
Programmable Trackpad
Taylor Barnes, Jonah Halili, Brian Modica,

Bradley Vanderzalm

Dept. of Electrical and Computer Engineering,
University of Central Florida, Orlando,

Florida, 32816-2450

Abstract — The programmable trackpad is a device
that assists the productivity of PC users by implementing
shortcut macro keys and rotary encoders in a trackpad
device which serves as a replacement for a programmable
mouse. This device gives users a method for performing
common actions and opening frequently-used applications
with a single button press. Users can program these
shortcuts themselves with a simple computer application
that requires no specialized knowledge. Now, PC users
who prefer a trackpad can take advantage of the same
convenience one would receive from a programmable
mouse.
Index Terms — Embedded systems, mice,

microcontrollers, system-on-chip, tactile sensors

I. INTRODUCTION

On the market today, there exists a subset of a
common computer peripheral meant to boost a basic
end-user’s productivity. This product is the
programmable mouse. The concept is simple; it is a
computer mouse that contains several extra buttons that
the user can map to any shortcut or command which
he/she chooses. The added convenience of these extra
buttons means that a user can save valuable time when
performing common, repetitive tasks.
Currently, this type of device only exists for the

mouse, but not for the trackpad which has millions of
users every day. This is where our project comes in. Our
purpose in creating the Programmable Trackpad is to
bring this type of technology to the trackpad, for users
who prefer to use a trackpad over a mouse. Our
trackpad will contain a suite of macro keys and rotary
encoders, all of which end users can program
themselves. With these, trackpad users will be granted
the same convenience and functionality as
programmable mouse users in a compact and ergonomic
package. This device is intended to completely replace
the default trackpad on a traditional laptop.
The guiding principle of our development process is

this: create a system which, when connected to a PC,
can act as a trackpad and a macro keypad. In order to
accomplish this, we will create a hardware device with

input systems (trackpad and keypad) and a software
application which the PC will use to interpret the
hardware’s output. Additionally, the device’s firmware
will manage communication between the device and the
PC. The requirements for these systems, as well as the
technology used to accomplish these tasks, will be
expanded upon in further sections.

II. PROJECT GOALS

The major goal of this project is to take a task from
people’s daily use of their PCs and attempt to create an
overall convenience and improved efficiency in their
work. This project strives to reduce the steps taken in
repetitive and common tasks done on the computer, both
for work and for personal use. The project aims to
create an external trackpad device that exists outside of
the computer that is portable, compact, and purposeful.
To reach the goals of this project, there are certain

objectives that need to be met based on specific design
choices in hardware and software. Table I lays out the
general goals that have guided our team’s design
process, as well as the specific objectives that are a
means to reach each goal.

III. DESIGN/SYSTEM OVERVIEW

In order to accomplish the goals of the project, our
system will include many interrelated functions. On a
high level, these functions can be summarized with a
list of the interfaces with which the user will interact.
While the inner workings of the device will be
expanded upon in further sections, the following figure
(Figure 1) is a general look at the device from a user’s
perspective.

Fig. 1. Trackpad interfaces labeled as the user sees them.

The intended way to use the Programmable Trackpad
is for the user to place the device on his/her desk next to
the PC’s keyboard. For right-handed users, the
Programmable Trackpad will be placed on the right of



TABLE 1
PROJECT GOALS AND OBJECTIVES

Goal Objective (how we achieved said goal)

Reduce common and repetitive tasks Add buttons with macro key capabilities that are programmable.

Convenient and Ergonomic Hardware -Make the device wireless with Bluetooth capability.
Software - Run the macros even after termination of the app.

Ergonomic Support ambidextrous users.

Low Learning Curve Application with user-friendly interface to program macro keys.
Only have to run one executable file, the user doesn’t need Python or
AutoHotKey installed.

