

Programmable Trackpad Final Presentation

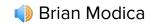
Group 18

Taylor Barnes - CpE Jonah Halili - CpE Brian Modica - CpE Bradley Vanderzalm - CpE

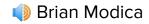
Project Motivation

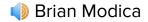
- The main goal of the programmable trackpad is to increase a user's productivity while using a computer
- The device will allow for usage of convenient short cuts
- Similar devices exists for the computer mouse, but nothing for the trackpad
- The intention is for this device to completely replace the default laptop trackpad
- Create a User Friendly Application software to easily pick and customize their own macro shortcuts to be used on the device's keypads and rotary knobs.

Project Concept


- Hardware device that acts as a fully-functioning trackpad.
- Buttons and rotary encoders on the device are assigned to macros that the computer executes.
- The user customizes macros via a graphical user interface.

Goals and Objectives


Goal	Objective (how we achieved said goal)
Reduce common and repetitive tasks	Add buttons with macro key capabilities that are programmable.
Convenient	Manage and run all Hotkey macros within a Graphical User Interface and have them operational even after termination of the application.
Ergonomic	Support ambidextrous users.
Low Learning Curve	Application with user-friendly interface to program macro keys. Only have to run one executable file, the user doesn't need Python or AutoHotKey installed.
Customizable for user	Hardware - Ability to easily remove keys to the user's liking. Software - Application should be able to create and store to run on the device


Functions

Function	Description
4 Mechanical Keys	Capable of macro and keybind function.
3 Rotary Encoders	Capable of audio mixer, adjusting windows, etc. (per-application functionality).
USB Connection	For charging the battery and communicating with the PC.
Touchpad	Mouse replacement offering ergonomics.
4 Mouse Buttons	Availability changes based on dominant hand usage.
Power Switch	Turn the device on or off.
Application User Interface	Main ability to program and customize hardware keys with macros

Requirements

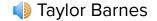
Requirement	Planned Device Specifications	Actual Device Specifications
Device Dimensions	5" x 5" x 2"	6.5" x 4.5" x 1.079"
Device Weight	≤ 1 lb	7.9 oz
Device Latency	≤ 48 ms	~10 ms
Hot-swappable Switches	Yes	Yes
4 Mechanical Switch Inserts	Yes	Yes
3 Rotary Encoders	Yes	Yes
USB Connectivity	Yes	Yes
Bluetooth Connectivity	Yes	No
Battery Lifetime	≥ 10 hours	Was not able to verify
Battery Charging Time	< 3 Hours	90 Minutes

Market Analysis

Apple Magic Trackpad

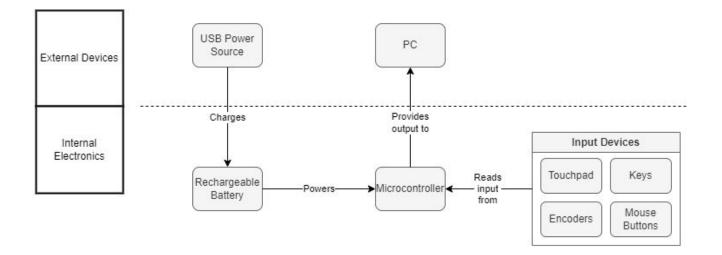
- Price: \$129.99
- Similarities to our device:
 - Small form factor
 - Fits conveniently on a desk
- Differences from our device:
 - No physical buttons
 - Little to no customizability
 - No Windows support

Mousetrapper Advance 2.0



- Price: \$200 \$300
- Similarities to our device:
 - Physical and customizable buttons
- Differences from our device:
 - Much larger
 - Wired functionality only

Keymecher MANO-703



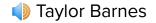
- Price: \$39.99
- Similarities to our device:
 - Has macro keys
 - Fits conveniently on a desk
- Differences from our device:
 - Macro key functions are hard coded, not customizable

Hardware Overview

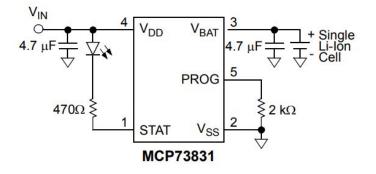
- The hardware device consists of a power system and an I/O system.
- A microcontroller handles data and transmits it to the user's PC.

