
 V isually I mpaired S patially
 I nteractive O rientation N etwork

 Group 14 Authors:

 Aaron Crawford Alexander Parady Arsene Landry Tatke Noah Harney
 Computer Electrical Electrical Computer

 Engineering Engineering Engineering Engineering

 Mentor:

 Dr. Chung Yong Chan

 TABLE OF CONTENTS
 1. EXECUTIVE SUMMARY 1
 2. PROJECT DESCRIPTION 2

 2.1 Project Background and Goals 2
 2.2 Project Motivation 3
 2.3 Project Function 4
 2.4 Project Objectives 5
 2.5 Required Specifications 6

 3. RESEARCH 9
 3.1 Similar Projects 9
 3.2 Relevant Technologies 9

 3.2.1 Billiards Artificial Intelligence 9
 3.2.1.1 Simulation Tools 9
 3.2.1.2 Simulation Tool Modifications 11
 3.2.1.3 Different Implementations of Shot Selection Algorithms 11
 3.2.1.4 Computation of Shot Selection Algorithm 17

 3.2.2 Computer Vision 18
 3.2.2.1 Computer Vision Software Options 18
 3.2.2.2 Computer Vision Preprocessing 20
 3.2.2.3 Computer Vision Algorithms 24

 3.2.3 Visual Impairment Assistive Technology 29
 3.2.4 User Localization 32

 3.2.4.1 RFID And Bluetooth 32
 3.2.4.2 Sensors 38
 3.2.4.3 Localization Algorithms 41

 3.2.5 User Guidance 43
 3.2.5.1 Audio Outputs 43
 3.2.5.2 Physical Sensory Outputs 45
 3.2.5.3 Guidance Algorithms 47

 3.2.6 Feedback System 49
 3.2.7 Direct User Commands 52

 3.2.7.1 Control Interfaces 52
 3.2.7.2 Audio Commands 53

 3.2.8 Absolute Orientation 54
 3.2.8.1 Cue Displacement 54

 3.2.9 Test Cases 54
 3.2.9.1 Game Modes 54

 i

 3.2.9.2 Shots Supported by VISION 56
 3.2.9.3 Physical Limitations 57

 3.2.10 Processing Unit 58
 3.2.11 Communication Methods 63

 4. RELATED STANDARDS & DESIGN CONSTRAINTS 64
 4.1 Related Standards 64

 4.1.1 Wired Communication Standards 64
 4.1.2 Wireless Communication Standards 64
 4.1.3 Connection Standards 65
 4.1.4 Programming Standards 66

 4.2 Design Constraints 67
 4.2.1 Economic Constraints 67
 4.2.2 Environmental Constraints 67
 4.2.3 Social and Political Constraints 68
 4.2.4 Ethical Constraints 68
 4.2.5 Health and Safety Constraints 69
 4.2.6 Manufacturability Constraints 69
 4.2.7 Sustainability Constraints 69

 5. SYSTEM HARDWARE DESIGN 71
 5.1 Billiard Table 71
 5.2 Processor Selection 72
 5.3 Camera 74

 5.3.1 Computer Vision Camera 74
 5.3.2 Computer Vision Camera Mounting 77

 5.4 Localization System 78
 5.5 User Guidance System 81

 5.5.1 Audio Array Design 81
 5.5.2 Positioning Method 83
 5.5.3 Orientation Method 83

 5.6 User Control Interface 84
 5.7 Communication Network 85

 5.7.1 Communicating Systems 85
 5.7.2 Communication Protocols 85

 6. SYSTEM SOFTWARE DESIGN 87
 6.1 Computer Vision System Software Design 87
 6.2 Pool AI 90
 6.3 Localization and Guidance Algorithm Design 95

 ii

 6.3.1 Localization Algorithm Design 95
 6.4.2 User Guidance System 97

 6.4 Shot Feedback (Computer Vision System) 99
 7. SYSTEM FABRICATION 100

 7.1 PCB Design 100
 7.1.1 PCB Design Philosophy 100

 8. SYSTEM TESTING PLAN 103
 8.1 Hardware Testing 103

 8.1.1 Guidance Testing 103
 8.1.2 UWB Testing 104
 8.2 Software Testing 104
 8.2.1 Shot Selection Algorithm Testing 104
 8.2.2 Computer Vision Software Testing 105
 8.2.3 Feedback System Software Testing 106
 8.2.4 Localization Software Testing 107

 8.3 User Testing 108
 9. User Guide 110

 9.1 Operation Overview 110
 9.2 Project User Guide 110

 9.2.1 Startup 110
 9.2.2 Moving to a Shot 110
 9.2.3 Taking the Shot 111
 9.2.4 Shot Result 112
 9.2.5 Troubleshooting 113

 9.3 Project Assistant Guide 113
 9.3.1 Startup (Table, Camera Stand, Billiard Balls) 113
 9.3.2 Camera and Jetson Nano 114
 9.3.3 User Guidance and PCB 114
 9.3.4 User Localization App and Beacons 115

 10. ADMINISTRATIVE CONTENT 117
 10.1 Project Budget 117

 10.1.1 Bill of Materials 117
 10.1.2 Project Financing 118

 10.2 Milestones 118
 11. PROJECT SUMMARY and CONCLUSION 122
 Appendix A: Copyright Permissions 123
 Appendix C: References 134

 iii

 LIST OF FIGURES

 Figure 2.1 Project Block Diagram 5
 Figure 2.2 House of Quality Analysis 8
 Figure 3.1 Shot Planner Diagram 12
 Figure 3.2 Neural Network Work for State Set with Three Balls 15
 Figure 3.3 Neural Network for State Set with 3 Balls (Broken Into Two Networks) 16
 Figure 3.4 Ideal Distribution of Thresholding on Image 22
 Figure 3.5 Image Thresholding to Isolate Region of Interest 23
 Figure 3.6 Canny Edge Detection on an Image 25
 Figure 3.7 Detection of Overlapping Circles 28
 Figure 3.8 Epsilon Value on Algorithm Output 29
 Figure 3.9 Previous System Indoor Localization Design 31
 Figure 3.10 AD-172u7 UHF RFID Tag and Inlay 34
 Figure 3.11 Simplified Model of Trilateration 37
 Figure 3.12 Bluetooth BLE iBeacon (BC021-MultiBeacon) with Motion Sensor 38
 Figure 3.13 Model and Dimensions of Compact Housing HRXL-MaxSonar Model 40
 Figure 3.14 VL53L0X Time-of-Flight Ranging and Gesture Detection Sensor 41
 Figure 3.15 Localization Algorithm Array Scheme 42
 Figure 3.16 Audio Based Navigation Mechanisms 45
 Figure 3.17 Maptic Haptic Feedback Apparatus 46
 Figure 3.18 HandSight Haptic Feedback Apparatus 47
 Figure 3.19 Maze Traversal Example 48
 Figure 3.20 Force Resistive Sensor 50
 Figure 3.21 RFID Tag Embedded in Golf Ball 50
 Figure 3.22 Feedback System Shot Results 51
 Figure 3.23 TV Remote for the Visually Impaired 53
 Figure 3.24 8-Ball Features Supported By VISION 55
 Figure 3.25 Cue Contact Point 57
 Figure 5.1 Blue Wave’s Fairmount Table (Left) & Rack’s Crux 55 Table (Right) 72
 Figure 5.2 Jetson Nano Device Connections 74
 Figure 5.3 Example of Fixture Mounted Camera 78
 Figure 5.4 Beacon Location on Billiards Table 79
 Figure 5.5 Estimote UWB Beacons 79
 Figure 5.6 VISION User Localization Application 80
 Figure 5.7 Prototype Speaker Activation Design 82
 Figure 5.8 Designed Speaker Array 83
 Figure 5.9 Bidirectional Guidance Possibilities 83
 Figure 5.10 Worst Case Margin of Error Estimation 84
 Figure 6.1 Example of Reachable Shot Issue 91
 Figure 6.2 Shot Angle Projection 92
 Figure 6.3 Shot Angle Quadrant 93
 Figure 6.4 High-Level Overview of Shot Selection System 95
 Figure 7.1 PCB Design Block Diagram 101
 Figure 7.2 Final VISION PCB Design 102

 iv

 Figure 9.1 User Moving Along Table 111
 Figure 9.2 User Rotating to Speaker 112
 Figure 9.3 Camera Stand Location 114
 Figure 9.4 User Guidance Buttons 115
 Figure 9.5 User Guidance Buttons 116

 v

 LIST OF TABLES

 Table 2.1 Requirement Specifications 7
 Table 3.1 Comparison of RFID Technologies 33
 Table 3.2 Comparison of Different Ultrasonic Sensors 39
 Table 3.3 Summary of Processor Offerings 60
 Table 3.4 Performance Results of Benchmark Testing 62
 Table 5.1 Summary of Camera Options 77
 Table 5.2 Summary of Power Consumption in ESP32 87
 Table 5.3 Comparison of Communication Interfaces 86
 Table 6.1 Comparison between R and Python 113
 Table 10.1 Bill of Materials 117
 Table 10.2 Senior Design 1 Project Documentation Milestones 119
 Table 10.3 Senior Design 1 Project Design Milestones 120
 Table 10.4 Senior Design 2 Project Design Milestones 121

 vi

 1. EXECUTIVE SUMMARY

 Every day tens of thousands of people around the world struggling with disabilities have
 difficulty enjoying aspects of life that many people take for granted. People that yearn to
 walk on, touch, smell, and see the world around them in ways that they cannot. In more
 recent years, technology has expanded the freedom of impaired individuals, but there is
 still a significant amount of work to be done. VISION enables people struggling with
 visual impairments to play a game of 8-ball billiards without the need for additional
 human interaction. The goal is to allow the visually impaired to participate in a common
 pastime while also feeling a sense of independence.

 The idea for VISION began as an idea for making an autonomous billiards training agent
 that a billiards player could utilize to improve their performance. Although this was an
 innovative idea that can certainly help billiards players, the idea lacked a true societal
 impact. After much thought, the idea arose to implement a system that performed all of
 the tasks a visually impaired player would not be able to perform. VISION is quite
 literally the vision of a player that locates, localizes, and strategizes the game for a user.

 VISION incorporates some of the most modern technology to implement a system that is
 robust yet simple enough for people without an extensive background in electronics to
 utilize. Upon starting the system, VISION uses a camera to capture the current state of
 the billiards table. Computer vision algorithms then identify all of the billiard balls on the
 table and determine the position and color of the balls. An artificial intelligence algorithm
 is then used with the billiard ball locations to determine the best shot a user can take.
 VISION will then track the location of the user and provide audio instructions to the user
 to guide the player to the correct position for the shot. Once in the correct location, the
 user will be guided to face in the appropriate direction to take a shot.

 At this point, VISION will send information regarding the ideal shot and user positioning
 to a related project named SCRATCH to complete the actual shot. SCRATCH is a project
 working in conjunction with VISION that is responsible for the fine-tuning and execution
 of a user shot. Once a player has made a shot, VISION will then be able to determine the
 outcome of the shot and audibly notify the user of the results.

 VISION is a large, complex project that incorporates many relevant topics in computer
 science and electrical engineering to create a product that has never been made before.
 VISION is an ambitious project, but the team members are committed to widening the
 inclusivity of one of America’s favorite pastimes.

 1

 2. PROJECT DESCRIPTION

 2.1 Project Background and Goals

 Billiards is a collection of many different games played with a billiards table, cue stick,
 and several colored billiard balls. The objective of a billiards game varies depending
 upon what specific game is played, but the typical goal is to use a cue stick to pocket a
 targeted game ball. Every specific billiard game introduces rules and requirements that
 make sinking a shot more difficult than it may seem. One of the more common billiard
 games, and the focus of this project, is 8-ball pool. The goal of VISION is to design and
 implement a system that allows individuals suffering from visual impairments to become
 capable of playing a game of 8-ball billiards.

 Billiards was selected as the game of choice because of its significant complexity
 compared to other games such as chess. Chess is a game commonly associated with
 masterful planning that requires crafting moves multiple turns in advance to be
 successful. Although chess certainly is a complex logic game, it is a discrete problem in
 terms of computation. Chess has a fixed number of locations on the board, a specific
 number of pieces with strict rules about where they can move, and a finite number of
 possible ways for the game to progress. All of these reasons have led chess to become a
 commonly studied problem in computer science. There are many computer programs and
 algorithms for chess that are quite good at the game. There has been much less research
 conducted on creating a robust billiards program. Furthermore, there does not appear to
 be any billiards-style game developed specifically for the visually impaired.

 Like chess, billiards also requires players to plan their moves many turns in advance in an
 offensive or defensive manner. An offensive move is when a player tries to sink as many
 balls as possible while a defensive move is when a player tries to put their opponent in a
 position such that their opponent cannot complete a shot. The careful shot selection
 necessary for billiards is significantly more involved than the equivalent chess decision
 because there is an infinite number of positions that the state of the billiards table can be
 in. The billiard balls can arrange themselves in any position on the table at any point
 during the game, the same cannot be said for chess. There are many ways for a game of
 billiards to progress, and it can oftentimes be difficult to know what the best shot to take
 is given the current state of the game.

 For the vast number of chess programs and significantly fewer billiards programs that
 have been developed, nearly all of these projects have been software implementations of
 the game. The programs that were created were designed to be used for virtual games, not
 physical chess boards or actual billiards tables. The versions of billiards games prove that
 a software system can be used to implement a game of pool. One of the goals of VISION
 is to expand upon previous work by using an actual game of billiards, rather than a
 simulation of the game.

 2

 The success of VISION will be determined if an individual dealing with visual
 impairments is able to successfully compete in a modified game of billiards (with the
 assistance of the SCRATCH team). With the help of VISION, a user should have the
 billiards table represented algorithmically and have the best shot determined for them.
 The user’s location should be tracked and used to navigate the user around the billiard
 table to the desired position for the shot. If all of these individual goals are met, VISION
 will be a success. VISION should be compact and portable so that the system can be
 disassembled, moved, and assembled in a timely manner.

 2.2 Project Motivation

 The motivation of VISION is to develop a systematic way to represent a real-life game of
 8-ball pool computationally and then develop an elegant way to guide a visually impaired
 user through the best shot for them to take to win the game. VISION is a tool that can
 leverage the power of modern technology to help improve the inclusiveness of one of
 society’s most popular pastimes.

 For VISION to truly have an impact, the team decided to develop it in a way that allows
 individuals dealing with visual impairments to develop a sense of autonomy. There are
 not many games that have support for people dealing with disabilities. It can be difficult
 for some individuals to feel included when they are not able to participate in the same
 pastimes as their friends and family. Globally, about 295 million people have a case of
 near or far distant visual impairment. In addition to this, about 43 million people
 worldwide suffer from complete blindness. One of the biggest troubles they face in their
 everyday life is having their freedom limited by moving in an obstructed or limited
 environment where spatial awareness is preventing them from being able to engage in
 their daily activities.

 A lot of systems are in place in different media to help counteract or ease these issues to
 breach issues of orientation, localization, and way-finding through different technologies.
 Navigation technologies or electronic travel aids have been the backbone when it comes
 to developing technologies to help visually impaired people bridge the way for more
 specific applications such as the one developed for this project. Similar to the goal of
 VISION, a lot of sports rules have been adapted and modified to develop games that are
 more inclusive to visually impaired individuals. For instance, beep baseball where the
 bases beep to let the players know which direction they need to go in, or soccer where the
 regular ball is replaced by an audible ball. These concepts were used as motivation and a
 basis to determine which objectives and checkpoints are needed to make VISION an
 impactful visually impaired technology. Our team has broadened the inclusiveness of
 billiards by creating a system that leverages technology to plan, strategize, and see for a
 player.

 3

 2.3 Project Function

 A visually impaired individual that is using the VISION system has the system locate all
 of the billiard balls and determine the optimal shot for them to win the game. VISION
 actively tracks the user and guides the user to the required location through audio
 instructions. The system provides instructions to the user to ensure that they are
 positioned in the general direction of the cue ball. At this point, VISION’s job is
 complete and the SCRATCH program (group #17) will take over. VISION will provide
 SCRATCH with the optimal shot angle and required force.

 There is certainly a concern when two projects are interrelated with each other in Senior
 Design. It would not be fair if one project's failure leads to the failure of the other project.
 With the help of our mentor, the teams designed their projects in a way that minimizes
 interaction between the two projects. VISION will transmit two quantities to SCRATCH
 and the two values can easily be artificially constructed if needed. The SCRATCH team
 does not need to transmit any information back to the VISION team. If the VISION team
 fails to complete their project, the SCRATCH team can craft inputs that the VISION team
 should have provided. If the SCRATCH team fails to complete their project, the VISION
 team will lay the groundwork for future work. VISION detects billiard balls, finds the
 optimal shot, tracks the user, guides the user to the appropriate position, and positions the
 user in the appropriate direction.

 The VISION team has designed a system that is lightweight and able to be moved
 between different locations. The system is designed so that it can quickly be
 disassembled and reassembled so the team can work on the project in a variety of
 locations and environments. The mobility of the system will also be helpful when
 demonstrating VISION to others and must be set up in different locations.

 VISION is a large project that incorporates many technologies into a single, user-friendly
 system. The central processor for the system is a powerful, computer-like processor
 capable of running computer vision and artificial intelligence algorithms. There are many
 systems that must be integrated for VISION to work properly. Figure 2.1 below shows a
 block diagram of all of the systems needed.

 All systems are controlled by the powerful central processor shown in the middle of the
 diagram. The processor asks the computer vision system to capture the current state of
 the board with a camera and transforms the physical billiards game into data expressed in
 a computational way. The shot selection algorithm is then used to determine the best shot
 to take given the current state of the table. The shot information is used by the user
 localization and user guidance systems to determine where the user is and how to guide
 them to the proper location. Once the user is in position, the control will be transferred to
 the SCRATCH team to take the actual shot. Once the shot has been executed, VISION
 takes back control and determines the results of the player’s shot. The results are
 announced through an audio system.

 4

 Figure 2.1 Project Block Diagram

 2.4 Project Objectives
 VISION encompasses a system that captures the current state of the pool table at every
 point during the game, that is, at the start of a game, and every round during the game.
 This system processes the images to isolate the pool table from any sort of background
 present in the image. The system detects, isolates and localizes the billiard balls present
 on the pool table. The system differentiates the cue ball, the eight ball, the player balls,
 and the opponent balls.

 VISION encompasses a system that computes the optimal shot that the user, visually
 impaired or not, can make based on a shot selection algorithm. This involves making
 considerations and assumptions such as the skill level of the user, outside interference
 during the shot, and other relevant factors. The algorithm provides how much force
 would need to be put to make the shot, the positioning of the user’s hand on the cue stick,

 5

 the angle from the base of the table to the cue stick, user posture, and other related
 metrics.

 VISION encompasses a system that navigates the visually impaired user to the necessary
 position that the aforementioned algorithm determines, the position in which he/she has
 the best odds to make a ball. This system relies on the previous systems to determine
 what the optimal location of the user is to take the desired shot. This calculation is needed
 after every shot the user takes. The system also navigates the visually impaired user
 through audio methods.

 VISION encompasses a system that allows a visually impaired individual using the
 system to be detected around the pool table. VISION uses wireless beacons placed
 around the table to locate the user. An application on the user’s phone is used to track the
 current state of the user.

 VISION encompasses audio outputs to vocalize shot results and important information
 about the game progression. Considerations would need to be taken to avoid audio
 overload because audio is also being used as a way to navigate the user.

 All of the components of VISION are modular and were individually tested before being
 integrated with the entire system. The components of VISION can be assembled and
 disassembled quickly. The entire system can be transported in a sedan so that there is no
 problem moving the system from one location to another.

 VISION is a self-funded project and also would like to be made affordable enough for
 someone to reproduce themselves. For these reasons, the team has kept the project under
 $800, so each member did not have to contribute more than $200.

 2.5 Required Specifications
 The previous sections describe the goals, objectives, and motivation behind VISION. To
 transform VISION from an idea into an actual project, requirement specifications must be
 clearly defined. These requirements are what the VISION team used to bring the project
 to life. These requirements served as a contract between the team members and the senior
 design advisors clearly stating what the project will be able to do. The success of VISION
 is based on meeting the requirements specified in table 2.1.

 6

 Requirement Description

 1.1 Locate up to 10 billiard balls on the billiards table

 1.2 Differentiate between green, blue, black, and white billiard balls
 with at least 95% accuracy

 1.3 Locate all balls in an (x,y) coordinate system within 15 pixels

 1.4 Latency of the computer vision system does not exceed 5 seconds

 2.1 Latency of the shot selection algorithm does not exceed 25 seconds

 2.2 Shot selection algorithm will produce a shot suggestion with a
 minimum specificity of 5 degree increments

 2.3 Shot selection algorithm will produce a shot suggestion with a
 minimum specificity of 5 force levels

 3.1 Latency of the user localization does not exceed 10 seconds

 3.2 Accuracy of the user localization is within 1 foot of true location

 3.3 Localization aid should work independently of the surroundings

 4.1 Position user within 1 foot of desired standing position for shot

 4.2 Orient user within 15 degrees of desired shooting direction

 4.3 Latency for communicating with the central processor does not
 exceed 1 second

 5.1 VISION can be assembled or disassembled in less than 30 minutes

 5.2 The total cost of VISION should not exceed $800

 5.3 The product’s audio aids will support the English language

 5.4 Battery-powered devices used within the system should be viable
 for 1 year

 Table 2.1 Requirement Specifications

 To best quantify the correlation of various portions of VISION’s defined deliverables and
 scope, the house of quality shown in Figure 2.2 was devised. The table connects the
 required deliverables shown on the left side of the table to important functional factors of
 scope shown on the upper row. Those required deliverables are additionally ranked by
 level of importance. The interior bulk of the table relays the correlation direction between
 these factors, a solid dot representing strong, hollow dot representing a medium, and a

 7

 down arrow representing weak correlation. A similar metric is utilized on the roof of the
 house with positive and negative signs measuring the correlation between the functional
 requirements of the scope to one another. These features are connected diagonally with
 one another. The direction of improvement is added at the conclusion of the additional
 importance ratings as this allows for the team to best approach areas that require attention
 due to their high relation to the success of the project. The table shows the areas with the
 highest relative weight to be the most crucial to project success. This includes areas of
 accuracy, response time, functionality, and overall cost.

 Figure 2.2 House of Quality Analysis

 8

 3. RESEARCH

 This section of the paper covers the major topics of interest for VISION. From past
 projects to relevant technologies, this examination allows for technological solutions to
 be devised and properly informed for the project's design stage.

 3.1 Similar Projects

 Billiards Assistive Device for the Physically Challenged: A user assistive physical device
 was developed by the University of the West Indies to assist a user that was physically
 impaired and lost certain motor skills due to an accident. This mechanical device was
 aimed to improve grip strength, leading to improvements in overall performance.

 Open Pool: This open source project is built around adding visual effects to the game of
 pool. By using computer vision powered by OpenCV, the computer can generate graphics
 by using the Unity game engine. This open source project gives step by step directions to
 set up both the hardware and software required for the project. The project requires a gray
 colored pool table, a Kinect Two for Windows, a computer with Windows OS, and a
 projector. The main areas of interest come from the computer vision code available. The
 main issue is that the project has not seen much maintenance since 2014. With all of the
 recent innovations in computer vision, it is unlikely the open source code can be used
 without major refactoring. However looking into the basic setup of the software, the
 OpenCV code may be of great benefit in our design strategy later on. Another feature of
 the project is code for detecting made shots, or “pocket detection” as the project named it.
 While they have released software for this feature, there is currently no hardware
 requiring us to fabricate the physical detection system ourselves.

 3.2 Relevant Technologies

 VISION does not aim to create a new form of technology, but rather incorporate many
 existing forms of technology into an innovative, inclusive system. The members of
 VISION have each become subject matter experts in their respective area of focus and
 have summarized their findings throughout the rest of this section.

 3.2.1 Billiards Artificial Intelligence

 3.2.1.1 Simulation Tools

 The need for rapid simulation of games is needed to test the different shot selection
 approaches. These simulations do not encompass every shot parameter, but will let
 VISION make comparisons among the decision making models. Another effective
 strategy is to model more realistic conditions that introduce noise to the simulations as

 9

 well. By adding a normal random change to both shot power and angle VISION can
 better model a person.

 Summary of Requirements:
 ● Latency of the shot selection algorithm does not exceed 25 seconds.
 ● Shot selection algorithm will produce a shot suggestion with a minimum

 specificity of 5 degree increments.
 ● Shot selection algorithm will produce a shot suggestion with a minimum

 specificity of 5 force levels.

 Pool: This is the simulation software that was implemented in the paper “Deep Cue
 Learning: A Reinforcement Learning Agent for Playing Pool”. The simulation software is
 further described in the reinforcement learning section below. This is an openly available
 project on GitHub.

 Fastfiz: This is a version of the software Poolfiz and was used by the heuristic based
 model described below. This is an openly available project on GitHub.

 Pooltool: This is a three dimensional simulation system for pool. The GUI operates very
 slowly, most likely because it is written in Python and has to handle 3D graphics. In order
 to be an effective option VISION would have to disconnect the shot selection algorithms
 from the graphical interface. The actual calculation of the shot however seems to take up
 a considerable amount of time as well. Dependency issues have been encountered while
 trying to use a special API for setting up physical simulations. In the documentation the
 author claims to not have put much work into the API thus far, and with little
 documentation, it may not be a very suitable choice. This is an openly available project
 on GitHub.

 Ultimate Pool Simulator : A simulator written in Java. This simulation project has a built
 in GUI and multiplayer mode, allowing for each player to choose a shot. It was
 developed by a group of students for a class project and the physics would have to be
 evaluated extensively. This is an openly available project on GitHub.

 Code Bullet Pool AI : This code has no documentation on its github page, the author
 created a YouTube video for the project, but it is little help for setting up the project. It
 appears the code is written in an object oriented language such as Java or C++, but the
 .pde file extension makes it difficult to distinguish. The very limited documentation and
 no test cases lead the team to believe this will be a difficult project to base VISION on.
 This is an openly available project on GitHub.

 Pool Genius: Pool genius features a GUI for displaying the shots that significantly slows
 down the program’s performance. One shot took over 45 seconds to process, with only
 one ball remaining that was cut down to 10 seconds. The simulation is very slow and the
 overall shot selection process would need to be revised. This is most definitely not ideal
 for any sort of computations and would be much too slow for VISION. While the shot
 selections are perfect, VISION may be able to tune down the performance on these in

 10

 order to speed up computation. Another major consideration for this code is that there are
 no test cases currently available. Without these unit tests, it will be much harder to
 understand the code, as well as to make changes without breaking much of the
 functionality in unforeseen ways. This is an openly available project on GitHub.

 PickPocket: This is a software developed by Micheal Smith, it is covered extensively in
 the section labeled Search Algorithms. The code is not openly available and we would
 have to request the source code, which is less preferable to an open source project with
 more documentation. The source code for this project was able to be obtained from
 Michael Smith.

 3.2.1.2 Simulation Tool Modifications

 Shot Selection Algorithm Guidelines: The shot selection algorithm is the primary way of
 deciding what angle and with what force to hit the cue ball. For the purpose of this
 research, VISION is looking at the table from an overhead 2D perspective. This leaves
 out many important aspects of the game of pool, such as allowing for rotational
 momentum of the ball to change the shot. The available simulation software makes it
 difficult to account for another axis. It would also be extremely difficult on any machine
 learning algorithms to add another axis for our output.

 Limitations of Shot Selection Algorithms: The shot selection algorithm's usefulness is
 limited by human ability. The best shot may require perfect accuracy to hit correctly, and
 may be much more difficult than a safer alternative. That is why in most cases, the easiest
 shot is the best shot. For example, an algorithm may say there is a way for the player to
 make three balls at once, but it may require more precision than a human is capable of
 and may increase the risk of losing if a miss occurs. Another issue will be the
 communication from the algorithm to the person. Even if an accurate algorithm is
 produced, there must be a suitable way to communicate the power needed on the shot.
 Another issue is placing the user in the right location to hit the cue ball. Finally, the user
 may also strike the ball in an unpredicted way upon the vertical axis which the algorithm
 does not take into account. All of these factors lead to issues which must be taken into
 account for VISION’s algorithm.

 Planned Simplifications: In order to simplify the model, VISION will be focusing on a
 game in which only the horizontal angle of the ball will be struck. This takes away the
 need to calculate spin on the ball, bringing down the complexity of shot selection
 immensely. VISION will also need to come up with a shot selection algorithm for the
 solid colored balls.

 3.2.1.3 Different Implementations of Shot Selection Algorithms

 Heuristic Model: This model is based on a research paper labeled “A Heuristic-Based
 Planner and Improved Controller for a Two-Layered Approach for the Game of Billiards”
 written by Jean-François Landry, Jean-Pierre Dussault, and Philippe Mahey (Landry et
 al.). This model used the Fastfiz simulator for simulating shots during testing. This model

 11

 takes in five parameters : α horizontal offset from the ball’s center, b vertical offset from
 the ball’s center, θ angle of the cue stick in relation to the plan of the table, ɸ orientation
 of the cue stick, and 𝑣 initial speed given to the cue ball. The simulation tool Fastfiz is
 deterministic, so noise is added to the shot parameters to make results more realistic. An
 interesting heuristic found by the paper deals with safety shots, these are shots which are
 made to make it more difficult for the opponent to make a shot. These were determined to
 be impractical unless all other possible shot selections have a low probability of success.
 This is due to the difficulty of guessing what shot your opponent will take. The model in
 this paper uses a two layer approach, the name given to these two layers are the planner
 and the controller. Figure 3.1 below gives an overview of the planner architecture.

 Figure 3.1 Shot Planner Diagram

 The high level planner uses several domain specific heuristics in order to narrow down
 the search space for the shot selection algorithm. At the beginning of a turn the planner
 determines which shots are possible, with this it creates a shot list made up of direct,
 combination, and indirect shots. It also lists all the pocket ball combinations. After this,
 the algorithm goes over the shot list and creates a difficulty value for every single shot on
 the list.

 Another heuristic used by their algorithm is to always prefer shorter shots. The most
 successful approaches are the ones which require the cue ball to travel the least distance.
 This is due to the longer distance traveled creating for greater deviation from desired
 outcome as well as increased speed leading to more powerful and chaotic collisions.
 Another approach which was used was through the implementation of a k-means
 clustering algorithm which grouped the balls into different clusters. The reason that this
 method was added was to hit closest shots first, as those were generally the strongest shot
 choices. Another function found in this research is their formula for creating a function to
 penalize possible shots based on difficulty of the shot. For an easy shot, the direction is
 almost insignificant as long as the ball is tapped on a certain side. For more difficult
 shots, there is a much smaller area which the ball must be hit at and with a certain speed.
 An easy shot also allows for better positioning options, if there is a wider range of area on
 the ball you may hit to sink it into a hole, you then have more places to position the cue
 ball after the hit.

 12

 Reinforcement Learning Model: The reinforcement learning model is based upon trial
 and error in game-like situations. It is a machine learning algorithm implemented by
 using rewards and punishments. This model will find a locally optimal way to achieve a
 victory, or at least to maximize points. It is one of the most widely used models for
 creating an artificial intelligence system for games and therefore will serve well for pool.
 This will be much less time intensive than a supervised learning model. In a supervised
 learning model, the algorithm would imitate a human player. This would also create a
 model only as good as one of the VISION team members, which is not at all optimal.

