
 V isually I mpaired S patially
 I nteractive O rientation N etwork

 Group 14 Authors:

 Aaron Crawford Alexander Parady Arsene Landry Tatke Noah Harney
 Computer Electrical Electrical Computer

 Engineering Engineering Engineering Engineering

 Mentor:

 Dr. Chung Yong Chan

 TABLE OF CONTENTS
 1. EXECUTIVE SUMMARY 1

 2. PROJECT DESCRIPTION 2
 2.1 Project Background and Goals 2
 2.2 Project Motivation 3
 2.3 Project Function 4
 2.4 Project Objectives 5
 2.5 Required Specifications 7

 3. RESEARCH 10
 3.1 Similar Projects 10
 3.2 Relevant Technologies 10

 3.2.1 Billiards Artificial Intelligence 10
 3.2.1.1 Simulation Tools 10
 3.2.1.2 Simulation Tool Modifications 12
 3.2.1.3 Different Implementations of Shot Selection Algorithms 12
 3.2.1.4 Computation of Shot Selection Algorithm 18

 3.2.2 Computer Vision 19
 3.2.2.1 Computer Vision Software Options 19
 3.2.2.2 Computer Vision Preprocessing 21
 3.2.2.3 Computer Vision Algorithms 25

 3.2.3 Visual Impairment Assistive Technology 31
 3.2.4 User Localization 33

 3.2.4.1 RFID And Bluetooth 34
 3.2.4.2 Sensors 41
 3.2.4.3 Localization Algorithms 46

 3.2.5 User Guidance 47
 3.2.5.1 Audio Outputs 48
 3.2.5.2 Physical Sensory Outputs 50
 3.2.5.3 Guidance Algorithms 52

 3.2.6 Feedback System 53
 3.2.7 Direct User Commands 56

 3.2.7.1 Control Interfaces 57
 3.2.7.2 Audio Commands 58

 3.2.8 Visual Display 58
 3.2.9 Absolute Orientation 61

 3.2.9.1 Cue Displacement 61
 i

 3.2.10 Test Cases 61
 3.2.10.1 Game Modes 61
 3.2.10.2 Shots Supported by VISION 63
 3.2.10.3 Physical Limitations 64

 3.2.11 Processing Unit 65
 3.2.12 Communication Methods 70

 4. RELATED STANDARDS & DESIGN CONSTRAINTS 72
 4.1 Related Standards 72

 4.1.1 Wired Communication Standards 72
 4.1.2 Wireless Communication Standards 73
 4.1.3 Connection Standards 74
 4.1.4 Programming Standards 74

 4.2 Design Constraints 75
 4.2.1 Economic Constraints 75
 4.2.2 Environmental Constraints 76
 4.2.3 Social and Political Constraints 77
 4.2.4 Ethical Constraints 77
 4.2.5 Health and Safety Constraints 78
 4.2.6 Manufacturability Constraints 78
 4.2.7 Sustainability Constraints 78

 5. SYSTEM HARDWARE DESIGN 80
 5.1 Billiard Table 80
 5.2 Camera 81

 5.2.1 Computer Vision Camera 81
 5.2.2 Computer Vision Camera Mounting 84

 5.3 Visual Display 85
 5.4 Localization System 85
 5.5 User Guidance System 88

 5.5.1 Audio Array Design 89
 5.5.2 Positioning Method 91
 5.5.3 Orientation Method 91

 5.6 User Control Interface 92
 5.7 Communication Network 92

 5.7.1 Communicating Systems 93
 5.7.2 Communication Protocols 94

 5.8 Processor Selection 95
 ii

 6. SYSTEM SOFTWARE DESIGN 98
 6.1 Pool AI 98
 6.2 Computer Vision System Software Design 103
 6.3 Navigation Algorithm Design 109

 6.3.1 Localization Algorithm Design 109
 6.3.2 Guidance System 111

 6.4 Web Interface 111
 6.4.1 Output Image Generation 116

 7. SYSTEM FABRICATION 117
 7.1 PCB Design 117

 7.1.1 PCB Design Philosophy 117

 8. SYSTEM TESTING PLAN 119
 8.1 Hardware Testing 119

 8.1.1 Guidance Testing 119
 8.1.2 BLE Testing 120

 8.2 Software Testing 121
 8.2.1 Shot Selection Algorithm Testing 121
 8.2.2 Computer Vision Software Testing 122
 8.2.3 Feedback System Software Testing 124
 8.2.4 Localization Software Testing 125

 8.3 User Testing 126

 9. ADMINISTRATIVE CONTENT 128
 9.1 Project Budget 128

 9.1.1 Bill of Materials 128
 9.1.2 Project Financing 129

 9.2 Milestones 129

 10. PROJECT SUMMARY & CONCLUSION 133

 Appendix A: Copyright Permissions 134

 Appendix B: Code Segments 145

 Appendix C: References 146

 iii

 LIST OF FIGURES

 Figure 2.1 Project Block Diagram 5
 Figure 2.2 House of Quality Analysis 9
 Figure 3.1 Shot Planner Diagram 13
 Figure 3.2 Neural Network Work for State Set with Three Balls 16
 Figure 3.3 Neural Network for State Set with 3 Balls (Broken Into Two Networks) 17
 Figure 3.4 Ideal Distribution of Thresholding on Image 23
 Figure 3.5 Image Thresholding to Isolate Region of Interest 24
 Figure 3.6 Canny Edge Detection on an Image 26
 Figure 3.7 Detection of Overlapping Circles 29
 Figure 3.8 Epsilon Value on Algorithm Output 30
 Figure 3.9 Previous System Indoor Localization Design 32
 Figure 3.10 AD-172u7 UHF RFID Tag and Inlay 36
 Figure 3.11 Simplified Model of Trilateration 39
 Figure 3.12 Bluetooth BLE iBeacon (BC021-MultiBeacon) with Motion Sensor 41
 Figure 3.13 Model and Dimensions of Compact Housing HRXL-MaxSonar Model 43
 Figure 3.14 VL53L0X Time-of-Flight Ranging and Gesture Detection Sensor 44
 Figure 3.15 Localization Algorithm Array Scheme 47
 Figure 3.16 Audio Based Navigation Mechanisms 49
 Figure 3.17 Maptic Haptic Feedback Apparatus 51
 Figure 3.18 HandSight Haptic Feedback Apparatus 51
 Figure 3.19 Maze Traversal Example 52
 Figure 3.20 Force Resistive Sensor 54
 Figure 3.21 RFID Tag Embedded in Golf Ball 55
 Figure 3.22 Feedback System Shot Results 56
 Figure 3.23 TV Remote for the Visually Impaired 57
 Figure 3.24 8-Ball Features Supported By VISION 62
 Figure 3.25 Cue Contact Point 64
 Figure 5.1 Blue Wave’s Fairmount Table (Top) & Rack’s Crux 55 Table (Bottom) 81
 Figure 5.2 Example of Fixture Mounted Camera 85
 Figure 5.3 Pool Table with BLE Beacons 86
 Figure 5.4 Prototype Speaker Activation Design 90
 Figure 5.5 Designed Speaker Array 90
 Figure 5.6 Bidirectional Guidance Possibilities 91
 Figure 5.7 Worst Case Margin of Error Estimation 92
 Figure 5.8 Tentative Communication Network 94
 Figure 5.9 Jetson Nano Device Connections 97
 Figure 6.1 Example of Reachable Shot Issue 99
 Figure 6.2 Shot Angle Projection 100
 Figure 6.3 Shot Angle Quadrant 100
 Figure 6.4 High-Level Overview of Shot Selection System 103
 Figure 6.5 High-Level Overview of Computer Vision System 104
 Figure 6.6 Computer Vision Implementation 108
 Figure 6.7 Senior Design Dashboard File/Folder Structure 115

 iv

 Figure 6.8 Dashboard Layout 116
 Figure 7.1 PCB Design Block Diagram 119

 v

 LIST OF TABLES

 Table 2.1 Requirement Specifications 8
 Table 3.1 Comparison of RFID Technologies 34
 Table 3.2 Comparison of Different Ultrasonic Sensors 42
 Table 3.3 Summary of Processor Offerings 67
 Table 3.4 Performance Results of Benchmark Testing 69
 Table 5.1 Summary of Camera Options 83
 Table 5.2 Summary of Power Consumption in ESP32 87
 Table 5.3 Comparison of Communication Interfaces 94
 Table 6.1 Comparison between R and Python 113
 Table 9.1 Bill of Materials 129
 Table 9.2 Senior Design 1 Project Documentation Milestones 131
 Table 9.3 Senior Design 1 Project Design Milestones 132
 Table 9.4 Senior Design 2 Project Design Milestones 133

 vi

 1. EXECUTIVE SUMMARY

 Every day tens of thousands of people around the world struggling with disabilities have
 difficulty enjoying aspects of life that many people take for granted. People that yearn to
 walk on, touch, smell, and see the world around them in ways that they cannot. In more
 recent years, technology has certainly expanded the freedom of impaired individuals, but
 there is still a significant amount of work to be done. VISION allows people struggling
 with visual impairments to be able to play a game of 8-ball billiards without the need for
 additional human interaction. The goal is to allow the visually impaired to participate in a
 common pastime while also feeling a sense of independence.

 The idea for VISION began as an idea for making an autonomous billiards training agent
 that a billiards player could utilize to improve their performance. Although this was an
 innovative idea that can certainly help billiards players, the idea lacked a true societal
 impact. After much thought, the idea arose to implement a system that performed all of
 the tasks a visually impaired player would not be able to perform. VISION is quite
 literally the vision of a player that locates, localizes, and strategizes the game for a user.

 VISION incorporates some of the most modern technology to implement a system that is
 robust yet simple enough for people without an extensive background in electronics to
 utilize. Upon starting the system, VISION uses a camera to capture the current state of
 the billiards table. Computer vision algorithms then identify all of the billiard balls on the
 table and determine the position and color of the balls. An artificial intelligence algorithm
 is then used with the billiard ball locations to determine the best shot a user can take.
 VISION will then track the location of the user and provide audio instructions to the user
 to guide the player to the correct position for the shot. Once in the correct location, the
 user will be guided to face in the appropriate direction to take a shot.

 At this point, VISION will send information regarding the ideal shot and user positioning
 to a related project named SCRATCH to complete the actual shot. SCRATCH is a project
 working in conjunction with VISION that is responsible for the fine-tuning of a user shot.
 Once a player has made a shot, VISION will then be able to determine the outcome of the
 shot and audibly notify the user of the results.

 VISION is a large, complex project that incorporates many relevant topics in computer
 science and electrical engineering to create a product that has never been made before.
 VISION is certainly an ambitious project, but the team members are committed to
 widening the inclusivity of one of America’s favorite pastimes.

 1

 2. PROJECT DESCRIPTION

 2.1 Project Background and Goals

 Billiards is a collection of many different games played with a billiards table, cue stick,
 and several colored billiard balls. The objective of a billiards game varies depending
 upon what specific game is played, but the typical goal is to use a cue stick to pocket a
 targeted game ball. Every specific billiard game introduces rules and requirements that
 make sinking a shot more difficult than it may seem. One of the more common billiard
 games, and the focus of this project, is 8-ball pool. The goal of VISION is to design and
 implement a system that allows individuals suffering from visual impairments to become
 capable of playing a game of 8-ball billiards.

 Billiards was selected as the game of choice because of its significant complexity
 compared to other games such as chess. Chess is a game commonly associated with
 masterful planning that requires crafting moves multiple turns in advance to be
 successful. Although chess certainly is a complex logic game, it is a discrete problem in
 terms of computation. Chess has a fixed number of locations on the board, a specific
 number of pieces with strict rules about where they can move, and a finite number of
 possible ways for the game to progress. All of these reasons have led chess to become a
 commonly studied problem in computer science. There are many computer programs and
 algorithms for chess that are quite good at the game. There has been much less research
 conducted on creating a robust billiards program. Furthermore, there does not appear to
 be any billiards-style game developed specifically for the visually impaired.

 Like chess, billiards also requires players to plan their moves many turns in advance in an
 offensive or defensive manner. An offensive move is when a player tries to sink as many
 balls as possible while a defensive move is when a player tries to put their opponent in a
 position such that their opponent cannot complete a shot. The careful shot selection
 necessary for billiards is significantly more involved than the equivalent chess decision
 because there is an infinite number of positions that the state of the billiards table can be
 in. The billiard balls can arrange themselves in any position on the table at any point
 during the game, the same cannot be said for chess. There are many ways for a game of
 billiards to progress, and it can oftentimes be difficult to know what the best shot to take
 is given the current state of the game.

 For the vast number of chess programs and significantly fewer billiards programs that
 have been developed, nearly all of these projects have been software implementations of
 the game. The programs that were created were designed to be used for virtual games, not
 physical chess boards or actual billiards tables. The versions of billiards games prove that
 a software system can be used to implement a game of pool. One of the goals of VISION
 is to expand upon previous work by using an actual game of billiards, rather than a
 simulation of the game.

 2

 The success of VISION will be determined if an individual dealing with visual
 impairments is able to successfully compete in a modified game of billiards. With the
 help of VISION, a user should have the billiards table represented algorithmically and
 have the best shot determined for them. The user’s location should be tracked and used to
 navigate the user around the billiard table. The result of the user’s shot should then be
 displayed in a program to spectators around the room. If all of these individual goals are
 met, VISION will be a success. VISION should be compact and portable so that the
 system can be disassembled, moved, and assembled in a timely manner.

 2.2 Project Motivation

 The motivation of VISION is to develop a systematic way to represent a real-life game of
 8-ball pool computationally and then develop an elegant way to guide a visually impaired
 user through the best shot for them to take to win the game. VISION is a tool that can
 leverage the power of modern technology to help improve the inclusiveness of one of
 society’s most popular pastimes.

 For VISION to truly have an impact, the team decided to develop it in a way that allows
 individuals dealing with visual impairments to develop a sense of autonomy. There are
 not many games that have support for people dealing with disabilities. It can be difficult
 for some individuals to feel included when they are not able to participate in the same
 pastimes as their friends and family. Globally, about 295 million people have a case of
 near or far distant visual impairment. In addition to this, about 43 million people
 worldwide suffer from complete blindness. One of the biggest troubles they face in their
 everyday life is having their freedom limited by moving in an obstructed or limited
 environment where spatial awareness is preventing them from being able to engage in
 their daily activities.

 A lot of systems are in place in different media to help counteract or ease these issues to
 breach issues of orientation, localization, and way-finding through different technologies.
 Navigation technologies or electronic travel aids have been the backbone when it comes
 to developing technologies to help visually impaired people bridge the way for more
 specific applications such as the one we are working on for this project. Similar to the
 goal of our project, a lot of sports rules have been adapted and modified to develop
 games that are more inclusive to visually impaired individuals. For instance, beep
 baseball where the bases beep to let the players know which direction they need to go in,
 or soccer where the regular ball is replaced by an audible ball. We will use these and
 similar concepts as a motivation and a basis to determine which objectives and
 checkpoints are needed to make VISION an impactful visually impaired technology. Our
 team is motivated to broaden the inclusiveness of billiards by creating a system that
 leverages technology to plan, strategize, and see for a player.

 3

 2.3 Project Function

 A visually impaired individual that is using the VISION system will be able to have the
 system locate all of the billiard balls and determine the optimal shot for them to win the
 game. VISION will actively track the user and be able to guide the user to the required
 location through audio instructions. The system will provide instructions to the user to
 ensure that they are positioned in the general direction of the cue ball. At this point,
 VISION’s job is complete and the SCRATCH program (group #17) will take over.
 VISION will provide SCRATCH with the optimal shot angle, required force, and location
 of the cue ball.

 There is certainly a concern when two projects are interrelated with each other in Senior
 Design. It would not be fair if one project's failure leads to the failure of the other project.
 With the help of our mentor, the teams designed their projects in a way that minimizes
 interaction between the two projects. VISION will transmit three quantities to SCRATCH
 and the three values can easily be artificially constructed if needed. The SCRATCH team
 does not need to transmit any information back to the VISION team. If the VISION team
 fails to complete their project, the SCRATCH team can craft inputs that the VISION team
 should have provided. If the SCRATCH team fails to complete their project, the VISION
 team will lay the groundwork for future work. VISION will detect billiard balls, find the
 optimal shot, track the user, guide the user to the appropriate position, and position the
 user in the appropriate direction.

 The VISION team must design a system that is lightweight and able to be moved
 between different locations. The system must be designed so that it can quickly be
 disassembled and reassembled so the team can work on the project in a variety of
 locations and environments. The mobility of the system will also be helpful when
 demonstrating VISION to others and must be set up in different locations.

 VISION is a large project that incorporates a large variety of technology into a single,
 user-friendly system. The central processor for the system will be a powerful,
 computer-like processor capable of running computer vision and artificial intelligence
 algorithms. There are many systems that must be integrated for VISION to work
 properly. Figure 2.1 below shows a block diagram of all of the systems needed.

 All systems will be controlled by the powerful central processor shown in the middle of
 the diagram. The processor will ask the computer vision system to capture the current
 state of the board with a camera and transform the physical billiards game into data
 expressed in a computational way. The shot selection algorithm is then used to determine
 the best shot to take given the current state of the table. The information regarding the
 best shot to take will then be sent to the SCRATCH team and used internally. The shot
 information is used by the user localization and user guidance systems to determine
 where the user is and how to guide them to the proper location. Once the user is in
 position, the control will be transferred to the SCRATCH team to take the actual shot.
 Once the shot has been executed, VISION will take back control and determine the

 4

 results of the player’s shot. The results are displayed on a monitor and announced
 through an audio system.

 Figure 2.1 Project Block Diagram

 2.4 Project Objectives
 VISION should encompass a system that allows a visually impaired individual using our
 system to be detected around the pool table. Before a game begins, this will allow us to
 determine where the user is and bring them to the position where they would make their
 initial shot from the cue ball to the stack of balls. After every turn and during their
 subsequent turns, the same system should be once again able to detect the user to know
 where they are with respect to either the cue ball or within a set coordinate system
 determined by the project and with respect to the table. VISION might also encompass
 other localization schemes as either outlined during the research section or in the future
 considerations section. The first one would require a system that expands the range of
 localization from anywhere in the room containing the pool table. The second one would
 require a system that detects any obstacles around the user in the room containing the
 pool table or around the pool table itself. Both of these localization schemes are
 secondary to the main one requiring the user to be located around the pool table itself
 which we deem to be the most relevant objective when it comes to allowing the visually
 impaired user to pursue a game of pool.

 VISION should encompass a system that captures the current state of the pool table at
 every point during the game, that is, at the start of a game, and every round during the
 game. This system would then process the image to isolate the pool table from any sort of
 background present in the image. The system should be able to detect, isolate and

 5

 localize the billiard balls present on the pool table. The system should be able to
 differentiate the cue ball, the eight ball, the player balls, and the opponent balls. This
 system should also be able to render a mapped image of the billiard table layout with the
 balls at the right position on the rendered image to continuously reflect the current state
 of the game and will be used in other systems described below.

 VISION should encompass a system that computes the optimal shot that the user, visually
 impaired or not, can make based on a shot selection algorithm. This will involve making
 some considerations and assumptions described in later sections of the document due to
 the multitude of factors coming into play such as the skill level of the user, outside
 interference during the shot, and other relevant factors. We will outline the optimal output
 that this algorithm will need to provide after considering different options such as how
 much force would need to be put to make the shot, the positioning of the user’s hand on
 the cue stick, the angle from the base of the table to the cue stick, user posture, and other
 related metrics.

 VISION should encompass a system that navigates the visually impaired user to the
 necessary position that the aforementioned algorithm would determine, the position in
 which he/she has the best odds to make a ball. This system will rely on the previous
 systems to determine what the optimal location of the user will be to take the desired
 shot. This calculation will be needed after every shot the user takes. Our system should
 also be able to navigate the visually impaired user through a non-visual mechanism such
 as audio, tactile inputs, or similar methods. This system should be able to outline clear
 commands or properly explain commands to provide concise instructions to the user.

 VISION should encompass a system akin to a dashboard available for all users around
 the pool table, player, or spectators. The system should have the rendered image of the
 pool table mentioned above, as well as different statistics about the current game updated
 in real time. The system should hence have a way of tracking, storing, interpreting, and
 displaying information about the ongoing game. Considerations would need to be taken
 to determine the optimal way to display different information about the game in an
 eye-catching and intuitive manner for all users. For a visually impaired user, this system
 might include audio outputs to vocalize shot results and important information about the
 game progression. Considerations would need to be taken to avoid audio overload if
 audio is also being used as a way to navigate the user. This system would need to be
 presented on a medium or display readily available for everyone around the table without
 obstructing the game in session.

 All of the components of VISION should be modular and able to be individually tested
 before being integrated with the entire system. The components of VISION should also
 be able to be assembled and disassembled quickly. The entire system should be able to be
 transported in a sedan so that there is no problem moving the system from one location to
 another.

 VISION is currently a self-funded project and also would like to be made affordable
 enough for someone to reproduce themselves. For these reasons, the team would like to

 6

 keep the project under $800, so each member will not have to contribute more than $200.
 If significant changes are needed, the budget may need to be reevaluated.

 2.5 Required Specifications
 The previous sections describe the goals, objectives, and motivation behind VISION. To
 transform VISION from an idea into an actual project, requirement specifications must be
 clearly defined. These requirements are what the VISION team believes are necessary to
 bring the project to life. These requirements serve as a contract between the team
 members and the senior design advisors clearly stating what the project will be able to do.
 The success of VISION will be based on meeting the requirements specified in table 2.1.

 7

 Requirement Description

 1.1 Locate up to 10 billiard balls on the billiards table

 1.2 Differentiate between green, blue, black, and white billiard balls

 1.3 Locate all balls in an (x,y) coordinate system within 15 pixels

 1.4 Locate all six pockets in an (x,y) coordinate system within 15 pixels

 1.5 Latency of the computer vision system does not exceed 5 seconds

 2.1 Latency of the shot selection algorithm does not exceed 5 seconds

 2.2 Shot selection algorithm will produce a shot suggestion with a
 minimum specificity of 5 degree increments

 2.3 Shot selection algorithm will produce a shot suggestion with a
 minimum specificity of 3 force levels

 3.1 Latency of the user localization does not exceed 10 seconds

 3.2 Accuracy of the user localization is within 1 foot of true location

 3.3 Localization aid should work independently of the surroundings

 4.1 Position user within 1 foot of desired standing position for shot

 4.2 Orient user within 15 degrees of desired shooting direction

 5.1 VISION can be assembled or disassembled in less than 30 minutes

 5.2 The total cost of VISION should not exceed $800

 5.3 The product’s audio aids will support the English language

 5.4 Battery-powered devices used within the system should be viable
 for 1 year

 Table 2.1 Requirement Specifications

 To best quantify the correlation of various portions of VISION’s defined deliverables and
 scope, the house of quality shown in Figure 2.2 was devised. The table connects the
 required deliverables shown on the left side of the table to important functional factors of
 scope shown on the upper row. Those required deliverables are additionally ranked by
 level of importance. The interior bulk of the table relays the correlation direction between
 these factors, a solid dot representing strong, hollow dot representing a medium, and a
 down arrow representing weak correlation. A similar metric is utilized on the roof of the
 house with positive and negative signs measuring the correlation between the functional

 8

 requirements of the scope to one another. These features are connected diagonally with
 one another. The direction of improvement is added at the conclusion of the additional
 importance ratings as this allows for the team to best approach areas that require attention
 due to their high relation to the success of the project. The table shows the areas with the
 highest relative weight to be the most crucial to project success. This includes areas of
 accuracy, response time, functionality, and overall cost.

 Figure 2.2 House of Quality Analysis

 9

 3. RESEARCH

 This section of the paper covers the major topics of interest for VISION. From past
 projects to relevant technologies, this examination allows for technological solutions to
 be devised and properly informed for the project's design stage.

 3.1 Similar Projects

 Billiards Assistive Device for the Physically Challenged: A user assistive physical device
 was developed by the University of the West Indies to assist a user that was physically
 impaired and lost certain motor skills due to an accident. This mechanical device was
 aimed to improve grip strength, leading to improvements in overall performance.

 Open Pool: This open source project is built around adding visual effects to the game of
 pool. By using computer vision powered by OpenCV, the computer can generate graphics
 by using the Unity game engine. The open source project gives step by step directions to
 set up both the hardware and software required for the project. The project requires a gray
 colored pool table, a Kinect Two for Windows, a computer with Windows OS, and a
 projector. The main areas of interest come from the computer vision code available. The
 main issue is that the project has not seen much maintenance since 2014. With all of the
 recent innovations in Computer Vision, it is unlikely the open source code can be used
 without major refactoring. However looking into the basic setup of the softwares
 OpenCV code may be of great benefit in our design strategy later on. Another feature of
 the project is code for detecting made shots, or “pocket detection” as the project named it.
 While they have released software for this feature, there is currently no hardware
 requiring us to fabricate the physical detection system ourselves.

 3.2 Relevant Technologies

 VISION does not aim to create a new form of technology, but rather incorporate many
 existing forms of technology into an innovative, inclusive system. The members of
 VISION have each become subject matter experts in their respective area of focus and
 have summarized their findings throughout the rest of this section.

 3.2.1 Billiards Artificial Intelligence

 3.2.1.1 Simulation Tools

 The need for rapid simulation of games is needed to test the different shot selection
 approaches, as well as train our machine learning algorithms. These simulations will not
 encompass every shot parameter, but will let us make comparisons among the decision
 making models. Another effective strategy to model more realistic conditions will be to

 10

 introduce noise to the simulations as well. By adding a normal random change to both
 shot power and angle we can better model a person.

 Summary of Requirements:
 ● Latency of the shot selection algorithm does not exceed 5 seconds.
 ● Shot selection algorithm will produce a shot suggestion with a minimum

 specificity of 5 degree increments.
 ● Shot selection algorithm will produce a shot suggestion with a minimum

 specificity of 3 force levels.

 Pool: This is the simulation software that was implemented in the paper “Deep Cue
 Learning: A Reinforcement Learning Agent for Playing Pool”. The simulation software is
 further described in the reinforcement learning section below. This is an openly available
 project on GitHub.

 Fastfiz: This is a version of the software Poolfiz and was used by the heuristic based
 model described below. This is an openly available project on GitHub.

 Pooltool: This is a three dimensional simulation system for pool. The GUI operates very
 slowly, most likely because it is written in Python and handles 3D graphics. In order to be
 an effective option we would have to disconnect the shot selection algorithms from the
 graphical interface. The actual calculation of the shot however seems to take up a
 considerable amount of time as well. Dependency issues have been encountered while
 trying to use a special API for setting up physical simulations. In the documentation the
 author claims to not have put much work into the API thus far, and with little
 documentation, it may not be a very suitable choice. This is an openly available project
 on GitHub.

 Ultimate Pool Simulator : A simulator written in Java. This simulation project has a built
 in GUI and multiplayer mode, allowing for each player to choose a shot. It was
 developed by a group of students for a class project and the physics would have to be
 evaluated extensively. This is an openly available project on GitHub.

 Code Bullet Pool AI : This code has no documentation on its github page, the author
 created a youtube video for the project, but it is little help for setting up the project. It
 appears the code is written in an object oriented language such as Java or C++, but the
 .pde file extension makes it difficult to distinguish. The very limited documentation and
 no test cases lead me to believe this will be a difficult project to base our work on. This is
 an openly available project on GitHub.

 Pool Genius: Pool genius features a GUI for displaying the shots that significantly slows
 down the program’s performance. One shot took over 45 seconds to process, with only
 one ball remaining that was cut down to 10 seconds. The simulation is very slow and the
 overall shot selection process would likely need to be revised. This is most definitely not
 ideal for any sort of computations and would be much too slow for training against a
 model we make. While the shot selections are perfect, we may be able to tune down the

 11

 performance on these in order to speed up computation. Another major consideration for
 this code is that there are no test cases currently available. Without these unit tests, it will
 be much harder to understand the code, as well as to make changes without breaking
 much of the functionality in unforeseen ways. This is an openly available project on
 GitHub.

 PickPocket: This is a software developed by Micheal Smith, it is covered extensively in
 the section labeled Search Algorithms. The code is not openly available and we would
 have to request the source code, which is less preferable to an open source project with
 more documentation. The source code for this project would have to be obtained directly
 from the developer.

 3.2.1.2 Simulation Tool Modifications

 Shot Selection Algorithm Guidelines: We will be defining the shot selection algorithm as
 our way of deciding from what angle and with what force to hit the cue ball. For the
 purpose of our research, we will be looking at the table from only an overhead 2D
 perspective. This leaves out many important aspects of the game of pool, such as
 allowing for rotational momentum of the ball to change the shot. Our available simulation
 software makes it difficult to account for another axis. It would also be extremely
 difficult on any machine learning algorithms to add another axis for our output.

 Limitations of Shot Selection Algorithms: The shot selection algorithm's usefulness is
 limited by human ability. The best shot may require perfect accuracy to hit correctly, and
 may be much more difficult than a safer alternative. That is why in most cases, the easiest
 shot is the best. For example, an algorithm may say there is a way for the player to make
 three balls at once, but it may require more precision than a human is capable of and may
 increase the risk of losing if a miss occurs. Another issue will be the communication from
 the algorithm to the person. Even if an accurate algorithm is produced, we must find a
 suitable way to communicate the power needed on the shot. Another issue is placing the
 user in the right location to hit the cue ball. Finally, the user may also strike the ball in an
 unpredicted way upon the vertical axis which our algorithm does not take into account.
 All of these factors lead to issues which must be taken into account for our algorithm.

 Planned Simplifications: In order to simplify our model, we will be focusing only on a
 game in which only the horizontal angle of which the ball will be struck will be output by
 our model. This takes away the need to calculate spin on the ball, bringing down the
 complexity of shot selection immensely. We will also be only needing to come up with a
 shot selection algorithm for the solid color balls. This means that the algorithm does not
 need to interpret the positions of the opponents balls when coming up with a shot
 selection.

 3.2.1.3 Different Implementations of Shot Selection Algorithms

 Heuristic Model: This model is based on a research paper labeled “A Heuristic-Based
 Planner and Improved Controller for a Two-Layered Approach for the Game of Billiards”

 12

 written by Jean-François Landry, Jean-Pierre Dussault, and Philippe Mahey (Landry et
 al.). This model used the Fastfiz simulator for simulating shots during testing. This model
 takes in 5 parameters : α horizontal offset from the ball’s center; b vertical offset from
 the ball’s center; θ angle of the cue stick in relation to the plan of the table; ɸ orientation
 of the cue stick; 𝑣 initial speed given to the cue ball. The simulation tool Fastfiz is
 deterministic, so noise was added to the shot parameters to make results more realistic.
 An interesting heuristic found by the paper deals with safety shots, these are shots which
 are made to make it more difficult for the opponent to make a shot. These were
 determined to be impractical unless all other possible shot selections have a low
 probability of success. This is due to the difficulty of guessing what shot your opponent
 will take. The model in this paper uses a two layer approach, the name given to these two
 layers are the planner and the controller. Figure 3.1 below gives an overview of the
 planner architecture.

 Figure 3.1 Shot Planner Diagram (Awaiting Permission from Jean-François Landry)

 The high level planner uses several domain specific heuristics in order to narrow down
 the search space for the shot selection algorithm. At the beginning of a turn the planner
 determines which shots are possible, with this it creates a shot list made up of direct,
 combination, and indirect shots. It also lists all the pocket ball combinations. After this,
 the algorithm goes over the shot list and creates a difficulty value for every single shot on
 the list.

 Another heuristic used by their algorithm is to always prefer shorter shots. The most
 successful approaches are the ones which require the cue ball to travel the least distance.
 This is due to the longer distance traveled creating for greater deviation from desired
 outcome as well as increased speed leading to more powerful and chaotic collisions.
 Another approach which was used was through the implementation of a k-means
 clustering algorithm which grouped the balls into different clusters. The reason that this
 method was added was to hit closest shots first, as those were generally the strongest shot
 choices. Another function we can take from this research is their formula for creating a
 function to penalize possible shots based on difficulty of the shot. For an easy shot, the
 direction is almost insignificant as long as the ball is tapped on a certain side. For more
 difficult shots, there is a much smaller area which the ball must be hit at and with a
 certain speed. An easy shot also allows for better positioning options, if there is a wider

 13

 range of area on the ball you may hit to sink it into a hole, you then have more places to
 position the cue ball after the hit.

 Reinforcement Learning Model: The reinforcement learning model is based upon trial
 and error in game-like situations. It is a machine learning algorithm implemented by
 using rewards and punishments. This model will find a locally optimal way to achieve a
 victory, or at least to maximize points. It is one of the most widely used models for
 creating an artificial intelligence system for games and therefore will serve well for pool.
 This will be much less time intensive than a supervised learning model. In a supervised
 learning model, the algorithm would imitate a human player. This would also create a
 model only as good as one of our team members, which is not at all optimal.

 Assigning what constitutes a reward and punishment, as well as the relative weight of
 each is perhaps the most difficult part of designing a reinforcement learning system. We
 will try many different assignments, but some of the different rewards and punishments
 would be the following:

 Rewards: made ball (+1) or win game (+10)
 Punishments: made opponent ball (-1), scratch (-1), lose game by opponent(-5),
 or scratch on 8 ball (-10)

 These systems often come up with unique methods that are not very intuitive. These shot
 selections may go against common knowledge and may be a poor way to teach newer
 pool players. Therefore we must thoroughly analyze this model once it is created to
 ensure that the shots selected are logical. On the other hand, this system may come up
 with better ways to cope with noise introduced to the system. A heuristic based model
 will work the same regardless of noise, but the reinforcement learning can learn to play
 with different levels of noise, thus modeling different skill levels of players. Exact
 thresholds for noise levels to model different levels of players would be arbitrary, but
 should be found by trial and error on our selection for the pool simulator. The source
 code for this project can be found on a publicly available GitHub repository as well.

 We will be basing our research on a pool specific reinforcement learning model using a
 Markov Decision Making process with four different reinforcement learning algorithms:
 Q-Tablebased Q-Learning (Q-Table), Deep Q-Networks (DQN), and Asynchronous
 Advantage Actor-Critic (A3C) with continuous or discrete values (Liao et al.). This
 process is trained on the open source simulation project labeled “pool” in section 3.2.1.1.

