthy in terms of getting it to work where
we simply have to remove the macro from the object array by searching for its ID.
The edit functionality was a little bit more intuitive interacting the frontend Tkinter
where the ‘Create Macro Window’ class was adjusted to take parameters and
prefill the form inputs where the user can go through the same process and make
any adjustments.

The logic behind these functions were not complicated where the most
intuitive part was creating a table using our frontend Tkinter library that displayed
important information for the user along with a few buttons giving them access to
the edit and delete functionalities. Along with this we wanted to make the table
dynamic in the sense where it would be created by the search query from the
search bar on the homepage showing the results (by name or type) as well as
any changes they make would be reflected accurately in the table and in the
dropdowns on the home page. For example, if the user deleted one macro it
should be removed from the table as well as from any of the dropdowns on the
home page (including if that macro is currently selected). In the figures below you
will see the overall format of the table and the example case of having a blank
search query and then searching by name.

Figure 79: Search Results Window showing all macros the user created
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Figure 80: Search Results Window with search query

4.5 Chassis
In the final product, all of the electronic components of the device are

securely enclosed within a chassis made of mostly 3D-printed parts. This chassis
is designed specifically with the needs of our PCB and input devices in mind.

4.5.1 3D-Printed Enclosure

Figure 81: 3D Rendering of Chassis

Shown in the figure is the 3D rendered chassis. In the physical
implementation, there is a bottom plate where the PCB and electronics are
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mounted and the top casing to cover or surround all the necessary electronics.
The top case has support for the trackpad as well as where the metal plates
would be. The bottom plate is just a single plate where we would print standoffs
for the PCB to help the ease process of mounting the PCB. The 3D modeling
software we used was Shapr3D which is a beginner friendly software that allows
visualization for the rendered object and we’re even able to render different
materials. The main concern that affected how the chassis looks on the inside is
how we laid out the PCB for the touchpad to include the buttons. Based on our
constraints and standards, we also needed to keep the chassis within the
designated measurements, meaning a calculated way of forming the inside of the
chassis as well as the PCB size.

4.5.2 Mouse Buttons
One design concern we came across was finding the right method for the

touchpad buttons. We wanted a functionality that doesn’t stray away from the
traditional idea of the trackpad. The idea was to use a thin metal plate with some
flex so that the finger is able to press on the button through the touchpad. Shown
in the figures above, there is a slit on the bottom plate where the plate is inserted
easily. That plate has enough flex to press onto the button under the plate to
input the respective right or left mouse button. All of this functionality is under the
trackpad unit without interfering with the main functionality. A more accurate
representation can be seen in the figure below.

Figure 82: Mouse Button Construction

5 Prototypes and Testing

5.1 Hardware
In the prototyping phase of development, our team acquired several

pre-built circuit boards using the chips we intend to utilize in our PCB. In order to
better understand these components and the circuits that each one requires, we
ran tests verifying that the parts can fulfill their prescribed purposes.
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Once we ran the necessary tests, we developed a development board of
our own, to test the components one by one, especially the microcontroller. After
those tests were run, we moved on to creating and developing with the final PCB
with all the final components.
The following sections explain the testing process for the various tests that we
have run and intend to run in the future.

5.1.1 Battery Charging
The two battery management system boards discussed in section 3.2.1.4

were both used for prototyping. All power system tests use a 502248 battery,
which is a generic 500 mAh lithium polymer battery. The goal of prototyping a
charging system is to ensure that the selected chips and battery are capable of
fully charging without overcharging over a generic USB connection within a
reasonable amount of time, defined in Section 2.3 as < 3 hours.

5.1.1.1 Procedure
In order to test the charging system, we first discharge the battery a

noticeable amount by connecting it to a motor. Based on the data given in Figure
14, it is reasonable to expect that the battery will read 3.7 volts when it is
significantly depleted. If discharged further from this point, its voltage will drop
rapidly.

For the purpose of prototyping, once the battery reads under 3.7 volts on a
multimeter, then it is noticeably discharged. Next, the battery management
system board is connected to a PC over USB. The battery is then connected to
the output of the battery management system. This process should charge the
battery. At regular intervals, the voltage of the battery and current flowing from
the battery management system board will be checked using a multimeter. If the
procedure is successful, the voltage will steadily rise until it eventually reads ~4.2
volts, at which point the battery management system will cut the flow of current to
the battery. If the voltage does not steadily rise, if the voltage rises significantly
higher than 4.2 volts, if the voltage does not reach ~4.2 volts in a reasonable
amount of time, or if any components appear to sustain physical damage, then
the procedure is a failure.

5.1.1.2 Results
The initial test was carried out using the TP4056-based board. The

experiment’s results are shown in the graph below.
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Figure 83: TP4056 Charging Characteristics

As is shown in the graph, the battery’s voltage was 3.69 volts before
charging. It rose quickly to ~3.94 volts, and then it gradually rose to 4.09 volts, at
which point the battery ceased charging. This process took 45 minutes in total,
which is a reasonable amount of time to expect a user to wait for a full charge.
The current supplied to the battery steadily decreased as the voltage increased
until it could no longer be read by the multimeter.

Because the battery was fully charged without overcharging, this
procedure was a success. This proves that the TP4056 is a valid possible
solution for the battery management system in our product.

A second test using the MCP73831-based board was performed after
another full discharge of the battery. The results of this experiment are shown in
the graph below.
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Figure 84: MCP73831 Charging Characteristics

The results of this experiment were very similar to that of the TP4056. The
battery’s initial voltage was 3.69 volts. When connected with the MCP73831
board, its voltage quickly rose to ~3.9 volts, and then it gradually rose to 4.15
volts, at which point it stopped charging. This process took 90 minutes in total,
which also falls within a reasonable time frame for the user to wait on a full
charge. Like in the last experiment, the current decreased steadily until it was too
low to read using a multimeter.

Because the battery was fully charged without overcharging, this
procedure was a success. This proves that the MCP73831 is also a viable
solution for the product’s battery management system.

As is stated in Section 3.2.1.4, the MCP73831 is a more attractive option
because of how simple it will be to implement in our design. Since both
prospective chips succeeded in the prototyping phase, there is no reason not to
use the MCP73831 in the final design.
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5.1.2 Simultaneous Transmission and Charging
Once the battery charging capabilities of our components are verified, it is

essential that we verify that the USB connection can be used for data transfer as
well as power transfer.

5.1.2.1 Procedure
As in the previous prototype, the battery must be discharged at the

beginning of this experiment, although it is only necessary to discharge the
battery to the point that it will trigger the battery management system when
connected. For the sake of the prototype, the battery will be discharged until it
reads 4.0 volts on a multimeter.

After discharging the battery, the battery management system must be
connected to a PC via a USB cable. The four wires of the USB cable must be
broken out to another USB peripheral (such as a generic mouse), similar to the
way the USB interface will be arranged on the PCB. If the procedure is
successful, the USB peripheral will be functional the entire time it is connected to
the PC, and the battery’s voltage (measured by a multimeter) will increase over
time. If the USB peripheral does not function as intended during the procedure or
if the battery does not charge while connected to the battery management
system, then the procedure is a failure.