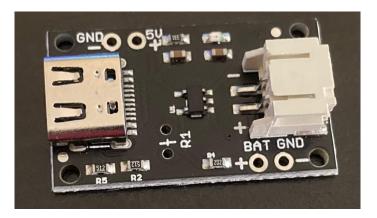
Software Overview

- The device's software operates on three levels: the device firmware, the PC's operating system, and the application.
- The firmware processes user input and transmits to PC.
- The PC's operating system interprets HID commands (mouse and keyboard).
- The application executes user-defined macros.



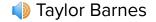
Battery technology comparison


- LiPo batteries are the common choice for small devices like cell phones.
- Many microcontrollers and voltage regulators are designed to work with typical LiPo batteries.


Technology	Size	Capacity	Efficienc y	Cost	Protectio n
Lead-acid	Largest	Medium	Medium	Lowest	None
Lithium Ion	Medium	Medium	Best	Highest	None
Lithium Polymer	Smallest	Medium	Best	Highest	Built-in
Nickel Metal Hydride	Medium	Best	Medium	Medium	None

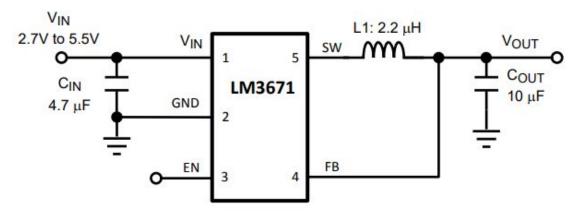
Battery charger

- To charge the battery, the device needs a chip that will deliver constant current at the battery's rated voltage.
- The TP4056 and MCP73831 both accomplish this task, so they were both considered.
- The MCP73831 was chosen because it is simpler and has better documentation.



Voltage regulation

- The device electronics use three different voltages.
 - 5V for USB
 - 3.3V for microcontroller
 - 3.7-4.2V battery
- A voltage converter is needed to regulate the 3.3V nodes.
- The table shows comparisons between various considered parts.


3.3V Chip	Input Voltage	Current Output	Number of extra parts (inductors and capacitors) needed per documentation
TPS62203	2.5-6 volts	300 mA	3
AP63203	3.8-32 volts	2000 mA	4
LM3671	2.7-5.5 volts	600 mA	3

Technology Investigation: Hardware

Voltage regulation

 For the regulator, we chose the LM3671 because it is designed specifically for LiPo batteries.

Input Units: Keyboard Switches


- Linear, tactile, clicky, silent
- Actuation force
- Sound level
- Price (\$8 \$15 for a pack of 10)

Switch	Actuation Force	Behavior	Sound Level
Gateron Red	45 grams	Linear	Quiet
Gateron Brown	55 grams	Tactile	Slightly Audible
Gateron Blue	60 grams	Clicky	Very Audible
Boba U4T	62 or 68 grams	Tactile	Slightly Audible
Gateron Black Ink v2	60 grams	Linear	Slightly Audible
Kailh Box Jade	65 grams	Clicky	Very Audible

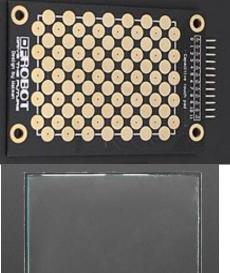
Input Units

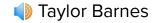
Rotary Encoders

- Not many to choose from, generic ones did just the job
- We wanted haptic feedback between detents while turning the knob
- Potentially have another vertical input for more customizability
- Why not use a potentiometer
 - Did not achieve what we potentially wanted in terms of customizability