 Markov decision making process (MDP) is for modeling discrete decision or
 optimization problems where there is randomness and uncertainty in the problem. It can
 be represented mathematically as a 4-tuple (S, A, P, R) where:

 S is the set of states, called state space
 A is the set of actions, called the action space
 P is probability that action a in state s at time t will lead to state s’ at time t + 1
 R is the reward for transitioning from state s to s’ after action a

 14

 The sum total of different states may be finite or infinite, depending on the application. A
 game such as chess would have a finite number of different states to choose from, as well
 as discrete choices, making it a much easier decision making process. Pool on the other
 hand has a continuous range of actions as well as an infinite amount of possible states.
 The solution to an MDP is called a policy. This policy is a mapping from your current
 state to the preferred action in order to maximize rewards. This policy will form what is
 known as a markov chain, as the new state will also have a mapping to the next best state
 to achieve the best overall reward. A note about the markov chain is that it maps more
 than one probability, though the highest probability for reward will be selected in our
 case, there will be other paths that also offer reward from any state action pair. For the
 game of pool this will be very difficult to model. One such solution would be to choose
 the nodes of the MDP chain to be ball pocket pairs. This will however make it rather
 difficult to model shots that either hit the side of the pool table, or another ball before
 falling into the pocket. This method would also introduce much ambiguity in terms of
 angle and power, as there is a wide range of angles to result in any given ball pocket
 combination. Another option would be to discretize the power and angle of all shots. A
 discrete and finite pool action set would be as follows:

 A = (Force, angle) = (F, 𝜭)
 F = [1, ... ,10]
 𝜭 = [1, .. , 360]

 A discrete and finite pool state set would be as follows:

 S = [x 1 , y 1 , …, x n , y n]
 Pool table is 127cm by 254cm, diameter of ball is 5.715cm, radius = 2.8575
 Assuming y = [0, 253]
 Assuming x = [0, 126]
 Some values will be labeled as impossible to reach due to size of pool ball
 * n is total number of remaining balls
 * x 1 , y 1 is the cue ball

 Q-Learning: This is an algorithm to make the best selection in a MDP, otherwise known
 as a policy. This model learns the Q-values for every action and state pair. These
 Q-values are stored in a Q-table that maps actions on the horizontal axis and states on the
 vertical axis. The Q-learning method is applicable to a finite MDP. As mentioned
 previously simplifying the actions in the game of pool to a finite MDP can be difficult,
 the approach taken by the writers of the previously mentioned paper was to simplify the
 game of pool, similar to how was done above. The Q-learning algorithm works by
 referring to the Q-table and picking the action with the highest Q value for the given
 state, during training when the Q-table is empty the agent will make random actions in
 order to learn the different rewards for taking those actions, eventually filling in the
 Q-table. The main reason for this algorithm is to better understand delayed rewards in the
 system. There is a variable 𝛾 which represents the discount factor, when set to zero, the
 algorithm is myopic and simply picks the best current rewards (greedy algorithm), but by

 15

 increasing this value, you find a path which gives higher long term rewards. An example
 Q-learning model is shown below:

 Q new (s t , a t) = Q(s t , a t) + 𝛼(r t + 𝛾 (maxQ(s t , a)) - Q(s t , a t))
 𝛼 is the learning rate
 Q(s t , a t) is the old value
 maxQ(s t , a)) is the best estimate of the optimal future value
 𝛾 is the discount factor

 Deep Q Networks: This is used due to the fact that Q-Learning works well for a small
 number of state action pairs, but as this number grows, the algorithm becomes less
 efficient. In the case of a modeling pool, the number of table states is already so large,
 when paired with the vast amount of actions and the size of the Q-table grows too rapidly
 for most computers to handle. In the paper above, the Q-table for a simple two ball
 system was approximately 1.12 GB, and this number grows drastically as other balls are
 added onto the table. In order to combat this explosive growth of the Q-table size we will
 use a new learning algorithm. The total size of the state and actions pairs for our simple
 model would be on the order of (Action set * State set) n where n is the number of balls.
 A deep Q network employs a neural network in order to come up with an approximation
 for the Q-learning algorithm. The input nodes for the neural network would be the current
 state of the table and the output nodes on the deep Q network represent every possible
 action. The value for that output node is the approximated Q-value. In our simplified
 case, 3600 output nodes is still significant, but the action set is much smaller than the
 state set and this is a preferred method in terms of space complexity. The total size of the
 model achieved in the paper was approximately 162 KB. The neural network consists of
 two hidden layers of 64 and 256 nodes respectively. Figures 3.2 and 3.3 below are two
 representations of what such a model may look like.

 Figure 3.2 Neural Network Work for State Set with Three Balls

 16

 Figure 3.3 Neural Network for State Set with 3 Balls (Broken Into Two Networks)

 Asynchronous Advantage Actor-Critic (A3C): This algorithm was developed by Google
 Deep Mind and first appeared in 2016. A3C implements several workers to gather
 information independently and asynchronously, then by using this information in a global
 network, the function value and policy may be estimated. While Deep Q-networks only
 use one environment and one agent in their training, AC3 uses several environments and
 agents. These agents act completely isolated from one another in their learning process,
 this allows for more diversified training and avoids local maximum optimizations. The
 other benefit of A3C is that it is useful for a problem with infinite space and infinite
 actions, meaning that it offers the most precise actions for any given space. This is done
 by breaking the model into an actor and a critic. The actor model takes in the
 environment and chooses the best possible action with its current data, while the critic
 model takes in the environment and acts as an evaluator for that choice.

 The overall consensus put forth by the paper is that the A3C model was the most ideal
 model taking into account the training time and required space. The results for the models
 compared to the random baseline are not particularly impressive and would require
 refactoring to even get a usable amount of precision. Ultimately these algorithms do not
 seem to compare to the precision of search and heuristic based models. The benefits iof
 dealing with noise in the system may be a reason to attempt to build a model of our own.

 Search Based Model: The research gathered for this section is for search algorithms in
 the game of pool. One major search based shot selection algorithm is known as
 “PickPocket” (Smith), this program would go on to win the first international computer
 billiards competition. One of the key points made is the inherent difficulty of using a
 search algorithm on a non deterministic and continuous set of outcomes. Search
 algorithms are a perfect way to choose the best move in a deterministic and discrete game
 such as chess, however, the difficulty is magnified in the game of pool. Another
 disadvantage is the considerable overhead required by the search algorithm to run a
 physics engine to determine the outcome of a given shot. This physics engine severely
 limits the breadth of the search tree. One such search algorithm suggested by the author is
 the Expectimax search algorithm.

 17

 The Expectimax search algorithm is a game theory algorithm that is a variation of the
 Minimax algorithm. While the Minimax algorithm expects the adversary to act optimally,
 the Expectimax algorithm expects the adversary to make non optimal decisions based
 somewhat on chance. The tree structure for this algorithm depends on nodes labeled as
 change nodes. These nodes present in the search tree represent points where the outcome
 is non-deterministic. An abstraction must be made in order to simplify the problem and
 use Expectimax. A pocketed shot effecting no other balls will result in a particular table
 state, while the missed shot can result in an infinite amount of different table states.

 Another model which is brought up by the author is the Monte-Carlo simulation. This
 model is used in everything from modeling the card game poker to financial risk. The
 main purpose is to calculate probabilities of outcome when random intervention of
 variables is present. For the Monte-Carlo simulation, a number of samples or table states
 is calculated after each generated shot, each sample is a child node of the previous shot.
 This pattern trickles down to form a tree-like structure, with the score of each node being
 the average score of all the nodes children. The higher the number of samples, the more
 accurate the results. However the runtime increases exponentially as the number of
 samples are increased, therefore a proper balance must be found when using this
 simulation. When comparing this Monte-Carlo simulation to the previously mentioned
 Expectimax, you will see the main trade off is breadth vs. depth. The Monte-Carlo
 simulation has a much wider tree structure while the Expectimax is able to create a
 deeper tree structure.

 3.2.1.4 Computation of Shot Selection Algorithm

 The shot selection algorithm requires a system with high computational power for either
 a large search algorithm or heuristic algorithm. For a mathematically intensive machine
 learning algorithm, VISION would require a large computational resource for the training
 phase, but would require significantly less compute power thereafter. The use of a
 microcontroller will not be able to handle the large amount of processing needed. The
 options we may look for are either towards a microprocessor or a cloud computing
 solution.

 Cloud Computing: In order to compute the function on a powerful machine and in a cost
 effective manner, one strong candidate is an Amazon Web Service product called a
 Lambda function. The lambda function allows you to run code on the cloud without
 having to manage the infrastructure. Instead of configuring and running a server on the
 cloud which is paid for based on time, you can instead use a lambda function which is
 paid for by usage. It has a strong use case for IoT backends and can be scaled quickly
 based on requirements. Amazon Lambda is currently on the free tier of AWS services and
 would be free to use for our small number of requests. There is also native support for
 Python, Java, Node.js, PowerShell and C# among others. This wide variety of options
 will allow us to implement almost any shot selection algorithm in the cloud. There is also
 a low amount of data being input into the lambda function as well as returned by the

 18

 Lambda function. This means that wireless communication bandwidth will not cause any
 large issues.

 3.2.2 Computer Vision

 3.2.2.1 Computer Vision Software Options

 The computer vision portion of this project is the initial input to the entire system. An
 image will be captured from the camera and then processed by the selected computer
 vision algorithms. The chosen algorithms should be able to isolate the billiards table from
 the background, identify all of the billiard balls on the table, determine the position of all
 of the billiard balls on the table, and disregard all other objects on the table. The cue ball
 and eight ball, due to their importance in various billiard games, should also be
 distinguished from the other billiard balls on the table. The output of this subsystem
 should be the coordinates of all the billiards balls in play and a special identifier for the
 cue ball and eight ball.

 Isolating the billiards table from the background can be accomplished by detecting the
 borders of the table and excluding all of the pixels outside of this border. The billiard
 balls can be identified by searching for circular contours, or outlines, in the image. The
 position of the billiard balls can be determined by utilizing the location of the circular
 contours previously found. All of the incorrectly-detected objects can be excluded by
 checking the size, shape, and color of all detected objects to ensure that only billiard balls
 are tracked. Finally, the cue ball can be distinguished from all of the other billiard balls
 by checking the color of the detected objects for a purely white object.

 The requirements for this project are relatively common in computer vision and many of
 the current computer vision offerings are more than capable of the required functionality.
 The ideal software package for this project will require the least amount of computing
 power while ensuring high accuracy for detecting and locating the billiard balls.
 Furthermore, the ideal software will have a low latency to allow a user to play a game of
 billiards in a reasonable time. The requirements for the system are summarized below.

 Summary of Requirements:
 ● System can locate up to 10 billiard balls
 ● System can differentiate between white, black, green, and blue billiard balls
 ● System can locate the balls in an (x,y) coordinate system with 15 pixels
 ● System can locate the six pockets in an (x,y) coordinate system within 15 pixels
 ● System latency does not exceed 5 seconds

 OpenCV: OpenCV is a computer vision and machine learning library that provides C++,
 Python, Java, and MATLAB interfaces and is supported by all of the major operating
 systems. The library is open source and contains thousands of ready-to-use computer
 vision algorithms that have been used by many prominent companies like Google,
 Microsoft, Intel, IBM, Honda, and Toyota (OpenCV “About OpenCV”). OpenCV offers
 extensive support by providing forums, tutorials, courses, and detailed documentation.

 19

 OpenCV is written in optimized C++ code which allows for high-speed execution and a
 low software overhead.

 SimpleCV: SimpleCV is an open-source framework developed by Sight Machine to easily
 develop computer vision projects. The framework combines various computer vision
 libraries, including OpenCV, and abstracts many of the low-level details away from the
 developer. SimpleCV prides itself on making computer vision easy and accessible to
 everyone (Sight Machine Inc.). The framework is written in Python and available on all
 major operating systems. SimpleCV has a larger software overhead because it is a
 framework rather than a single library. SimpleCV does not appear to be under
 development anymore, but still has a stable release available to download. The
 documentation, forums, and overall support of SimpleCV are much less useful when
 compared to the other computer vision offerings that are available.

 TensorFlow: TensorFlow is an open-source machine learning platform made by Google
 to create, train, and implement designs. Tensorflow can be used with C, C++, Java, Go, or
 Python and supports many of the popular operating systems. Coca-Cola, Intel, Twitter,
 Airbnb, and other prominent companies utilize TensorFlow (TensorFlow “Why
 TensorFlow”). One of the main strengths of TensorFlow is the ability to train and deploy
 custom machine learning models. The software package also comes with many
 pre-trained models that can also be used.

 Although TensorFlow was not designed specifically for computer vision, there is built-in
 support for computer vision applications. There is support for servers, IoT (Internet of
 Things) devices, and web devices. There is ample support for TensorFlow with many
 pre-trained models, datasets, blogs, forums, and tutorials readily available. Since
 TensorFlow is a collection of machine learning tools, it has a relatively high overhead
 when compared to some of the other computer vision offerings. The latency of this
 software package needs to be considered.

 TensorFlow Lite: TensorFlow Lite is a specialized version of TensorFlow designed
 specifically for mobile and embedded devices. This software package is optimized for
 latency, privacy, connectivity, size, and power consumption (TensorFlow “TensorFlow
 Lite”). TensorFlow Lite can be used with Java, C++, Python, and other popular
 programming languages. It supports Linux and many common microcontroller operating
 systems. This software package requires little space on a microcontroller and incorporates
 hardware acceleration to boost performance and reduce latency. Similar to the standard
 TensorFlow, TensorFlow Lite was designed for machine learning but does support
 computer vision applications.

 Nvidia Vision Programming Library (VPI): The Vision Programming Library (VPI) is a
 software library developed by Nvidia for computer vision and image processing
 applications. This library is optimized for performance on the Jetson Nano line of
 processors. The VPI supports both C++ and Python programming and is available on
 most major operating systems. The optimized algorithms in the VPI offer significantly
 better performance compared to many other computer vision tools and can be up to fifty

 20

 times faster than similar software packages (NVIDIA Corporation). In addition to being
 highly efficient, the VPI can be used in conjunction with other popular computer vision
 tools. Most notably, the VPI easily integrates with OpenCV to quickly produce computer
 vision applications. The VPI is relatively new compared to some of the other computer
 vision tools and new versions are still currently being developed. There is not as much
 community support compared to OpenCV and TensorFlow, but Nvidia does offer a
 variety of tutorials and a forum where Nvidia developers frequently answer questions.

 YOLOv3 (You Only Look Once): The You Only Look Once version 3 computer vision
 tool is an object detection algorithm that is built upon Keras and OpenCV. This algorithm
 was designed for fast real-time object detection, but can still be used to process images.
 The algorithm favors speed over accuracy and has a low accuracy for detecting small
 objects compared with other commonly used algorithms (Meel). Although newer
 versions of the YOLO algorithm have improved the accuracy, this software was not
 further pursued because of the low accuracy for small images.

 Keras: Keras is a Python API designed to simplify the use of TensorFlow 2.0 for users.
 Keras abstracts away many of the low-level details associated with developing in
 Tensorflow while maintaining all of TensorFlow’s benefits. The API prides itself on
 being simple, flexible, and powerful so that applications can be rapidly developed
 (Keras). Keras, like TensorFlow, was developed to be a machine learning tool and is used
 by NASA and YouTube. KerasCV is a subsection of Keras which supports many
 standard computer vision features such as image classification, object detection, and
 image manipulation. There is support for KerasCV in the form of guides, example code,
 forums, and a community supporting the software.

 3.2.2.2 Computer Vision Preprocessing

 OpenCV is the primary software being used for the computer vision needs of this project.
 Nvidia’s VPI will be implemented if needed to improve the algorithm performance.
 OpenCV offers thousands of functions that perform a wide range of operations on images
 and videos. With so many possible options, it is important to narrow down the scope of
 OpenCV to a smaller number of relevant functions. This section discusses some of the
 necessary functions for image preprocessing that are needed for implementing various
 computer vision algorithms.

 The initial input for the computer vision subsystem, and the entire system overall, is an
 image of the current state of the billiard table. The image preprocessing begins by
 converting the color space of the image from RGB to grayscale. Depending upon the
 selected algorithm, the image may also need to be thresholded. Thresholding of an image
 is essentially creating a binary image based on a threshold value. Finally, image filtering
 may also be needed to remove unwanted noise from the image or to prepare an image for
 subsequent algorithms. Some, or all, of these preprocessing steps, may be necessary
 before running object detection algorithms on the image.

 21

 Image Acquisition: The first step of all the needed algorithms is to capture the current
 state of the table. From this image, the position of the billiard balls will be extracted and
 later used by other subsystems of the project. OpenCV easily interfaces with any type of
 camera connected to the device on which the program is running. The selected webcam
 and how the webcam will be mounted are discussed in a future section. OpenCV will be
 used to control the webcam and capture the image when needed. OpenCV also easily
 allows for the captured image to be saved onto the device in which the program is
 running. This feature will help save images to later be used as output for the user.

 Color Space Conversion RGB → Grayscale: Many of the computer vision algorithms
 that OpenCV implements require a grayscale image. By default, the input image is
 captured in RGB (red, green, blue) format. The RGB color format is how many images
 are displayed because it offers a wide range of possible coloring options to give the most
 accurate color representation of the image. Each pixel of the image will have an eight-bit
 red, green, and blue component typically displayed as a decimal value between 0-255.
 The combination of all of these color values is what defines the color of a pixel. While
 this large amount of color data is useful in displaying vibrant images, it is not helpful
 when trying to process an image.

 To reduce the amount of computation needed, nearly all computer vision algorithms
 require that the image be converted from an RGB format to a grayscale format. This
 conversion allows for each pixel to be represented by one eight-bit value. A grayscale
 value of 0 corresponds to black while a grayscale value of 255 corresponds to white.
 With a grayscale conversion, all of the RGB-colored pixels of an image are mapped to a
 corresponding grayscale pixel. Although the color information is lost during a grayscale
 conversion, the information necessary to perform the computer vision algorithms is
 preserved. Specifically, the edges, regions, blobs, junctions, and other relevant
 information are maintained when an image is converted to grayscale (Breckon and
 Solomon 9-14).

 The actual conversion of an RGB image to a grayscale image is simple in OpenCV.
 OpenCV allows for the conversion of color spaces with a call to the cvtColor() function.
 This function has many different predefined conversions that will allow for the input
 image to be converted to grayscale. One important detail to note is that the standard color
 format for OpenCV is BGR rather than RGB, a small modification will be needed to the
 function call when implementing the color conversion (OpenCV “Color Space
 Conversions”). The conversion of the initial input image from a color space to a
 grayscale space is lossy, meaning the initial image cannot be reconstructed easily. For this
 reason, the original input image must be saved so that it can be used in other parts of the
 project.

 Image Thresholding: Some of the algorithms that OpenCV offers require an image to
 undergo thresholding before being processed. Specifically, algorithms that detect the
 edges of images utilize thresholding. Thresholding is a process to break an image into
 distinct regions of pixels to make images easier to process (Data Carpentry). In a sense,
 thresholding an image is converting it to binary because all of the pixels will be black or

 22

 white. This type of image preprocessing is useful because distinct edges begin to form
 around features in the image which makes more complicated algorithms, like edge
 detection, possible.

 One of the challenges of implementing image thresholding is determining what threshold
 value to use for an image. The threshold value will be used to determine which pixels are
 turned completely black and which are turned completely white. It can be difficult to
 determine an appropriate threshold value because the threshold will depend on the
 camera, lighting, and other factors that may not always be consistent. A common
 technique is to create a histogram of the intensities of the grayscale pixels as shown in
 figure 3.4 (Jayasekara et al. 530). Ideally, the histogram will have a clear distinction of
 values above and below the threshold. These histograms can be constructed in a variety
 of lighting conditions and an empirical value can be deduced from the findings.

 Figure 3.4: Ideal Distribution of Thresholding on Image (Permission Granted by Awantha
 Jayasiri)

 Rather than empirically determining the threshold value, Otsu’s method can be used for
 determining the optimal threshold value. Otsu’s method works by iterating through
 possible threshold values and determining which threshold value gives the tightest
 clustering of black and white pixels (Muthukrishnan). Otsu’s method tries many possible
 options and assigns values to the accuracy of the threshold, the highest value corresponds
 to the best threshold. While this approach does seem more accurate than the empirical
 approach, it will still be impacted by varying lighting conditions and where the billiard’s
 table is located.

 For both previously mentioned techniques, there is one threshold value used for the entire
 image. The technique of having one thresholding value is called global thresholding.
 Global thresholding faces challenges when the lighting and picture resolution are not
 uniform throughout an image. To mitigate these issues, adaptive thresholding can be
 used. Adaptive thresholding does not use a single global threshold value, but rather
 compares the grayscale values of neighborhoods of pixels to determine localized
 thresholds. This approach to thresholding accounts for lighting issues that may make one
 portion of an image darker than the rest. By using many threshold values, adaptive
 thresholding can produce much more accurate results and will typically outperform

 23

 global thresholding techniques. An example of adaptive thresholding on objects of
 various colors and sizes is shown in figure 3.5 (Rosebrock).

 Figure 3.5: Image Thresholding to Isolate Region of Interest (Awaiting Permission from
 Adrian Rosebrock)

 If image thresholding is needed for the selected computer vision algorithm, OpenCV
 supports all of the discussed thresholding techniques. More than likely, an adaptive
 thresholding algorithm would be used because of its better accuracy. OpenCV offers
 multiple different kinds of adaptive thresholding algorithms including adaptive mean
 thresholding and adaptive Gaussian thresholding. The specific type of adaptive
 thresholding used will depend on what computer vision algorithm is selected.

 Image Filtering: Image filtering is the process of removing aspects of an image that are
 not desired to aid in processing the image. There are many different kinds of image filters
 available and they are most commonly used to remove noise, sharpen the edges, or blur
 the image together. These various types of filters are used for specific applications and
 help improve the quality of the final output. In general, image filtering occurs by looking
 at every pixel in the image and comparing it to all of its neighboring pixels through
 convolution. All of these pixels are then compared and altered based on the desired type
 of filtering.

 One of the main applications for image filtering is noise removal. Noise, or unwanted
 additions to images, arises from many different factors related to how images are

 24

 acquired. Many types of noise removal filters can be applied to images that come at a
 tradeoff of accuracy for computational complexity. Two of the simpler filters are the
 mean filter and the median filter. The mean filter is useful for removing uniform noise
 throughout an image but tends to worsen the image’s overall clarity. The median filter is
 useful for removing salt-and-pepper noise, small regions of high-intensity noise, and is
 better at preserving the image clarity (Breckon and Solomon 90-94). A more complex
 filter is the Gaussian filter that can be used to remove noise, smooth an image, or prepare
 an image for edge detection. The Gaussian filter can be used for a wide range of
 applications because it allows the user to control a standard deviation parameter.
 Depending upon the value of this parameter, the filter can be used for different tasks.

 Image filtering is also used to enhance an image before being used in an edge detection
 algorithm. Edge detection filters work by searching for regions of an image where there
 is a large amount of change occurring between pixels. Conceptually this represents a
 transition from one aspect of an image to another. Filters that are designed for edge
 detection locate these regions and amplify these transitions so that they are more easily
 seen during further processing. There are many different image filters available, OpenCV
 supports the Sobel, Scharr, and Laplacian filters (OpenCV “Image Gradients”). Overall,
 these filters are rather similar and most image processing algorithms will specify which
 filter is recommended to achieve the best results.

 3.2.2.3 Computer Vision Algorithms

 Once an image has undergone the necessary preprocessing, computer vision algorithms
 can be applied to extract the necessary information out of the image. This subsystem is
 responsible for isolating the billiards table from the background, identifying the billiard
 balls and their position, and differentiating the cue ball from the other billiard balls. The
 following section discusses image processing algorithms that can be used to achieve the
 computer vision goals of this project.

 Canny Edge Detection: The Canny Edge Detection algorithm is a popular image
 processing technique that can be used to extract all of the edges from an image. This
 algorithm gained a lot of popularity because it was designed to exclude incorrect or
 misleading edges that previous algorithms tended to include. This algorithm can be useful
 for both isolating the table from the background as well as identifying the billiard balls. A
 sample image after undergoing canny edge detection is shown in figure 3.6
 (BogoToBogo). The table itself will appear as the largest rectangular edge in the image
 and the billiard balls should be the only circular objects in the image. Using these
 characteristics, the table and billiard balls can be detected.

 25

 Figure 3.6: Canny Edge Detection on an Image (Awaiting Permission from BogoToBogo)

 Canny Edge detection is a multi-step process that begins with filtering the image using a
 Gaussian filter to remove any present noise. A Sobel filter is then applied to find and
 magnify all of the discovered edges. The algorithm then checks all of the discovered
 edges and only allows the localized maximum pixels to pass to the next stage of the
 algorithm. This process ensures that the returned edges are the thinnest, most prominent
 edges in the image. The final step in the algorithm is another check of which edges
 should be returned and which edges should not. A hysteresis threshold is applied to the
 image. This is a threshold technique where two threshold values are used to identify only
 the strongest edge candidates and ignore the weaker edges (OpenCV “Canny Edge
 Detection”).

 This edge detection is appealing because it can offer a way to isolate the billiards table
 from the background of the input image. The border of the table is a nearly perfect
 rectangle and should be easily detected by this algorithm. Once the outer edge of the table
 has been detected, the space outside of the edge can be ignored. The image can be
 cropped or one of OpenCV’s many functions can be used to mask everything outside of
 the table. Isolating the table will be beneficial because any further manipulation of the
 input image will have the background removed.

 Template Matching: Template matching is a simple, but powerful algorithm for locating
 specific objects in an image. Template matching works by having a template, or sample
 image, of the object being searched for. The template begins in the upper left corner of
 the image and every pixel from the template is compared with every pixel in the input
 image. The template is then moved to the right by one pixel and the pixel comparison is
 done again. When the template reaches the end of a row, the template is moved down to
 the next row. This process, which is known as two-dimensional convolution, is repeated
 until the template has been compared in every possible location with the input image.
 Regions of the image that match the template will be assigned a high associativity value
 and regions that do not match the template will be assigned a low associativity value. The
 regions with the highest associativity values will be considered matches for the template
 (Adaptive-Vision).

 26

 The template image must be the same size as the object appearing in the input image. The
 template is being compared in every possible location in the input image. If the template
 is not the same size as the object in the input image, it is possible that the object will not
 be discovered or an incorrect object will be detected. Additionally, there are many ways
 to perform pixel comparisons. Different algorithms implement different pixel matching
 operations which can impact the algorithm’s performance and accuracy. OpenCV
 implements six different operations which can all be used for template matching. The
 choice of which operation to use can be decided by trial and error with actual input
 images to determine which operation works best for the project.

 One consideration when using template matching is if an RGB or grayscale image should
 be used for the input image. Most template matching algorithms, including the one
 supported in OpenCV, allow for both colored and grayscale inputs to be used. The benefit
 of using colored input images is that the algorithm will be able to better detect matches of
 a specific color. The increased matching ability is because there will be significantly
 more pixel values to compare the template image with. The drawback to using colored
 input images is that the algorithm becomes more computationally complex because now
 each pixel has a red, green, and blue component to compare. When using a colored input,
 the algorithm is essentially run three times, once for each color channel, and the results
 are averaged together for each pixel (OpenCV “Object Detection”).

 Template matching would be beneficial to use when trying to identify and localize the
 billiard balls in the input image. The maximum number and possible colors of the billiard
 balls being used will be known. Each of the billiard balls can have its own template
 image and the algorithm can be run for each possible billiard ball. There will need to be
 some type of confirmation that the object detected by each iteration of the algorithm
 found the correct billiard ball because some of the balls will not be on the billiards table.
 This approach also may be too computationally complex and lead to high latency. If the
 algorithm is run for each possible billiard ball using a colored input image, there will be a
 lot of intensive computation every time the state of the billiards table changes.

 Suzuki’s Algorithm (Finding All Contours): Contours in image processing are the lines
 that join all of the points along the border of some shape or object. Contours can be
 thought of as the outline of an object that is made between the object and the background.
 This idea is useful because the expected contours of the billiard balls and the billiard
 table can be used to detect these objects. An algorithm that finds all of the contours
 present in an image can be run, and the contours that are found can be filtered to extract
 only the desired contours.

 Suzuki’s algorithm, which is implemented by OpenCV, works by traversing the input
 image pixel by pixel from the top left to the bottom right. The algorithm works by
 comparing the value of a pixel to the values of the surrounding pixels. For many
 implementations of this algorithm, a binary image is required. As each pixel is examined,
 it is assigned a value that can be used to determine if an outer border, hole border, or
 neither has been discovered (Kang and Atul). These results can then be used to determine
 what contours exist in an image.

 27

 Finding all of the contours in an image is a useful feature, but contours that are not
 desired will also be found. To be able to successfully implement this algorithm, all of the
 contours that are found will need to be filtered. Only the contours of the billiard balls and
 billiard table should be returned from the computer vision system. The main application
 of this algorithm would be to detect and localize the billiard balls and the billiard table.
 For this reason, any contour that is not a quadrilateral or a circle can be ignored. It is
 possible to approximate all of the contours to common geometric shapes by using the
 approxPolyDP() function in OpenCV. The number of edges present in the contours can
 then be compared to the expected values. The contour of the billiards table should have
 four edges and the contours of the billiard balls should have more than eight edges (more
 than eight edges represent a circular shape) (Authentise).

 Further filtering can also be implemented to ensure that the contours that are found are
 also of the expected size. While the exact size of the billiard balls and billiard table
 cannot be determined until the testing begins, the concept of relative size still holds. Once
 the billiards table and camera have been acquired, the algorithm can be implemented and
 the area of contours of interest can be recorded. A minimum and maximum size for the
 billiard balls and billiard table can be determined so that is unlikely incorrect contours are
 reported. OpenCV supports finding the area of a contour as well as contour highlighting.
 Contour highlighting can be used to view what contours are being discovered and adjust
 the filtering portion of the algorithm as needed.

 Suzuki’s algorithm would be useful in locating the billiard balls and the billiard table
 from the input image. Although this algorithm will likely return contours that are not
 wanted, OpenCV offers many ways to sort through the contours and extract only the
 relevant objects. This approach allows for a user to place tight guidelines on what objects
 are detected but will require testing and refinement to ensure that the filtering parameters
 are correct and reliable.

 Hough Circle Transform: The Hough Circle Transform is a computer vision algorithm
 that can be used to detect all of the circles in an image. This algorithm allows for circles
 of a certain radius to be discovered in an image. All other shapes and any circles that
 have a radius that is either too big or too small will be ignored by the algorithm. This
 algorithm is relatively accurate and can ignore most shapes that do not fit the search
 criteria.

 The Hough Circle Transform works by utilizing the characteristics of circles. All circles
 will have a center and some radius that is fixed for any point on the circle. Consider some
 arbitrary circle c with radius r . This algorithm works by traversing the perimeter of circle
 c and essentially drawing a circle, still with radius r , at every point along the perimeter.
 There will be one point of intersection in which all of the circles that are drawn while
 traversing circle c overlap with each other (ImageJ). This point will be the center of circle
 c . Every intersection is awarded a point and the center of the circle will have a very high
 point concentration compared to the surrounding pixels. The algorithm uses the point
 concentration relative to the neighboring pixels to determine if there is a circle present.

 28

 Many implementations of the algorithm require an outline of the objects being searched
 for in a binary image format. This requirement can easily be met by using the Canny
 Edge Detection algorithm discussed previously. The outlines in the image are what form
 the perimeter to be traversed by the Hough Circle algorithm. By using the outline of the
 objects it is also possible to detect overlapping or touching circles as well like shown in
 figure 3.7 (Sinha). If two circles are overlapped, the perimeter will form a shape that
 looks similar to the number eight. As the transform traverses the perimeter, it is often able
 to detect both circles, assuming they are of the same radius. This feature is because two
 centers will be found that have high concentrations of overlapping pixels compared to the
 rest of the image. The image below depicts when two overlapping circles of the same
 radius are detected.

 Figure 3.7: Detection of Overlapping Circles (Awaiting Permission from Utkarsh Sinha)

 Similar to Suzuki’s algorithm, unwanted circles may be found by the algorithm. Filtering
 of the circles found by the algorithm may be needed to ensure that only the billiard balls
 are detected. Fortunately, OpenCV’s implementation of the algorithm allows for the
 minimum and maximum radius to be specified. The optimal values for these thresholds
 will need to be determined experimentally. Further filtering can be done by checking the
 color of the discovered circles to ensure that it is an expected color.

 The main application of the Hough Circle Transform would be identifying and locating
 the billiard balls in the image. This task is one of the main goals of the computer vision
 subsection, and this transform looks very promising to accomplish the goal. One other
 related application would be identifying the pockets on the billiards table. Although this
 algorithm will not be able to isolate the table itself, the algorithm should be able to detect
 the pockets of the billiards table. Although the pockets do not form perfect circles, they
 are relatively circular and the algorithm should be able to detect them with only minor
 modifications. Detecting the pockets would help localize the coordinates of the billiard
 balls.

 Douglas-Peucker Algorithm (Contour Approximation): The Douglas-Peucker algorithm
 is used to approximate complex contours into simpler contours. This algorithm

 29

 essentially takes a detailed contour and simplifies it into a geometric shape such as a
 triangle, squa re, or similar shape. An examples of the contour simplification is shown in
 figure 3.8 (OpenCV “Contour Features”). The amount of simplification applied to a
 contour typically depends on an input parameter, epsilon, as well as if the expected
 simplified contour should be a closed shape. The algorithm works by determining the
 starting and ending points of the contour. The edges between these two points are what
 will be simplified. The algorithm uses the epsilon value to compare the distance from
 each point on the contour to a reference line. Points that become smaller than the epsilon
 value are discarded and those that are larger than the epsilon value are kept (Lee).

 The value of epsilon used in this algorithm is crucial to what type of contour will be
 detected in the image. In the figure below, the leftmost image is the input image. The
 green outline in the middle image shows the discovered contour for an epsilon value of
 10%. The green outline in the rightmost image shows the extracted contour for an epsilon
 value of 1%. As the value of epsilon decreases, the more tightly the modified contour will
 resemble the actual contour.

 Figure 3.8: Epsilon Value on Algorithm Output (Awaiting Permission from OpenCV)

 Like many of the other algorithms discussed, the Douglas-Peucker Algorithm requires a
 binary image as input. Furthermore, the algorithm requires that all of the contours in the
 image have already been discovered. These requirements can be accomplished by using
 previously discussed functionalities supported by OpenCV such as thresholding and the
 Canny Edge Detection algorithm. The value of epsilon to use will need to be determined
 experimentally, but will likely be relatively high because the billiards table is nearly a
 rectangle.

 This algorithm will be useful for extracting the billiards table from the input image. More
 specifically, this algorithm would be used for drawing a rectangular contour around the
 playing area of the billiards table. The playable area is a nearly perfect rectangle except
 for the six pockets. If the pockets can be ignored, by the use of this algorithm, a
 rectangular contour can isolate the playable area. Once the playable area has been
 isolated, it will be much easier to localize the billiard balls as well as the pockets.

 30

 3.2.3 Visual Impairment Assistive Technology

 Visual impairment is not something new to humanity. Individuals who suffer from this
 setback have learned to adapt to the setback for generations, but only in the last century
 has technology rapidly accelerated this progress to such an extent that life can gradually
 approach normality for those affected by visual impairment. To best guide this project’s
 goal of assisting impaired billiard players, several previously designed assistive
 technologies are examined.

 The goal of this project is to have a complete guide for users to be able to play billiards.
 From interfacing with system controls to navigation around the table to the AI generated
 desired shot, we want the system to be able to be utilized with little to no help from
 exterior users to the impaired player. The desired result is therefore a start-to-finish setup
 where the user can locate the table, select various settings of the game/devices, and
 conclude with executing desired shots within the game. What is examined for these
 compatible deliverables is a user interface that is able to be navigated either solely by
 touch or sound and a guidance system that utilizes sound or sensation to prompt a user
 toward a desired direction or specific location. There are several cases that are outside of
 the scope of assistance in this project. These include setting up the preliminary
 orientation of the balls, location of the user’s cue, and obstacle avoidance.