Customizable for user Hardware - Ability to easily remove keys to the user’s liking.
Software - Application should be able to create and store to run on the device

the keyboard, while left-handed users will place the
device to the left of the keyboard.
For left-handed users, the same device can be used

slightly differently by rotating the Programmable
Trackpad 180 degrees. One thing to note is that the
mouse click buttons that were unused in the
right-handed configuration become the primary mouse
click buttons in the left-handed configuration and vice
versa.
The following sections detail the various subsystems

of the device: hardware, firmware, and software. Figure
2 offers a basic overview of how the systems interact.

Fig. 2. High-level systems overview.

A. Hardware

The device hardware includes a circuit board, input
units, and a 3D-printed plastic chassis. On the circuit
board, there is a power system that controls a
lithium-polymer battery, a microcontroller, and circuitry
to connect these devices to the system's interfaces. Each
of these components will be expanded upon in Section
IV. All of the electronics are enclosed in the chassis.
Figure 3 is an overview of the electronics on the circuit
board and how they interact with each other.

Fig. 3. Hardware block diagram.



B. Firmware

The hardware of the Programmable Trackpad
includes multiple computing devices which are
responsible for processing input and output. The design
challenges associated with such devices include writing
code for programmable devices and selecting
communication protocols for the devices to use. When
the device is powered on, it immediately begins
searching for a Bluetooth device with which to pair. The
user must configure this Bluetooth connection on the
PC. As long as the device stays on and the PC does not
sever the connection, then the Programmable Trackpad
will stay paired with the PC.
The input/output functionality of the Programmable

Trackpad is handled by an nRF52840 microcontroller.
Its responsibilities include processing input from input
devices, translating input into meaningful output, and
routing output to Bluetooth or USB. Each input device
is electrically connected to one or more general purpose
input/output (GPIO) pins on the microcontroller. The
firmware translates each GPIO pin to a particular mouse
or keyboard function. For the touchpad, the GPIO pins
are used to accept an X and a Y coordinate describing
the location that the device is being touched. These
coordinates are fed through an algorithm to generate the
appropriate mouse movement.
The following flowchart (Figure 4) shows the

behavior of the device’s firmware from the time it is
turned on.

Fig. 4. Firmware flowchart.

Once the microcontroller's code is written and
compiled, it is loaded onto the chip using the Arduino
IDE. Before it can be loaded in this way, the Arduino
bootloader must be installed on the chip using its SWD
interface, represented by two pins on the circuit board.
Once the bootloader and device firmware are loaded
onto the chip, it need never be programmed again. It is
not intended for users to ever reprogram the hardware of
the device; therefore, the mouse and keyboard
functionalities of the system are handled within
firmware.

C. Application Software

The application software was created to be
user-friendly, efficient, and sleek, with a modern design.
The UI allows the user to create, delete, edit, search, and
run macros all on the PC. The macros can then be
triggered using the keypads or encoders selected within
the application. The frontend displays these features in a
simple way where the user is able to select preset
macros in a dropdown list and search by name or macro
type in the search bar.
The application intends to help users that might not be

very familiar with automating tasks and creating their
own shortcut macros. Our Python application was built
with a TKinter GUI frontend base. It integrates with
AutoHotkey, an open-source macro program, to compile
and execute scripts running at the Windows OS level to
automatically create different macros accessible by the
different keys and encoders.
Running in the background, the Python code takes

these selected macro objects which are then written and
transferred to an .ahk script. Running this script will
take the function keys associated with the keypads and
encoders and remap them to a new macro automation
shortcut feature.
Our application was designed with the user’s

experience in mind. Hence, our goals and objectives
focused on the aspect of making the macro creation
process as easy and repeatable as possible. For example,
once the AutoHotkey script is running and remapping
the function keys, the GUI application doesn’t have to
be open for the device’s inputs to function properly.
Along with this, the data and information gathered

through the program are stored in text files upon
termination of the app. These files aren’t necessary to
run the application, but they remember quality-of-life
data such as custom presets the user created, the macros
that are currently selected that are represented on the
device, and the application color theme (light, dark, or
system).
With the application being built in Python and

utilizing the different components of the AutoHotkey
scripting language, all of the code was able to be



converted into an executable file. Therefore, a blank
Windows 10 machine can successfully run our
application without having Python or AutoHotkey
installed. The block diagram in Figure 5 shows how the
application functions.

