

Pick Pocket Tuner
Senior Design II – Group 42 Fall 2021

Lucas Grayford - Electrical Engineering
Paul Grayford - Electrical Engineering
Luis Vargas – Computer Engineering
Jamie Henry – Computer Engineering

Project advisor: Dr. Samuel Richie

i

Table of Contents

Table of Figures ... v

Table of Tables ... vi

Table of Equations ... vi

1.0 Executive Summary .. 1

2.0 Project Narrative ... 2

2.1 Participant Identification ...2

2.2 Project Motivation ..2

2.3 Project Description ..2

2.4 Features and Options ..3

2.5 Stretch Goals ..3

2.6 Restrictions and Constraints ...3

3.0 COVID-19 Supply Chain Issues ... 4

3.1 COVID-19 Supply Mitigation Plan ..4

4.0 Budget Constraints ... 5

4.1 Budget Mitigation Plan ..5

5.0 Weekly Scheduled Meetings.. 5

6.0 Miscellaneous Constraints .. 6

7.0 Design Process ... 6

7.1 Technical Investigation ...6

7.2 Applications of Engineering Fundamentals ...7

7.3 Preliminary Testing ...7

7.4 Subsystem Testing ..8

7.5 Overall Testing ...8

8.0 House of Quality Diagram .. 9

9.0 Competition.. 10

10.0 Tuning Background .. 12

11.0 Hardware Block Diagram ... 15

12.0 Physical Components .. 15

12.1.1 ¼” Output Jack ... 16
12.1.2 Selection of Output Jack .. 16
12.1.3 Testing Process ... 17

ii

12.1.4 Preliminary Testing Results ... 17
12.1.5 Implementation .. 18

12.2 Motor ... 18
12.2.1 Motor Testing ... 19
12.2.2 Motor Research ... 20
12.2.3 Motor Conclusion .. 22

12.3 Driver/Pulse Width Modulator .. 23
12.3.1 Driver/Pulse Width Modulator Testing .. 23
12.3.2 Driver/Pulse Width Modulator Conclusion/Encoder ... 24

12.4 Peg Winder ... 25
12.4.1 Peg Winder Testing .. 25

12.5 Filament and Cura ... 26

12.6 Battery ... 27
12.6.1 Battery Theory ... 28

12.7 Switch and Buttons ... 30
12.7.1 Switch and Buttons Options ... 30

12.8 Housing ... 32
12.8.1 Housing Theory ... 33

12.9 Buzzer ... 34
12.9.1 Buzzer Testing ... 35

12.10 Vibration Sensor .. 35

12.11 Display .. 37

12.12 Analog to Digital Converter .. 38
12.12.1 Selection of ADC ... 38
12.12.2 Testing Process ... 38
12.12.3 Testing Results .. 39
12.12.4 Implementation .. 39

12.13 Voltage regulators ... 39
12.13.1 Prototyping Regulation ... 39
12.13.2 Voltage Regulation Strategy .. 40
12.13.3 Buck Converters .. 41
12.13.4 Voltage Regulator Designs, 3.3V ... 41
12.13.5 Regulator Schematic and Specifications, 3.7-12V ... 43
12.13.6 Ordering Process for Regulators .. 44
12.13.7 Testing Process for Regulators ... 44
12.13.8 Implementation of Voltage Regulators ... 45

12.14 Processor / Controller ... 45

12.15 Clock ... 46

12.16 Charging Circuit ... 46
12.16.1 Design of Charging Circuit ... 47
12.16.2 Charging Circuit Using MCP73831/2 ... 48
12.16.3 Requirements and Specifications of MCP73831/2 .. 48
12.16.4 Suppliers for MCP73831/2 ... 49
12.16.5 Testing Process for MCP73831/2 ... 49

iii

12.16.6 Implementation Process for MCP73831/2... 50
12.16.7 Prototyping Charging Circuit ... 50
12.16.8 Testing Charging Circuit... 51
12.16.9 Prototype Charging Circuit Implementation .. 51
12.16.10 Using the Prototype as Plan B .. 52
12.16.11 Mounting Prototype in Housing ... 52
12.16.12 Testing Process .. 53
12.16.13 Implementation Plan ... 53

13.0 Printed Circuit Board Design .. 54

13.1 Overall Layout of PCB ... 54

13.2 Power Distribution ... 54

13.3 Fusion 360 .. 55

13.4 Collaboration Method .. 55

13.5 Designing Components Using Fusion 360 ... 56

13.6 Supplier ... 58
13.6.1 How to Order from JLCPCB .. 58

13.7 PCB Assembly ... 59

13.8 Testing the PCB ... 60

14.0 Prototype Construction .. 60

14.1 Prototype Construction Beginning Notes .. 60

14.2 Prototyping Components ... 60
14.2.1 Processor/Controller ... 60
14.2.2 Sensor ... 61
14.2.3 Motor ... 61
14.2.4 Motor Driver ... 62
14.2.5 LCD Display ... 63
14.2.6 USB-C Charging Circuit ... 63
14.2.7 Battery ... 63

14.3 Additional Components in Prototype Construction .. 63
14.3.1 Piezo Sensor Filter .. 63
14.3.2 DC-IN Power for Breadboard .. 64
14.3.3 3D Printed Guitar Peg-Winder ... 64

14.4 Next Prototype Construction Steps and Ending Notes .. 64

15.0 Inside of the Jowoom ... 65

16.0 PCB Layout .. 68

16.1 Ultra-Librarian .. 69

16.2 PCB Parts Placement .. 69

16.3 PCB Lead Wired Part Placements ... 71

16.4 PCB Prototype ... 73

16.5 PCB Wiring ... 74

iv

17.0 Project Summary – Hardware .. 77

18.0 Prototype Testing .. 78

18.1 Prototype Testing Beginning Notes .. 78

18.2 Prototype Component Testing ... 78
18.2.1 ESP8266 Testing .. 78
18.2.2 Piezo Sensor and Filter Testing .. 79
18.2.3 Motor Testing ... 84
18.2.4 LCD Display Testing ... 85
18.2.5 FFT Input Testing .. 86
18.2.6 USB-C Charging Circuit and Battery Testing .. 86