 Assigning what constitutes a reward and punishment, as well as the relative weight of
 each is perhaps the most difficult part of designing a reinforcement learning system.
 VISION will try many different assignments, but some of the different rewards and
 punishments would be the following:

 Rewards: made ball (+1) or win game (+10)
 Punishments: made opponent ball (-1), scratch (-1), lose game by opponent(-5),
 or scratch on 8 ball (-10)

 These systems often come up with unique methods that are not very intuitive. These shot
 selections may go against common knowledge and may be a poor way to teach newer
 pool players. Therefore VISION must thoroughly analyze this model once it is created to
 ensure that the shots selected are logical. On the other hand, this system may come up
 with better ways to cope with noise introduced to the system. A heuristic based model
 will work the same regardless of noise, but the reinforcement learning can learn to play
 with different levels of noise, thus modeling different skill levels of players. Exact
 thresholds for noise levels to model different levels of players would be arbitrary, but can
 be found by trial and error on our selection for the pool simulator. The source code for
 this project can be found on a publicly available GitHub repository as well.

 VISION will be basing its research on a pool specific reinforcement learning model using
 a Markov Decision Making process with four different reinforcement learning
 algorithms: Q-Tablebased Q-Learning (Q-Table), Deep Q-Networks (DQN), and
 Asynchronous Advantage Actor-Critic (A3C) with continuous or discrete values (Liao et
 al.). This process is trained on the open source simulation project labeled “pool” in
 section 3.2.1.1.

 Markov decision making process (MDP) is for modeling discrete decision or
 optimization problems where there is randomness and uncertainty in the problem. It can
 be represented mathematically as a 4-tuple (S, A, P, R) where:

 S is the set of states, called state space
 A is the set of actions, called the action space
 P is probability that action a in state s at time t will lead to state s’ at time t + 1
 R is the reward for transitioning from state s to s’ after action a

 13

 The sum total of different states may be finite or infinite, depending on the application. A
 game such as chess would have a finite number of different states to choose from, as well
 as discrete choices, making it a much easier decision making process. Pool on the other
 hand has a continuous range of actions as well as an infinite amount of possible states.
 The solution to an MDP is called a policy. This policy is a mapping from the current state
 to the preferred action in order to maximize rewards. This policy will form what is known
 as a markov chain, as the new state will also have a mapping to the next best state to
 achieve the best overall reward. A note about the markov chain is that it maps more than
 one probability, though the highest probability for reward will be selected in our case,
 there will be other paths that also offer reward from any state action pair. For the game of
 pool this will be very difficult to model. One such solution would be to choose the nodes
 of the MDP chain to be ball pocket pairs. This will however make it rather difficult to
 model shots that either hit the side of the pool table, or another ball before falling into the
 pocket. This method would also introduce much ambiguity in terms of angle and power,
 as there is a wide range of angles to result in any given ball pocket combination. Another
 option would be to discretize the power and angle of all shots. A discrete and finite pool
 action set would be as follows:

 A = (Force, angle) = (F, 𝜭)
 F = [1, ... ,10]
 𝜭 = [1, .. , 360]

 A discrete and finite pool state set would be as follows:

 S = [x 1 , y 1 , …, x n , y n]
 Pool table is 127cm by 254cm, diameter of ball is 5.715cm, radius = 2.8575
 Assuming y = [0, 253]
 Assuming x = [0, 126]
 Some values will be labeled as impossible to reach due to size of pool ball
 * n is total number of remaining balls
 * x 1 , y 1 is the cue ball

 Q-Learning: This is an algorithm to make the best selection in a MDP, otherwise known
 as a policy. This model learns the Q-values for every action and state pair. These
 Q-values are stored in a Q-table that maps actions on the horizontal axis and states on the
 vertical axis. The Q-learning method is applicable to a finite MDP. As mentioned
 previously simplifying the actions in the game of pool to a finite MDP can be difficult,
 the approach taken by the writers of the previously mentioned paper was to simplify the
 game of pool, similar to how was done above. The Q-learning algorithm works by
 referring to the Q-table and picking the action with the highest Q value for the given
 state, during training when the Q-table is empty the agent will make random actions in
 order to learn the different rewards for taking those actions, eventually filling in the
 Q-table. The main reason for this algorithm is to better understand delayed rewards in the
 system. There is a variable 𝛾 which represents the discount factor, when set to zero, the
 algorithm is myopic and simply picks the best current rewards (greedy algorithm), but by

 14

 increasing this value, you find a path which gives higher long term rewards. An example
 Q-learning model is shown below:

 Q new (s t , a t) = Q(s t , a t) + 𝛼(r t + 𝛾 (maxQ(s t , a)) - Q(s t , a t))
 𝛼 is the learning rate
 Q(s t , a t) is the old value
 maxQ(s t , a)) is the best estimate of the optimal future value
 𝛾 is the discount factor

 Deep Q Networks: This is used due to the fact that Q-Learning works well for a small
 number of state action pairs, but as this number grows, the algorithm becomes less
 efficient. In the case of a modeling pool, the number of table states is already so large,
 when paired with the vast amount of actions and the size of the Q-table grows too rapidly
 for most computers to handle. In the paper above, the Q-table for a simple two ball
 system was approximately 1.12 GB, and this number grows drastically as other balls are
 added onto the table. In order to combat this explosive growth of the Q-table size
 VISION will use a new learning algorithm. The total size of the state and actions pairs for
 the simple model would be on the order of (Action set * State set) n where n is the
 number of balls.

 A deep Q network employs a neural network in order to come up with an approximation
 for the Q-learning algorithm. The input nodes for the neural network are the current state
 of the table and the output nodes on the deep Q network represent every possible action.
 The value for that output node is the approximated Q-value. In VISION’s simplified case,
 3600 output nodes is still significant, but the action set is much smaller than the state set
 and this is a preferred method in terms of space complexity. The total size of the model
 achieved in the paper was approximately 162 KB. The neural network consists of two
 hidden layers of 64 and 256 nodes respectively. Figures 3.2 and 3.3 below are two
 representations of what such a model may look like.

 Figure 3.2 Neural Network Work for State Set with Three Balls

 15

 Figure 3.3 Neural Network for State Set with 3 Balls (Broken Into Two Networks)

 Asynchronous Advantage Actor-Critic (A3C): This algorithm was developed by Google
 Deep Mind and first appeared in 2016. A3C implements several workers to gather
 information independently and asynchronously, then by using this information in a global
 network, the function value and policy may be estimated. While Deep Q-networks only
 use one environment and one agent in their training, AC3 uses several environments and
 agents. These agents act completely isolated from one another in their learning process,
 this allows for more diversified training and avoids local maximum optimizations. The
 other benefit of A3C is that it is useful for a problem with infinite space and infinite
 actions, meaning that it offers the most precise actions for any given space. This is done
 by breaking the model into an actor and a critic. The actor model takes in the
 environment and chooses the best possible action with its current data, while the critic
 model takes in the environment and acts as an evaluator for that choice.

 The overall consensus put forth by the paper is that the A3C model was the most ideal
 model taking into account the training time and required space. The results for the models
 compared to the random baseline are not particularly impressive and would require
 refactoring to even get a usable amount of precision. Ultimately these algorithms do not
 seem to compare to the precision of search and heuristic based models. The benefits of
 dealing with noise in the system may be a reason to attempt to build a custom model for
 VISION.

 Search Based Model: The research gathered for this section is for search algorithms in
 the game of pool. One major search based shot selection algorithm is known as
 “PickPocket” (Smith), this program would go on to win the first international computer
 billiards competition. One of the key points made is the inherent difficulty of using a
 search algorithm on a non deterministic and continuous set of outcomes. Search
 algorithms are a perfect way to choose the best move in a deterministic and discrete game
 such as chess; however, the difficulty is magnified in the game of pool. Another
 disadvantage is the considerable overhead required by the search algorithm to run a
 physics engine to determine the outcome of a given shot. This physics engine severely

 16

 limits the breadth of the search tree. One such search algorithm suggested by the author is
 the Expectimax search algorithm.

 The Expectimax search algorithm is a game theory algorithm that is a variation of the
 Minimax algorithm. While the Minimax algorithm expects the adversary to act optimally,
 the Expectimax algorithm expects the adversary to make non optimal decisions based
 somewhat on chance. The tree structure for this algorithm depends on nodes labeled as
 change nodes. These nodes in the search tree represent points where the outcome is
 non-deterministic. An abstraction must be made in order to simplify the problem and use
 Expectimax. A pocketed shot effecting no other balls will result in a particular table state,
 while the missed shot can result in an infinite amount of different table states.

 Another model which is brought up by the author is the Monte-Carlo simulation. This
 model is used in everything from modeling the card game poker to financial risk. The
 main purpose is to calculate probabilities of outcome when random intervention of
 variables is present. For the Monte-Carlo simulation, a number of samples or table states
 is calculated after each generated shot, each sample is a child node of the previous shot.
 This pattern trickles down to form a tree-like structure, with the score of each node being
 the average score of all the nodes children. The higher the number of samples, the more
 accurate the results. However the runtime increases exponentially as the number of
 samples are increased, therefore a proper balance must be found when using this
 simulation. When comparing this Monte-Carlo simulation to the previously mentioned
 Expectimax, you will see the main trade off is breadth vs. depth. The Monte-Carlo
 simulation has a much wider tree structure while the Expectimax is able to create a
 deeper tree structure.

 3.2.1.4 Computation of Shot Selection Algorithm

 The shot selection algorithm requires a system with high computational power for either
 a large search algorithm or heuristic algorithm. For a mathematically intensive machine
 learning algorithm, VISION would require a large computational resource for the training
 phase, but would require significantly less compute power thereafter. The use of a
 microcontroller will not be able to handle the large amount of processing needed. The
 options for VISION’s main processor are a microprocessor or a cloud computing
 solution.

 Cloud Computing: In order to compute the function on a powerful machine and in a cost
 effective manner, one strong candidate is an Amazon Web Service product called a
 Lambda function. The lambda function allows you to run code on the cloud without
 having to manage the infrastructure. Instead of configuring and running a server on the
 cloud which is paid for based on time, you can instead use a lambda function which is
 paid for by usage. It has a strong use case for IoT backends and can be scaled quickly
 based on requirements. Amazon Lambda is currently on the free tier of AWS services and
 would be free to use for our small number of requests. There is also native support for
 Python, Java, Node.js, PowerShell and C# among others. This wide variety of options
 will allow VISION to implement almost any shot selection algorithm in the cloud. There

 17

 is also a low amount of data being input into the lambda function as well as returned by
 the Lambda function. This means that wireless communication bandwidth will not cause
 any large issues.

 3.2.2 Computer Vision

 3.2.2.1 Computer Vision Software Options

 The computer vision portion of this project is the initial input to the entire system. An
 image will be captured from the camera and then processed by the selected computer
 vision algorithms. The chosen algorithms should be able to identify all of the billiard
 balls on the table, determine the position of all of the billiard balls on the table, and
 determine the colors of the billiard balls. The cue ball and eight ball, due to their
 importance in various billiard games, should also be distinguished from the other billiard
 balls on the table. The output of this subsystem are the coordinates and colors of all the
 billiards balls in play.

 The billiard balls can be identified by searching for circular contours, or outlines, of a
 specific size in the image. The position of the billiard balls can be determined by utilizing
 the location of the circular contours previously found. All of the incorrectly-detected
 objects can be excluded by checking the size, shape, and color of all detected objects to
 ensure that only billiard balls are tracked. Finally, the ball color can be determined by
 checking the RBG values of the discovered contours.

 The requirements for this project are relatively common in computer vision and many of
 the current computer vision offerings are more than capable of the required functionality.
 The ideal software package for this project will require the least amount of computing
 power while ensuring high accuracy for detecting and locating the billiard balls.
 Furthermore, the ideal software will have a low latency to allow a user to play a game of
 billiards in a reasonable time. The requirements for the system are summarized below.

 Summary of Requirements:
 ● System can locate up to 10 billiard balls
 ● System can differentiate between white, black, green, and blue billiard balls
 ● System can locate the balls in an (x,y) coordinate system with 15 pixels
 ● System latency does not exceed 5 seconds

 OpenCV: OpenCV is a computer vision and machine learning library that provides C++,
 Python, Java, and MATLAB interfaces and is supported by all of the major operating
 systems. The library is open source and contains thousands of ready-to-use computer
 vision algorithms that have been used by many prominent companies like Google,
 Microsoft, Intel, IBM, Honda, and Toyota (OpenCV “About OpenCV”). OpenCV offers
 extensive support by providing forums, tutorials, courses, and detailed documentation.
 OpenCV is written in optimized C++ code which allows for high-speed execution and a
 low software overhead.

 18

 SimpleCV: SimpleCV is an open-source framework developed by Sight Machine to easily
 develop computer vision projects. The framework combines various computer vision
 libraries, including OpenCV, and abstracts many of the low-level details away from the
 developer. SimpleCV prides itself on making computer vision easy and accessible to
 everyone (Sight Machine Inc.). The framework is written in Python and available on all
 major operating systems. SimpleCV has a larger software overhead because it is a
 framework rather than a single library. SimpleCV does not appear to be under
 development anymore, but still has a stable release available to download. The
 documentation, forums, and overall support of SimpleCV are much less useful when
 compared to the other computer vision offerings that are available.

 TensorFlow: TensorFlow is an open-source machine learning platform made by Google
 to create, train, and implement designs. Tensorflow can be used with C, C++, Java, Go, or
 Python and supports many of the popular operating systems. Coca-Cola, Intel, Twitter,
 Airbnb, and other prominent companies utilize TensorFlow (TensorFlow “Why
 TensorFlow”). One of the main strengths of TensorFlow is the ability to train and deploy
 custom machine learning models. The software package also comes with many
 pre-trained models that can also be used.

 Although TensorFlow was not designed specifically for computer vision, there is built-in
 support for computer vision applications. There is support for servers, IoT (Internet of
 Things) devices, and web devices. There is ample support for TensorFlow with many
 pre-trained models, datasets, blogs, forums, and tutorials readily available. Since
 TensorFlow is a collection of machine learning tools, it has a relatively high overhead
 when compared to some of the other computer vision offerings. The latency of this
 software package needs to be considered.

 TensorFlow Lite: TensorFlow Lite is a specialized version of TensorFlow designed
 specifically for mobile and embedded devices. This software package is optimized for
 latency, privacy, connectivity, size, and power consumption (TensorFlow “TensorFlow
 Lite”). TensorFlow Lite can be used with Java, C++, Python, and other popular
 programming languages. It supports Linux and many common microcontroller operating
 systems. This software package requires little space on a microcontroller and incorporates
 hardware acceleration to boost performance and reduce latency. Similar to the standard
 TensorFlow, TensorFlow Lite was designed for machine learning but does support
 computer vision applications.

 Nvidia Vision Programming Interface(VPI): The Vision Programming Interface(VPI) is a
 software library developed by Nvidia for computer vision and image processing
 applications. This library is optimized for performance on the Jetson Nano line of
 processors. The VPI supports both C++ and Python programming and is available on
 most major operating systems. The optimized algorithms in the VPI offer significantly
 better performance compared to many other computer vision tools and can be up to fifty
 times faster than similar software packages (NVIDIA Corporation). In addition to being
 highly efficient, the VPI can be used in conjunction with other popular computer vision
 tools. Most notably, the VPI easily integrates with OpenCV to quickly produce computer

 19

 vision applications. The VPI is relatively new compared to some of the other computer
 vision tools and new versions are still currently being developed. There is not as much
 community support compared to OpenCV and TensorFlow, but Nvidia does offer a
 variety of tutorials and a forum where Nvidia developers frequently answer questions.

 YOLOv3 (You Only Look Once): The You Only Look Once version 3 computer vision
 tool is an object detection algorithm that is built upon Keras and OpenCV. This algorithm
 was designed for fast real-time object detection, but can still be used to process images.
 The algorithm favors speed over accuracy and has a low accuracy for detecting small
 objects compared with other commonly used algorithms (Meel). Although newer
 versions of the YOLO algorithm have improved the accuracy, this software was not
 further pursued because of the low accuracy for small images.

 Keras: Keras is a Python API designed to simplify the use of TensorFlow 2.0 for users.
 Keras abstracts away many of the low-level details associated with developing in
 Tensorflow while maintaining all of TensorFlow’s benefits. The API prides itself on
 being simple, flexible, and powerful so that applications can be rapidly developed
 (Keras). Keras, like TensorFlow, was developed to be a machine learning tool and is used
 by NASA and YouTube. KerasCV is a subsection of Keras which supports many
 standard computer vision features such as image classification, object detection, and
 image manipulation. There is support for KerasCV in the form of guides, example code,
 forums, and a community supporting the software.

 3.2.2.2 Computer Vision Preprocessing

 OpenCV is the primary software being used for the computer vision needs of this project.
 Nvidia’s VPI will be implemented if needed to improve the algorithm performance.
 OpenCV offers thousands of functions that perform a wide range of operations on images
 and videos. With so many possible options, it is important to narrow down the scope of
 OpenCV to a smaller number of relevant functions. This section discusses some of the
 necessary functions for image preprocessing that are needed for implementing various
 computer vision algorithms.

 The initial input for the computer vision subsystem, and the entire system overall, is an
 image of the current state of the billiard table. The image preprocessing begins by
 converting the color space of the image from RGB to grayscale. Depending upon the
 selected algorithm, the image may also need to be thresholded. Thresholding of an image
 is essentially creating a binary image based on a threshold value. Finally, image filtering
 may also be needed to remove unwanted noise from the image or to prepare an image for
 subsequent algorithms. Some, or all, of these preprocessing steps, may be necessary
 before running object detection algorithms on the image.

 Image Acquisition: The first step of all the needed algorithms is to capture the current
 state of the table. From this image, the position of the billiard balls will be extracted and
 later used by other subsystems of the project. OpenCV easily interfaces with any type of
 camera connected to the device on which the program is running. The selected webcam

 20

 and how the webcam will be mounted are discussed in a future section. OpenCV will be
 used to control the webcam and capture the image when needed. OpenCV easily allows
 for the captured image to be saved onto the device in which the program is running.

 Color Space Conversion RGB → Grayscale: Many of the computer vision algorithms
 that OpenCV implements require a grayscale image. By default, the input image is
 captured in RGB format. The RGB color format is how many images are displayed
 because it offers a wide range of possible coloring options to give the most accurate color
 representation of the image. Each pixel of the image will have an eight-bit red, green, and
 blue component typically displayed as a decimal value between 0-255. The combination
 of all of these color values is what defines the color of a pixel. While this large amount of
 color data is useful in displaying vibrant images, it is not helpful when trying to process
 an image.

 To reduce the amount of computation needed, nearly all computer vision algorithms
 require that the image be converted from an RGB format to a grayscale format. This
 conversion allows for each pixel to be represented by one eight-bit value. A grayscale
 value of 0 corresponds to black while a grayscale value of 255 corresponds to white.
 With a grayscale conversion, all of the RGB-colored pixels of an image are mapped to a
 corresponding grayscale pixel. Although the color information is lost during a grayscale
 conversion, the information necessary to perform the computer vision algorithms is
 preserved. Specifically, the edges, regions, blobs, junctions, and other relevant
 information are maintained when an image is converted to grayscale (Breckon and
 Solomon 9-14).

 The actual conversion of an RGB image to a grayscale image is simple in OpenCV.
 OpenCV allows for the conversion of color spaces with a call to the cvtColor() function.
 This function has many different predefined conversions that will allow for the input
 image to be converted to grayscale. One important detail to note is that the standard color
 format for OpenCV is BGR rather than RGB, a small modification will be needed to the
 function call when implementing the color conversion (OpenCV “Color Space
 Conversions”). The conversion of the initial input image from a color space to a
 grayscale space is lossy, meaning the initial image cannot be reconstructed easily. For this
 reason, the original input image must be saved so that it can be used in other parts of the
 project.

 Image Thresholding: Some of the algorithms that OpenCV offers require an image to
 undergo thresholding before being processed. Specifically, algorithms that detect the
 edges of images utilize thresholding. Thresholding is a process to break an image into
 distinct regions of pixels to make images easier to process (Data Carpentry). In a sense,
 thresholding an image is converting it to binary because all of the pixels will be black or
 white. This type of image preprocessing is useful because distinct edges begin to form
 around features in the image which makes more complicated algorithms, like edge
 detection, possible.

 21

 One of the challenges of implementing image thresholding is determining what threshold
 value to use for an image. The threshold value will be used to determine which pixels are
 turned completely black and which are turned completely white. It can be difficult to
 determine an appropriate threshold value because the threshold will depend on the
 camera, lighting, and other factors that may not always be consistent. A common
 technique is to create a histogram of the intensities of the grayscale pixels as shown in
 figure 3.4 (Jayasekara et al. 530). Ideally, the histogram will have a clear distinction of
 values above and below the threshold. These histograms can be constructed in a variety
 of lighting conditions and an empirical value can be deduced from the findings.

 Figure 3.4: Ideal Distribution of Thresholding on Image

 Rather than empirically determining the threshold value, Otsu’s method can be used for
 determining the optimal threshold value. Otsu’s method works by iterating through
 possible threshold values and determining which threshold value gives the tightest
 clustering of black and white pixels (Muthukrishnan). Otsu’s method tries many possible
 options and assigns values to the accuracy of the threshold, the highest value corresponds
 to the best threshold. While this approach does seem more accurate than the empirical
 approach, it will still be impacted by varying lighting conditions and will vary depending
 on where the billiards table is located.

 For both previously mentioned techniques, there is one threshold value used for the entire
 image. The technique of having one thresholding value is called global thresholding.
 Global thresholding faces challenges when the lighting and picture resolution are not
 uniform throughout an image. To mitigate these issues, adaptive thresholding can be
 used. Adaptive thresholding does not use a single global threshold value, but rather
 compares the grayscale values of neighborhoods of pixels to determine localized
 thresholds. This approach to thresholding accounts for lighting issues that may make one
 portion of an image darker than the rest. By using many threshold values, adaptive
 thresholding can produce much more accurate results and will typically outperform
 global thresholding techniques. An example of adaptive thresholding on objects of
 various colors and sizes is shown in figure 3.5 (Rosebrock).

 22

 Figure 3.5: Image Thresholding to Isolate Region of Interest

 An aadaptive thresholding algorithm is used because of its better accuracy. OpenCV
 offers multiple different kinds of adaptive thresholding algorithms including adaptive
 mean thresholding and adaptive Gaussian thresholding. The specific type of adaptive
 thresholding used by VISION is adaptive Guassian thresholding.

 Image Filtering: Image filtering is the process of removing aspects of an image that are
 not desired to aid in processing the image. There are many different kinds of image filters
 available and they are most commonly used to remove noise, sharpen the edges, or blur
 the image together. These various types of filters are used for specific applications and
 help improve the quality of the final output. In general, image filtering occurs by looking
 at every pixel in the image and comparing it to all of its neighboring pixels through
 convolution. All of these pixels are then compared and altered based on the desired type
 of filtering.

 One of the main applications for image filtering is noise removal. Noise, or unwanted
 additions to images, arises from many different factors related to how images are
 acquired. Many types of noise removal filters can be applied to images that come at a
 tradeoff of accuracy for computational complexity. Two of the simpler filters are the
 mean filter and the median filter. The mean filter is useful for removing uniform noise
 throughout an image but tends to worsen the image’s overall clarity. The median filter is
 useful for removing salt-and-pepper noise, small regions of high-intensity noise, and is
 better at preserving the image clarity (Breckon and Solomon 90-94). A more complex

 23

 filter is the Gaussian filter that can be used to remove noise, smooth an image, or prepare
 an image for edge detection. The Gaussian filter can be used for a wide range of
 applications because it allows the user to control a standard deviation parameter.
 Depending upon the value of this parameter, the filter can be used for different tasks.

 Image filtering is also used to enhance an image before being used in an edge detection
 algorithm. Edge detection filters work by searching for regions of an image where there
 is a large amount of change occurring between pixels. Conceptually this represents a
 transition from one aspect of an image to another. Filters that are designed for edge
 detection locate these regions and amplify these transitions so that they are more easily
 seen during further processing. There are many different image filters available, OpenCV
 supports the Sobel, Scharr, and Laplacian filters (OpenCV “Image Gradients”). Overall,
 these filters are rather similar and most image processing algorithms will specify which
 filter is recommended to achieve the best results. The algorithm VISION uses for
 computer vision implements image filtering internally and no additionally filtering is
 needed.

 3.2.2.3 Computer Vision Algorithms

 Once an image has undergone the necessary preprocessing, computer vision algorithms
 can be applied to extract the necessary information out of the image. This subsystem is
 responsible for isolating the billiards table from the background, identifying the billiard
 balls and their position, and differentiating between the different colored balls. The
 following section discusses image processing algorithms that are used to achieve the
 computer vision goals of this project.

 Canny Edge Detection: The Canny Edge Detection algorithm is a popular image
 processing technique that can be used to extract all of the edges from an image. This
 algorithm gained a lot of popularity because it was designed to exclude incorrect or
 misleading edges that previous algorithms tended to include. This algorithm is useful for
 identifying the billiard balls. A sample image after undergoing canny edge detection is
 shown in figure 3.6 (BogoToBogo). The table itself will appear as the largest rectangular
 edge in the image and the billiard balls should be the only circular objects in the image.
 Using these characteristics, the billiard balls can be detected.

 24

 Figure 3.6: Canny Edge Detection on an Image (Awaiting Permission from BogoToBogo)

 Canny Edge detection is a multi-step process that begins with filtering the image using a
 Gaussian filter to remove any present noise. A Sobel filter is then applied to find and
 magnify all of the discovered edges. The algorithm then checks all of the discovered
 edges and only allows the localized maximum pixels to pass to the next stage of the
 algorithm. This process ensures that the returned edges are the thinnest, most prominent
 edges in the image. The final step in the algorithm is another check of which edges
 should be returned and which edges should not. A hysteresis threshold is applied to the
 image. This is a threshold technique where two threshold values are used to identify only
 the strongest edge candidates and ignore the weaker edges (OpenCV “Canny Edge
 Detection”).

 Template Matching: Template matching is a simple, but powerful algorithm for locating
 specific objects in an image. Template matching works by having a template, or sample
 image, of the object being searched for. The template begins in the upper left corner of
 the image and every pixel from the template is compared with every pixel in the input
 image. The template is then moved to the right by one pixel and the pixel comparison is
 done again. When the template reaches the end of a row, the template is moved down to
 the next row. This process, which is known as two-dimensional convolution, is repeated
 until the template has been compared in every possible location with the input image.
 Regions of the image that match the template will be assigned a high associativity value
 and regions that do not match the template will be assigned a low associativity value. The
 regions with the highest associativity values will be considered matches for the template
 (Adaptive-Vision).

 The template image must be the same size as the object appearing in the input image. The
 template is being compared in every possible location in the input image. If the template
 is not the same size as the object in the input image, it is possible that the object will not
 be discovered or an incorrect object will be detected. Additionally, there are many ways
 to perform pixel comparisons. Different algorithms implement different pixel matching
 operations which can impact the algorithm’s performance and accuracy. OpenCV
 implements six different operations which can all be used for template matching. The

 25

 choice of which operation to use can be decided by trial and error with actual input
 images to determine which operation works best for the project.

 One consideration when using template matching is if an RGB or grayscale image should
 be used for the input image. Most template matching algorithms, including the one
 supported in OpenCV, allow for both colored and grayscale inputs to be used. The benefit
 of using colored input images is that the algorithm will be able to better detect matches of
 a specific color. The increased matching ability is because there will be significantly
 more pixel values to compare the template image with. The drawback to using colored
 input images is that the algorithm becomes more computationally complex because now
 each pixel has a red, green, and blue component to compare. When using a colored input,
 the algorithm is essentially run three times, once for each color channel, and the results
 are averaged together for each pixel (OpenCV “Object Detection”).

 Template matching would be beneficial to use when trying to identify and localize the
 billiard balls in the input image. The maximum number and possible colors of the billiard
 balls being used will be known. Each of the billiard balls can have its own template
 image and the algorithm can be run for each possible billiard ball. There will need to be
 some type of confirmation that the object detected by each iteration of the algorithm
 found the correct billiard ball because some of the balls will not be on the billiards table.
 This approach also may be too computationally complex and lead to high latency. If the
 algorithm is run for each possible billiard ball using a colored input image, there will be a
 lot of intensive computation every time the state of the billiards table changes.

 Suzuki’s Algorithm (Finding All Contours): Contours in image processing are the lines
 that join all of the points along the border of some shape or object. Contours can be
 thought of as the outline of an object that is made between the object and the background.
 This idea is useful because the expected contours of the billiard balls and the billiard
 table can be used to detect these objects. An algorithm that finds all of the contours
 present in an image can be run, and the contours that are found can be filtered to extract
 only the desired contours.

 Suzuki’s algorithm, which is implemented by OpenCV, works by traversing the input
 image pixel by pixel from the top left to the bottom right. The algorithm works by
 comparing the value of a pixel to the values of the surrounding pixels. For many
 implementations of this algorithm, a binary image is required. As each pixel is examined,
 it is assigned a value that can be used to determine if an outer border, hole border, or
 neither has been discovered (Kang and Atul). These results can then be used to determine
 what contours exist in an image.

 Finding all of the contours in an image is a useful feature, but contours that are not
 desired will also be found. To be able to successfully implement this algorithm, all of the
 contours that are found will need to be filtered. Only the contours of the billiard balls
 should be returned from the computer vision system. The main application of this
 algorithm would be to detect and localize the billiard balls. For this reason, any contour
 that is not a circle can be ignored. It is possible to approximate all of the contours to

 26

 common geometric shapes by using the approxPolyDP() function in OpenCV. The
 number of edges present in the contours can then be compared to the expected values.
 The contours of the billiard balls should have more than eight edges (more than eight
 edges represent a circular shape) (Authentise).

 Further filtering can also be implemented to ensure that the contours that are found are
 also of the expected size. A minimum and maximum size for the billiard balls was
 determined so that is unlikely incorrect contours are reported. OpenCV supports finding
 the area of a contour as well as contour highlighting. Contour highlighting can be used to
 view what contours are being discovered and adjust the filtering portion of the algorithm
 as needed.

 Suzuki’s algorithm would be useful in locating the billiard balls from the input image.
 Although this algorithm will likely return contours that are not wanted, OpenCV offers
 many ways to sort through the contours and extract only the relevant objects. This
 approach allows for a user to place tight guidelines on what objects are detected but
 requires testing and refinement to ensure that the filtering parameters are correct and
 reliable.

 Hough Circle Transform: The Hough Circle Transform is a computer vision algorithm
 that can be used to detect all of the circles in an image. This algorithm allows for circles
 of a certain radius to be discovered in an image. All other shapes and any circles that
 have a radius that is either too big or too small will be ignored by the algorithm. This
 algorithm is relatively accurate and can ignore most shapes that do not fit the search
 criteria.

 The Hough Circle Transform works by utilizing the characteristics of circles. All circles
 will have a center and some radius that is fixed for any point on the circle. Consider some
 arbitrary circle c with radius r . This algorithm works by traversing the perimeter of circle
 c and essentially drawing a circle, still with radius r , at every point along the perimeter.
 There will be one point of intersection in which all of the circles that are drawn while
 traversing circle c overlap with each other (ImageJ). This point will be the center of circle
 c . Every intersection is awarded a point and the center of the circle will have a very high
 point concentration compared to the surrounding pixels. The algorithm uses the point
 concentration relative to the neighboring pixels to determine if there is a circle present.