5.1.2.2 Results
In the initial attempt at this experiment, we used a generic computer

mouse with its four wires broken out onto a breadboard. These wires were then
connected to the battery management system in the configuration shown below.

81



Figure 85: Wiring Diagram of Charging Prototype With Generic Computer Mouse

When configured like this, the MCP73831 would not activate, and the
computer did not recognize the mouse. In an attempt to understand why the
experiment failed, each node was probed with a multimeter. The following table
shows the results of this probing.

82



Figure 86: Table of Voltages During Failed Simultaneous Transmission and
Charging

Node Connected
Devices

Expected
Voltage

Actual Voltage

USB VBUS MCP and Mouse 5 V 2.5-3.5 V

USB VBUS Mouse only 5 V ~3 V

Battery+ MCP and Battery 4.2 V Battery Voltage
(3.9 V)

Battery+ MCP only 4.2 V 1-3 V

These results confirm that the MCP73831 was not activated. In order to
activate, the MCP73831 requires an input voltage of at least 3.75 volts, but in this
experiment, it was only receiving 2.5-3.5 volts. When activated, the MCP73831
supplies a voltage of exactly 4.2 volts. However, in this experiment, the supply
voltage pin was not constant. When attached to the battery, it matched the
voltage of the battery. When floating, it fluctuated rapidly between 1 and 3 volts.

In addition to the MCP73831 not working, this procedure also shed some
light on why the mouse would not work. When the mouse is plugged in on its
own, its VBUS reads approximately 3 volts. Ordinarily, USB devices are
supposed to operate at 5 volts. The fact that this mouse operates at 3 volts
instead of 5 volts, even when it is entirely disconnected from the MCP73831,
shows that it is not a good candidate for this prototype. A better candidate would
be any device that is well known to operate at exactly 5 volts when plugged into a
computer’s USB port. In order to solve this problem, we used an Arduino Uno as
our USB device. The following diagram shows how we set up this prototype.
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Figure 87: Wiring Diagram of Charging Prototype With Arduino Uno

The Arduino Uno has its own breakout pins for 5 volt and ground, so the
MCP73831 was plugged directly into those pins. Before wiring the system, the
Arduino Uno was programmed to send basic serial data to the PC, similar to the
way a generic computer mouse would. Upon wiring the system, the MCP73831
activated, the battery charged as expected, and a serial monitor revealed that the
computer was receiving and interpreting the Arduino Uno’s transmitted data
correctly.

As per the procedure described in the previous section, this prototype was
a success. However, it did leave some questions about the solution in practice.
The Arduino Uno is a complicated board with robust control over its pins,
including the 5 volt and ground pins used in the experiment. This procedure has
proven that the MCP73831 will work while the device is simultaneously
transmitting data, but only under the condition that the USB port is supplying a
steady 5 volts to the system. The Arduino drew a steady 5 volts from the USB
port, but the generic computer mouse did not. If the MDBT50Q draws a steady 5
volts from the USB port when connected at its USB interface, then we can expect
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simultaneous transmission and charging to work. Without further prototyping,
however, we could not be certain that the MDBT50Q’s USB interface will draw
the necessary 5 volts. It was possible that a 5 volt regulator would be necessary
in order to ensure that the 5 volt components in the device receive 5 volts.

Once we began running prototypes with the custom test bed PCB, we
were able to address this concern. When powering the MDBT50Q with a battery,
the LM3671 buck converter, and the MCP BMS, the device was still able to
communicate with a PC over USB. This USB link automatically charged the
battery through the BMS, proving that the system does not require an auxiliary
5-volt converter.

5.1.3 Configuring the Touchpad Controller
In the beginning stages of testing the Adafruit Resistive Touchpad, we

purchased the AR1100 breakout board to gain an understanding of how the
AR1100 chip works. The AR1100 by itself is a universal resistive touchpad
controller microchip that was supposed to be used in the final design, but we
ended up scrapping this component because it added no noticeable
improvement to functionality of the device. The breakout board contains the
AR1100 chip, a 4 pin FFC connection port, a Mini-USB port and In the
prototyping phase, we will use the AR1100 breakout board as a way to easily test
and troubleshoot the functionality of our touchpad. Once we have an
understanding of how this breakout board works and what we can use it for, we
will reverse engineer the board so that all of its components will live on our
printed circuit board separately. This will include the AR1100 chip, the 4 FFC
connection port, and any various resistors that are necessary for the circuit. The
Mini-USB port will be left off in favor of through-holes. Below is an image of the
breakout board and its PCB layout.

Figure 88: AR110 Breakout Board
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Figure 89: AR110 Breakout Board PCB Layout

In order to calibrate and configure the touchpad, it must first be connected
to a computer that is running the configuration software. This is done by taking
the 4 pin FFC on the touchpad and connecting it to the AR1100 breakout board,
then using a Mini-USB cable to connect the board to a computer. At this point,
the config software will detect the board and ask you what type of chip is on the
board, how many pins it has etc. Once these values are set, communication will
be established between the board and the software. In order to make
configuration changes, the board must be in HID-Generic communication mode.
In this mode, the touchpad will not act as a mouse. From here, there are a dozen
different settings which can be altered, but I found that the touch threshold and
sensitivity filter have the greatest impact on the use of the touchpad to control the
mouse. Below is an image of some of the configuration settings.

Figure 90: AR110 Breakout Board Config Settings

The values in the image are the default settings when the AR1100 is first
configured. These defaults serve as a great starting point, but require some
tweaking. As it was, these settings leave the mouse pointer too “jittery.” So the
first setting I adjusted was the speed threshold. Increasing this to 8 keeps the
cursor more steady as it glides across the screen. Next, we raised the touch
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threshold to 225 so that it was not interpreting various points on the pad of my
finger as inputs. This was enough to eliminate the jittery effect from the mouse
cursor. If we actually incorporated the AR1100 chip in our final design, we would
configure this chip a single time once it is mounted on the final PCB. The user
would never have to perform that step. To reiterate, we did not use the AR1100
chip in our final design. We connected the touchpad directly into the MCU.

5.1.4 Microcontroller Selection

Figure 91: ItsyBitsy Prototyping Board

The microcontroller development board we ended up using for prototype
testing was the Adafruit ItsyBitsy nRF52840 Express. It uses the Nordic
nRF52840 Bluetooth LE processor built around the 32-bit ARM Cortex M4 CPU
running at 64 Mhz and featuring a 1 MB flash with 256 KB of SRAM. The main
thing we’ll be working with is the Arduino IDE and Circuit Python using the native
serial information transferring and the keyboard and mouse HID libraries catering
to our macro key and touchpad control. NRF also comes with their own SDK
supporting the nRF52 Series with development of Bluetooth Low Energy
integrating the Zephyr RTOS and more. This would in theory make ZMK more
streamlined but KMK would provide more options in this case for mouse HID.
From here we are able to test whether using KMK or using the native Arduino
libraries and Circuit Python will be more optimal for what we want to achieve.