Fig. 5. Application block diagram.

IV. DEVICE COMPONENTS

As stated previously, the Programmable Trackpad
hardware is comprised of a chassis, a circuit board, and
various electronic components mounted on the circuit
board. The following is a breakdown of each of the
electronic components found on the board, how each
one is used, and why each one was selected.

A. Mechanical Switches

An important concern of the project is to provide the
consumer with options to change aesthetics and
convenience. There is a currently existing market for
custom keycaps, rotary knobs, switches, etc. and we
wanted to reach out to those communities. One way to
do this was to implement hot-swappable sockets. This
allows the consumer to switch up the mechanical keys
with ease, eliminating the pain of soldering each switch.
Another aspect that comes with the implementation of
mechanical switches is being able to switch up the
keycaps.
The common part used as a mechanical switch for

keys on PCBs is known as the Kailh hot-swappable
socket. Since this is standard, we chose to implement it
in our device.

For the default switches, we opted for Boba U4T
switches with a 62 gram spring. These offer a tactile
feel for the user while also having a quiet sound level.
In the case the user is not happy with the default switch,
because of the hot-swappable design, users can change
the switches depending on their preferences. We chose
these switches because, for the general public with little
to no knowledge of the variety of mechanical switches,
they provide a good balance between tactile feedback
and a quiet experience offering the best of both worlds.

B. Rotary Encoders

There are not many options to choose from when
designing a system with rotary encoders, since they all
serve the same purpose and do not have many features
to improve upon. The option we selected was a 24-pulse
encoder with detents and haptic feedback. This option
allows us to know the current position of the encoder
through the microcontroller by measuring the number of
clicks it has moved from its initial position.
If we were attempting to determine its rotational

position, then a potentiometer would be a better option
in this case, but, since the rotary encoder could be
mapped to many different things the user might choose,
it would most likely be the better option to use a rotary
encoder, which does not have the rotational restriction
of a potentiometer. The main difference between the
two is that rotary encoders have a fully continuous
rotation in either direction using digital signals whereas
a potentiometer has a set direction in a clockwise or
counter-clockwise direction using analog signals.
A typical use case for rotary encoders is changing a

system’s volume. Turning the encoder clockwise
corresponds to an increase in volume; turning the
encoder counter-clockwise corresponds to a decrease in
volume. On a PC, there are also software controls for
volume, so it makes sense to use a digital device (rotary
encoder) rather than a rigid analog device
(potentiometer).

C. Mouse Buttons

In order to function fully as a mouse, the device needs
buttons for left and right clicking. Common convention
for trackpad design is to implement these buttons
directly beneath the touchpad. Our device uses four
such buttons: two above the touchpad and two below.
The two pairs of buttons exist to serve both left-handed
and right-handed users, since the two different groups
are intended to orient the trackpad differently.
The buttons themselves are simple push buttons

mounted directly on the circuit board. In order to
activate the buttons, the user presses down on metal
strips that are anchored to the chassis. These metal
strips are attached to standoffs that click the buttons



when pressed down. This allows the user to have the
clicking feedback of the buttons without needing the
precision required for depressing the small buttons.

D. Orientation Switch

One other input device included on the Programmable
Trackpad is the orientation switch. This is a physical
switch that the user can toggle to switch between
right-handed mode and left-handed mode. Any simple
toggle switch can be used for this purpose. On our
device, the switch is located on the outside of the
hardware, so that the user can access it at any time. The
switch is connected to the microcontroller, which
handles the logic of switching from one orientation to
another. This logic requires inverting the input on the
touchpad.

E. Touchpad

The touchpad used in our device is the Adafruit
Resistive Touch Screen. This touchpad is appealing
because of its convenient size and low price. As the
name implies, it is a resistive touchpad, which means
that it senses pressure applied to its surface. This
touchpad has a functional area of 3.7 inches diagonal,
which is comparable to other trackpads on the market.
In terms of power drain, this touchpad will drain the
least amount of power on a battery operated system. It
interfaces via a flat flex cable (FFC) with 4 pins. To
integrate this module into our device, we use an FFC
socket that is soldered directly onto the circuit board.