 Many implementations of the algorithm require an outline of the objects being searched
 for in a binary image format. This requirement can easily be met by using the Canny
 Edge Detection algorithm discussed previously. The outlines in the image are what form
 the perimeter to be traversed by the Hough Circle algorithm. By using the outline of the
 objects it is also possible to detect overlapping or touching circles as well like shown in
 figure 3.7 (Sinha). If two circles are overlapped, the perimeter will form a shape that
 looks similar to the number eight. As the transform traverses the perimeter, it is often able
 to detect both circles, assuming they are of the same radius. This feature is because two
 centers will be found that have high concentrations of overlapping pixels compared to the

 27

 rest of the image. The image below depicts when two overlapping circles of the same
 radius are detected.

 Figure 3.7: Detection of Overlapping Circles

 Similar to Suzuki’s algorithm, unwanted circles may be found by the algorithm. Filtering
 of the circles found by the algorithm may be needed to ensure that only the billiard balls
 are detected. Fortunately, OpenCV’s implementation of the algorithm allows for the
 minimum and maximum radius to be specified. The optimal values for these thresholds
 will need to be determined experimentally. Further filtering can be done by checking the
 color of the discovered circles to ensure that it is an expected color.

 The main application of the Hough Circle Transform would be identifying and locating
 the billiard balls in the image. This task is one of the main goals of the computer vision
 subsection, and this transform looks very promising to accomplish the goal. One other
 related application would be identifying the pockets on the billiards table.

 Douglas-Peucker Algorithm (Contour Approximation): The Douglas-Peucker algorithm
 is used to approximate complex contours into simpler contours. This algorithm
 essentially takes a detailed contour and simplifies it into a geometric shape such as a
 triangle, square, or similar shape. An examples of the contour simplification is shown in
 figure 3.8 (OpenCV “Contour Features”). The amount of simplification applied to a
 contour typically depends on an input parameter, epsilon, as well as if the expected
 simplified contour should be a closed shape. The algorithm works by determining the
 starting and ending points of the contour. The edges between these two points are what
 will be simplified. The algorithm uses the epsilon value to compare the distance from
 each point on the contour to a reference line. Points that become smaller than the epsilon
 value are discarded and those that are larger than the epsilon value are kept (Lee).

 The value of epsilon used in this algorithm is crucial to what type of contour will be
 detected in the image. In the figure below, the leftmost image is the input image. The
 green outline in the middle image shows the discovered contour for an epsilon value of
 10%. The green outline in the rightmost image shows the extracted contour for an epsilon

 28

 value of 1%. As the value of epsilon decreases, the more tightly the modified contour will
 resemble the actual contour.

 Figure 3.8: Epsilon Value on Algorithm Output

 Like many of the other algorithms discussed, the Douglas-Peucker Algorithm requires a
 binary image as input. Furthermore, the algorithm requires that all of the contours in the
 image have already been discovered. These requirements can be accomplished by using
 previously discussed functionalities supported by OpenCV such as thresholding and the
 Canny Edge Detection algorithm. The value of epsilon to use will need to be determined
 experimentally, but will likely be relatively high because the billiards table is nearly a
 rectangle.

 3.2.3 Visual Impairment Assistive Technology

 Visual impairment is not something new to humanity. Individuals who suffer from this
 setback have learned to adapt to the setback for generations, but only in the last century
 has technology rapidly accelerated this progress to such an extent that life can gradually
 approach normality for those affected by visual impairment. To best guide this project’s
 goal of assisting impaired billiard players, several previously designed assistive
 technologies are examined. What is examined for these compatible deliverables is a user
 interface that is able to be navigated either solely by touch or sound and a guidance
 system that utilizes sound or sensation to prompt a user toward a desired direction or
 specific location. There are several cases that are outside of the scope of assistance in this
 project. These include setting up the preliminary orientation of the balls, location of the
 user’s cue, and obstacle avoidance.

 With the constraints of the assistive technology outlined, two primary interfaces must be
 examined for the assistive technology deployed in the project: guidance and
 communication interfaces. The user interface seeks to communicate in ways that enhance
 the ability for mild impairments to be able to see options - an easy to use, simple, and
 observable user interface that can be deployed in the case of a fully impaired user. Screen
 readers and voice technology have become commonplace in much of the technology that
 is now deployed that will read out what is displayed and highlighted on a screen. Within a
 similar realm, screen magnification softwares are deployed across devices for users that
 may have mild visual impairment (“Assistive Technology for the Blind (AT)”). System
 settings that perform these actions can be a verbal and visual enhancement for a user

 29

 when navigating a settings page, attempting to start a game, or understanding the layout
 of a table and specifying the outlined shot. Additionally, braille keyboards and critical
 buttons are an age-old communication method that can be deployed for the completely
 blind to communicate with a device when fully powered off.

 In terms of user guidance, the project will require methodology that tracks the user and
 deploys instructions that will locate the user at a desired destination for the optimal shot.
 Although the project is focused on a specific focus, previously designed technology
 validates possible options for the desired system and can give insight into how the
 project’s goals can be realized. Localization algorithms such as visual-inertial odometry
 (VIO) utilize smart phones with a combination of computer vision software and the
 device’s internal measurement units (IMUs) to understand a user’s orientation and their
 current trajectory. Previous research in this realm utilized common benchmarks within a
 predetermined area to give a relative understanding of their location in a 2-D space.
 Given the inputs from the camera and the acceleration recorded within the IMU, the
 device could garner an accurate understanding of the user’s location and guide them
 accordingly through an area that is previously known (Fusco and Coughlan).

 Other research breaks down closer to the deployed microcontroller level of localization.
 A proposed system from Middle Technical University utilizes a IoT machine-to-machine
 protocol called ZigBee to localize a user relative to several anchor nodes in a room, and
 an RFID is used to recognize the interior the user has entered (shown in Figure 3.9). The
 system also scales for wider navigational purposes by using GPS to localize the outdoor
 position of the user, and alternates between the two depending on location (“Localization
 Techniques for Blind People in Outdoor/Indoor Environments: Review”).

 Some visually impaired assistive systems rely less on user localization and more on
 environmental surroundings. The Sanjivani College of Engineering explored a command
 based audio input and output assistant that utilized camera inputs and a chatbot
 functionality to relay meaningful information to the user of their surroundings. The
 system consisted of a camera, headphones, and a microphone with several core functions
 including face and emotion recognition, image captioning, object detection, reading, and
 interfacing directly with a personal assistant bot. This system was fully local to the user
 and navigated based on user pronounced commands and the inputs given by surrounding
 by use of Python APIs and computer vision software and then relayed meaningful
 responses by means of Google’s text to speech platform gTTS (“Smart Guidance System
 for Blind with Wireless Voice Playback”).

 30

 Figure 3.9: Previous System Indoor Localization Design (“Smart Guidance System for
 Blind with Wireless Voice Playback”)

 Another smart guidance system relies on several different approaches for determining
 critical obstacles, determining important events, and delivers audio feedback messages to
 the user. The Sri Sairam Engineering College developed a system deploying a voice
 feedback system for navigation that utilized an ultrasonic sensor to safely avoid objects
 and utilized a MEMS accelerometer for the purpose of understanding the user’s dynamic
 location in a 3-D space. In addition to an accurate portrayal of the user’s location, the
 static location was also understood using this accelerometer and a message was sent to
 points of contacts in the possible case of an emergency occurring. GPS was used to
 record the known location of the system and user, and would communicate the location in
 case of emergency (“Smart Guidance System for Blind with Wireless Voice Playback”).

 As audio assistive systems are a widely deployed approach, the subsystems for many past
 projects are a key point of interest for how to read in information and the different data
 points they focus on. Sensors for navigation can span many technologies. Deploying
 technologies in conjunction with one another enhances the full picture of the scope of the
 user’s surroundings. For instance, many systems focus on deploying the commonly
 conjoined ultrasonic sensors and RFID readers to navigate premapped areas and avoid
 obstacles throughout those regions (“Audio guidance system for blind”). On the other
 hand, technology such as LiDAR has shown to be viable in the past for the visually
 impaired (“Voice Navigation Based guiding Device for Visually Impaired People”) and
 can be viewed as a more independent sensor system that is powerful in the full picture it
 can paint for a system software.

 Previous iterations of visual impairment assistive technology lay a good framework for
 how to best guide users in the scope of navigating a billiards game. User guidance,
 control, and safety are the primary goals of the system. Emphasizing these by enhancing
 the ease of use can be best improved by seeing where these projects examined
 shortcomings and seeing where they can best be improved upon. The following sections
 research some of the required technology for user interaction to be possible in greater
 detail.

 31

 3.2.4 User Localization

 This section describes different technologies or avenues that can be explored for user
 detection, including but not limited to visually impaired users, technology that could be
 used in further sections when considering determining the path for the user to the object
 of interest. The current scope of research is to find how to implement three different
 features for the user. Further sections will describe which features will be implemented
 and in which way each of the features will be implemented. This section outlines the
 process of how to navigate the user around the table to the right position and orient the
 user is the direction needed to make a shot based on the shot selection algorithm’s output.

 To do any of the navigation accurately and safely, a proper localization mechanism must
 be deployed so the user can receive instructions that correspond with their location and
 heading in real time. Several variables are considered and must be prioritized accordingly
 for end design selection across various sensors and the corresponding algorithms that can
 be deployed with them. Variables to consider for each method of sensing revolve around:
 accuracy, calibration techniques, computational bandwidth, resolution, range, outstanding
 environmental factors, cost, ease of user integration, scale, materials required, and the
 method of sensing (i.e. proximity, motion, image, etc.) (Into Robotics).

 Hence, here, we examine different technologies, such as RFID and infrared/ultrasonic
 sensing and ultimately summarize the options and determine what sensors or sensor
 technologies are selected and in which matter they will be interfaced in the final physical
 design described in later sections.

 Summary of Requirements:
 ● Latency of the user localization does not exceed 10 seconds
 ● Accuracy of the user localization is within 1 foot of the true location
 ● Localization should work independently of the surroundings

 3.2.4.1 RFID And Bluetooth

 RFID: RFID (Radio Frequency Identification) is a form of wireless communication using
 radio frequency (RF) waves to identify objects uniquely. RFID systems consist of
 scanning antennas, transponders, and transceivers. Transceivers and antennas can be
 combined in an RFID reader. Transponders are typically RFID tags. In practice, mobile
 or physically mounted RFID readers are located within the region of application
 transmitting waves within the RF spectrum. The waves are picked up by the RFID tag(s)
 which will send the signal back to the antenna portion of the RFID reader, a signal which
 will be turned into data and positioning information. The range of applications depends
 on the type of RFID readers and tags and the RFID frequency of operation. Table 3.1
 summarizes the different types of RFID systems based on the frequencies of operations.

 32

 RFID System Frequency
 Range

 Common
 Frequency

 Operation
 Range

 RFID Tag
 Pricing

 Low-Frequency (LF)
 RFID Systems

 30KHz -
 300KHz

 125KHz -
 134KHz

 ≤ 10cm $0.5 - $5

 High-Frequency
 (HF) RFID Systems

 3MHz -
 30MHz

 13.56MHz ≤ 30cm $0.20 -
 $10.00

 Ultra High
 Frequency (UHF)
 RFID Systems

 300MHz -
 3GHz

 433MHz,
 860MHz -
 960MHz

 ≤ 100m Depends on
 Active vs

 Passive Tags

 Table 3.1: Comparison of RFID Technologies

 These systems not only determine the range of frequency and application but also narrow
 down the options for tags and readers given that in most instances, the specific type (LF,
 HF, UHF) of RFID tag can only be read by the same type of RFID reader. LF and HF
 systems are typically used for close contact applications due to their short range of
 detection and limited speed, as in ticketing systems, payments, or access control.

 VISION would have to rely on either Ultra High-Frequency or High-Frequency systems
 to locate the user from the edge of the pool table depending on how far away from the
 table the user is located. 30cm could be sufficient in some cases, but Ultra
 High-Frequency systems would be a more reliable approach in this case. If this solution
 is used, the applicability, availability and price of either one of these two solutions will
 need to be further evaluated. Now that the choice of the RFID system is determined, the
 next step will be selecting which RFID readers and tags would be suitable for VISION.

 RFID Tags: As earlier mentioned, RFID tags consist of the transceiver, an antenna
 capable of receiving and transmitting signals, but also the RFID chip, which stores the
 tag’s ID. For UHF RFID systems, there are three different types of RFID tags: passive
 (solely powered by electromagnetic waves), active (powered by a battery), and
 battery-assisted (combination of active and passive). The latter two allow achieving much
 longer ranges, at the cost of a much higher price per tag. Other considerations in selecting
 the proper tag are described below:

 ● Size: The larger the size, the longer the read range. However, this size is limited
 by the size of the object being tagged, in this case, our physical design or other
 objects, which incorporates the tag.

 ● Alignment and orientation: Ideally, the tag should be aligned in the same plane as
 the RFID reader to maximize the absorption of RF energy. Testing, if needed at
 this range, will need to be done to find the proper alignment for the reader and the
 tag. Additional readers may be positioned in the room of interest if needed to
 minimize issues arising from this.

 33

 ● Application-based type: Depending on the vendor, RFID tags are broken down
 into different categories including hard tags, wet and dry inlays (paper tags with
 or without adhesive), sensor tags, high-temperature tags, and embeddable tags,
 among others.

 ● Resistance to impact, vibrations extreme temperatures, UV, dust, or other
 chemicals

 For this specific application, wet or dry inlays will be the best option considering the cost
 and the fact that there is no necessity in a bigger or more complex design for our tags.
 Singular tags or multiple tags can be placed upon the physical design worn by the user,
 on different sections of the table. An apt example would be Avery Dennison’s AD-172u7
 inlays which feature a 22 x 12.5 mm antenna designed to operate at around 860-930
 MHz, each inlay factory locked with a unique 48-bit identification number while sitting
 at a total pitch of less than 2 inches. (“UHF RFID Inlay: AD-172u7 - Avery Dennison”).
 The AD-172u7 is shown below in figure 3.10.

 Figure 3.10: AD-172u7 UHF RFID Tag and Inlay

 RFID Reader: As earlier mentioned, RFID readers are responsible for sending signals to
 and receiving signals back from RFID tags. The two main types of RFID readers are
 either fixed or mobile, further subdivided based on the RFID system in play. Moreover,
 RFID readers can be further divided based on connectivity options (Wi-Fi, Bluetooth,
 Serial, USB, LAN), number of antenna ports, power, and processing options. RFID
 antennas are typically also necessary in addition to RFID readers, since they help convert
 the RFID reader signal into RF waves that can be picked up by the tags. The antenna will
 have to be in the same plane or polarity and orientation as the reader to superimpose
 instead of nullifying their actions. RFID antennas could also be used to facilitate
 communication between the antenna and the RFID reader. If used for moving the user
 around the table, the RFID reader would need to be able to distinguish tags that may be
 placed in very close location since the user holding a tag might have to be in close
 contact with different tags placed around the table (if any). If this solution is
 implemented, the choice of RFID reader will need to take this issue into account.

 34

 RFID Applications: The most accurate way-finding technologies used for visually
 impaired individuals these days rely on RFID technology. Despite how relatively
 inexpensive RFID tags (mainly inlays) are, the biggest cost in these come from RFID
 readers whose cost vary from around $200 to ten times that or more. Justifying the use of
 RFID and RFID readers for user identification would involve using RFID for user
 positioning as well. Other technologies rely on HF RFID systems and make use of (near
 field communications) NFC which does not need a separate reader, smartphones can
 serve as a reader for NFC, but are limited to about a few centimeters and typically
 operate on identifying one tag at a time making them unsuitable for identification or
 way-finding of visually impaired individuals. Another justification for the use of RFID
 would be with multiple user detections, where a system of RFID detectors or readers can
 be positioned at different points in a building identifying and detecting the positions of
 users with specific RFID tags.

 Related to user navigation around the table, there are cases were RFID tags are being
 used in the dining industry allowing waiters to find guests at the right table based on the
 specific location returned by an RFID tag preemptively given to them. In a similar way,
 VISION should be able to differentiate different positions that would correspond to a grid
 breakdown of what the pool table looks like and know exactly at which position, that is at
 which RFID tag the user is currently located at. Alternatively, simply detecting the user’s
 position using their RFID tag and use different ways to relate that positioning to the
 targeted position determined by the algorithm without using additional RFID tags to
 confirm that the targeted position has indeed been reached.

 Bluetooth Low Energy (BLE): A considerable alternative to using RFID technology
 would be relying on Bluetooth low energy (BLE) systems to achieve the same
 functionalities described earlier. BLE is a radio frequency technology for wireless
 communication that can be used to detect and track the position of different objects or
 people. They operate in a range similar to regular Bluetooth (about 2.400–2.4835 GHz)
 comparable to Ultra High Frequency RFID systems. The low energy name refers to its
 low power and current consumption (0.01W to 0.5W versus 1W reference for regular
 Bluetooth and <15mA of current consumption).

 BLE localization typically uses BLE beacons placed at specific points in the area of
 interest, providing information on the specific location of different objects in the area of
 interest or breaking down the overall area into specific grid locations. These beacons are
 small, versatile Bluetooth transmitters which broadcast signals at regular intervals. These
 signals can be detected by wireless devices such as BLE enabled smartphones. This
 describes a major advantage of BLE versus RFID. The overly expensive RFID readers
 can be replaced by regular smartphones that natively support BLE. However, the major
 issue described when using RFID tags in close proximity would still be an issue for this
 application. The efficiency of this technology will differ when considering different
 factors like the beacons not transmitting information to the reader synchronously while
 the user is in motion, or the reader struggling to detect closely placed beacons.

 35

 BLE Localization Techniques: Different localization techniques also come into play
 depending on the application or use case of these beacons. The simplest one would be
 localization based on the random detection of transmitters or beacons. In this technique,
 the position is based on which beacon provides the strongest signal back to the reader.
 Similar to RFID tags, VISION would need to store information about the different
 beacons to determine the location of the closest beacon to our user. The strongest signal
 would be calculated by a combination of three different values. The first one is a received
 signal strength indicator (RSSI) value, which indicates how strong the signal reaching the
 mobile device is when the beacon is detected by a device or reader. In addition to this,
 different beacons would broadcast their signal at different transmission powers TX. A
 combination of the RSSI value and the TX power value must be used when estimating
 the distance to the beacon. The TX power value is a factory-calibrated, read-only
 constant that indicates the strength of the signal measured at 1m from the device. Another
 consideration is a constant, say N, which represents the path loss index and is dependent
 on the localization environment. Some different values of N are: 1.4–1.9 for corridors, 2
 for large open rooms, 3 for furnished rooms, 4 for densely furnished rooms, and 5
 between different floors. Using these values, one can calculate the distance based on the
 following formula:

 𝑑 = 1 0 (𝑇𝑋 − 𝑅𝑆𝑆𝐼) /10 𝑛

 The major issue with this approach is that this localization technique varies greatly
 depending on the area in which it is been used (denoted by the range of values for N).
 Single measurements from the different beacons could consider one as the strongest
 signal at a particular moment, but measuring it again would lead to another beacon being
 deemed the strongest signal. A solution for this could be implementing an algorithm that
 uses a moving average over a period of time. This could introduce a longer time for
 detection depending on the scanning interval and scanning duration used for the
 algorithm. Once might consider increasing the frequency of detection while reducing the
 scanning interval, but this would contradict the point of having a diverse average to get
 the most accurate outcome. Research done with beacons closely packed under this
 technique has also shown that when placing them close together - for instance at 25 cm -
 the accuracy of detection is below 50%, detecting the wrong beacon or transmitter more
 than half of the time. (Cannizzaro)

 Another concern that would have to be investigated in the physical design, is the effect of
 obstacles around the user. The RSSI values are affected depending on different obstacles
 or objects in their vicinity. Depending on the density of the obstacles, it has been shown
 that some detections from the beacons might be lost, and the RSSI values may have a
 range of error of about 5% which in a narrow area like the pool table could lead to faulty
 measurements of where the user is accurately located.

 Another more accurate, but complex, localization technique is trilateration. Trilateration
 determines the location of the object or person of interest by using three strategically
 placed beacons. The beacons draw out a circle, with the beacon at the center of the circle,
 in their location, and the intersection of the circumferences determines the exact position

 36

 of the object of interest. Data from each individual beacon allows the system to have a
 general idea of where the object is located within the beacon’s drawn out circle. This
 location comes with a great range of error. The location of the object due to the second
 beacon allows some of this error to be removed by placing the object in the overlap of
 those two drawn out circles, reducing the plausible region where the object would be
 located. The third beacon would in turn reduce this area to a single point, giving the exact
 location of the object. The horizontal and vertical positions of the objects are then
 determined based on the radii of the circles and the distance between the beacons. Those
 distances are calculated based on RSSI and TX as earlier described. A simple trilateration
 example is shown below in figure 3.11.

 Figure 3.11: Simplified Model of Trilateration

 Regardless of the method used to determine the exact position of the user, it might be
 worth finding ways to minimize the error incurred in the RSSI measurements, which is
 the basis of the whole process. The moving average described for successive
 measurements earlier is one of approach but can be improved by smoothing the RSSI
 values even more. Different models, such as exponential moving average, or weighted
 moving average, could be introduced such that the RSSI value is not just a simple
 average of the previous values, but gives greater importance to newer values versus older
 values. This would help with cases where the user might be in constant motion around the
 table or in the room. Consider RSSI n to be the current RSSI measurement, RSSI smoothed is
 the smoothed calculated value and ɑ is a number between zero and one. A smoothing
 model is shown below: (Ramirez and Chien-Yi Huang)

 𝑅𝑆𝑆 𝐼
 𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑 , 𝑛

 = α * 𝑅𝑆𝑆 𝐼
 𝑛
 + (1 − α) * 𝑅𝑆𝑆 𝐼

 𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑 , 𝑛 − 1
 + (1 − α) 2 * 𝑅𝑆𝑆 𝐼

 𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑 , 𝑛 − 2
+...

+ (1 − α) 𝑚 𝑅𝑆𝑆 𝐼
 𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑 , 𝑛 − 𝑚 + 1

 With and m is the number of data points used in the smoothing algorithm. α = 2
 𝑚 + 1

 When it comes to selecting which devices to use, VISION has enough flexibility in its
 decision for both the beacons (shown in figure 3.12) and the reader. An example of a
 beacon is the iBeacon from BlueBeam which offers variable TX power options, unique

 37

 identifiers (UID) such as namespace and unstance IDs (for Eddystone UID) or iBeacon
 UUID (Universally Unique identifier) and major and minor IDs, advertising intervals,
 and has an option that allows someone to trigger a broadcast at any time other than its
 usual advertising cycle. It also supports sending out the advertising frames under different
 formats that carry different data depending on the application, such as:

 ● Eddystone URLs limited to 17 bytes in Eddystone format (protocol specification
 that defines a BLE message format for proximity beacon messages)

 ● Eddystone TLM packets that can also contain battery information, temperature,
 number of advertisement frames and time since reboot

 ● Eddystone UID for broadcasting the ID of the beacon, returning the namespace
 and instance IDs

 ● iBeacon, Apple’s protocol standard returning the iBeacon UUID corresponding to
 the business that owns the beacon, minor ID which corresponds to the location of
 the beacon, and major ID which is a more accurate representation of the location
 of the beacon

 Figure 3.12: Bluecharm BLE Beacon with Motion Sensor

 For VISION’s reader, any device capable of BLE sensing would be enough. This includes
 actual readers, smartphones, or microcontrollers with Bluetooth functionalities.

 3.2.4.2 Sensors

 Ultrasonic Sensors: The main advantage of ultrasonic sensors versus other sensors is
 their ability to detect any object regardless of the nature of the surface. They are also
 straightforward to integrate with microcontrollers. Ultrasonic sensors would allow a
 program to specify a distance that would consider an object as being subject to collision.
 Additionally, the sensors would provide accurate information related to where a user is
 and how far away they are from a target. For ultrasonic sensors, the most common range
 of frequency of the ultrasonic pulses spans from 40-70KHz. This frequency determines
 the range they can cover and accurately detect. Lower frequencies offer a wider range,
 which spans up to 11m wide with a resolution of 1cm (or lower). For VISION’s object

 38

 detection and user detection around the table, 1cm of resolution would be enough to
 detect the user in the table range.

 A good example of an ultrasonic sensor (transmitter and receiver) that would fit the
 design is the HRXL-MaxSonar® - WR™ series shown in figure 3.13. These sensors
 operate at about 42KHz and can return an output in different forms. The most applicable
 output of the sensor is a pulse width representation of range with a resolution of 1mm.
 The range can be extracted using the scale factor of 1uS per mm. It also returns an analog
 voltage output as a single-ended analog voltage scaled representation of the distance, at a
 resolution of 5mm or 10mm. The corresponding pin for this output remains at this
 voltage that directly corresponds to the detected distance. Lastly, it also returns a serial
 output in an RS232 or TTL format where the distance can read as an integer up to a
 maximum of 4999mm or 9998mm, depending on the model. Some additional advantages
 of this series are its low current draw, allowing for a long battery life. Additionally its fast
 measurement cycles (measurements occur every 50ms on average) are fast enough to
 detect a user as they move. Table 3.2 below summarizes the different models available in
 this series (“Datasheet for the HRXL-MaxSonar-WR sensor line”).

 Model Family Detection Range Applicatibility

 MB7375 and MB7385 30cm to 1.5m Wider beam from
 transmitter suitable for
 closer distances with a
 broader detection target

 MB7360 and MB7380 30cm to 5m Provides reliable long
 range detection zones

 hence used in tank and bin
 level measurements

 MB7363 and MB7383 50cm to 10m Higher sensitivity hence
 great to use for applications
 where objects do not reflect

 enough ultrasonic sound
 such as people detection

 Table 3.2: Comparison of Different Ultrasonic Sensors

 Based on the above table, the third option would be the most suitable option. The main
 difference between the MB7363 and the MB7383 is that the serial output for the MB7363
 is in the RS232 format versus that for MB7383 is in a TTL format. Both RS232 and TTL
 (transistor-transistor logic) are forms of serial communication where data is transferred
 between two parties, a receiver and a transmitter, at a specified baud rate, which indicates
 the speed of said transmission. The MB7383 using TTL serial communication protocol
 would be the best option due to the following advantages it has over RS232:

 39

 ● Less susceptible to noise and other interference
 ● TTL signals’ voltages follow typical microcontroller voltage supply range of 0 to

 3.3/5V whereas RS232 signals are +/- 13V, which would require another external
 power source

 ● TTL is hence easier to incorporate with microcontroller designs

 RS232 to TTL converters are also readily available in case a switch has to be made
 between these two serial communication protocols.

 Figure 3.13: Model and Dimensions of Compact Housing HRXL-MaxSonar Model

 IR Sensors: Compared to ultrasonic sensors which all rely on the time-of-flight principle,
 other IR sensors use different mechanisms for their functionality. One of which is
 triangulation. Infrared LED triangulation sensors determine the position and distance
 from the object using geometric considerations. A collimated laser source (transmitter) is
 used to illuminate the object to be measured. The light is reflected back (receiver) and
 focused by a position sensitive detector (PSD) comprising small photo sensors in a row
 called pixels. The distance is then measured using a ratio of the product of the distances
 over the size of the detection pixel. The main issue with this approach is its reliance on a
 different factors lowering its resolution at larger distances. Its biggest perk being the
 lowest prices comparatively for sensors.

 Time-of-flight IR sensors, on the other hand, similar to ultrasonic sensors, operate by
 sending a light pulse to the object and determine its distance based on the time it took to
 reach the detector. They have a much longer range than their triangulation counterparts,
 along with other benefits such as faster transmission and reception times, rapid refresh
 rate, and lower power consumption. The main disadvantage here is the increase in price
 and the inability to differentiate targets.

 A good option that would fulfill the above advantages without a huge increase in price is
 the VL53L0X (shown in figure 3.14) from STMicroelectronics whose range of detection
 goes from 50mm to 1200mm (or 2000mm in one of its function modes) (“World's
 smallest Time-of-Flight ranging and gesture detection sensor”) which is more than

 40

 enough for collision detection. Its 940 nm vertical cavity surface-emitting laser (VCSEL),
 is invisible to the human eye. Coupled with internal physical infrared filters offering
 higher immunity to ambient light, and better robustness to cover glass optical crosstalk.
 The output can be obtained either using a polling or interrupt mechanism. The default
 timing for initialization, measurement/ranging and other housekeeping functions it
 performs is about 33ms. It also uses a streamlined beam that would make detecting a user
 positioned directly in front of the time of flight sensor much easier. Being a laser-based
 system, the transmitter sends out a straight line laser and only detects objects in the very
 narrow beam (25 degrees field of view). Positioning of the sensor would be of great
 importance when trying to detect a user. Another noteworthy advantage is the low power
 consumption of about 5-6 µA in standby mode. There are a few other considerations such
 as the nature of the material and the color of the material which affects the accuracy of
 the measurements.

 Figure 3.14: VL53L0X Time-of-Flight Ranging and Gesture Detection Sensor

 Lighting conditions affect IR sensors while ultrasonic sensors are not affected by this.
 Ultrasonic sensors are reliant on the shape of the target, struggling with soft, curved, or
 thin objects while IR sensors work fine under these conditions. Ultrasonic sensors are not
 easily able to detect sound absorbing surfaces such as clothes or other fabrics hence
 would struggle to detect human presence in non-ideal circumstances.

 3.2.4.3 Localization Algorithms

 Sensory input is fundamental for user localization within this project, but the proper
 algorithms and computational methodology to support the inputted sensory data is key to
 having accurate data to transmit for proper guidance commands to be sent to the user.
 Inputs resulting from each sensor type all have the goal of understanding where the user
 is relative to the billiards table as a whole. To do this, several back end processes can be
 explored to achieve the desired goal of visualizing the table environment and localizing
 the user with respect to common data points.

 SLAM: In the field of autonomous navigation of robots and automobiles, simultaneous
 localization and mapping (SLAM) is an improving asset for real time responses to a
 system’s surroundings. SLAM works with sensory imagery primarily from cameras or
 LiDAR to be able to map the present area and, in the same instance, localize the system
 relative to the area it navigates through. This goal is best realized through path finding

 41

 algorithms and object avoidance (discussed further in section 3.2.5), making it a great
 asset for real time responses of autonomous vehicles for terrain that can not be previously
 predicted (“What Is SLAM (Simultaneous Localization and Mapping) – MATLAB &
 Simulink - MATLAB & Simulink”).

 Maze Array: To do this, constant variables must be set based on the type of interface that
 is inputting data to this processor. Constants of interest are the size of the table and
 position of origin point of the sensors and the variable of interest is the changing distance
 determined between the sensor(s) and the user. With these variables, an accurate localized
 position in a two dimensional space can be achieved and easily exported with limited size
 of data being transferred.