5.1.4.1 Procedure
The relevant system to verify in the nRF52840 is the Bluetooth

connectivity. Other prototypes can use the microcontroller’s GPIO pins and other
systems, and the functionality of the microcontroller will be verified in those
prototypes. For Bluetooth specifically, however, it is important that we ensure the
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process of connecting the device to the PC is possible and simple enough to be
replicated by the end user.

The first step of the prototype is to upload firmware to the prototype board
that configures the chip as a Bluetooth device advertising a connection. This
firmware can be taken from example code in the CircuitPython libraries. Once
this firmware is uploaded, the Bluetooth connectivity can be tested.

To test the chip’s Bluetooth connectivity, the prototype board must first be
powered through an external source. Then, the PC’s Bluetooth must be turned
on. When the PC’s Bluetooth is activated, it will automatically begin searching for
devices with which to form a connection. Within a few seconds, a device should
appear to the PC with the name specified in the firmware. The developer will click
the connect button on the PC to form the Bluetooth connection. If the PC displays
a message saying that the connection was successful, and the prototype board’s
Bluetooth LED changes to a constant on-state, then the prototype was
successful.

We initially went with a few iterations of our development board before
deciding on the final design. The main procedure was being able to program the
microcontroller. This required connecting to the microcontroller using an SWD
programmer. From here we can install the necessary bootware to program the
MDBT50Q.

5.1.4.2 Results
Simply testing the keyboard and mouse HID code through USB

connection was very simple. The only difference between the USB connection
and the Bluetooth LE is that we need to add code initially to set up a radio for the
Bluetooth antenna in order to connect to the computer and make the device
discoverable. Once that is done, all the information being thrown at the computer
is set between a while loop for the bluetooth connection. Much testing was done
to go about getting this working and details are shown in section 5.2.2. Setting up
a connection was as simple as advertising the board as a peripheral as well as
through UART connectivity. It was also very important to emphasize that we
needed to import the HIDServices() function to set the board as a peripheral,
otherwise it would connect the board to the computer as a central computer.

We found that installing the necessary bootware for CircuitPython did not
work on our custom PCB and this led us to shifting towards using Arduino.
Although all testing the input units worked, bluetooth was unsuccessful despite
looking to online forums and professional advice.

5.1.5 Input Unit Testing
This section focuses on the testing methods used for the overall

functionality of the device. We first focused on testing through USB connection to
implement the firmware but once we found bluetooth to be unsuccessful we
scratched that idea out.
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5.1.5.1 Mechanical Switches
In order to test the Kailh hot-swappable sockets, we used the NeoKey

Socket Breakout for Mechanical Key Switches, a breakout board that includes
the circuitry for each macro key on the device.

Figure 92: NeoKey Socket Breakout Board

It's a 0.75" x 0.85" PCB that can fit any Cherry MX and Gateron style
switch. With this we can physically map out the key switches to the
microcontroller. Once we are able to get things rolling using the breadboard we
could move onto using a PCB with sockets for the microcontroller including all
the connections in between for the switches and encoders.

Testing this device was simple. We connected the switch to a breadboard
with an LED. If pressing the switch closes the circuit to light up the LED, then the
procedure is successful, and the Kailh hot-swappable socket is proven to work
for our purposes. This test is somewhat trivial, but it is important to have the
switch on hand so that we may verify that the Gateron keys can fit the switch as
intended.

Later prototypes used this device in conjunction with the microcontroller to
simulate realistic use cases. The generic rotary encoders and mouse buttons
also were tested in the exact same way as the Kailh hot-swappable sockets
since they behave as simple digital input devices.

5.1.5.2 Rotary Encoders
The rotary encoder we used is the PEC11 series 12 mm incremental

encoder shown in the figure below. It features a 4 PC pin configuration with 0
detents meaning it is able to have 12, 18, and 24 pulse readings. It also has a
push switch to be used as an input/output option as well. The main use for these
rotary encoders will be for audio digital inputs which can be configured for
application audio, microphone levels, desktop brightness, and window switching.
In conjunction with Arduino, we are able to acquire information based on its
position using the native libraries which includes volume control and play/pause
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features. In practice, however, these functions will only be implemented through
AutoHotkey.

Figure 93: PEC11 Rotary Encoder

In order to test the rotary encoder, we connected it to a microcontroller. A
simple circuit would not be sufficient to gauge the effectiveness of a rotary
encoder because the encoder relies on positive and negative edges to deliver
data.

The rotary encoder was configured as an input to the microcontroller. If the
microcontroller detects a clockwise turn, then it will turn an LED on. If the
microcontroller detects a counterclockwise turn, then it will turn the LED off. The
following state diagram illustrates the proper functionality of this prototype. If
each of the arrows can be followed in practice, and each one results in switching
to the next correct state, then the experiment is a success.

Figure 94: Rotary Encoder Prototype State Diagram
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5.1.6 Reading Touchpad Inputs
The touchpad is one of the main cornerstones of this project and as such

we considered a few different methods of implementation. One idea was to route
the inputs of the touchpad through a resistive touchpad controller (AR1100). This
method has been discussed already in previous sections. Another idea was to
cut out the middleman entirely and have the touchpad feed user inputs directly
into the microcontroller, which is ultimately what we did in the final product. In this
subsection, we will discuss the procedure that we used when creating a
prototype circuit of the touchpad and MCU, whether or not it is possible to
operate this way, and how we interpret the outcome of this experiment.

5.1.6.1 Prototype Environment
Functionality of the touchpad was first tested using an Arduino Uno

development board. Using the Arduino Uno for initial tests was more convenient
since one team member could conduct tests on the touchpad, while another
team member could perform separate tests with the MCU, simultaneously.
Beginning to write some test code in the Arduino environment was also very
convenient to use as a starting point because of the massive amounts of
documentation and other resources that exist. Moreover, Adafruit has released a
C++ library for their resistive touchpads which comes with several useful
functions and classes.

The class used in this prototype was “TouchScreen.” This class is used to
instantiate an object that will hold a few important variables. It is meant to hold
the pin number of the positive X/Y pins, pin number of the negative X/Y, and the
resistance of the touchpad. The resistance is used when calculating the pressure
threshold that will be considered a valid input, which is very useful for avoiding
any accidental touches. This touch pressure is designated as Z. In looking at the
code, the first thing that must be done is define certain pins as variables. In my
case, the positive X and positive Y pins on the touchpad were linked to analog
pins, and the negative X and negative Y pins were linked to digital pins. In the
setup function, serial communication is started at a 9600 baud rate. Moving onto
the infinite loop portion of the code, the first step is to create a TouchScreen
object and pass through the 4 pin variables, as well as the resistance. Now we
can instantiate a second object of class type “TSPoint.” This class serves as a
structure to hold the actual values of the X/Y coordinates as well as the touch
pressure, Z. After this object is instantiated, we call the member function
“getPoint().” This function will collect several samples from the touchpad using
the 4 pins from the touchpad, then average out the values to account for noise.
Upon completion, the exact value of X, Y, and Z will be stored within the TSPoint
object. To view these values upon a new touch, we simply print these 3 values to
the serial monitor. An example of the serial monitor output is shown in the figure
below.
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Figure 95: Arduino Serial Output