Trackpad/Touchpad Left and Right Click Switches

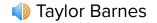
- Any tactile button that had enough height to reach the left and right button plates





Touchpads

Touchpad	Size	Price	Integration	LCD Display	Power Drain
AliExpress RGB Touch Display Module	4.5" Diagonal	\$15	9 Through-Hole Pins	Yes	High
DFRobot Capacitive Touch Kit	3.2" Diagonal	\$20	12 Through-Hole Pins	No	Medium-Low
Adafruit Resistive Touch Screen	3.7" Diagonal	\$6	4 Pin Flat Flex Cable	No	Low

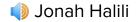


Microcontroller Requirements

- 15 GPIO pins
 - 6 encoders
 - 4 keys
 - 2 touchpad
 - 2 mouse buttons
 - 1 orientation switch

- Programmable with SWD
- Bluetooth-capable
- USB-capable

- 2 ADC pins for touchpad



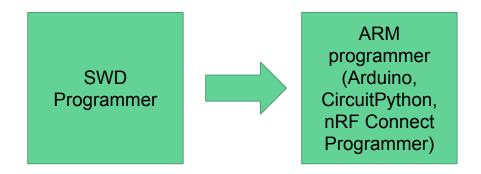
Microcontroller

- ATMega32: Meets GPIO requirements, but does not have built-in Bluetooth/USB interfaces.
- nRF52840: Has necessary GPIO, is capable of generating Bluetooth and USB messages, does not have a Bluetooth antenna.
- ESP32: Similar specs to nRF, slightly less powerful.
- MDBT50Q: Combines the nRF MCU with a Bluetooth antenna.

MCU	GPIO Pins	Bluetooth	USB	Programming Method
ATMega32	32	None	None	Arduino IDE, Microchip Studio
nRF52840	48	On-chip	On-chip	nRF5 SDK, Arduino IDE, CircuitPython
ESP32	34	On-chip	On-chip	Arduino IDE

Technology Investigation: Software

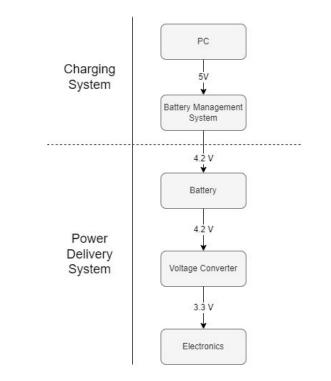
HID Libraries and Firmware

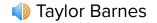

- CircuitPython to connect the I/O pins to respective input units
- USB and Bluetooth connection
- Keyboard, Rotary Encoder, X and Y coordinate reading
- Arduino also has libraries but CircuitPython was more involved with what we wanted
- KMK and QMK for keyboard firmware was also considered

Technology Investigation: Software

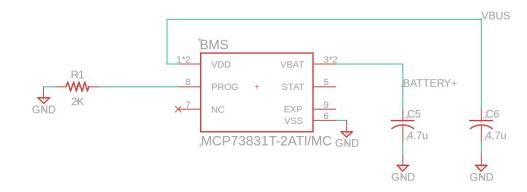
SWD Programmer and Connector

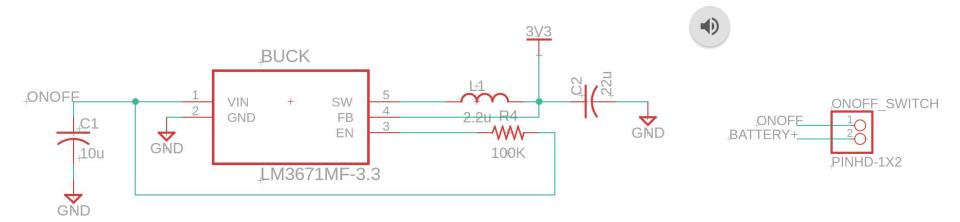
- This allows us to program the blank microcontroller
- Install the bootloader for the device where we can then edit through Arduino
- Two ways to go about uploading firmware
 - Arduino
 - CircuitPython