 In the case of an array being propagated for localization and path guidance of the user, an
 important distinction to be made lies with the choice on how large each array position is,
 how accurately to portray the user within these positions, and how many positions deep
 to make the array. A diagram of such a representation is shown in figure 3.15, where a
 graphical interface housing the current layout of the billiards table and its accurate
 physical space would be outlined by a two dimensional array housing the location of a
 user. Relating to the constraints of such a model and why the variables described above
 trade offs comes from the desire for accurate real time updates of such an array for both
 the display and guidance system. Simplistic approaches housing vast approximations for
 location will be simple to calculate and communicate but risk giving an inaccurate
 representation that may hinder a user from proper navigation. On the other hand, a very
 in depth set of data points will add more complexity to the data that is communicated. At
 such low levels of data communication, lag in communication is not a grave concern and
 can be considered as lower priority. Specification and ideal frequency of updates to the
 proper load times is of a higher concern when it comes to efficiency, which is a task that
 can be optimized within embedded controls.

 Figure 3.15: Localization Algorithm Array Scheme

 More complex localization approaches can also be considered. A three-dimensional space
 adds significantly greater hurdles to the amount of data that must be communicated, the
 number of sensors that must be present, and the communication speed of the data. Given
 the nature of the guidance system and the desire for speed over complex representation, a
 method such as this may not be optimal for the constraints of this project.

 42

 3.2.5 User Guidance

 Corresponding with user localization is the outputs to navigate the user to the desired
 location of the next shot on the table. Previous assistive technology has deployed
 navigation methods that can be augmented to VISION’s desired specifications and
 constraints. Similarly to the approach for user localization, guidance methodologies carry
 various pros and cons that can be weighed by comparable variables of cost, scale,
 accuracy, ease on the user, computational bandwidth, and corresponding algorithms. To
 explore possible routes for this technology, previous technologies in audio and
 sensational guidance have been explored and come in varying extents and approaches.

 Summary of Requirements:
 ● System can position user within 1 foot of the desired location
 ● User is oriented within 15 degrees of the desired shooting direction

 3.2.5.1 Audio Outputs

 One of the most intuitive guidance systems for user guidance for the visually impaired
 centers on audio outputs. As mentioned in several previous projects discussed in the
 visual impairment assistive technology section, voice commands are a very common
 method of guidance in a real world setting where many unpredictable variables may
 occur. Alternatively, for the case of navigating a stationary table, simplified methods may
 be deployed. For instance, audio that is outputted merely to navigate a user by a constant
 sound in the direction of the destination can house value, and an altering pitch tone could
 help differentiate the concept of distance from the destination to the user. While these
 simplistic approaches can seem intuitive to an individual with knowledge of the make of
 the system, a new user may not comprehend elementary instructions being presented as
 easily. Applications such as this may require some form of preliminary explanation to the
 user of how the system operates, while more complicated approaches such as audio
 commands would in fact be intuitive to the user.

 Command-Based Audio Output: Factoring into these audio approaches is the delivery
 method and density of said method within the system. For an instruction based output, the
 sources of the output do not necessarily have to be distributed. A centralized location
 either on the user or in a constant position that emits the instructions is sufficient.
 However, benefits based on the orientation of the user may arise in having a centralized
 output of instructions to not confuse delivered instructions. Inconveniences can arise in
 cases where a central location is emitting sound from a position that is opposite of the
 direction the instruction is oriented towards. The severity of a case like this is minor in
 the presence of a robust algorithm that will continue to guide the user based on their
 adjusting location. A design such as this could also reflect closely with home voice
 assistant devices such as the Amazon Alexa and Google Home Mini. These devices are
 recommended to be placed at a central location in the house both for recognizing audio
 commands and for proper delivery of corresponding outputs. A system such as this
 realizes two way communication and holds value in terms of the potential to introduce
 audio commands on top of audio guidance.

 43

 A user centered approach as discussed in the previous visual impaired assistive
 technology section (“Guidance System for Visually Impaired People”) discusses the use
 of headphones for communicating commands to the user. A user based approach can be
 easily deployed with the latest wireless technology within a Bluetooth headset.
 Commands can be communicated from a central processor located outside a user and sent
 via Bluetooth. This decentralized approach to command-based audio eliminates the factor
 of distractions brought by centralized audio.

 In addition to command outputs, the described systems can also be relevant in the realm
 of relaying outcome information. For instance, in the case of a user conducting a shot,
 having additional audio that confirms the resulting success or failure could have value to
 a user that cannot see or visually comprehend what has occurred. This is similar to how
 previous projects have utilized gTTS (“Guidance System for Visually Impaired People”)
 API for command based navigation or the use of the same API for outputting the words
 of a written page (“Reading Device for Blind People using Python, OCR and GTTS”),
 but the same practice can be extrapolated for any situation. As the number of outputted
 results has a finite value, this feature can hold value for a user in the command-based
 model of output as it requires identical materials as need to be present for this system.

 Direction-Based Audio Output: In the case of a simplistic audio approach for directional
 commands, a distributed network of speakers could be deployed across the realm of
 navigation for a user. This array can be deployed in various manners depending on
 desired accuracy. In the case of navigating a table, the baseline requirements would settle
 upon the four corners of the table having speakers to be able to deliver a command for
 each 2-D direction around the space. This can be made more accurate if speakers are
 added between corners of the table to better position the user at a desired location.
 Additionally, the accuracy can be enhanced in the alternative manner of having the
 speakers emit varying levels of pitch to describe distances. For instance, higher pitch
 could mean further distance to travel and lower pitch could relate to approaching the
 desired location. These varying implementations also come with a tradeoff in cost based
 on a linear increase with the added number of speakers in the array or the cost increase
 from added complexity of the audio technology.

 To illustrate the discussed audio delivery methods, figure 3.16 showcases the
 hypothetical case of a user attempting to navigate from the upper left-hand corner to a
 desired location of the table. The three audio output mechanisms are shown within the
 graphic with corresponding labels and expected commands based on their varying
 purposes. The array-based output is implemented at the basecase of four corner speakers.

 44

 Figure 3.16: Audio Based Navigation Mechanisms

 Audio Aim Guidance: Once the user is guided to the proper position on the table, they
 must then be oriented toward the ball. This mechanism can be deployed in similar
 approaches as the positional guidance discussed. Within a command based mechanism,
 real time orientation data is a necessity as corrections to the left or right of the user can
 only be comprehended if a feedback of data is present. The audio array method comes
 with the limitation of the same degree if deployed at the base case of four corner
 speakers. Corrections will also be challenging in this case due to both the wide spacing of
 the speakers and the algorithmic control of which to activate based on the varying
 possible positions. To improve accuracy of an array for aiming the user’s shot orientation,
 a denser population of speakers is a simple enhancement. At the worst case, the possible
 blind spot for shooting position is rather wide, and will lead to challenges with the hand
 off to the user side apparatus of SCRATCH. To limit this challenge and ease difficulty on
 the user, a worst case angular error from the desired shot position should be established
 and then used to determine the necessary density of speakers.

 Audio Levels: If audio is used for guidance of visually impaired individuals, audio levels
 produced should be considered for both the ease of proper distinguishment of commands
 and for auditory wellbeing and safety of the user. Audio levels should be adjusted after
 installation within multiple environmental settings to confirm they meet these
 specifications for the user. Some systems can even be implemented that utilize feedback
 loops for gain control of outputs with installed microphones. (Accessible Pedestrian
 Signals #) For the case of VISION, this specification does not need to be considered
 down to a predetermined decibel level, but instead needs to be standardized across all the
 speakers and adjusted within the validation process of the project.

 3.2.5.2 Physical Sensory Outputs

 While audio has been explored as a guidance mechanism for users with limited use of
 their site, an additional sense can be deployed in the sensational awareness of a user’s
 surroundings. Stemming from the use of probing canes for the blind, the technology of

 45

 physical feedback to visually impaired individuals has grown a great deal with the
 improvement of technology. Vibrations can now be actively created utilizing haptics to
 deliver purposeful information to a user that describes actions to take or a direction to
 move.

 Designs like that of Maptic (“Maptic is a wearable navigation system for visually
 impaired people”) shown in figure 3.17 have been deployed in wider variable
 environments for guidance in everyday tasks. This technology is worn by the user in what
 appears to be simple accessories but instead is a useful haptic guide for the visually
 impaired. Optical sensors within a necklace-worn device take in inputs that are then
 routed through an iOS application that sends signals to each of the wrist feedback
 devices. These signals can be configured in various manners to transmit information and
 can also be interfaced through voice control. Systems of this manner are very beneficial
 for guidance in a changing environment such as the open world, and can be extrapolated
 for more defined scopes.

 Figure 3.17: Maptic Haptic Feedback Apparatus (“Maptic is a wearable navigation
 system for visually impaired people”)

 Within a different scope of problems for the visually impaired, the University of
 Maryland conducted research into a project giving the blind better ability to parse
 through reading text off a page shown in figure 3.18. Haptic feedback was used in the
 study as a manner to deliver information on the page layout and used a camera to take in
 the text information on the page. (“Evaluating Haptic and Auditory Directional Guidance
 to Assist Blind People in Reading Printed Text Using Finger-Mounted Cameras”) This
 technology approaches haptics from a different direction, but does show how minimal
 information transfer from vibrations can be used in conjunction with additional
 technologies to achieve enhancements in the lives of the handicapped, similar to the goal
 of VISION.

 46

 Figure 3.18: Hindsight Haptic Feedback Apparatus (“Evaluating Haptic and Auditory
 Directional Guidance to Assist Blind People in Reading Printed Text Using

 Finger-Mounted Cameras”)

 Within the scope of guidance to desired shot locations on the pool table, commands can
 be delivered to the user that mean move left, right, forward, backward. As there is no
 locational specific information being delivered however, this can present comprehension
 hurdles. A new user may very well misunderstand a command being delivered and
 struggle to easily follow commands. Additionally, angular orientation of the user creates
 the need for haptics to require a sort of correction based on this parameter for proper
 positional guidance. With this variety of commands being delivered in a base level that is
 binary at the simplest level and can be enhanced with more feedback devices, it can be
 seen that design can quickly divulge into complication and result in a negative user
 experience. These factors must be considered in design, especially when weighing
 options in a static vs dynamically changing environment.

 3.2.5.3 Guidance Algorithms

 Navigation algorithms that bridge the gap between sensors to output is the glue to a
 complete navigation system for an impaired user. Algorithmic constraints are examined
 with the assumption that an accurate user location and the desired location is being polled
 to the guidance system from the user localized functionality of the system and the
 billiards AI respectively. The goal of the guidance algorithm will be to locate the best
 path between these two data points and navigate around obstacles such as the billiards
 table and camera stand. Obstacle avoidance is a viable feature to explore, but may create
 significant added complexity to tools deployed for user localization. This being the case,
 this feature is considered a stretch goal of the project. Once the desired path is determined
 from source to destination, outputs must be accurately relayed to the user based on the
 delivery mechanism for user guidance.

 2-D Space Traversal: To navigate the table safely, a leading mechanism to realize the
 system space is a two-dimensional created similarly to a rudimentary maze that outlines
 the table as a boundary the user cannot navigate through. This can be accomplished by
 utilizing common algorithms for navigating a 2-D matrix. There are several approaches
 to realize this goal including including the commonly deployed backtracking “Rat in a
 Maze” algorithm. The simplest form of this algorithm will continue to test paths in a

 47

 binary maze where 0 is traversable and 1 is an obstacle until it reaches the desired
 location. As higher processing power and a shortest path is desired for this test case, an
 algorithm of this sort will want to find the absolute shortest path between two points and
 will want to terminate the function as this path is determined to not hinder processing

 ability. The Rat in a Maze algorithm operates at O(), meaning that a large array will 2 𝑛 2

 lead to a nontrivial run-time and severely hinder computational speed (“Rat in a Maze |
 Backtracking-2”).

 Figure 3.19 Maze Traversal Example

 While maze traversal can be a very useful method for complex and changing 2D arrays,
 the specific use case of VISION brings up the option for an alternative method. As there
 is a static grid in place that is centered around a constant dimensional table, there are only
 two available paths that can be taken to navigate the table’s perimeter at any given time.
 With this being the case, a binary guidance algorithm can be deployed, which flows in
 one of two directions. This approach removes the need for complex computational
 calculations and puts the strain of the system on sensory input processing.

 To deploy the above algorithms, a 2-D space must be accurately created prior to the start
 of navigation. For this to occur, a constant center point should be established relative to
 the user. This point can be located at any spot, but must be adjusted accordingly if to have
 an accurate location of a moving user. The proper state of value of each square of the
 maze must be set. Recognizing the constants that will not change in this system centers
 on the billiards table and any added obstacles that may be present within the space. By
 noting these, the requirement to sense the location of the table is relinquished from the
 system. Determining the constants would depend largely on added design of the system
 and dimensions of the table. In addition to these determinations, a determination should
 be made on the size of each array value. This can be relative to the size of the average
 human, and can be larger or smaller depending on the expected accuracy of sensors and
 the desired accuracy of positioning the user.

 Obstacle Avoidance: If an unexpected object is discovered to be on the floor around the
 table, warnings and alternative paths can be deployed. The primary limiting factor to this
 approach is certain deployed sensors will be either robust to these obstacles or their
 localization algorithms will be greatly hindered. To definitively differentiate between a
 user and an obstacle, a mixed sensor approach as described in the localization algorithm
 section would ideally be deployed. In the case where an obstacle is localized, this factor

 48

 can be added to the 2-D space as a present array value and algorithms can be deployed to
 avoid its presence. A system like this can be complex if it requires stepping into a
 dimension outside of direct adjacency to the table, and would not be compatible with
 simple guidance mechanisms.

 3.2.6 Feedback System

 The feedback system will be based on sound in order to accommodate the visually
 impaired players. The table should give the user feedback on the following events: If a
 game ball is made, a scratch, if the game is lost, or if the game is won. The table will
 feature a speaker at every pocket, this will allow the player to be able to determine which
 pocket the ball went into. The following research is to find ways in which VISION can
 implement such a system.

 Event Sensing: This is the process of discovering if a shot was made by the user. It must
 also be able to determine if the game has finished or if there was a scratch on the user's
 turn. There are two main ways in which we would be able to determine if an event has
 occurred, one is through our computer vision system while the other would be setting up
 sensors in every pocket.

 By employing our computer vision system based on the research in section 3.2 of this
 paper, VISION will be able to use that information in order to alert the player when an
 event occurs. This will prove to be higher latency than an approach using physical
 sensors on every pocket. However, the computer vision algorithm will have to be
 improved to meet extra requirements. The first requirement is that it must be able to
 communicate that a ball has been pocketed. It must also allow for detection of a scratch,
 this means the computer vision system must be able to distinguish the cue ball from the
 normal ball. Despite these drawbacks, employing the computer vision system to assist in
 result feedback would offer a major cost advantage, as well as a possible development
 time advantage.

 A sensor based system would allow for almost immediate feedback to the user. The
 sensor would have to be present within the pocket and be able to withstand a hit from the
 pool balls. That is not ideal as the sensors will likely be fragile. Some possible options for
 sensors are a force sensitive resistor (FSR) and an RFID tag.

 The FSR would be a good way to detect changes in pressure when the ball falls into the
 pocket. The FSR works as a variable resistor and an example is shown in Figure 3.20. It
 has virtually infinite resistance when not pressed. As it is pressed with more force
 however, the resistance quickly goes down. The FSR has a conductive polymer that
 allows for the change in resistance when a force is applied. This approach is however not
 feasible unless the pocketed ball was taken out after the shot has been made. Otherwise
 the system would have no way of knowing whether or not another shot has been made in
 the same pocket. One way around this inconvenience would be to keep track of the
 current value, if it goes up the proper amount for another ball being made, then you could

 49

 give the user feedback once again. However this will be difficult, as the function for force
 compared to resistance is not linear.

 Figure 3.20: Force Resistive Sensor

 As discussed in the RFID section, these chips could be placed inside of the ball for the
 purpose of detecting if a ball were to fall into a pocket. The range requirements would
 have to be met in a way to ensure that a ball very close to a pocket would not prematurely
 be counted as a made shot. The other downside of this is that it would likely require a
 very tedious process to place the RFID tag inside of the pool balls. Doing this without
 disrupting the natural movement of the balls after the modifications would also require
 extreme care. A solution using this approach can be found when examining how golf
 driving ranges are able to track many metrics on a user's shot. By using RFID technology,
 the user can see the speed of their ball, the path, and the top height traveled by the ball.
 One such company known as “Top Golf” employs Impinj M700 Series RAIN RFID tag
 and is shown in figure 3.21. The technology they use is proprietary, however, each ball
 has a RFID chip that is programmed before the shot is taken, along with a series of
 sensors in the field in order to gather the metrics previously described. An approach
 similar to the one taken by Top Golf would be very valuable. However, the room for error
 on a driving range is many yards, while the room for error on a pool table could be a
 centimeter. Currently a patent has been granted for using RFID technology to create a
 score tracking system for the game of pool, but without any commercial offerings or
 viable demonstrations on the effectiveness of this technology for pool, this may not be a
 viable approach.

 Figure 3.21 RFID Tag Embedded in Golf Ball

 50

 Feedback Sound System: The sound system will consist of a speaker located at each
 pocket. This is to allow the player to orient themselves to the pocket which the ball has
 fallen into. Some requirements for the sound system are: volume level sufficient to
 distinguish pocket location from approximately 13 feet away (9 foot pool table with
 included 4 foot buffer) and six speakers, one at each pocket.

 The feedback system must also handle the case in which more than one ball is made. If
 two or more shots are made into a pocket, the shots will be placed into a queue and
 announced in sequential order. In the case that an eight ball is pocketed, the system will
 end the game before further shots will be announced. The edge case in this scenario will
 be if two balls enter the same pocket, this may be difficult to distinguish based on the
 range of the RFID technology used. If the technology is capable of detecting two balls in
 the same pocket, then this case will follow the same queue system. A chart showing the
 progression of events is shown in figure 3.22.

 Figure 3.22: Feedback System Shot Results

 Determining Shot Results: The feedback system needs to determine what occurred during
 the player’s previous shot attempt. The possible shot outcomes are shown in figure 3.22.
 In order to determine if balls were sunk during the previous shot, the feedback system
 will compare the current state of the billiard table to the previous state of the billiard
 table. The system will determine if the cue ball is present, if the eight ball is present, how
 many green balls are present, and how many blue balls are present. Comparing the
 previous table state date to the current table state data will determine which of the five
 possible scenarios the player’s shot falls under. The results of this comparison will
 determine if the player must continue playing, has won, or has lost. The logic used for

 51

 this comparison depends on if the eight ball is present. If the eight ball is not present, the
 user wins if they have no more game balls or loses if they have one or more game balls. If
 the eight ball is still present, the user continues playing and is notified if they did not
 make a ball, make their game ball, or make the opponent’s game ball.

 3.2.7 Direct User Commands

 Within this system, the goal is for the user to have as many assets as can be provided for
 giving them safe and clear access to be able to navigate the pool table and have an
 understanding of where they are at all times. In addition to system side navigation and
 localization techniques, commands sent by the user and/or a secondary controller can be
 explored and implemented when the most benefit to the player can be realized. These
 commands can be implemented either for critical actions such as designating the end of a
 turn or focused on enhancing the user experience. For this purpose, previously deployed
 technology in remote controllers, centralized control, and audio commands are researched
 for viability within this system. The possible benefits of these designs will have their
 importance weighed for our system for an optimized user experience.

 3.2.7.1 Control Interfaces

 The scope of VISION encompasses certain baseline commands that will require user
 interaction. Whether these commands are relayed from an assistant or the user directly,
 they will be critical to the performance of the system.

 Remote Controller: A possible additional asset for the user within this scope comes in the
 deployment of a device that stays attached to the user that primarily can be used for
 setting basic commands of the system. This type of remote controller could also have the
 added benefit of being accompanied on the same devices that define user localization
 techniques previously described. Controllers located on a user have been referenced in
 the section discussing visual impairment assistive technology and additionally correlates
 to the concept of remotes used for items such as navigating a television interface with
 touch integrated controls. The latter can be of importance in basic design of remote
 interfaces for the reason of allowing visually impaired users the ability to have an
 understanding of and be able to control critical functionality of a system (“Ensure that the
 remote control can be used without requiring sight”). Remotes such as the one shown in
 figure 3.23 showcase how a basic interface for control over an audio interface could be
 made intuitive for a blind user with limited guidance. The simple setup with raised and
 shaped buttons has been used to relay the intent of controls to users at scale for many
 years. This importance can be mirrored relative to this system for the needs of critical
 tasks that a user may need at any point in their performance. A similar design could be
 extrapolated to use within VISION with proper distinctions of commands in place. For
 the optimal user experience, having intuitive control directly from the user allows for the
 quickest response and a superior experience.

 52

 Figure 3.23: TV Remote or the Visually Impaired (“Tek Pal Tactile Low Vision TV
 Remote Control”)

 Centralized Control: In contrast to an interface local to the user, centralized control
 would require a non-impaired assistant to be in place and be able to relay commands for
 the current process in place. A centralized interface could be located either on the table,
 on the side of it, or distanced from the table. This interface would have a focus on buttons
 or other methods of communicating intent to the primary processor. This could contain
 critical commands, audio preferences, display settings, etc. While the remote controller is
 possibly a more optimal method for late stage development of products, a centralized
 control interface could be a better fit for a prototype to determine where limitations on
 commands may be. Additionally, having an assistant is most likely a necessity for early
 stage testing, which would eliminate the benefit brought on by a fully user side interface.

 3.2.7.2 Audio Commands

 One of the more common features of previously deployed blind-assist technology was the
 ability for users to communicate their desired system task via voice commands. Previous
 technology in this field utilized Python speech recognition packages to allow for user
 commands to be read in and interpreted by a processor and respond accordingly
 (“Guidance System for Visually Impaired People”). An interface such as this is an
 advanced feature that has benefits and distractions. The most outstanding benefit of this
 interface is the ease in being able to ask questions and send commands that is more
 intuitive than feeling for a proper command on a user side remote and attempting to
 understand the intent of each button. Additionally, a proper audio command interface
 would possibly have the ability to interpret approximate ideas from inaccurate commands
 and comprehend a best course of action. While these factors of ease are valuable, factors
 of noise pollution both from surrounding environments and from deployed audio
 guidance methods introduce potent constraints and problems to the system. Issues of this
 manner can be addressed with proper filtering and close proximity mics, but is a rather
 expansive problem to combat.

 Commands of Interest: Determining the most crucial commands for the use case of the
 augmented billiards game being deployed in this system requires a weighing of the trade
 off between the simplicity of the interface and necessity of each command. There is a
 wide spectrum of possible commands that can be of use to a user and assistant. At a

 53

 baseline, there are commands required for basic functionality of the game to occur, and
 others that are more centered on aiding the user experience. Some possible commands to
 explore include: Center User, Start Game, Shot Taken, Game Status, Begin Navigation,
 Pause Game, Reset Game. These commands could correspond with responses from a
 centralized speaker system, begin a guidance system, or allow for a reset process to
 commence.

 3.2.8 Absolute Orientation

 For means of getting the most accurate shot direction orientation, designating a position
 and direction that are defined absolute relative to a given point will allow for the most
 accurate dissemination for user side system commands. Following the general directional
 guidance of the user to the proper location, orientation relative to that point is crucial to
 the user’s ability to have a chance at properly hitting the cue ball. To get metrics required
 to relay this information both to the table and user guidance systems, establishing an
 orientation relative to a defined orientation is explored.

 3.2.8.1 Cue Displacement

 The cue displacement will be determined in the shot selection algorithm. The shot
 selection algorithm already must determine the location of the end of the pool cue in
 order to verify a shot is reachable. With this information VISION is able to determine the
 point in space that the user must be located at. Ideally VISION wants to move the user
 along the edge of the table in order to simplify the guidance system. Therefore VISION
 will find the intersection of the table with the angle from which the pool cue must be
 shot. VISION’s goal will be to then navigate the user until their pool stick is within the
 desired range of locations.

 3.2.9 Test Cases

 3.2.9.1 Game Modes

 Billiards are a collection of games that are played with a billiards table, billiards ball, and
 cue stick. There are many different games played on billiards tables which include 8-ball
 pool, 9-ball pool, snooker, four-ball, cushion caroms, and many other variations of
 similar games. The goal of this project is not to implement all of these different billiards
 games, but rather to implement a working framework that can be expanded to different
 applications. For this project, a modified version of 8-ball pool is implemented.

 8-Ball Pool: 8-ball pool is one of the more common billiards games played because it is
 relatively simple and has fewer rules than many other billiard games. 8-ball pool consists
 of sixteen billiard balls. There is one white (cue) ball, one black (eight) ball, one set of
 seven solid-colored balls, and one set of seven striped balls. There are two players who

 54

 each are assigned either solid or striped balls to try and pocket. Each player must use
 their cue to strike the cue ball in an attempt to push either the striped or solid color balls
 into the pockets. If a player sinks one of their game balls, they get to go again. If a player
 does not sink one of their balls it is the other player's turn. If a player sinks the cue ball or
 one of the other person’s game balls, it is the other person’s turn. If a player sinks the
 black ball before sinking all of the game balls, that player loses immediately. If a player
 hits the cue ball and does not hit any of their game balls, the other player gets to move the
 cue ball within a specified region.

 The overall concept of 8-ball pool will remain unchanged in this project, but some small
 modifications are used to help with the implementation of the project. There will be one
 cue ball, one black ball, a set of three green balls, and a set of three blue balls. Reducing
 the number of balls on the table allows for less computation and a faster result for the
 user. It is reasonable to believe that the project can support more billiard balls at the
 expense of computation time. Sets of green and blue balls are used rather than solid and
 striped balls to implement a simpler computer vision algorithm. If the project was to use
 the standard solid and striped billiard balls, a computer vision algorithm that supports
 custom object detection would likely be needed. Like regular 8-ball, the player must hit
 the cue ball to pocket other balls. All other rules above are implemented except when the
 player cannot hit any of their game balls with the cue ball. Although this implementation
 is not a true 8-ball game, it is more than sufficient for visually impaired players. Figure
 3.24 summarizes the actions supported by VISION. VISION and SCRATCH intend to
 support a single visually impaired at a time due to budget constraints required with
 duplicating hardware components, but the systems can easily be extended to two visually
 impaired players if enough hardware is available.

 Figure 3.24: 8-Ball Features Supported By VISION

 55

 The figure above summarizes the features supported by the project. Five possible events
 are being monitored, each event corresponds with a particular output. If the player sinks
 one of their game balls, does not sink one of their game balls, or sinks an incorrect game
 ball, the player will be notified and allowed to shoot again. If the player prematurely
 sinks the eight ball, they will be notified of losing the game. If the player sinks the eight
 ball after sinking all of their game balls, they will be notified of their victory. The results
 of every shot will be presented to the player and spectators audibly through the Swift
 application.

 3.2.9.2 Shots Supported by VISION

 The game of pool offers many shot selections besides the conventional straight shot.
 These different shots exist for several reasons, putting spin on a shot can give you better
 cue ball placement for the next shot, or a worse position for your opponent. A jump shot,
 in which you skip the cue ball over one ball in order to hit another is an advanced
 technique to give you a shot at an angle which no normal pool shot could have achieved.
 These various shots will be covered in this section in order to determine which will be
 kept and which must be discarded due to complexity. In order to simplify the distinction
 of shots, some shot types will be combined which more advanced pool players would
 recognize as separate shot types. This is due to the complexity of distinguishing between
 various shot types programmatically.

 Straight shot: This is the most common shot where the cue ball has struck in order to
 directly hit one other pool ball. This is the main shot type which will be calculated. For
 simplicity this shot will include more advanced shots where the aim is to hit multiple
 pool ball in order to pocket a ball. VISION will support straight shots.

 Bank shot: This is a more difficult shot which involves hitting the cue ball off of one of
 the rails (The walls of the pool table), and then hitting a pool ball. This shot type fits in
 with what is achievable within the simulation and shot selection algorithms and will
 therefore be kept. This shot will also encompass more advanced shots as long as the cue
 ball is hit off the railing. VISION will support bank shots.

 Break shot : This is the initial shot which is taken to start the game of pool. There is not
 much that can be done to optimize this due to the random nature of the break. When that
 many different pool balls are placed right next to each other, small differences
 dramatically change the angles and forces of each ball. Therefore this shot will not be
 calculated. However it will still be used at the start of the game. VISION will not support
 break shots.

 Jump shot: This shot is created to skip the cue ball over another ball in order to achieve a
 shot. The simulation and shot selection algorithms will focus on the top down 2D aspects
 as proof of concept. VISION will therefore not be able to calculate this shot. VISION
 will not support jump shots.

 56

 Spin: This class of shot encompasses many types of shots. Spin can be used to make the
 ball go almost any direction after a hit as depicted in figure 3.25. This spin is achieved by
 hitting the pool ball in different locations and with different forces. While VISION could
 calculate side spin with its current model, calculating spin will be difficult on the
 simulation as well as on the SCRATCH team responsible for directing the user on which
 location to hit the cue ball. VISION has decided to cut the added complexity of spin and
 instead focus on the basic concepts first. In another version adding spin will be of great
 benefit. VISION will not support spin shots.

 Figure 3.25: Cue Contact Point

 3.2.9.3 Physical Limitations

 These are constraints brought on by the physical limitations of the pool table, the pool
 cue, and the physical characteristics of the player. The simulations and shot selection
 algorithms are generally made for game type scenarios. This means that certain physical
 limitations are not taken into account. This sectiondiscusses these obstacles and how
 VISION will overcome them.

 Handedness of the user: This will factor into which hand a player uses to play pool. A
 shot which would be easy for a right handed player to shoot may be extremely awkward
 if not impossible for a left handed player. This difference is very large and could make a
 shot selection from the shot selection algorithm completely useless to the user. VISION
 and SCRATCH currently only support right-handed players.

 Length of the cue stick: This limitation ties in with the previous section on handedness. A
 shot in the middle of the table from the far end will be much too difficult to instruct a
 visually impaired person to hit. We therefore need a certain limitation on how far the to
 limit a shot's distance from the user to the cue ball. Giving a shot which the player cannot
 reach or that the SCRATCH team cannot guide a player to will break the game and
 therefore must be accounted for in the shot selection algorithm.

 57

 Game balls in cue stick path: Shot selection algorithms for many pool games do not
 factor in the cue stick for a shot. In order to hit a straight shot there must be no pool balls
 in the path of the cue stick. VISION also needs a small buffer for the players hand as
 scratching by accidentally moving a ball should be avoided where possible.

 No available shot: If the shot selection algorithm is unable to find a safe shot to a pocket,
 there will be a few options:

 ● If the user has a ball which can be hit, the ball should be lightly tapped in order to
 avoid a scratch.

 ● If there are no good shots to hit one of the users game balls, the shot selection
 algorithm will respond with a shot that hits 3 railings of the pool table. This
 prevents a scratch.

 White ball pocketed: When the white ball is pocketed, this is counted as a scratch. While
 VISION may be able to ignore other scratches, where the opposing player gets an
 opportunity to move the ball, it cannot ignore this one as the ball must have a new
 placement. In this scenario, the user would have the option to place the ball down onto a
 certain section of the table, the user must then shoot in the direction of the far wall. This
 rule would require a completely new shot algorithm that specifically tends to this use
 case. Not only would the algorithm have to decide the best placement of the ball, but also
 must find the best shot in a certain direction. Adding this feature would create a lot of
 work for an occurrence which is not very frequent or important for VISION. Instead a
 simplification will be enforced. The ball will be placed at the same location that the break
 will occur and the player will also be allowed to shoot in any direction. Adding
 functionality for selecting placement and following the rules for a scratch will be very
 beneficial if not necessary for a competitive game. However, for this proof of concept
 VISION will instead use the simplified model put forward above.