 With the constraints of the assistive technology outlined, two primary interfaces must be
 examined for the assistive technology deployed in the project: guidance and
 communication interfaces. The user interface seeks to communicate in ways that enhance
 the ability for mild impairments to be able to see options - an easy to use, simple, and
 observable UI, and that can be deployed in the case of a fully impaired user. Screen
 readers and voice technology have become commonplace in much of the technology that
 is now deployed that will read out what is displayed and highlighted on a screen. Within a
 similar realm, screen magnification softwares are deployed across devices for users that
 may have mild visual impairment (“Assistive Technology for the Blind (AT)”). System
 settings that perform these actions can be a verbal and visual enhancement for a user
 when navigating a settings page, attempting to start a game, or understanding the layout
 of a table and specifying the outlined shot. Additionally, braille keyboards and critical
 buttons are an age-old communication method that can be deployed for the completely
 blind to communicate with a device when fully powered off.

 In terms of user guidance, the project will require methodology that tracks the user and
 deploys instructions that will locate the user at a desired destination for the optimal shot.
 Although the project is focused on a specific focus, previously designed technology
 validates possible options for the desired system and can give insight into how the
 project’s goals can be realized. Localization algorithms such as visual-inertial odometry
 (VIO) utilize smart phones with a combination of computer vision software and the
 device’s internal measurement units (IMUs) to understand a user’s orientation and their
 current trajectory. Previous research in this realm utilized common benchmarks within a
 predetermined area to give a relative understanding of their location in a 2-D space.
 Given the inputs from the camera and the acceleration recorded within the IMU, the

 31

 device could garner an accurate understanding of the user’s location and guide them
 accordingly through an area that is previously known (Fusco and Coughlan).

 Other research breaks down closer to the deployed microcontroller level of localization.
 A proposed system from Middle Technical University utilizes a IoT machine-to-machine
 protocol called ZigBee to localize a user relative to several anchor nodes in a room, and
 an RFID is used to recognize the interior the user has entered (shown in Figure 3.9). The
 system also scales for wider navigational purposes by using GPS to localize the outdoor
 position of the user, and alternates between the two depending on location .
 (“Localization Techniques for Blind People in Outdoor/Indoor Environments: Review”).

 Some visually impaired assistive systems rely less on user localization and more on
 environmental surroundings. The Sanjivani College of Engineering explored a command
 based audio input and output assistant that utilized camera inputs and a chatbot
 functionality to relay meaningful information to the user of their surroundings. The
 system consisted of a camera, headphones, and a microphone with several core functions
 including face and emotion recognition, image captioning, object detection, reading, and
 interfacing directly with a personal assistant bot. This system was fully local to the user
 and navigated based on user pronounced commands and the inputs given by surrounding
 by use of python APIs and CV software and then relayed meaningful responses by means
 of Google’s text to speech platform gTTS (“Smart Guidance System for Blind with
 Wireless Voice Playback”).

 Figure 3.9: Previous System Indoor Localization Design (“Smart Guidance System for
 Blind with Wireless Voice Playback”) (Awaiting Permission from Sadik Ghargan)

 Another smart guidance system relies on several different approaches for determining
 critical obstacles, determining important events, and delivers audio feedback messages to
 the user. The Sri Sairam Engineering College developed a system deploying a voice
 feedback system for navigation that utilized an ultrasonic sensor to safely avoid objects
 and utilized a MEMS accelerometer for the purpose of understanding the user’s dynamic
 location in a 3-D space. In addition to an accurate portrayal of the user’s location, the
 static location was also understood using this accelerometer and a message was sent to

 32

 points of contacts in the possible case of an emergency occurring. GPS was used to
 record the known location of the system and user, and would communicate the location in
 case of emergency (“Smart Guidance System for Blind with Wireless Voice Playback”).

 As audio assistive systems is a widely deployed approach, the subsystems for many past
 projects is a key point of interest for how to read in information and the different data
 points they focus on. Sensors for navigation can span many technologies. Deploying
 technologies in conjunction with one another enhances the full picture of the scope of the
 user’s surroundings. For instance, many systems focus on deploying the commonly
 conjoined ultrasonic sensors and RFID readers to navigate premapped areas and avoid
 obstacles throughout those regions (“Audio guidance system for blind”). On the other
 hand, technology such as LiDAR has shown to be viable in the past for the visually
 impaired (“Voice Navigation Based guiding Device for Visually Impaired People”) and
 can be viewed as a more independent sensor system that is powerful in the full picture it
 can paint for a system software.

 Previous iterations of visual impairment assistive technology lay a good framework for
 how to best guide users in the scope of navigating a billiards game. User guidance,
 control, and safety are the primary goals of the system. Emphasizing these by enhancing
 the ease of use can be best improved by seeing where these projects examined
 shortcomings and seeing where they can best be improved upon. The following sections
 research some of the required technology for user interaction to be possible in greater
 detail.

 3.2.4 User Localization

 This section describes different technologies or avenues that can be explored for user
 detection, including but not limited to visually impaired users, technology that could be
 used in further sections when considering determining the path for the user to the object
 of interest. The current scope of research is to find how to implement three different
 features for the user. Further sections will describe which features will be implemented
 and in which way each of the features will be implemented. This section outlines the
 process of how to navigate a user to the billiards table, describes how to detect any
 obstacles in the user’s path to the table or around the table, and describes how to navigate
 the user around the table to the right position and orient the user is the direction needed to
 make a shot based on the shot selection algorithm’s output.

 To do any of the navigation accurately and safely, a proper localization mechanism must
 be deployed so the user can receive instructions that correspond with their location and
 heading in real time. Several variables are considered and must be prioritized accordingly
 for end design selection across various sensors and the corresponding algorithms that can
 be deployed with them. Variables to consider for each method of sensing would revolve
 around: accuracy, calibration techniques, computational bandwidth, resolution, range,
 outstanding environmental factors, cost, ease of user integration, scale, materials
 required, and the method of sensing (i.e. proximity, motion, image, etc.) (Into Robotics).

 33

 Hence, here, we examine different technologies, such as RFID and infrared/ultrasonic
 sensing and ultimately summarize our options and determine what sensors or sensor
 technologies we go for and in which matter they will be interfaced in our final physical
 design described in later sections.

 Summary of Requirements:
 ● Latency of the user localization does not exceed 10 seconds
 ● Accuracy of the user localization is within 1 foot of the true location
 ● Localization should work independently of the surroundings

 3.2.4.1 RFID And Bluetooth

 RFID: RFID (Radio Frequency Identification) is a form of wireless communication using
 radio frequency (RF) waves to identify objects uniquely. RFID systems consist of
 scanning antennas, transponders, and transceivers. Transceivers and antennas can be
 combined in an RFID reader. Transponders are typically RFID tags. In practice, mobile
 or physically mounted RFID readers would be located within the region of application
 transmitting waves within the RF spectrum. The waves are picked up by the RFID tag(s)
 which will send the signal back to the antenna portion of the RFID reader, a signal which
 will be turned into data and positioning information. The range of applications depends
 on the type of RFID readers and tags and the RFID frequency of operation. Table 3.1
 summarizes the different types of RFID systems based on the frequencies of operations.

 RFID System Frequency
 Range

 Common
 Frequency

 Operation
 Range

 RFID Tag
 Pricing

 Low-Frequency (LF)
 RFID Systems

 30KHz -
 300KHz

 125KHz -
 134KHz

 ≤ 10cm $0.5 - $5

 High-Frequency
 (HF) RFID Systems

 3MHz -
 30MHz

 13.56MHz ≤ 30cm $0.20 -
 $10.00

 Ultra High
 Frequency (UHF)
 RFID Systems

 300MHz -
 3GHz

 433MHz,
 860MHz -
 960MHz

 ≤ 100m Depends on
 Active vs

 Passive Tags

 Table 3.1: Comparison of RFID Technologies

 These systems not only determine the range of frequency and application but also narrow
 down our options for tags and readers given that in most instances, the specific type (LF,
 HF, UHF) of RFID tag can only be read by the same type of RFID reader. LF and HF
 systems are typically used for close contact applications due to their short range of
 detection and limited speed, as in ticketing systems, payments, or access control.

 34

 There are three relevant use cases for VISION. If used for constant user detection in a
 wide room (approximately 10m), Ultra High-Frequency RFID systems are our only
 option to make sure that our user of interest, wearing an RFID tag, will be detected by
 our reader. For obstacle detection, either Ultra High-Frequency or High-Frequency RFID
 systems will work since the range of detection will only need to be in a very narrow
 range of about 30cm. However, considering the unpredictability of the locations of the
 obstacles themselves, RFID might not be a suitable solution for direct obstacle detection
 unless the obstacles will always be the same and located in the same spots at all times. In
 this case we could detect all fixed obstacles but would need another system to detect any
 other obstacles in the direct vicinity of the user on their way to the table or navigating
 around the table. For our third use case, we would have to rely on either Ultra
 High-Frequency or High-Frequency systems to locate the user from the edge of the pool
 table depending on how far away from the table the user is located. 30cm could be
 sufficient in some cases, but Ultra High-Frequency systems would be a more reliable
 approach in this case. If this solution is used, the applicability, availability and price of
 either one of these two solutions will need to be further evaluated. Now that our choice of
 the RFID system is determined, the next step will be selecting which RFID readers and
 tags would be suitable for our application.

 RFID Tags: As earlier mentioned, RFID tags consist of the transceiver, an antenna
 capable of receiving and transmitting signals, but also the RFID chip, which stores the
 tag’s ID. For UHF RFID systems, there are three different types of RFID tags: passive
 (solely powered by electromagnetic waves), active (powered by a battery), and
 battery-assisted (combination of active and passive). The latter two allow achieving much
 longer ranges, at the cost of a much higher price per tag. Other considerations in selecting
 the proper tag are described below:

 ● Size: The larger the size, the longer the read range. However, this size is limited
 by the size of the object being tagged, in this case, our physical design or other
 objects, which incorporates the tag.

 ● Alignment and orientation: Ideally, the tag should be aligned in the same plane as
 the RFID reader to maximize the absorption of RF energy. Testing, if needed at
 this range, will need to be done to find the proper alignment for the reader and the
 tag. Additional readers may be positioned in the room of interest if needed to
 minimize issues arising from this.

 ● Application-based type: Depending on the vendor, RFID tags are broken down
 into different categories including hard tags, wet and dry inlays (paper tags with
 or without adhesive), sensor tags, high-temperature tags, and embeddable tags,
 among others.

 ● Resistance to impact, vibrations extreme temperatures, UV, dust, or other
 chemicals

 35

 For this specific application, wet or dry inlays will be the best option considering the cost
 and the fact that there is no necessity in a bigger or more complex design for our tags.
 Singular tags or multiple tags can be placeheyitssolano@gmail.comd upon our physical
 design worn by the user, on different sections of the table, or on objects to be detected,
 depending on the size of the said obstacle (for fixed obstacles in the room). An apt
 example would be Avery Dennison’s AD-172u7 inlays which feature a 22 x 12.5 mm
 antenna designed to operate at around 860-930 MHz, each inlay factory locked with a
 unique 48-bit identification number while sitting at a total pitch of less than 2 inches.
 (“UHF RFID Inlay: AD-172u7 - Avery Dennison”). The AD-172u7 is shown below in
 figure 3.10.

 Figure 3.10: AD-172u7 UHF RFID Tag and Inlay (Permission Granted from RBIS
 Americas)

 RFID Reader: As earlier mentioned, RFID readers are responsible for sending signals to
 and receiving signals back from RFID tags. The two main types of RFID readers are
 either fixed or mobile, further subdivided based on the RFID system in play. Moreover,
 RFID readers can be further divided based on connectivity options (Wi-Fi, Bluetooth,
 Serial, USB, LAN), number of antenna ports, power, and processing options. RFID
 antennas are typically also necessary in addition to RFID readers, since they help convert
 the RFID reader signal into RF waves that can be picked up by the tags. The antenna will
 have to be in the same plane or polarity and orientation as the reader to superimpose
 instead of nullifying their actions. RFID antennas could also be used to facilitate
 communication between the antenna and the RFID reader. If used for obstacle detection
 or for navigating the user around the table towards the optimal shooting position, the
 RFID reader will be incorporated into our physical design, allowing our system to detect
 the RFID tags placed on different obstacles and use that information to navigate the user
 around the room. If used for moving the user around the table, the RFID reader would
 need to be able to distinguish tags that may be placed in very close location since the user
 holding a tag might have to be in close contact with different tags placed around the table
 (if any). If this solution is implemented, the choice of RFID reader will need to take this
 issue into account. If used for user detection, the RFID reader would need to be
 positioned in the middle of our room containing the pool table, allowing its area of
 detection to pan out as much as possible in the room.

 36

 RFID Applications: The most accurate way-finding technologies used for visually
 impaired individuals these days rely on RFID technology. Despite how relatively
 inexpensive RFID tags (mainly inlays) are, the biggest cost in these come from RFID
 readers whose cost vary from around $200 to ten times that or more. Justifying the use of
 RFID and RFID readers for user identification would involve using RFID for user
 positioning as well. Other technologies rely on HF RFID systems and make use of NFC
 (Near Field Communications) which does not need a separate reader, smartphones can
 serve as a reader for NFC, but are limited to about a few centimeters and typically
 operate on identifying one tag at a time making them unsuitable for identification or
 way-finding of visually impaired individuals. Another justification for the use of RFID
 would be with multiple user detections, where a system of RFID detectors or readers can
 be positioned at different points in a building identifying and detecting the positions of
 users with specific RFID tags. With these considerations, we could opt for the cheapest
 possible UHF RFID reader compatible with our tag selections from earlier.

 Related to our current application, RFID tags and readers have been used in different
 ways for navigation in buildings or in smaller cases single rooms. Most of these
 applications rely on having a predetermined network of RFID tags, implemented as
 checkpoints, at specific locations such as doors, corners or windows for building
 applications and allowing the user, with the reader, to walk around and be given
 directions whenever their reader detects another tag. Another application, based in a
 single room, positions the RFID tags mounted on the ground such that the tags are
 separated by 0.682m, equidistant from each other, to avoid collision from the reader.
 Every time the tag is detected, its unique ID is verified by the microcontroller allowing an
 algorithm to determine the closest path to the pool table’s ID and making sure that the
 user is still following the previously set path. In the possibility that there is an obstacle in
 the path the user follows from tag to tag to reach their destination, this application also
 introduces the use of sensors for obstacle collision. If an obstacle was detected along the
 path, the software generates an alternative path to the destination for the user to avoid the
 obstacle.

 Related to our third use case, user navigation around the table, there are cases were RFID
 tags are being used in the dining industry allowing waiters to find guests at the right table
 based on the specific location returned by an RFID tag preemptively given to them. In a
 similar way, we should be able to differentiate different seating positions that would
 correspond to a grid breakdown of what the pool table looks like and know exactly at
 which position, that is at which RFID tag the user is currently located at. Alternatively,
 we could simply detect the user’s position using their RFID tag and use different ways to
 relate that positioning to the targeted position determined by the algorithm without using
 additional RFID tags to confirm that the targeted position has indeed been reached.

 Bluetooth Low Energy (BLE): A considerable alternative to using RFID technology
 would be relying on Bluetooth Low Energy systems to achieve the same functionalities
 described earlier. BLE is a radio frequency technology for wireless communication that
 can be used to detect and track the position of different objects or people. They operate in

 37

 a range similar to regular Bluetooth (about 2.400–2.4835 GHz) comparable to Ultra High
 Frequency RFID systems. The LE portion in the name refers to its low power and current
 consumption (0.01 to 0.5W versus 1W reference for regular Bluetooth and <15mA of
 current consumption).

 BLE localization typically uses BLE beacons placed at specific points in our area of
 interest, providing information on the specific location of different objects in the area of
 interest or breaking down the overall area into specific grid locations. These beacons are
 small, versatile Bluetooth transmitters which broadcast signals at regular intervals. These
 signals that can be detected by wireless devices such as BLE enabled smartphones. This
 describes a major advantage of BLE versus RFID. The overly expensive RFID readers
 can be replaced by regular smartphones that natively support BLE. However, the major
 issue described when using RFID tags in close proximity would still be an issue for this
 application. The efficiency of this technology will differ when you take into account
 different factors like the beacons not transmitting information to the reader synchronously
 while the user is in motion, or the reader struggling to detect closely placed beacons.

 BLE Localization Techniques: Different localization techniques also come into play
 depending on the application or use case of these beacons. The simplest one would be
 localization based on the random detection of transmitters or beacons. In this technique,
 the position is based on which beacon provides the strongest signal back to the reader.
 Similar to RFID tags, we would need to store information about the different beacons to
 determine the location of the closest beacon to our user. The strongest signal would be
 calculated by a combination of three different values. The first one is an RSSI (Received
 Signal Strength Indicator) value, which indicates how strong the received signal reaching
 the mobile device when the beacon is detected by our device or reader. In addition to this,
 we have to consider that different beacons would broadcast their signal at different
 transmission powers TX. A combination of the RSSI value and the TX power value must
 be used when estimating the distance to the beacon. The TX power value is a
 factory-calibrated, read-only constant that indicates the strength of the signal measured at
 1m from the device. Another consideration is a constant, say N, which represents the path
 loss index and is dependent on the localization environment. Some different values of N
 are: 1.4–1.9 for corridors, 2 for large open rooms, 3 for furnished rooms, 4 for densely
 furnished rooms, and 5 between different floors. Using these values, we can calculate the
 distance based on the following formula:

 𝑑 = 1 0 (𝑇𝑋 − 𝑅𝑆𝑆𝐼) /10 𝑛

 The major issue with this approach is that this localization technique varies greatly
 depending on the area in which it is been used (denoted by the range of values for N).
 This is only relevant if we are detecting the user in the room with beacons laid out
 throughout the room and are trying to bring the user to the table where another beacon is
 being placed. Single measurements from the different beacons could consider one as the
 strongest signal at a particular moment, but measuring it again would lead to another
 beacon being deemed the strongest signal. A solution for this could be implementing an
 algorithm that uses a moving average over a period of time. This could introduce a longer

 38

 time for detection depending on the scanning interval and scanning duration used for the
 algorithm. We could increase the frequency of detection while reducing the scanning
 interval, but this would contradict the whole point of having a diverse average to get the
 most accurate outcome. Research done with beacons closely packed under this technique
 has also shown that when placing them close together - for instance at 25 cm - the
 accuracy of detection is below 50%, detecting the wrong beacon or transmitter more than
 half of the time. (Cannizzaro)

 If we only focus on detecting the user around the table, we might only need one beacon
 on the user and have to detect its position using a reader or mobile device placed in a
 strategic location. Alternatively, as described before, we could have beacons around the
 table and have the user be the reader, but this would still raise the issue of having readers
 interfering and reporting false measurements from the beacons being in close proximity.
 Revisiting the first solution, another concern that would have to be investigated in our
 physical design, is the effect of obstacles around the user. The RSSI values are affected
 depending on different obstacles or objects in their vicinity. Depending on the density of
 the obstacles, it has been shown that some detections from the beacons might be lost, and
 the RSSI values may have a range of error of about ∓5 which in a narrow area like the
 pool table could lead to faulty measurements of where the user is accurately located.

 Another more accurate, but complex, localization technique is trilateration. Trilateration
 determines the location of the object or person of interest by using three strategically
 placed beacons. The beacons draw out a circle, with the beacon at the center of the circle,
 in their location, and the intersection of the circumferences determines the exact position
 of the object of interest. In details, data from each individual beacon allows us to have a
 general idea of where the object is located within the beacon’s drawn out circle. This
 location comes with a great range of error. The location of the object due to the second
 beacon will allow us to remove some of this error by placing the object in the overlap of
 those two drawn out circles, reducing the plausible region where the object would be
 located. The third beacon would in turn reduce this area to a single point, giving us the
 exact location of the object. The horizontal and vertical positions of the objects are then
 determined based on the radii of the said circles and the distance between the beacons.
 Those distances are calculated based on RSSI and TX as earlier described. A simple
 trilateration example is shown below in figure 3.11.

 Figure 3.11: Simplified Model of Trilateration

 39

 Regardless of the method used to determine the exact position of the user, it might be
 worth finding ways to minimize the error incurred in the RSSI measurements, which is
 the basis of the whole process. The moving average described for successive
 measurements earlier is one of those but can be improved to smooth the RSSI values
 even more. Different models, such as exponential moving average, or weighted moving
 average, could be introduced such that the RSSI value is not just a simple average of the
 previous values, but gives greater importance to newer values versus older values. This
 would help with cases where the user might be in constant motion around the table or in
 the room. Consider RSSI n to be the current RSSI measurement, RSSI smoothed is the
 smoothed calculated value and ɑ is a number between zero and one. A smoothing model
 is shown below: (Ramirez and Chien-Yi Huang)

 𝑅𝑆𝑆 𝐼
 𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑 , 𝑛

 = α * 𝑅𝑆𝑆 𝐼
 𝑛
 + (1 − α) * 𝑅𝑆𝑆 𝐼

 𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑 , 𝑛 − 1
 + (1 − α) 2 * 𝑅𝑆𝑆 𝐼

 𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑 , 𝑛 − 2
+...

+ (1 − α) 𝑚 𝑅𝑆𝑆 𝐼
 𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑 , 𝑛 − 𝑚 + 1

 With and m is the number of data points used in the smoothing algorithm. α = 2
 𝑚 + 1

 When it comes to selecting which devices to use, we have enough flexibility in our
 decision for both the beacons (shown in figure 3.12) and the reader. An example of a
 beacon we could use is the iBeacon from BlueBeam which offers variable TX power
 options, UID (Unique identifiers) such as Namespace and Instance IDs (for Eddystone
 UID) or iBeacon UUID (Universally Unique identifier) and Major and Minor IDs,
 advertising intervals, and has an option that allows us to trigger a broadcast at any time
 other than its usual advertising cycle. It also allows you to send out the advertising frames
 under different formats that carry different data depending on the application, such as:

 ● Eddystone URLs limited to 17 bytes in Eddystone format (protocol specification
 that defines a Bluetooth low energy (BLE) message format for proximity beacon
 messages)

 ● Eddystone TLM packets that can also contain battery information, temperature,
 number of advertisement frames and time since reboot

 ● Eddystone UID for broadcasting the ID of the beacon, returning the Namespace
 and Instance IDs

 ● iBeacon, Apple’s protocol standard returning the iBeacon UUID corresponding to
 the business that owns the beacon, minor ID which corresponds to the location of
 the beacon, and major ID which is a more accurate representation of the location
 of the beacon

 40

 Figure 3.12: Bluecharm BLE Beacon with Motion Sensor

 For our reader, any device capable of BLE sensing would be enough. This ranges from
 actual readers, to smartphones, or microcontrollers with Bluetooth functionalities.

 3.2.4.2 Sensors

 Ultrasonic Sensors: The main advantage of ultrasonic sensors versus other sensors is
 their ability to detect any object regardless of the nature of the surface. They are also
 straightforward to integrate with microcontrollers. Ultrasonic sensors would allow a
 program to specify a distance that would consider an object as being subject to collision.
 Additionally, the sensors would provide accurate information related to where a user is
 and how far away they are from a target. For ultrasonic sensors, the most common range
 of frequency of the ultrasonic pulses spans from 40-70KHz. This frequency determines
 the range they can cover and accurately detect. Lower frequencies offer a wider range,
 which spans up to 11m wide with a resolution of 1cm (or lower). For VISION’s object
 detection and user detection around the table, 1cm of resolution would be enough to
 detect objects that are almost in direct contact with our visually impaired user or to detect
 the user in the table range. The range would allow us to detect obstructions in the room or
 a user.

 A good example of an ultrasonic sensor (transmitter and receiver) that would fit the
 design is the HRXL-MaxSonar® - WR™ series shown in figure 3.13. These sensors
 operate at about 42KHz and can return an output in different forms. The most applicable
 output of the sensor is a pulse width representation of range with a resolution of 1mm.
 The range can be extracted using the scale factor of 1uS per mm. It also returns an analog
 voltage output as a single-ended analog voltage scaled representation of the distance, at a
 resolution of 5mm or 10mm. The corresponding pin for this output remains at this
 voltage that directly corresponds to the detected distance. Lastly, it also returns a serial
 output in an RS232 or TTL format where the distance can read as an integer up to a
 maximum of 4999mm or 9998mm, depending on the model. Some additional advantages
 of this series are its low current draw, allowing for a long battery life. Additionally its fast
 measurement cycles (measurements occur every 50ms on average) are fast enough to
 detect any new obstacles while the user is advancing towards them. Table 3.2 below

 41

 summarizes the different models available in this series (“Datasheet for the
 HRXL-MaxSonar-WR sensor line”).

 Model Family Detection Range Applicatibility

 MB7375 and MB7385 30cm to 1.5m Wider beam from
 transmitter suitable for
 closer distances with a
 broader detection target

 MB7360 and MB7380 30cm to 5m Provides reliable long
 range detection zones

 hence used in tank and bin
 level measurements

 MB7363 and MB7383 50cm to 10m Higher sensitivity hence
 great to use for applications
 where objects do not reflect

 enough ultrasonic sound
 such as people detection

 Table 3.2: Comparison of Different Ultrasonic Sensors

 Based on the above table, the third option would be the most suitable option. The main
 difference between the MB7363 and the MB7383 is that the serial output for the MB7363
 is in the RS232 format versus that for MB7383 is in a TTL format. Both RS232 and TTL
 (transistor-transistor logic) are forms of serial communication where data is transferred
 between two parties, a receiver and a transmitter, at a specified baud rate, which indicates
 the speed of said transmission. The MB7383 using TTL serial communication protocol
 would be the best option due to the following advantages it has over RS232:

 ● Less susceptible to noise and other interference
 ● TTL signals’ voltages follow the microcontroller’s voltage supply range of 0 to

 3.3/5V whereas RS232 signals are +/- 13V, which would require another external
 power source

 ● TTL is hence easier to incorporate with microcontroller designs

 RS232’s main advantage is that it allows longer cable lengths to be used, which for
 obstacle detection would not be necessary considering the sensor would be directly tied
 to the microcontroller carried by the visually impaired user. RS232 to TTL converters are
 also readily available in case a switch has to be made between these two serial
 communication protocols.

 42

 Figure 3.13: Model and Dimensions of Compact Housing HRXL-MaxSonar Model
 (Permission Received from Maxbotix)

 IR Sensors: Compared to ultrasonic sensors which all rely on the time-of-flight principle,
 other IR sensors use different mechanisms for their functionality. One of which is
 triangulation. Infrared LED triangulation sensors determine the position and distance
 from the object using geometric considerations. A collimated laser source (transmitter) is
 used to illuminate the object to be measured. The light is reflected back (receiver) and
 focused by a position sensitive detector (PSD) comprising small photo sensors in a row
 called pixels. The distance is then measured using a ratio of the product of the distances
 over the size of the detection pixel. The main issue with this approach is its reliance on a
 different factors lowering its resolution at larger distances. Its biggest perk being the
 lowest prices comparatively for sensors.

 Time-of-flight IR sensors, on the other hand, similar to ultrasonic sensors, operate by
 sending a light pulse to the object and determine its distance based on the time it took to
 reach the detector. They have a much longer range than their triangulation counterparts,
 along with other benefits such as faster transmission and reception times, rapid refresh
 rate, and lower power consumption. The main disadvantage here is the increase in price
 and the inability to differentiate targets. It cannot be used for object detection, but would
 be a great choice for collision detection.

 A good option that would fulfill the above advantages without a huge increase in price is
 the VL53L0X (shown in figure 3.14) from STMicroelectronics whose range of detection
 goes from 50mm to 1200mm (or 2000mm in one of its function modes) (“World's
 smallest Time-of-Flight ranging and gesture detection sensor”) which is more than
 enough for collision detection. Its 940 nm VCSEL emitter (Vertical Cavity
 Surface-Emitting Laser), is invisible to the human eye. Coupled with internal physical
 infrared filters offering higher immunity to ambient light, and better robustness to cover
 glass optical crosstalk. The output can be obtained either using a polling or interrupt
 mechanism, allowing it to be programmed to consistently check for any obstacles on the
 user’s path and sending the analog output through I2C communication to the main
 microcontroller in use for the design. The default timing for initialization,

 43

 measurement/ranging and other housekeeping functions it performs is about 33ms, which
 offers more than enough time to detect any object in the user’s vicinity as he navigates
 towards the pool table. It also uses a streamlined beam that would make detecting a user
 positioned directly in front of the time of flight sensor much easier. This feature is
 actually a main disadvantage when it comes down to detecting obstacles. Being a
 laser-based system, the transmitter sends out a straight line laser and only detects objects
 in the very narrow beam (25 degrees Field Of View). Positioning of the sensor would be
 of great importance when trying to maximize obstacle detection (this is investigated in a
 later section). Another noteworthy advantage is the low power consumption of about 5-6
 µA in standby mode. There are a few other considerations such as the nature of the
 material and the color of the material which affects the accuracy of the measurements.
 These factors will be taken into consideration when designing the system and tested to
 determine how much this affects detecting objects or people.

 Figure 3.14: VL53L0X Time-of-Flight Ranging and Gesture Detection Sensor (Awaiting
 Permission from Digi-Key)

 Based on the last 2 sections, a combination of both ultrasonic and IR sensors would be
 the best alternative for object detection/collision avoidance. Lighting conditions affect IR
 sensors while ultrasonic sensors are not affected by this. Ultrasonic sensors are reliant on
 the shape of the target, struggling with soft, curved, or thin objects while IR sensors work
 fine under these conditions. Ultrasonic sensors are not easily able to detect sound
 absorbing surfaces such as clothes or other fabrics hence would struggle to detect human
 presence in non-ideal circumstances.

 Other Sensor Technologies: There are more available options for sensor technologies that
 we considered, but that would not fit the scheme of the project. Here we discuss a few
 honorable mentions and reasons why those avenues were not pursued for our physical
 design before making a final decision on which technology would be used for user and/or
 obstacle detection.

 Conventional or linear ultrasonic sensors only record one-dimensional data, usually the
 distance from the sensor to the detected object. Other coordinates such as inclination or
 elevation angles of objects are not calculated with by these sensors, leading to potential
 inaccuracies in detection objects such as the curb and low-lying obstacles depending on
 the location of our 1-D sensors. 3-D ultrasonic sensors, on the other hand p rovide 3-D
 coordinates for objects reflecting the ultrasonic pulse, hence providing horizontal and

 44

 vertical coordinates for where the object is located and detecting in a broader field of
 vision. A lot of the same concepts explained earlier for linear ultrasonic sensors would
 also apply in this case, including the advantages and disadvantages of this.

 Some of the most advanced 3-D ultrasonic sensors, such as the ones developed by
 Toposens, use a concept similar to echolocation in bats. (Nancy Seckel) The sound
 transmitter sends out an ultrasonic pulse. The pulse is reflected by surrounding objects
 and received by a sound receiver. The pulse received is then interpreted by a sound
 processing unit and 3d coordinates are calculated based on the time it took for the echoes
 to arrive back to the microphone/unit. This gives us a total range of about 160 degrees,
 which would be enough to cover half of a table side at a single time. Two of them
 covering both sides of the table and detecting the user at any point, or one of them
 mounted on a rotating frame would be enough to detect everyone around the table in a
 quicker manner than it would take using a linear beamed 1-D ultrasonic sensor. Other
 interesting features of the Toposens model are that it allows detection of up to 3000 mm
 or 300 cm with a resolution range of 1 cm - 5 cm, has a field of view of ±80 ° Horizontal
 and ±40 ° Vertical. However, these major advantages are not a good enough justification
 to oversee the increase in price and complexity of using this versus any other sensor.
 Also, depending on the physical design discussed later in this document, we can cover the
 blind zones incurred by using 1-D sensors, which is the main advantage of using 3-D
 sensors instead.

 LiDAR makes use of echo-reflection using laser beams in the near infrared, ultraviolet or
 visible spectrum. A LiDAR system measures the time it takes for emitted light to travel to
 the ground and back. That time is used to calculate distance traveled. One of the major
 advantages of LiDAR compared to other sensor types described earlier is that LiDAR
 does not depend on lighting conditions and a much broader detection range that will work
 great for user detection in a room, but would be irrelevant when it comes to obstacle
 detection or navigation around the table. Most of the available options are however, much
 more expensive for the better quality ones and are much more scarce than either
 ultrasonic or IR sensors.

 A fairly in-budget example that is worth mentioning is the SmartLam TP-Solar 0.2-12M
 LiDAR Sensor. It offers a detection range going from 0.2m-12m with a blind zone for
 any object below the 0.2m range and a range accuracy of 5cm and above and a resolution
 of 1mm. In this blind zone, all distances would be invalid. This sensor only offers a field
 of vision of about 1 to 2 degrees which is much lower than the aforementioned 160
 degrees field of vision for 3-D ultrasonic sensors and even much lower than the field of
 vision of 1D ultrasonic sensors that are in the tens of degrees. Other LiDAR systems may
 have a much better field of vision in comparison, but it once more comes down to the a
 much higher price without any considerable reasoning behind the price gap for our
 applications. Going through a few other available LiDAR sensors, even doubling or
 tripling the price as compared to the example referred to in this paragraph only gives us
 about 3 degrees for our field of vision.

 45

 Spinning LiDARs would allow us to detect all obstacles in a near 360 degrees range, with
 an angular resolution of around 1 or 2 degrees for most sensors in the market. Also, they
 are prominently used in the market for object detection already, as seen in automotive
 vehicles. However, once again, the cost does not justify using LiDARs for our
 application.

 RADAR works in similar fashion to ultrasonic navigation, replacing the acoustic waves
 with radio waves and estimating distance using as the signals bounce back from nearby
 obstacles. In this kind of receivers, the impulse acoustic wave response of the receiver is
 the same shape and the receiver essentially measures the degree to which the received
 signal and the transmitted signals are correlated with each other. RADAR systems are,
 however, much slower, more expensive and more complex than ultrasonic systems.

 3.2.4.3 Localization Algorithms

 Sensory input is fundamental for user localization within this project, but the proper
 algorithms and computational methodology to support the inputted sensory data is key to
 having accurate data to transmit for proper guidance commands to be sent to the user.
 Inputs resulting from each sensor type all have the goal of understanding where the user
 is relative to the billiards table as a whole. To do this, several back end processes can be
 explored to achieve the desired goal of visualizing the table environment and localizing
 the user with respect to common data points.

 SLAM: In the field of autonomous navigation of robots and automobiles, simultaneous
 localization and mapping (SLAM) is an improving asset for real time responses to a
 system’s surroundings. SLAM works with sensory imagery primarily from cameras or
 LiDAR to be able to map the present area and, in the same instance, localize the system
 relative to the area it navigates through. This goal is best realized through path finding
 algorithms and object avoidance (discussed further in Section 3.2.5 - User Guidance),
 making it a great asset for real time responses of autonomous vehicles for terrain that can
 not be previously predicted (“What Is SLAM (Simultaneous Localization and Mapping)
 – MATLAB & Simulink - MATLAB & Simulink”).

 Maze Array: To do this, constant variables must be set based on the type of interface that
 is inputting data to this processor. Constants of interest are the size of the table and
 position of origin point of the sensors and the variable of interest is the changing distance
 determined between the sensor(s) and the user. With these variables, an accurate localized
 position in a two dimensional space can be achieved and easily exported with limited size
 of data being transferred.