18.3 Next Prototype Testing Steps and Ending Notes .. 87

19.0 Software Block Diagram .. 87

20.0 Algorithm .. 88

21.0 Software Features/Functions .. 89

21.1 Fast Fourier Transform ... 89

21.2 Tuning a New String .. 89

21.3 Display Interface .. 90

21.4 Tuning Libraries (Stretch Goal) ... 91

21.5 Tuning Other Instruments (Stretch Goal) ... 91

21.6 Programming Language(s) ... 92

21.7 Programming/Software Libraries .. 92

22.0 UI/UX Software Hierarchy and Design ... 94

22.1 Software Hierarchy Description ... 94

22.2 Software Tuning ... 95

22.3 Software Display .. 96

22.4 Handling Flat and Sharp Notes .. 97

22.5 Motor communication with FFT ... 99

22.6 New String Mode .. 99

22.7 Autotune Mode ... 101

22.8 Free Move Mode ... 102

23.0 Software Summary.. 102

24.0 Project Budget Estimates .. 103

24.1 Final Prototype Cost (Estimated Range) .. 103

24.2 Project Development Costs .. 103

24.3 Development Cost (Estimated Range) .. 104

v

25.0 Project Milestones .. 105

26.0 Hardware & Software Requirement Specifications Tables 106

26.1 Hardware Requirement Specifications ... 106

26.2 Software Requirement Specifications ... 110

27.0 Final Testing Plan ... 113

27.1 Objective for Final Testing ... 113

27.2 Description of Final Testing Environment .. 113

27.3 Stopping Criteria .. 115

27.4 Description of Individual Test Cases .. 115

27.5 Trace of Individual Test Cases to Requirements ... 121

28.0 Conclusion ... 122

Bibliography ... A

Table of Figures
FIGURE 1, HOUSE OF QUALITY DIAGRAM ... 10
FIGURE 2, REPRESENTATION OF PHYSICAL COMPONENTS ON AN ELECTRIC GUITAR .. 14
FIGURE 3, REPRESENTATION OF PHYSICAL COMPONENTS ON A VIOLIN ... 14
FIGURE 4, HARDWARE BLOCK DIAGRAM .. 15
FIGURE 5, COMPARISON OF PURE TONE OUTPUT JACK TO A STANDARD STEREO OUTPUT JACK 17
FIGURE 6, 5V STEPPER MOTOR (MODEL: 28BYJ-48) .. 19
FIGURE 7, BRUSHLESS DC MOTOR WITH ENCODER 12V 159RPM ... 21
FIGURE 8, LINE CONNECTIONS FOR ARDUINO (WILL VARY FROM ESP8266 CONNECTIONS SLIGHTLY) 22
FIGURE 9, 12V DC MOTOR DIMENSIONS IN MM ... 22
FIGURE 10, UL2003 DRIVER BOARD (LEFT), L298N MOTOR DRIVER CONTROL BOARD (RIGHT) 24
FIGURE 11, UNIVERSAL PEG WINDER HEAD .. 25
FIGURE 12, 3.7V LITHIUM ION POLYMER 1200 MAH BATTERY ... 29
FIGURE 13, SWITCH MOUNTED ... 31
FIGURE 14, FULL BUTTON LAYOUT FOR CONNECTIONS .. 31
FIGURE 15, MULTICOLOR CHANGEABLE BUTTONS .. 32
FIGURE 16, PICK POCKET TUNER HOUSING MODEL ... 34
FIGURE 17, HYDZ 3-5V BUZZER ... 35
FIGURE 18, ROUNDED IPS-TFT LCD DISPLAY ... 37
FIGURE 19, REGULATION DIAGRAM .. 40
FIGURE 20, DESIRED VOLTAGE REGULATOR DESIGN ... 41
FIGURE 21, SCHEMATIC DESIGN CHOICE... 42
FIGURE 22, 12V REGULATOR DESIGN ... 43
FIGURE 23, ESP8266 ON NODEMCU DEVELOPMENT BOARD ... 46
FIGURE 24, CHARGING CIRCUIT DESIGN WITH LM317 (INTELLECTUAL DESIGN PROVIDED BY TEXAS

INSTRUMENTS) ... 47
FIGURE 25, SIMPLE APPLICATION CIRCUIT BY MICROCHIP ... 49
FIGURE 26, LIPO CHARGING CIRCUIT TO BE USED IN PROTOTYPING AND TESTING PHASE OF PROJECT 50
FIGURE 27, IMAGE OF ADAFRUIT CHARGER SHOWING MOUNTING HOLES ... 53

https://knightsucfedu39751-my.sharepoint.com/personal/lvarg046_knights_ucf_edu/Documents/FORMATTED_Group42_Final_Draft.docx#_Toc101787819
https://knightsucfedu39751-my.sharepoint.com/personal/lvarg046_knights_ucf_edu/Documents/FORMATTED_Group42_Final_Draft.docx#_Toc101787819

vi

FIGURE 28, STUDENT-MADE PIEZOELECTRIC SENSOR (SYMBOL ON LEFT AND FOOTPRINT ON RIGHT) 57
FIGURE 29, ARTISTIC RENDITION OF THE INITIAL PROTOTYPE MOCK-UP .. 65
FIGURE 30, JOWOOM INTERNALS ... 67
FIGURE 31, JOWOOM INTERNALS FRONT SIDE ... 68
FIGURE 32, FINAL INTERNAL HOUSING LAYOUT .. 71
FIGURE 33, FINAL EXTERNAL HOUSING ... 72
FIGURE 34, PCB PROTOTYPE V1.0 .. 73
FIGURE 35, PCB PROTOTYPE V3.0 .. 74
FIGURE 36, JOWOOM AUTOMATIC TUNER (DECONSTRUCTED) SHOWING TWO PIEZOELECTRIC SENSORS IN

PARALLEL ... 81
FIGURE 37, BREADBOARD PROTOTYPE DEMONSTRATING IPHONE SPEAKER VIBRATION/TONE TEST 82
FIGURE 38, OSCILLOSCOPE FREQUENCY FROM PIEZO SENSOR, IPHONE TEST .. 83
FIGURE 39, OSCILLOSCOPE FREQUENCY FROM PIEZO SENSOR, IPHONE TEST, WITH FILTER 83
FIGURE 40, SOFTWARE BLOCK DIAGRAM .. 88
FIGURE 41, UI/UX SOFTWARE HIERARCHY/DESIGN ... 94
FIGURE 42, TFT DISPLAY GUI LAYOUT DURING TUNING .. 96
FIGURE 43, NATURAL NOTES WRITTEN ON THE KEYS OF A KEYBOARD ... 98

Table of Tables
TABLE 1, REQUIREMENT SPECIFICATIONS ... 3
TABLE 2, FREQUENCIES FOR A GUITAR STANDARD TUNING ... 13
TABLE 3, CRITICAL SPECIFICATIONS FOR EFFICIENT REGULATORS .. 42
TABLE 4, CRITICAL SPECIFICATIONS FOR CHOSEN REGULATOR ... 42
TABLE 5, CRITICAL SPECIFICATIONS FOR 12V REGULATOR ... 43
TABLE 6, POWER DISTRIBUTION CALCULATIONS (INCOMPLETE TABLE) ... 55
TABLE 7, MOTOR PIN CONNECTIONS ... 75
TABLE 8, DISPLAY PIN CONNECTION .. 76
TABLE 9, PUSH BUTTON PIN CONNECTIONS .. 76
TABLE 10, FREQUENCY DEVICE PIN CONNECTS ... 76
TABLE 13, FLAT/NATURAL/SHARP FREQUENCY EXAMPLE STARTING AT MIDDLE C ... 98
TABLE 14, FREQUENCY EXAMPLES OF ONE HIGHER AND LOWER OCTAVE FOR EACH FREQUENCY 100
TABLE 15, DEMONSTRATING ONE AND TWO STEP OFFSET TUNING FROM E STANDARD TUNING......................... 101
TABLE 16, ESTIMATED FINAL COST FOR DEVICE ... 103
TABLE 17, ESTIMATED COST FOR DEVELOPMENT OF PROJECT .. 104
TABLE 18, PROJECT MILESTONES CHART ... 106

Table of Equations
No table of figures entries found.