F. Battery

The device runs on battery power so that it can
operate wirelessly. The battery selected is a 4.2-volt
lithium-polymer (LiPo) battery. This type of battery is
very common in embedded systems design, particularly
in cell phones. We chose it for this project because of its
low profile and built-in circuit protection.
Because the battery’s fully-charged voltage is 4.2

volts, it does not interface directly with the device’s
other electronics, all of which operate at 3.3 volts.
Instead, the battery’s voltage is stepped down to 3.3
volts using an LM3671 buck converter. This chip was
chosen because it was designed with 4.2-volt LiPo
batteries in mind. The buck converter is used as the
voltage source for the microcontroller and input units.

G. Battery Management System

One key advantage of the LiPo battery is that it is
rechargeable. In order to charge the battery, there is an
MCP73831 chip soldered onto the circuit board. This
chip is a battery management system (BMS), which
means that it can provide a constant current source to

the battery until it is fully charged, at which point, it
will cut off the constant current.
In our design, the BMS receives its power from the

USB port. It converts the 5 volts from USB into a
usable 4.2-volt source, which then charges the battery.
Similar to the aforementioned LM3671, we chose the
MCP73831 because it was designed with LiPo batteries
in mind. As such, there is thorough documentation on
how to set up the chip as a USB battery charger for such
batteries. For our implementation, we adapted an
electrical schematic that was found in the part’s
datasheet [1]. The following block diagram shows how
the battery and battery management system interacts
with the rest of the device electronics.

Fig. 6. Power system block diagram.

H. Microcontroller

The centerpiece of the circuit board is the
microcontroller (MCU), an nRF52840 system-on-chip.
This controller was chosen because it offers a robust
variety of functionality across many pins, and also
because it has native USB and Bluetooth support.
Each of the input units is connected to one or more of

the GPIO pins on the MCU. Most of them are
configured as digital inputs using the chip’s built-in
pull-up resistors, but the touchpad pins are configured
as analog inputs. Various firmware libraries allow the
MCU to generate Human Interface Device (HID)
messages (cursor movements, key presses, and mouse
clicks), and its native USB and Bluetooth interfaces can
propagate those messages to the connected PC.
Because the nRF52840 supports several different

methods of power input, we used the chip’s datasheet
[2] to design our circuit around the premise that it
would receive 3.3 volts directly from a battery source.
Figure 7 shows the schematic that we used for the
microcontroller including the power options that we
used from the datasheet as well as each of the input
units on our device.



Fig. 7. Microcontroller schematic.

V. DEVELOPMENT

After conceptualizing the project and researching the
associated technology, our team went through multiple
phases of prototyping. During the first phase of
prototyping, we used development boards that
implemented each of the chips we intended to use in the
final product. We used this phase to prove that the
components we had selected could function together as
intended. At this stage, if there were any
incompatibilities between parts, we could quickly pivot
to another design/implementation of a system.
During the next phase of development, we created a

custom breakout board for the microcontroller so that
we could experiment with different configurations for
its power input and GPIO pinout. The circuitry that we
implemented on this breakout board using breadboards
eventually was implemented in the final PCB after the
breakout board served as a proof of concept. Figure 8
shows the custom board. The two connectors on the
board are a USB connector for PC connectivity and a
ribbon cable connector for the touchpad.

Fig. 8. Custom breakout board for microcontroller
prototyping.