 In the case of an array being propagated for localization and path guidance of the user, an
 important distinction to be made lies with the choice on how large each array position is,
 how accurately to portray the user within these positions, and how many positions deep
 to make the array. A diagram of such a representation is shown in figure 3.15, where a
 graphical interface housing the current layout of the billiards table and its accurate
 physical space would be outlined by a two dimensional array housing the location of a

 46

 user. Relating to the constraints of such a model and why the variables described house
 trade offs comes from the desire for accurate real time updates of such an array for both
 the display and guidance system. Simplistic approaches housing vast approximations for
 location will be simple to calculate and communicate but risk giving an inaccurate
 representation that may hinder a user from proper navigation. On the other hand, a very
 in depth set of data points will add more complexity to the data that is communicated. At
 such low levels of data communication, lag in communication is not a grave concern and
 can be considered as lower priority. Specification and ideal frequency of updates to the
 proper load times is of a higher concern when it comes to efficiency, which is a task that
 can be optimized within embedded controls.

 Figure 3.15: Localization Algorithm Array Scheme

 More complex localization approaches can also be considered. A three-dimensional space
 adds significantly greater hurdles to the amount of data that must be communicated, the
 number of sensors that must be present, and the communication speed of the data. Given
 the nature of the guidance system and the desire for speed over complex representation, a
 method such as this may not be optimal for the constraints of this project. However, an
 added benefit of a three-dimensional state space comes in the feature of object avoidance
 and recognition. If an outside variable such as an added person/guide enters the frame of
 sensory inputs, it may be hard to localize the desired user compared to the confounding
 inputs.

 3.2.5 User Guidance

 Corresponding with user localization is the outputs to navigate the user to the desired
 location of the next shot on the table. Previous assistive technology has deployed
 navigation methods that can be augmented to our desired specification and constraints.
 Similarly to the approach for user localization, guidance methodologies carry various
 pros and cons that can be weighed by comparable variables of cost, scale, accuracy, ease
 on the user, computational bandwidth, and corresponding algorithms. To explore possible
 routes for this technology, previous technologies in audio and sensational guidance have
 been explored and come in varying extents and approaches.

 47

 Summary of Requirements:
 ● System can position user within 1 foot of the desired location
 ● User is oriented within 15 degrees of the desired shooting direction

 3.2.5.1 Audio Outputs

 One of the most intuitive guidance systems for user guidance for the visually impaired
 centers on audio outputs. As mentioned in several previous projects discussed in the
 visual impairment assistive technology section, voice commands are a very common
 method of guidance in a real world setting where many unpredictable variables may
 occur. Alternatively, for the case of navigating a stationary table, simplified methods may
 be deployed. For instance, audio that is outputted merely to navigate a user by a constant
 sound in the direction of the destination can house value, and an altering pitch tone could
 help differentiate the concept of distance from the destination to the user. While these
 simplistic approaches can seem intuitive to an individual with knowledge of the make of
 the system, a new user may not comprehend elementary instructions being presented as
 easily. Applications such as this may require some form of preliminary explanation to the
 user of how the system operates, while more complicated approaches such as audio
 commands would in fact be intuitive to the user. For example, an output stating “turn
 right”, “move forward”, or “stop” are messages easily understood, while a constant tone
 on the other hand has no intrinsic meaning.

 Command-Based Audio Output: Factoring into these audio approaches is the delivery
 method and density of said method within the system. For an instruction based output, the
 sources of the output do not necessarily have to be distributed. A centralized location
 either on the user or in a constant position that emits the instructions is sufficient.
 However, benefits based on the orientation of the user may arise in having a centralized
 output of instructions to not confuse delivered instructions. Inconveniences can arise in
 cases where a central location is emitting sound from a position that is opposite of the
 direction the instruction is oriented towards. The severity of a case like this is minor in
 the presence of a robust algorithm that will continue to guide the user based on their
 adjusting location. A design such as this could also reflect closely with home voice
 assistant devices such as the Amazon Alexa and Google Home Mini. These devices are
 recommended to be placed at a central location in the house both for recognizing audio
 commands and for proper delivery of corresponding outputs. A system such as this
 realizes two way communication and holds value in terms of the potential to introduce
 audio commands on top of audio guidance.

 A user centered approach as discussed in the previous visual impaired assistive
 technology section (“Guidance System for Visually Impaired People”) discusses the use
 of headphones for communicating commands to the user. A user based approach can be
 easily deployed with the latest wireless technology within a bluetooth headset.
 Commands can be communicated from a central processor located outside a user and sent
 via bluetooth. This decentralized approach to command-based audio eliminates the factor
 of distractions brought by centralized audio.

 48

 In addition to command outputs, the described systems can also be relevant in the realm
 of relaying outcome information. For instance, in the case of a user conducting a shot,
 having additional audio that confirms the resulting success or failure could have value to
 a user that cannot see or visually comprehend what has occurred. This is similar to how
 previous projects have utilized gTTS (“Guidance System for Visually Impaired People”)
 API for command based navigation or the use of the same API for outputting the words
 of a written page (“Reading Device for Blind People using Python, OCR and GTTS”),
 but the same practice can be extrapolated for any situation. As the number of outputted
 results has a finite value, this feature can hold value for a user in the command-based
 model of output as it requires identical materials as need to be present for this system.

 Direction-Based Audio Output: In the case of a simplistic audio approach for directional
 commands, a distributed network of speakers could be deployed across the realm of
 navigation for a user. This array can be deployed in various manners depending on
 desired accuracy. In the case of navigating a table, the baseline requirements would settle
 upon the four corners of the table having speakers to be able to deliver a command for
 each 2-D direction around the space. This can be made more accurate if added speakers
 are added between corners of the table to better position the user at a desired location.
 Additionally, the accuracy can be enhanced in the alternative manner of having the
 speakers emit varying levels of pitch to describe distances. For instance, higher pitch
 could mean further distance to travel and lower pitch could relate to approaching the
 desired location. These varying implementations also come with a tradeoff in cost based
 on a linear increase with the added number of speakers in the array or the cost increase
 from added complexity of the audio technology.

 To illustrate the discussed audio delivery methods, figure 3.16 showcases the
 hypothetical case of a user attempting to navigate from the upper left-hand corner to a
 desired location of the table. The three audio output mechanisms are shown within the
 graphic with corresponding labels and expected commands based on their varying
 purposes. The array-based output is implemented at the basecase of four corner speakers.

 Figure 3.16: Audio Based Navigation Mechanisms

 49

 Audio Aim Guidance: Once the user is guided to the proper position on the table, they
 must then be oriented toward the ball. This mechanism can be deployed in similar
 approaches as the positional guidance discussed.Within a command based mechanism,
 real time orientation data is a necessity as corrections to the left or right of the user can
 only be comprehended if a feedback of data is present. The audio array method comes
 with the limitation of the same degree if deployed at the base case of four corner
 speakers. Corrections will also be challenging in this case due to both the wide spacing of
 the speakers and the algorithmic control of which to activate based on the varying
 possible positions. To improve accuracy of an array for aiming the user’s shot orientation,
 a denser population of speakers is a simple enhancement. At the worst case, the possible
 blind spot for shooting position is rather wide, and will lead to challenges with the hand
 off to the user side apparatus of SCRATCH. To limit this challenge and ease difficulty on
 the user, a worst case angular error from the desired shot position should be established
 and then used to determine the necessary density of speakers.

 Audio Levels: If audio is used for guidance of visually impaired individuals, audio levels
 produced should be considered for both the ease of proper distinguishment of commands
 and for auditory wellbeing and safety of the user. Audio levels should be adjusted after
 installation within multiple environmental settings to confirm they meet these
 specifications for the user. Some systems can even be implemented that utilize feedback
 loops for gain control of outputs with installed microphones. (Accessible Pedestrian
 Signals #) For the case of VISION, this specification does not need to be considered
 down to a predetermined decibel level, but instead needs to be standardized across all the
 speakers and adjusted within the validation process of the project.

 3.2.5.2 Physical Sensory Outputs

 While audio has been explored as a guidance mechanism for users with limited use of
 their site, an additional sense can be deployed in the sensational awareness of a user’s
 surroundings. Stemming from the use of probing canes for the blind, the technology of
 physical feedback to visually impaired individuals has grown a great deal with the
 improvement of technology. Vibrations can now be actively created utilizing haptics to
 deliver purposeful information to a user that describes actions to take or a direction to
 move.

 Designs like that of Maptic (“Maptic is a wearable navigation system for visually
 impaired people”) shown in figure 3.17 have been deployed in wider variable
 environments for guidance in everyday tasks. This technology is worn by the user in what
 appears to be simple accessories but instead is a useful haptic guide for the visually
 impaired. Optical sensors within a necklace-worn device take in inputs that are then
 routed through an iOS application that sends signals to each of the wrist feedback
 devices. These signals can be configured in various manners to transmit information and
 can also be interfaced through voice control. Systems of this manner are very beneficial
 for guidance in a changing environment such as the open world, and can be extrapolated
 for more defined scopes.

 50

 Figure 3.17: Maptic Haptic Feedback Apparatus (“Maptic is a wearable navigation
 system for visually impaired people”) (Awaiting Permission from Dezeen)

 Within a different scope of problems for the visually impaired, the University of
 Maryland conducted research into a project giving the blind better ability to parse
 through reading text off a page shown in figure 3.18. Haptic feedback was used in the
 study as a manner to deliver information on the page layout and used a camera to take in
 the text information on the page. (“Evaluating Haptic and Auditory Directional Guidance
 to Assist Blind People in Reading Printed Text Using Finger-Mounted Cameras”) This
 technology approaches haptics from a different direction, but does show how minimal
 information transfer from vibrations can be used in conjunction with additional
 technologies to achieve enhancements in the lives of the handicapped, similar to the goal
 of VISION.

 Figure 3.18: Hindsight Haptic Feedback Apparatus (“Evaluating Haptic and Auditory
 Directional Guidance to Assist Blind People in Reading Printed Text Using

 Finger-Mounted Cameras”) (Permission Graned from Lee Stearns)

 Within the scope of guidance to desired shot locations on the pool table, commands can
 be delivered to the user that mean move left, right, forward, backward. As there is no
 locational specific information being delivered however, this can present comprehension
 hurdles. A new user may very well misunderstand a command being delivered and

 51

 struggle to easily follow commands. Additionally, angular orientation of the user creates
 the need for haptics to require a sort of correction based on this parameter for proper
 positional guidance. With this variety of commands being delivered in a base level that is
 binary at the simplest level and can be enhanced with more feedback devices, it can be
 seen that design can quickly divulge into complication and result in a negative user
 experience. These factors must be considered in design, especially when weighing
 options in a static vs dynamically changing environment.

 3.2.5.3 Guidance Algorithms

 Navigation algorithms that bridge the gap between sensors to output is the glue to a
 complete navigation system for an impaired user. Algorithmic constraints are examined
 with the assumption that an accurate user location and the desired location is being polled
 to the guidance system from the user localized functionality of the system and the
 billiards AI respectively. The goal of the guidance algorithm will be to locate the shortest
 path between these two data points and navigate around main item obstacles such as the
 billiards table. Obstacle avoidance is a viable feature to explore, but may create
 significant added complexity to tools deployed for user localization. This being the case,
 this feature is considered a stretch goal of the project. Once the desired path is determined
 from source to destination, outputs must be accurately relayed to the user based on the
 delivery mechanism for user guidance.

 2-D Space Traversal: To navigate the table safely, a leading mechanism to realize the
 system space is a two-dimensional created similarly to a rudimentary maze that outlines
 the table as a boundary the user cannot navigate through. This can be accomplished by
 utilizing common algorithms for navigating a 2-D matrix. There are several approaches
 to realize this goal including including the commonly deployed backtracking “Rat in a
 Maze” algorithm. The simplest form of this algorithm will continue to test paths in a
 binary maze where 0 is traversable and 1 is an obstacle until it reaches the desired
 location. As higher processing power and a shortest path is desired for this test case, an
 algorithm of this sort will want to find the absolute shortest path between two points and
 will want to terminate the function as this path is determined to not hinder processing

 ability. The Rat in a Maze algorithm operates at O(), meaning that a large array will 2 𝑛 2

 lead to a nontrivial run-time and severely hinder computational speed (“Rat in a Maze |
 Backtracking-2”).

 Figure 3.19 Maze Traversal Example

 52

 While maze traversal can be a very useful method for complex and changing 2D arrays,
 the specific use case of VISION brings up the option for an alternative method. As there
 is a static grid in place that is centered around a constant dimensional table, there are only
 two available paths that can be taken to navigate the table’s perimeter at any given time.
 With this being the case, a binary guidance algorithm can be deployed, which flows in
 one of two directions. This approach removes the need for complex computational
 calculations and puts the strain of the system on sensory input processing.

 To deploy the above algorithms, a 2-D space must be accurately created prior to the start
 of navigation. For this to occur, a constant center point should be established relative to
 the user. This point can be located at any spot, but must be adjusted accordingly if to have
 an accurate location of a moving user. The proper state of value of each square of the
 maze must be set. Recognizing the constants that will not change in this system centers
 on the billiards table and any added obstacles that may be present within the space. By
 noting these, the requirement to sense the location of the table is relinquished from the
 system. Determining the constants would depend largely on added design of the system
 and dimensions of the table. In addition to these determinations, a determination should
 be made on the size of each array value. This can be relative to the size of the average
 human, and can be larger or smaller depending on the expected accuracy of sensors and
 the desired accuracy of positioning the user.

 Obstacle Avoidance: If an unexpected object is discovered to be on the floor around the
 table, warnings and alternative paths can be deployed. The primary limiting factor to this
 approach is certain deployed sensors will be either robust to these obstacles or their
 localization algorithms will be greatly hindered. To definitively differentiate between a
 user and an obstacle, a mixed sensor approach as described in the localization algorithm
 section would ideally be deployed. In the case where an obstacle is localized, this factor
 can be added to the 2-D space as a present array value and algorithms can be deployed to
 avoid its presence. A system like this can be complex if it requires stepping into a
 dimension outside of direct adjacency to the table, and would not be compatible with
 simple guidance mechanisms.

 3.2.6 Feedback System

 The feedback system will be based on sound in order to accommodate the vision
 impaired player. The table should give the user feedback on the following events: If a
 game ball is made, a scratch, or if the game is won. The table will feature a speaker at
 every pocket, this will allow the player to be able to determine which pocket the ball
 went into. The following research is to find ways in which we can implement such a
 system.

 Event Sensing: This is the process of discovering if a shot was made by the user. It must
 also be able to determine if the game has finished or if there was a scratch on the user's
 turn. There are two main ways in which we would be able to determine if an event has

 53

 occurred, one is through our computer vision system while the other would be setting up
 sensors in every pocket.

 By employing our computer vision system based on the research in section 3.2 of this
 paper, we will be able to use that information in order to alert the player when an event
 occurs. This will prove to be higher latency than an approach using physical sensors on
 every pocket. However, the computer vision algorithm will have to be improved to meet
 extra requirements. The first requirement is that it must be able to communicate that a
 ball has been pocketed. It must also allow for detection of a scratch, this means the
 computer vision system must be able to distinguish the cue ball from the normal ball.
 Despite these drawbacks, employing the computer vision system to assist in result
 feedback would offer a major cost advantage, as well as a possible development time
 advantage.
 A sensor based system would allow for almost immediate feedback to the user. The
 sensor would have to be present within the pocket and be able to withstand a hit from the
 pool balls. That is not ideal as the sensors will likely be fragile. Some possible options for
 sensors are a force sensitive resistor (FSR) and an RFID tag.

 The FSR would be a good way to detect changes in pressure when the ball falls into the
 pocket. The FSR works as a variable resistor and an example is shown in Figure 3.20. It
 has virtually infinite resistance when not presse. As it is pressed with more force
 however, the resistance quickly goes down. The FSR has a conductive polymer that
 allows for the change in resistance when a force is applied. This approach is however not
 feasible unless the pocketed ball was taken out after the shot has been made. Otherwise
 the system would have no way of knowing whether or not another shot has been made in
 the same pocket. One way around this inconvenience would be to keep track of the
 current value, if it goes up the proper amount for another ball being made, then you could
 give the user feedback once again. However this will be difficult, as the function for force
 compared to resistance is not linear.

 Figure 3.20: Force Resistive Sensor (Awaiting Permission from SparkFun)

 As discussed in the RFID section, these chips could be placed inside of the ball for the
 purpose of detecting if a ball were to fall into a pocket. The range requirements would
 have to be met in a way to ensure that a ball very close to a pocket would not prematurely
 be counted as a made shot. The other downside of this is that it would likely require a
 very tedious process to place the RFID tag inside of the pool balls. Doing this without

 54

 disrupting the natural movement of the balls after the modifications would also require
 extreme care. A solution using this approach can be found when examining how golf
 driving ranges are able to track many metrics on a user's shot. By using RFID technology,
 the user can see the speed of their ball, the path, and the top height traveled by the ball.
 One such company known as “Top Golf” employs Impinj M700 Series RAIN RFID tag
 and is shown in figure 3.21. The technology they use is proprietary, however, we know
 that each ball has a RFID chip that is programmed before the shot is taken, along with a
 series of sensors in the field in order to gather the metrics previously described. An
 approach similar to the one taken by Top Golf would be very valuable. However, the
 room for error on a driving range is many yards, while the room for error on a pool table
 could be a centimeter. Currently a patent has been granted for using RFID technology to
 create a score tracking system for the game of pool, but without any commercial offerings
 or viable demonstrations on the effectiveness of this technology for pool, we are unable
 to see the true effectiveness of this approach.

 Figure 3.21 RFID Tag Embedded in Golf Ball (Awaiting Permission from
 Ok-Chemistry-2194)

 Feedback Sound System: The sound system will consist of a speaker located at each
 pocket. This is to allow the player to orient themselves to the pocket which the ball has
 fallen into. Some requirements for the sound system are: volume level sufficient to
 distinguish pocket location from approximately 13 feet away (9 foot pool table with
 included 4 foot buffer) and six speakers, one at each pocket.

 The feedback system must also handle the case in which more than one ball is made. If
 two or more shots are made into a pocket, the shots will be placed into a queue and
 announced in sequential order. In the case that an eight ball is pocketed, the system will
 end the game before further shots will be announced. The edge case in this scenario will
 be if two balls enter the same pocket, this may be difficult to distinguish based on the
 range of the RFID technology used. If the technology is capable of detecting two balls in
 the same pocket, then this case will follow the same queue system. A chart showing the
 progression of events is shown in figure 3.22.

 55

 Figure 3.22: Feedback System Shot Results

 Determining Shot Results: The feedback system needs to determine what occurred during
 the player’s previous shot attempt. The possible shot outcomes are shown in figure 3.22.
 In order to determine if balls were sunk during the previous shot, the feedback system
 will compare the current state of the billiard table to the previous state of the billiard
 table. The table state information will come from the output CSV files generated from the
 computer vision system. These files will contain all the information necessary to
 determine what billiard balls are no longer present after the player’s turn.

 The system will parse each file and determine if the cue ball is present, if the eight ball is
 present, how many green balls are present, and how many blue balls are present.
 Comparing the previous table state date to the current table state data will determine
 which of the five possible scenarios the player’s shot falls under. The results of this
 comparison will determine if the player must continue playing, has won, or has lost. The
 logic used for this comparison depends on if the eight ball is present. If the eight ball is
 not present, the user wins if they have no more game balls or loses if they have one or
 more game balls. If the eight ball is still present, the user continues playing and is notified
 if they did not make a ball, make their game ball, or make the opponent’s game ball.

 3.2.7 Direct User Commands

 Within this system, the goal is for the user to have as many assets as can be provided for
 giving them safe and clear access to be able to navigate the pool table and have an
 understanding of where they are at all times. In addition to system side navigation and
 localization techniques, commands sent by the user and/or a secondary controller can be

 56

 explored and implemented when the most benefit to the player can be realized. These
 commands can be implemented either for scope critical actions such as designating the
 end of a turn or focused on enhancing the user experience. For this purpose, previously
 deployed technology in remote controllers, centralized control, and audio commands are
 researched for viability within this system. The possible benefits of these designs will
 have their importance weighed for our system for an optimized user experience.

 3.2.7.1 Control Interfaces

 The scope of VISION encompasses certain baseline commands that will require user
 interaction. Whether these commands are relayed from an assistant or the user directly,
 they will be critical to the performance of the system.

 Remote Controller: A possible additional asset for the user within this scope comes in the
 deployment of a device that stays attached to the user that primarily can be used for
 setting basic commands of the system. This type of remote controller could also have the
 added benefit of being accompanied on the same devices that define user localization
 techniques previously described in device to device communication methods. Controllers
 located on a user have been referenced in the section discussing visual impairment
 assistive technology and additionally correlates to the concept of remotes used for items
 such as navigating a television interface with touch integrated controls. The latter can be
 of importance in basic design of remote interfaces for the reason of allowing visually
 impaired users the ability to at a minimum have an understanding of and be able to
 control critical functionality of a system (“Ensure that the remote control can be used
 without requiring sight”). Remotes such as the one shown in figure 3.23 showcase how a
 basic interface for control over an audio interface could be made intuitive for a blind user
 with limited guidance. The simple setup with raised and shaped buttons has been used to
 relay the intent of controls to users at scale for many years. This importance can be
 mirrored relative to this system for the needs of critical tasks that a user may need at any
 point in their performance. A similar design could be extrapolated to use within VISION
 with proper distinctions of commands in place. For the optimal user experience, having
 intuitive control directly from the source user allows for the quickest response and a
 superior experience.

 Figure 3.23: TV Remote or the Visually Impaired (“Tek Pal Tactile Low Vision TV
 Remote Control”) (Awaiting Permission from Maxi-Aids)

 57

 Centralized Control: In contrast to an interface local to the user, centralized control
 would require a non-impaired assistant to be in place and be able to relay commands for
 the current process in place. A centralized interface could be located either on the table,
 on the side of it, or distanced from the table. This interface would have a focus on buttons
 or other methods of communicating intent to the primary processor. This could contain
 critical commands, audio preferences, display settings, etc. While the remote controller is
 possibly a more optimal method for late stage development of products, a centralized
 control interface could be a better fit for a prototype to determine where limitations on
 commands may be. Additionally, having an assistant is most likely a necessity for early
 stage testing, which would eliminate the benefit brought on by a fully user side interface.

 3.2.7.2 Audio Commands

 One of the more common features of previously deployed blind-assist technology was the
 ability for users to communicate their desired system task via voice commands. Previous
 technology in this field utilized Python speech recognition packages to allow for user
 commands to be read in and interpreted by a processor and respond accordingly
 (“Guidance System for Visually Impaired People”). An interface such as this is an
 advanced feature that has benefits and distractions. The most outstanding benefit of this
 interface is the ease in being able to ask questions and send commands that is more
 intuitive than feeling for a proper command on a user side remote and attempting to
 understand the intent of each button. Additionally, a proper audio command interface
 would possibly have the ability to interpret approximate ideas from inaccurate commands
 and comprehend a best course of action. While these factors of ease are valuable, factors
 of noise pollution both from surrounding environments and from deployed audio
 guidance methods introduce potent constraints and problems to the system. Issues of this
 manner can be addressed with proper filtering and close proximity mics, but is a rather
 expansive problem to combat.

 Commands of Interest: Determining the most crucial commands for the use case of the
 augmented billiards game being deployed in this system requires a weighing of the trade
 off between the simplicity of the interface and necessity of each command. There is a
 wide spectrum of possible commands that can be of use to a user and assistant. At a
 baseline, there are commands required for basic functionality of the game to occur, and
 others that are more centered on aiding the user experience. Some possible commands to
 explore include: Center User, Start Game, Shot Taken, Game Status, Begin Navigation,
 Pause Game, Reset Game. These commands could correspond with responses from a
 centralized speaker system, begin a guidance system, or allow for a reset process to
 commence.

 3.2.8 Visual Display

 The display allows for users to quickly look at the angle and force level required for the
 best possible shot selection from their current position. It will also allow for the VISION
 team to debug in real time to verify that the computer vision system is mapping locations

 58

 correctly as well as verify the shot selection algorithm is coming up with reasonable
 outputs. This system relies on the computer vision system to give it the locations of each
 ball and the shot selection algorithm to give the display system an angle and force.

 Monitor: One of the most practical ways to display the output is to use a computer
 monitor. Monitors are relatively inexpensive and offer high-quality displays. The Jetson
 Nano natively supports USB 3.0 and HDMI interfaces. Nearly all modern monitors
 support HDMI, so finding a compatible monitor should not be an issue. Another benefit
 to using a monitor as a display is that the display does not need to be located near the
 Jetson Nano. HDMI supports cord lengths of up to fifty feet without any major signal loss
 (Herrman). If HDMI is used, this will allow for the monitor to be located away from the
 billiards table so that it does not become an obstacle to the player. The ideal monitor will
 support HDMI, a refresh rate of at least 60Hz, and be at least 20 inches.

 Graphical User Interface (GUI): The graphics can either be produced locally on our
 computer system or by accessing a website. Some of the options for this system are
 below. The system used also does not have to be high performance as we will not be
 doing any physics simulation or gameplay mechanics. The system will only take in the
 location of the pool balls and map them as well as show the next shot.

 Desktop Application Development : Desktop applications refer to applications run from
 executables on a local computer system.

 Pygame is an open source set of Python modules which allows for game development.
 Python is not the optimal choice for creating GUIs as the code is much slower than
 alternatives such as Java and C++, but it has many modules written in C in order to speed
 up runtime. Pygame was used by many of the developers to create the pool simulators
 discussed in section 3.2.1 labeled “simulation tools”. Pygame is mainly for 2D
 development of simple games, making it a strong candidate to represent our table. We
 would be able to take the existing open source simulation projects and remove the excess
 functionality.

 JavaFX is an open source project for developing GUIs in Java. Has an interactive design
 system called Scene Builder for designing the look of the interface and allows for unit
 testing through another program called TestFX. There is also a separate game engine for
 JavaFX called FXGL, but the base JavaFX will most likely meet our needs.

 Unity is a framework that allows for 2D and 3D game development. A free version is
 available for personal projects and has a vast amount of assets that may be easily
 integrated. Unity will allow for quick development of visuals and has a large amount of
 community made graphics. The high performance and optimization of Unity will give a
 strong advantage in terms of usability. Scripts are written in C# and allow for almost all
 functionality that traditional c# programs would offer.

 Web Application Development : A web application is one that is hosted on a server and
 requested by a client via the internet. It offers an easier way to communicate wirelessly.

 59

 React.js is a javascript based library for creating user interfaces. It allows for you to
 create components which can easily be reused for quick development. React is a very
 common library used in modern web development and is featured in many popular web
 development stacks such as MERN (MongoDB, Express, React, Node). However for a
 simple one page application, using React may not be the best approach. However React is
 made for interactive and quickly changing UIs soon as data changes. A common plus side
 for using React is that you will use javascript for development. Having the same language
 for both front and backend development allows for faster development.

 Javascript, CSS, and HTML may be the best option for such a simple GUI. In order to
 create tables we could use simple CSS shapes to create the table and pool balls. The pool
 balls could have their location on the screen programmatically changed whenever a new
 event occurs. One event would be the CV system sending the data for the location of
 every pool ball, the other event would be once an optimal shot was selected. The display
 would then refresh and show the locations of the ball and shot selection asynchronously.

 GUI programming for embedded systems: If our design favors programming our GUI
 onto a microcontroller instead of a microprocessor we will have to use a much different
 approach. We will not have the same breadth of applications to choose from for
 developing the GUI, but the cost will be significantly less.

 Qt is a GUI development software written for many different applications including
 mobile and desktop. This particular version is geared towards a high performance GUI
 for microcontrollers. The downside of Qt is that only four hardware platforms are
 currently compatible with the software across 10 different devices. All of the MCUs are
 higher end performance and therefore increased cost. While costs may still be less than a
 microprocessor, it will not be as large a gap as for a generic microcontroller.

 Communication between systems : The communication between the computer vision
 system and the shot selection algorithm can be done either through wireless or wired
 communication. Wired communication will limit the GUI to a desktop application for
 simplicity, while the wireless option will allow for easy development of both desktop and
 web applications.

 Wired communication : The use of a communication protocol such as SPI, USB, or I2C
 may be used in order to communicate directly with the display systems computer. The
 exact communication protocol is mostly subject to our overall system design and does not
 have a significant impact for the display system. We will instead be researching
 microcontrollers which have the ability to display a functioning GUI.

 The top candidate for the processor is a Jetson Nano. The Jetson nano and all of its
 specific requirements have been covered in section 3.2.11. The nano has a built-in port
 for HDMI, meaning we may directly plug it into our electronic display. This enables the
 ability to run a multi-threaded application, both the GUI and the computer vision system

 60

 must run asynchronously on the same system. The Jetson has 128 cores, therefore it is
 likely that it will be able to accommodate the running of two applications at once.

 The operating system for the Jetson is based on Ubuntu Linux, meaning that it will be
 compatible with many of our GUI applications. The Jetson can be run in headless
 operation mode, which would turn off the display, or in normal operation, with the Jetson
 displaying its own GUI. Another great feature of the Jetson is its ability to use the
 internet to broadcast our information to a website. This would allow for the website
 dashboard to be seen from a mobile device as well as any computer connected to an
 internet network.

 3.2.9 Absolute Orientation

 For means of getting the most accurate shot direction orientation, designating a position
 and direction that are defined absolute relative to a given point will allow for the most
 accurate dissemination for user side system commands. Following the general directional
 guidance of the user to the proper location, orientation relative to that point is crucial to
 the user’s ability to have a chance at properly hitting the cue ball. To get metrics required
 to relay this information both to the table and user guidance systems, establishing an
 orientation relative to a defined orientation is explored.

 3.2.9.1 Cue Displacement

 The cue displacement will be determined in the shot selection algorithm. The shot
 selection algorithm already must determine the location of the end of the pool cue in
 order to verify a shot is reachable. With this information we are able to determine the
 point in space that the user must be located at. However we want to move the user along
 the edge of the table in order to simplify the guidance system. Therefore we will find the
 intersection of the table with the angle from which the pool cue must be shot. Our goal
 will be to then navigate the user until their pool stick reaches the desired location.

 3.2.10 Test Cases

 3.2.10.1 Game Modes

 Billiards are a collection of games that are played with a billiards table, billiards ball, and
 cue stick. There are many different games played on billiards tables which include 8-ball
 pool, 9-ball pool, snooker, four-ball, cushion caroms, and many other variations of
 similar games. The goal of this project is not to implement all of these different billiards
 games, but rather to implement a working framework that can be expanded to different
 applications. For this project, a slightly modified version of 8-ball pool is implemented.

 8-Ball Pool: 8-ball pool is one of the more common billiards games played because it is
 relatively simple and has fewer rules than many other billiard games. 8-ball pool consists

 61

 of sixteen billiard balls. There is one cue ball, one black (eight) ball, one set of seven
 solid-colored balls, and one set of seven striped balls. There are two players who each
 will be assigned either solid or striped balls to try and pocket. Each player must use their
 cue to strike the cue ball in an attempt to push either the striped or solid color balls into
 the pockets. If a player sinks one of their game balls, they get to go again. If a player does
 not sink one of their balls it is the other player's turn. If a player sinks the cue ball or one
 of the other person’s game balls, it is the other person’s turn. If a player sinks the black
 ball before sinking all of the game balls, that player loses immediately. If a player hits the
 cue ball and does not hit any of their game balls, the other player gets to move the cue
 ball within a specified region.

 The overall concept of 8-ball pool will remain unchanged in this project, but some small
 modifications are used to help with the implementation of the project. There will be one
 cue ball, one black ball, a set of three green balls, and a set of three blue balls. Reducing
 the number of balls on the table allows for less computation and a faster result for the
 user. It is reasonable to believe that the project can support more billiard balls at the
 expense of computation time. Sets of red and blue balls are used rather than solid and
 striped balls to implement a simpler computer vision algorithm. If the project was to use
 the standard solid and striped billiard balls, a computer vision algorithm that supports
 custom object detection would likely be needed. Like regular 8-ball, the player must hit
 the cue ball to pocket other balls. All other rules above are implemented except when the
 player cannot hit any of their game balls with the cue ball. Although this implementation
 is not a true 8-ball game, it is more than sufficient for visually impaired players. Figure
 3.24 summarizes the actions supported by VISION.

 Figure 3.24: 8-Ball Features Supported By VISION

 The figure above summarizes the features supported by the project. Five possible events
 are being monitored, each event corresponds with a particular output. If the player sinks

 62

 one of their game balls, does not sink one of their game balls, or sinks an incorrect game
 ball, the player will be notified and allowed to shoot again. If the player prematurely
 sinks the eight ball, they will be notified of losing the game. If the player sinks the eight
 ball after sinking all of their game balls, they will be notified of their victory. The results
 of every shot will be presented to the player and spectators on the visual display and
 audibly through speakers.

 3.2.10.2 Shots Supported by VISION

 The game of pool offers many shot selections besides the conventional straight shot.
 These different shots exist for several reasons, putting spin on a shot can give you better
 cue ball placement for the next shot, or a worse position for your opponent. A jump shot,
 in which you skip the cue ball over one ball in order to hit another is an advanced
 technique to give you a shot at an angle which no normal pool shot could have achieved.
 These various shots will be covered in this section in order to determine which will be
 kept and which must be discarded due to complexity. In order to simplify the distinction
 of shots, some shot types will be combined which more advanced pool players would
 recognize as separate shot types. This is due to the complexity of distinguishing between
 various shot types programmatically.

 Straight shot: This is the most common shot where the cue ball has struck in order to
 directly hit one other pool ball. This is the main shot type which will be calculated. For
 simplicity this shot will include more advanced shots where the aim is to hit multiple
 pool ball in order to pocket a ball. VISION will support straight shots.

 Bank shot: This is a more difficult shot which involves hitting the cue ball off of one of
 the rails (The walls of the pool table), and then hitting a pool ball. This shot type fits in
 with what is achievable within our simulation and shot selection algorithms and will
 therefore be kept. This shot will also encompass more advanced shots as long as the cue
 ball is hit off the railing. VISION will support bank shots.

 Break shot : This is the initial shot which is taken to start the game of pool. There is not
 much that can be done to optimize this due to the random nature of the break. When that
 many different pool balls are placed right next to each other, small differences
 dramatically change the angles and forces of each ball. Therefore this shot will not be
 calculated. However it will still be used at the start of the game. VISION will not support
 break shots.

 Jump shot: This shot is created to skip the cue ball over another ball in order to achieve a
 shot. Our simulation and shot selection algorithms will focus on the top down 2D aspects
 as proof of concept. We will therefore not be able to calculate this shot. VISION will not
 support jump shots.

 Spin: This class of shot encompasses many types of shots. Spin can be used to make the
 ball go almost any direction after a hit as depicted in figure 3.25. This spin is achieved by
 hitting the pool ball in different locations and with different forces. While we could

 63

 calculate side spin with our current model, we have decided that calculating spin will be
 difficult on our simulation as well as on the team responsible for directing the user on
 which location to hit the cue ball. We have decided to cut the added complexity of spin
 and instead focus on the basic concepts first. In another version adding spin will be of
 great benefit. VISION will not support spin shots.