1

1.0 Executive Summary

To tune a stringed instrument, a peg is used for tightening or loosening the string threaded
into a cylinder. This peg usually consists of a worm drive and the peg head or key. The
worm drive consists of a screw-like gear and a spur gear to create a smaller volume object
with similar gear ratios. Some players also use peg locks to help ensure that the peg will
stay in place to help reduce loss in tuning on the string.

The purpose of tuning a stringed instrument is to create sounds that illicit emotions in
those who hear and play it. Tuning the strings to the correct pitches ensures that all notes
that can be played on the instrument will make the correct sounds and will create
captivating music. To ascertain that the tuning of a stringed instrument is correct, the user
would match the frequency of the plucked string to a known frequency, such as a tuning
fork or another audible device, by ear. However, tuning stringed instruments by ear could
lead to incorrect tuning and incorrect pitches across the strings. This has led to the
creation of automatic guitar tuners to eliminate human error and make the tuning process
faster.

Sensors are used by these automatic guitar tuners to help eliminate the human error.
These include vibrational and microphone sensors that pick up the frequency of the
plucked string. This gives an accurate reading of the string’s frequency that can then be
compared to the tuning specifications. Our group’s Pick Pocket guitar tuner uses two
piezo vibrational sensors that will sit in the housing of the product to pick up that string’s
frequency. This frequency, read in as analog voltage, then is transformed into the
frequency domain to read its value. To achieve this, the Fast Fourier Transform was used.
The Fast Fourier Transform was chosen as opposed to the Discrete Fourier Transform
solely on computation time. Since time is valuable to our automatic tuner and is one of
the deciding factors among competitors.

The main purpose of this transform is to have the sensor’s input value as a value in hertz
to compare to the desired string frequency the user picked. Our tuner then figures out the
ratio difference between the two frequency values and send voltage to the brushless DC
motor accordingly. The motor then spins the peg winder that is designed to fit a wide array
of pegs to allow for the tuning of multiple instruments. When the desired frequency is met,
visual feedback will let the user know to move on to the next string.

To compete with the existing automatic guitar tuners, our group’s focus was to capitalize
on cost efficiency, computation/tuning time, and the ability to tune multiple string
instruments. These aspects were researched heavily along with dismantling of some
competitors’ tuners to meet these requirements. Another way to compete with the market
was to have our tuner have multiple modes for everyday string instrument use. This would
include tuning new strings and freely tightening and loosening the peg. With the creation
of the prototype, further testing was conducted on the algorithm/software created to tune
the instruments within 5 cents accuracy to further develop the tuner and within the desired
time frame.

2

2.0 Project Narrative

2.1 Participant Identification

Our Senior Design project is called the Pick Pocket Tuner, an automatic guitar tuner that

facilitates quick tuning a guitar within a small timeframe. Group number 42 consists of the

following members: Lucas Grayford, Paul Grayford, Jamie Henry, and Luis Vargas. The

composition of the group by academic major consists of two Electrical Engineering

majors, Lucas, and Paul, and two Computer Engineering majors, Jamie, and Luis.

For the Pick Pocket Tuner, there are no defined sponsors, or financiers, to the project

beyond the members of the group.

2.2 Project Motivation

The main motivation is to assist musicians, specifically guitar players, in tuning their

instruments quickly, and accurately in any environment. Usually tuning a guitar

accurately, is a tedious process that can take quite some time away from a musician.

When on stage, recording, or just at a jam session, environmental noise is a thing that

needs to be accounted for, and a tuner with a ¼” input isn’t always readily available, or

the musician needs to tune as they’re playing. However, our project has the option of

tuning with a ¼” cable for guitarists who can use this accurate form of measurement.

When starting out to learn the guitar, one of the most intimidating roadblocks is tuning the

guitar correctly. Anyone should be able to learn an instrument, and this is a way in which

our product could help people feel more confident in picking the guitar up. Whether the

guitarist is just a beginner, or an expert playing in front of fans, we want to create an

accurate, fast way of tuning that is comfortable and easy to use.

2.3 Project Description

The Pick Pocket Tuner includes a motor, a screen, buttons, a power switch, a controller,

piezoelectric sensors, a ¼” input jack, and a basic housing to keep it all enclosed. As a

method of powering the device, the group decided on a lithium-polymer battery that is

rechargeable via a USB-C cable. As far as determining the method to find the frequency

at which the strings on the guitar are reverberating, two vibration sensors were used.

Meanwhile, the ¼” input jack is used for frequency readings from electric guitars and ¼”

cable inputs.

The method of operation is as follows: the user takes this portable device, and it has a

screen and button interface that allows the user to interact with the software that gives

feedback to the user on whether the string is in tune once it is in use. The device then is

placed with the tuning peg device on the tuning peg itself, and the user strums the desired

3

string to be tuned. The device then uses both the sensors within to determine the

vibrational frequency and then directs the motor to either adjust the string tension by

turning the tuning peg clockwise or counterclockwise. The microcontroller will

communicate with the display via an SPI connection and will communicate to the motor

via a PWM connection.

Requirement Specifications Measurement Units Interval
Tune a guitar in a maximum time 3 minutes ±1

String a new guitar in a maximum time 5 minutes ±1

Tune strings to the correct frequency 1 cents ±5

Battery life with respect to strings tuned 100 strings ±15

Max weight 2 pounds ±0.5

Ease-of-use interface with respect to time to

select and tune a string

45 seconds ±10

Table 1, Requirement Specifications

2.4 Features and Options

After discussions within the group, and technical research, we have decided that the
following list would add good functionality as a standard set of features and options to
the Pick Pocket Tuner:

• Comfortable, ergonomic, and able to fit in one hand

• Ability to tune a guitar to alternative tunings (Drop-D, Drop-C, DADGAD, etc..)

• Tune new strings quickly from start to finish

• Input jack for tuning with a 1/4” cable

Our team believed that including these features and options, would give us a quality
device we can be proud of with the final product. We were able to accomplish all of these
while staying on time and keeping costs low.