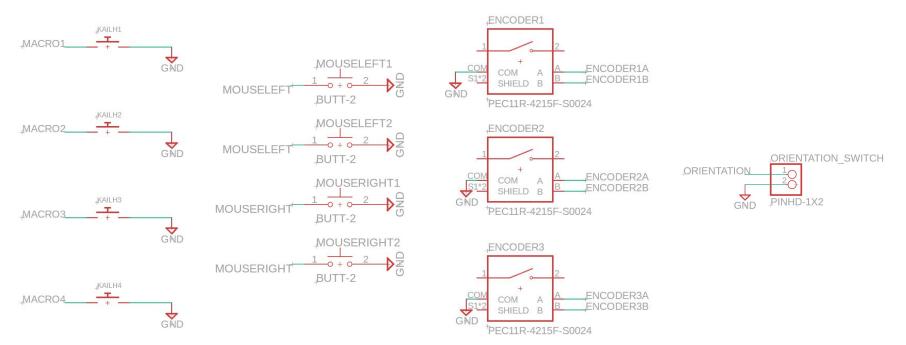


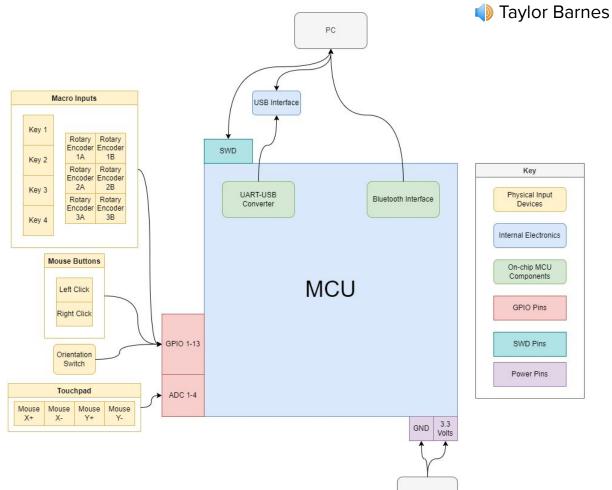


Power System



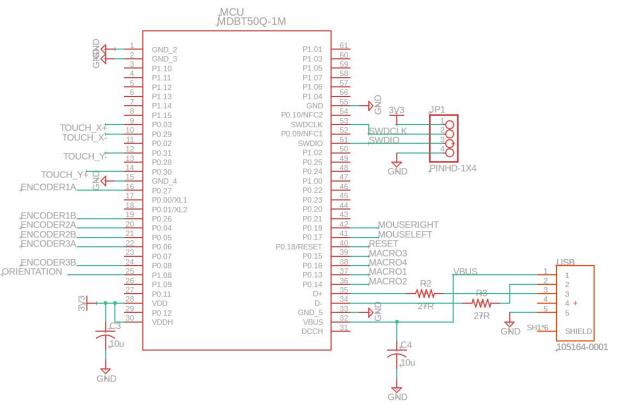

- The PC supplies 5V power.
- The 5V power activates the MCP73831, which charges the battery.
- The battery supplies 3.7-4.2V power, which is then regulated by the LM3671.
- The regulated 3.3V power activates the device electronics.


Power System Schematics

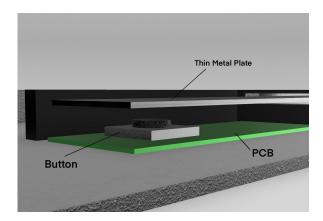


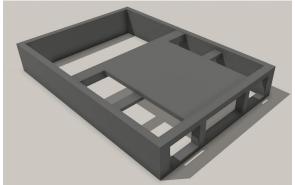
Input Unit Schematics

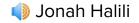
Microcontroller


- The MCU is powered with 3.3V from the power system.
- The input units connect to the MCU via GPIO pins.
- The MCU's Bluetooth and USB interfaces with the user's PC.
- The PC can be used to program the MCU on its SWD pins.