 Other scratches: In situations where the user scratches in ways such as, accidently
 moving a ball by means of something other than a shot, missing all game balls, or hitting
 a ball which is not theris first, the shot would normally be turned over to the opponent. In
 the case of our demo, VISION will instead be allowing the table to remain at its altered
 state. A new snapshot of the table state must be taken and a new shot selection must be
 made, the exact way in which the user will signify a scratch to the system will be taken
 care of by the SCRATCH team, but after that VISION will treat the occurrence as any
 other shot.

 3.2.10 Processing Unit

 The computational needs of this project are intensive and require a powerful processor.
 The processor must be capable of performing artificial intelligence algorithms, computer
 vision algorithms, image processing algorithms, and various other types of
 general-purpose computing. For this reason, typical microcontrollers like an Arduino,
 ESP, or similar device will not suffice. The development boards that best suit the project

 58

 needs are the Coral Dev Board, the Jetson Nano, and the Raspberry Pi 4 Model B.
 Although there are many other board offerings, the boards discussed in this section are
 some of the most highly recommended in the embedded computing community. Table 3.3
 summarizes the technical specifications of the three major development boards under
 consideration.

 Coral Dev Board: The Coral Dev Board is a small computer-like board designed
 specifically for machine learning tasks developed by Google. The board natively supports
 2.4GHz and 5GHz wireless connectivity and Bluetooth 4.2. The board uses Mendel, a
 custom version of Debian Linux, so nearly all common Linux functionalities are
 available. Most importantly, the board has a built-in Google Edge TPU accelerator
 capable of 4 trillion operations per second. The board was specifically designed to run
 Google’s proprietary embedded machine learning framework TensorFlow Lite. While the
 board has excellent performance for TensorFlow Lite programs, the board does not
 perform as well when trying to implement other types of machine learning frameworks.

 Jetson Nano Developer Kit: The Jetson Nano is another powerful computer-like board
 designed for embedded machine learning applications developed by Nvidia. The board
 boasts its ability to run multiple neural networks at once to maximize all of its GPU
 cores. The Nano does not come standard with wireless connectivity or Bluetooth, so
 additional modules need to be added for wireless and Bluetooth connections. Nvidia
 utilizes a custom operating system, Linux4Tegra, on the Jetson Nano. Linux4Tegra is
 based on Ubuntu 18.04 so nearly all of the native Linux commands and utilities will be
 available on the Nano. Unlike the Coral Dev Board, the Nano is a more general-purpose
 computing device and can run Tensorflow, Caffe, PyTorch, Keras, MXNet, and many
 other machine learning software packages. Although the Jetson does not come with a
 machine learning accelerator, the board is compatible with the standalone Google Edge
 TPU and can easily be integrated if desired.

 Raspberry Pi 4 Model B: The Raspberry Pi line of microcontrollers is one of the most
 well-known in the embedded community and has a great reputation for being small, yet
 powerful devices. Unlike the other boards, the Pi was not developed specifically for
 machine learning tasks but rather as a small general-purpose computer. Despite not being
 designed for machine learning, the Pi is certainly capable of implementing smaller
 computer vision and artificial intelligence applications. The board comes standard with
 2.4GHz and 5GHz wireless connectivity and supports Bluetooth 5.0. The Pi implements a
 custom operating system called the Raspberry Pi OS that is based on Debian Linux so it
 supports a majority of the common Linux features.

 59

 Processor Coral Dev Board Jetson Nano Developer Kit Raspberry Pi 4
 Model B

 CPU NXP i.MX 8M SoC
 (ARM Quad-Core)

 Cortex-A57
 (ARM Quad-Core)

 Cortex-A72
 (ARM
 Quad-Core)

 GPU GC700 Graphics
 Card
 (Vivante 16-Core)

 NVIDIA Maxwell
 (NVIDIA CUDA 128-Core)

 Broadcom
 VideoCore VI
 (Broadcom
 4-Core)

 RAM 1GB or 4GB 2GB or 4GB 1GB, 2GB,
 4GB, or 8GB

 OS Mendel
 (Debian-Linux)

 Linux4Tegra
 (Ubuntu-Linux)

 Raspberry Pi
 OS
 (DebiDan-Linux
)

 Wi-Fi 2.4GHz and 5GHz No 2.4GHz and
 5GHz

 Bluetooth Yes (4.2) No Yes (5.0)

 Ethernet 1GB Ethernet 1GB Ethernet 1GB Ethernet

 HDMI 1- HDMI 1 - HDMI 2 - Micro
 HDMI

 USB 1 - Type-A 3.0
 1 - Micro-B
 2 - Type-C

 4 - Type-A 3.0
 1 - Micro-B

 2 - Type-A 2.0
 2 - Type-A 3.0
 1 - Type-C

 Power 5V DC
 (USB Type-C)

 5V DC
 (Micro USB or Barrel Jack)

 5V DC
 (USB Type-C or
 GPIO)

 Price $129.99 - $169.99 $59.99 - $99.99 $34.99 -
 $174.99

 Table 3.3: Summary of Processor Offerings

 The table above summarizes the key aspects of the three boards. The most notable
 differences are in the GPU, Wi-Fi connectivity, Bluetooth connectivity, and price. The
 Jetson Nano has the most powerful GPU with 128-cores, significantly more than the
 other boards. The Jetson Nano is also the only board that does not come standard with

 60

 Wi-Fi or Bluetooth connectivity. For a high-end development board, it is quite shocking
 that the board does not have any standard wireless communication features. There is a
 separate module for the Jetson Nano that includes Wi-Fi and Bluetooth 4.2 available for
 approximately $20 (Kangalow). The last major difference between the boards is their
 price. The price ranges of all the boards directly correlate to the amount of RAM chosen
 for the board. The price for each 4 GB board variation (assuming the Wi-Fi and
 Bluetooth adaptor is purchased for the Jetson Nano) is $169.99 for the Coral Dev Board,
 $119.99 for the Jetson Nano, and $99.95 for the Raspberry Pi 4 Model B. Despite having
 to purchase an additional module to have wireless access, the Nano appears to provide
 the most value among the devices. During the time of researching processors, there is a
 chip shortage and none of these boards are available for the retail prices. All third-party
 and resale boards are approximately equal in price at around $200 each.

 Table 3.4 (Franklin) summarizes the performance of the various development boards on
 common machine learning frameworks. The table below shows the results of benchmark
 testing on common machine learning frameworks. Although the testing is done using a
 Raspberry Pi 3 rather than a Raspberry Pi 4, there is no evidence to show that the Pi 4
 would have the massive upgrades necessary to outperform the Jetson Nano. The DNR
 (did not run) entries are indicative of the framework being too computationally complex,
 limitations in the hardware, or software that is not fully supported. The Coral Dev board
 performs really well when it supports the TensorFlow framework being used, but it does
 not support a wide range of frameworks. The Raspberry Pi and the Jetson Nano support a
 wide range of frameworks, but the Jetson Nano clearly outperforms the Pi across all of
 the benchmarks.

 61

 Model Application Framework Jetson
 Nano

 Raspberry
 Pi 3

 Coral
 Dev

 ResNet-50
 (224×224)

 Classification TensorFlow 36
 FPS

 1.4 FPS DNR

 MobileNet-v2
 (300×300)

 Classification TensorFlow 64
 FPS

 2.5 FPS 130 FPS

 SSD ResNet-18
 (960×544)

 Object
 Detection

 TensorFlow 5 FPS DNR DNR

 SSD ResNet-18
 (480×272)

 Object
 Detection

 TensorFlow 16
 FPS

 DNR DNR

 SSD ResNet-18
 (300×300)

 Object
 Detection

 TensorFlow 18
 FPS

 DNR DNR

 SSD Mobilenet-V2
 (960×544)

 Object
 Detection

 TensorFlow 8 FPS DNR DNR

 SSD Mobilenet-V2
 (480×272)

 Object
 Detection

 TensorFlow 27
 FPS

 DNR DNR

 SSD Mobilenet-V2
 (300 ×300)

 Object
 Detection

 TensorFlow 39
 FPS

 1 FPS 48 FPS

 Inception V4
 (299 ×299)

 Classification PyTorch 11
 FPS

 DNR 48 FPS

 Tiny YOLO V3
 (416 ×416)

 Object
 Detection

 Darknet 25
 FPS

 .5 FPS DNR

 OpenPose
 (256 ×256)

 Pose
 Elimination

 Caffe 14
 FPS

 DNR DNR

 VGG-19
 (224×224)

 Classification MXNet 10
 FPS

 .5 FPS DNR

 Super Resolution
 (481×321)

 Image
 Processing

 PyTorch 15
 FPS

 DNR DNR

 Unet
 (1 ×512×512)

 Segmentation Caffe 18
 FPS

 DNR DNR

 Table 3.4 Performance Results of Benchmark Testing

 62

 3.2.11 Communication Methods

 Within the scope of VISION is the communication within VISION and the
 communication with the user side interface (the SCRATCH project team). The
 communication between these two will be minimalistic in nature to limit the effect of one
 project on the other. Key variables of interest would be transmitted via either wired or
 wireless forms of communication. Wired forms of communication are typically more
 reliable but will require the Jetson Nano (VISION team) and Raspberry Pi (SCRATCH
 team) to be located in close proximity to each other. Wireless communication is more
 advanced but is more common in practice. Wireless connectivity may be difficult due to
 the constraints of device communication on the UCF wireless network (UCF_WPA2).

 Ethernet: Ethernet can be used to communicate between the Jetson Nano and Raspberry
 Pi. Each device can have a statically configured IP address and communicate over an
 ethernet connection. Both of the devices will be networked together but not be able to
 connect to any other networks. This approach is simple and reliable but limits the teams
 by not allowing either device to connect to the internet.

 Serial Peripheral Interface (SPI): SPI is a very popular form of serial communication
 that can be used to interface microcontrollers with each other. SPI would primarily be
 used to establish a connection from the Jetson Nano to the peripheral ESP
 microcontrollers. SPI is not likely to be used to communicate with the SCRATCH team
 because this would require the teams main processors to be physically located together.

 Bluetooth: Bluetooth is discussed as a method for sensing user location, however,
 Bluetooth is also a valuable option for data transmission of variables in the case VISION
 is looking to suit. Both teams will be using Bluetooth for other transmissions and will
 have to ensure that the processors can support the number of Bluetooth connections
 needed. There are many publicly available Bluetooth libraries for Python that can be
 used. Bluetooth can also be used to connect the Jetson Nano to the peripheral ESP
 microcontrollers. Bluetooth low energy (BLE) is a form of Bluetooth communication that
 is slower than normal Bluetooth but also uses significantly less power. Both traditional
 Bluetooth and Bluetooth low energy are possible communication channels for VISION.

 Wi-Fi (TCP Connection): The Jetson Nano and Raspberry Pi can also communicate by
 establishing a TCP connection to each other and having a reliable communication stream.
 TCP is the ideal wireless communication protocol for this project because it is supported
 natively in Python, guarantees delivery of messages, and does not have a large latency.
 As mentioned previously, the viability of the TCP connection depends upon what the
 UCF network will allow. Preliminary testing shows that the UCF wireless network
 UCF_WPA2 does not allow for TCP connections to be established directly between
 devices on the network.

 63

 4. RELATED STANDARDS & DESIGN CONSTRAINTS

 4.1 Related Standards

 VISION needs to implement many technologies that have accompanying IEEE standards.
 Some of the most prominent technologies that were used are Wi-Fi, Bluetooth, Bluetooth
 low energy, USB, micro USB, HDMI, computer vision, machine learning, power
 supplies, Python, C, MQTT, and UART. These technologies have accompanying IEEE
 standards that have been researched and documented with findings shown below. The
 main processor for VISION is a Jetson Nano, so many of the design decisions are based
 around compatibility and support on the Nano.

 4.1.1 Wired Communication Standards

 Universal Asynchronous Receiver-Transmitter (UART): UART is a serial data
 communication circuit that allows for variable data formatting and supports different
 transmission speeds. Most modern microcontrollers have a UART interface included
 standard in the serial communication integrated circuit. UART was invented by Gordon
 Bell of Digital Equipment Corporation in the 1960s (Digilent Corporation). Motorola,
 IBM, NXP, and other large corporations make a variation of a UART circuit that can be
 found in various processors and microcontrollers today. There is not a specific standard
 for UART but rather an agreed-upon format by chip manufacturers to ensure that the
 basic functionality of UART circuits is the same. The core functionality of different
 UART circuits will be the same across manufacturers, but additional features and
 implementation details may vary between manufacturers.

 Impact of UART on Design: UART is a powerful communication method that is used
 program the teams ESP32 and view output from the ESP32. This has been helpful in
 debugging when developing code for the ESP32 used on the PCB. For this reason, the
 microcontrollers used by VISION support UART to allow for easier development.

 4.1.2 Wireless Communication Standards

 Wi-Fi Standards: Wi-Fi has many standards associated with the technology but all stem
 from the IEEE 802.11 standard. The IEE 802.11 standard governs how nearly all
 wirelessly connected devices are supposed to function and must be strictly adhered to.
 The 802.11 standards were released in 1997 and continue to be amended as new advances
 in wireless technology are created. Although the standard has support for a variety of
 frequency bands, VISION intends to only use the 2.4GHz band. The 802.11 standards are
 specific to wireless communication while the 802 parent standard is more generic and
 involves ethernet connections as well. Wireless protocols are needed for VISION.

 64

 Impact of Wi-Fi on Design: VISION will extensively use Wi-Fi or a form of connection
 to the internet for this project since VISION uses MQTT for the communication between
 the Swift App (described later) and the Jetson Nano. An internet connection for both has
 been implemented, tested works correctly, and complies with the 802.11 standards.

 Bluetooth Standards: The IEEE 802 class of standards also includes 802.15.1 which was
 the initial standard for Bluetooth communication between devices. IEEE no longer
 manages the Bluetooth standards and the Bluetooth Special Interest Group now manages
 the Bluetooth standard. The current Bluetooth standards require that a manufacturer’s
 device meet specific requirements to market the product as Bluetooth. The widespread
 adoption and popularity of Bluetooth have led most devices capable of wireless
 communication to implement some form of Bluetooth. There are several companies that
 make Bluetooth modules specifically to allow devices to gain Bluetooth connectivity.

 Impact of Bluetooth on Design: Bluetooth has emerged as the leading standard for
 short-range wireless communication between devices. It is assumed that if a device
 supports wireless communication, it will support Bluetooth (and Wi-Fi) at a minimum.
 The Jetson Nano does not come standard with wireless communication of any sort.
 However, the Nano does support a Wi-Fi and Bluetooth module in the form of a network
 interface card (NIC) that can be connected directly to the motherboard or inserted into a
 USB slot. VISION uses the USB form of the NIC to provide the Jetson Nano with Wi-Fi
 and Bluetooth connectivity to communicate with peripheral devices.

 4.1.3 Connection Standards

 Connection Standards: There are many types of connections that can be established
 between devices such as GPIOs, USB, micro-USB, USB-C, HDMI, micro-HDMI,
 3.5mm jacks, ethernet, DisplayPort, common wall outlets, and various other connection
 types. All of these different connection types have their own accompanying standards
 which must be adhered to. From a user perspective, many devices naturally support these
 connection standards. The VISION team has followed all standards and
 recommendations for connections based on the industry standards and manufacturer
 recommendations.

 Impact of Connection Standards on Design: The main design consideration for common
 connections is ensuring that the hardware has enough ports available for all of the
 necessary components. Tthe VISION team has ensured that the central processing unit
 can support all of the needed peripherals. The Jetson Nano has a USB-C 3.0 port , a
 USB-C 2.0 port , two USB 2.0 ports , a USB 3.0 port , HDMI port, ethernet port, and 40
 GPIO pins. Although the Jetson Nano comes with a large port selection by default, there
 were instances when VISION required more USB ports. To deal with this issue the team
 purchased a USB dongle that turns one USB port into four ports. The single USB port
 takes input from up to four devices so the dongle specifications were consulted so that the
 dongle was not overwhelmed with data. The devices plugged into the dongle (mouse and
 keyboard) have a low enough data rate to conform to the dongle’s specifications and
 works reliability for VISION.

 65

 4.1.4 Programming Standards

 Python Standards: Python’s standard library is very extensive, offering a varied range of
 facilities such as built-in modules (written in C, others are written in Python and imported
 in source form) that provide access to different functions depending on the need of the
 user included but not limited to system operations working on both Unix and Windows
 based systems. Python also contains many existing programming functions used to solve
 common issues. Python for Windows includes the entire library as well as some
 additional components. On the other hand, for Unix like systems, Python comes in as a
 collection of packages, and additional packages or basic packages may need to be
 installed with the operating system to obtain additional functions. The library also
 contains built-in functions and exceptions.

 The latest release of Python is Python 3.10.7 released on September 05, 2022. Every
 release differs from the other by changing any of different syntax features, features in
 standard libraries or other customer libraries, typing and implementer features, or
 removing features, deprecating features, and restricting or removing restrictions.

 Impact of Python Standards on Design: The Python standards are quite common and well
 documented. The VISION team has followed all suggested Python standards to ensure
 that their design functions properly. Deviating from the Python standards can cause
 undefined behavior in the program and should be avoided. VISION uses Python 3.6 for
 its access to necessary packages and backwards compatibility with existing software on
 the Jetson Nano.

 C Standards: The latest C standard is ISO/IEC 9899:2018, also known as C17 and the
 final draft was published in 2018. The biggest issue with using different standards is
 when a code returns a different output depending on the standard used by the code’s
 compiler. The international standard which defines the C programming language is
 ISO/IEC 9899, a joint effort of ISO and IEC and the participating countries. The standard
 is available for easy purchasing online. Each participating country adopts the standard
 into their own standards system while keeping the technical content the same.

 Impact of C Standards on Design: The C standards have been around for a long time and
 are commonplace with the VISION team. The team followed all C programming
 standards so that their programs function as expected. Similarly to the Python standards,
 if the team deviates from C standards, their programs may not function properly. In
 addition to programs working properly, the C coding standards were followed to ensure
 that future development on the project can occur with ease.

 66

 4.2 Design Constraints

 4.2.1 Economic Constraints

 The goal of VISION is to make a system that can detect billiard balls, plan strategic
 shots, determine the best position for a player, and localize and guide a user to the
 necessary shot position. The purpose of developing VISION is to broaden the inclusivity
 of societal pastimes to visually impaired individuals. With this in mind, the end user of
 this project is likely a visually impaired individual trying to play billiards rather than a
 company trying to make money off the product. The end user will likely have to fund the
 implementation of VISION themselves, so the project must remain as inexpensive as
 possible. After the project’s completion, the hardware and software designs will be made
 available to the public, but users will still have to assemble some of the parts themselves.
 For these reasons, the design must remain cost-efficient and relatively simple so that
 individuals of all backgrounds can implement VISION.

 The components for the project were specifically chosen to meet requirements set forth
 by the Senior Design guidelines. For example, the Jetson Nano and accompanying Wi-FI
 and Bluetooth adaptor are needed as a central processing unit because the project must
 utilize an embedded processor. The software being developed for the project can be
 executed on any modern computer. An actual user can forgo the Jetson Nano and wireless
 adaptor for a laptop. This will allow a user to save hundreds of dollars, assuming the user
 owns or has access to a laptop. Similarly, a user that is interested in playing billiards
 likely has or has access to a billiards table. Not having to purchase a billiards table takes
 hundreds of more dollars off of the total cost to implement the project. By excluding two
 of the most expensive portions of the project that a user likely has already, the project can
 be implemented for under $200.

 The scope of the project is relatively large given the time constraints of the project. To
 meet the goals of the project, artificial intelligence, computer vision, machine learning,
 location tracking, Bluetooth wireless communication, and many other complex
 technologies are needed. These domains each require some type of specific technology
 ranging from a few dollars to a few thousand dollars. VISION uses the least expensive
 technology that can still meet the needs of the project. Due to the project using cheaper
 technology, the accuracy, speed, and performance of the parts are somewhat limited.
 Careful consideration was used to ensure that the parts selected for this project will meet
 the requirements, while not being too expensive for a user to buy themselves.

 4.2.2 Environmental Constraints

 The VISION project is primarily going to be used indoors either in pool halls or different
 venues with billiards tables for visitors or in private residences for people who own their
 own pool table. Regardless of the location, one of the environmental constraints is to be
 weary of is the sound factor. Many systems in VISION rely on audio feedback to move
 the user around the pool table or to provide feedback via audio. Proper caution is taken to

 67

 make sure that the sound level is not overbearing for any user or those near the pool
 table. It is important that the sound provided stays audible and clear with minimal noise,
 and does not overlap when different systems need to provide audio feedback or
 instructions. One way VISION limits these audio outputs is using only the speaker
 system and Swift application as audio sources so the user knows where to expect the
 sound from. This reduces distraction and focus from the central Jetson Nano controller
 that will be used to coordinate outputs. A visually impaired user would only have to focus
 on sound coming from the speakers at set locations and and feedback from the Swift
 application.

 A lot of the system’s components can also be repurposed for other needs depending on
 the user. The camera, localization aid, Jetson Nano and others can all be used modularly
 for other purposes offering the user additional options for reusing components if needed.

 4.2.3 Social and Political Constraints

 Billiards and social culture are inseparable in the societal domain. Constraints from this
 point of view should be examined as to allow for VISION to properly approach the social
 and political sphere. In terms of a physical social environment, an audio guidance
 oriented system may have limitations in its ability to be deployed. The proximity of audio
 output to the human ear can limit the efficacy of a guidance system significantly, and
 should be considered in both this prototype and in future design considerations thereafter.

 The view of an assistive technology to the cultural and political masses primarily garners
 a positive view. Some cultural groups may look more highly on this system if they have a
 higher tendency or desire to play pool, and communities with impaired individuals will
 certainly find it a beneficial technological advancement. However, the guidance
 mechanism is skewed to benefit one group over the other by means of a selected
 language being prioritized, this can lead to an inability for said group to be able to gain
 the benefits of the design.

 4.2.4 Ethical Constraints

 The main ethical constraint would be ensuring that the user’s privacy is respected
 especially if the VISION systems are being used in pool halls where any number of
 people would end up using the product. The camera system should not be used to record
 any user, player, or individual in the vicinity of the table. The camera system will be
 pointed above the table at all times and will be solely used to detect the balls still in game
 as needed for computer vision purposes.

 Communication between the VISION team and the SCRATCH team for the dual project
 is done through a secure Bluetooth low energy connection, limiting interference and
 increasing privacy for a user.

 68

 4.2.5 Health and Safety Constraints

 When new technologies seek to assist visually impaired individuals, the safety of the user
 is priority one. Creating a device that harms rather than helps a user is the worst case
 scenario, and must be considered to make sure a design is an additive to the lives seeking
 assistance. Constraints of VISION in this regard stem primarily from the navigational
 system in place. Navigating a table with limited awareness of surroundings can easily
 lead to a user tripping over scattered or loose items. In the case of VISION, the apparatus
 being used to hold up the camera is a constant obstacle that must be considered when
 navigating the user. The user guidance algorithm will never require a user to walk around,
 through, or over the camera stand to ensure the safety of a player. Although a player may
 have to walk further to take a shot, the safety of the player will be guaranteed and is one
 of VISION’s top priorities.

 In any project including electrical components, proper insulation and safety measures for
 all components must be considered to prevent the user from any chance of electrical
 shock. Additional electrical signals in audio that are used for output guidance should be
 in a form that is also safe for the user in both electrical contacts and auditory capacity.
 For instance, proper frequency, signal shapes, and volume were tested to ensure VISION
 prevents damage to hearing for users that rely on this ability.

 4.2.6 Manufacturability Constraints

 One of the biggest manufacturability constraints was the availability of the parts,
 especially the Jetson Nano. VISION ordered major components early to ensure they were
 available in a timely manner because they came from overseas. Many of the components
 used for the project also had similar backup products that could be used in place of the
 primary component if availability became an issue. Overall, VISION did not suffer from
 the unavailability of parts because the team ordered parts early in the process.

 VISION was constrained by skill for encasing, wiring, and propping up different
 components. For instance, great thought was put into the camera stand to ensure its
 functionality, ease of set up, and ability to be transported. The table, speakers, beacons,
 and the camera system are moveable as a single system. Wiring from the speakers to the
 Jetson Nano was another concern, as it has to be flexible enough to not be an issue for
 someone moving around the table.

 4.2.7 Sustainability Constraints

 The system isdesigned for long-term use. The VISION system has a good mix of
 battery-powered devices and wired devices that both incorporate additional constraints in
 the system. The battery-powered devices such as the beacons have enough battery to last
 for a year while being constantly powered on. Other battery-powered components follow
 a similar or better lifetime cycle.

 69

 The Jetson Nano is susceptible to different issues as any computer would be. Careful
 consideration was taken to ensure that all the computationally intensive portions of the
 system running on the Jetson in parallel do not exceed the processing power of the Jetson.

 Other systems that are powered via wiring from outlets also introduce constraints on
 power consumption for the user, as well as issues with heating where applicable. The
 total system takes precautions to ensure that no components overheat by using regulated
 power supplies with fuses where appropriate.

 70

 5. SYSTEM HARDWARE DESIGN
 This section goes into the details on the hardware design of the entire integrated system.
 As the research section dove into the various components of the system and how they
 facilitate the goals of the design, this section discusses the specific components that
 realize those goals and the manner in which they interact with one another and are
 connected.

 5.1 Billiard Table

 From pool halls to at home setups, billiards tables come in a range of shapes and sizes.
 Determining a table that best meets the desired needs of the project is crucial to the
 mapping of the design. Considerations for this selection range from ease in mobility of
 the table, sturdiness, ability to facilitate all subsystems and adaptations, robustness to
 testing common occurrences, and ease of display for showcasing purposes.

 The standard for billiards tables includes six pockets and is in a rectangular orientation
 with two pairs of matching sides at a 2:1 length ratio (Roeder). Tables come in four
 standard size orientations as followed (Vudrag):

 ● Standard - 8ft x 4 ft dimension. This size is commonly used by at home and
 beginner setups. It has enough space for complex shots, while not requiring too
 much power to practice basic shots.

 ● Large - 9 ft x 4.5 ft dimension. This size is the recommended professional
 orientation as it requires more physical skills to move balls to desired locations.
 Certain shots are more challenging with greater distances, such as when balls are
 in close proximity. Beginners have been shown to struggle on this type of table

 ● Bar Box - 7 ft x 3.5 ft dimensions. This orientation is preferred by some for its
 ease in ability to make shots, allowing it to be a popular orientation for social
 settings. Several common issues springing up from the use of this type of table
 include: tough to reach pockets, poorly matted felt, dead rails, and issues relating
 to cue ball size. Clustered groups become more common in this setting and create
 a more luck based game compared to skill focused playthrough.

 ● Miniature - This table orientation encompasses tables ranging in sizes of the
 longer length from 20 inches to six feet. These sizes are commonly used for
 tabletop billiards or by children. Rooms with limited space will possibly be a
 proper fit for an orientation such as this as well. These sizes are not expected for
 use in a serious game of pool.

 In respect to VISION, the proof of concept aspect of our project and the augmented scale
 of the game that is planned to be deployed is best performed at smaller orientations of
 size. The scale of the table also positively correlates with price, so a smaller orientation
 table will best suit our endeavors. While the large orientation is quickly ruled out, bar box
 and standard orientations would be favored in the case of an at home asset for
 appearance. An additional benefit of these orientations are the opportunity to develop the
 project on a folding billiards table. This type of table would be accompanied by the asset

 71

 of mobility to easily transport it within a team member’s car for presentations and
 development of the prototype project.

 Several suppliers can facilitate a table as specified at a range of prices and specifications.
 Two tables of interest meet the criteria of lower size and foldability from the suppliers of
 Blue Wave and Rack as shown in figure 5.1. These are comparable models, with the Blue
 Wave model being of higher quality, dexterity, and price to the half-priced Rack model.

 The Fairmount model was chosen for the final design. Initially, the Rack model was
 going to be used, but upon realizing the smaller size constraints included smaller balls
 and a noticeably detrimental impact to game performance, the larger table was chosen for
 use in VISION.

 Figure 5.1: Blue Wave’s Fairmount Table (Left) & Rack’s Crux 55 Table (Right)

 5.2 Processor Selection
 The Jetson Nano 4GB Development Kit is the desired processor for this project. The
 Nano is a high-performance embedded computer equipped with a powerful GPU that can
 be used for machine learning, artificial intelligence, computer vision, and other
 computationally complex tasks. The Jetson Nano is more than capable of performing all
 of the benchmark machine learning frameworks. The Raspberry Pi and Coral Dev boards
 could perform some of the benchmark tests, but there were many tests that the boards
 could not support. The Nano’s ability to support a variety of machine learning tasks is
 what makes the board so desirable.

 There are benchmarks where the Coral Dev board does outperform the Jetson Nano.
 However, the large number of benchmarks that the Coral Dev board could not complete
 is worrisome. The Coral Dev board was purpose-built for TensorFlow Lite and it appears
 that not even the standard TensorFlow framework can always be implemented on the
 board. VISION does not intend to use TensorFlow Lite, so it would be risky trying to use
 the Coral Dev board to run software that it was not designed for. Although the benchmark
 tasks were mainly related to real-time video processing, the results display how versatile
 of a device the Nano is.

 72

 Compared to the other boards, the Jetson Nano does lack Wi-Fi and Bluetooth capability.
 Although an ethernet connection can be used in place of Wi-Fi, there is a large portion of
 the project that relies upon Bluetooth for communication. There are numerous adapters
 available on the market that can be added to the Nano to provide both Wi-Fi and
 Bluetooth connectivity. The Edimax N150 adapter is a 2-in-1 Wi-Fi and Bluetooth 4.0
 adapter that plugs directly into one of the Nano’s USB ports. This adaptor is relatively
 inexpensive and significantly increases the usability of the Nano.

 Furthermore, the available port selection on the Jetson Nano is more than sufficient to
 support all of the peripheral devices needed by VISION. The Jetson Nano has a USB-C
 3.0 port , a USB-C 2.0 port , two USB 2.0 ports , a USB 3.0 port , HDMI port, ethernet
 port, and 40 GPIO pins. With the addition of the Wi-Fi and Bluetooth 4.0 adaptor, the
 Jetson Nano will also have two forms of wireless connectivity.

 To ensure that the Jetson Nano can support all of the peripheral devices needed, figure
 5.2 shows the tentative connection diagram for the Jetson Nano. The Jetson Nano is the
 central processing unit for VISION and will coordinate communication with all of the
 other devices.

 A significant amount of communication will be done using wired connections. The
 USB-C 3.0 port will be used to power the Jetson Nano from a wall power outlet. The
 USB 3.0 port will be used to communicate with the web camera for the computer vision
 system. The Nano will use a USB 3.0 port to interface with the computer vision camera.
 The Nano will communicate with the Swift application and the SCRATCH team through
 two distinct MQTT connections. The Nano will communicate with the ESP32 located on
 the PCB through a BLE connection.

 73

 Figure 5.2 Jetson Nano Device Connections

 5.3 Camera

 5.3.1 Computer Vision Camera

 The computer vision section of this project is responsible for obtaining an image of the
 current state of the billiard table and determining the location of all the billiard balls in
 play. The computer vision algorithms rely on a high-quality image of the table state to be
 able to process the image and extract the necessary information. The camera is mounted

 74

 above the table, takes clear pictures of the table in a variety of lighting conditions, has a
 wide field of view, and is compatible with the Jetson Nano.