2.5 Stretch Goals

After discussions within the group, and technical research, we have decided that the
following list would constitute as a good set of stretch goals to be implemented into the
Pick Pocket Tuner:

• Ability to tune other stringed instruments like a ukulele or a banjo

• Tune the instrument faster and more accurately

2.6 Restrictions and Constraints

4

After initial discussion and considerations, our group has determined that this is a list of
the most crucial restrictions and constraints that we would face while developing,
prototyping, and testing the Pick Pocket Tuner:

• Budget of the project

• Allotting enough time for the project

• Steep learning curves

• Supply chain issues (Difficulty in part acquisition)

• Competition in the market

There are no federal restrictions to be aware of for the project. We feel these requirements
would demonstrate satisfactory engineering qualities on both the software and hardware
side of things. Below are flowcharts that show how these requirements were achieved on
both ends of the spectrum.

3.0 COVID-19 Supply Chain Issues

One of the most constraining issues that our group attempted to overcome was the supply
chain issues that was happening during both semesters due to the COVID-19 pandemic.
Electronics specifically are suffering a lot due to the pandemic, and an increase in demand
does not help the situation. As our group was trying to order different components, we
ran across issues of large delays, specifically, when trying to order a voltage regulator for
the device. We have seen delays for almost two months, so our team has decided to
come up with a mitigation plan.

3.1 COVID-19 Supply Mitigation Plan

One of the last components that we had to implement in our device was our voltage
regulator, which had the most concern of arriving on time. Setting a plan in place to
prepare for this was crucial to being able to deliver a product that was functional by the
end of the semester.

The first crucial step in this mitigation plan was to order almost all the other components
that we were planning on using. This did not mean resistors and capacitors necessarily,
but components like the display, sensor, input jack, motor/driver, etc. Once these parts
were determined, we were able to find the power consumed by all the components and
we were able to choose a voltage supply that met all our design requirements. Once this
was determined, we were able to pick a regulator for the system.

Even though this was a difficult issue for our team to overcome, it provided us with great
experience on how to deal with these issues once we get jobs in the engineering industry.
It also made sure we did not procrastinate and got most of our work done on a strict
schedule, which allowed us a stress-free integration process. Some may find it easy to
look at all the negative ramifications of the supply chain issues happening, but our team
tried to look at the positive side, by using it as a tool to help us stay way ahead of schedule.

5

4.0 Budget Constraints

Our group was unable to secure a sponsor for our project, so the budget was split up
between all the group members evenly. Since our expenses are coming from out of our
own pockets, the team had to be careful not to make any unnecessary purchases, and
we had to be extra careful when prototyping our project, to not burn or damage any
components we planned on using in our final design.

4.1 Budget Mitigation Plan

Even though our team footed the bill for the entire project, it gave us an opportunity to
learn how to improve our money handling skills. Our plan was quite simple, yet effective.
We recorded the costs of everything anyone purchased in an excel document. At the end
of senior design 2, we split the cost in four even amounts, and we paid each other back
once all was said and done. Since we were all aware of the fact that we would be shelling
out our own money for this project, it allowed us to pay attention to detail and keep waste
to a minimum and efficiency to the maximum. Also, it provided us an opportunity to
research more about all our components before we decided on buying certain products.

Using our own budget for this project could be looked at as a huge constraint, however,
our team responded well, and everyone was on the same page about spending each
other’s money. We had to be extra focused and stayed on top of schedule to avoid paying
any extra fees due to expedited shipping or ordering things last minute that could cost
more money than we wanted to. Staying ahead of schedule not only gave us peace of
mind for our project itself, but it also allowed us to not have to spend so much money.

5.0 Weekly Scheduled Meetings

Every week we had group meetings to discuss the progress of what has been completed
and what needs to be completed. Some meetings were arranged in an online means, too,
if there were incidents that kept members from having to be remote for reason that may
be deemed reasonable. These regularly scheduled meetings were an important
requirement that was needed to keep the team focused as a whole. They helped with
keeping track of what each member needed to do and get taken care of. They also
allowed team members to work together when maybe one team member was stuck and
needed help completing a task so that they could keep up with the group. These meetings
were typically held in the library every Tuesday and Thursday from usually 9am-12pm
during senior design 1. During senior design 2, these meetings were held in the senior
design lab usually between 9am and 5pm. Most meetings were productive but have most
of the time been for check ins or updates on the tasks at hand. Most of the members had
a full load of classes so it made it harder to accommodate for each member. We also
used ClickUp which allowed easier planning and dividing of tasks for the main parts that
needed to be done each time.

6

A good amount of timing issues needed to be taken care of mainly due to other class
loads and outside jobs that members had. All members were understanding towards the
daily struggles that each member has outside lives and other important tasks or issues
that may arise. There have been a few missed meeting days that have happened but not
a substantial amount that caused any major issues with progress. Some meetings have
ended in a stuck scenario on what to do next or how to go about the next task that needs
to get done. There are different ways to solve each issue, it just comes down to
determining which is the right method to go about getting it done.

6.0 Miscellaneous Constraints

There are many constraints one can run into while designing and producing a project.
Time constraints are very common, hence why keeping a strict schedule is so important.
Our team was overall a very busy group, so it was essential to complete all our schoolwork
on time or early. This especially included classes outside of senior design. If we were not
performing well in any of the classes we were taking, then senior design would suffer
significantly, and this needed to be avoided at all costs.

Another constraint was the lack of knowledge we might have had in certain areas of our
project. Working on a project can be discouraging if we get stuck or just have a hard time
understanding certain concepts. This gave us an opportunity for growth in skill and
knowledge of the projects we were working on. This does not only include our senior
design project, but on any project, we might have been working on outside of school. Also
remembering that we are not alone is important when questions like these arise. We have
resources on the internet, but if we are not experiencing any progress, then we have so
many resources that the college can offer us.

There is a wealth of knowledge at our disposal, and we took advantage of that. This
constraint can greatly affect our project by reducing the amount of time we are able to
spend on building and designing other parts of our device. The longer we were stuck on
something, the shorter amount of time we had to make a working useable project.

7.0 Design Process

An effective design process was essential to meet all deliverables for the year. Our design
process consisted of technical investigation, application of engineering fundamentals,
and testing (preliminary testing, subsystem testing and overall testing). These kept us on
the correct track and allowed us to learn a lot about each of the components we chose
for our project. It allowed us to manipulate the components in a way that gave us the best
results.

7.1 Technical Investigation

Our project started with a great amount of technical investigation. All the investigation our
team conducted acted as the backbone of our project. Without going through datasheets,
surfing websites, watching essential videos, we would not have been able to begin

7

working on our project. As the team became more familiar with the components we
planned on ordering, the more likely we were to make them work together quickly and
easily.

The team would compare at least three different products we could use for one
component and go through all the datasheets and reviews and see how easy they are to
implement with our other products and narrow them down to one final product we ordered.
However, if for some reason the product we ordered did not work, we would have two
viable back up options we could use as a second option. Technical investigation was
another key element to this project as we conducted research effectively and thoroughly
to not suffer when the time came to assemble our product.