Power System


Microcontroller Schematic



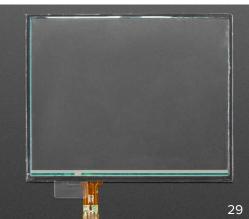


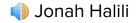
Design Details: Chassis

- Open casing with platform on the top for the trackpad
- Backplate with standoffs to hold pcb
- Cutouts on the side to access on/off switch, orientation switch, and micro USB.
- Left and right click mechanism
 - Thin metal plate with some material under it to close the gap between the button and the plate

SWD Programmer


- Initially we had to work with a 3rd party programmer due to availability and cost restrictions, but it didn't work
- Switched over to the PCA10056 as an alternative for J-Link programming

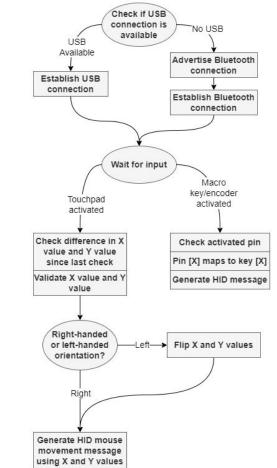

J-link connection

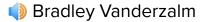

3rd party programmer

Adafruit Resistive Touch Screen

- This touchscreen passes X and Y coordinates to the MCU via a 4 pin ribbon cable
- The TouchScreen library for Arduino is used to take these coordinates and translate it to mouse movement
- Calculations within the code are made to reduce unintended jitteriness and jumps in mouse movement

Firmware: C, Arduino, and CircuitPython

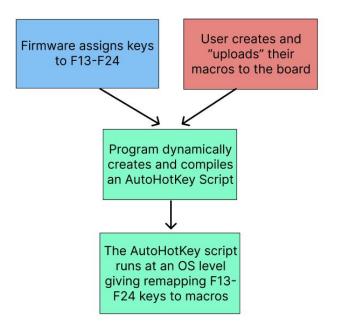

- Three methods to upload firmware to the microcontroller
 - Arduino: uploading bootloader then working with C++ through the Arduino IDE
 - Most viable contender, bluetooth was finicky/didn't work
 - CircuitPython: uploading bootloader for the microcontroller and the CircuitPython capabilities then editing the code.py directly
 - Most preferred but microcontroller wouldn't accept CircuitPython uf2 bootloader, everything including bluetooth worked
 - C: using nRF Connect through the vsCode extension to upload hex files with all the mapping
 - Worst method due to conversion of files to hex files to upload
- Ended up using Arduino for all firmware programming


🌗 Jonah Halili

Design Details: Firmware

The main functionalities we needed were: keyboard HID, mouse HID, rotary encoder controllers, and Bluetooth. We connect available GPIO pins to functions keys.

- Main idea was to set the keys to keys people wouldn't typically use (F13 -F17)
 - These would be set to macros or whatever the user wanted through the application
 - \circ $\hfill This would be done using the AHK scripting$
- Rotary Encoders each need two function keys for each channel on the encoder
 - F18-F24
- 4 Left and Right buttons
 - F25-F28
- Trackpad coordinates are set to calculated mouse movements
 - Connected through analog pins



Design Detail: Application Software

A graphical user interface (GUI) is needed for the user to design macros and "upload" them to the device.

- User interface with forms and dropdowns for the user to design their own Macros.
- Dynamically create and compile one AutoHotkey script that communicates with Windows at the OS level to perform the macro.