Our goal here with this development process was to
mainly test the microcontroller and its capabilities.
Having tested the microcontrollers on consumer
development boards, we wanted to make sure it would
work with ours. This included testing and uploading our
firmware as well as implementing simultaneous battery
charging and connection.
Initially using a third party J-link connected through

SWD to our microcontroller was a huge hurdle in our
development and ended up bricking two of our testing
development boards. We had to look at using official
J-link devices to program our microcontroller correctly
and we were led to the PCA10056. This, on the other
hand, was successful in uploading the bootloader for us
to use the microcontroller with either Arduino or
CircuitPython. However, we ran into another problem.
CircuitPython was our main route we chose for
configuring the GPIO pins on our custom board but
anything we did to upload the CircuitPython uf2
bootloader onto our custom board, there was no luck
into that being successful and with some searching on
the internet and forums, this is a pretty common
problem that hasn’t been solved. This is most likely due
to the microcontroller itself, but nevertheless we had to
look at different options.
Arduino also has some configurations we could work

through and that worked perfectly. The only problem
with this route is the implementation of Bluetooth.
Using community libraries and the native ones by the
Arduino nRF52 Bluetooth, there was no luck in
implementing a successful bluetooth connection with
our custom development board. Although we had gotten
the main functionality to fully work with our testing
development board, we had hoped to not run into these
problems with both CircuitPython and Arduino with the
final design.
After prototyping the entire system using this

breakout board, the next phase of development was final
design.

VI. FINAL DESIGN

The final PCB design implements all of the
components listed in Section IV and addresses the
hardware goals set in Table I. That includes three rotary
encoders, four macro keys, a touchpad, left-click and
right-click buttons in two orientations, a USB port, an
orientation switch, and an on/off switch. The PCB
design can be seen in Figure 9.



Fig. 9. Final printed circuit board design.

The final design for the device chassis was based on
the dimensions of the PCB. It leaves an opening on one
side for the encoders and macro keys, while the other
side has a flat plane for the touchpad to be mounted. On
the side of the chassis, there are holes cut out for the
USB connector, orientation switch, and on/off switch.
Standoffs are placed in the chassis lined up with the
screw holes in the PCB. Figure 10 shows what the
chassis model looks like.

Fig. 10. Final chassis design.

The final application design fulfills all of the software
goals set in Table I. It includes functionality for the user
to create macros, assign macros to keys and encoders,
store those macros on the PC, delete stored macros, and
run the code to run macros in the background. Figure 11
shows what the user interface of the application looks
like.

Fig. 11. Application user interface.

VII. TYPICAL USE

To use the device, there are a few options the user
can first explore: swap out the default switches, change
the knob on the rotary encoder, or set the orientation of
the device. Once these are considered we recommend
plugging in the device to make sure the battery is
charged. If the battery is fully charged, the user can also
opt into using the device through Bluetooth. This can be
done by adding the device into the Bluetooth
connections on their computer. The user then can open
the user application where all the magic happens
between the device and the computer. The user must
first create new macros for the desired actions where
they can then be found in the dropdowns for each macro
key and encoder. Once those are all configured, by
pressing the “Start Running Macros” button in the top
left corner, the application starts and the user will be
able to use the device based on their custom
configuration.

VIII. CONCLUSION

With the Programmable Trackpad, we believe that we
have covered the market space for a niche product that
did not exist before. Once we identified a potential
need, we began brainstorming ways to fill that need. We
decided that we would create a trackpad that has several
macro-keys and rotary encoders that would map to
user-defined shortcuts. Based on those and multiple
other engineering requirements, we conducted thorough
research on each component, and based the final design
on the most practical application of each. Once we had
settled on specific parts, we created block diagrams for
each of our major systems and visualized how they
would work together. From here, we tested a few
prototype designs before settling on the final design.



This roadmap set us up for the execution of a successful
project.
Through Senior Design at UCF, it gave us the

opportunity to work as a team and encouraged us to
apply the skills and knowledge we learned throughout
our years at UCF.

ACKNOWLEDGEMENT

The authors wish to acknowledge the assistance and
support of Dr. Richard Blair with IDEM Systems for
PCB assembly and guidance. We would also like to

acknowledge Dr. Samuel Richie and Dr. Lei Wei for
their support throughout the past two semesters of
Senior Design.

REFERENCES

[1] “MCP73831.” Microchip,
https://www.microchip.com/en-us/product/MCP73831

[2] Raytac. “MDBT50Q-1MV2.” Raytac,
https://www.raytac.com/product/ins.php?index_id=2