7.2 Applications of Engineering Fundamentals

Throughout our time at college, we have learned how to think critically and attack different
problems in all sorts of fashions. This project gave us students an opportunity to apply
what we have learned to be able to demonstrate to prospective employers, and our
professors, that we are capable of being engineers. On the hardware side of things, we
applied what we have learned about Kirchhoff’s Law to calculate the current in and out of
all the components to make sure that nothing is being overloaded, or if something is not
receiving enough current.

Additionally, we also calculated power consumption, as that was very important to our
project specifically since there are many components that are drawing power. We also
wanted to implement what we have learned in embedded systems such as different lines
of communication, writing code, and enabling different pins of the device. Other software
components were implemented as well like creating an algorithm and making a graphical
user interface for the display.

We as students have been given all the foundational tools, we need to complete this
project, however, as bourgeoning engineers we needed to become more familiar with
new methodologies, practices, and technologies to be able to specialize in all the different
areas involved to create a final working product. Our team is very competent, and through
applying the knowledge we have gained throughout our academic careers, we are
confident we performed well when necessary to deliver our final working product, through
the utilization of all the Engineering Fundamentals.

7.3 Preliminary Testing

We started to develop parts of our project by conducting preliminary tests. This gave us
a solid foundation to not only start developing subsystems, but this also allowed us to
begin more in-depth research on how pieces will integrate into the whole system, and
with one another. Preliminary testing essentially was composed of one “generalized” step,
getting a response for each component as it pertains to our project. For example, we
implemented buttons on our project, so the button we decided to use was connected to

8

our development board through a breadboard, and we tried to get a response from
pressing the button.

An example of something we have already performed would be us turning a prototype
servo motor. This was successful as it taught us how to manipulate the speed and rotation
parameters of the motor. This process has been incredibly insightful as this was a crucial
step when our finalized design became entirely autonomous. The purpose of this
Preliminary Testing was to bring the components to their basic operational capacities, so
that the group can gain an in-depth understanding of each component that was needed,
and/or utilized, to deliver a finalized working product.

7.4 Subsystem Testing

Subsystem testing was also a crucial next step to our development process. This process
consisted of trying to get two or three different related components to interact with one
another. This was based off responses from those different components that have been
part of the Preliminary Testing. An example of this Subsystem Testing would be using the
buttons to scroll through the graphical user interface (GUI) we had on our screen. On a
higher level, this demonstrated to us that the buttons can be integrated with the display,
the GUI works, the software detailing the menus works, and that the processor/controller
was able to execute the necessary code to realize the function we were testing, scrolling
through a menu using the buttons as a User Interface.

A step further was to utilize said buttons to then select an option on the menu being shown
on the display, then be able to visually see the correct output for whatever the option
chosen was. Subsystem testing was like putting a complex jigsaw puzzle together. This
process assisted the group to see the overall, broad-spectrum/picture of the whole
project. The successes of the Subsystem Testing were a crucial milestone in our
implementation process, and successes in this allowed us to move our project into the
overall testing phase.

7.5 Overall Testing

Once we successfully determined that the different components involved were interacting
with one another in the correct manner, we then went into what our team referred to as
overall testing. This process was when the prototyping process started coming to fruition.
By this point we have gotten most, if not all the necessary components to communicate,
relay the necessary/correct information between one another efficiently, effectively, and
as error-free as possible. This demonstrated that we were now in a place to begin the
implementation of all the features and functions we outlined in the Requirements
Specifications section that we determined our project would include. An example of this
sort of testing would be selecting an option on the interface, plucking the string we want
to have tuned, the sensor picking up the vibrations, the algorithm running and relaying
the information necessary to the motor controller to then have the motor turn to try and
tune the guitar string, and having this process repeating until the string is completely in
the correct tuning.

9

Overall testing was the process that consumed the most amount of time. Once we
determined that the project was comfortable at this point in our development process, we
began the ordering process of the necessary PCB’s. The reason for this is because when
we got the device working on a breadboard prototype, we did not want to waste any time,
especially due to the logistic issues that were plaguing the technology-based creator
space due to shortages and/or production issues world-wide. We were aware that the
ordering of components would be tricky both semesters, so we needed to start perfecting
our project as early in the semester as possible. This resulted in testing being an essential
step for creating any kind of product, and our Senior Design project is no exception. Being
proactive in these steps helped us tremendously in our endeavor and made our lives
easier, and ideally lead to the successful delivery of our final project.

8.0 House of Quality Diagram

From our house of quality diagram, we see that most of the client requirements have a
positive correlation to our technical requirements. With most of our requirements being
related to time. Time is a valuable aspect with our product as our main goal was to tune
instruments automatically and efficiently. Since this is a valuable aspect, our requirements
were built around and positively correlate with it.

This is seen in the correlation matrix at the top of our diagram. Our competition is the
Roadie 3 automatic guitar tuner and performs quite well with the customer requirements
show in our diagram. However, the cost is where the Roadie 3 does not perform well as
it is quite expensive. We tried to outperform the competition in this customer requirement
to put our product ahead.

10

Figure 1, House of Quality Diagram

9.0 Competition

Initially, to begin analyzing the competition one must look at specifically vibrational sensor

based chromatic/strobe tuners to fully be able to understand how the necessity for an

automatic guitar tuner came about. As a result, one of the most popular, and accurate,

tuners on the market that utilize vibration sensing technology is the Snark ST-8 Super

Tight Clip On Tuner. This chromatic tuner is a simple device with a LCD screen that

informs the user whether the current string being plucked is sharp or flat, based on the

chromatic tuning system that it employs.

The way the Snark ST-8 operates is that it has a plastic clip, that has a silicone/rubber

padding that allow the vibration waves to traverse from the point of origin on the

headstock, through the clip and the attached stem, and into the main housing of the ST-

11

8 device. Once the waves reach the housing, there is a piezoelectric disc within the

housing that would reverberate indicating that here is some sort of vibration happening at

a certain frequency that then is relayed onto the user based on what the tuning is desired.

The ST-8 is a very popular tuner because it is capable of being used while in loud

environments, however the tuning itself is still manual. Based on all this, our group

decided that using this device as a ‘base-point’ to begin our research was a solid

foundation.

A device like this already exists in market, the Roadie3 designed and sold by Band

Industries, Inc. This product by Band Industries has been in market since about 2017 and

has gone through 3 iterations, and they have a specific device for bass guitars. One of

the limitations that this device has is that there is no additional input to verify the accuracy

of the string tuning. To bypass this issue, our project was implemented so that the

accuracy is within a ± of 5 cents. Additionally, the choice of motor was one that allows us

to make fine adjustments of the tuning peg to obtain that desired accuracy. We also

wanted to find a way to combine their two products into one.