 The camera will take pictures of the billiard table that will be processed by computer
 vision algorithms. Higher quality images will provide better contrast between the
 background and the billiard balls of interest. To ensure the best results, a camera that
 provides a video resolution of at least 2 megapixels is desired. If a lower resolution is
 needed by the image processing software, it is possible to reduce the resolution to what is
 needed. However, it is not possible to exceed the maximum resolution of the camera. For
 this reason, the safest option is to get a high-resolution camera and scale down the
 resolution if needed.

 The field of view of a camera describes how wide of an angle a camera can view. A field
 of view corresponding to 60° would only see a small portion of what is in front of the
 camera while a field of view of 180° would see everything that is in front of a camera. A
 larger field of view allows for the camera to be positioned closer to the billiards table.
 Most webcams have a field of view of 60° - 90°. The ideal field of view for this project is
 around 90°. A field of view of 90° will allow for the camera to be mounted about a meter
 above the billiard table and still be able to capture the entire table (Pinke).

 The Jetson Nano supports a wide range of camera interfaces including MIPI CSI,
 Ethernet, FPD-Link III, GigE, GMSL, PoE GigE, USB, and V-by-One HS. Of these
 interfaces, Nvidia recommends using a MIPI CSI or USB interface because these options
 are supported natively (NVIDIA Corporation “Taking your first . . .”). Additionally, both
 of these camera types can provide high-resolution images at an affordable price.

 Summary of Requirements:
 ● Camera can be mounted above the billiards table
 ● Have a minimum video resolution of 2 megapixels
 ● Provide a field of view of approximately 90°
 ● Utilize an interface supported by the Jetson Nano
 ● Does not exceed $100 in price

 MIPI CSI Cameras: MIPI is an alliance of large technology companies that develop
 specifications for devices in the mobile-computing industries. One specification defined
 in the MIPI standards is the CSI-2 (Camera Serial Interface - 2) which has quickly
 become one of the most popular interfaces for implementing cameras in embedded
 designs. CSI-2 is a high-speed protocol for sending images and video from a camera to a
 computer via a proprietary MIPI CSI connector.

 In recent years, CSI-2 cameras have become the clear choice for many embedded
 processing applications. With the creation and wide-scale adoption of the CSI-2 protocol,
 many large electronics manufacturers have started manufacturing CSI-2 cameras leading
 to a wide variety of options in the market. For this reason, these cameras are relatively
 affordable and there are many options available for $20-$30. Furthermore, CSI-2 cameras

 75

 provide higher bandwidth for pictures and images at a price comparable to USB cameras
 of much lower quality.

 One of the most commonly used CSI-2 cameras for embedded applications is the
 Raspberry Pi Camera Module V2 which offers an image resolution of 8 megapixels and
 full HD video at only $25 (Raspberry Pi). The high performance at low cost is what
 makes CSI-2 cameras so popular. The main concern with the Raspberry Pi camera, and
 CSI-2 cameras in general, is the short cable length of the camera connector. CSI-2
 cameras typically have a maximum cable length of 20-30 cm.

 The short-range of CSI camera cables means that the Jetson Nano will have to be located
 next to the camera. Having the Jetson Nano next to the camera may not be possible based
 on the mounting location of the camera. The camera needs to be mounted above the
 billiards table facing downwards so that an image of the current state of the billiard balls
 can be captured. Having the Jetson Nano mounted above the billiards table would not be
 ideal because all of the other project components would have to have interface with the
 Nano in a hard-to-access location. Due to the limited length of connections for CSI
 cameras, it is unlikely that one can be used for this project.

 USB Cameras: The next best alternative is to use a USB camera. USB cameras are
 natively supported by Jetson Nanos and are one of the camera interfaces recommended
 by Nvidia. Although the performance of USB cameras is not as high as a CSI camera,
 most USB cameras are suitable for the project requirements. Using a USB webcam will
 not require the Nano to be mounted directly next to the camera, allowing for the
 processor to be located in a more centralized location.

 Many USB cameras will meet the requirements. It was determined that a moderately
 priced webcam would meet all of the requirements and nearly all webcams are USB
 devices. Many different webcams from reputable suppliers were considered. Four
 selected webcams that best meet the required specifications are summarized below. Any
 webcams that are not readily available for purchase or greatly exceed the budget
 requirements were not considered. Table 5.1 summarizes the specifications of the highest
 recommended web cameras within VISION’s budget.

 76

 Camera Manufacturer Price Resolution Field of View

 PowerConf C200 Anker $69.99 2K 68° - 95°

 PowerConf C300 Anker $129.99 1080p HD 78° - 115°

 C920s Pro Full
 HD Webcam

 Logitech $69.99 1080p HD 78°

 C930s Pro HD
 Webcam

 Logitech $129.99 1080p HD 90°

 Table 5.1 Summary of Camera Options

 From table 5.1, the Anker PowerConf C200 is the best choice for the computer vision
 camera. This webcam is one of the cheapest cameras that not only meets but exceeds the
 project requirements. The camera has a video resolution of 2K, which is better than the
 1080p resolution that the other cameras have. The camera also has three configurable
 field of view angles: 65°, 78°, and 95°. The ability to use different field of view angles
 will be helpful when testing the design to find a camera height and angle that allow for
 the clearest pictures to be taken. The PowerConf C200 also supports autofocus and
 low-light environments to capture the best possible image regardless of the conditions
 around the billiards table.

 5.3.2 Computer Vision Camera Mounting

 To capture an image of the billiard balls, a camera will be needed above the billiards
 table. The camera can either be fixed to the ceiling of the room where the billiards table is
 located or mounted to a structure that extends over the billiards table. Ease of access,
 portability, and reliability should all be considered when selecting how to mount the
 camera above the billiards table.

 Ceiling Mounted: Having the camera mounted to the ceiling of the room is appealing
 because there would be no obstructions to the billiards table. This is ideal because players
 would not have to maneuver around a structure and possibly have to alter shots due to the
 camera stand being in the way. However, this implementation would not allow for the
 billiards table to be easily moved between locations and limit where the system can be
 implemented. Furthermore, if the camera is mounted at different distances above the
 table, the computer vision algorithms being used may need to be revised to account for
 the changes in distance.

 Fixture Mounted: Another possible way to mount the camera is to create a
 semi-permanent fixture that extends above the billiards table. Such a fixture would allow
 for the camera to be mounted above the table regardless of the table’s location and an
 example is shown in figure 5.3. This solution would also allow for the entire system to be
 transported between locations without having to mount a camera on a different ceilings.

 77

 This approach will also make the computer vision algorithms more reliable because the
 distance from the camera to the billiards table will be fixed regardless of where the
 system is being used (Pinke).

 Using a fixture to mount the camera above the billiards table seems like the better
 solution because the billiards table will need to be mobile to some extent. As of now, the
 billiards table does not have a permanent location. Being able to move the table without
 having to recalibrate the camera, modify the computer vision algorithms, and remount the
 camera to a ceiling are all important factors for developing the system. The structure will
 only need to support a small webcam and can be made small in comparison to the table
 size. When the camera structure is made, priority will be given to minimizing the
 structure size to have as small of an impact on the billiards table as possible.

 Figure 5.3: Example of Fixture Mounted Camera

 5.4 Localization System
 Based on the different options presented in the research section, VISION has decided to
 focus on UltraWide Band as the localization scheme and navigation scheme. The system
 will navigate the user around the pool table, from their initial position to the target
 position for optimal shot computed by the pool game algorithm along a path determined
 by VISION’s navigation algorithm. In essence, VISION will compute the user’s
 localization at every point using trilateration. When the system gets input from the user
 that they are ready to make their next shot, a series of actions begin to allow VISION to
 determine where the user is around the table at the current time.

 78

 Esimote UWB Beacons: Three beacons are placed on the pool table at specifically chosen
 locations. The beacons send out advertisement packets at the smallest possible interval in
 order to get the best accuracy. The beacon mounting locations are shown in figure 5.4 for
 a regular pool table of length 2.54m horizontally and height 1.27m. Figure 5.5 displays
 the Estimote beacons used for VISION

 Figure 5.4 Beacon Location on Billiards Table

 Figure 5.5: Estimote UWB Beacons

 The choice of beacons are the Ultra Wide-Band beacons from the company Estimote. A
 few reasons for this decision include an already available SDK from the company which
 advertises that the beacons can communicate with iphone’s U1 chips providing distance
 between the beacons and the iPhone within centimeters of precision which is perfect for
 the current applicable. They also offer a two-year long battery life, and inertial sensors to
 account for movable objects. Estimote offers the beacons in three packs which are shown
 in above figure 5.5. The three beacons can be differentiated based on their colors:
 coconut, lemon, and caramel. The beacons are used by the user localization system to

 79

 track the user around the table. An app was designed for the users’s iPhone that is used as
 the primary reader between the beacons and the visually impaired individual.

 Swift App: A Swift app was designed for the user’s iPhone. Swift is chosen as a language
 because the SDK provided by Estimote is written in Swift. A key concerns of the
 application is designing an app with visually impaired individuals in mind. For instance,
 the app remains simple and only have one interfacable region as shown in figure 5.6.
 Compared to most modern apps with numerous pages, VISION keeos its app simplified
 to be used without having to worry about where specifically within the app the user is
 going to be. The app also provides both tactile and audio feedback to the user, which
 allow them to know what has been pressed on the app. Hence, VISION aimed to only
 have two touchable regions (buttons) on the applications interface, one to start or resume
 localization, and the other to pause localization. Both of the buttons provide vibration and
 audio feedback when touched so the user knows exactly what is happening when they
 interact with the screen. In addition to the basic audio feedback, the application
 implements audio feedback for the guidance system and localization system. Some of
 these vocal feedback options include letting the user know when the game is over, when
 he/she hit one of his/her own balls or the opponent balls, letting him/her know when to
 move towards the speaker, or rotate towards the closest speaker for increased accuracy.
 The app then communicates with the Jetson through MQTT (Message Queuing
 Telemetry Transport) providing the readings of the distance to each individual beacon.

 Figure 5.6: VISION User Localization Application

 80

 Jetson Nano: The Jetson Nano receives the distance values from the app. A Python script
 runs on the Jetson Nano to compute the x and y coordinates, through trilateration, of the
 user with respect to system origin. The (x,y) position is smoothed and filtered for
 accuracy and converted into speaker readings such that VISION knows which two
 speakers are closest to the user’s current position. This speakers’ readings are then sent to
 the user guidance system.

 5.5 User Guidance System
 At the heart of VISION’s goal is the ability to guide an impaired user to a desired
 location on the table and allot them the opportunity to make desired shots. The method
 for achieving this guidance must have solid logistics, be reliable within worst case board
 states, and be safe for the user’s traversal of the table. The following outlines the
 methodology to accomplish this and the specifics of the design that minimize unwanted
 circumstances within gameplay.

 5.5.1 Audio Array Design

 The two primary methods discussed in the technology review conducted in section 3.2.5
 on guidance relied on audio and haptic feedback. Haptic feedback is revealed to be a
 great technology in tandem with other devices to create a detailed picture for users in
 dynamically changing environments. However, for the static pacing of VISION that
 includes a necessity for directions around a stationary table and angular orientation
 relative to it, the limited information delivery that can be done by haptic feedback is a
 hindrance. Moreover, an apparatus on the user would be required for the navigation
 around the table, which would add more complexity to both the easy use of the system
 and the SCRATCH team’s present user system. This system also would have flaws in
 communicating coherent instructional guidance and would require a feedback loop for
 validation of positioning of the user.

 On the other hand, audio guidance can be deployed in a rather convenient manner that
 comes with several advantages. With the use of several small speakers around the table
 edges in an array fashion, guidance algorithms can pinpoint the desired path for the user
 to take around the table for a designated shot. This can be accomplished with an updating
 location of the user being referenced for the proper speakers to activate, giving an
 accurate route for the user’s destination. Once in position, the array can then be turned
 into a angular guidance system to orient the user within a margin of error of the ball to
 then hand off to the user team for finer user mechanics.

 To properly distribute the necessary signals to a single desired speaker at a time, the
 Jetson Nano will be handle the primary algorithm that will communicate signals via BLE
 to an ESP32 (located on the PCB). This ESP will interpret the data on speaker activation
 and then select the proper speakers to be activated by use of a demultiplexer that is able
 to select a singular output via digital selection pins. To access upper levels of volume, the

 81

 output signal will be integrated with an audio amplifier from the ESP. A prototyped
 singular speaker design is shown in Figure 5.7, showing an example of how an ESP32
 can communicate the described outputs. Navigation algorithms described in Section 6.3
 explain how the Jetson will comprehend speaker choices. Once the ideal position and
 orientation are reached, signals weill be sent to the ESP to stop the speakers until further
 navigation is desired. The output signal will consist of a fluctuating PWM square wave
 with a 50% duty cycle that turns on and off every half second. This allows the user for
 easier location and orientation based on the speaker outputs.

 Figure 5.7: Prototype Speaker Activation Design

 The specified positioning for the speaker array in VISION will include 12 speakers at the
 perimeter of the table as shown in Figure 5.8. This method allows for the positioning
 guidance goals of VISION to easily be attained, and gets the orientation parameters
 within an acceptable margin of error as described in Section 5.5.4. Each speaker is
 approximately 19 inches apart.

 82

 Figure 5.8: Designed Speaker Array

 5.5.2 Positioning Method

 Navigation of the impaired user will rely primarily on audio guidance from VISION’s
 table speaker array. In the case of positioning, corner speakers will be activated to best
 guide the user along a 2D plane that consists of only two possible directions to the user.
 In any instance of user location, a speaker on the corner of the table will be activated with
 the user having knowledge to walk in the direction of the origin point of the sound. Upon
 reaching the desired location, the speaker will cease to output sound or will output from
 an alternative location if in an improper location. The speakers will direct the user in both
 directions as shown in figure 5.9.

 Figure 5.9: Bidirectional Guidance Possibilities

 5.5.3 Orientation Method

 Upon the user reaching the desired location around the table, the speakers are used to
 orient the user to an approximate location that places them in line with the cue ball and
 ultimately the direction in which to shoot. Since the orientation mechanism lacks an
 active feedback method, the orientation speaker will play for a 10 second period to give
 the user ample time to shift position.

 83

 This mechanism being the case does leave a possibility for a variable margin of error for
 the user. The calculated worst case angular margin lies at 7.1° with a maximum possible
 arc difference of 8 inches. These values are within the 15° worst case scenario proposed
 in VISION’s project requirements, and allows for a viable hand off to the SCRATCH
 project for fine tuned movements. Figure 5.10 further shows the worst case margin of
 error scenario. Additionally, locational accuracy may also introduce added margin of
 error that must be smoothed out for most cases and troubleshooted for higher accuracy to
 give a possible starting point to the SCRATCH design.

 Figure 5.10: Worst Case Margin of Error Estimation

 5.6 User Control Interface
 To properly control the full array of VISION’s functionalities, a custom user interface
 was designed to relay critical commands to the system. The section on user commands
 outlined three possible command interfaces for the design, including a remote control on
 the user, centralized control on the table for an assistant, and an audio command
 interface. As this project is a proof of concept, the simplest command interface will be
 integrated in a centralized command interface for an assistant to perform necessary
 commands. The interface will be minimally invasive to the action within gameplay, and
 will largely be for a short list of commands that are integral to procedural operations of
 VISION.

 There will be four push buttons that will be integrated on the PCB of the project. These
 will include commands for starting, pausing, and stopping game play as well as
 recalculating a shot. The first three commands are integral for the usability and ease there
 of for the player, and the latter is important for allowing the system to recompute a shot if
 the assistant belives there has been a mistake.

 84

 5.7 Communication Network
 The communication network for the hardware will allow the different computing systems
 to handoff information and control with the correct timing. Ensuring the purchased
 hardware is compatible with the protocol discussed below is another key factor in making
 sure there is a successful communication network.

 5.7.1 Communicating Systems
 The following subsystems must be connected for our system to work properly:

 ● Computer Vision
 ● Shot Selection
 ● Table Feedback
 ● User Localization
 ● User Guidance
 ● User Control Interface
 ● User Team System

 Some of these systems will be present on the same hardware, while others will require
 some form of communication protocol to receive necessary information. The computer
 vision and shot selection algorithm will be on the Jetson Nano. This will leave the
 communication between these systems as a software design specification. User guidance
 will use a microcontroller that requires input from the Jetson Nano. The Jetson Nano will
 communicate with the microcontroller using BLE. The user localization system needs
 several pieces of hardware to function properly. It needs the beacons, the scanner user’s
 iPhone, and the Jetson Nano for calculation. The Jetson Nano will connect to the Swift
 application via MQTT. The Swift application will connect to the beacons with Bluetooth.
 The user control interface will require two pieces of hardware, the transmitter and the
 receiver. The control interface will connect with the Jetson Nano via BLE. The Jetson
 Nano will act as a client and the control interface will act as a server. The user team will
 receive all needed information through one BLE communication line connected to the
 Jetson Nano. This will reduce the coupling of the systems, which is generally best
 practice. The Jetson Nano will act as a server while the user team’s processor will act as a
 client.

 5.7.2 Communication Protocols

 Event vs State Driven Communication: It can be hard to define the VISION network into
 event or state driven as described in (Rollins). While there is an event driven process
 controlled by the user control interface, this is a one time action which places the system
 into a state, such as paused or in play. VISION has decided to treat the system as an event
 based system, this is because it will go dormant without user interaction.

 Processor Communication Capabilities:
 Table 5.3 summarizes some of the relevant processors and what types of communication
 protocols they have access to.

 85

 Processor I2C UART SPI Bluetooth Wi-Fi Ethernet

 Jetson Nano 4 3 2 Yes* Yes* Yes

 MSP-EXP430FR6989 2 2 4 No No No

 ESP32 2 3 3 Yes Yes Yes

 Table 5.3: Comparison of Communication Interfaces

 *Note: the Jetson Nano does not have Wi-Fi or Bluetooth connectivity by default, but can
 gain access to these forms of wireless connection with an adapter.

 From the chart it can be seen that there are many available wired connections for
 communicating between the Jetson Nano and the MSP-EXP430FR6989. However, there
 is an issue with the Jetson Nano communicating with the ESP32 over a wireless
 connection. With the standard Jetson Nano there are a couple of options we could take for
 wireless communication.

 ● Connecting the Jetson Nano to ethernet and the ESP32 to WiFi. The two could
 then make API calls over the internet

 ● Setting a second proxy ESP32 in a wired configuration to the Jetson Nano, then
 communicating through bluetooth or WiFi with one ESP32 to the other.

 These two options are possible but would be more complicated than getting a Wi-Fi or
 Bluetooth adapter for the Jetson Nano that would allow for direct communication. An
 example would be the Intel Dual Band Wireless-Ac 8265 w/Bluetooth 8265.NGWMG
 along with an antenna that can support both 2.4 and 5Ghz. The suggested antenna from a
 tutorial suggests using a molex film antenna which costs approximately three dollars.
 There are additional kits which come with the antenna and card already connected for
 similar prices. VISION intends to equip the Jetson Nano with a Wi-FI and Bluetooth
 adapter.

 86

 6. SYSTEM SOFTWARE DESIGN

 6.1 Computer Vision System Software Design

 The system must be able to identify the billiard balls in an image and determine their
 color and location. Section 3.2.2 outlines some of the relevant computer vision
 algorithms, available in OpenCV, that can be utilized to reach the computer vision goals.
 This section describes how the computer vision system will be designed and what
 algorithms will be used.

 Before discussing the specific algorithms chosen, it is important to discuss the inputs and
 outputs of the computer vision system and how the system will interface with the rest of
 the project. The initial input to the computer vision system, and the entire project, is an
 image of the current state of the billiards table. This image is processed through a variety
 of algorithms and will output a (Python) list containing elements and their relative
 locations. This list is then used by the shot selection system to determine the best shot to
 take. The elements in the output list of the computer vision system will contain the
 relative location of the billiard balls and a string to differentiate between the billiard ball
 colors.

 The input image for the computer vision system is run through multiple separate
 algorithms to extract different information from the image. It is important to maintain the
 input image so that the same input can be used for all of the algorithms. For all
 algorithms that modify an image, a copy of the original input is supplied rather than the
 original image.

 The locations in the list need to be relative locations rather than absolute locations.
 Relative locations refer to the distance, in pixels, from a defined reference point for a
 selected feature of interest. Absolute locations refer to the raw pixel location in the input
 image. Due to the input image including some of the unwanted background, all of the
 pixel locations that are found are localized to a point of reference. The selected point of
 reference is the top left corner of the playable area of the billiards table. This reference
 point is used to stay consistent with the coordinate system used by OpenCV and will also
 represent the location of the top left pocket on the table.

 For all of the billiard balls found by the computer vision algorithms, their relative
 locations need to be included in the output list. Additionally, a string will also need to be
 included with each billiard ball entry to specify if the billiard ball is the cue ball, the
 black ball, a blue ball, or a green ball.

 Billiard Table Isolation: The billiard table isolation portion of the computer vision system
 refers to being able to extract the playable area of the table from the input image. For this
 project, the playable area refers to the region of the billiards table where the billiard balls
 can be. This region is the nearly rectangular region of the table that is recessed from the

 87

 borders of the table. Isolation is needed to localize the billiard balls to a reference point,
 verify that the contours found in the image are in the playable region, and determine the
 location of the pockets.

 To isolate the playable region, a series of image manipulations are applied to the input
 image to extract. The camera stand will be located in the same position relative to the
 table anytime VISION is used, so a static approach to isolating the background can be
 used. VISION extracts the image vectors representing to the image pixels and removes
 the unnecessary pixels by using vector manipulations found in OpenCV.

 To localize the billiard balls in the image, a reference point needs to be chosen to localize
 the balls to. The upper left corner of the contour found by manipulating the image is used
 as the reference point. As mentioned previously, this reference point is chosen to align
 with the coordinate system used by OpenCV. To localize the billiard ball coordinates to
 this point, simple arithmetic is needed.

 The reference point, p , will have some positive, non-zero coordinates (x 0 , y 0) . The
 reference point coordinates must be non-zero because the reference point will not be the
 upper left corner of the input image. If the reference point is assumed to be the new origin
 and denoted p* with coordinates (0 , 0) . All of the billiard balls can be localized to the
 reference point p* by subtracting (x 0 , y 0) from their coordinates. This transformation will
 ensure that all billiard ball locations are positive, non-zero values because no billiard
 balls can be above or to the left of the reference point. This claim can be made because
 any region above or to the left of the reference point is not in the playable region of the
 billiards table.

 The localization of the billiard balls to a reference point can easily be reversed by adding
 the offset values, (x 0 , y 0), back to every localized billiard ball location. The reversal of
 the coordinate system back to the true pixel values will be useful if any features need to
 be shown on the input image. For lines to be drawn properly, the true pixel values, rather
 than the localized values, of the billiard balls need to be used. The localized values on the
 input image should only be used by the shot selection algorithm. To ensure that the
 original coordinates can be recovered, the offset values are be stored for the duration of
 the program execution.

 Once the playable region has been discovered, it will be possible to determine if the
 contours discovered in later portions of the image processing are in the playable region.
 The borders of the rectangular contour will have a minimum and maximum x-coordinate
 and y-coordinate. These minimum and maximum values can be used to ensure that any
 contour discovered in the image lies within the playable region of the table. If any object
 is discovered outside of the minimum and maximum coordinates, it can be discarded.

 The rectangular contour outlining the playable region of the table can also be used to find
 the locations of all of the six pockets. Once the coordinates have all been localized, the
 upper left pocket is at (0 , 0) , the upper right pocket is at (x max , 0) , the lower left pocket is
 at (0 , y max) and the lower right pocket is at (x max , y max) . The middle pockets can be

 88

 computed by finding the midpoint between the two adjacent pockets. The top middle
 pocket is located at (x max , 0) and the bottom middle pocket is located at (x max , y max) .

 1
 2

 1
 2

 Defining the pocket conventions this way means that the locations of the pockets only
 depend on the four corner values of the rectangular contour found with image
 manipulation.

 Finding the Billiard Balls: To find all of the billiard balls in the input image, the Hough
 Circle Transform will be used. This algorithm is used because it is specifically tailored
 toward finding all of the circles in an image. The algorithm allows for the parameters to
 be modified as needed to only detect circles of a certain radius. This characteristic is
 useful because all of the billiard balls are of the same size. The expected radius of the
 billiard balls was determined experimentally so the algorithm can enforce size restrictions
 on the circles found to ensure that only billiard balls are discovered.

 Additionally, this algorithm was chosen for its ability to detect touching circles and
 partial edges of circles. The algorithm traverses the discovered edges in an image and
 looks for points of intersection, and assigns points to these values. For this reason, two
 touching billiard balls can still form two distinct radii which enables the algorithm to
 detect both billiard balls. This trait of the algorithm is especially appealing because other
 algorithms are sensitive to objects being too close together. This algorithm is also able to
 detect circles from partial edges. Even if there is only a portion of a circular edge present,
 this algorithm is still able to traverse the edge and identify that the edge represents a
 circular contour. This behavior of the algorithm is ideal for situations when the lighting is
 not optimal and there are shadows or unclear edges in the input image. The robustness of
 this algorithm is another reason why it was selected for this project.

 Initially, the Hough Circle Transform was run on the image so that it returned a list of
 discovered circles. Initially, there were no restrictions on the radius of circles returned so
 that the expected radius of the billiard balls could be determined. This testing occurred in
 various lighting conditions and with various numbers of balls on the table. A reliable
 minimum and maximum radius were discovered and these parameters were implemented
 into the algorithm. Including the minimum and maximum radius allows for the algorithm
 to automatically exclude any contour that is too big or too small.

 The list of all discovered circles is iterated over and all of the coordinates are localized to
 the reference point. The locations of the contours are checked for being in the playable
 region. If the coordinates of the contour fall within the playable region, the location is
 added to the output list. If the coordinates of the contour are not in the playable region,
 that contour is ignored. The output of this part of the computer vision system is the output
 list with all of the discovered billiard balls and their localized locations appended.

 Detecting the Ball Colors: The ideal way to detect ball colors is to make a small addition
 to the previous section. The previous section outlines how to find and filter all of the
 circular contours in an image using the Hough Circle Transform. An additional step can
 be added to this process to determine the color of the ball. Although the transform
 requires a binary image as input, the locations of the contours that are found can also be

 89

 applied to a color version of the same input. This allows the color of the discovered
 contours to be checked before adding these locations to the output list.

 The RGB values of the discovered contours can be compared with predefined threshold
 values. A perfectly white RGB pixel will have the values of [255, 255, 255] for the red,
 green, and blue color channels, and a perfectly black RGB pixel will have the values of
 [0,0,0]. A lower bound was experimentally determined such that the white ball, black
 ball, green balls, and blue balls can be differentiated. It was important to determine
 threshold values that do not provide any false positives when iterating through the
 contours. This color check is implemented before a billiard ball’s location is added to list.
 The possible labels for billiard balls are white_ball, black_ball, blue_ball, or green_ball.

 6.2 Pool AI

 Extensive research for the shot selection algorithm has been completed in section 3.2.1.
 With many possible implementations to choose from it is important to first clarify the
 system requirements.

 ● Input: List of current table state, this is the (x,y) location of every ball, along with
 the classification of every ball.

 ● Output: The force and angle to hit the cue ball

 Summary of Requirements:
 ● Algorithm produces output in under 25 seconds
 ● Algorithm produces shots in which the end of a 3 to 4 foot pool cue will not

 intersect with the dimensions of the table
 ● Ensure that 1 foot from the cue to the shot angle does not intersect with any balls

 The algorithm must be quick enough as to not impede the game flow. If an algorithm
 takes more than 25 seconds, VISION will cut down on its accuracy and how many moves
 ahead it is planning. The user will likely not be hitting every ball in, so branching into the
 future too far is not an efficient use of computational power. The algorithm must also
 make the correct decision in a very simple situation, prioritizing simple shot suggestions
 over more complex shots, even if advantageous.

 Using an existing shot selection algorithm out of the box is currently not an option. Many
 are slow and connected to GUIs. They also lack the constraints of a real table, and will
 suggest shots which are not physically possible.

 Timing Considerations: The existing shot selection algorithms will be stripped of their
 GUI for production mode, increasing performance. The search and heuristic based
 algorithms have built in physics engines which are required, these cannot be offloaded
 and decrease performance. The branching factors of the algorithms can be diminished to
 a smaller amount. While the algorithms are built to win on a single turn, VISION does

 90

 not expect nor need this level of accuracy. Reducing branching will dramatically speed up
 performance.

 Realistic space considerations: The algorithm must give the player a shot which is
 reachable. For example, consider the shot shown in the top of figure 6.1. Even though
 this would be the best shot, there is no way the player could reach this. The better shot
 alternative would be something such as this the shot shown in the bottom of figure 6.1.

 Figure 6.1: Example of Reachable Shot Issue

 The main design problem was designing the algorithm so that it only considers realistic
 shots. An additional algorithm was made to ensure that the length the pool cue from the
 pool table wall is not too far for a user. User testing was conducted to determine the
 length in question. The algorithm was designed to follow these general steps. The
 algorithm also takes into account the width of the user's body. On one side of the table,
 the user's body will be in the way, on the other side, the user will have much more
 mobility.

 Algorithmic Process: Below is the outline of VISION’s algorithm with relevant
 parameters defined.

 91

 Max Extension= maximum distance the cue stick can be over the table
 Current Extension = total distance the stick is over the table
 User Width = the average space the user takes up
 Shot Angle = angle the cue stick will hit the cue ball at
 Cue Ball Coordinates = the center of the cue ball given in x,y
 Cue Ball Radius = the radius of the cue ball
 X Min = This is the left side of the pool table and represented by 0
 Y Min = This is the top of the pool table and represented by 0
 X Max = This is the right side of the pool table
 Y Max = This is the bottom of the pool table

 1. The shot selection algorithm produces a possible shot angle

 2. Following the proposed shot angle, extend a line from the edge of the cue ball to
 the edge of the pool table. This Distance will be the stickExtension.
 Finding this distance algorithmically was not as simple as extending out the line
 though.

 a. Determine the quadrant 1 through 4
 b. Create a small triangle inside of the pool ball, use the radius as the

 hypotenuse and the given angle, then use sin and cos for coming up with
 the x and y distances

 Figure 6.2 Shot Angle Projection

 c. Depending on the quadrant, VISION will find the minimum distance from
 the center of the pool ball to the corresponding x and y value for the side
 of the table. This is called the minimum difference. VISION also records
 the corresponding axis, x or y, and calls this the minimum difference axis.

 92

 Figure 6.3: Shot Angle Quadrant

 i. Quadrant I: 0 for y, max for x
 ii. Quadrant II: max for y, max for x

 iii. Quadrant III: max for y, 0 for x
 iv. Quadrant IV: min for y, min for x

 d. Divide the minimum difference by the corresponding length on the
 minimum difference axis of the small triangle. This provides the extension
 factor

 e. Multiply the radius of the pool ball by the extension factor and subtract
 one radius from it, this provides the current extension

 3. VISION checks to see if stickExtension is greater than stickMax, if it is, the shot
 will be skipped.

 4. Next VISION checks to see if the user's body is in the way of the shot. For this,
 VISION extends a line the length of userWidth at a 90 degree angle to the left of
 the stickExtension line. If this line does not intersect with the dimensions of the
 pool table, the shot is accepted. If it does intercept, VISION will proceed to the
 next step.