 Figure 3.25: Cue Contact Point

 3.2.10.3 Physical Limitations

 These are constraints brought on by the physical limitations of the pool table, the pool
 cue, and the physical characteristics of the player. The simulations and shot selection
 algorithms are generally made for game type scenarios. This means that certain physical
 limitations are not taken into account. In this section we will discuss these obstacles and
 how we will attempt to overcome them.

 Handedness of the user: This will factor in which hand a player uses to play pool. A shot
 which would be easy for a right handed player to shoot may be extremely awkward if not
 impossible for a left handed player. This difference is very large and could make a shot
 selection from the shot selection algorithm completely useless to the user. So even though
 this may be a difficult situation to account for, our solution will employ a system to
 insure that the shot given is a somewhat shootable shot for the player.

 Length of the cue stick: This limitation ties in with the previous section on handedness. A
 shot in the middle of the table from the far end will be much too difficult to instruct a
 visually impaired person to hit. We therefore need a certain limitation on how far the to
 limit a shot's distance from the user to the cue ball. Giving a shot which the player cannot
 reach or that the user team cannot guide a player to will break the game and therefore
 must be accounted for in the shot selection algorithm.

 64

 Game balls in cue stick path: Shot selection algorithms for many pool games do not
 factor in the cue stick for a shot. In order to hit a straight shot there must be no pool balls
 in the path of the cue stick. We additionally need a small buffer for the players hand as
 scratching by accidentally moving a ball should be avoided where possible.

 No available shot: If the shot selection algorithm is unable to find a safe shot to a pocket,
 there will be a few options:

 ● If the user has a ball which can be hit, the ball should be lightly tapped in order to
 avoid a scratch.

 ● If there are no good shots to hit one of the users game balls, the shot selection
 algorithm will respond with a shot that hits 3 railings of the pool table. This
 prevents a scratch.

 White ball pocketed: When the white ball is pocketed, this is counted as a scratch. While
 we may be able to ignore other scratches, where the opposing player get an opportunity to
 move the ball, we cannot ignore this one as the ball must have a new placement. In this
 scenario, the user would have the option to place the ball down onto a certain section of
 the table, the user must then shoot in the direction of the far wall. This rule would require
 a completely new shot algorithm that specifically tends to this use case. Not only would
 the algorithm have to decide the best placement of the ball, but also must find the best
 shot in a certain direction. Adding this feature would create a lot of work for an
 occurrence which is not very frequent or important for VISION. Instead a simplification
 will be enforced. The ball will be placed at the same location that the break will occur
 and the player will also be allowed to shoot in any direction. Adding functionality for
 selecting placement and following the rules for a scratch will be very beneficial if not
 necessary for a competitive game. However, for this proof of concept we will instead use
 the simplified model put forward above.

 Other scratches: In situations where the user scratches in ways such as, accidently
 moving a ball by means of something other than a shot, missing all game balls, or hitting
 a ball which is not yours first, the shot would normally be turned over to the opponent. In
 the case of our demo, we will instead be allowing the table to remain at its altered state. A
 new snapshot of the table state must be taken and a new shot selection must be made, the
 exact way in which the user will signify a scratch to the system will be taken care of by
 the SCRATCH team, but after that our system will treat the occurrence as any other shot.

 3.2.11 Processing Unit

 The computational needs of this project are intensive and require a powerful processor.
 The processor must be capable of performing artificial intelligence algorithms, computer
 vision algorithms, image processing algorithms, and various other types of
 general-purpose computing. For this reason, typical microcontrollers like an Arduino,
 ESP, or similar device will not suffice. The development boards that best suit the project
 needs are the Coral Dev Board, the Jetson Nano, and the Raspberry Pi 4 Model B.
 Although there are many other board offerings, the boards discussed in this section are

 65

 some of the most highly recommended in the embedded computing community. Table 3.3
 summarizes the technical specifications of the three major development boards under
 consideration.

 Coral Dev Board: The Coral Dev Board is a small computer-like board designed
 specifically for machine learning tasks developed by Google. The board natively supports
 2.4GHz and 5GHz wireless connectivity and Bluetooth 4.2. The board uses Mendel, a
 custom version of Debian Linux, so nearly all common Linux functionalities are
 available. Most importantly, the board has a built-in Google Edge TPU accelerator
 capable of 4 trillion operations per second. The board was specifically designed to run
 Google’s proprietary embedded machine learning framework TensorFlow Lite. While the
 board has excellent performance for TensorFlow Lite programs, the board does not
 perform as well when trying to implement other types of machine learning frameworks.

 Jetson Nano Developer Kit: The Jetson Nano is another powerful computer-like board
 designed for embedded machine learning applications developed by Nvidia. The board
 boasts its ability to run multiple neural networks at once to maximize all of its GPU
 cores. The Nano does not come standard with wireless connectivity or Bluetooth, so
 additional modules need to be added for wireless and Bluetooth connections. Nvidia
 utilizes a custom operating system, Linux4Tegra, on the Jetson Nano. Linux4Tegra is
 based on Ubuntu 18.04 so nearly all of the native Linux commands and utilities will be
 available on the Nano. Unlike the Coral Dev Board, the Nano is a more general-purpose
 computing device and can run Tensorflow, Caffe, PyTorch, Keras, MXNet, and many
 other machine learning software packages. Although the Jetson does not come with a
 machine learning Accelerator, the board is compatible with the standalone Google Edge
 TPU and can easily be integrated if desired.

 Raspberry Pi 4 Model B: The Raspberry Pi line of microcontrollers is one of the most
 well-known in the embedded community and has a great reputation for being small, yet
 powerful devices. Unlike the other boards, the Pi was not developed specifically for
 machine learning tasks but rather as a small general-purpose computer. Despite not being
 designed for machine learning, the Pi is certainly capable of implementing smaller
 computer vision and artificial intelligence applications. The board comes standard with
 2.4GHz and 5GHz wireless connectivity and supports Bluetooth 5.0. The Pi implements a
 custom operating system called the Raspberry Pi OS that is based on Debian Linux so it
 supports a majority of the common Linux features.

 66

 Processor Coral Dev Board Jetson Nano Developer Kit Raspberry Pi 4
 Model B

 CPU NXP i.MX 8M SoC
 (ARM Quad-Core)

 Cortex-A57
 (ARM Quad-Core)

 Cortex-A72
 (ARM
 Quad-Core)

 GPU GC700 Graphics
 Card
 (Vivante 16-Core)

 NVIDIA Maxwell
 (NVIDIA CUDA 128-Core)

 Broadcom
 VideoCore VI
 (Broadcom
 4-Core)

 RAM 1GB or 4GB 2GB or 4GB 1GB, 2GB,
 4GB, or 8GB

 OS Mendel
 (Debian-Linux)

 Linux4Tegra
 (Ubuntu-Linux)

 Raspberry Pi
 OS
 (DebiDan-Linux
)

 Wi-Fi 2.4GHz and 5GHz No 2.4GHz and
 5GHz

 Bluetooth Yes (4.2) No Yes (5.0)

 Ethernet 1GB Ethernet 1GB Ethernet 1GB Ethernet

 HDMI 1- HDMI 1 - HDMI 2 - Micro
 HDMI

 USB 1 - Type-A 3.0
 1 - Micro-B
 2 - Type-C

 4 - Type-A 3.0
 1 - Micro-B

 2 - Type-A 2.0
 2 - Type-A 3.0
 1 - Type-C

 Power 5V DC
 (USB Type-C)

 5V DC
 (Micro USB or Barrel Jack)

 5V DC
 (USB Type-C or
 GPIO)

 Price $129.99 - $169.99 $59.99 - $99.99 $34.99 -
 $174.99

 Table 3.3: Summary of Processor Offerings

 67

 The table above summarizes the key aspects of the three boards. The most notable
 differences are in the GPU, Wi-Fi connectivity, Bluetooth connectivity, and price. The
 Jetson Nano has the most powerful GPU with 128-cores, significantly more than the
 other boards. The Jetson Nano is also the only board that does not come standard with
 Wi-Fi or Bluetooth connectivity. For a high-end development board, it is quite shocking
 that the board does not have any standard wireless communication features. There is a
 separate module for the Jetson Nano that includes Wi-Fi and Bluetooth 4.2 available for
 approximately $20 (Kangalow). The last major difference between the boards is their
 price. The price ranges of all the boards directly correlate to the amount of RAM chosen
 for the board. The price for each 4 GB board variation (assuming the Wi-Fi and
 Bluetooth adaptor is purchased for the Jetson Nano) is $169.99 for the Coral Dev Board,
 $119.99 for the Jetson Nano, and $99.95 for the Raspberry Pi 4 Model B. Despite having
 to purchase an additional module to have wireless access, the Nano appears to provide
 the most value among the devices. Table 3.4 (Franklin) summarizes the performance of
 the various development boards on common machine learning frameworks.

 68

 Model Application Framework Jetson
 Nano

 Raspberry
 Pi 3

 Coral
 Dev

 ResNet-50
 (224×224)

 Classification TensorFlow 36
 FPS

 1.4 FPS DNR

 MobileNet-v2
 (300×300)

 Classification TensorFlow 64
 FPS

 2.5 FPS 130 FPS

 SSD ResNet-18
 (960×544)

 Object
 Detection

 TensorFlow 5 FPS DNR DNR

 SSD ResNet-18
 (480×272)

 Object
 Detection

 TensorFlow 16
 FPS

 DNR DNR

 SSD ResNet-18
 (300×300)

 Object
 Detection

 TensorFlow 18
 FPS

 DNR DNR

 SSD Mobilenet-V2
 (960×544)

 Object
 Detection

 TensorFlow 8 FPS DNR DNR

 SSD Mobilenet-V2
 (480×272)

 Object
 Detection

 TensorFlow 27
 FPS

 DNR DNR

 SSD Mobilenet-V2
 (300 ×300)

 Object
 Detection

 TensorFlow 39
 FPS

 1 FPS 48 FPS

 Inception V4
 (299 ×299)

 Classification PyTorch 11
 FPS

 DNR 48 FPS

 Tiny YOLO V3
 (416 ×416)

 Object
 Detection

 Darknet 25
 FPS

 .5 FPS DNR

 OpenPose
 (256 ×256)

 Pose
 Elimination

 Caffe 14
 FPS

 DNR DNR

 VGG-19
 (224×224)

 Classification MXNet 10
 FPS

 .5 FPS DNR

 Super Resolution
 (481×321)

 Image
 Processing

 PyTorch 15
 FPS

 DNR DNR

 Unet
 (1 ×512×512)

 Segmentation Caffe 18
 FPS

 DNR DNR

 Table 3.4 Performance Results of Benchmark Testing

 69

 The table above shows the results of benchmark testing on common machine learning
 frameworks. Although the testing is done using a Raspberry Pi 3 rather than a Raspberry
 Pi 4, there is no evidence to show that the Pi 4 would have the massive upgrades
 necessary to outperform the Jetson Nano. The DNR (did not run) entries are indicative of
 the framework being too computationally complex, limitations in the hardware, or
 software that is not fully supported. The Coral Dev board performs really well when it
 supports the TensorFlow framework being used, but it does not support a wide range of
 frameworks. The Raspberry Pi and the Jetson Nano support a wide range of frameworks,
 but the Jetson Nano clearly outperforms the Pi across all of the benchmarks.

 3.2.12 Communication Methods

 Within the scope of VISION is the communication within VISION and the
 communication with the user side interface (the SCRATCH project team). The
 communication between these two will be minimalistic in nature to limit the effect of one
 project on the other. Key variables of interest would be transmitted via either wired or
 wireless forms of communication. Wired forms of communication are typically more
 reliable but will require the Jetson Nano (VISION team) and Raspberry Pi (SCRATCH
 team) to be located in close proximity to each other. Wireless communication is more
 advanced but is more common in practice. Wireless connectivity may be difficult due to
 the constraints of device communication on the UCF wireless network (UCF_WPA2).

 Ethernet: Ethernet can be used to communicate between the Jetson Nano and Raspberry
 Pi. Each device can have a statically configured IP address and communicate over the
 ethernet connection. Both of the devices will be networked together but not be able to
 connect to any other networks. This approach is simple and reliable but limits the teams
 by not allowing either device to connect to the internet.

 Serial Peripheral Interface (SPI): SPI is a very popular form of serial communication
 that can be used to interface microcontrollers with each other. SPI would primarily be
 used to establish a connection from the Jetson Nano to the peripheral ESP
 microcontrollers. SPI is not likely to be used to communicate with the SCRATCH team
 because this would require the teams main processors to be physically located together.

 USB, USB-C, HDMI, and Other Common Connections: The Jetson Nano has a large port
 selection that can allow for may standard connections to be established. The VISION
 team intends to use these connections when possible to simplify the overall system. For
 example, the computer vision camera will be connected to the Jetson Nano with a USB
 connection.

 Bluetooth: Bluetooth is discussed as a method for sensing user location, however,
 bluetooth is also a valuable option for data transmission of variables in the case VISION
 is looking to suit. Both teams will be using bluetooth for other transmissions and will
 have to ensure that the processors can support the number of bluetooth connections
 needed. There are many publicly available bluetooth libraries for Python that can be used.

 70

 Bluetooth can also be used to connect the Jetson Nano to the peripheral ESP
 microcontrollers.

 Wi-Fi (TCP Connection): The Jetson Nano and Raspberry Pi can also communicate by
 establishing a TCP connection to each other and having a reliable communication stream.
 TCP is the ideal wireless communication protocol for this project because it is supported
 natively in Python, guarantees delivery of messages, and does not have a large latency.
 As mentioned previously, the viability of the TCP connection depends upon what the
 UCF network will allow. Preliminary testing shows that the UCF wireless network
 UCF_WPA2 does not allow for TCP connections to be established directly by devices on
 the network.

 71

 4. RELATED STANDARDS & DESIGN CONSTRAINTS

 4.1 Related Standards

 VISION needs to implement many technologies that have accompanying IEEE standards.
 Some of the most prominent technologies that will be used are Wi-Fi, Bluetooth, USB,
 micro USB, HDMI, UART, I2C, SPI, computer vision, machine learning, power supplies,
 Python, C, and cameras. These technologies have accompanying IEEE standards that will
 have to be further researched and documented in the official design document. This is not
 a fixed list and will likely change as further research into the project is completed. The
 main processor for VISION is a Jetson Nano, so many of the design decisions are based
 around compatibility and support on the Nano.

 4.1.1 Wired Communication Standards

 Universal Asynchronous Receiver-Transmitter (UART): UART is a serial data
 communication circuit that allows for variable data formatting and supports different
 transmission speeds. Most modern microcontrollers have a UART interface included
 standard in the serial communication integrated circuit. UART was invented by Gordon
 Bell of Digital Equipment Corporation in the 1960s (Digilent Corporation). Motorola,
 IBM, NXP, and other large corporations make a variation of a UART circuit that can be
 found in various processors and microcontrollers today. There is not a specific standard
 for UART but rather an agreed-upon format by chip manufacturers to ensure that the
 basic functionality of UART circuits is the same. The core functionality of different
 UART circuits will be the same across manufacturers, but additional features and
 implementation details may vary between manufacturers.

 Impact of UART on Design: UART is a powerful communication method that is
 commonly used with microcontrollers to view output produced by the microcontroller.
 This can be helpful in debugging because many microcontrollers do not have a screen on
 them to view output. For this reason, the microcontrollers that are going to be connected
 to the Jetson Nano should support UART to allow for easier development.

 Inter-Integrated Circuit (I 2 C) Bus: I 2 C is a synchronous, packet-switched, serial
 communication protocol that was invented in 1982 by Philips Semiconductors (known
 today as NXP Semiconductors). The most recent I 2 C standard is UM10204. I 2 C is free for
 programmers to use but does require device manufacturers to pay a fee to include the
 necessary I 2 C pins on their devices. I 2 C is primarily used for communication between
 chips on a single device. The widespread adoption of I 2 C has led to nearly all modern
 microcontrollers coming standard with the necessary pins. The protocol itself is rather
 simple and only requires a serial data line (SDA), serial clock line (SCL), and ground
 (List). The protocol supports multiple controllers and targets (referred to as masters and
 slaves in some documentation).

 72

 Impact of I 2 C on Design: Unlike UART which is used to communicate between
 individual devices, I 2 C is used to communicate between chips on the same device. The
 main use of I 2 C will be when configuring the microcontrollers. It is likely that I 2 C will be
 used for reading from and writing to sensors. For example, the array of speakers will
 likely be written to using I 2 C. The main design concern is ensuring that the
 microcontrollers chosen support I 2 C.

 Serial Peripheral Interface (SPI): SPI is a synchronous serial communication protocol
 that was developed by Motorola in the 1980s. Similar to I 2 C, SPI is designed for
 short-range communication between chips on a single device. SPI is primarily used for
 communication in embedded systems and is supported by nearly all major
 microcontrollers. Like UART, SPI does not have a defined standard but its popularity has
 made it commonplace in the industry. SPI is so widely adopted than is it harder to find a
 device that does not support SPI that it is to find a device that does support SPI. SPI also
 makes use of the controller and target architecture but most SPI implementations only
 support a single controller. The SPI protocol requires four pins (a serial clock, MOSI
 (master out slave in), MISO (master in slave out), and chip select).

 Impact of SPI on Design: SPI will likely be needed for communication on one of the
 microcontrollers needed for VISION. This will likely not impact the choice of
 microcontroller much because essentially every modern microcontroller comes standard
 with SPI support. The pins necessary for SPI communication are on just about every
 development board that can be purchased. The one problem that may arise is the different
 naming conventions some microcontrollers may use for describing SPI. The VISION
 team should be aware that some microcontrollers may implement SPI slightly differently
 and give the protocol a different name.

 4.1.2 Wireless Communication Standards

 Wi-Fi Standards: Wi-Fi has many standards associated with the technology but all stem
 from the IEEE 802.11 standard. The IEE 802.11 standard governs how nearly all
 wirelessly connected devices are supposed to function and must be strictly adhered to.
 The 802.11 standards were released in 1997 and continue to be amended as new advances
 in wireless technology are created. Although the standard has support for a variety of
 frequency bands, VISION intends to only use the 2.4GHz band. The 802.11 standards are
 specific to wireless communication while the 802 parent standard is more generic and
 involves ethernet connections as well. Both ethernet and wireless protocols will be
 needed for VISION.

 Impact of Wi-Fi on Design: Although VISION will not be using Wi-Fi extensively as
 much of the project’s functionality will be local, it will still be necessary for VISION to
 have wireless internet access. VISION will have a web page component that may be
 hosted over the internet so it is crucial the project can support such a connection.
 Additionally, the Jetson Nano will need to be configured over LAN before being
 connected to a Wi-Fi network, so the more general 802 ethernet standards will be used as

 73

 well. VISION will follow all necessary 802.11ba (2.5GHz and 5 GHz) wireless
 communication standards.

 Bluetooth Standards: The IEEE 802 class of standards also includes 802.15.1 which was
 the initial standard for Bluetooth communication between devices. IEEE no longer
 manages the Bluetooth standards and the Bluetooth Special Interest Group now manages
 the Bluetooth standard. The current Bluetooth standards require that a manufacturer’s
 device meet specific requirements to market the product as Bluetooth. The widespread
 adoption and popularity of Bluetooth have led most devices capable of wireless
 communication to implement some form of Bluetooth. There are several companies that
 made Bluetooth modules specifically to allow devices to gain Bluetooth connectivity.

 Impact of Bluetooth on Design: Bluetooth has emerged as the leading standard for
 short-range wireless communication between devices. It is assumed that if a device
 supports wireless communication, it will support Bluetooth (and Wi-Fi) at a minimum.
 The Jetson Nano does not come standard with wireless communication of any sort.
 However, the Nano does support a Wi-Fi and Bluetooth module in the form of a network
 interface card (NIC) that can be connected directly to the motherboard or inserted into a
 USB slot. VISION will need to obtain and implement either the NIC or USB solution to
 getWi-Fi and Bluetooth on the Jetson Nano.

 4.1.3 Connection Standards

 Connection Standards: There are many types of connections that can be established
 between devices such as GPIOs, USB, micro-USB, USB-C, HDMI, micro-HDMI,
 3.5mm jacks, ethernet, DisplayPort, common wall outlets, and various other connection
 types. All of these different connection types have their own accompanying standards
 which must be adhered to. From a user perspective, many devices naturally support these
 connection standards. The VISION team will follow all standards and recommendations
 for connections based on the industry standards and manufacturer recommendations.

 Impact of Connection Standards on Design: The main design consideration for common
 connections is ensuring that the hardware has enough ports available for all of the
 necessary components. Primarily, the VISION team needs to ensure that the central
 processing unit can support all of the needed peripherals. The Jetson Nano has a USB-C
 3.0 port , a USB-C 2.0 port , two USB 2.0 ports , a USB 3.0 port , HDMI port, ethernet
 port, and 40 GPIO pins. Although there appears to be a large selection of ports available
 on the Jetson Nano, the VISION team needs to ensure that the port selection can
 accommodate all of the peripherals.

 4.1.4 Programming Standards

 Python Standards: Python’s standard library is very extensive, offering a varied range of
 facilities such as built-in modules (written in C, others are written in Python and imported
 in source form) that provide access to different functions depending on the need of the

 74

 user included but not limited to system operations working on both Unix, Windows based
 systems, or more specific programming functions used to solve everyday issues. Python
 for Windows includes the entire library as well as some additional components. On the
 other hand, for Unix like systems, Python comes in as a collection of packages, and
 additional packages or basic packages may need to be installed with the operating system
 to cover additional functions. The library also contains built-in functions and exceptions.

 The latest release of Python is Python 3.10.7 released on September 05, 2022. Every
 release differs from the other by changing any of different syntax features, features in
 standard libraries or other customer libraries, typing and implementer features, or
 removing features, deprecating features, and restricting or removing restrictions.

 Impact of Python Standards on Design: The Python standards are quite common and well
 documented. The VISION team will need to follow all suggested Python standards to
 ensure that their design functions properly. Deviating from the Python standards may
 cause undefined behavior in the program.

 C Standards: The latest C standard is ISO/IEC 9899:2018, also known as C17 as the final
 draft was published in 2018. The biggest issue with using different standards is when a
 code returns a different output depending on the standard used by the code’s compiler.
 The international standard which defines the C programming language is ISO/IEC 9899,
 a joint effort of ISO and IEC and the participating countries. The standard is then
 available for easy purchasing online. Each participating country adopts the standard into
 their own standards system while keeping the technical content the same.

 Impact of C Standards on Design: The C standards have been around for a long time and
 are commonplace with the VISION team. The team will ensure to follow all C
 programming standards so that their programs function as expected. Similarly to the
 Python standards, if the team deviates from C standards, their programs may not function
 properly.

 4.2 Design Constraints

 4.2.1 Economic Constraints

 The goal of VISION is to make a system that can detect billiard balls, plan strategic
 shots, determine the best position for a player, and localize and guide a user to the
 necessary shot position. The purpose of developing VISION is to broaden the inclusivity
 of societal pastimes to visually impaired individuals. With this in mind, the end user of
 this project is likely a visually impaired individual trying to play billiards rather than a
 company trying to make money off the product. The end user will likely have to fund the
 implementation of VISION themselves, so the project must remain as inexpensive as
 possible. After the project’s completion, the hardware and software designs will be made
 available to the public, but users will still have to assemble some of the parts themselves.

 75

 For these reasons, the design must remain cost-efficient and relatively simple so that
 individuals of all backgrounds can implement VISION.

 The components for the project were specifically chosen to meet requirements set forth
 by the Senior Design guidelines. For example, the Jetson Nano and accompanying Wi-FI
 and Bluetooth adaptor are needed as a central processing unit because the project must
 utilize an embedded processor. The software being developed for the project can be
 executed on any modern computer. An actual user can forgo the Jetson Nano and wireless
 adaptor for a laptop. This will allow a user to save hundreds of dollars, assuming the user
 owns or has access to a laptop. Similarly, a user that is interested in playing billiards
 likely has or has access to a billiards table. Not having to purchase a billiards table takes
 hundreds of more dollars off of the total cost to implement the project. By excluding two
 of the most expensive portions of the project that a user likely has already, the project is
 now able to be implemented for under $200.

 The scope of the project is relatively large given the time constraints of the project and
 the team has not yet secured funding. To meet the goals of the project, artificial
 intelligence, computer vision, machine learning, location tracking, Bluetooth wireless
 communication, and many other complex technologies are needed. These domains each
 require some type of specific technology ranging from a few dollars to a few thousand
 dollars. VISION uses the least expensive technology that can still meet the needs of the
 project. Due to the project using cheaper technology, the accuracy, speed, and
 performance of the parts are somewhat limited. Careful consideration is used to ensure
 that the parts selected for this project will meet the requirements, while not being too
 expensive for a user to buy themselves.

 4.2.2 Environmental Constraints

 The VISION project is primarily going to be used indoors either in pool halls or different
 venues with billiards tables for visitors or in private residences for people who own their
 own pool table. Regardless of the location, one of the environmental constraints is to be
 weary of is the sound factor. Many systems in VISION rely on audio feedback to move
 the user around the pool table or to provide feedback via audio. Proper caution will be
 taken to make sure that the sound level is not overbearing for any user or those near the
 pool table. It is important that the sound provided stays audible and clear with minimal
 noise, and does not overlap when different systems need to provide audio feedback or
 instructions. One way we consider limiting these audio outputs is using only the speaker
 system as audio source so the user knows where to expect the sound from. This reduces
 distraction and focus from the central Jetson Nano controller that will be used to
 coordinate outputs. Our visually impaired user would only have to focus on sound
 coming from the speakers at set locations and the overall noise would only come from
 those areas.

 Another minor environmental constraint would be aesthetics. Light or glare coming from
 the central monitor being used for our display or other lights coming off from the Jetson
 or other electronics. The monitor can always be set brighter or dimmer depending on the

 76

 environment where the system is being used. For example, a dimmer pool hall using this
 system might want to keep the overall aesthetics dark and put off from using an
 overwhelmingly lit screen. The latter point itself is also be even more limited by encasing
 different electronics for their protection more importantly but also to reduce outgoing
 light.

 A lot of the system’s components can also be used and repurposed for other needs
 depending on the user. Our camera, localization aid, Jetson Nano and others can all be
 used modularly for other purposes offering the user additional options for reusing
 components if needed.

 4.2.3 Social and Political Constraints

 Billiards and social culture are inseparable in the societal domain. Constraints from this
 point of view should be examined as to allow for VISION to properly approach the social
 and political sphere. In terms of a physical social environment, an audio guidance
 oriented system may have limitations in its ability to be deployed. The proximity of audio
 output to the human ear can limit the efficacy of a guidance system significantly, and
 should be considered in both this prototype and in future design considerations thereafter.

 The view of an assistive technology to the cultural and political masses primarily garners
 a positive view. Some cultural groups may look more highly on this system if they have a
 higher tendency or desire to play pool, and communities with impaired individuals will
 certainly find it a beneficial technological advancement. However, if the guidance
 mechanism is skewed to benefit one group over the other by means of a selected
 language being prioritized, this can lead to an inability for said group to be able to reek
 the benefits of the design.

 4.2.4 Ethical Constraints

 The main ethical constraint would be ensuring that the user’s privacy is respected
 especially if the VISION systems are being used in pool halls where any number of
 people would end up using the product. The camera system should not be used to record
 any user, player, or individual in the vicinity of the table. The camera system will be
 pointed above the table at all times and will be primarily used to detect the balls still in
 game as needed for computer vision purposes.

 Any other recording apparatus would only be used in the closed system that is our
 product and will not be relayed through any other means. Communication between the
 VISION team and the SCRATCH team for our dual project will be done through a secure
 Bluetooth socket, limiting interference and increasing privacy if either were to be a
 concern for the user.

 77

 4.2.5 Health and Safety Constraints

 When new technologies seek to assist visually impaired individuals, the safety of the user
 is priority one. Creating a device that harms rather than helps a user is the worst case
 scenario, and must be considered to make sure a design is an additive to the lives seeking
 assistance. Constraints of VISION in this regard stem primarily from the navigational
 system in place. Navigating a table with limited awareness of surroundings can easily
 lead to a user tripping over scattered or loose items. In the case of VISION, the apparatus
 being used to hold up the camera is a constant obstacle that must be considered and shifts
 in design made with this obstacle in mind. Additionally, prioritizing a lack of exterior
 obstacles as well as carelessly placed design components will lead to a safer navigational
 path.

 In any project including electrical components, proper insulation and safety measures for
 all components must be considered to prevent the user from any chance of electrical
 shock. Additional electrical signals in audio that are used for output guidance should be
 in a form that is also safe for the user in both electrical contacts and auditory capacity.
 For instance, proper frequency and signal shapes as well as volume can prevent damage
 to hearing for users that rely on this ability. Any localization method should be utilized in
 a manner that also does not put the user at risk of harm.

 4.2.6 Manufacturability Constraints

 One of the biggest manufacturability constraints is the availability of the parts that we
 will need, especially the Jetson Nano. We will make sure to get one ahead of time, or
 keep in mind the possibility of market shortage and take into account other options that
 are suitable. Beyond this, our choice for other systems will also have alternatives either
 from the same company or from different companies in case our expectations do not
 match the product acquired or in case of any unexpected supply-chain shortage.

 We may also be constrained by resources or skills for how we would want to encase,
 wire, or prop up different components. For instance, we would have to consider different
 options for lifting the camera above the table in a way that is feasible within our means
 and easily transportable when the whole system would have to be moved. Ideally, the
 table, speakers, localization aids or beacons, and the camera system would all be
 moveable as a single system. Wiring from these systems to the Jetson Nano or main
 controller is also another concern, as it would have to be flexible enough to not be an
 issue for anyone moving around the table. For the encasing scenario, we will have to
 envision different options such as buying readily made cases to protect the Jetson Nano
 or microcontroller, doing some woodwork, or 3D printing.

 4.2.7 Sustainability Constraints

 The system should be designed for long-term use. The VISION system has a good mix of
 battery-powered devices and wired devices that both incorporate additional constraints in
 our system. The battery-powered devices such as the beacons should either have enough

 78

 usage to last for a year while being constantly turned, or have an option for the user to
 easily and safely turn them on and off as needed without affecting the software portion of
 the project. Other battery-powered components should follow a similar or better lifetime
 cycle.

 The central computer (Jetson Nano) might also be susceptible to different issues as any
 computer would be. Careful consideration will be made to ensure that all the
 computationally intensive portions of the system running on the Jetson in parallel do not
 exceed the processing power of the Jetson. Also, different files will be stored on the
 Jetson and used for the display introducing the need to make sure that file storage is taken
 into account and properly monitored for the whole system.

 Other systems that are powered via wiring from outlets would also introduce constraints
 on power consumption for the user, as well as issues with heating where applicable. The
 total system should not introduce any power surges or heating surges to the user.

 79

 5. SYSTEM HARDWARE DESIGN
 This section goes into the details on the hardware design of the entire integrated system.
 As the research section dove into the various components of the system and how they
 plan to facilitate the goals of the design, this section discusses the specific components to
 realize those goals and the manner in which they will interact with one another and be
 connected.

 5.1 Billiard Table

 From pool halls to at home setups, billiards tables come in a range of shapes and sizes.
 Determining a table that best meets the desired needs of the project is crucial to the
 mapping of the remainder of the design. Considerations for this selection range from ease
 in mobility of the table, sturdiness, ability to facilitate all subsystems and adaptations,
 robustness to case testing common occurrences, and ease of display for showcasing
 purposes.

 The standard for billiards tables includes six pockets and is in a rectangular orientation
 with two pairs of matching sides at a 2:1 length ratio (Roeder). Tables come in four
 standard size orientations as followed (Vudrag):

 ● Standard - 8ft x 4 ft dimension. This size is commonly used by at home and
 beginner setups. It has enough space for complex shots, while not requiring too
 much power to practice basic shots.

 ● Large - 9 ft x 4.5 ft dimension. This size is the recommended professional
 orientation as it requires more physical skills to move balls to desired locations.
 Certain shots are more challenging with greater distances, such as when balls are
 in close proximity. Beginners have been shown to struggle on this type of table

 ● Bar Box - 7 ft x 3.5 ft dimensions. This orientation is preferred by some for its
 ease in ability to make shots, allowing it to be a popular orientation for social
 settings. Several common issues springing up from the use of this type of table
 include: tough to reach pockets, poorly matted felt, dead rails, and issues relating
 to cue ball size. Clustered groups become more common in this setting and create
 a more luck based game compared to skill focused playthrough.

 ● Miniature - This table orientation encompasses tables ranging in sizes of the
 longer length from 20 inches to six feet. These sizes are commonly used for
 tabletop billiards or by children. Rooms with limited space will possibly be a
 proper fit for an orientation such as this as well. These sizes are not expected for
 use in a serious game of pool.

 In respect to VISION, the proof of concept aspect of our project and the augmented scale
 of the game that is planned to be deployed is best performed at smaller orientations of
 size. The scale of the table also positively correlates with price, so a smaller orientation
 table will best suit our endeavors. While the large orientation is quickly ruled out, bar box
 and standard orientations would be favored in the case of an at home asset for
 appearance. Miniature tables however are the preferred for the project’s use case as it is a

 80

 heavy favorite in terms of portability, lower price, and ease of creating augmentations to
 the minimalist approach many of the tables in this category have. An additional benefit of
 this orientation is the opportunity to develop the project on a folding billiards table. This
 type of table would be accompanied by the asset of mobility to easily transport it within a
 team member’s car for presentations and development of the prototype project.

 Several suppliers can facilitate a table as specified at a range of prices and specifications.
 Two tables of interest meet the criteria of lower size and foldability from the suppliers of
 Blue Wave and Rack as shown in Figure 5.1. These are comparable models, with the
 Blue Wave model being of higher quality, dexterity, and price to the half-priced Rack
 model. Additionally, both are miniature tables at sizes of 72 inches and 55 inches
 respectively.

 The Fairmount model was chosen for the final design. Initially, the Rack model was
 going to be used, but upon realizing the smaller size constraints included smaller balls
 and a noticeably detrimental impact to game performance, the larger table was chosen for
 use in VISION.

 Figure 5.1: Blue Wave’s Fairmount Table (Left) & Rack’s Crux 55 Table (Right)
 (Awaiting Permission from Blue Wave and Rack)

 5.2 Camera

 5.2.1 Computer Vision Camera

 The computer vision section of this project is responsible for obtaining an image of the
 current state of the billiard table, identifying the cue ball and its location, and determining
 the location of all of the other billiard balls in play. The computer vision algorithms rely
 on a high-quality image of the table state to be able to process the image and extract the
 necessary information. The camera should be able to be mounted above the table, take
 clear pictures of the table in a variety of lighting conditions, have a wide field of view,
 and be compatible with the Jetson Nano.

 81

 The camera will take pictures of the billiard table that will be processed by computer
 vision algorithms. Higher quality images will be able to provide better contrast between
 the background and the billiard balls of interest. To ensure the best results, a camera that
 provides a video resolution of at least 2 megapixels is desired. If a lower resolution is
 needed by the image processing software, it is possible to reduce the resolution to what is
 needed. However, it is not possible to exceed the maximum resolution of the camera. For
 this reason, the safest option is to get a high-resolution camera and scale down the
 resolution if needed.