Our project was going to attempt to find a motor that can turn a bass guitar peg, which

allowed for our tuner to tune both instruments. We also implemented an extra jack that

allowed an artist to tune very accurately to the pickups that are already placed on the

guitar, by the company that made the guitar. Another potential competitive edge we

gained was by adding an option to tune a new string quickly.

The Roadie3 does not have an option for tuning a new string from start to finish, however

it does have a manual driver, that turns the peg whenever a button is pushed by the user.

We implemented a software setting that allows the user to select an option that tunes a

string from having zero tension to the correct tension and frequency. Finally, one last

small software improvement was to add a requirement for tuning accuracy when the string

has too high of a frequency.

When tuning a guitar, if the string has too sharp of a pitch, the person will tune below the

frequency, then back up, to ensure that the string is under tension and at the correct

frequency. This seems like a small feature; however, all musicians have a standard of

tuning the string low if it is high and then back up. The Roadie3 does not have a feature

like this, therefore, the guitar goes out of tune more quickly.

Another product that already exists on the market that is like the Roadie3, is called the

Jowoom T2 Smart Tuner. The way it operates, assumedly so, is like that of the Roadie 3

as it utilizes sensors embedded within the device housing to sense the vibrational

response from strumming a string to then activate a motor into turning at a variable rate

to turn the peg winder so as to tune the guitar.

The main components are similar between the T2 and the Roadie3. They both analyze

the frequency and tune the guitar using a motor based on the frequency response and

12

the difference from what the current pitch of the string is and what the desired pitch is. In

both cases the devices have already entered market and are therefore primary

competitors, however the main drawbacks of the T2, based on reviews, is that the motor

used on the device is not very fast, and is prone to slippage when trying to wind a string

fast. Similarly, to the Roadie3, the T2 is unable to tune a Bass Guitar as the motor inside

the T2 does not produce enough torque to spin the geared tuning peg on the heads of

Bass Guitars. With that said, based on reviews, the consistent feature that the T2 does

have over the Roadie3 is the cost. With the Roadie3 costing upwards of $130 per unit, it

doesn’t make full sense why someone would choose the Roadie3 over the T2 when they

basically both have the same feature set and similar limitations.

Our group believed that these features were enough to compete with the Roadie3 and

deliver a product that goes above and beyond. The hope was to be able to implement all

these changes, but we are confident that we achieved most of these.

10.0 Tuning Background

A guitar, as well as majority of all other stringed instruments, have simple operational
concepts. Through history, there have been different stringed instruments that have been
utilized to make some sort of tonal sound, whether for ritual or entertainment we can’t
really be sure of. However, the operational concept is that there is a string, some material,
usually wood, that provides tension, and a body of said instrument. The methods of
playing the instrument would vary from plucking to using another tensioned string, both
of which had the goal to create vibrations that would then produce sound, at the
appropriate pitch.

Some of the oldest stringed instruments were bowed, and closely resemble what is today
a violin, and as a result the basic design for stringed instruments hasn’t really changed
drastically and can be translated across different instruments. In the design, there is
typically a body, a bridge, a neck, a head which can be referred to as the pegbox, and
tuning pegs. The idea is that the body neck and head are connected in a linear fashion
(see Figure 2 and Figure 3 below for reference). From there the strings that are to be
used are fed through the appropriate orientation to be anchored at the bridge, and then
they are fed to the tuning peg. The tuning peg, through a series of gears, provides torque
that then translates to tension on the string. This change in tension is effectively what
changes the pitch/intonation of the string, and by relation the vibrational frequency. As in
a violin, a lute, mandolin, or guitar, the operational concept remains the same, however
in further discussion, as it pertains to our project, we are
referring to the guitar explicitly.

Like a violin, with a guitar there is a bridge, neck, body, head, and pegs, the difference is
the size of the instrument, the shape, and number of strings, but fundamentally the tuning
operates the same. The tension for a guitar string varies through each string
manufacturer, metal used, coatings, gauge, whether it’s meant for electric or acoustic
guitars, and a slew of other variables that are yet to be determined for a baseline for our

13

project, however, tension is directly representative of the tuning and vice versa once all
other variables have been accounted for, so there are ways to mathematically represent
the tunings in relation to their tension, and frequency giving us a way to quickly adjust if
necessary for other instruments.

As such, a guitar string tuning process begins once the string is anchored at the bridge
and fed through the tuning peg. The peg is then turned and depending on the orientation
of the peg and head this turning would either be clockwise or counterclockwise, this
turning of the peg is what provides the tension. More tension means that when the string
is played the higher the frequency the string vibrates at and thus the higher the pitch,
conversely lower tension means lower pitch, and frequency.

For a guitar, the tuning standards have been established for some time, and many people
will argue about which frequency to use. In our project, and going forward, when we refer
to standard tuning it is to mean the EADGBe tuning, which is based on the pitch standard
of A440. Breaking this down, this means that if you play guitar and are trying to tune it,
the thickest and lowest string is the E, followed by A, all the way until you get to the
thinnest which is the e string, on a traditional, right-handed guitar it would be that the
strings go from left to right, from thickest to thinnest.

The A440 standard is referred to as the Stuttgart Pitch, and it is corresponding to the
440Hz frequency for the A note above the middle C in a Piano. This A440 pitch is
standardized by the International Organization for Standardization as ISO 16, and as such
it is used as a reference frequency to calibrate the equipment and instruments to be used
in tuning. EADGBe was chosen as the ‘standard’ tuning for a guitar, mostly due to
playability across keys and scales, making the arrangement of music to be the most
pragmatic in this tuning. With that said, since we are operating under the generally
accepted standardization of EADGBe tuning, the corresponding frequency values for
each of the strings under the correct tuning is characterized by the following table, with
accompanying Scientific Musical Notation.

Tuning Frequency Units Scientific Musical Notation
E 82 Hz E2

A 110 Hz A2

D 147 Hz D3

G 196 Hz G3

B 247 Hz B3

e 330 Hz E4

Table 2, Frequencies for a Guitar Standard Tuning

14

Figure 2, Representation of Physical Components on an Electric Guitar

Figure 3, Representation of Physical Components on a Violin

15

11.0 Hardware Block Diagram

The main setup for the hardware diagram consists of the battery tied to an on/off switch
to keep the system from running all the time. Next dropping down in voltage to reach the
correct voltage level for the processor to the display and the regulator to the motor. The
processor takes readings from the vibration sensor and tells the driver what to do which
controls the motor to tighten or loosen the pegs on the instrument. The processor also
displays values on the LCD display which has inputs and buttons that are read on the
processor to change the settings on the display and select on a small screen interface.

Figure 4, Hardware Block Diagram

12.0 Physical Components

16

12.1.1 ¼” Output Jack

One of the electrical components that was used in our project was the ¼” output jack that
a cable will be plugged into to read the frequency from the pickup of the actual guitar.
There are four commonly used output jacks. These being mono, stereo and TRS (tip-ring-
sleeve). Each type of jack has its own advantage, however for the sake of the project, we
believed that the mono jack and the stereo jack were the most useful jacks for this project.