 5. VISION will now extend currentExtension to maxExtension beyond the pool
 table wall. From here VISION extends a perpendicular line the length of
 userWidth to the left of the maxExtension line, if this line still intersects the table,
 the shot is skipped, otherwise the shot is deemed acceptable.

 A separate algorithm which determines if the pool cue can move without the interference
 of another ball. This algorithm requires more advanced geometry. Similar algorithms are
 found in many 2D games and are the basis for VISION’s approach. Raycasting is used in
 many games and a similar algorithm is used to ensure that the shot does not intersect with
 other balls.

 1. The cue ball position will be deconstructed into its x and y position
 2. Create a unit vector

 a. unit vector x = cos (shot angle)

 93

 b. unit vector y = sin (shot angle)
 3. Loop through every ball on the table currently

 a. Take the ball_x and ball_y from the ball
 b. Create a vector from the origin to the ball

 i. Origin_to_ball_vector = (origin_x - ball_x, origin_y - ball_y)
 c. Get the magnitude of the bal vector

 i. Magnitude ball vector

 = (𝑜𝑟𝑖𝑔𝑖𝑛 𝑡𝑜 𝑏𝑎𝑙𝑙 𝑣𝑒𝑐𝑡𝑜𝑟 𝑥) 2 − (𝑜𝑟𝑖𝑔𝑖𝑛 𝑡𝑜 𝑏𝑎𝑙𝑙 𝑣𝑒𝑐𝑡𝑜𝑟 𝑦) 2

 d. Compute the intersection
 i. Intersection = unit vector x * origin to ball vector x + unit vector y

 * origin to ball vector y
 e. Calculate interaction length

 i. Intersection length

 = (𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑏𝑎𝑙𝑙 𝑣𝑒𝑐𝑡𝑜𝑟) 2 − (𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛) 2

 f. If the intersection is greater than the radius of the ball then the raycast
 intersects

 Modifying of “PoolGenius”: The open source project used for VISION was described in
 section 3.2.1. While there were several issues with this software, it was decided that there
 are several factors making a high accuracy simulation and shot selection algorithm
 unnecessary. The uncertainty of the player being able to perfectly match the force and the
 angle make detailed strategic planning unnessecary. What is needed is believable
 simulation of collisions which produce shot selections which a real player would see as
 logical. Pool Genius already has a collision system and AI, VISION will be making the
 following modifications:

 ● Set the simulation table state to the real table state after every shot. This can be
 accomplished by changing the program to taking in the current table state and
 then producing a shot before closing

 ● Implement the algorithm to see if the shot is reachable by the player
 ● Implement the algorithm to ensure the pool cue is not be blocked

 Below is a UML class diagram describing the design plan for integrating the constraints
 with the PoolGenius software. This UML diagram focuses on parts VISION will be
 implementing in conjunction with the simulation system used. Only relevant classes and
 functions are shown due to the large nature of the software. The RealisticAI class inherits
 from the base PoolAI class in order to communicate with the existing simulations run by
 another physics software known as Box2D. The drawable class will have another
 function in order to draw a pool cue, this will allow for the GUI to better show the
 desired shot angle. There are two functions which will be added to the software, one is
 test_mode which allows for the GUI to be active and the other is production_mode which
 will run more efficiently without the GUI overhead. The test_mode function also allows
 for results to be verified in an easier fashion.

 94

 Figure 6.4: High-Level Overview of Shot Selection System

 6.3 Localization and Guidance Algorithm Design

 VISION’s core goal is to navigate an impaired user to a desired location. The following
 is the design in place to make this primary goal a reality.

 6.3.1 Localization Algorithm Design

 Swift App to Jetson Nano: The primary means of communication between the Swift App
 and the Jetson Nano is MQTT through a free test server from EMQX. This was chosen
 because of available packages on Swift/Xcode called CocoaMQTT which were already
 incorporated in VISION’s application. All iPhones have connectivity to the internet, so
 this was not a worry for user testing. MQTT allows the users iPhone and the Jetson Nano
 to both subscribe to a shared topic. The users iPhone will post the beacon distances to the
 shared MQTT topic every second. A separate thread of VISION will be running that
 waits on a notifcaiton from the MQTT server to let it know that a new message has been
 received. When a new message is received, the MQTT thread will convert the distances
 to the two closest speakers. The unit of speakers is used so that a common form of
 distance can be used between the user localization and user guidance system. Once three
 sets of distances have been collected, an algorithm will be run to determine if a clear

 95

 location of the user is discovered. The algorithm considers how many distinct speakers
 have been collected from the MQTT messages. There is a total of six total speaker
 entries, three iterations which each iteration providing two speakers. If there are four or
 more distinct speakers in the list, the localization process is repeated. If there are three or
 less distinct speakers, the two speakers with the most occurrences are determined to be
 the closest speakers. In the event of a three-way tie, the localization process is repeated.

 In order to communicate between the MQTT thread and the main VISION thread, a
 simple lock is used as a synchronization mechanism. When the MQTT thread has a new
 location to inform the main thread about, it acquires a shared lock and sets a shared flag
 to let the main thread know that new data is available. The updated position is written to a
 shared variable and then the lock is released. If the main VISION thread is attempting to
 get a new user location, it will attempt to acquire the shared lock. Once the thread
 acquires the lock it will check if the shared flag is set to indicate that there is new data. If
 there is new data, the thread reads in the new data and lowers the flag. If there is not new
 data, the thread sleeps for a second and then restarts the process. This architecture allows
 for the MQTT thread to constantly aquire new data from the Swift application running on
 the user's iPhone. The MQTT thread will continue to update while other parts of VISION
 are running (computer vision or artificial intelligence algorithms), or when VISION is
 waiting on the SCRATCH team.

 Trilateration: The MQTT thread converts the distance coordinates in the chosen (x,y)
 coordinate system using trilateration. The trilateration code relies on provided initial
 positions of the beacons and reported distances between the beacons and the user’s
 iPhone. The outcome of the trilateration code is an unfiltered raw user position. This
 position is raw in the sense that the application sending distances every second can be
 subject to inaccuracies within the centimeter range as advertised by the company. To
 combat these inaccuracies, VISION smoothes and averages the values over nine seconds
 to obtain a more precise position of the user. The user’s position is then filtered to
 account for the presence of the pool table which is unknown by both the beacons and the
 trilateration code. This filtering restricts the position returned to either corner of the pool
 table by determining which edge the user is closest to. The restriction is done by
 computing the distance between the user’s smoothed, unfiltered position and their
 potential position if it existed under any of the edges. For instance, assume the user is
 located at (x,y), their potential positions on the edges are:

 ● Top edge: (x,0)
 ● Bottom edge: (x, max y)
 ● Left edge: (0,y)
 ● Right edge: (max x, y)

 This allows VISION to make a more precise decision as to where the user is located. The
 next part of this process is then to determine which speakers are closest to the user to
 convert the user’s position in terms of feet to a speaker position. This scheme is done in
 similar fashion to the beacon technique described before in that the two closest speakers
 are the ones that return the shortest distance to the user’s position. However, VISION has

 96

 to filter these speakers out once again account for any inaccuracies from the system, from
 the user moving, or even from the very close position of the speakers. From this point,
 the user’s current speaker position is ready to be used by the guidance system.

 6.4.2 User Guidance System

 Communicating with the PCB (ESP32): In order for VISION to communicate with the
 speaker array, the Jetson Nano has to send commands to the ESP32 located on the PCB.
 The communication channel for allowing these two devices to connect is BLE which
 allows for a lightweight, fast, and reliable communication. By default, BLE supports
 sending byte arrays between devices, and tends to work better for smaller messages. To
 reduce latency and computation between the Jetson Nano and the PCB, a simple protocol
 was developed for sending BLE messages. The Jetson Nano will primarily be sending
 messages to the PCB, so a state machine was developed on the PCB. The command
 PLAY_SPEAKERS is sent by the Jetson Nano with two subsequent arguments. The two
 arguments correspond to the two speakers for the PCB to play in an infinite loop. The
 Jetson Nano can also send the command STOP_SPEAKERS which will stop the PCB
 from playing any speakers. The PCB offers a simple communication interface to the
 Jetson Nano that can be used for many different purposes. The PCB does not respond to
 messages from the Jetson Nano but can transmit a PAUSE signal to the Jetson Nano to let
 the main VISION program know that the user needs a break. When this signal is
 received, the VISION program simply sleeps until a START signal is received from the
 PCB. The PCB can also send a STOP signal that will simply kill the VISION program.

 Navigation Algorithm: The navigation algorithm for the user is the most important factor
 of the user guidance system. Some of the goals of this subsystem are to keep the user
 safe, not overstimulate the user with too many sounds, navigate the user to a desired
 location within a foot of accuracy, and orient the user within 15° of the desired shooting
 angle.

 In order to keep the user safe while navigating them around the billiards table the
 navigation algorithm does not attempt to have the user walk around or over the camera
 stand. The camera stand is a vital position of the computer vision system but does create
 an obstruction for the visually impaired user while navigating around the table. For this
 reason, the navigation algorithm will choose a route that takes a longer distance if it stops
 the user from trying to navigate around the camera stand.

 In order to guide the user to the desired location without overstimulating the user with too
 many sounds, a lot of testing was done to create a speaker sound that is unique but
 overbearing to a player. A speaker will be turned on and utilize a digitally generated
 square PWM signal producing a desired output for the user with a duty cycle of 50%.
 Using the signal with the speakers creates a distinguishable beeping sounds that is able to
 be identified even in a room with many people talking and other audio distractions.
 When navigating a user around the billiards table, VISION primarily relies on the corner
 speaker to navigate the user to the desired position. Once the initial location of the user
 has been determined, an algorithm takes in the current location of the user (from the user

 97

 localization system) and the desired location of the user (from the artificial intelligence
 system) and determine the next speakers to play. If the user is already on the correct side
 of the table, the next speakers to play will simply be the closest speakers to the users
 desired position. If the desired location is closest to a single speaker, than VISION will
 send a command to the PCB to play speakers and will specify the closest speaker twice
 (so that only) a single speaker will be playing. If the desired location is between two
 speakers, then VISION will send a command to the PCB to play speakers and specify the
 two closest speakers to play. If the user is not already on the correct side of the table, or
 the user is on the side of the table where the camera stand is, then the next speaker to play
 will be the next closest corner speaker in the direction that the user needs to travel. Once
 the user arrives to the next closest corner, the user localization system will update the
 user’s current position to let VISION know that the user is at the corner. This process will
 repeat until the user arrives at the final target speaker where they will actually be taking
 the shot.

 In order for the user to know what they should be doing at each step of this process, the
 Swift application is able to provide instructions to the user based on which step of the
 guidance process they are in. When VISION is guiding a user to a corner speaker or the
 final target speaker, VISION can send a message wo the Swift application, through
 MQTT, asking the application to inform the user to walk towards the speaker that is
 going to begin playing soon. The Swift application only provides small instructions at
 key portions of the navigation process to ensure that the user knows what they should be
 doing.

 Once the user localization system has updated the user’s position to indicate that they are
 in the target position to be able to make the shot, the next phase of user guidance can
 begin. The next step in guiding the user is rotating the user so they are facing the general
 direction of the billiards ball they are going to attempt to hit. In order to rotate the user in
 the proper direction, an algorithm will take in the current location of the user as well as
 the relative angle (from the artificial intelligence system) to determine which speaker is
 closest in direction to the angle the user needs to face. The orientation of the speakers
 allows for a maximum margain of error of 8°, so the speaker array can be reused in order
 to orient the user as well. Once the desired speaker has been determined from the
 orientation algorithm, the Jetson Nano will send a command to the PCB requested either
 a single speaker or pair of speakers to be played. VISION will send a message through
 MQTT to the Swift application that will give the user the next command. The command
 will request the player to rotate towards the following speaker without moving from the
 position they are currently standing in. The speaker(s) will play ten seconds to allow the
 user enough time to hear the speaker(s), determine the direction of the sound, and orient
 themselves towards the sound. The VISION team tested many different speaker durations
 and found that ten seconds is sufficient time for the player to orient themselves without
 delaying the flow of the game too much.

 At this point VISION is ready to hand control over to SCRATCH. VISION will
 communicate to the SCRATCH team over a new MQTT connection and provide the

 98

 SCRATCH team with the relative force and relative angle. Once SCRATCH has
 completed the shot, control will return to VISION for shot feedback.

 6.4 Shot Feedback (Computer Vision System)

 Once the shot has been taken, VISION will provide feedback to the user to provide them
 with the outcome of their shot. The possible shot outcomes are that the user did not make
 any balls, the user made their game ball, the user made their opponent’s game ball, the
 user scratched (made the cue ball), the user made their game ball early and lost, and that
 the user made their black ball and won. VISION will determine the outcome of a shot by
 storing the previous ball list and taking a new picture of the table to determine the current
 ball list. The current ball list is compared to the previous ball list to determine what the
 outcome of the user’s shot is. VISION will then convey this information to the user by
 sending a message to the Swift application which will tell the user the results of their
 shot. It is possible for more than one outcome of a shot to be true at once. For example,
 the user can sink their game ball and the cue ball in a single shot.

 99

 7. SYSTEM FABRICATION

 With the extensive physical and design footprint of the VISION apparatus, a fabrication
 plan is put forth for both PCB and the full system.

 7.1 PCB Design

 To properly integrate the circuitry components of VISION and satisfy a simplistic design
 for integration, several core components will be conjoined through a printed circuit board
 (PCB). The following section provides details on how the design will be conducted and
 the best practices to provide a functioning product. For the purposes of VISION, the PCB
 was designed in Altium for its simple user interface and because it is free for students at
 UCF. The majority of components that will be built into the PCB can be accessed using
 the Altium libraries, imported libraries from distributors such as Digikey and Mouser,
 and custom components when needed.

 7.1.1 PCB Design Philosophy

 The following outlines important practices in PCB design as outlined from Altium, one of
 the leading PCB development software companies. (Peterson)

 Component Placement: Component placement is where PCB begins and can be fine
 tuned throughout the process of development. The goals for a well placed board should
 focus on ease in routing and limiting layer changes when possible. Several good practices
 to ensure a proper layout consist of prioritizing placing must-have components first and
 large processors/ICs in central locations, avoiding net crossing, placing all surface mount
 devices on one side of the board, and experimenting with different orientations of
 components. Following these steps and focusing on the largest and biggest hassle
 components first can limit headaches and improve design throughout the PCB design
 process.

 Power Planes: Following the placement of components, the orientation of the power and
 ground planes is the next focus. Power and ground are placed on two internal layers,
 which can be a hindrance with only two layers. The ground plane is ideally on its own
 layer and is not recommended to route ground traces on a board. Power is recommended
 to be implemented via common rails connected directly to the power source, but power
 planes can also be implemented if components do not get daisy chained and have wide
 enough traces.

 Routing: Determining the proper routes for connections between components can be an
 artform and is up to the designers discretion. Ideally, short and direct routes are highly
 recommended. An important rule to follow is if all the traces on one side of the board
 flow in one direction (horizontal), the other side should flow all traces the opposite

 100

 direction (vertical) to restrict emf disruption along traces. This is very important in two
 layer designs, and should alternate between layers in multi-layered board designs. Certain
 special case designs will require added practices to account for specialized component
 characteristics. Additionally, determining the proper width for traces can be a complex
 process, but can be determined by analyzing the manufacturability, current consumption,
 and impedance that will be seen through the design.

 Component Grouping: Guidelines on grouping and separation can be valuable to ensure
 easy routing, prevention of electrical interference, and thermal management. At the heart
 of component grouping is placing items that are in a circuit together, especially if they do
 not interact with other portions of the board. Separating analog and digital components is
 a very important step in grouping, and can prevent commonly introduced interference. If
 these grouping practices are followed, the design becomes an exercise in placing groups
 rather than individual components. An important note in the grouping process is the
 separation of high powered components, as close proximity can lead to thermal issues.

 7.1.2 PCB Design

 The components of VISION included within the project’s PCB are centered around the
 guidance output system and the user control interface. This encompasses a connection to
 the Jetson Nano, outputs to each speaker, regulators for both voltage and signal output
 control, a demultiplexer for signal selection, and push buttons for the control interface.
 Included in the PCB are the following major subsystems and components:

 ● Connection to Jetson Nano
 ● ESP32 Chip
 ● Switching Regulator
 ● Audio Amplifier
 ● 12 Speaker Outputs
 ● Demultiplexer (CD74HC4067)
 ● Five Push Buttons (One Extra Button)

 Figure 7.1 shows a block diagram of the systems included in the PCB design. Figure 7.2
 shows VISION’s final PCB design.

 Figure 7.1 PCB Design Block Diagram

 101

 Figure 7.2 Final VISION PCB Design

 102

 8. SYSTEM TESTING PLAN
 The following two sections focus on the hardware and software side testing for VISION.
 To properly meet the goals set out by the project, the team must successfully validate
 each system to standard tests. If standards are not met regarding these testing guidelines,
 changes to design must be made accordingly to properly deliver on the project’s mission.

 8.1 Hardware Testing

 8.1.1 Guidance Testing

 As guidance is at the core of VISION, its validation is critical to the validity of the
 system at large. VISION’s design relies on audio guidance mechanisms in the form of
 speakers. To properly validate these, several important scopes should be examined and
 tested.

 First, the proper output signal must be generated and validated to an ideal signal strength
 that is receivable by the human ear and loud enough to be differentiated in a crowded
 room. To do this, the signal is played in a room with artificial noise being introduced. If
 the examiner can distinctly hear the audio being generated, the waveform is validated.

 The efficacy of the guidance mechanism must be placed under rigorous testing following
 the validation of perceivable sound. To do this, a simulated impaired user (blindfolded
 team member) is used in both the case of positioning and orientation guidance. To
 validate positioning guidance, the user was able to follow basic commands from the
 speaker array. The efficacy of these commands were examined on both their validity in
 general positioning, their ability to cease use after arrival, and the accuracy of the
 positioning within the proposed margin of error of six inches. Examining the orientation
 mechanism then follows this stage, and involves validating the expected output signal,
 proper speaker outputs, and that the user can be oriented within the 15° margin of error
 based on the target orientation and actual orientation.

 The end goal of this validation scheme is verifying that the user is positioned accurately
 enough that the user can be guided by the SCRATCH system to commence final guidance
 and execute the shot.

 Finally, the most crucial test will be conducted in seeing how accurate the fully integrated
 system design is. The number of successful iterations of VISION was recorded over a
 number of varying test cases. This number of successes was high enough that the
 guidance system for VISION was considered a success.

 103

 8.1.2 UWB Testing

 There is no significant hardware testing to be done in the localization system since all
 testing can be done on the software side. The main physical testing that can be described
 is making sure that the user was properly localized, and within the defined accuracy of 1
 foot. To perform this testing, at different stages of the software design, the VISION team
 compared the distance returned from the beacons to the Swift application distances to
 confirm that the advertised accuracy from the Estimote company was correct (in the order
 of centimeters). From there, the accuracy of trilateration, smoothing, filtering, and
 position to speaker conversion were all tested for correctness.

 8.2 Software Testing

 8.2.1 Shot Selection Algorithm Testing

 In order to ensure that the shot selection algorithm produces consistent and valid results,
 several test cases were run to ensure the user is not prompted to do a task which is either
 impossible or illogical. Many of the test cases corresponds with the the section discussgin
 edge case behavior. The testing will feature three approaches.

 ● Programmatic Testing - Testing will be done after any change to the code is made,
 results will come back quickly and will give rapid feedback on any breaking
 changes.

 ● Simulation validation - Visually verify that the results from the shot selection
 algorithm make sense from the display. This should be done after any major
 changes to the system.

 ● Physical Testing - Verify that the shot selection algorithm produces shots which
 are comfortable and realistic to attempt. This should be attempted sparingly, but at
 least one successful run should be made before any overall system tests are
 performed.

 Testing shot selection: There will be several test cases that have an obvious correct
 answer. Ensuring that a correct decision is made on an obvious table state is of extreme
 importance and points to a reliable algorithm. The testing will feature a simulation that
 goes along with the shot selection, the table state will be provided to both the simulation
 and the shot selection algorithm. A success of the test case will be when the simulation
 executes the shot selection algorithm and makes the desired ball. The following test cases
 will be verified for each pocket on the table:

 1. Ball and cue lined up in front of a pocket.
 Pass: Shot made
 Fail: Scratch or no made shot

 2. Simple bank shot
 Pass: Shot made
 Fail: Scratch or no made shot

 3. No easily makeable shot

 104

 Pass: No scratch
 Fail: Scratch

 Physical Limitation Tests: These tests focus on ensuring that the physical limitations of
 the player are respected in order to give achievable shots. The test cases should cover the
 previous shot selections as well as a test passing for shot selection but not being possible
 is a poor indicator of our software quality. The following test cases will be verified:

 Pass: The shot conforms to physical limitations as listed above
 Fail: The shot fails to conform to physical limitations

 1. Shot selection tests for right handed player
 2. Shot selection tests for left handed player

 8.2.2 Computer Vision Software Testing

 The computer vision system is the initial input to the project, so the system must function
 accurately so errors are not propagated to other systems. The difficulty in testing the
 computer vision system stems from the nature of billiards itself. There are an infinite
 number of ways that the billiard balls can arrange themselves on the table, so it is not
 feasible to test every possible input configuration. The testing procedures will include the
 most common scenarios that a player might encounter and a few edge cases. As the
 project progressed, test cases were added to ensure that the computer vision system is
 functioning properly. This section outlines some of the most prevalent scenarios that were
 tested but are by no means comprehensive of all possible input scenarios.

 Testing the Billiard Table Isolation: The billiard table isolation feature of the computer
 vision system is the simplest feature to test. This feature is responsible for separating the
 playable region of the billiard’s table from the input image. The output for tests related to
 this feature should all have nearly the same output. The output should include a
 rectangular contour outlining the playable region. The testable output will contain the
 minimum and maximum x-coordinates and y-coordinates. Although the outputs of this
 system may not be the same for every iteration, the values can easily be checked for
 reliability once baseline values were established.

 Testing for Finding the Billiard Balls: The feature responsible for finding all of the
 billiard balls on the table will be the most complicated feature to test. This feature
 includes detecting all the billiard balls in the image, determining the coordinates of the
 billiard balls, and determining the color of the billiard balls. This position of the computer
 vision system is also responsible for identifying and ignoring false positives in the input
 image. The output of tests related to this feature will be the information appended to the
 output list. This section will append the type of ball found (cue ball, black ball, blue ball,
 or green ball), the localized x-coordinate, and the localized y-coordinate for every billiard
 ball in the input image.

 105

 Before discussing how to create unit tests for this feature, a brief discussion on testing for
 the minimum and maximum radius is needed. Section 3.2.2 describes utilizing the
 parameters available in OpenCV’s Hough Circle Transform to specify the minimum and
 maximum radius. To determine the minimum and maximum radius, other built-in
 OpenCV features were used. By running the Hough Transform without any radius
 requirements, all of the circles in the image will be discovered. The discovered contours
 were manually iterated and highlighted so each contour can be verified for correctness.
 The area of all of the correct contours was then be found by using an OpenCV area
 method. Once a substantial amount of samples were collected, the average radius, in
 pixels, was extracted from the area measurements. An appropriate radius threshold was
 then set.

 Testing this feature is ensuring that the output list is updated properly to reflect the
 current state of the billiard table. To ensure that the feature is working properly, simple
 testing was conducted and more complex scenarios were added after simple functionality
 was proven to work. Simple tests of the system included capturing input images where
 billiard balls are on the table in a variety of configurations. The output list should
 accurately represent the number, color, and location of the types of balls on the table. It
 was important to consider lots of different combinations of inputs. Once the basic
 scenarios were verified to be working properly, more complex scenarios were added.
 Important scenarios to consider were when the white ball was not present, the black ball
 was not present, neither the black ball nor the white ball were present, and when no balls
 were present. Other, more complex, scenarios were when two or more balls were
 touching, the cue stick was present in the input image, and when there were circular
 objects in the input image that are too small or too big to be billiard balls. All of these
 scenarios were considered in different lighting conditions to ensure that the accuracy of
 the computer vision system is not diminished by different lighting conditions.

 A set of automated unit tests were created by capturing many input images representative
 of the previously described testing scenarios. Generating a suite of unit tests ensured that
 the system is functioning as expected. These unit tests have a verified output list
 associated with each input image so that any changes to the computer vision system can
 quickly be verified against an established set of tests. Creating such a testing environment
 was important because it will allow for changes to the project to be verified quickly,
 without having to manually test the new modifications.

 8.2.3 Feedback System Software Testing

 Testing the Shot Result Feedback: Testing the shot result logic of the feedback system
 was one of the most important features to test in the project. The shot result subsystem
 should be able to take the previous and current state of the billiard table and determine
 the outcome of a player’s shot. This subsystem is straightforward and can be easily
 tested. The inputs for the feedback are two lists originating from the computer vision
 system. One of the lists was the previous state of the billiard table and the other list was
 the current state of the billiard table. It is possible to create test lists representative of all

 106

 possible scenarios the computer vision system can output. Once created, theselists will
 form a test suite used against the expected output ensuring that the system was
 functioning properly.

 The actual testing of the shot result feedback consisted of checking if the cue ball was
 present, if the eight ball was present, how many green balls were present, and how many
 blue balls were present. If the eight ball is present, then the user has either won or lost the
 game. The deciding factor is if the player has any game balls left on the table. If the eight
 ball is not present, the user will continue playing and has either not sunk a ball, sunk their
 game ball, or sunk an opponent's game ball. All of these scenarios are predictable and can
 be tested easily with custom input lists.

 8.2.4 Localization Software Testing

 This section talks about some of the testing that was done to the code itself during
 conception and until completion. Brief outlines of this were described in the hardware
 testing section but this section goes in more depth on the topic.. To begin with, the
 trilateration code was heavily tested in two different ways. The first testing method was
 where 2D to 3D trilateration was compared to determine which of the two was more
 effective and precise. The main difference is that in addition to providing x,y positions of
 the beacons, like in the case for 2D trilateration, the 3D version of the code also needs the
 height or z-position of the beacons. The z-position is how far off the ground the beacons
 are on the pool table. It was realized that that the beacons were all designed to be at the
 same level, 3D and 2D trilateration codes returned the exact same position. For
 simplicity, 2D trilateration was chosen for the rest of the project. VISION also
 experimented with the aforementioned position of the beacons. Initially designed to be
 perfectly centered at the start of the coordinate system i.e. (0,0), (X_MAX, 0) and
 (X_MAX/2, Y_MAX/2), the beacon positions were then offset slightly to account for the
 distance readings reporting a distance offset that did not align with the VISION team’s
 coordinate system. This offset position also took into account the results from
 trilateration to make the computed position more reliable especially at the corners of the
 pool table that proved to be the most difficult parts of the table to locate.

 The second portion of this testing can be summarized under the smoothing portion of the
 code. Smoothing attempts started at the conception of the Swift application where
 VISION attempted to average the distance every 3 seconds before sending the distances
 through MQTT. The goal of smoothing is to provide more reliability to the transmitted
 data. For simplicity, after testing and smoothing in other positions, VISION opted to send
 the distances every second instead to get better readings of the application. After these
 distances were sent, they were then converted to x,y positions as described earlier.
 However, being computed every second, these distances were not accurate enough and
 noticeably flucuated. For this reason, the team decided to average out the distances over
 nine seconds and rely on this average value as the user position. The filtering portion of
 the code through physical testing was also tested. These tests determined if the filtering
 code worked on either side of the pool table and at the difficult corners where either edge
 could be chosen. The edge issue was the biggest concern for the team, but the concern

 107

 was mitigated once VISION decided to turn the user positions directly into speaker
 numbers. Additionally, the program selects the two closest speakers user. Having two
 possible speakers made the VISION team consider averaging out and finding a mode or
 the two most frequent speakers returned after three computations were performed. This
 design allowed VISION to offset cases were any part of the code until this point might
 lead to incorrect results. The use of a mode allows for VISION to account for the corner
 cases since the two closest speakers would be on the two possible table edges. Utilizing
 two speakers also allows the team to account for the very close distance between the
 speakers (about a foot). Another concern was when the beacons would stop being
 responsive after a period of time. To mitigate this issues, the team implemented audio
 feedback for the user letting them know to move their phone around since the issue
 happened when the phone was stationary for too long.

 Other components of the localization system that would required additional testing are
 the battery life of the beacons (considering they cannot be turned off) and the ideal
 location of the user’s iPhone to maximize the accuracy of trilateration. For the first point,
 the battery life of the beacons were advertised to be up to two years which exceeds the
 timespan of this project from conception to completion and hence did not end up being an
 issue for VISION. For the second point, there are a few options for the user to hold the
 phone without it being an issue for the duration of the pool game. Currently the
 localization system has the user holding their phone while they are being localized. Other
 options were tested such as having the iPhone in the user’s pocket and using a band
 (similar to what runners use) that the user can wear. No significant difference of location
 was observed to warrant one of these over the other. The VISION team decided to leave
 the decision of the user’s phone position to the user themselves, as long as it is
 adequately in line with the user and not in a completely obscure area.

 8.3 User Testing

 To evaluate the success of VISION and SCRATCH, a visually impaired user should be
 navigated around the billiards table and able to successfully complete a clear shot. The
 success of the projects largely depends on a user’s ability to complete a shot. If the
 system created by VISION and SCRATCH can allow a user to sink a billiard ball, the
 system will be considered successful.

 From VISION’s perspective, the first benchmark is being able to properly capture the
 state of the billiard’s table and represent the table state computationally. The table
 representation should also be able to produce a reasonable shot selection with the help of
 the billiards artificial intelligence system. This process is not easily verifiable and
 required the VISION team to manually verify the shots. The table representation was
 verified to ensure that the representation accurately reflects the state of the table. The shot
 selection was verified to ensure that the artificial intelligence algorithm selects a shot that
 is feasible and guides the user to progress towards winning the game. These verifications
 were performed by testing the system with an actual user and verifying VISION’s
 decisions in real-time.

 108

 The second benchmark of VISION is being able to locate and guide the user around the
 billiards table. The user’s location was checked against the location of the user that
 VISION reports to the system. The user was within the allowable distance of the user
 localization system, the system was deemed a success. The user guidance should be able
 to guide a user around the billiards table from a starting location to a final location. The
 system was tested by guiding a user from some starting location to some predetermined
 final location. The user was able to be guided to the final location within the specified
 margin of error, the user guidance system was considered successful.

 Overall, there was no automatic way to test the effectiveness of VISION. Individual test
 cases were designed for each subsystem to validate the subsystems basic behavior.
 Success during individual testing did not correlate to success of the overall project. The
 project was validated by testing the entire system and verifying the system’s results in
 real-time. Subsystem testing helped to eliminate major subsystem issues, but the true test
 of VISION occured when all of the subsystems were integrated and able to guide a user
 to a desired position and provide the user with feedback on their simulated shot

 109

 9. User Guide

 9.1 Operation Overview
 This manual is separated into two parts. The first part describes how a visually impaired
 user operates the system. The second part covers the tasks required of the game assistant
 to ensure smooth functioning over the course of the game. The game assistant is
 necessary for the current version of the system but will be removed in future iterations.
 The VISION team believes that many tasks of the game assistant can be automated away,
 giving the visually impaired user more freedom. The technology required to automate all
 of the assistant tasks is beyond the scope of the current project. The operation overview
 also assumes that the pool table has been installed with the proper equipment, as
 described in the previous sections. The pool table should have the 12 speakers mounted
 and wired around the table. The table should also have the assembled PCB firmly
 attached to the underside. Another crucial component is the camera mount being
 constructed to the specified dimensions.