The hardware configuration was very simple. We started by connecting
the touchpad to the AR1100 breakout board as a way to interface with its
connections via header pins, The AR1100 chip was NOT used in any way. From
here, negative X was connected to analog pin A3, negative Y was connected to
digital pin 9, positive Y was connected to analog pin A2, and positive X was
connected to digital pin 8. The arduino was connected to a laptop for power.
Below is an image of the set-up.
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Figure 96: Touchpad Prototype using Arduino Uno

Figure 97: Additional Prototype Close-ups
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Figure 98: Touchpad Prototype Schematic

5.1.6.2 MCU Environment
The experiment in the prototype environment was a success, so we

shifted our focus towards the actual MCU environment. The purpose of this next
experiment is the same as before, to ensure that we can retrieve user inputs from
the touchpad without the use of an additional touchpad controller chip. This time
we will be testing with the ItsyBitsy nRF52840 Express. In this scenario, the
nRF52840 will be programmed using CircuitPython, and the serial output will be
read using an extension within Visual Studio Code. Conveniently for us, Adafruit
has released yet another library for resistive touchpads. This library is for Python
and contains many useful functions that makes interfacing with the touchpad a
fairly rudimentary task. The following paragraph is the test procedure.

The first step in writing this test script is to initialize a new object of class
type “Touchscreen.” This class is defined by the Adafruit library and it contains
several useful functions. Firstly, it initializes a few important variables. It initializes
4 objects as pins, sets the touchpad resistance value, number of samples, touch
threshold, calibration values, and size of the touchpad. For the simplicity of this
test, this is all the preparation that needs to be done. Now, we call the member
function “touch_point” on the Touchscreen object. This will print the X and Y
coordinate values, along with the Z value. The Z value in this case is the amount
of pressure detected on that particular input.
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Due to the success of the previous touchpad experiment, and the
successes of all the other modules we have tested in conjunction with the
nRF52840, we were confident that this test will also be successful when we
conduct it later on with all the components together. In another test in conjunction
with the nRF we connected 4 wires going from the touchpad to the ItsyBitsy
board and the ItsyBitsy board will be connected to a PC to receive power and to
output to a terminal. Three of the touchpad wires will go to three digital pins, and
the fourth will go to an analog pin. Then the script will be run on the board, and
we will monitor the serial output for incoming data. If we receive valid X and Y
coordinates, then we can deem the test a success. This prototype piece also led
us to believe that with all the final components together, the trackpad would work.
It wasn’t until we had gotten our PCB final design with all the input units put in
conjunction with another, the tests we ran to see if it worked gave us interesting
results. Apart from the accuracy of the trackpad, we saw that this input unit
worked perfectly on the final PCB.

5.2 Firmware
Firmware was a very big component that we needed to get right. Since it

was something that would be developed in production before it is brought out to
the consumer. One thing to note is that using the microcontroller development
board will give us a bit of a boost in prototyping, however where in actually
developing our own PCB we would need to use a SWD programmer to program
the chip if we were to use any of the following support programs.

5.2.1 Macro, Rotary Encoder, and Mouse Functional
Development

The CircuitPython and the Arduino IDE have library folders for both
keyboard and mouse HID functionalities. The library offers keycodes and based
on the key that is pressed, it will execute the action given to it. Before we map
the keycodes, we must first map the pins on the board to the respective NeoKey
and give it a function keycode. This also can be applied to the connected buttons
for the touchpad. From there we can then write code to act as a macro, and with
the combination of Python scripting with AutoHotkey, we are able to bridge the
gap between the user and the microcontroller. The mouse HID is a very similar
situation where we are able to take the x and y serial information then the mouse
will act respectively.

Our main method of coding the firmware, Arduino, has a library bundle
that includes all the necessary libraries for the keyboard and mouse HID
functionalities. Through some testing we were able to map the pins to a test
button where that button would be mapped to a keycode, our case being the
letter ‘A’. This would turn that button into simply a pressed key that the computer
would interpret. The picture shown below is the testing for two buttons to be
interpreted as keyboard keys.
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Figure 99: Initial Macro Prototyping

Adafruit comes with libraries for rotary encoder support and implementing
this functionality was very similar to the keyboard HID. The PEC11 has 5 pins in
which 3 are for the rotary function and 2 for the button. For now we will disregard
the 2 pins for the button. Two of the three pins are connected to two separate
pins on the ItsyBitsy and the last pin on the encoder is connected to ground. The
two pins on the PEC11 are linked to channel A and channel B. This way we can
set each channel to a pin and interpret them in the code and using the
IncrementalEncoder function with the ItsyBitsy pins as parameters, we are able
to set it to a singular variable as well as determine the relative rotational position
based on two series of pulses. For further testing, along with instantiating the
pins on the encoder we instantiated consumer control for volume control. We can
now track the position of the encoder and map function accordingly.

As for the mouse functionalities, we only really wanted a way to interpret
serial information from the X and Y coordinates. In lieu of the actual touchpad,
we used a joystick to send X and Y coordinates then in the mouse HID code in
CircuitPython, it would interpret it as mouse movement. We first instantiated the
X and Y axis using the “analogio” library and setting the pins to the respective
axis. From here we simply use the mouse function to move it to the direction we
are getting the input from. Since for the purpose of testing we used a joystick, we
worked around it by using the potentiometer values and obtaining the voltage for
set X and Y coordinates. This initial testing was first done through CircuitPython,
but once we found that through installing the necessary bootware with our
custom development PCB we had to take the route of only programming the
firmware through Arduino. Once we were able to have the components for testing
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the input units we could properly test each unit with the respective libraries all
through the Arduino IDE.

5.2.1.1 Backup Firmware
As a backup before we finalize the GPIO pins for the final board, we

explored the option for setting up KMK as the main firmware option. Installing this
firmware was simple by dropping the library into the plugged in development
board. Supposedly we would want the negative pins on the key to connect to
ground, but with KMK, since it was made for traditional keyboards, it implements
a matrix like solution to have the keys activated. The example shown below
represents the pins and how they interact with the keycode they are set to. For
the sake of testing we can take GPIO pins A1-A4 on the testing board and create
a 2 x 2 matrix. The switches that are connected to pins A1 and A2 are then
shorted to return the input of F13 and so forth for the other pins.

Figure 100: KMK Pinout Table
ItsyBitsy Pins A1 A3

A2 Keycode.F13 Keycode.F14

A4 Keycode.F15 Keycode.F16

KMK implementation for rotary encoders is also very straightforward and
similar to the CircuitPython setup. We would import the module then define the
pins. At this point we set the handler pins to a handler map and based on the
matrix that is set, it will do the respective command that is set to it. At the
moment KMK does not have support for mouse movement but the firmware
should be able to work in tandem with CircuitPython commands if we end up
seeing KMK as a fallback. Currently KMK has also developed a new firmware
called KMKPython which is a fork of CircuitPython with many of the libraries
included are optimized and updated, however this option is out of date and
should not be used.