The mono jack only has two connections, a live/hot connection, and a ground pin. The
live pin picks up the signal produced by the pickups in the acoustic or electric guitar and
sends them through to the output on our device. This means that we can read exactly
what the guitar is producing, making a more accurate tuning experience. The way our
project will implement these will be by connecting the device to our PCB and processing
the analog signals into digital signals. This will aid in communicating these digital values
to our device.

The stereo jack has an extra ground pin that completes the circuit in the active electronics
on the guitar themselves. This could be useful to implement into our project, to complete
a circuit for the device to detect the jack immediately, thus bypassing the vibration sensor
all together. More research was conducted through testing both jacks, and their
usefulness. This component will add hardware complexity to the project.

12.1.2 Selection of Output Jack

Since one of our requirements for this project was accuracy, we did not want to sacrifice
on components that will gather data. There are many products that could work well in our
project; however, we tested the accuracy of two different output jacks. One is a simple
stereo jack, and the other is a Pure Tone Mono Multi-Contact ¼” output jack. The stereo
jack has three pins as stated before, and the Pure Tone jack has 5 pins, two positive pins
and three ground pins.

The stereo jack is used in many guitars and bass guitars and works very well to complete
the job that is required of it. The pins create a contact with the cable that is plugged into
it and reads an analog signal from the instrument. This analog signal can then be
amplified through an amplifier or go into a tuning pedal for the guitarist to fine tune his
instrument without the hinderance of any unwanted noise or interference.

One of the common issues with this jack, is over time, the connection pins can become
less sensitive and become looser over normal use. This can cause unwanted crackling
or interference, which is the sign of a poor electrical connection. We want to deliver a
quality product that can be reliable for a long time after it is purchased. This degradation
over time will be accounted for in our project.

The Pure Tone output jack has two live connection pins and two ground connection pins
that connect to the cable coming from the guitar. It also has an extra ground pin to
complete the connection in the circuit it plugs into. The advantage of having these two

17

extra pins is reliability, accuracy, and longevity of the product. This jack will be put to the
test against the stereo jack to see that if the accuracy and reliability gained from this
product will offset the cost of a normal stereo jack.

Figure 5, Comparison of Pure Tone output jack to a standard stereo output jack

12.1.3 Testing Process

The plan for testing these jacks is laid out in a few simple steps:

1. Tune a guitar with a device that is already known to be accurate and reliable.
(Guitar must have an output jack already.)

2. Connect an oscilloscope probe to each jack, and ensure the connections are
sturdy

3. Use a ¼” cable to connect the output jack from the guitar to the output jack that is
being tested. (Ensure all connections made are still solid and on the correct pins.)

4. Pluck the desired guitar string and watch the oscilloscope measure the frequency.
This process will be repeated thoroughly to ensure accurate readings.

5. The frequency that is clearest and closest to the frequency attained when the guitar
was tuned originally, will determine which output jack will be used in our final
project.

The team’s prediction was that the Pure Tone output jack will read a signal that has less
noise and would be more accurate to what the guitar is producing. This was due to the
extra pins, and the quality of product.

12.1.4 Preliminary Testing Results

18

The testing of the Pure Tone output jack was limited to being able to detect a signal
altogether. Further testing was conducted to determine which jack was better or worse
for our purposes.

12.1.5 Implementation

The output jack was mounted firmly with hardware, on an accessible location on the final
device. The pins on the inside will be connected to the PCB through wires that are
soldered onto the output jack and connecting to pins on the circuit board. These
connections were connected to an analog to digital converter (ADC) to do the obvious
and convert an analog signal to a digital signal that is read by the processor.

If the user decided to use this form of input, then the piezoelectric sensor readings will be

bypassed. This came from the expectation that the jack will be a more exact reading than

the sensor, and we did not want to confuse the processor, on which data to read. The

idea for this bypass was implemented in the hardware. The extra ground pin on the jack

that completes the circuit bypasses and cuts off the sensor signal to only have the output

jack being read.

12.2 Motor

For the overall motor there were multiple options to use. The main two options were

between using a stepper motor or a servo motor. The system could have ended up using

either one, more research and testing was required to see which one will exactly be the

best to use. The whole plan varied on how we wanted to apply the motor in the end. With

the battery being a DC power source there was a preference to attain a DC type motor

and not have to deal with a larger power drawing AC motor. The stepper motor was the

first option that was being considered since they are accurate, precise, high torque,

efficient, and low speed. It is an open loop system, but it can be made a closed loop

system if it needs to be. The vibration sensor is going to be telling the processor the

values which then the processor will tell the driver which will tell them motor which way it

needs to turn and by how many steps it will be.

Stepper motors are relatively cheap and have a longer life span than most servo motors.

Servo motors typically have a good to average torque yield and usually have a better

torque yield at high rpm from the 1000+ rpm range. For this case on restringing a guitar

it is a little excessive to go past 500 rpm. Most stepper motors start losing most of their

torque past the 500-1000 rpm marker, which again there is no need to go past that point.

Also, if choosing a stepper motor the choice of phase would be additional factor to

consider whether to use a 2-phase or a 5-phase stepper motor. The best option between

those two would be using a 5-phase if one can be found that fits in the budget. 5-phase

would provide more torque, less noise, and more accuracy by lowering the rotation for

each step it takes. Servo motors would just waste more power not only that the servo

19

motors usually cost around double what stepper motors costs, but servo motors life span

is about half as much as a stepper motor.

If there is no correctional feedback, and the stepper motor can give enough torque while

maintaining accuracy that is the current method of choice. Most stepper motors can have

a relatively fast rpm rate around 1000 rpm which would allow for extremely fast restring

speeds. The Roadie 3 does 110 rpm where ours could be almost 10 times faster than the

leading brand of the Roadie. Comparisons were tested between both motors to determine

which one will be the best use. Roadie does not state the motor type that they used for

their design, so since the Roadie 3 was attained and dismantled, a brushless DC motor

was seen and used in the project. Once that is done the calculations for the torque and

be found and used to help determine the motor and if the continued use for the stepper

motor will be used.

12.2.1 Motor Testing

There were varying motors to choose from and the final decision for which motor type
was a brushless DC motor for the system. One of the main motors that was used for
testing is a 5V Stepper motor 28BYJ-48. It is a relatively small stepper motor that worked
with the current software that was being used and developed in the project.
The first test was to see if the software was even compliant with the motor’s controls. We
were able to get the code to function with the vibration sensor plate and at least turn when
a vibration was picked up and it was successful in turning the motor head. The only issue
was breaking down the calculations of the actual vibration that was being received from
the sensor and processed by the processor and calculating whether the motor needs to
turn left or right and by how much. It sounded simpler than what it is made out to be.
There are other methods that some musicians use to tune their instruments by tuning it
to the correct frequency then tuning up and back down a hair to tension the string better.
Which this method is an additional preset to add when getting the final reading from the
sensor after the string is plucked and reads the correct relative frequency for the string.