 9.2 Project User Guide
 VISION is the first part of a two-team project that allows visually impaired users to play
 a game of billiards. This section focuses on how a visually impaired user goes through
 the process of playing a billiards game on the system. It takes the user through startup,
 moving to a shot, taking the shot, and listening for the shot result. There is also a section
 about dealing with possible issues or bugs in the system.

 9.2.1 Startup

 The startup process is controlled mainly by the assistant. However, the system will give
 the player audio queues to know the current step in the process. Informing the player
 gives them more freedom and allows for a more enjoyable experience. The assistant will
 hand the player a phone with the localization app running. The app is responsible for
 tracking the player's current location in regard to the table. The app also gives the player
 audio queues and instructions. When the assistant starts the game, the user will hear the
 phone output: “ User localization in progress ”. At this stage the player will know that the
 game has started and will be ready to execute the next set of instructions.

 9.2.2 Moving to a Shot

 After the assistant has started the game, the computer vision system will scan the table
 and then the shot selection AI will select a shot for the user to take. There is a direct
 communication between the app on the user’s phone and the Jetson Nano, this allows the
 user to be localized in real time. The user can be tracked anywhere around the room as
 long as the application is running. Using that user’s position and the result from the shot
 selection AI, the system guides the user towards the speaker(s) nearest to the ideal shot.
 The localization app on the phone uses the audio cue, “ Move towards the speaker ”, after

 110

 this cue, a speaker will play. The user should slowly move along the perimeter of the
 table towards the beeping speaker. The best method for moving around the table is to take
 smaller steps and to keep one hand on the table and use the other hand to hold the phone
 as shown in figure 9.1. The user will continue this while moving parallel to the current
 wall. It is also recommended that the user stands roughly a foot away from the table to
 avoid interference with the radio waves or multipath fading as a result of this
 interference. Once the user has arrived, they will wait (up to 9 seconds) for the
 localization system to ensure the user is at the correct speaker. This same time delay
 applies for the intermediate speakers on the way to the nearest speaker for the shot. If for
 any reason the user moved away from the table or walked to the wrong speaker, the
 localization system will play another speaker in order to guide the user back towards the
 table. The localization system mostly relies on the corner speakers to guide the user, the
 inside speakers are only used for when the user is getting close to the desired location.
 Once the user has reached the final destination, the localization app will prompt them
 further.

 Figure 9.1: User Moving Along Table

 9.2.3 Taking the Shot

 Once the user has reached the final destination, the localization app will use the following
 audio prompt, “ Without moving, turn towards the speaker ”. After this prompt a speaker
 will then play for 10 seconds. The user should then try to face directly towards the
 beeping speaker, angling their entire body in the general direction of the sound as shown
 in figure 9.2. After this step, the SCRATCH team will take over and further instruct the

 111

 user on how to make the shot. The reason for turning the user is to allow for them to be
 oriented in the correct direction within 7.5°. Turning made it much easier for the
 SCRATCH team to deal with fine grained movement details.

 Figure 9.2: User Rotating to Speaker

 9.2.4 Shot Result

 After the SCRATCH team has guided the user to hit the cue ball, control will return to
 VISION. The computer vision system will scan the current table and compare it to the
 table before the shot was taken. The computer vision system then infers if an opponent
 game ball was made, the user's game ball was made, the user lost, or the user won the
 game. The user localization app will then use an audio cue such as “ Eightball made with
 all other game balls made, the user wins ”. If the user were to win or lose it would require
 the assistant to help them restart the game. It is possible for multiple feedback statements
 to occur after a single show was taken depending upon the outcome of the shot.

 Overall, the following audio cues could be heard at any point from the app on the user’s
 phone:

 Localization in progress
 Localization stopped
 User made their game ball

 112

 User made an opponent's game ball
 Game loss, made black and white ball
 Game loss, black ball made before all game balls
 Game won, black ball made after all game balls
 Scratch, white ball made
 No balls made
 Walk towards speaker
 Without moving, rotate towards the speaker

 9.2.5 Troubleshooting

 If the user notices a longer delay than normal on the localization system or if the same
 speaker is beeping no matter where the user is located, the user may first try moving the
 phone around or slightly moving around the area of the speaker. This process can
 sometimes help the localization system to recalibrate on the user's current location.
 Another way to ensure that the user localization system is accurate is to keep the user
 from holding the phone within the boundaries of the pool table. The player should
 attempt to keep the phone outside of the walls of the table. The user should also try
 restarting the app completely if issues persist. The user may also receive more accurate
 readings by attempting to keep the phone at the same level as the beacons. This would
 allow the communication between the app and the computer system to be resumed if a
 communication failure was the issue. If the localization process is still not working and
 the user is standing next to the beacon for more than 45 seconds, the user should let the
 assistant know they are having issues.

 9.3 Project Assistant Guide
 The assistant is responsible for helping the visually impaired user with tasks that are not
 yet automated. These tasks include ensuring that there are no objects that could impede
 the users movement, setting up the billiard balls on the table, and starting the game. The
 assistant is also there to help with trouble shooting in the case of an error by the user
 localization system.

 9.3.1 Startup (Table, Camera Stand, Billiard Balls)
 The first step is to set up the actual pool table and camera stand. The easiest way to
 accomplish this is to have a taped out area for repeated use. The main idea to keep in
 mind is that the camera stand should remain on the fourth wall slightly over the middle
 pocket. The exact location should be 32 inches away from the bottom left corner of the
 pool table, as shown in figure 9.3 below. After the table and camera stand are in place,
 the assistant will then proceed with placing down the billiard balls into any fashion the
 player desires. The player may want to practice, meaning that the assistant would set up
 some easy shots for the player to make or the player may want to play a full game in
 which the assistant would line up the balls properly into a triangular shape. Once the table
 is set up, the assistant would start the main VISION program on the Jetson Nano by
 entering python3 VISION.py .

 113

 Figure 9.3: Camera Stand Location

 9.3.2 Camera and Jetson Nano

 After the VISION program is executed, the assistant will ensure that the camera is not
 blurry and will be able to accurately read the table state. Once the video on the display
 has finished focusing, the assistant should hit the letter “ q ” on the keyboard. If the camera
 is not properly cropping the image of the table, the assistant will move the stand to the
 correct location. If there is significant blur or the camera cannot focus, the assistant can
 focus the camera by putting their hand towards the camera and slowly moving it down as
 the camera gradually focuses. After the camera and computer vision are set up, the Jetson
 Nano will attempt to connect with the user guidance system over Bluetooth low energy
 and the user localization system over MQTT messages.

 9.3.3 User Guidance and PCB

 The user guidance system is the system connected to the 12 speakers located around the
 table and is responsible for guiding the user through audio. The assistant will have to
 ensure the PCB is plugged into a 5V power source (we recommend using the 5V pin on
 the Jetson Nano) and then press the start button located on the PCB. The PCB also has a

 114

 pause and reset button for controlling the game in the case of an issue or for taking a
 break.

 Button Functionality :

 SW2 (STR): Start Game
 SW3 (PAU): Pause Game
 SW4 (END): End Game
 SW5 (REDO): Redo a Turn
 SW6 (VAR): For Testing Purposes

 After the PCB is turned on and the game has started, the assistant should not have to
 worry about interacting with the PCB again unless it is to start a new game.

 Figure 9.4: User Guidance Buttons

 9.3.4 User Localization App and Beacons

 The first step for setting up the user localization system is to place the beacons around the
 table. The top left and top right corner should each have a beacon placed directly next to
 the speaker. The remaining beacon should be placed in the middle of the bottom wall,
 directly next to the middle pocket speaker and camera stand as shown in figure 9.5. After
 the beacons have been placed, the assistant will then open up the user localization
 (VISION) application and press start for the user. The user should be able to function on
 their own after this point. If at any time it appears that the user localization system is not
 properly tracking the user, the assistant may attempt to remedy it by taking the phone and
 hovering it above each beacon. This movement often allows any location updating issues
 to be solved. The phone application shows the distance between the phone and each
 beacon. If the assistant notices that the distance for any single beacon is not changing, the
 assistant may attempt to move the phone over the particular beacon.

 115

 Figure 9.5: User Localization Beacon Layout

 116

 10. ADMINISTRATIVE CONTENT

 10.1 Project Budget
 VISION is a large project that requires a significant amount of hardware and software
 components. As shown in the table below, the project requires a billiards table, Jetson
 Nano, camera, multiple BLE beacons, and other costly hardware. To account for the large
 amount of technology needed, the team had initially set a budget of $800 ($200 per team
 member). The budget is an upper bound of what the team believes is needed for someone
 to recreate this project. The team ended up exceeding the budget because a second
 version of the UWB beacons were purchased (the first set was lost in a fire) and a second
 version of the PCB was needed due to design issues with the first version.

 10.1.1 Bill of Materials

 Table 10.1 lists the materials, quantity, and associated cost for the materials needed to
 implement VISION.

 Component Quantity Unit Cost Total

 Pool Table 1/2 $450 $225

 Anker Powerconf c200 and Stand 1 $100 $100

 ESP Microcontrollers 2 $15 $30

 Bluetooth Beacons 2 (3-packs) $100 $200

 ESP32 Processors 5 $5 $25

 PCB Orders 2 $60 $120

 Jetson Nano 4GB Development Kit 1 $200 $200

 Speakers 12 $2 $24

 Various PCB Components 2 $20 $40

 Power cords, keyboards, etc. 1 $50 $50

 Tape 1 $20 $20

 Total $1034

 Table 10.1: Bill of Materials

 117

 10.1.2 Project Financing

 The table above is a comprehensive list of the most critical components for VISION. The
 pool table will be shared with the SCRATCH (group #17) project, meaning the team is
 only responsible for half of the cost of the pool table. Although the price of the project is
 above the $800 project budget, there are opportunities to reduce the overall cost. Due to
 supply chain shortages, most high-power processors (Jetson Nano, Google Coral Dev
 Board, Raspberry Pi) are not in stock and are subject to third-party resale prices. For
 individuals wanting to recreate VISION, the Jetson Nano can be swapped out for any
 modern computer than can run Python. The VISION team is willing to donate the PCB
 and related supplied to anybody wanting to recreate VISION as well.

 10.2 Milestones
 VISION is a complex project requiring many different systems to integrate together for a
 user to play a game of billiards. For this reason, the members of VISION used the
 summer prior to taking Senior Design 1 to complete the project brainstorming. The goal
 was for the team to start the documentation process as soon as classes resumed so there
 would be sufficient time to research the design. There are no projects for VISION to be
 based upon, so the group wanted to ensure adequate time to resolve any issues arising
 while conducting research.

 The timelines discussed below account for any research compilations that were
 discovered. The milestones of VISION were mostly completed before the anticipated end
 dates so that the deliverables were able to be submitted at least a day before the due date.
 Although the focus of Senior Design 1 was the research and documentation of the
 project, the team started preliminary testing to show that the ideas being researched are
 feasible. Proof of concept testing was conducted by each member in their respective area
 of focus alongside their project research. System integration was performed as soon as
 the team moved into Senior Design 2. For a more detailed schedule of VISION’s goals,
 view tables 10.2, 10.3 and 10.4.

 118

 Task Start Date End Date Duratio
 n

 Project Brainstorming Summer Summer 0 weeks

 Project Scope Finalized
 (Finalize big picture design and

 what the end goal is)

 08/22/2022 08/26/2022 1 week

 Individual Research Begins
 (Begin breaking the project into

 smaller subsections such as CV or
 AI)

 08/22/2022 09/02/2022 2 weeks

 Initial Design Document
 (Based upon the D&C documents)

 08/22/2022 09/05/2022 1.5
 weeks

 30-Page Milestone
 (General system design, project

 motivation, project goals, project
 concepts)

 08/22/2022 09/09/2022 3 weeks

 60-Page Milestone
 (Independent technology research,

 system requirements, part
 ideas/availability)

 09/10/2022 09/30/2022 3 weeks

 90-Page Milestone
 (Independent technology research,

 system communication)

 10/01/2022 10/21/2022 3 weeks

 120-Page Milestone
 (System testing, PCB design, PCB

 testing, citations)

 10/22/2022 11/11/2022 3 weeks

 Group Review: Final Draft 11/14/2022 11/18/2022 1 week

 Table 9.2: Senior Design 1 Project Documentation Milestones

 119

 Task Start Date End Date Duration

 Individual System
 Design

 (Create some proof of
 concept design in

 hardware or software)

 09/05/2022 10/02/2022 4 weeks

 Individual System
 Testing

 (Develop and
 demonstrate the proof of

 concept design to the
 team)

 10/03/2022 10/30/2022 4 weeks

 Breadboard Prototyping
 (Finalize what the PCB
 will do and breadboard

 the design)

 10/31/2022 11/21/2022 3 weeks

 PCB Design / Ordering
 (Design the PCB in

 Eagle and order from a
 reputable PCB

 company)

 11/22/2022 12/12/2022 3 weeks

 Table 10.3: Senior Design 1 Project Design Milestones

 120

 Task Start Date End Date Duration

 PCB Testing
 (Test all of the PCBs to ensure
 they work properly)

 01/09/2023 01/29/2023 3 weeks

 System Integration / Testing
 (Begin integrating the
 individual systems together in
 the main code)

 01/30/2023 02/20/2023 4 weeks

 Practice Project Demo
 (Go through a mock project
 demonstration to ensure
 everything is functioning)

 02/21/2023 03/06/2023 2 weeks

 Finalize Documentation
 (Final edits and construction
 of the documentation)

 03/07/2023 03/20/2023 2 weeks

 Practice Final Presentation 03/21/2023 03/31/2023 2 week

 Final Presentation Prep 04/01/2023 04/17/2023 2 Weeks

 Table 10.4 Senior Design 2 Project Design Milestones

 121

 11. PROJECT SUMMARY and CONCLUSION

 VISION progressed well throughout the Senior Design 1 semester. The VISION team
 reviewed many different types of applicable technology and developed a better
 understanding of what technologies were applicable during project design in Senior
 Design 2. Furthermore, the team developed a hardware and software design plan that
 provided positive results in preliminary testing.

 One of the largest issues that VISION, and other projects, overcame is the remaining
 problems in the supply chain. Many parts that VISION would have liked to use were
 either unavailable or significantly more costly due to having to pay third-party prices. In
 addition to product unavailability, shipping times, especially from international sources,
 was still slower than pre-pandemic times. VISION overcame these difficulties by
 acquiring parts early so that there was no delay to building the design in the spring
 semester.

 The VISION team’s dedication to technology exploration in Senior Design 1 allowed the
 team to discover, discuss, and solve many design issues related to the project’s
 implementation. With a wealth of new knowledge on the subject and many of the
 necessary components acquired, the VISION team successfully implemented the project
 in Senior Design 2.

 122

 Appendix A: Copyright Permissions

 Request for Shot Planner Diagram (Figure 3.1)

 123

 Request and Permission for Image of Thresholding Distribution (Figure 3.4)

 Request for Image of Thresholding (Figure 3.5)

 124

 Request for Canny Edge Detection Image (Figure 3.6)

 Request for Hough Circle Transform Image (Figure 3.7)

 125

 Request for Douglas-Peucker Algorithm (Figure 3.8)

 Request for Previous System Indoor Localization Design (Figure 3.9)

 126

 Request for Image of Avery Dennison’s AD-172u7 Inlays (Figure 3.10)

 Approval for Image of Avery Dennison’s AD-172u7 Inlays (Figure 3.10)

 127

 Request for image of Model and Dimensions of Compact Housing HRXL-MaxSonar
 Model (Figure 3.13)

 Approval for image of Model and Dimensions of Compact Housing HRXL-MaxSonar
 Model (Figure 3.13)

 128

 Request for image of VL53L0X Time-of-Flight Ranging and Gesture Detection Sensor
 (Figure 3.14)

 129

 Request for Maptic Haptic Feedback Apparatus (Figure 3.17)

 Request for HandSight Haptic Feedback Apparatus (Figure 3.18)

 130

 Approval for Image of Force Sensitive Resistor from Sparkfun (Figure 3.20)

 Request to Use Image of RFID Tag in Golf Ball from Reddit User (Fig 3.21)

 131

 Request for TV Remote for the Visually Impaired (Figure 3.23)

 132

 Request for Blue Wave’s Fairmount Table (Top) & Rack’s Crux 55 Table (Bottom)
 (Figure 5.1)

 133

 Appendix C: References

 Accessible Pedestrian Signals . http://www.apsguide.org/chapter7_adjustments.cfm.

 Adaptive-Vision. “Template Matching.” Adaptive-Vision ,

 https://docs.adaptive-vision.com/4.7/studio/machine_vision_guide/TemplateMatc

 hing.html. Accessed 11 November 2022.

 “Assistive Technology for the Blind (AT).” Mass.gov ,

 https://www.mass.gov/service-details/assistive-technology-for-the-blind-at.

 Accessed 29 November 2022.

 “Audio guidance system for blind.”

 https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8203710&tag=1.

 Authentise. “Detecting Circular Shapes Using Contours.” Authentise , 18 April 2016,

 https://www.authentise.com/post/detecting-circular-shapes-using-contours.

 Accessed 11 November 2022.

 BogoToBogo. “OpenCV 3 Canny Edge Detection - 2020.” BogoToBogo ,

 https://www.bogotobogo.com/python/OpenCV_Python/python_opencv3_Image_

 Canny_Edge_Detection.php. Accessed 11 November 2022.

 Breckon, Toby, and Chris Solomon. Fundamentals of Digital Image Processing: A

 Practical Approach with Examples in Matlab . Wiley, 2011.

 Cannizzaro, Davide. “A Comparison Analysis of BLE-Based Algorithms for Localization

 in Industrial Environments.” , , 26 February 2022,

 https://www.researchgate.net/publication/338241733_A_Comparison_Analysis_o

 f_BLE-Based_Algorithms_for_Localization_in_Industrial_Environments.

 Accessed 30 November 2022.

 Data Carpentry. “Thresholding – Image Processing with Python.” Data Carpentry ,

 https://datacarpentry.org/image-processing/07-thresholding/. Accessed 11

 November 2022.

 “Datasheet for the HRXL-MaxSonar-WR sensor line.” MaxBotix Inc. ,

 https://www.maxbotix.com/documents/HRXL-MaxSonar-WR_Datasheet.pdf.

 Accessed 30 November 2022.

 134

 Davide Cannizzaro Politecnico di Torino. “A Comparison Analysis of BLE-Based

 Algorithms for Localization in Industrial Environments.” 26 February 2022,

 https://www.researchgate.net/publication/345670871_Indoor_Navigation_System

 _using_BLE_and_ESP32. Accessed 30 November 2022.

 Digilent Corporation. “UART.” Digilent Reference , 29 October 2012,

 https://digilent.com/reference/learn/fundamentals/communication-protocols/uart/s

 tart. Accessed 11 November 2022.

 “Ensure that the remote control can be used without requiring sight.”

 https://universaldesign.ie/technology-ict/archive-irish-national-it-accessibility-gui

 delines/digital-tv-equipment-and-services/guidelines-for-digital-tv-equipment-and

 -services/remote-controls/ensure-that-the-remote-control-can-be-used-without-req

 uiring-sig. Accessed 1 December 2022.

 “Evaluating Haptic and Auditory Directional Guidance to Assist Blind People in Reading

 Printed Text Using Finger-Mounted Cameras.” Ruofei Du ,

 https://duruofei.com/papers/Stearns_EvaluatingHapticAndAuditoryDirectionalGu

 idanceToAssistBlindPeopleInReadingPrintedTextUsingFinger-MountedCameras_

 TACCESS2016.pdf. Accessed 1 December 2022.

 Franklin, Dustin. “Jetson Nano Brings AI Computing to Everyone | NVIDIA Technical

 Blog.” NVIDIA Developer , 18 March 2019,

 https://developer.nvidia.com/blog/jetson-nano-ai-computing/. Accessed 11

 November 2022.

 Fusco, Giovanni, and James M. Coughlan. “Indoor Localization for Visually Impaired

 Travelers Using Computer Vision on a Smartphone.” NCBI ,

 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7643919/. Accessed 1 December

 2022.

 “Guidance System for Visually Impaired People.”

 https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9395973.

 Herrman, John. “How To Extend Your HDMI Cables | HDMI Repeater.” Popular

 Mechanics , 1 April 2021,

 https://www.popularmechanics.com/home/how-to/a6751/how-to-extend-your-hd

 mi-cables/. Accessed 11 November 2022.

 135

 “Home.” YouTube ,

 https://iopscience.iop.org/article/10.1088/1757-899X/745/1/012103/pdf. Accessed

 1 December 2022.

 “Home.” YouTube , https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9395973.

 Accessed 1 December 2022.

 ImageJ. “Hough Circle Transform.” ImageJ Wiki , 21 September 2018,

 https://imagej.net/plugins/hough-circle-transform. Accessed 11 November 2022.

 “Insight Into ESP32 Sleep Modes & Their Power Consumption.” Last Minute Engineers

 - , https://lastminuteengineers.com/esp32-sleep-modes-power-consumption/.

 Accessed 2 December 2022.

 Jayasekara, Buddhika, et al. “An Evolving Signature Recognition System.” IEEE Xplore ,

 2006, pp. 529-534.

 https://ieeexplore.ieee.org/document/4216646?arnumber=4216646.

 “Jetson Nano + Intel Wifi and Bluetooth.” JetsonHacks , 8 April 2019,

 https://jetsonhacks.com/2019/04/08/jetson-nano-intel-wifi-and-bluetooth/.

 Accessed 11 November 2022.

 Kang, and Atul. “Suzuki Contour Algorithm OpenCV.” TheAILearner , 19 November

 2019, https://theailearner.com/tag/suzuki-contour-algorithm-opencv/. Accessed 11

 November 2022.

 Kangalow. “Jetson Nano + Intel Wifi and Bluetooth.” JetsonHacks , 8 April 2019,

 https://jetsonhacks.com/2019/04/08/jetson-nano-intel-wifi-and-bluetooth/.

 Accessed 11 November 2022.

 Keras. “About Keras.” Keras , https://keras.io/about/. Accessed 11 November 2022.

 Landry, Jean-François, et al. “A Heuristic-Based Planner and Improved Controller for a

 Two-Layered Approach for the Game of Billiards.” IEEE TRANSACTIONS ON

 COMPUTATIONAL INTELLIGENCE AND AI IN GAMES , vol. 5, no. 4, 2013, pp.

 325-346. ieeexplore ,

 https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6651845.

 Lee, Socret. “Simplify Polylines with the Douglas Peucker Algorithm | by Socret Lee.”

 Towards Data Science , 8 May 2021,

 136

 https://towardsdatascience.com/simplify-polylines-with-the-douglas-peucker-algo

 rithm-ac8ed487a4a1. Accessed 11 November 2022.

 Liao, Peiyu, et al. “Deep Cue Learning: A Reinforcement Learning Agent for Playing

 Pool.” stanford.edu , Stanford, https://cs229.stanford.edu/proj2018/report/249.pdf.

 List, Jenny. “All You Need To Know About I2S.” Hackaday , 18 April 2019,

 https://hackaday.com/2019/04/18/all-you-need-to-know-about-i2s/. Accessed 11

 November 2022.

 “Localization Techniques for Blind People in Outdoor/Indoor Environments: Review.”

 https://iopscience.iop.org/article/10.1088/1757-899X/745/1/012103/pdf.

 “Maptic is a wearable navigation system for visually impaired people.”

 https://www.dezeen.com/2017/08/02/maptic-wearable-guidance-system-visually-i

 mpaired-design-products-wearable-technology-graduates/.

 Meel, Vidushi. “YOLOv3: Real-Time Object Detection Algorithm (Guide) - viso.ai.”

 Viso Suite , Vvso.ai, https://viso.ai/deep-learning/yolov3-overview/. Accessed 11

 November 2022.

 Muthukrishnan. “Otsu's method for image thresholding explained and implemented –

 Muthukrishnan.” Muthukrishnan , 13 March 2020,

 https://muthu.co/otsus-method-for-image-thresholding-explained-and-implemente

 d/. Accessed 11 November 2022.

 Nancy Seckel. “Physics of 3D Ultrasonic Sensors.” , , 26 February 2022,

 https://www.researchgate.net/publication/334784649_Physics_of_3D_Ultrasonic_

 Sensors. Accessed 30 November 2022.

 NVIDIA Corporation. “Taking Your First Picture with CSI or USB Camera.” NVIDIA

 Developer ,

 https://developer.nvidia.com/embedded/learn/tutorials/first-picture-csi-usb-camera

 . Accessed 11 November 2022.

 NVIDIA Corporation. “Vision Programming Interface (VPI).” NVIDIA Developer ,

 https://developer.nvidia.com/embedded/vpi. Accessed 11 November 2022.

 OpenCV. “About OpenCV.” OpenCV , https://opencv.org/about/. Accessed 11 November

 2022.

 137

 OpenCV. “Canny Edge Detection.” OpenCV ,

 https://docs.opencv.org/4.x/da/d22/tutorial_py_canny.html. Accessed 11

 November 2022.

 OpenCV. “Color Space Conversions.” OpenCV ,

 https://docs.opencv.org/3.4/d8/d01/group__imgproc__color__conversions.html.

 Accessed 11 November 2022.

 OpenCV. “Contour Features.” OpenCV ,

 https://docs.opencv.org/4.x/dd/d49/tutorial_py_contour_features.html. Accessed

 11 November 2022.

 OpenCV. “Image Gradients.” OpenCV ,

 https://docs.opencv.org/4.x/d5/d0f/tutorial_py_gradients.html. Accessed 11

 November 2022.

 OpenCV. “Object Detection.” OpenCV , 9 October 2019,

 https://docs.opencv.org/4.1.2/df/dfb/group__imgproc__object.html#ga586ebfb0a7

 fb604b35a23d85391329be. Accessed 11 November 2022.

 Peterson, Zachariah. “Top 5 PCB Design Rules You Need to Know.” Altium's Resource ,

 21 February 2017, https://resources.altium.com/p/pcb-layout-guidelines. Accessed

 1 December 2022.

 Pinke, Ryan. “(Updated) Buying Guide: Comparing Field of View When Buying a

 Conference Room Video Camera.” Video Conference Gear , 22 January 2021,

 https://www.videoconferencegear.com/blog/updated-buying-guide-comparing-fiel

 d-of-view-when-buying-a-conference-room-video-camera/. Accessed 11

 November 2022.

 Ragoo, Kiran, et al. “Design and development of a pool and billiards assistive device for

 the physically challenged.” Disability and Rehabilitation: Assistive Technology ,

 vol. 14, no. 6, 2019. tandfonline ,

 https://doi.org/10.1080/17483107.2018.1467974.

 Ramirez, Ramiro, and Chien-Yi Huang. “A Practice of BLE RSSI Measurement for

 Indoor Positioning.” NCBI , 30 July 2021,

 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8347277/. Accessed 30

 November 2022.

 138

 Raspberry Pi. “Raspberry Pi Documentation - Camera.” Raspberry Pi ,

 https://www.raspberrypi.com/documentation/accessories/camera.html. Accessed

 11 November 2022.

 “Rat in a Maze | Backtracking-2.” GeeksforGeeks , 3 August 2022,

 https://www.geeksforgeeks.org/rat-in-a-maze-backtracking-2/. Accessed 1

 December 2022.

 “Reading Device for Blind People using Python, OCR and GTTS.” IJSEA ,

 https://ijsea.com/archive/volume9/issue4/IJSEA09041003.pdf. Accessed 1

 December 2022.

 Roeder, David. “What Is the Standard Size of a Pool Table?” Blatt Billiards , 23

 November 2021,

 https://blattbilliards.com/blogs/news/what-is-the-standard-size-of-a-pool-table.

 Accessed 1 December 2022.

 Rollins, Leo. “Embedded Communication.” Electrical and Computer Engineering ,

 https://users.ece.cmu.edu/~koopman/des_s99/communications/. Accessed 11

 November 2022.

 Rollins, Leo. “Embedded Communication.” CMU ECE ,

 https://users.ece.cmu.edu/~koopman/des_s99/communications/. Accessed 4

 December 2022.

 Rosebrock, Adrian. “OpenCV Thresholding (cv2.threshold).” PyImageSearch , 28 April

 2021, https://pyimagesearch.com/2021/04/28/opencv-thresholding-cv2-threshold/.

 Accessed 11 November 2022.

 Sight Machine Inc. “Computer Vision platform using Python.” SimpleCV ,

 http://simplecv.org/. Accessed 11 November 2022.

 Sinha, Utkarsh. “Circle Hough Transform.” AI Shack ,

 https://aishack.in/tutorials/circle-hough-transform/. Accessed 11 November 2022.

 “Smart Guidance System for Blind with Wireless Voice Playback.”

 https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9395973.

 Smith, Michael. “PickPocket: A computer billiards shark.” Artificial Intelligence , vol.

 171, no. 16-17, 2007, pp. 1069-1091. sciencedirect ,

 139

 https://www.sciencedirect.com/science/article/pii/S000437020700077X?via%3Di

 hub.

 Smith, Michael. “Running the Table: An AI for Computer Billiards.” Association for the

 Advancement of Artificial Intelligence , AAAI'06: Proceedings of the 21st national

 conference on Artificial intelligence, 2006,

 https://www.aaai.org/Papers/AAAI/2006/AAAI06-156.pdf.

 “Tek Pal Tactile Low Vision TV Remote Control.” Maxi Aids ,

 https://www.maxiaids.com/tek-pal-tactile-low-vision-tv-remote-control. Accessed

 1 December 2022.

 TensorFlow. “TensorFlow Lite.” TensorFlow , Google Inc., 26 May 2022,

 https://www.tensorflow.org/lite/guide. Accessed 11 November 2022.

 TensorFlow. “Why TensorFlow.” TensorFlow , Google Inc.,

 https://www.tensorflow.org/about. Accessed 11 November 2022.

 “UHF RFID Inlay: AD-172u7 - Avery Dennison.” Avery Dennison | RFID ,

 https://rfid.averydennison.com/en/home/product-finder/ad-172u7.html. Accessed

 30 November 2022.

 “Voice Navigation Based guiding Device for Visually Impaired People.”

 https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9395981.

 Vudrag, Robert. “Choosing the Right Pool Table for Your Home or Business - Quedos.”

 Quedos Billiard Tables , 26 July 2019,

 https://quedos.com.au/guide-buying-pool-table/. Accessed 1 December 2022.

 “What Is SLAM (Simultaneous Localization and Mapping) – MATLAB & Simulink -

 MATLAB & Simulink.” MathWorks ,

 https://www.mathworks.com/discovery/slam.html. Accessed 1 December 2022.

 “World's smallest Time-of-Flight ranging and gesture detection sensor.”

 STMicroelectronics , 30 May 2016,

 https://www.st.com/resource/en/datasheet/vl53l0x.pdf. Accessed 2 December

 2022.

 140