 The field of view of a camera describes how wide of an angle a camera can view. A field
 of view corresponding to 60° would only see a small portion of what is in front of the
 camera while a field of view of 180° would see everything that is in front of a camera. A
 larger field of view allows for the camera to be positioned closer to the billiards table.
 Most webcams have a field of view of 60° - 90°. The ideal field of view for this project is
 around 90°. A field of view of 90° will allow for the camera to be mounted about a meter
 above the billiard table and still be able to capture the entire table (Pinke).

 The Jetson Nano supports a wide range of camera interfaces including MIPI CSI,
 Ethernet, FPD-Link III, GigE, GMSL, PoE GigE, USB, and V-by-One HS. Of these
 interfaces, Nvidia recommends using a MIPI CSI or USB interface because these options
 are supported natively (NVIDIA Corporation “Taking your first . . .”). Additionally, both
 of these camera types can provide high-resolution images at an affordable price.

 Summary of Requirements:
 ● Camera can be mounted above the billiards table
 ● Have a minimum video resolution of 2 megapixels
 ● Provide a field of view of approximately 90°
 ● Utilize an interface supported by the Jetson Nano
 ● Does not exceed $100 in price

 MIPI CSI Cameras: MIPI is an alliance of large technology companies that develop
 specifications for devices in the mobile-computing industries. One specification defined
 in the MIPI standards is the CSI-2 (Camera Serial Interface - 2) which has quickly
 become one of the most popular interfaces for implementing cameras in embedded
 designs. CSI-2 is a high-speed protocol for sending images and video from a camera to a
 computer via a proprietary MIPI CSI connector.

 In recent years, CSI-2 cameras have become the clear choice for many embedded
 processing applications. With the creation and wide-scale adoption of the CSI-2 protocol,
 many large electronics manufacturers have started manufacturing CSI-2 cameras leading
 to a wide variety of options in the market. For this reason, these cameras are relatively
 affordable and there are many options available for $20-$30. Furthermore, CSI-2 cameras
 provide higher bandwidth for pictures and images at a price comparable to USB cameras
 of much lower quality.

 82

 One of the most commonly used CSI-2 cameras for embedded applications is the
 Raspberry Pi Camera Module V2 which offers an image resolution of 8 megapixels and
 full HD video at only $25 (Raspberry Pi). The high performance at low cost is what
 makes CSI-2 cameras so popular. The main concern with the Raspberry Pi camera, and
 other CSI-2 cameras, is the short cable length of the camera connector. CSI-2 cameras
 typically have a maximum cable length of 20-30 cm.

 The short-range of CSI camera cables means that the Jetson Nano will have to be located
 next to the camera. Having the Jetson Nano next to the camera may not be possible based
 on the mounting location of the camera. The camera needs to be mounted above the
 billiards table facing downwards so that an image of the current state of the billiard balls
 can be captured. Having the Jetson Nano mounted above the billiards table would not be
 ideal because all of the other project components would have to have interface with the
 Nano in a hard-to-access location. Due to the limited length of connections for CSI
 cameras, it is unlikely that one can be used for this project.

 USB Cameras: The next best alternative is to use a USB camera. USB cameras are
 natively supported by Jetson Nanos and are one of the camera interfaces recommended
 by Nvidia. Although the performance of USB cameras is not as high as a CSI camera,
 most USB cameras are suitable for the project requirements. Using a USB webcam will
 not require the Nano to be mounted directly next to the camera, allowing for the
 processor to be located in a more centralized location.

 Many USB cameras will meet the requirements. It was determined that a moderately
 priced webcam would meet all of the requirements and nearly all webcams are USB
 devices. Many different webcams from reputable suppliers were considered. Four
 selected webcams that best meet the required specifications are summarized below. Any
 webcams that are not readily available for purchase or greatly exceed the budget
 requirements were not considered. Table 5.1 summarizes the specifications of the highest
 recommended web cameras within VISION’s budget.

 Camera Manufacturer Price Resolution Field of View

 PowerConf C200 Anker $69.99 2K 68° - 95°

 PowerConf C300 Anker $129.99 1080p HD 78° - 115°

 C920s Pro Full
 HD Webcam

 Logitech $69.99 1080p HD 78°

 C930s Pro HD
 Webcam

 Logitech $129.99 1080p HD 90°

 Table 5.1 Summary of Camera Options

 83

 From table 5.1, the Anker PowerConf C200 is the best choice for the computer vision
 camera. This webcam is one of the cheapest cameras that not only meets but exceeds the
 project requirements. The camera has a video resolution of 2K, which is better than the
 1080p resolution that the other cameras have. The camera also has three field of view
 angles: 65°, 78°, and 95°. The ability to use different field of view angles will be helpful
 when testing the design to find a camera height and angle that allow for the clearest
 pictures to be taken. The PowerConf C200 also supports autofocus and low-light
 environments to capture the best possible image regardless of the conditions around the
 billiards table.

 5.2.2 Computer Vision Camera Mounting

 To capture an image of the billiard balls, a camera will be needed above the billiards
 table. The camera can either be fixed to the ceiling of the room where the billiards table is
 located or mounted to a structure that extends over the billiards table. Ease of access,
 portability, and reliability should all be considered when selecting how to mount the
 camera above the billiards table.

 Ceiling Mounted: Having the camera mounted to the ceiling of the room is appealing
 because there would be no obstructions to the billiards table. This is ideal because players
 would not have to maneuver around a structure and possibly have to alter shots due to the
 camera stand being in the way. However, this implementation would not allow for the
 billiards table to be easily moved between locations and limit where the system can be
 implemented. Furthermore, if the camera is mounted at different distances above the
 table, the computer vision algorithms being used may need to be revised to account for
 the changes in distance.

 Fixture Mounted: Another possible way to mount the camera is to create a
 semi-permanent fixture that extends above the billiards table. Such a fixture would allow
 for the camera to be mounted above the table regardless of the table’s location and is
 shown in figure 5.2. This solution would also allow for the entire system to be
 transported between locations without having to mount a camera on a different ceiling.
 This approach will also make the computer vision algorithms more reliable because the
 distance from the camera to the billiards table will be fixed regardless of where the
 system is being used (Pinke).

 Using a fixture to mount the camera above the billiards table seems like the better
 solution because the billiards table will need to be mobile to some extent. As of now, the
 billiards table does not have a permanent location. Being able to move the table without
 having to recalibrate the camera, modify the computer vision algorithms, and remount the
 camera to a ceiling are all important factors for developing the system. The structure will
 only need to support a small webcam and can be made small in comparison to the table.
 When the camera structure is made, priority will be given to minimizing the structure size
 to have as small of an impact on the billiards table as possible.

 84

 Figure 5.2: Example of Fixture Mounted Camera

 5.3 Visual Display
 The visual display system is responsible for showing the user dashboard. The dashboard
 will show the current shot selection as well as the various game stats collected by our
 system. A typical LCD monitor will suffice for VISION. The team has opted to use their
 own monitor that has an HDMI input to be compatible with the Jetson Nano.

 5.4 Localization System
 Based on the different options presented in the research section, VISION has decided to
 initially fully focus on Bluetooth Energy as the localization scheme and navigation
 scheme. The system will navigate the user around the pool table, from their initial
 position to the target position for optimal shot computed by the pool game algorithm
 along a path determined by our navigation algorithm. In essence, the plan is to compute
 the user’s localization at every point using trilateration. When the system gets input from
 the user that they are ready to make their next shot, a series of actions begin to allow us
 VISION to determine where the user is around the table at the current time.

 BlueCharm Beacons: Three beacons will be placed on the pool table at specifically
 chosen locations. The beacons will be sending out advertisement packets at the smallest
 possible interval in order to get the best accuracy. A possible option for beacon locations
 is shown in figure 5.3 for a regular pool table of length 2.54m horizontally and height
 1.27.

 85

 Figure 5.3: Pool Table with BLE Beacons

 Our choice of beacon will be between the BC-U1 or BC-08 from the BlueCharm. The
 main difference, besides their structural/appearance, is that BC-U1 is USB powered
 versus BC-08, which is battery powered. This matters in the sense that the USB powered
 beacon would allow us to broadcast at very low intervals of about 100ms minimum or
 about 10 transmissions per second. As described earlier, a better accuracy will be
 obtained by averaging the RSSI values obtained throughout the course of scanning. Being
 able to obtain multiple transmission values would then be extremely valuable for our
 application. BC-08 is advertised as being their product with the best battery life, which is
 a considerable advantage since broadcasting at these very small intervals drains the
 battery life faster. Picking BC-U1 over the BC-08 will remove the concern around battery
 life but will introduce an additional concern over how to power three different beacons
 around the pool table in an ergonomic manner.

 ESP32: The scanner in this case will be an ESP32. The ESP32 is a low-cost, low-power
 system on a chip with two processors capable of both Wi-Fi and BLE capabilities. The
 overall picture is that the user will be holding onto a case with an extruding button that
 they can press to determine when they are ready to start their next shot. Once the button
 is pressed, a code will run on the esp32 which will read the advertisement packets from
 the three beacons and send out the results via Wi-Fi to the Jetson Nano. During this
 period of time, the user will have to stay in position to get accurate results. The ESP32
 will thus be pre-programmed beforehand to contain the code capable of recognizing a
 button push, reading the RSSI values and sending that information to the Jetson Nano.

 Due to the need to keep the ESP32 in a constant mobile state, it will need to be powered
 through a battery present in the case containing the ESP32 and the connected button.
 Table 5.2 outlines the power consumption in the ESP32 ((“Insight Into ESP32 Sleep
 Modes & Their Power Consumption”)):

 86

 Mode Description Current Consumption

 Active mode Keeps everything running
 including the real time
 clock, peripherals, Wi-Fi
 and bluetooth modules and
 the processing core and
 coprocessor

 80-90µA for Wi-Fi or
 Bluetooth receiving and
 listening

 120mA for Wi-Fi or
 Bluetooth transmitting at
 0dBm

 160-260mA for Wi-Fi or
 Bluetooth transmitting at
 13 to 21dBm

 Modem sleep mode Processing core, real-time
 clock, coprocessor active.
 Wi-Fi module, Bluetooth
 module and peripherals
 inactive

 3-20mA

 Light sleep mode Real-time clock,
 coprocessor active. Wi-Fi
 module, Bluetooth module
 and peripherals inactive

 0.8 mA

 Deep sleep mode Real-time clock,
 coprocessor active.
 Processing core, Wi-Fi
 module, Bluetooth module
 and peripherals inactive

 10µA

 Hibernation Real-time clock active.
 Coprocessor, Processing
 core, Wi-Fi module,
 Bluetooth module and
 peripherals inactive

 2.5µA

 Table 5.2: Summary of Power Consumption in ESP32

 The software portion of the localization scheme will take into account these different
 options and allow power savings by having the device go to a specified sleep mode when
 the user is in between shots and wake up from said sleep mode to allow for Bluetooth and
 Wi-Fi capabilities to turn on and function as described above.

 The ESP32 operates between 2.55V - 3.6V. This is the deciding factor to determine what
 batteries to use and how many batteries are needed. Our choice of battery must also be
 able to deliver the needed current consumption for Wi-Fi functionalities described above.

 87

 NiMh batteries delivering about 1.2V each would not be enough unless 3 of them are
 being used which seems harder to design for. Lithium polymer batteries providing about
 3.7 to 4.2V would be too much as well since a lot of the energy would be used to bring
 down the voltage to usable levels. Lithium batteries providing about 1.5V each can be
 used perfectly. A constant 3V can be obtained from 2 of them. For example, Energizer
 AA Lithium Battery are advertised to provide a low discharge rate which would make
 sure that the voltage remains at a steady 3V for a longer period of time and have a longer
 energy density than NiMh or NiCd batteries and at 500mA of current, it has a capacity of
 3000mAh which would correspond to powering our device for 6 hours straight as
 compared to about 3 hours for alkaline batteries for instance. The ESP32 will not be
 drawing that much current constantly either way, but this would ease or solve our concern
 for WiFi functionalities.

 To summarize the ESP32 will be battery powered to two of the above batteries in a
 battery holding case and soldered to a button connected to GPIO pins on the ESP32
 configured to detect any button presses. The total set up will be in a 3D printed case.
 There are different .STL files online that we will only modify slightly to adjust to our
 system requirements such as having an opening on top for the button, and possibly holes
 on the side if the case is built to be worn as a necklace, or a single hole with a buckle for
 other fitting options.

 Jetson Nano: The Jetson Nano will receive the RSSI values from the three different
 beacons and differentiate them depending on the IDs. A Python code will then run on the
 Jetson Nano to compute through trilateration the x and y coordinates of the user with
 respect to the bottom right or left end of the table, which will be our (0,0) coordinates in
 this case. The (x,y) coordinates will then be sent off and used for our navigation or
 guidance algorithm.

 This overall process will be repeated for each shot whenever the user presses the button
 and determines he’s ready to be guided for his next move. A few concerns about this
 approach, as outlined in the BLE section, are due the accuracy of the results. Due to this,
 we performed some testing on one of the Bluecharm beacons with the ESP32 to test
 variability in the RSSI values under different conditions, computing the distance between
 the two based on the formula mentioned earlier with different environmental n values.

 5.5 User Guidance System
 At the heart of the goal of VISION is the ability to guide an impaired user to a desired
 location on the table and allot them the opportunity to make desired shots. The method
 for achieving this guidance must have solid logistics, be reliable within worst case board
 states, and be safe for the user’s traversal of the table. The following outlines the
 methodology to accomplish this and the specifics of the design that minimize unwanted
 circumstances within gameplay.

 88

 5.5.1 Audio Array Design

 The two primary methods discussed in the technology review conducted in section 3.2.5
 on guidance relied on audio and haptic feedback. Haptic feedback is revealed to be a
 great technology in tandem with other devices to create a detailed picture for users in
 dynamically changing environments. However, for the static pacing of VISION that
 includes a necessity for directions around a stationary table and angular orientation
 relative to it, the limited information delivery that can be done by haptic feedback is a
 hindrance. Moreover, an apparatus on the user would be required for the navigation
 around the table, which would add more complexity to both the easy use of the system
 and the SCRATCH team’s present user system. This system also would have flaws in
 communicating coherent instructional guidance and would require a feedback loop for
 validation of positioning of the user.

 On the other hand, audio guidance can be deployed in a rather convenient manner that
 comes with several advantages. With the use of several small speakers around the table
 edges in an array fashion, guidance algorithms can pinpoint the desired path for the user
 to take around the table for a designated shot. This can be accomplished with an updating
 location of the user being referenced for the proper speakers to activate to give an
 accurate route for the user’s destination. Once in position the array can then be turned
 into a angular guidance system to orient the user within a margin of error of the ball to
 then hand off to the user team for finer user mechanics.

 To properly distribute the necessary signals to a single desired speaker at a time, the
 Jetson Nano will be the primary decision maker that will communicate signals via SPI to
 an ESP32. This ESP will interpret the data on speaker activation and then select the
 proper speakers to be activated by use of a demultiplexer that is able to select a singular
 output via digital selection pins. To access upper levels of volume, the output signal will
 be integrated with an audio amplifier from the ESP. A prototyped singular speaker design
 is shown in Figure 5.4, showing an example of how an ESP32 can communicate the
 described outputs. Navigation algorithms described in Section 6.3 explain how the Jetson
 will comprehend speaker choices. Once the ideal position and orientation are reached,
 signals sent to the ESP will stop until further navigation is desired. The output signal will
 consist of a fluctuating PWM square wave with a 50% duty cycle that jolts on and off
 every half second. This allows for an easier to locate and orient origin point given the
 differential signal.

 89

 Figure 5.4: Prototype Speaker Activation Design

 The specified positioning for the speaker array in VISION will include 12 speakers at the
 perimeter of the table as shown in Figure 5.5. This method allows for the positioning
 guidance goals of VISION to easily be attained, and gets the orientation parameters
 within an acceptable margin of error as described in Section 5.5.4. Each speaker is
 approximately 19 inches apart.

 Figure 5.5: Designed Speaker Array

 90

 5.5.2 Positioning Method

 Navigation of the impaired user will rely primarily on audio guidance from VISION’s
 table speaker array. In the case of positioning, corner speakers will be activated to best
 guide the user along a 2D plane that consists of only two possible directions to the user.
 In any instance of user location, a speaker on the corner of the table will be activated with
 the user having knowledge to walk in the direction of the origin point of the sound. Upon
 reaching the desired location, the speaker will cease to output sound or will output from
 an alternative location if in an improper location.

 Figure 5.6: Bidirectional Guidance Possibilities

 5.5.3 Orientation Method

 Upon reaching the desired location around the table, the intermittent speakers around the
 table now are used to orient the user to an approximate location that places them in line
 with the cue ball and the direction in which to shoot. Since the orientation mechanism
 lacks an active feedback method, the orientation speaker will play for a 10 second period
 to give the user ample time to shift position.

 This mechanism being the case does leave a possibility for a variable margin of error for
 the user. The calculated worst case angular margin lies at 7.1 degrees with a maximum
 possible arc difference of 8 inches. These values are within the 15 degree worst case
 scenario proposed in VISION’s project requirements, and allows for a viable hand off to
 the SCRATCH project for fine tuned movements. Figure 5.7 further shows the worst case
 margin of error scenario. Additionally, locational accuracy may also introduce added
 margin of error that must be smoothed out for most cases and troubleshooted for higher
 accuracy to give a possible starting point to the SCRATCH design.

 91

 Figure 5.7: Worst Case Margin of Error Estimation

 5.6 User Control Interface
 To properly control the full array of controls VISION’s system requires, custom user
 interfaces are designed to relay critical commands to the system. The section on user
 commands outlined three possible command interfaces for our design, including a remote
 control on the user, centralized control on the table for an assistant, and an audio
 command interface. As this project is a proof of concept, the simplest command interface
 will be integrated in a centralized command interface for an assistant to perform
 necessary commands. The interface will be minimally invasive to the action within
 gameplay, and will largely be for a short list of commands that are integral to procedural
 operations of VISION.

 There will be four push buttons that will be integrated to the ESP and PCB of the project.
 These will include commands for starting, pausing, and stopping game play as well as
 relaying that a turn has finished. The first three commands are integral for the usability
 and ease there of for the player, and the latter is important for allowing the system to
 comprehend a finished turn and calculating the next move. The computer vision portion
 of software is not constantly updating, requiring a need in this model for some sort of
 action to change the code’s operation mode.

 5.7 Communication Network
 The communication network for our hardware will allow the different computing systems
 to handoff information and control with the correct timing. Ensuring our purchased
 hardware is compatible with the protocol discussed below is another key factor in making
 sure we build a successful communication network.

 92

 5.7.1 Communicating Systems
 The following subsystems must be connected for our system to work properly:

 ● Computer Vision
 ● Shot Selection
 ● Display Software
 ● Table Feedback
 ● User Localization
 ● User Guidance
 ● User Control Interface
 ● User Team System

 Some of these systems will be present on the same hardware, while others will require
 some form of communication protocol to receive necessary information. We will now
 look how these systems are separated onto different hardware, as well as what hardware
 must communicate with each other. The computer vision, shot selection algorithm, and
 display will all be on the Jetson Nano. This will leave the communication between these
 systems as a software design specification. Table feedback and user guidance will share a
 microcontroller. The table feedback and user guidance systems both require
 communication from the Jetson Nano. The Jetson Nano will communicate with the
 microcontroller using SPI. The user localization system needs several pieces of hardware
 to function properly. It needs the beacons, the scanner (ESP32), and the Jetson Nano for
 calculation. The Jetson Nano will connect to the ESP32 via Bluetooth. The Jetson Nano
 will act as a server and the ESP32 will act as a client. The ESP32 will connect to the
 beacons with Bluetooth. The ESP32 will act as a server and the beacons will act as
 clients. The user control interface will require two pieces of hardware, the transmitter and
 the receiver. The control interface will connect with the Jetson Nano via Bluetooth. The
 Jetson Nano will act as a server and the control interface will act as a client. The user
 team will receive all needed information through one Bluetooth communication line
 connected to the Jetson Nano. This will reduce the coupling of the systems, which is
 generally best practice. The Jetson Nano will act as a server while the user team’s
 processor will act as a client.

 Figure 5.7 displays the hardware for each system as well as the needed lines of
 communication. While most algorithms are not shown on this diagram, the localization
 algorithm was kept to show the user localization system and why the system includes the
 Jetson Nano.

 93

 Figure 5.8: Tentative Communication Network

 5.7.2 Communication Protocols

 Event vs State Driven Communication: It can be hard to define the VISION network into
 event or state driven. As described in (Rollins). While there is an event driven process
 controlled by the User Control Interface, this is a one time action which places the system
 into a state, such as paused or in play. Looking over this the team has decided to treat the
 system as an event based system, this is because it will go dormant without user
 interaction. The user must alert the system that a shot has been taken to start the process
 of reading the table and generating the next move.

 Processor Communication Capabilities:
 Table 5.3 summarizes some of the relevant processors and what types of communication
 protocols they have access to.

 Processor I2C UART SPI Bluetooth Wi-Fi Ethernet

 Jetson Nano 4 3 2 No* No* Yes

 MSP-EXP430FR6989 2 2 4 No No No

 ESP32 2 3 3 Yes Yes Yes

 Table 5.3: Comparison of Communication Interfaces

 94

 *Note: the Jetson Nano does not have Wi-Fi or Bluetooth connectivity by default, but can
 gain access to these forms of wireless connection with an adapter.

 From the chart it can be seen that there are many available wired connections for
 communicating between the Jetson Nano and the MSP-EXP430FR6989. However, there
 is an issue with the Jetson Nano communicating with the ESP32 over a wireless
 connection. With the standard Jetson Nano there are a couple of options we could take for
 wireless communication.

 ● Connecting the Jetson Nano to ethernet and the ESP32 to WiFi. The two could
 then make API calls over the internet

 ● Setting a second proxy ESP32 in a wired configuration to the Jetson Nano, then
 communicating through bluetooth or WiFi with one ESP32 to the other.

 These two options are possible but would be more complicated than getting a Wi-Fi or
 bluetooth adapter for the Jetson Nano that would allow for direct communication. An
 example would be the Intel Dual Band Wireless-Ac 8265 w/Bluetooth 8265.NGWMG
 along with an antenna that can support both 2.4 and 5Ghz. The suggested antenna from a
 tutorial suggests using a molex film antenna which costs approximately three dollars.
 There are additional kits which come with the antenna and card already connected for
 similar prices. VISION intends to equip the Jetson Nano with a Wi-FI and Bluetooth
 adapter.

 5.8 Processor Selection
 The Jetson Nano 4GB Development Kit is the desired processor for this project. The
 Nano is a high-performance embedded computer equipped with a powerful GPU that can
 be used for machine learning, artificial intelligence, computer vision, and other
 computationally complex tasks. The Jetson Nano is more than capable of performing all
 of the benchmark machine learning frameworks. The Raspberry Pi and Coral Dev boards
 could perform some of the benchmark tests, but there were many tests that the boards
 could not support. The Nano’s ability to support a variety of machine learning tasks is
 what makes the board so desirable.

 There are benchmarks where the Coral Dev board does outperform the Jetson Nano.
 However, the large number of benchmarks that the Coral Dev board could not complete
 is worrisome. The Coral Dev board was purpose-built for TensorFlow Lite and it appears
 that not even the standard TensorFlow framework can always be implemented on the
 board. VISION does not intend to use TensorFlow Lite, so it would be risky trying to use
 the Coral Dev board to run software that it was not designed for. Although the benchmark
 tasks were mainly related to real-time video processing, the results display how versatile
 of a device the Nano is.

 Compared to the other boards, the Jetson Nano does lack Wi-Fi and Bluetooth capability.
 Although an ethernet connection can be used in place of Wi-Fi, there is a large portion of

 95

 the project that relies upon Bluetooth for communication. There are numerous adapters
 available on the market that can be added to the Nano to provide both Wi-Fi and
 Bluetooth connectivity. The Edimax N150 adapter is a 2-in-1 Wi-Fi and Bluetooth 4.0
 adapter that plugs directly into one of the Nano’s USB ports. This adaptor is relatively
 inexpensive and significantly increases the usability of the Nano.

 Furthermore, the available port selection on the Jetson Nano is more than sufficient to
 support all of the peripheral devices needed by VISION. The Jetson Nano has a USB-C
 3.0 port , a USB-C 2.0 port , two USB 2.0 ports , a USB 3.0 port , HDMI port, ethernet
 port, and 40 GPIO pins. With the addition of the Wi-Fi and Bluetooth 4.0 adaptor, the
 Jetson Nano will have two forms of wireless connectivity.

 To ensure that the Jetson Nano can support all of the peripheral devices needed, figure
 5.8 shows the tentative connection diagram for the Jetson Nano. The Jetson Nano is the
 central processing unit for VISION and will coordinate communication with all of the
 other devices.

 A significant amount of communication will be done using wired connections. The
 USB-C 3.0 port will be used to power the Jetson Nano from a wall power outlet. The
 USB 3.0 port will be used to communicate with the web camera for the computer vision
 system. The HDMI port will be used to display information on the monitor for spectators.
 Some of the GPIO pins will be used to establish an SPI connection to an ESP for user
 guidance. The ESP for user guidance will take in guidance information from the Jetson
 Nano and handle guiding the user to the necessary location. The implementation of this
 system and how it interacts with the speaker array is abstracted away from the Jetson
 Nano.

 VISION will also have to implement wireless communication to work efficiently. The
 Jetson Nano will use a Bluetooth connection to an ESP that will be used for user
 localization. The Jetson Nano will inform the ESP on when to begin user localization and
 relay the user’s location to the user guidance system. Similarly to the user guidance
 subsystem, the implementation details of the user localization subsystem are hidden from
 the Jetson Nano. The user localization ESP will also work as a server for the Bluetooth
 beacons that determine the user location. There will also be a second Bluetooth
 connection established by the Jetson Nano that will communicate with the other team's
 central processing unit (a Raspberry Pi). This Bluetooth connection is how the two teams
 will communicate shot information.

 96

 Figure 5.9 Jetson Nano Device Connections

 97

 6. SYSTEM SOFTWARE DESIGN

 6.1 Pool AI

 Extensive research for the shot selection algorithm has been completed in section 3.2.1.
 With many possible implementations to choose from it is important to first clarify the
 system requirements.

 ● Input: List of current table state, this is the (x,y) location of every ball, along with
 the classification of every ball.

 ● Output: The force and angle to hit the cue ball

 Summary of Requirements:
 ● Algorithm produces output in under 20 seconds
 ● Algorithm produces shots in which the end of a 3 to 4 foot pool cue will not

 intersect with the dimensions of the table
 ● Ensure that 1 foot from the cue to the shot angle does not intersect with any balls

 The algorithm must be quick enough as to not impede the game flow. If an algorithm
 takes more than 20 seconds, we will cut down on its accuracy and how many moves
 ahead it is planning. The user will likely not be hitting every ball in, so branching into the
 future too far is a waste of computational power. The algorithm must also make the
 correct decision in a very simple situation, prioritizing simple shot suggestions over more
 complex shots, even if advantageous.

 Using an existing shot selection algorithm out of the box is currently not an option. Many
 are slow and connected to GUIs. They also lack the constraints of a real table, and will
 suggest shots which are not physically possible.

 Timing Considerations: The existing shot selection algorithms will be stripped of their
 GUI for production mode, possibly increasing performance. The search and heuristic
 based algorithms have built in physics engines which are required, these cannot be
 offloaded and decrease performance. The branching factors of the algorithms can be
 diminished to a smaller amount. While the algorithms are built to win on a single turn, we
 do not expect nor need this level of accuracy. Reducing branching will dramatically speed
 up performance.

 Realistic space considerations: The algorithm must give the player a shot which is
 reachable. For example,consider the shot shown in the top of figure 6.1. Even though this
 would be the best shot, there is no way the player could reach this. The better shot
 alternative would be something such as this the shot shown in the bottom of figure 6.1.

 98

 Figure 6.1: Example of Reachable Shot Issue

 The main problem will be how to design the algorithm so that it only considers realistic
 shots. An additional algorithm will have to be made to ensure the length the pool cue is
 from the pool table wall is not too far. User testing must be conducted to get the exact
 length in question, but the algorithm will follow these steps. The algorithm must also take
 into account the width of the user's body. On one side of the table, the user's body will be
 in the way, on the other side, the user will have much more mobility.

 Algorithmic Process: Below is the general outline of an algorithm with relevant
 parameters defined.

 Max Extension= maximum distance the cue stick can be over the table
 Current Extension = total distance the stick is over the table
 User Width = the average space the user takes up
 Shot Angle = Angle the cue stick will hit the cue ball at
 Cue Ball Coordinates = The center of the cue ball given in x,y
 Cue Ball Radius =
 X Min = This is the left side of the pool table and represented by 0
 Y Min = This is the top of the pool table and represented by 0
 X Max = This is the right side of the pool table
 Y Max = This is the bottom of the pool table

 99

 1. The shot selection algorithm produces a possible shot angle

 2. Following the proposed shot angle, extend a line from the edge of the cue ball to
 the edge of the pool table. This Distance will be the stickExtension.
 Finding this distance algorithmically is not as simple as extending out the line
 though.

 a. Determine the quadrant 1 through 4
 b. Create a small triangle inside of the pool ball, use the radius as the

 hypotenuse and the given angle, then use sin and cos for coming up with
 the x and y distance

 Figure 6.2 Shot Angle Projection

 c. Depending on the quadrant, you will find the minimum distance from the
 center of the pool ball to the corresponding x and y value for the side of
 the table. This will be called the minimum difference. You will also record
 the corresponding axis, x or y, this will be called the minimum difference
 axis.

 Figure 6.3: Shot Angle Quadrant

 100

 i. Quadrant I: 0 for y, max for x
 ii. Quadrant II: max for y, max for x

 iii. Quadrant III: max for y, 0 for x
 iv. Quadrant IV: min for y, min for x

 d. Divide the minimum difference by the corresponding length on the
 minimum difference axis of the small triangle. This will give you the
 extension factor

 e. Multiply the radius of the pool ball by the extension factor and subtract
 one radius from it, this will give you the current extension

 3. We will then check to see if stickExtension is greater than stickMax, if it is, the
 shot will be skipped.

 4. Next we will check to see if the user's body is in the way of the shot. For this, we
 will extend a line the length of userWidth at a 90 degree angle and to the left of
 the stickExtension line. If this line does not intersect with the dimensions of the
 pool table, we will accept the shot. If it does intercept, we will continue to the
 next step.

 5. We will now extend currentExtension to maxExtension beyond the pool table
 wall. From here we will once again extend a perpendicular line the length of
 userWidth to the left of the maxExtension line, if this line still intersects the table,
 we will skip the shot, otherwise the shot is deemed acceptable.

 A separate algorithm which also falls into the category is room for the pool cue to move
 without the interference of another ball. This algorithm may seem simple but requires
 more advanced geometry. Algorithms like these are found in many 2D games and we will
 base our work off of the common algorithms. Raycasting is used in many games and a
 similar algorithm will be used to ensure that the shot does not intersect with other balls.

 1. The cue ball position will be deconstructed into its x and y position
 2. Create a unit vector

 a. unit vector x = cos(shot angle)
 b. unit vector y = sin(shot angle)

 3. Loop through every ball on the table currently
 a. Take the ball_x and ball_y from the ball
 b. Create a vector from the origin to the ball

 i. Origin_to_ball_vector = (origin x - ball x, origin y - ball y)
 c. Get the magnitude of the bal vector

 i. Magnitude ball vector

 = (𝑜𝑟𝑖𝑔𝑖𝑛 𝑡𝑜 𝑏𝑎𝑙𝑙 𝑣𝑒𝑐𝑡𝑜𝑟 𝑥) 2 − (𝑜𝑟𝑖𝑔𝑖𝑛 𝑡𝑜 𝑏𝑎𝑙𝑙 𝑣𝑒𝑐𝑡𝑜𝑟 𝑦) 2

 d. Compute the intersection
 i. Intersection = unit vector x * origin to ball vector x + unit vector y

 * origin to ball vector y
 e. Calculate interaction length

 101

 i. Intersection length

 = (𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑏𝑎𝑙𝑙 𝑣𝑒𝑐𝑡𝑜𝑟) 2 − (𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛) 2

 f. If intersection is greater than the radius of the ball then the raycast
 intersects

 Modifying of “PoolGenius” : The open source project we have decided to modify for our
 purposes was described in section 3.2.1. While there are several issues with software, we
 have decided that there are several factors making a high accuracy simulation and shot
 selection algorithm unneeded. The overall uncertainty of the player being able to match
 the force and the angle perfectly make strategic planning almost useless. It also makes the
 need for perfect physical simulations of 3D objects along with friction and other resistive
 properties not needed. What is needed is believable simulation of collisions which
 produce shot selections which a real player would see as logical. Pool Genius already has
 a collision system and AI, we will be making the following modifications for our project
 needs.

 ● Table state changes : Must be able to set the simulation table state to the real table
 state after every shot. This can be accomplished by changing the program to be
 fed the current table state and then producing a shot before closing

 ● Implement above algorithm to see if the shot is reachable by the player
 ● Implement above algorithm to ensure the pool cue is not be blocked

 Below is a UML class diagram describing the design plan for integrating our constraints
 with the PoolGenius software. This UML diagram focuses on the parts our team will be
 implementing in conjunction with the simulation system used. I have not added all
 classes and functions due to the large nature of the software. I have instead focused on
 adding enough classes to enable a basic understanding of the PoolGenius software. The
 RealisticAI class inherits from the base PoolAI class in order to communicate with the
 existing simulations run by another physics software known as Box2D. The drawable
 class will have another function in order to draw a pool cue, this will allow for our GUI
 to better show the desired shot angle. There are two functions which will be added to the
 software, one is test_mode which allows for the GUI to be active and the other is
 production_mode which will run more efficiently without the GUI overhead. The
 test_mode function will also allow for results to be verified in an easier fashion.

 102

 Figure 6.4: High-Level Overview of Shot Selection System

 6.2 Computer Vision System Software Design

 The system must be able to isolate the billiards table from the background, identify the
 billiard balls and their positions, and be able to distinguish the cue ball from the other
 billiard balls. Section 3.2.2 outlines some of the relevant computer vision algorithms,
 available in OpenCV, that can be utilized to reach the computer vision goals. This section
 describes how the computer vision system will be designed and what algorithms will be
 used.

 Before discussing the specific algorithms chosen, it is important to discuss the inputs and
 outputs of the computer vision system and how the system will interface with the rest of
 the project. The initial input to the computer vision system, and the entire project, is an
 image of the current state of the billiards table. This image will be processed through a
 variety of algorithms and will output a CSV file containing elements and their relative
 locations. This file will then be used by the shot selection system to determine the best
 shot to take. The elements in the output file of the computer vision system will contain
 the relative location of the six pockets of the billiards table, the relative location of the
 billiard balls, and flags to differentiate between the billiard balls.

 The input image for the computer vision system will be run through multiple separate
 algorithms to extract different information from the image. It is important to maintain the

 103

 input image so that the same input can be used for all of the algorithms. For any
 algorithm that permanently modifies an image, a copy of the original input should be
 supplied rather than the original image. The original image must also be preserved so that
 it can be used by the output system when showing the user the best shot options.