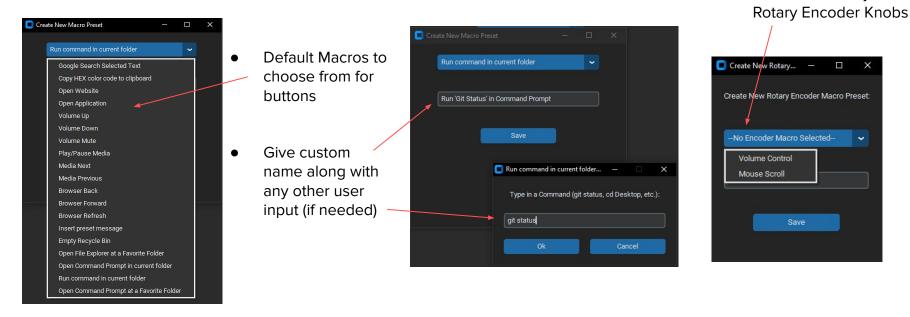
Design Detail: Technology Used in Application software

	Frontend	Backend
Technology	TKinter GUI Library	AutoHotKey (AHK), scripting language for windows
Coding Language	Python	Python and AHK macros performing at the OS Level
Features	Open source library, abundant documentation	Dynamically create AHK macro scripts based on the user's choice. Abundant documentation
Compatible with Windows OS?	Yes	Yes
Cost	Free	Free

Design Detail: GUI Design

Programmable Trackpad						
Start Running Macros	Search Preset	Search				
Stop Running Macros	BUTTONS			Programmable Trackpad Start Running Macros	Search Preset	- □ ×
Create New Macro	First Function key:	Browser Back	~	Stop Running Macros	BUTTONS	
Create New Rotary Encoder Macro	Second Function key:	Browser Forward	~	Create New Rotary Encoder Macro	First Function key:	Open UCF Website
	Third Function key:	No Macro Selected	-	Cleate New Rotary Encoder Macro	Second Function key:	Open Chrome
					Third Function key: Fourth Function key:	Lookup Selected Text
	Fourth Function key:	No Macro Selected	~		Fourth Function Key:	Mute Volume 👻
	ENCODERS				ENCODERS	
	First Encoder:	Volume	~		Second Encoder:	Rotary Knob Scroll
	Second Encoder:	No Encoder Macro Sele	cted 🐱	Appearance Mode: System		
Appearance Mode:	Third Encoder:	No Encoder Macro Sele	cted 🐱			
Dark 🖌						

Design Detail - Home Page and Overall Functionality

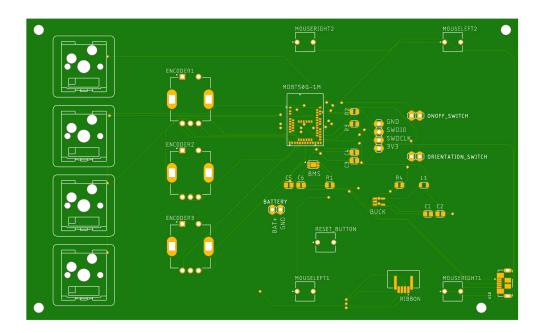

Programmable Trackpad			- 🗆 X
Start Running Macros			Search
Stop Running Macros		BUTTONS	
Create New Macro	First Function key:		Open UCF Website 🗸
Create New Rotary Encoder Macro	Second Function key:		No Macro Selected Open UCF Website
	Third Function key:		Open Chrome
	Fourth Function key:		Lookup Selected Text Get Current Color at Mouse Cursor
		ENCODERS	Increase Volume Decrease Volume
	First Encoder:		Mute Volume Rotary Knob Volume
	Second Encoder:		Rotary Knob Scroll 🗸
Appearance Mode:	Third Encoder:		No Encoder Macro Selected 🗸
Dark			

- Based on the dropdowns, it will dynamically create, compile, and execute an AutoHotkey Script that remaps F13 to F24 to the user's macro hotkeys.
- The user can manage their macros by doing the following
 - Create
 - Search
 - Edit
 - Delete

Default macros that make sense only for

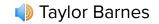
Design Detail: Create Macro Window

Some Macros have static functionality such as "Google Search Selected Text" but some allow user input such as "Open Application" where the user can choose any application.