5.2.2 Bluetooth Connection
We were very adamant on making the connection be as flexible as

possible with the option of a cabled connection as well as a bluetooth capability.
Adafruit has a github with their integrated libraries for CircuitPython that we were
able to use. They also had a quick guide on how to advertise the bluetooth. Once
these were all imported, Bluetooth Low Energy was very simple to implement.

5.2.3 Procedure
With initial testing we came about a few problems when prototyping

regarding the functionality of the microcontroller and its bluetooth capabilities.
Adafruit has their own library for bluetooth connections using Bluetooth Low

97



Energy. All we needed to implement is their libraries consisting of the radio,
advertising commands, and UART services. Once these are imported, we can
start the advertisement. The thing with this method is that the documentation is
quite thin so much testing and playing around with the settings was done to get
the bluetooth to work. The main thing was to initially make sure the bluetooth was
working with our testing boards, and this could be done through the Bluefruit LE
Connection App, however this makes the testing board act as a central unit.
Though we got this connection to work, the testing board being a peripheral itself
still needed to be tested. Since we knew the testing board was working with the
USB plugged in, we thought that all we had to do was make the board
discoverable through the adafruit advertisement library. With this change we were
able to make it discoverable on the computer. Although that was part of the
answer, based on the HID capabilities we were implementing, there was also an
HIDServices() function we had to implement also included in the adafruit
libraries. This allows the testing board to appear on the computer as a peripheral
for the keyboard and mouse HID capabilities.

The only thing here is that the bootware already installed in the
development board we used for testing, we also had to take into account and rely
on being able to replicate the same environment on our custom boards.

5.2.4 Results
To test the results we simply set the keycodes to the pin array to typable

letters to make sure the output is working. Using the CircuitPython test code, we
were able to edit it to our liking. The first test we conducted was simply through
USB connection and having the buttons output the letter we set it too. This test
was successful and laid a solid foundation for our bluetooth test. To test the
bluetooth implementation, we initially used an external battery and simply did not
work which led us to think that we needed the LiPo battery for it to work. With
that information, we plugged in a battery to a buck converter then connected it to
the board. This led to the buck converter overheating and being dangerous in
practice. We ended up plugging the battery straight into the board since the pin
was able to take 3.6V to 5.5V. Although this was successful, we ran into a few
complications. One thing is that the functionality was not consistent. Initially we
were only able to use the buttons for a few seconds before the board would stop
working and came to a few conclusions. One, the battery was not charged, but
since the implementation was Bluetooth Low Energy we did not think it would
take that much energy. Another conclusion was simply the code not being able to
function after a certain time of operating, however in some cases were able to
get the battery to work for longer periods of time. One other test we wanted to
explore was if the USB connection was also usable with the Bluetooth
connection, and that also was successful, but in preparation we had an idea of
having a flag that would tell the bluetooth module if it is connected or not then
make a decision on what connection to use. Since this was just like any other
implementation of bluetooth, the module was also able to connect automatically
to devices it was connected to before automatically.
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With our success with Bluetooth through using CircuitPython, we hoped to
be able to replicate on our custom board, but because of us having to change our
environment to Arduino, Bluetooth connection also took a different route. Arduino
has many native and community libraries at our disposal but to our surprise,
none of them worked to simply connect to our computer or even using the
Bluefruit app.

5.2.4.1 Prototype v1.0

Figure 101: Prototype v1.0

Our first prototype was combining all the parts we had available including
the Kailh NeoKey Sockets, the rotary knob, and the joystick. Due to the limited
GPIO/analog pins on the ItsyBitsy, we had to test only some of the hardware, but
this was not that big of an obstacle since we were only interested in testing the
firmware for the final production of the hardware. The Kailh NeoKey Sockets
included pins for LEDs but all we ended up using were the A and C pins located
on the breakout board. We connected the respective analog pin to the switch
anode or the positive pin on the NeoKey socket board and connected the switch
cathode or the negative pin to ground. This allowed us to imitate the basic
function of a button that was tested in the initial testing and prototyping of the
firmware. Attached above the sockets are Durock POM linear switches that
basically shorts the connection to execute an input. The rotary knob was
connected to two analog pins that represent channel A and channel B. In the
firmware we are able to obtain the number or pulse that is being input, then
whatever function we end up setting to it, it will follow. For testing we had the
rotation of the position set to increment the volume or decrement the volume, but
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again this is all testing and will be set to just numbers where they can later be
customized for other functionalities in the consumer software.

Figure 102: Digital I/O Inputs on Prototype v1.0

Figure 103: Pin Connection on Prototype v1.0

Lastly we needed a way to take in serial X and Y information to have
mouse functionalities. The X and Y channels were connected to two analog pins,
ground to ground, and the +5V voltage to the 3V output on the ItsyBitsy. Since
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the joystick also acts as a potentiometer, we had to work around it, but the main
feature of taking X and Y inputs was successful.

Although we were able to get this prototype working there were a few
things we needed to keep in mind for the following prototypes. As said before,
using an SWD programmer to install the necessary firmware to the
microcontroller is half the battle, and once we’ve come across that, the settings
for the way the GPIO pins on the microcontroller will interact with the peripherals.
Since the development board is recognized as a pre-build adafruit, many of the
settings set to the pins and the board are pre-determined, however looking at the
documentation and libraries included should aid when developing our own
circuitry.

5.2.4.2 Prototype v2.0
Our second prototype was simply replicating the development board we

used for testing. We wanted to just be able to talk to the microcontroller using the
SWD programmer. Initially, using the third-party J-Link programmer bricked 2 of
our testing development board and we had to reevaluate how to install the
firmware onto our board. Although there were many programmers that we
weren’t able to get at an affordable price we eventually found the PCA10056 to
program our microcontroller, using the nRF Connect app by Nordic
Semiconductors. Using the PCA was successful with programming the
microcontroller. This allowed us to install the PCA10056 bootloader into our
custom board and use the available pins. In practice the PCA10056 gives us
access to all the necessary pins we need right off the bat so fixing the bootloader
firmware was not needed. Once we installed the PCA bootloader, we can now
access the board through the Arduino IDE and program it through there. The
code we made in CircuitPython was easy to migrate to Arduino, the only
concerning problem we ran into was using the bluetooth functionalities through
Arduino. For this prototype we had to connect the microcontrollers to the
necessary resistors and capacitors for further testing then use the available pins
to our other testing units to make sure the communication to the microcontroller
is good. Based on this prototype and testing through the Arduino IDE, all the
units including the macro keys, rotary encoders, and trackpad all worked. Shown
in the figure below is the second prototype along with the PCA10056.
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Figure 104: Prototype PCB with PCA10056