 The locations in the output file need to be relative locations rather than absolute
 locations. Relative locations refer to the distance, in pixels, from some reference point for
 a selected feature of interest. Absolute locations refer to the raw pixel location in the
 input image. Due to the input image including some of the unwanted background, all of
 the pixel locations that are found will need to be localized to a point of reference. The
 selected point of reference will be the top left corner of the playable area of the billiards
 table. This reference point is used to stay consistent with the coordinate system used by
 OpenCV and will also represent the location of the top left pocket.

 For all of the billiard balls found by the computer vision algorithms, their relative
 locations need to be included in the output file. Additionally, a flag will also need to be
 included with each billiard ball entry to specify if the billiard ball is the cue ball, the
 black ball, or a game ball. The cue ball and black ball have more significance than the
 other billiard balls for many games, so these balls must be differentiated from all of the
 other billiard balls in play. For this project, a game ball is any billiard ball on the table
 that is not the cue ball or the eight ball. Figure 6.4 summarizes how the computer vision
 system will interface with the other subsystems of VISION.

 Figure 6.5: High-Level Overview of Computer Vision System

 The diagram above summarizes how the computer vision system will interface with the
 other systems in the project. The initial input to the computer vision system is an image
 of the current state of the billiards table. The computer vision system will generate the
 output CSV file containing the localized coordinates of the pockets and billiard balls. The
 computer vision system will also create the localization CSV file containing the
 information needed to convert localized coordinates to the actual coordinates. The

 104

 artificial intelligence system will use the output file to determine the best shot to take
 based on the current state of the table. The table feedback system will determine the
 outcome of the previous shot. The feedback system will use the localization file, previous
 table state, and current table state to determine which balls are no longer present on the
 table. The optimal shot, the shot results, and the input image will be used by the output
 display system to produce a visual of the shot for the user and spectators to view.

 Billiard Table Isolation: The billiard table isolation portion of the computer vision system
 refers to being able to extract the playable area of the table from the input image. For this
 project, the playable area refers to the region of the billiards table where the billiard balls
 can be. This region is the nearly rectangular region of the table that is recessed from the
 borders of the table. Isolation is needed to localize the billiard balls to a reference point,
 verify that the contours found in the image are in the playable region, and determine the
 location of the pockets.

 To isolate the playable region, the Douglas-Peucker algorithm will be used. This
 algorithm can be used to approximate the nearly rectangular region of the billiards table.
 The region of interest will be the rectangle formed by the interior table edges and the
 pockets of the table. This algorithm was chosen because it can approximate a contour
 with many edges into a much simpler contour with only a few edges. There are simpler
 algorithms that can identify the rectangular contours in an image, but they may not
 correctly identify the region because the corners are circular.

 To localize the billiard balls in the image, a reference point needs to be chosen to localize
 the balls to. The upper left corner of the contour found by the Douglas-Peucker algorithm
 will be used as the reference point. As mentioned previously, this reference point is
 chosen to align with the coordinate system used by OpenCV. To localize the billiard ball
 coordinates to this point, simple arithmetic is needed.

 The reference point, p , will have some positive, non-zero coordinates (x 0 , y 0) . The
 reference point coordinates must be non-zero because the reference point will not be the
 upper left corner of the input image. If the reference point is assumed to be the new origin
 and denoted p* with coordinates (0 , 0) . All of the billiard balls can be localized to the
 reference point p* by subtracting (x 0 , y 0) from their coordinates. This transformation will
 ensure that all billiard ball locations are positive, non-zero values because no billiard
 balls can be above or to the left of the reference point. This claim can be made because
 any region above or to the left of the reference point is not in the playable region of the
 billiards table.

 The localization of the billiard balls to a reference point can easily be reversed by adding
 the offset values, (x 0 , y 0), back to every billiard ball. The reversal of the coordinate
 system back to the true pixel values will be useful if any features need to be drawn on the
 input image. For example, when displaying the best shot to take it may be necessary to
 draw lines pointing from a billiard ball to a target ball to a pocket. For these lines to be
 drawn properly, the true pixel values, rather than the localized values, of the billiard balls
 need to be used. The localized values on the input image should only be used by the shot

 105

 selection algorithm. To ensure that the original coordinates can be recovered, the offset
 values should be stored for the duration of the program execution.

 Once the playable region has been discovered, it will be possible to determine if the
 contours discovered in later portions of the image processing are in the playable region.
 The borders of the rectangular contour found by the algorithm will have a minimum and
 maximum x-coordinate and y-coordinate. These minimum and maximum values can be
 used to ensure that any contour discovered in the image lies within the playable region of
 the table. If any object is discovered outside of the minimum and maximum coordinates,
 it can be discarded.
 The rectangular contour outlining the playable region of the table can also be used to find
 the locations of all of the six pockets. Once the coordinates have all been localized, the
 upper left pocket will be at (0 , 0) , the upper right pocket will be at (x max , 0) , the lower
 left pocket will be at (0 , y max) and the lower right pocket will be at (x max , y max) . The
 middle pockets can be computed by finding the midpoint between the two adjacent
 pockets. The top middle pocket will be located at (x max , 0) and the bottom middle 1

 2

 pocket will be located at (x max , y max) . Defining the pocket conventions this way means 1
 2

 that the locations of the pockets only depend on the four corner values of the rectangular
 contour found by the algorithm.

 The final output of this process is two CSV files. The first CSV file is the true output file
 that will contain the locations of the six pockets. This is the file that will ultimately be the
 output of the computer vision subsystem. The other file is an intermediate localization
 file only to be used within the computer vision system. This file will contain the offset
 value used to localize the pockets and later be used to localize the billiard balls. This
 intermediate file will also contain the minimum and maximum coordinates that define the
 playable region of the table.

 Finding the Billiard Balls: To find all of the billiard balls in the input image, the Hough
 Circle Transform will be used. This algorithm was chosen because it is specifically
 tailored toward finding all of the circles in an image. The algorithm allows for the
 parameters to be modified as needed to only detect circles of a certain radius. This
 characteristic is useful because all of the billiard balls are of the same size. Once the
 expected radius of the billiard balls has been determined, the algorithm can enforce these
 restrictions on the circles found to ensure that only billiard balls are discovered.

 Additionally, this algorithm was chosen for its ability to detect touching circles and
 partial edges of circles. The algorithm traverses the discovered edges in an image and
 looks for points of intersection, and assigns points to these values. For this reason, two
 touching billiard balls can still form two distinct radii which allows the algorithm to
 detect both billiard balls. This trait of the algorithm is especially appealing because other
 algorithms are sensitive to objects being too close together. This algorithm is also able to
 detect circles from partial edges. Even if there is only a portion of a circular edge present,
 this algorithm is still able to traverse the edge and identify that the edge represents a
 circular contour. This behavior of the algorithm is ideal for situations when the lighting is

 106

 not optimal and there are shadows or unclear edges in the input image. The robustness of
 this algorithm is another reason why it was selected for this project.

 Once the Hough Circle Transform has been run on the image, it will return a list of
 discovered circles. Initially, there will be no restrictions on the radius of circles returned
 so that the expected radius of the billiard balls can be determined. This testing will occur
 in various lighting conditions and with various numbers of balls on the table. Once a
 reliable minimum and maximum radius have been discovered, these parameters can be
 implemented into the algorithm. Including the minimum and maximum radius will allow
 for the algorithm to automatically exclude any contour that is too big or too small.

 The final step of this algorithm is to write the discovered billiard balls and their locations
 to the output file. This output file will be the same output file from the table isolation
 stage and will already include the locations of the six pockets. A separate file from the
 table isolation stage containing the localization value and the minimum and maximum
 allowable coordinates for the billiard balls will also be needed.

 The list of all discovered circles will be iterated over and all of the coordinates will be
 localized to the reference point. The locations of the contours will be checked for being in
 the playable region. If the coordinates of the contour fall within the playable region, the
 location is added to the output file that contains the coordinates of the pockets. If the
 coordinates of the contour are not in the playable region, that contour is ignored. All of
 the locations added to the output file will have the keyword game_ball added to them to
 serve as an identifier for future processing. The necessary modifications needed for
 identifying the cue ball and the eight ball are discussed in the next section. The output of
 this part of the computer vision system is the output file with all of the discovered billiard
 balls and their localized locations appended.

 Detecting the Cue Ball and the Eight Ball: While the previous section outlines how to
 detect all of the billiard balls in the input image, special consideration is needed for the
 cue ball and the eight ball. In nearly all billiard games, these balls have more significance
 than other game balls. For this project, the cue ball represents the only ball that the player
 can hit directly with the pool stick (a simplification of 8 ball pool). The eight ball is the
 final ball a player must hit to win the game. Due to their significance, the cue ball and the
 eight ball need to be able to be distinguished from all of the other billiard balls that are
 detected. Once these balls have been detected, they will be given a special keyword in the
 output file. Rather than being called a game_ball , the cue ball will be given the cue_ball
 tag and the eight ball will be given the eight_ball tag.

 The ideal way to detect these balls is to make a small addition to the previous section.
 The previous section outlines how to find and filter all of the circular contours in an
 image using the Hough Circle Transform. An additional step can be added to this process
 to check if the color of the discovered contour is white or black, indicating that the cue
 ball or the eight ball has been found. Although the transform requires a binary image as
 input, the locations of the contours that are found can also be applied to a color version of

 107

 the same input. This allows the color of the discovered contours to be checked before
 adding these locations to the output file.

 The RGB values of the discovered contours can be compared with a predefined threshold
 value. A perfectly white RGB pixel will have the values of [255, 255, 255] for the red,
 green, and blue color channels, and a perfectly black RGB pixel will have the values of
 [0,0,0]. A lower bound can be experimentally determined such that the cue ball can be
 reliably identified and a similar approach can be used for an upper bound on the eight
 ball. As long as a contour’s color channels are within the threshold range, that contour
 can be considered the cue ball or eight ball respectively. It will be important to determine
 threshold values that do not provide any false positives when iterating through the
 contours. This color check can be implemented right before a billiard ball’s location is
 added to the text file. If the contour represents the cue ball or eight ball the location will
 be given the cue_ball or eight_ball tag. All of the other contours will be given the
 game_ball tag. Figure 6.5 summarizes the computer vision system.

 Figure 6.6: Computer Vision Implementation

 108

 The diagram above summarizes the computer vision system. The input to the system will
 be an image of the current state of the billiard table. The Douglas-Peucker algorithm will
 be run to isolate the table from the image background. The output of this algorithm will
 be the output CSV file and the localization CSV file. At this point, the output CSV file
 will contain the localized coordinates of the six pockets. The localization file will contain
 the offset values needed for localization and the minimum and maximum x-coordinates
 and y-coordinates.

 Once the Douglas-Peucker algorithm is completed, the Hough Circle Transform will be
 run. The Algorithm will output a list of contours that represents the billiard balls. The
 diagram does not explicitly show the size of the contours being checked. The size check
 is omitted because the Hough Circle function in OpenCV takes the minimum and
 maximum radius as parameters and automatically excludes any contour that is not within
 the acceptable range. The list of contours will then be iterated over. The contour location
 is verified to be within the playable region. If a contour is not in the playable region, it is
 excluded. The contour’s color is then checked and the contour’s location and associated
 keyword are then appended to the output file. Once all of the contours have been
 checked, the output file is ready to be used by other systems in the project.

 6.3 Navigation Algorithm Design

 VISION’s core goal is to navigate an impaired user to a desired location. The following
 is the design in place to make this primary goal a reality.

 6.3.1 Localization Algorithm Design

 ESP32: The biggest part of the software design for our localization system will be on the
 ESP32. As described in the hardware section, we plan on using BLE advertising packets
 received from three Bluecharm beacons and Wi-Fi as our main tools to determine the
 position of the user as they move around the table. We will use the Arduino IDE for our
 programming purposes and install on it the ESP32 board related to our ESP32 Devkit V1.
 This will allow us to make use of different header files written in C++ as well as their
 associated source code to make use of both the BLE and the Wi-Fi capabilities of the
 ESP32. On the BLE side, the main header files or namespaces that we will use are the
 following:

 ● BLEDevice.h: Allows initialization of BLE functions on the ESP32
 ● BLEScan.h: Allows scanning for other Bluetooth devices in the vicinity of the

 ESP32
 ● BLEAdvertisedDevice.h: Allows reading of specific features of the scanned

 Bluetooth devices including but not limited to their UUID, RSSI, Transmission
 power, address, names if applicable.

 The goal of the code for the BLE section will be to initialize the device using properly
 chosen and tested settings during the setup phase and continuously scan for devices in the

 109

 close vicinity of our device. Once scanned, the devices will be differentiated by their
 address which we will need to access from the Bluecharm beacons. To do this, VISION
 will make use of the KBeacon app recommended by the company producing the beacons.
 This step will only be done once as it is not part of the overall process of our project. The
 KBeacon app basically allows users using a phone to scan the Bluecharm beacons and
 access different settings such as the beacon’s address, modifiable advertising interval,
 beacon type, transmission Tx and measure power, beacon main UUID, major and minor
 UUID among others. The main discernable settings we will need to leverage are the
 address to determine which of the scanned bluetooth devices are one of our three
 Bluecharm beacons as well as doing testing with the advertising interval setting. Once
 any of the three beacons has been detected and properly identified, VISION will either
 store the RSSI values of the detected beacon temporary and release prior stored values to
 save on memory space within the device or continuously send out one RSSI reading at a
 time.

 These RSSI values will be sent out via Wi-Fi. The headers or namespaces we will make
 use of are:

 ● Wifi.h: Allows setting up and connecting to a Wi-Fi network in the vicinity
 ● WifiUdp.h: Allows use of UDP as communication protocol for Wi-Fi. This header

 file allows data, mainly numeric data, to be sent out as packets to a specific
 address and port. The address will corresponding to the IP address of the main
 computer and the port is a chosen number used for differentiation purposes.

 During the setup phase, the ESP will connect to a predefined WiFi in the area in which
 our overall project setup will be located. Then the ESP will continuously loop through
 and send out the RSSI readings that have been updated either in real time every time the
 loop runs sending out one value at a time or after a specific amount of time which will
 allow a chunk of values to be read at a time and sent to our main computer. Testing will
 need to be done to see which one of the two options will be better both in terms of
 latency and for proper use by the guidance system. The second option is advantageous in
 that the sent out RSSI values can be averaged out for the specific period of time and will
 allow a more accurate position to be determined for the user’s location. However, this
 does not work ideally if the user is in constant motion as the RSSI values will be rapidly
 changing. The first option takes in mind the fact that the user’s position is constantly
 changing by computing a position every time but depending on latency in the code itself,
 determining the right position of the user at any time might still be overshadowed if the
 user moves faster than the system can compute their position. All of these factors will be
 taken into consideration and the most user friendly, yet computationally reasonable
 section will be implemented.

 Jetson Nano: The main computer is the Jetson Nano where a Python file will
 continuously run to read the RSSI values sent via Wi-Fi. Python is chosen because of its
 flexibility through available modules for a wide range of applications, can be ran directly
 and in a single file from the shell or command line and can easily interact with other
 portions of the code. Bluetooth sockets will be used to communicate between the Jetson

 110

 Nano and ESP32. The socket will bind to a specific host and the same port we specified
 on the ESP32 and continuously receive data via Bluetooth. Data preprocessing will be
 needed prior to sending data in order to differentiate between the different beacons
 depending on how they are being sent from the ESP32.

 The code on the Jetson Nano will then compute the current distance between each beacon
 and the ESP32 from the RSSI values using the trilateration formula discussed previously.
 This part of the code will mainly be mathematical calculations in which the end x and y
 position of the user will be computed from the individual distances from each beacon to
 the user.

 The computed value can then be sent and used by the guidance system either every time
 it is being called, or the real time position can be continuously calculated and stored in a
 CSV file. The latest positional entry in the CSV file can then be read by a separate code
 used for guidance of the user. Each of the decisions and uncertainties listed in this design
 section will be taken into account, tested and the best solution for every subsystem
 implemented at the end.

 6.3.2 Guidance System

 Guidance of the user is dependent on three passed parameters: current location of the
 user, the destination determined by the shot selection algorithm, and the layout of the
 table. As these are passed, the user and destination will be placed within the defined array
 encompassing both the table and traversable perimeter. As these are placed, a calculation
 will be made on which of the binary routes is shortest and then deploy a route to be taken.
 As this route is determined, a speaker will be turned on and utilize a digitally generated
 PWM signal producing a desired output for the user. As this process occurs, the software
 will continually update its input parameters until destination and location are equal to one
 another. This means the user is properly located at the appropriate shooting position on
 the table.

 Once arriving at the desired location, a calculation will be made on which speaker has the
 best correlation with the line of attack of the cue stick. Once this is determined, the
 speaker will play the same generated output previously described for a 10 second period.
 Upon completion, the software will wait for an input from the user control system to
 signal a shot has occurred. This begins the process over again with the computer vision
 algorithm as there is no active feedback loop to correct for positioning errors outside of
 the SCRATCH system.

 6.4 Web Interface

 The web interface will be a dashboard built in to provide continuous, real time, and
 updated information to the user and people around the pool table about the user’s
 performance and state of the game as it progresses. Since the web application will have to
 rely on working with data and displaying the data on a web page, VISION aims to find

 111

 tools that would allow a simple way to display and update the data. This section examines
 different options and then describes how to use the better option in the software design.

 R vs Python: Two most common programming languages for data analysis and statistical
 computation are R and Plotly. For this reason, a comparison of these two programming
 languages is presented before diving into which modules offered by either languages
 would serve the best purpose. Table 6.1 describes the comparison between the two
 options.

 112

 Comparison
 Criteria

 R Python

 General overview Open source
 interpreted (runs on
 command line)
 programming
 language for statistical
 computation and
 graphics.

 Open source high level, interpreted
 general purpose programming language.
 Modules on Python such as Pandas,
 Scikit, SciPy, Seaborn, ggplot2,
 Matplotlib on Python allow to cover
 some of the statistical, data modeling,
 and data analysis functions that are
 inherent to R

 Syntax More complex to gain
 expertise in

 Easy to read syntax makes learning
 curve much more linear and simpler

 Libraries and
 packages flexibility

 R modules are easier
 to use and more
 powerful overall.
 However, for our
 current functionality,
 we don’t expect to
 require any intensive
 computations

 Python modules are more complex to
 understand and less powerful. This
 learning curve, however, is not
 comparable to that of learning R from
 scratch in our case.

 Data collection R is mainly limited to
 CSV, Excel and txt
 files.

 Python allows you to use data from
 CSV, txt, or other data formats. Also
 allows importing data from SQL
 databases into the python code. You can
 also request data in JSON format
 through web requests and use said data
 in your web page or web design

 Memory usage and
 speed

 R consumes more
 memory since the
 objects created are
 stored in physical
 memory. As time goes
 on, this will lead to
 slower overall
 functionality. R is also
 naturally slower than
 Python, taking more
 time to return outputs
 regardless of the code.

 Python is relatively slower than other
 programming languages since it’s an
 interpreted language but is still faster
 than R. It does also consume significant
 memory space so special care will have
 to be taken by deleting unused data as
 time progresses or clearing memories as
 needed.

 Table 6.1: Comparison between R and Python

 113

 Looking into the options on Python for designing our web based dashboard. Two
 standouts that require more attention to determine which one to use. The two options are
 Dash and Streamlit. Both Streamlit and Dash are full dashboarding solutions for Python
 based data analytics and rely on Tornado and Flask respectively to deploy the dashboard
 on local or web based servers.

 Streamlit is more focused on rapid prototyping providing a fully fleshed dashboard with
 as little code as possible. However it suffers from other drawbacks that should be
 considered. Dash on the other hand focuses on more robust production/enterprise
 dashboards, which may be overkill for our application, but allows much more flexibility
 and options for what can be done despite the more difficult programming barrier. In itself,
 a fully fleshed local web server app can be launched from both Python modules in a
 relatively small amount of code (as shown in appendix B).

 Where dash_html_components and dash_core_components are other modules associated
 with dash that allows VISION to use most if not all of the available html elements from
 regular web page designs and construct different graphics respectively. In this case, the
 basic app layout would consist of an html Div element or grouping element under which
 the app would create a graph using dcc.Graph whose id is main-graph. The id value here
 works in the same way that ids (and classes) work in CSS.

 Dash is chosen over Streamlit due to the reasons outlined below:

 ● CSS flexibility and aesthetics: Dash allows a user to fully customize the id and
 classes as mentioned below that correspond to different divisions or sections of
 our web page through a .css page in the same way that would be done for a
 regular web page. Also, just like regular web design, a user can take advantage of
 both Bootstrap themes and Bootstrap elements in order to fully customize a
 webpage to match specific color themes or modify the aesthetic of different
 elements such as buttons, dropdowns, depending on what will be needed in
 VISION’s web page during the design phase. Hence, for users not fully familiar
 with CSS, they can use prepackaged CSS files such as the ones provided through
 bootstrap or other available files or snippets of files online to modify their web
 page.

 ● Similarity to HTML and CSS: For anyone with previous web page design
 experience, Dash is much more intuitive and easy to follow. The same perks that
 are known to work with regular webpage division are applicable when modifying
 a dashboard through a Python dash script. In addition to this, a user can modify
 the JavaScript elements of the webpage directly if needed.
 Dash_html_components introduced earlier contains a plethora of basic html
 features providing pure Python abstraction around HTML, CSS, and JavaScript.
 For users not fully familiar with HTML, only a few of those are actually needed
 to design a fully functional dashboard, which reduces the worry of having to learn
 HTML/CSS. In addition to that, being able to use HTML elements also allows a

 114

 user to modify their styles directly bypassing CSS pages, or group similar
 elements into classes or ids which will in turn share the same CSS properties.

 ● Callbacks in dash: For fully interactive and constantly updating dashboards, Dash
 offers Python functions disguised as callbacks which basically modify the inner
 characteristics of different elements in a web page set as output due to other
 characteristics of elements set as inputs or states.

 ● Documentation and module integration: Streamlit allows us to integrate a lot more
 Python modules into our design such as OpenCV or TensorFlow when compared
 to Dash. Dash has the advantage for this project because a lot of the additional
 rendering from the computer vision side of our project would have been done
 beforehand and a simple image of the end result can be then added to the
 dashboard. Also Dash has an extremely broad community support, where many
 questions have been asked and answered before.

 Considering the inner complexity of Dash, it is also worth dividing the dashboard coding
 process into distinct files, as described by the flow diagram (figure 6.6) below.

 Figure 6.7: Senior Design Dashboard File/Folder Structure

 115

 Deploying the App: Dash is built on top of Flask and uses Flask as its web routing
 component on a local web server or on a server accessible to everyone on the same
 network. A dashboard app can either be created to run the localhost’s IP address only
 with specified ports if they are available or can be configured to run on host 0.0.0.0 and
 then any specified port which will allow the app to be accessible to anyone on the
 network’s IP address.

 To make the app available directly online, Dash provides different options for
 deployment through Heroku. Only a Heroku account, Git, and a virtual environment on
 Linux where the Python modules needed for the app will reside.

 An alternative to Heroku that could be easier to use is PythonAnywhere.
 PythonAnywhere works in a similar fashion to Heroku. The main difference is it does not
 require Git and uses uwsgi instead of gunicorn to populate the server. From a
 programming perspective, there is not a significant difference between the two server
 hosting softwares. Figure 6.7 shows the tentative layout of the dashboard for VISION.

 Figure 6.8: Dashboard Layout

 6.4.1 Output Image Generation

 Creating the Output Image: The display will include many important statistics and
 visuals for the user and spectators to view. Of the displayed outputs, the most significant
 image is the ideal shot for the user to take. The shot will be displayed by placing lines

 116

 between billiard balls and the desired pocket on the input image. One line will connect
 the cue ball to the desired game ball and another line will connect the desired game ball
 to the desired pocket. To create this output image, artificial intelligence and computer
 vision subsystems will be needed. The computer vision system will provide the input
 image and localization CSV file and the artificial intelligence system will provide the
 optimal shot selection.

 The display system does not perform any significant computations, but rather uses the
 output of the other systems to produce a visual aid. To draw the ideal shot path, only the
 targeted game ball and the desired pocket are needed from the artificial intelligence
 system. It should be noted that the preferred shot selection will be calculated using
 localized coordinates rather than absolute coordinates. For this reason, the coordinates of
 the shot selection will need to be transformed back to the absolute values before being
 used. A previous section describes the transform and inverse transform of coordinates in
 greater detail. Once the raw coordinates of the cue ball, the desired game ball and pocket
 have been calculated, OpenCV can be used to easily draw the ideal shot selection for the
 display.

 117

 7. SYSTEM FABRICATION

 With the extensive physical and design footprint of the VISION apparatus, a fabrication
 plan is put forth for both PCB and the full system.

 7.1 PCB Design

 To properly integrate the circuitry components of VISION and satisfy a simplistic design
 for integration, several core components will be conjoined through a printed circuit board
 (PCB). The following section provides details on how the design will be conducted and
 the best practices to provide a functioning product. For the purposes of VISION, the PCB
 will be designed in EAGLE for its easily used interface in free usage as students at UCF.
 The majority of components that will be built into the PCB can be accessed using the
 EAGLE libraries, imported libraries from distributors such as Digikey and Mouser, and
 custom components when needed.

 7.1.1 PCB Design Philosophy

 The following outlines important practices in PCB design as outlined from Altium, one of
 the leading PCB development software companies. (Peterson)

 Component Placement: Component placement is where PCB begins and can be fine
 tuned throughout the process of development. The goals for a well placed board should
 focus on ease in routing and limiting layer changes when possible. Several good practices
 to ensure a proper layout consist of prioritizing placing must-have components first and
 large processors/ICs in central locations, avoiding net crossing, placing all surface mount
 devices on one side of the board, and experimenting with different orientations of
 components. Following these steps and focusing on the largest and biggest hassle
 components first can limit headaches and improve design throughout the PCB design
 process.

 Power Planes: Following the placement of components, the orientation of the power and
 ground planes is the next focus. Power and ground are placed on two internal layers,
 which can be a hindrance with only two layers. The ground plane ideally is on its own
 layer and is recommended as to not have to route ground traces on a board. Power is
 recommended to be implemented via common rails connected directed to the power
 source, but power planes can also be implemented if components do not get daisy
 chained and have wide enough traces implemented.

 Routing: Determining the proper routes for connections between components can be an
 artform and is very up to the designers discretion. Ideally, short and direct routes are
 highly recommended. An important rule to follow is if all the traces on one side of the
 board flow in one direction (horizontal), the other side should flow all traces the opposite

 118

 direction (vertical) to restrict emf disruption along traces. This is very important in two
 layer designs, and should alternate between layers in multi-layered board designs. Certain
 special case designs will require added practices to account for specialized component
 characteristics. Additionally, determining the proper width for traces can be a complex
 process, but can be determined by analyzing the manufacturability, current consumption,
 and impedance that will be seen through the design.

 Component Grouping: Guidelines on grouping and separation can be valuable to ensure
 easy routing, prevention of electrical interference, and thermal management. At the heart
 of component grouping is placing items that are in a circuit together, especially if they do
 not interact with other portions of the board. Separating analog and digital components is
 a very important step in grouping, and can prevent commonly introduced interference. If
 these grouping practices are followed, the design becomes an exercise in placing groups
 rather than individual components. An important note in the grouping process is the
 separation of high powered components, as close proximity can lead to thermal issues.

 7.1.2 PCB Design

 The components of VISION included within the project’s PCB are centered around the
 guidance output system and the user control interface. This encompasses a connection to
 the Jetson Nano, outputs to each speaker, regulators for both voltage and signal output
 control, a demultiplexer for signal selection, and push buttons for the control interface.
 Included in the PCB are the following major subsystems and components:

 ● Connection to Jetson Nano
 ● ESP32 Chip
 ● Switching Regulator
 ● Audio Amplifier
 ● 12 Speaker Outputs
 ● Demultiplexer (CD74HC4067)
 ● Four Push Buttons

 Figure 7.1 shows a block diagram of the systems included in the PCB design.

 Figure 7.1 PCB Design Block Diagram

 119

 8. SYSTEM TESTING PLAN
 The following two sections focus on the hardware and software side testing for VISION.
 To properly meet the goals set out by the project, the team must successfully validate
 each system to standard tests. If standards are not met regarding these testing guidelines,
 changes to design must be made accordingly to properly deliver on the project’s mission.

 8.1 Hardware Testing

 8.1.1 Guidance Testing

 As guidance is at the core of VISION, its validation is critical to the validity of the
 system at large. VISION’s design relies on audio guidance mechanisms in the form of
 speakers. To properly validate these, several important scopes should be examined and
 tested.

 First, the proper output signal must be generated and be troubleshooted to an ideal signal
 strength that is receivable by the human ear and loud enough to be differentiated in a
 somewhat crowded room. To do this, the signal should be played in a room with artificial
 noise being introduced. If the examiner can distinctly hear the audio being generated, the
 waveform is validated.

 The efficacy of the guidance mechanism must be placed under rigorous testing following
 the validation of perceivable sound. To do this, a simulated impaired user (blindfolded
 team member) shall be used in both the case of positioning and orientation guidance. To
 validate positioning guidance, the user should be able to follow basic commands from the
 speaker array. The efficacy of these commands can be examined on both their validity in
 general positioning, their ability to cease use after arrival, and the accuracy of the
 positioning within the proposed margin of error of six inches. Examining the orientation
 mechanism will then follow this stage, and will involve validating the expected output
 signal, proper speaker outputs, and that the user can be within the 15° margin of error.

 The end goal of this validation scheme is that the user is within close enough proximity to
 an accurate shot the actions can be taken by the SCRATCH system to commence final
 guidance and deliver upon the promise of the design: making accurate shots. Test runs
 will be deployed to see how many successful hand offs are conducted. Finally, the most
 crucial test will be conducted in seeing how accurate the design is at the end of the day.
 How many successful implementations can be done from initial guidance all the way to
 successful shots. If this number reaches nontrivial values, the guidance system for
 VISION will be considered a success.

 120

 8.1.2 BLE Testing

 As earlier mentioned in the research section, the biggest uncertainty with our localization
 goals is the variability of RSSI readers from BLE and the accuracy that can be obtained
 from using trilateration as the main means of detecting exact positions within a small
 margin of error. Hence, a lot of testing will come into play both on the software and on
 the hardware side to determine how variable the readings obtained are. Further work will
 need to be conducted to determine how much more accurate the measurements can be.

 To begin with, testing scenarios between the ESP32 and one of Bluecharms BLE beacons
 is conducted. Testing will be conducted using the BC08 iBeacon, which is the non-USB
 one outlined in an earlier section The ESP32 module being used is the
 ESP32-WROOM-32 described earlier advertised as well suited for Wi-Fi and
 Bluetooth/Bluetooth LE-based connectivity applications and providing a solid dual-core
 performance. The module is part of the ESP32 Devkit V1.

 As initial testing, code will be run on the ESP32 connected to a computer and constantly
 reading RSSI readings from the BLE beacon at its default advertisement interval and at a
 set direct distance from the beacon. We will use the following formula described before
 in the research section to compute the distance by varying different values of n under
 reasonable values from 2 to 4: 2 corresponding to large open rooms and 4 corresponding
 to heavily furnished rooms.

 𝑑 = 1 0 (𝑇𝑋 − 𝑅𝑆𝑆𝐼) /10 𝑛

 Using this as an initial testing mechanism will assist in determining how much variability
 there is and a finding suitable range of values for n which will work regardless of the
 room the pool table will be ultimately placed in. The RSSI values will be obtained for a
 specific period of time of 5 to 10 seconds and will be averaged out to use in our formula.

 After obtaining a suitable value of n to be used, the value of n must be checked to see
 how well this value works at different distances as well as the variation in RSSI readings
 at different distances.

 To collect data, a user will change the distance between the ESP32 and the ibeacon while
 staying within the 7 feet standard pool table distance range longitudinally, vertically and
 diagonally. Someone will record the different RSSI values for a specified period of time
 of about 5-10 seconds under the default advertisement interval that the iBeacon comes in,
 compute the mean of the RSSI values, standard deviation, and finally use the same
 formula with our computed value of n . The next test conducted will determine the effect
 of changing the advertisement interval. iBeacon specifies that a lower advertisement
 interval while being more power draining will provide better results when averaged. Tests
 will be conducted to vary n from the default advertisement interval to the lowest possible
 advertisement interval and compute the average of values, calculate the distance and
 percentage error to determine the drawback or any advantage of lowering the value. It
 should be noted that this might not be as large of a factor as we expect since the RSSI

 121

 values being read also depend on how often the program loops through and read values
 on the ESP32. The main assumption here is that on the software side, the program is
 reading RSSI values as fast as possible and only testing what happens on the hardware
 side.

 The last test needed is to determine if there are any adjustments needed based on devices
 interfering with the testing. The main assumption here is that any other Bluetooth device
 might affect the RSSI readings and this theory will test it out by having different
 Bluetooth enabled devices around the ESP32. This will be a short test and will only really
 be done under heavy interference around the device mimicking a lot of pool players being
 actively on their phones during a pool game.

 The rest of the testing will be done on the software side. Once any pitfalls on the
 Bluetooth beacon have been discovered, the real options are either repeating these tests
 with a different beacon or reader module or trying to correct or smooth the readings from
 the RSSI values before using them for the computation. The trilateration algorithm and
 how the three beacons interact together will also need to be tested. The code written to
 transfer the values wirelessly from the ESP32 to the computer instead of it being a direct
 USB connection will also need to be tested. This test will also allow for the testing of the
 button on the hardware side, battery powering the ESP32 and the effect of any latency in
 the Wi-Fi communication and simulate how long the user would have to wait in place
 realistically as their position is being localized between shots. Many of these
 considerations are software problems and will be discussed in the software section.

 8.2 Software Testing

 8.2.1 Shot Selection Algorithm Testing

 In order to ensure that the shot selection algorithm produces consistent and valid results,
 several test cases will be run to ensure the user is not prompted to do a task which is
 either impossible or illogical. Many of the test cases will correspond with the section for
 edge cases. The testing will feature three approaches.

 ● Programmatic Testing - Testing will be done after any change to the code is made,
 results will come back quick and will give rapid feedback on any breaking
 changes.

 ● Simulation validation - Visually verify that the results from the shot selection
 algorithm make sense from the display. This should be done after any major
 changes to the system.

 ● Physical Testing - Verify that the shot selection algorithm produces shots which
 are comfortable and realistic to attempt. This should be attempted sparingly, but at
 least one successful run should be made before any overall system tests are
 performed.

 122

 Testing shot selection: There will be several test cases that have an obvious correct
 answer. Ensuring that a correct decision is made on an obvious table state is of extreme
 importance and points to a reliable algorithm. The testing will feature a simulation that
 goes along with the shot selection, the table state will be provided to both the simulation
 and the shot selection algorithm. A success of the test case will be when the simulation
 executes the shot selection algorithm and makes the desired ball. The following test cases
 will be verified:

 Will execute six tests for each case, one for every pocket
 1. Ball and cue lined up in front of a pocket.