Design Detail: Search Window

			Search Results			— c	- ×
			Showing 7 of 7 Custom Presets with Search Query:				
 Search based on macro Name and/or Type 		Open UCF Website	Open Website				
		Open Chrome	— Open Application				
		Lookup Selected Text	— Google Search Selected Text				
			Get Current Color at Mouse Cursor	 Copy HEX color code to clipboard 			
			Increase Volume	— Volume Up			
Search Results			Decrease Volume				
-					e da		Ň
Showing 3 of 7 Custom Presets with Search Query:	volume Volume Up Edit	Delete					
				ynamic <mark>Delete</mark> -	Immediate	Ne	
Decrease Volume	Volume Down Edit	Delete		emoves preset fi		-	
Mute Volume	Volume Mute Edit Delete		dropdowns on the home page				
						ge	
				dit - Opens the s	same Creat	te Macro	
				indow but with			
							37

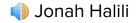
Design Details: PCB Design


- Designed in Fusion 360
- Large size accommodates for the size of the touchpad and macro keys
- Four holes in corners used to mount PCB in chassis
- Ground pour avoids the Bluetooth antenna

Further Strides future of the device

- USB-C upgrade from micro-USB
- Bluetooth capability
 - Exhausted all attempts to implement bluetooth: CircuitPython, Arduino community libraries, nRF forums, etc.
- Unit upgrades
 - Left and right click buttons
 - Trackpad upgrade, smoother mouse movement
- Chassis upgrade

Finance: Development Budget


- These materials were purchased as part of the prototyping phase of development.
- Total development budget: \$317.80

Item	Price	Purpose	
3.7" Touchpad	\$11.45		
Touchpad to USB breakout board	\$17.59	Prototyping touch functions	
500 mAh LiPo battery	\$6.99		
1700 mAh LiPo battery	\$10.99		
18650 battery charger	\$5.99		
USB-C Battery Management board	\$8.99		
USB-C Battery Charging board	\$12.99		
TPS61023 Development Board	\$3.56		
LP3671 Buck Converter	\$11.22	Prototyping power system	
Rotary Encoders	\$9.00		
Mech Switch Breakout Board	\$3.25	Prototyping HID commands	
MDBT50Q	\$12.95		
Itsbitsy nRF52840 Express	\$27.20	Prototyping microcontroller	
SWD Programmer	\$6.40		
nrf52840 DK	\$57.18	Prototyping SWD programming	
ESP32-WROOM-32D	\$9.09	Exploring nRF alternatives	1
PCBs and Stencils	\$102.96	Prototyping system integration	1
Total	\$317.80		40

Finance: Bill of Materials

- These are the materials used to manufacture one Programmable Trackpad.
- Total cost: \$60.19

Item	Quantity	Price
MDBT50Q	1	\$12.95
500 mAh LiPo battery	1	\$6.99
LM3671 3.3V Converter	1	\$1.61
MCP73831 Battery Management System	1	\$0.77
3.7" Touchpad	1	\$11.45
Rotary Encoder	3	\$2.90
Kailh Socket Pack	1	\$2.50
Boba U4T Key Switch Pack	1	\$11.50
PCB	1	\$2.00
Ribbon Cable Receptacle	1	\$0.36
Micro USB Receptacle	1	\$1.36
	Total	\$60.19

Conclusion

- Our team set out to design a niche product that did not exist in the market. Through our research, we discovered a gap in the market and identified an opportunity to fill it with our design.
- We are proud to say that our final design is at a satisfactory point where further improvements can still be made. With the given time frame and financial support it met a majority of the engineering requirements we sought after. We believe that our product has the potential to make a significant impact in its industry.
- We are grateful for the support and contributions of our team members and IDEM systems who helped us along the way. We could not have accomplished this without their hard work and dedication.