5.2.4.3 Prototype v3.0 (Final PCB)
Our third and final prototype was finalizing everything. In this process of

development, we also had to make sure the pins we were using were correct for
the respective input unit. The switches, rotary encoders, reset button, mouse left
and right clicks, and orientation switch were finally mapped to set GPIO pins, and
the trackpad X and Y capabilities were mapped to analog pins to be interpreted
further. Because we had prepared the firmware using prototype v2, all we had to
do for this version 3 was simply upload the PCA10056 bootloader and upload the
firmware using the Arduino IDE. This was also where we added the extra input
unit mappings in the firmware and tested all the units working in unison. From our
testing we found that the macro switches, rotary encoders, and mouse keys all
work from the code in tandem, however when the trackpad comes into the mix
along with the orientation switch, we get different results. The trackpad firmware
in tandem with the rest of the firmware created a lot of noise within the trackpad
where the cursor would stay still or sometimes rather not even work completely,
but with the trackpad firmware working alone, we found it worked perfectly. One
other thing was the orientation switch. The simple slide switch also wasn’t
producing the desired outcome which was also affected by the unknown noise
from the device. The orientation switch gave us conflicting values when we set it
to a flag to set the correct mouse movement based on the orientation, because of
this and the conflicting firmware working in tandem we had to show off the
trackpad firmware working separately from everything else. However, we were
very proud of the device coming all together and working as a whole. Shown in
the figure below is the final prototype.
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Figure 105: Final Assembled Prototype

5.3 Application Software
The application is where the user will edit the function of the macro-keys.

How this app will look and function is still being researched. However, we wanted
for it to be a user-friendly GUI where the user can select each macro-key and
rotary encoder and map it to a function of their choosing. We mainly used PyGUI
for all the design elements and used Python for scripting in conjunction with
AutoHotKey.

5.3.1 Running AutoHotkey Script Inside a Program
To verify we could change the functionality of a key inside the Windows

Operating System, a number of tests were laid to verify that this fundamental
feature was operational. After our technology investigation, documentation and
other research supported that AutoHotkey could be installed, script files could be
created, and then could run through a python program. But since this software
feature is fundamental in our overall goals and objectives, testing and prototyping
must be thorough to prevent potential problems in the future.

Figure 106: Overall Procedure Layout for Prototype
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5.3.1.1 Procedure
In order to test that AutoHotkey can change the functionality of a

keypress, the first step is to install all necessary software and/or programming
tools. For all text and program editing, VSCode (Version 1.73) and Sublime (V4)
was installed. AutoHotkey version 1.1.35 and Python version 3.11.0 were
installed. Note all tests and installs were on a Windows 10 Operating System.

Figure 107: Software Versions Used During Testing and Prototyping
Software Required Version Used

Windows OS 10

VSCode 1.73

Sublime V4

Python 3.11.0

AutoHotKey (AHK) 1.1.35

The next test regards creating AutoHotKey scripts and being able to
execute them standalone on the OS. Meaning, the test will be successful if you
see the expected outcome after double clicking the AutoHotKey script and/or
running it from Command Prompt. For this initial test, a simple ‘Hello World’
program is sufficient as the expected outcome. Overall, this test helps the
procedure workflow become more smooth and efficient where troubleshooting
and completing these different milestones won’t appear as complex if they are
taken one step at a time.

After verification that AutoHotkey can run by itself on the Operating
System, the next step is to test whether or not a AutoHotKey script can be
created to change the functionality of a keypress standalone. After double
clicking the script, observations should be made on the expected outcome where
1) if it is present at all, and 2) if the new functionality remains on the key even
after the script is terminated.

The final step in this procedure is to test the ability that a AutoHotKey
script can be executed programmatically through a Python program. For this test
a simple Python program can be created to quickly open an AutoHotKey file and
then execute it. Similar to the previous test, if the AutoHotKey file remaps a key
to a different functionality, observation of the result after termination of the Python
program should be made to verify if the AHK file maintains the same expected
outcome.
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Figure 108: Procedure for Testing AutoHotkey
Test Description

1 Install all necessary software tools

2 Execute AutoHotkey script through Command Prompt

3 AutoHotkey script remap a function key’s functionality

4 Execute an AutoHotkey script from Python

5.3.1.2 Results
Following the different steps listed in the procedure the first step was

setting up the prototyping environment with all of the listed software technologies
needed to be installed. The main constraint is ensuring that both Python and
AutoHotkey are running and installed properly. Installation was successful as well
as running the first ‘Hello World’ script for AutoHotkey.

Figure 109: Running Initial Hello World AutoHotkey Script by Double Clicking
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After successfully getting the expected results from the figure above, the
next step was to test AutoHotkey’s ability to remap a function key to a new
functionality. More observations were needed before diving into the testing for the
integration between Python and AutoHotkey. Using AutoHotkey’s remapping
functionality found in their documentation, running the following script produced a
successful test where there was a change in the functionality of keys F4 and F5.

Figure 110: Prototype AutoHotkey Script

With this test, as soon as the AutoHotkey script is executed, the
remapping functionality would remain as long as the script is running where it
would revert back to the default functionality on termination of the script.

For the tests regarding integrating Python and AutoHotkey, the first tests in
Python attempting to open and run the AutoHotkey script were not successful.
Further investigation is required if we go down the route of having a number of
preset AutoHotkey files stored in the data files of our application software (such
as the one in the figure above). However, the section port of the test showed
results of eliminating the need for an AutoHotkey file itself and inserting all
remapping functionality inside the python program. The only constraint is the
python program would have to be running at all times which might not be ideal for
the current design plans for the application software. The only issue was this is
the user would have to keep the application software open at all times just to
have macros on their device. This wouldn’t be ideal where an AutoHotkey script
running in the background without a Graphical User Interface (GUI) could be
used instead.

More testing and investigations are required before finalizing the overall
software design where during the design and prototyping phase having multiple
ways of completing our tasks is fine until it’s time to pick the more efficient
version. More observations are needed to be made to test the ability to open and
run an AutoHotkey script from Python. This way if the Python program was
terminated the AutoHotkey script should still be running. However, during this first
prototyping phase, there were errors trying to achieve this.
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Figure 111: Error Results attempting to run AutoHotKey.exe in AHK Program
Files

5.3.2 Running AHK Inside Python Prototype V2
The initial prototyping phase discussed in 5.3.1 focused on installing,

running, and remapping keys in AutoHotKey scripts where there wasn’t much
progress in integrating this into Python. Hence, the overall focus of this section
was ensuring that the AHK scripts could be programmatically called upon without
interfering with any other functionalities the Python program might be focused on.

The testing for this prototype version will also focus on the aspect of user
friendliness in regards to installing our application software for the first time.
Some of the goals for this prototype is the ability to run the application software in
an operating system that doesn’t have Python or AutoHotKey installed. If this can
be accomplished, the user won’t have to go through a lengthy process to use
their Programmable Trackpad for the first time.