 Pass: Shot made
 Fail: Scratch or no made shot

 2. Simple bank shot
 Pass: Shot made
 Fail: Scratch or no made shot

 3. No easily makeable shot
 Pass: No scratch
 Fail: Scratch

 Physical Limitation Tests: These tests focus on ensuring that the physical limitations of
 the player are respected in order to give achievable shots. The test cases should cover the
 previous shot selections as well, as a test passing for shot selection but not being possible
 is a poor indicator of our software quality. The following test cases will be verified:

 Pass: The shot conforms to physical limitations as listed above
 Fail: The shot fails to conform to physical limitations

 1. Shot selection tests for right handed player
 2. Shot selection tests for left handed player

 8.2.2 Computer Vision Software Testing

 The computer vision system is the initial input to the project, so the system must function
 accurately so errors are not propagated to other systems. The difficulty in testing the
 computer vision system stems from the nature of billiards itself. There are an infinite
 number of ways that the billiard balls can arrange themselves on the table, so it is not
 feasible to test every possible input configuration. The testing procedures will include the
 most common scenarios that a player might encounter and a few edge cases. As the
 project progresses, necessary test cases will be added to ensure that the computer vision
 system is functioning properly. This section outlines some of the most prevalent scenarios
 that must be tested but are by no means comprehensive of all possible input scenarios.

 Testing the Billiard Table Isolation: The billiard table isolation feature of the computer
 vision system is the simplest feature to test. This feature is responsible for outlining the
 playable region of the billiard’s table from the input image. The output for tests related to
 this feature should all have nearly the same output. The output should include a

 123

 rectangular contour outlining the playable region and two populated CSV files. The
 output CSV file will contain the localized coordinates of the six pockets and the
 localization CSV file will contain the localization values and the minimum and maximum
 x-coordinates and y-coordinates. Although the outputs of this system may not be the
 same for every iteration, the values contained in the CSV files should be relatively
 similar.

 Testing the billiard table isolation feature will be done in two stages. The first stage will
 be visually inspecting the contour outlining the playable region. The contour should be a
 rectangle that borders the playable region and should not extend outside of the playable
 region. There currently does not appear to be a way to automatically test this output with
 a high level of accuracy. The second stage includes verifying the CSV file outputs.
 Although the exact pixel values may fluctuate between iterations, the values should not
 vary by more than ten pixels in any given direction. For this reason, once well-established
 values for the pockets and minimum and maximum coordinates are known, automatic
 testing can be implemented to ensure the values in the CSV files fall within a normal
 range.

 The state of the billiard table will not impact the output of this feature significantly, so the
 number and color of balls present for these inputs are not important. Certainly, test cases
 will be included that have a varying number of balls present on the table, but these types
 of tests should not drastically impact the outcome. The more significant input images for
 testing the billiard table isolation feature are using various lighting conditions, having the
 cue stick present, and having a user standing around the table. All of these scenarios are
 certainly possible and the computer vision system should be able to function regardless of
 these obstructions. Even though the billiard’s table will mostly be stationary, it is still
 possible that lighting conditions can change and the system should still be able to
 function properly. Although an input image should never be taken when a user is leaning
 over the table, is it possible that the user is standing beside the table. The presence of a
 user or a pool cue should not impact the system’s ability to identify the playable region of
 the table.

 Testing for Finding the Billiard Balls: The feature responsible for finding all of the
 billiard balls on the table will be the most complicated feature to test. This feature
 includes detecting all the billiard balls in the image, determining the coordinates of the
 billiard balls, and determining the color of the billiard balls. This position of the computer
 vision system is also responsible for identifying and ignoring false positives in the input
 image. The output of tests related to this feature will be the information appended to the
 output CSV file. When this portion of the computer algorithm is run, the locations of the
 six pockets will already be included in the output file. This section will append the type
 of ball found (game ball, cue ball, or black ball), the localized x-coordinate, and the
 localized y-coordinate for every billiard ball in the input image.

 Before discussing how to create unit tests for this feature, a brief discussion on testing for
 the minimum and maximum radius is needed. Section 3.2.2 describes utilizing the
 parameters available in OpenCV’s Hough Circle Transform to specify the minimum and
 maximum radius. To determine the minimum and maximum radius, other built-in

 124

 OpenCV features can be used. By running the Hough Transform without any radius
 requirements, all of the circles in the image will be discovered. The discovered contours
 can be manually iterated and highlighted so each contour can be verified for correctness.
 The area of all of the correct contours can then be found by using an OpenCV area
 method. Once a substantial amount of samples have been collected, the average radius, in
 pixels, can be extracted from the area measurements. An appropriate radius threshold can
 then be set.

 Testing this feature is ensuring that the output CSV file is updated properly to reflect the
 current state of the billiard table. To ensure that the feature is working properly, simple
 testing will be conducted and more complex scenarios will be added. Simple tests of the
 system include capturing input images where billiard balls are on the table in a variety of
 configurations. The output file should accurately represent the number, color, and
 location of the types of balls on the table. It will be important to consider lots of different
 combinations of inputs. Once the basic scenarios are ensured to be working properly,
 more complex scenarios can be added. Important scenarios to consider would be when
 the white ball is not present, the black ball is not present, neither the black ball nor the
 white ball is present, and when no balls are present. Other more complex scenarios are
 when two or more balls are touching, the cue stick is present in the input image, and
 when there are circular objects in the input image that are too small or too big to be
 billiard balls. All of these scenarios should also be considered in different lighting
 conditions to ensure that the accuracy of the computer vision system is not diminished by
 different lighting conditions.

 A set of automated unit tests will be created by capturing many input images
 representative of the previously described testing scenarios. Generating a suite of unit
 tests will ensure that the system is functioning as expected. These unit tests will have a
 verified output CSV file associated with each input image so that any changes to the
 computer vision system can quickly be verified against an established set of tests.
 Creating such a testing environment is important because it will allow for changes to the
 project to be verified quickly, without having to manually test the new modifications.

 8.2.3 Feedback System Software Testing

 Testing the Shot Result Feedback: Testing the shot result logic of the feedback system is
 one of the most important features to test in the project. The shot result subsystem should
 be able to take the previous and current state of the billiard table and determine the
 outcome of a player’s shot. This subsystem is straightforward and can be easily tested.
 The inputs for the feedback are two CSV files originating from the computer vision
 system. One of the CSV files is the previous state of the billiard table and the other CSV
 file is the current state of the billiard table. It is possible to create test CSV files
 representative of all possible scenarios the computer vision system can output. Once
 created, these input files will form a test suite used against the expected output to ensure
 that the system is functioning properly.

 125

 The actual testing of the shot result feedback consists of checking if the cue ball is
 present, if the eight ball is present, how many green balls are present, and how many blue
 balls are present. If the eight ball is present, then the user has either won or lost the game.
 The deciding factor is if the player has any game balls left on the table. If the eight ball is
 not present, the user will continue playing and has either not sunk a ball, sunk their game
 ball, or sunk an opponent's game ball. All of these scenarios are predictable and can be
 tested easily with custom CSV input files.

 8.2.4 Localization Software Testing

 This section reiterates some of the problems with BLE and goes over how we will test out
 the final system we will be using to localize the user at every point and while they are in
 motion. The main goal of the localization system should be that it allows the position of
 the user to be detected and returned to a guidance system at every time while the user is
 moving from their initial position to the final position. The first concern is the accuracy
 of the system that will be testing. In the hardware section, the theory behind determining
 the distance between a receiver and a transmitter enabled with BLE was tested. The final
 design expands upon this by using three beacons each advertising to the ESP32 and the
 signals received by our ESP32 are in turn used to compute the distance between the
 ESP32 and the beacons. The distances are in turn used to triangulate the position of our
 ESP32 and hence our user. Preliminary testing can be done without the need of a pool
 table for this system. With the code written out to perform the collection of RSSI values,
 transfer via Wi-Fi to a computer, and then computation of (x,y) position based on these
 values, the table setup can be simulated. Testing will be done by moving the ESP32
 around the table in a predetermined manner and tracking if the distances computed match
 with the motion traced around the simulated table.

 The next test will be determining how accurate the readings are by placing the ESP32 at
 specific points for a prolonged period of time and determining the error between the
 expected value and the computed value by our testing algorithm.

 Other parameters to record during testing are the latency that may occur between
 communications and within the code itself. As is, running both BLE and Wi-Fi on the
 ESP32 devkit module is a heavy task for the processor. Earlier it was mentioned that the
 BLE beacons are able to broadcast as fast as sending one advertisement packet every 100
 milliseconds or 10 every second. However, limitations on the side of the ESP32 prevent
 the beacons from fully taking advantage of this feature. As is, using available modules
 online for BLE on the ESP32, the ESP32 is only able to set a scanning time within
 seconds. In other words, the most scanning the ESP32 can do is scan every second. For
 each scan, the ESP32 is also able to modify the scanning interval and the scanning
 window which determines how long it will be actively looking for an advertisement
 packet within this time window. Specific examples available for the ESP32 set this
 scanning interval to 100 milliseconds and the scanning window to approximately the
 same value. This, in conjunction with the advertisement interval set on our beacon,
 should be enough to allow for detecting any of the advertisement packets sent within that
 second to the ESP32.

 126

 Additional latency may be incurred by adding Wi-Fi to our functionality. Tests will need
 to determine the latency associated with the different formats in which data is sent from
 ESP32 to the main computer. The main protocol under consideration is UDP described
 under the communication protocols section. Testing the fastest format for sending data in
 a way that will be either easier to transmit for the ESP32 or easier to receive for our main
 computer or controller will be very important.

 The last latency issue that needs to be tested is the button press implementation that will
 determine when the user is ready to move from one point to another. One of the things to
 test for this issue is determining if it is a necessary addition. Its main usage will be giving
 VISION a set start point to run the code for localization. An alternative would be to
 simply run the code constantly and allow the guidance system to use the output of the
 localization system at any time for user guidance. Both options would be applicable
 mainly dependent on the guidance algorithm or what seems more user friendly at the end.
 If implemented either way, the button might be used for other features within this project
 such as allowing a reset of the localization/guidance system for example.

 Other components of the localization system pertaining to hardware that were not
 mentioned in that section that would not require any additional testing but are worth
 mentioning are the batteries we use for powering the ESP32, the battery life of the
 beacons (considering they can be turned on and off to save power), the 3D model and
 print of the case within which the ESP32 will lie in and general wiring.

 8.3 User Testing

 To evaluate the success of VISION and SCATCH, a visually impaired user should be
 navigated around the billiards table and able to successfully complete a clear shot. The
 success of the projects largely depends on a user’s ability to complete a shot. If the
 system created by VISION and SCRATCH can allow a user to sink a billiard ball, the
 system will be considered successful.

 From VISION’s perspective, the first benchmark is being able to properly capture the
 state of the billiard’s table and represent the table state computationally. The table
 representation should also be able to produce a reasonable shot selection with the help of
 the billiards artificial intelligence system. This process is not easily verifiable and will
 require the VISION team to manually verify the shot. The table representation will need
 to be verified to ensure that the representation accurately reflects the state of the table.
 The shot selection will need to be verified to ensure that the artificial intelligence
 algorithm selects a shot that is feasible and guides the user to progress towards winning
 the game. These verifications will be performed by testing the system with an actual user
 and verifying VISION’s decisions in real-time.

 The second benchmark of VISION is being able to locate and guide the user around the
 billiards table. The user’s location should be checked against the location of the user that

 127

 VISION reports to the system. If the user is within the allowable distance of the user
 localization system, the system will be deemed a success. The user guidance should be
 able to guide a user around the billiards table from a starting location to a final location.
 The system will be tested by guiding a user from some starting location to some
 predetermined final location. If the user is able to be guided to the final location within
 the specified margin of error, the user guidance system will be considered successful.

 Overall, there is no automatic way to test the effectiveness of VISION. Individual test
 cases will be designed for each subsystem to validate the subsystems basic behavior.
 Success during individual testing does not correlate to success of the overall project. The
 project can only be validated by testing the entire system and verifying the system’s
 results in real-time. Subsystem testing will help to eliminate major subsystem issues, but
 the true test of VISION will occur when all of the subsystems are integrated.

 128

 9. ADMINISTRATIVE CONTENT

 9.1 Project Budget
 VISION is a large project that requires a significant amount of hardware and software
 components. As shown in the table below, the project requires a billiards table, Jetson
 Nano, camera, multiple BLE beacons, and other costly hardware. To account for the large
 amount of technology needed, the team has set a budget of $800 ($200 per team
 member). The budget is an upper bound of what the team believes is needed for someone
 to recreate this project.

 9.1.1 Bill of Materials

 Table 9.1 lists the materials, quantity, and associated cost for the materials needed to
 implement VISION.

 Component Quantity Unit Cost Total

 Pool Table 1/2 $450 $225

 Anker Powerconf c200 1 $50 $50

 ESP Microcontrollers 2 $15 $30

 Bluetooth Beacons 3 $20 $60

 PCB Testing Parts 1 $20 $20

 PCB Final Assembly Parts 1 $40 $40

 Jetson Nano 4GB Development Kit 1 $200 $200

 Speakers 12 $2 $24

 Monitor 1 $40 $40

 Total $689

 Table 9.1: Bill of Materials

 129

 9.1.2 Project Financing

 The table above is a comprehensive list of the most critical components for VISION. The
 pool table will be shared with the SCRATCH (group #17) project, meaning the team is
 only responsible for half of the cost of the pool table. Although the price of the project is
 within the $800 project budget, there are opportunities to reduce the overall cost. Due to
 supply chain shortages, most high-power processors (Jetson Nano, Google Coral Dev
 Board, Raspberry Pi) are not in stock and are subject to third-party resale prices. The
 team is currently reaching out to suppliers to try and obtain a board at retail price.
 VISION and SCRATCH are actively seeking sponsorship and outside funding for the
 project. In the worst case, the members of VISION will split the costs of the project
 between themselves.

 9.2 Milestones
 VISION is a complex project requiring many different systems to integrate together for a
 user to play a game of billiards. For this reason, the members of VISION used the
 summer prior to taking Senior Design 1 to complete the project brainstorming. The goal
 was for the team to start the documentation process as soon as classes resumed so there
 would be sufficient time to research the design. There are no complete projects for
 VISION to be based upon, so the group wanted to ensure adequate time to resolve any
 issues arising while conducting research.

 The timelines discussed below account for any research compilations that may be
 discovered. The milestones of VISION will ideally be completed before the anticipated
 end dates so that the documentation can be submitted before the due date. Although the
 focus of Senior Design 1 is the research and documentation of the project, the team plans
 to begin preliminary testing to show that the ideas being researched are feasible. Proof of
 concept testing will be conducted by each member in their respective area of focus
 alongside their project research. After the project report has been submitted it will be
 used for further testing. Ideally, system integration can be performed as soon as the team
 moves into Senior Design 2. For a more detailed schedule of VISION’s goals, view tables
 9.2, 9.3 and 9.4.

 130

 Task Start Date Anticipated End Date Duratio
 n

 Project Brainstorming Summer Summer 0 weeks

 Project Scope Finalized
 (Finalize big picture design and

 what the end goal is)

 08/22/2022 08/26/2022 1 week

 Individual Research Begins
 (Begin breaking the project into

 smaller subsections such as CV or
 AI)

 08/22/2022 09/02/2022 2 weeks

 Initial Design Document
 (Based upon the D&C documents)

 08/22/2022 09/05/2022 1.5
 weeks

 30-Page Milestone
 (General system design, project

 motivation, project goals, project
 concepts)

 08/22/2022 09/09/2022 3 weeks

 60-Page Milestone
 (Independent technology research,

 system requirements, part
 ideas/availability)

 09/10/2022 09/30/2022 3 weeks

 90-Page Milestone
 (Independent technology research,

 system communication)

 10/01/2022 10/21/2022 3 weeks

 120-Page Milestone
 (System testing, PCB design, PCB

 testing, citations)

 10/22/2022 11/11/2022 3 weeks

 Group Review: Final Draft 11/14/2022 11/18/2022 1 week

 Table 9.2: Senior Design 1 Project Documentation Milestones

 131

 Task Start Date Anticipated End
 Date

 Duration

 Individual System
 Design

 (Create some proof of
 concept design in

 hardware or software)

 09/05/2022 10/02/2022 4 weeks

 Individual System
 Testing

 (Develop and
 demonstrate the proof of

 concept design to the
 team)

 10/03/2022 10/30/2022 4 weeks

 Breadboard Prototyping
 (Finalize what the PCB
 will do and breadboard

 the design)

 10/31/2022 11/21/2022 3 weeks
 (Assuming we can
 get parts in time)

 PCB Design / Ordering
 (Design the PCB in

 Eagle and order from a
 reputable PCB

 company)

 11/22/2022 12/12/2022 3 weeks
 (Assuming we can
 get parts in time)

 Table 9.3: Senior Design 1 Project Design Milestones

 132

 Task Start Date Anticipated End Date Duration

 PCB Testing
 (Test all of the PCBs to ensure
 they work properly)

 01/09/2023 01/23/2023 2 weeks

 System Integration / Testing
 (Begin integrating the
 individual systems together in
 the main code)

 01/24/2023 02/13/2023 4 weeks

 Practice Project Demo
 (Go through a mock project
 demonstration to ensure
 everything is functioning)

 02/14/2023 02/27/2023 2 weeks

 Finalize Documentation
 (Final edits and construction
 of the documentation)

 02/28/2023 03/13/2023 2 weeks

 Practice Final Presentation 03/14/2023 03/20/2023 1 week

 Final Presentation TBD TBD TBD

 Table 9.4 Senior Design 2 Project Design Milestones

 The tables above is a tentative schedule with emphasis placed on the documentation
 milestones over the design milestones. The schedule should not need modification
 because of the team’s commitment to brainstorming the project over the summer. If any
 significant problems develop while researching VISION, two weeks are currently
 unaccounted for that can be allocated to any milestone deadline as needed. The work
 done during the design milestones will guide the selection of hardware and software in
 the document as members can discover what will and will not work for the project

 133

 10. PROJECT SUMMARY & CONCLUSION

 VISION is progressing well throughout the Senior Design 1 semester. The VISION team
 has reviewed many different types of applicable technology and developed a better
 understanding of what technologies will be applicable during project design in Senior
 Design 2. Furthermore, the team has developed a hardware and software design plan that
 has shown positive results in preliminary testing.

 One of the largest issues that VISION, and other projects, must overcome is the
 remaining problems in the supply chain. Many parts that VISION would like to use are
 either unavailable or significantly more costly due to having to pay third-party prices. In
 addition to product unavailability, shipping times, especially from international sources,
 is still slower than pre-pandemic times. VISION is overcoming these difficulties by
 acquiring parts now so that there is no delay to design in the spring semester.

 VISION has been able to acquire a billiards table, a web camera for computer vision, a
 reliable billiards artificial intelligence program, Bluetooth beacons, ESPs, speakers, and a
 Jetson Nano. Although the VISION team will still need to wait sometime before being
 able to acquire the PCB, many of the core components of the project have already been
 acquired.

 The VISION team’s dedication to technology exploration in Senior Design 1 has allowed
 the team to discover, discuss, and solve many design issues related to the project’s
 implementation. With a wealth of new knowledge on the subject and many of the
 necessary components acquired, the VISION team is looking forward to implementing
 the project in Senior Design 2.

 134

 Appendix A: Copyright Permissions

 Request for Shot Planner Diagram (Figure 3.1)

 135

 Request and Permission for Image of Thresholding Distribution (Figure 3.4)

 Request for Image of Thresholding (Figure 3.5)

 136

 Request for Canny Edge Detection Image (Figure 3.6)

 Request for Hough Circle Transform Image (Figure 3.7)

 137

 Request for Douglas-Peucker Algorithm (Figure 3.8)

 Request for Previous System Indoor Localization Design (Figure 3.9)

 138

 Request for Image of Avery Dennison’s AD-172u7 Inlays (Figure 3.10)

 Approval for Image of Avery Dennison’s AD-172u7 Inlays (Figure 3.10)

 139

 Request for image of Model and Dimensions of Compact Housing HRXL-MaxSonar
 Model (Figure 3.13)

 Approval for image of Model and Dimensions of Compact Housing HRXL-MaxSonar
 Model (Figure 3.13)

 140

 Request for image of VL53L0X Time-of-Flight Ranging and Gesture Detection Sensor
 (Figure 3.14)

 141

 Request for Maptic Haptic Feedback Apparatus (Figure 3.17)

 Request for HandSight Haptic Feedback Apparatus (Figure 3.18)

 142

 Approval for Image of Force Sensitive Resistor from Sparkfun (Figure 3.20)

 Request to Use Image of RFID Tag in Golf Ball from Reddit User (Fig 3.21)

 143

 Request for TV Remote for the Visually Impaired (Figure 3.23)

 144

 Request for Blue Wave’s Fairmount Table (Top) & Rack’s Crux 55 Table (Bottom)
 (Figure 5.1)

 145

 Appendix B: Code Segments

 Dash vs Streamlit: Setting up a locally running app

 146

 Appendix C: References

 Accessible Pedestrian Signals . http://www.apsguide.org/chapter7_adjustments.cfm.

 Adaptive-Vision. “Template Matching.” Adaptive-Vision ,

 https://docs.adaptive-vision.com/4.7/studio/machine_vision_guide/TemplateMatc

 hing.html. Accessed 11 November 2022.

 “Assistive Technology for the Blind (AT).” Mass.gov ,

 https://www.mass.gov/service-details/assistive-technology-for-the-blind-at.

 Accessed 29 November 2022.

 “Audio guidance system for blind.”

 https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8203710&tag=1.

 Authentise. “Detecting Circular Shapes Using Contours.” Authentise , 18 April 2016,

 https://www.authentise.com/post/detecting-circular-shapes-using-contours.

 Accessed 11 November 2022.

 BogoToBogo. “OpenCV 3 Canny Edge Detection - 2020.” BogoToBogo ,

 https://www.bogotobogo.com/python/OpenCV_Python/python_opencv3_Image_

 Canny_Edge_Detection.php. Accessed 11 November 2022.

 Breckon, Toby, and Chris Solomon. Fundamentals of Digital Image Processing: A

 Practical Approach with Examples in Matlab . Wiley, 2011.

 Cannizzaro, Davide. “A Comparison Analysis of BLE-Based Algorithms for Localization

 in Industrial Environments.” , , 26 February 2022,

 https://www.researchgate.net/publication/338241733_A_Comparison_Analysis_o

 f_BLE-Based_Algorithms_for_Localization_in_Industrial_Environments.

 Accessed 30 November 2022.

 Data Carpentry. “Thresholding – Image Processing with Python.” Data Carpentry ,

 https://datacarpentry.org/image-processing/07-thresholding/. Accessed 11

 November 2022.

 “Datasheet for the HRXL-MaxSonar-WR sensor line.” MaxBotix Inc. ,

 https://www.maxbotix.com/documents/HRXL-MaxSonar-WR_Datasheet.pdf.

 Accessed 30 November 2022.

 147

 Davide Cannizzaro Politecnico di Torino. “A Comparison Analysis of BLE-Based

 Algorithms for Localization in Industrial Environments.” 26 February 2022,

 https://www.researchgate.net/publication/345670871_Indoor_Navigation_System

 _using_BLE_and_ESP32. Accessed 30 November 2022.

 Digilent Corporation. “UART.” Digilent Reference , 29 October 2012,

 https://digilent.com/reference/learn/fundamentals/communication-protocols/uart/s

 tart. Accessed 11 November 2022.

 “Ensure that the remote control can be used without requiring sight.”

 https://universaldesign.ie/technology-ict/archive-irish-national-it-accessibility-gui

 delines/digital-tv-equipment-and-services/guidelines-for-digital-tv-equipment-and

 -services/remote-controls/ensure-that-the-remote-control-can-be-used-without-req

 uiring-sig. Accessed 1 December 2022.

 “Evaluating Haptic and Auditory Directional Guidance to Assist Blind People in Reading

 Printed Text Using Finger-Mounted Cameras.” Ruofei Du ,

 https://duruofei.com/papers/Stearns_EvaluatingHapticAndAuditoryDirectionalGu

 idanceToAssistBlindPeopleInReadingPrintedTextUsingFinger-MountedCameras_

 TACCESS2016.pdf. Accessed 1 December 2022.

 Franklin, Dustin. “Jetson Nano Brings AI Computing to Everyone | NVIDIA Technical

 Blog.” NVIDIA Developer , 18 March 2019,

 https://developer.nvidia.com/blog/jetson-nano-ai-computing/. Accessed 11

 November 2022.

 Fusco, Giovanni, and James M. Coughlan. “Indoor Localization for Visually Impaired

 Travelers Using Computer Vision on a Smartphone.” NCBI ,

 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7643919/. Accessed 1 December

 2022.

 “Guidance System for Visually Impaired People.”

 https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9395973.

 Herrman, John. “How To Extend Your HDMI Cables | HDMI Repeater.” Popular

 Mechanics , 1 April 2021,

 https://www.popularmechanics.com/home/how-to/a6751/how-to-extend-your-hd

 mi-cables/. Accessed 11 November 2022.

 148

 “Home.” YouTube ,

 https://iopscience.iop.org/article/10.1088/1757-899X/745/1/012103/pdf. Accessed

 1 December 2022.

 “Home.” YouTube , https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9395973.

 Accessed 1 December 2022.

 ImageJ. “Hough Circle Transform.” ImageJ Wiki , 21 September 2018,

 https://imagej.net/plugins/hough-circle-transform. Accessed 11 November 2022.

 “Insight Into ESP32 Sleep Modes & Their Power Consumption.” Last Minute Engineers

 - , https://lastminuteengineers.com/esp32-sleep-modes-power-consumption/.

 Accessed 2 December 2022.

 Jayasekara, Buddhika, et al. “An Evolving Signature Recognition System.” IEEE Xplore ,

 2006, pp. 529-534.

 https://ieeexplore.ieee.org/document/4216646?arnumber=4216646.

 “Jetson Nano + Intel Wifi and Bluetooth.” JetsonHacks , 8 April 2019,

 https://jetsonhacks.com/2019/04/08/jetson-nano-intel-wifi-and-bluetooth/.

 Accessed 11 November 2022.

 Kang, and Atul. “Suzuki Contour Algorithm OpenCV.” TheAILearner , 19 November

 2019, https://theailearner.com/tag/suzuki-contour-algorithm-opencv/. Accessed 11

 November 2022.

 Kangalow. “Jetson Nano + Intel Wifi and Bluetooth.” JetsonHacks , 8 April 2019,

 https://jetsonhacks.com/2019/04/08/jetson-nano-intel-wifi-and-bluetooth/.

 Accessed 11 November 2022.

 Keras. “About Keras.” Keras , https://keras.io/about/. Accessed 11 November 2022.

 Landry, Jean-François, et al. “A Heuristic-Based Planner and Improved Controller for a

 Two-Layered Approach for the Game of Billiards.” IEEE TRANSACTIONS ON

 COMPUTATIONAL INTELLIGENCE AND AI IN GAMES , vol. 5, no. 4, 2013, pp.

 325-346. ieeexplore ,

 https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6651845.

 Lee, Socret. “Simplify Polylines with the Douglas Peucker Algorithm | by Socret Lee.”

 Towards Data Science , 8 May 2021,

 149

 https://towardsdatascience.com/simplify-polylines-with-the-douglas-peucker-algo

 rithm-ac8ed487a4a1. Accessed 11 November 2022.

 Liao, Peiyu, et al. “Deep Cue Learning: A Reinforcement Learning Agent for Playing

 Pool.” stanford.edu , Stanford, https://cs229.stanford.edu/proj2018/report/249.pdf.

 List, Jenny. “All You Need To Know About I2S.” Hackaday , 18 April 2019,

 https://hackaday.com/2019/04/18/all-you-need-to-know-about-i2s/. Accessed 11

 November 2022.

 “Localization Techniques for Blind People in Outdoor/Indoor Environments: Review.”

 https://iopscience.iop.org/article/10.1088/1757-899X/745/1/012103/pdf.

 “Maptic is a wearable navigation system for visually impaired people.”

 https://www.dezeen.com/2017/08/02/maptic-wearable-guidance-system-visually-i

 mpaired-design-products-wearable-technology-graduates/.

 Meel, Vidushi. “YOLOv3: Real-Time Object Detection Algorithm (Guide) - viso.ai.”

 Viso Suite , Vvso.ai, https://viso.ai/deep-learning/yolov3-overview/. Accessed 11

 November 2022.

 Muthukrishnan. “Otsu's method for image thresholding explained and implemented –

 Muthukrishnan.” Muthukrishnan , 13 March 2020,

 https://muthu.co/otsus-method-for-image-thresholding-explained-and-implemente

 d/. Accessed 11 November 2022.

 Nancy Seckel. “Physics of 3D Ultrasonic Sensors.” , , 26 February 2022,

 https://www.researchgate.net/publication/334784649_Physics_of_3D_Ultrasonic_

 Sensors. Accessed 30 November 2022.

 NVIDIA Corporation. “Taking Your First Picture with CSI or USB Camera.” NVIDIA

 Developer ,

 https://developer.nvidia.com/embedded/learn/tutorials/first-picture-csi-usb-camera

 . Accessed 11 November 2022.

 NVIDIA Corporation. “Vision Programming Interface (VPI).” NVIDIA Developer ,

 https://developer.nvidia.com/embedded/vpi. Accessed 11 November 2022.

 OpenCV. “About OpenCV.” OpenCV , https://opencv.org/about/. Accessed 11 November

 2022.

 150

 OpenCV. “Canny Edge Detection.” OpenCV ,

 https://docs.opencv.org/4.x/da/d22/tutorial_py_canny.html. Accessed 11

 November 2022.

 OpenCV. “Color Space Conversions.” OpenCV ,

 https://docs.opencv.org/3.4/d8/d01/group__imgproc__color__conversions.html.

 Accessed 11 November 2022.

 OpenCV. “Contour Features.” OpenCV ,

 https://docs.opencv.org/4.x/dd/d49/tutorial_py_contour_features.html. Accessed

 11 November 2022.

 OpenCV. “Image Gradients.” OpenCV ,

 https://docs.opencv.org/4.x/d5/d0f/tutorial_py_gradients.html. Accessed 11

 November 2022.

 OpenCV. “Object Detection.” OpenCV , 9 October 2019,

 https://docs.opencv.org/4.1.2/df/dfb/group__imgproc__object.html#ga586ebfb0a7

 fb604b35a23d85391329be. Accessed 11 November 2022.

 Peterson, Zachariah. “Top 5 PCB Design Rules You Need to Know.” Altium's Resource ,

 21 February 2017, https://resources.altium.com/p/pcb-layout-guidelines. Accessed

 1 December 2022.

 Pinke, Ryan. “(Updated) Buying Guide: Comparing Field of View When Buying a

 Conference Room Video Camera.” Video Conference Gear , 22 January 2021,

 https://www.videoconferencegear.com/blog/updated-buying-guide-comparing-fiel

 d-of-view-when-buying-a-conference-room-video-camera/. Accessed 11

 November 2022.

 Ragoo, Kiran, et al. “Design and development of a pool and billiards assistive device for

 the physically challenged.” Disability and Rehabilitation: Assistive Technology ,

 vol. 14, no. 6, 2019. tandfonline ,

 https://doi.org/10.1080/17483107.2018.1467974.

 Ramirez, Ramiro, and Chien-Yi Huang. “A Practice of BLE RSSI Measurement for

 Indoor Positioning.” NCBI , 30 July 2021,

 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8347277/. Accessed 30

 November 2022.

 151

 Raspberry Pi. “Raspberry Pi Documentation - Camera.” Raspberry Pi ,

 https://www.raspberrypi.com/documentation/accessories/camera.html. Accessed

 11 November 2022.

 “Rat in a Maze | Backtracking-2.” GeeksforGeeks , 3 August 2022,

 https://www.geeksforgeeks.org/rat-in-a-maze-backtracking-2/. Accessed 1

 December 2022.

 “Reading Device for Blind People using Python, OCR and GTTS.” IJSEA ,

 https://ijsea.com/archive/volume9/issue4/IJSEA09041003.pdf. Accessed 1

 December 2022.

 Roeder, David. “What Is the Standard Size of a Pool Table?” Blatt Billiards , 23

 November 2021,

 https://blattbilliards.com/blogs/news/what-is-the-standard-size-of-a-pool-table.

 Accessed 1 December 2022.

 Rollins, Leo. “Embedded Communication.” Electrical and Computer Engineering ,

 https://users.ece.cmu.edu/~koopman/des_s99/communications/. Accessed 11

 November 2022.

 Rollins, Leo. “Embedded Communication.” CMU ECE ,

 https://users.ece.cmu.edu/~koopman/des_s99/communications/. Accessed 4

 December 2022.

 Rosebrock, Adrian. “OpenCV Thresholding (cv2.threshold).” PyImageSearch , 28 April

 2021, https://pyimagesearch.com/2021/04/28/opencv-thresholding-cv2-threshold/.

 Accessed 11 November 2022.

 Sight Machine Inc. “Computer Vision platform using Python.” SimpleCV ,

 http://simplecv.org/. Accessed 11 November 2022.

 Sinha, Utkarsh. “Circle Hough Transform.” AI Shack ,

 https://aishack.in/tutorials/circle-hough-transform/. Accessed 11 November 2022.

 “Smart Guidance System for Blind with Wireless Voice Playback.”

 https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9395973.

 Smith, Michael. “PickPocket: A computer billiards shark.” Artificial Intelligence , vol.

 171, no. 16-17, 2007, pp. 1069-1091. sciencedirect ,

 152

 https://www.sciencedirect.com/science/article/pii/S000437020700077X?via%3Di

 hub.

 Smith, Michael. “Running the Table: An AI for Computer Billiards.” Association for the

 Advancement of Artificial Intelligence , AAAI'06: Proceedings of the 21st national

 conference on Artificial intelligence, 2006,

 https://www.aaai.org/Papers/AAAI/2006/AAAI06-156.pdf.

 “Tek Pal Tactile Low Vision TV Remote Control.” Maxi Aids ,

 https://www.maxiaids.com/tek-pal-tactile-low-vision-tv-remote-control. Accessed

 1 December 2022.

 TensorFlow. “TensorFlow Lite.” TensorFlow , Google Inc., 26 May 2022,

 https://www.tensorflow.org/lite/guide. Accessed 11 November 2022.

 TensorFlow. “Why TensorFlow.” TensorFlow , Google Inc.,

 https://www.tensorflow.org/about. Accessed 11 November 2022.

 “UHF RFID Inlay: AD-172u7 - Avery Dennison.” Avery Dennison | RFID ,

 https://rfid.averydennison.com/en/home/product-finder/ad-172u7.html. Accessed

 30 November 2022.

 “Voice Navigation Based guiding Device for Visually Impaired People.”

 https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9395981.

 Vudrag, Robert. “Choosing the Right Pool Table for Your Home or Business - Quedos.”

 Quedos Billiard Tables , 26 July 2019,

 https://quedos.com.au/guide-buying-pool-table/. Accessed 1 December 2022.

 “What Is SLAM (Simultaneous Localization and Mapping) – MATLAB & Simulink -

 MATLAB & Simulink.” MathWorks ,

 https://www.mathworks.com/discovery/slam.html. Accessed 1 December 2022.

 “World's smallest Time-of-Flight ranging and gesture detection sensor.”

 STMicroelectronics , 30 May 2016,

 https://www.st.com/resource/en/datasheet/vl53l0x.pdf. Accessed 2 December

 2022.

 153