5.3.2.1 Procedure
The initial steps prior to physical testing involved more research and

reading of documentation for both AutoHotKey and Python. The previous section
and the AHK documentation showed successful results that AHK scripts can run
through a command in Command Prompt instead of double clicking on the file
itself. With this being said, the next step is to determine whether or not Python
can use Command Prompt to send it commands programmatically. If this could
be done, then the application software can have a ‘Flash Board’ or an ‘Update
Macros’ button for the user to interact with. This would overall help usability and
user-friendliness with the software rather than having them manually call these
commands themselves.
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Figure 112: Runtime Goals Regarding Installation of Python and AutoHotKey

Expanding on executing these AHK scripts through Command Prompt, the
previous section addressed errors trying to achieve this inside Python. One of the
reasons that might be causing this is the fact that the AHK script requires the
execution of the default AutoHotKey executable located in the Program Files.
This would require the directory having to change for at least one of the files for
the location of the script or the general Program Files for AHK in Windows OS.
Hence, testing will involve solving this issue whether it’s verifying the correct file
paths are being used and/or finding a way to simplify the .ahk script file into
something easier for command prompt to run such as its own executable file.

5.3.2.2 Result
Upon reading the Python documentation for this initial test it was found

that Python is able to open and run .exe files through the built in OS library where
all it needs is the file name and the path location. With the current setup of
running the .ahk file and calling the AHK.exe in Program Files, this can be
possible but isn’t the cleanest solution where an extensive file path is required. In
effort to find a cleaner solution, further research was looked into in the
AutoHotKey documentation. In the Command Line Usage section, it showed how
you could compile your .ahk script files into an executable (.exe file). Hence, in
this test we converted the AHK script into an executable, setup Python to open &
run this executable as if it’s acting as Command Prompt, and then observe the
results. We also converted the final .py file into an executable file and recorded
the results.
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Figure 113: Test Results converting files into executables
Python running
AHK script

OS With Python
and AHK
installed

OS with Python
installed only

Default OS

.py file running
.ahk script

Successful Unsuccessful Unsuccessful

.py file running
.exe script

Successful Successful Unsuccessful

.exe file running
.exe script

Successful Successful Successful

The intended result is the remapping function keys to opening different
programs. The main effort to convert these files into an executable is it allows the
user to run and use the application without having to install python and
autohotkey. AutoHotKey has a built-in compile feature where an .ahk script is not
required. Hence, on an Operating System without AHK installed, the intended
result is the same as if AHK was installed. This would be ideal in an realistic
product market environment where we shouldn’t expect the user to install all of
these developer tools where they only need the intended result of the software.
This is also more secure and helps protect trademark and copyright in the real
world where you wouldn’t want somebody to see the source code and then
potentially copy it and sell it as their own. If this project were expanded upon in a
real market environment, these tests and goals of converting the source code
into executables is essential.
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Figure 114: Advantages Found Converting Python Code into Executable File

Hence, running .ahk and .py files require the installation to experience
successful results where .exe do not require installation. Since executables have
translated the code into system commands and instructions for the machine to
understand, the last test was done on a system that did not have anything
installed except what comes default with Windows 10 (this test was done on a
virtual machine). Converting the python code into an executable was done in the
open source library Auto Py to Exe that uses PyInstaller. At first, the final
executable was failing and showing errors and/or the AutoHotKey script wouldn’t
run. Upon further investigation and documentation reading, an absolute file path
needs to be used rather than a relative path. This was essential for this test to be
successful because in order for the AutoHotKey script to be executed, the
filepath must be specified. Therefore, a Program Files folder was created to put
AutoHotKey compiled scripts inside in effort. During the process of converting the
.py file into an executable, these AHK program files need to be specified and
added along with the conversion process. After this, a number of files and a
directory was generated and of course had the final executable file to test with.
The executable ran successfully and did not install any software where it simply
ran the AutoHotKey script in the background.
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Figure 115: Configuration Settings to Convert Python Code into Executable -
“Auto Py to Exe”

It can also be noted that during all of these tests whether it was the .py file
or the .exe file executing the prototype application program, if it was terminated
the AutoHotKey script would still continue to run unless it was manually stopped.
This is beneficial for this project because the entire purpose of this application
software is to customize your own macros and upload them to the device. After
hitting the button to upload these macros to the device, naturally the user would
close the program and then proceed to use the physical device.
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Figure 116: Generated Files - Converting Python Program to Executable

Overall, for this second phase of early prototyping for the application
software, a large majority of goals were achieved in the terms of the code
running “behind the curtains” so to speak where the user isn’t necessarily seeing
or interacting with directly. Having the ability to run AutoHotkey via Python was
an absolutely necessary and a high priority goal where this would act as one of
the main functionalities of the application. However, this prototyping phase also
achieved an advanced goal of being able to convert all code into executable files
where we don’t have to expect the user to download and install the latest version
of Python and/or AutoHotKey.

6 Administrative Materials

6.1 Budget and Costs
This project is not sponsored and is not receiving any other source of

outside funding. All funding for this project will be put forth by the 4 members of
this team equally. Our goal early in the project’s development was to keep the
final amount of money spent under $200. In the end, that budget was overshot,
as is shown in the figure below. This table represents a list of parts that we used
in the prototyping process separate from the actual components used in the final
design.
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Figure 117: Project Development Budget

Development Costs

Item Price Purpose

3.7" Touchpad $11.45

Prototyping touch
functions

Touchpad to USB breakout
board $17.59

500 mAh LiPo battery $6.99

Prototyping power
system

1700 mAh LiPo battery $10.99

18650 battery charger $5.99

USB-C Battery Management
board $8.99

USB-C Battery Charging board $12.99

TPS61023 Development Board $3.56

LP3671 Buck Converter $11.22

Rotary Encoders $9.00 Prototyping HID
commandsMech Switch Breakout Board $3.25

MDBT50Q $12.95 Prototyping
microcontrollerItsbitsy nRF52840 Express $27.20

SWD Programmer $6.40 Prototyping SWD
programmingnrf52840 DK $57.18

ESP32-WROOM-32D $9.09
Exploring nRF
alternatives

PCBs and Stencils $102.96
Prototyping system
integration

Total $317.80

The total development cost was $317.80: higher than our initial estimate,
but still within an acceptable range when distributed between the four team
members. The figure below shows the bill of materials for the final device. This
table illustrates the approximate cost of building one Programmable Trackpad.
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Figure 118: Bill of Materials

Bill of Materials

Item Quantity Price

MDBT50Q 1 $12.95

500 mAh LiPo battery 1 $6.99

LM3671 3.3V Converter 1 $1.61

MCP73831 Battery Management
System 1 $0.77

3.7" Touchpad 1 $11.45

Rotary Encoder 3 $2.90

Kailh Socket Pack 1 $2.50

Boba U4T Key Switch Pack 1 $11.50

PCB 1 $2.00

Ribbon Cable Receptacle 1 $0.36

Micro USB Receptacle 1 $1.36

Total Cost $60.19

The total cost of the device by a parts breakdown is $60.19. Even without
considering bulk discounts or profit margins, this cost would seem quite
reasonable in comparison to the comparable devices discussed in our market
research.

6.2 Milestones
At the beginning of the project, our team set a general timeline specifying

our goals for the project with a completion deadline of April 2023. The stages of
the development process along the way include Project Definition, Technology
Investigation, Parts Acquisition, Prototyping, Design Refinement, and Verification.
The following timetables are used as guidelines for the various stages of project
completion. Each table represents a new phase of development, each column
represents a week of time, and each entry represents the work done during that
week.
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Figure 119: Project Timeline
Project Definition

Aug. 21st - Aug.
27th

Aug. 28th - Sept.
3rd

Sept. 4th - Sept.
10th

Sept. 11th - Sept.
17th

Form team. Name project. Draw initial
sketches to
explore the

project's overall
vision.

Create block
diagrams to
communicate

device’s
requirements and

methods of
operation.

Initial
brainstorming

process: explore
possible project

ideas.

Create a rough
outline of the

project
requirements.

Research existing
technology to
determine what
technologies may
be useful to our

project.

Research market
items similar to
our device to

inform the design
process.

Finalize project
requirements.
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Technology Investigation

Sept. 4th
- Sept.
10th

Sept. 11th -
Sept. 17th

Sept. 18th -
Sept. 24th

Sept. 25th -
Oct. 1st

Oct. 2nd -
Oct. 8th

Oct. 9th -
Oct. 15th

Researc
h parts
that will
be

necessar
y for
device
operatio

n.

Make early
decisions
on what

technologie
s to use for

major
component

s.

Divide
responsibilitie
s between
group

members.

Begin
tracking a
Bill of

Materials
based on
parts

discovered
in early
research.

Order
materials
for initial
prototypin

g
(pre-built
circuit
boards).

Finalize
project

requirement
s.

Taylor’s
responsibility:

Power
system.

Flesh out
project

requiremen
ts as we

learn about
the

necessary
technology.

Select
software
programs
to use in
the final
product.

Jonah’s
responsibility:
Bluetooth
and USB

connectivity.

Brian’s
responsibility:
Touchpad
hardware.

Bradley’s
responsibility:
Application
software.
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Parts Acquisition

Oct. 9th - Oct.
15th

Oct. 16th -
Oct. 22nd

Oct. 23rd -
Oct. 29th

Oct. 30th -
Nov. 5th

Nov. 6th -
Nov. 12th

Acquire initial
prototype
materials.

Flesh out
budget as the

Bill of
Materials is
fleshed out.

Finalize
budget.

Acquire all
parts

necessary to
prototype
every

subsystem in
the project.

Prototyping Phase 1: Separate Device Testing

Oct. 30th - Nov.
5th

Nov. 6th - Nov.
12th

Nov. 13th - Nov.
19th

Nov. 20th - Nov.
26th

Conduct
demonstration of
USB connection

with PC.

Conduct
demonstration of
battery charging.

Conduct
demonstration of
macros running
through PC
software.

Conduct
demonstration of
application with
navigable GUI.

Conduct
demonstration of
touchpad in
operation.

Conduct
demonstration of

sending
mouse/keyboard
commands to PC.

Prototyping Phase 2: Integrated System Testing

Jan. 8th -
Jan. 14th

Jan. 15th -
Jan. 21st

Jan. 22nd -
Jan. 28th

Jan. 29th -
Feb. 4th

Feb. 5th -
Feb. 11th

Conduct
demonstratio
n of MCU

connecting to
PC with

Bluetooth and
USB.

Conduct
demonstratio
n of MCU

functioning as
a

mouse/keybo
ard.

Conduct
demonstratio
n of MCU
being

powered by a
charging
battery.

Conduct
demonstratio
n of software
application
running

macros from
user input.

Conduct
demonstratio

n of
application
software
running

macros from
MCU input.
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Refine Design

Jan. 29th -
Feb. 4th

Feb. 5th -
Feb. 11th

Feb. 12th -
Feb. 18th

Feb. 19th -
Feb. 25th

Feb. 26th -
Mar. 4th

Complete full
electrical

schematic of
device.

Identify any
parts that
need to be
changed
based on
prototyping

data.

Prototype
Testing with
custom

development
board

Order PCB
and

associated
components.

Complete
chassis
design to

house PCB.

Begin drafting
a PCB layout
for the device.

Order
prototyping
boards for

any new parts
that have

been added
to the design.

Finalize
advanced
features of
Application
Software

Finalize
firmware for
final PCB

Prototyping Phase 3: Final Assembly

Feb. 5th -
Feb. 11th

Feb. 12th -
Feb. 18th

Feb. 19th -
Feb. 25th

Feb. 26th -
Mar. 4th

Mar. 5th -
Mar. 11th

Conduct
demonstratio

n of all
hardware

components
working
together.

Conduct
demonstratio
ns with new
parts ordered
to replace old
systems.

Continue
working with

the
prototypes

from previous
weeks as
needed.

Continue last
second
testing

Solder Final
PCB

Check PCB
for electrical

faults.
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Verification

Mar. 12th - Mar.
18th

Mar. 19th - Mar.
25th

Mar. 26th - Apr.
1st

Apr. 2nd - Apr. 8th

Test firmware
uploading to
device.

Test device in
ordinary use

cases.

Stress test
device.

Correct problems
as needed.

Final Preparation

April. 9th - April. 15th April. 16th - April. 18th

Correct problems as needed Presentation and Demo Preparation

7 Conclusion
In conclusion, this document provides a thorough and in-depth look at our

thought process in the design phase of the Programmable Trackpad. It contains
detailed metrics about what niche our device aims to fill, why we feel it's
necessary and all of the steps we took to make this device a reality.

We believe that there is a hole in the computer peripheral market that is a
programmable trackpad. With it, users would be able to map a series of
macro-keys and rotary encoders to perform unique custom actions. We believe
this will serve as a great convenience for those who prefer a trackpad over a
mouse, and will lead to increased productivity for its user.

Once we laid out the problem and its solution, we began discussing all of
our goals/objectives for the Programmable Trackpad, and the engineering
requirements that we will base our design choices on. These requirements
constituted core functions of the Programmable Trackpad such as the inclusion
of macro-keys, rotary encoders, wireless functionality, ambidextrous capabilities,
etc. Once we had a solid understanding of these requirements, we began
research on individual components.

Using the engineering requirements, we conducted intense research into
many different electrical hardware components as well as different software
choices. We compared the pros and cons of each component to determine which
would be the best fit for our requirements. For example, we looked at a few
different choices for touchpads. Each one was vastly different from one another
and had their own unique features, but we were ultimately able to choose a
single one citing that the features it had were better suited for our device.

Upon choosing a list of part numbers, we were able to create a more
concrete design plan. We created block diagrams for all of the major interworking
systems in the Programmable Trackpad and visualized how they will work
together. We also went more in-depth as to how these systems will work, and
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how each part that we chose in the technology research section will work as a
part of a larger system.

After making a decision on components, software and hammering down
the design details, we were able to start prototyping these systems. Prototypes
included crude circuits of different components and early builds of code bases.
For the software side of things, coming up with a set design beforehand is
extremely important in this stage of the project. Whether it’s determining what
software tools are being used, pinpointing the main functionality of the different
software components, and having an overall frontend design before actual
coding begins.

Finally, we drew up a bill of materials as well as a timeline. The bill of
materials contains an estimation of what we spent on the entire project. Similarly,
the timeline provides a rough estimate as to when we reached certain milestones
in the Programmable Trackpad’s development. Overall, this document should
allow someone to replicate this project very closely if they read it carefully.
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