Figure 6, 5V Stepper Motor (Model: 28BYJ-48)

20

This motor was more for experiment testing than being the actual motor that was used in
the final design. This motor was meant more for learning purposes rather than much
useability purposes. It is a unipolar stepper motor and does 32 step with a 1/64 gear
reduction giving it 2052 steps per revolution which was more than what we really needed.
The motor also falls very short with its 6rpm which is a tenth of the speed of the Roadie.
It does not have a high enough torque rating for what is needed to turn a tuning knob from
what has been researched for what is needed to turn a knob is around .2 Nm of force,
this motor only produces about .015 Nm which is not practical and is less than a tenth of
what is needed. Again, it was a test motor, which another result was found that these
motors are relatively easy to break.

The motor head could not withstand a good amount of force applied to the peg head
before it has an internal break which caused it to no longer work. Its plausible breaking
point was from trying to apply force to the peg head of the motor trying to put the tuner
head piece on the end of the motor to conduct further testing. After the tuner head was
attached to the motor there was a test to see if the motor could even turn a guitar peg,
but before that could happen the motor would not turn at all. There was either a failure in
the connection lines and hooking up the testing setup or a failure in the motor. It turned
out to be a failure in the motor since the software would run and the motor would make
noise, so it was trying to turn but most likely one of the gears got stripped when putting
the tuner head on with a good amount of force. This only caused a slight delay of needing
to get more test motors since they are ample in supply.

12.2.2 Motor Research

There was also vested money and research in a Nema 17 Bi-polar stepper motor which
we did not put to test for two main reasons, it is heavy and does not meet the handheld
friendly requirement since no one wants to stick an almost 1 lb. block in their pocket and
with all the other components that need to fit in the housing it would not make it practical
for a handheld device, also the driver requires at least 10-28 VDC for the driver even
though the actual stepper motor is rated for 2.9 V it would take a power supply to test.
The motor exceeds in the torque rating that is needed where this motor was rated .46 Nm
which was a bit excessive but would allow for the stretch goals tuning. Looking at the
competitors Roadie 3 we were uncertain which type of motor they decided to use for their
system until a Roadie 3 was attained, tested, and dismantled to see how they went about
picking components for the build. Most of the motors that are supplied are either too much
or too little and there is no nice in between. The thought was that the Roadie uses a
planetary styles gearbox motor that would fit the way it is styled in the housing since they
are typically longer and thinner type motor and give a decent amount of torque behind
them to turn most knob pegs but a bass guitar’s tuning knob.

21

Figure 7, Brushless DC Motor with Encoder 12V 159rpm

The motor chosen was another Nema 16 stepper motor which was a step down we went
for more of an exact rating motor for torque, where this motor has .21 Nm of torque, and
has a lower current draw of only .4 A compared to the Nema 17 that was rated for 2 A. It
also weights about half as much as the other motor. The only problem with the motor was
that it is rated for 12 V which is a little higher than what was wanted so varying on the
power supply that was used for the system which led to the implementation of a step-up
voltage to supply power to the motor to run it at max efficiency.

After further consideration for a finalized motor, we decided to go with a brushless DC
that functions at 12V that can function up to 159 rpm. We decided to go with this motor
for multiple reasons. The Jowoom used a very similar motor, and we were unable to find
a motor that met the qualifications that their motor was. This motor came with an encoder
so there was no extra need for a on board driver which helped save room and added
costs on to the final design for the tuner. The motor is slightly smaller than the Jowoom
and is only about 20 rpms less than the competition of the Jowoom, but the main
competition is going to be more of the Roadie 3 than the Jowoom. The Roadie 3 motor is
110 rpm, so our project was still overall faster at restringing the instrument and tuning.
The motor also reaches the proper torque that was needed to turn the tuning pegs. It has
a reduction ratio of 45:1, when we were thinking that we needed to be super accurate
with the tuning we were a little wrong when thinking about the amount that the motor
needs to turn. When we used the Jowoom to tune a standard electric guitar with the
Jowoom and it did a good job for a quick tune, but its interface was lacking, but besides
that point their motor was good enough in accuracy. The holding torque is .231 Nm which
falls into the range that is needed. The motor was compatible with the Arduino software
that was used. The motor is a 5-pin motor for wire 1:PWM, 2:Power-, 3:direction, 4:FG,
5:Power+.

22

Figure 8, Line Connections for Arduino (will vary from ESP8266 connections slightly)

The supplier for the motor is DigiKey for $19.90 with 20 in stock. It is rated for 12 volts
and does 159 rpm, it has a stall current of .7 amps meaning no matter how much torque
the motor is fighting that the current will not exceed. Technically the motor has a base
rpm of 7100-7300 rpm internally then has a gear reduction ratio of 45:1 dropping it down
to the 159 rpm, where it sacrifices speed for torque, allowing this small motor to produce
the torque that is needed. There was no given value for what the regular amperage will
run at but estimations are about half of that.

Figure 9, 12V DC Motor Dimensions in mm

12.2.3 Motor Conclusion

23

The motor was a key part for this device to work and since stepper motors are relatively
accurate and can have a relatively high holding torque it should be good enough for the
design even aside from its blocky size, but in our case the later change to an even lighter
weight motor was a better method while keeping the same torque although it was no
longer a stepper motor. There are a lot of motors to choose from but whether they would
be the right fit for the system was questionable since there was already a fair amount of
head way that was made on the software side for programming the test motor to work
and being along the lines of a stepper motor even though the testing has been done with
a unipolar stepper motor, so small changes were needed to compensate for the change
in the end system. The most difficult part was trying to find a motor that would meet all
system requirements without copying the competitors motor even though the motor that
they used was unknown and may be more simplified, also the torque rating was unknown
that they used.

12.3 Driver/Pulse Width Modulator

Along with using the stepper motor, a stepper motor driver would be required so the pulse
width modulations that are sent to the driver can tell the motor how many turns will be
needed. There may have been a need for a pulse generator to send a signal to the driver
to then tell the motor what it needs to do. Correct drivers must correspond with the proper
phase motor since a 2-phase motor might not work with a 5-phase driver and vice versa.
If a stepper motor was used it would have also made it easier to have preset restringing
options for the tuner rather than having a manual wind-up. There are also other integrated
drivers that would be heavily considered.

Using an integrated driver would have helped save a lot of space compared to using most
block drivers that most of the time are used for controlling multiple motors, and would take
up the space of someone’s hand, which would have ruined the whole design of being
handheld in one hand. Since only one motor was used for the tuner, the integrated driver
would only focus on that singular stepper motor. The integrated driver is substantially
smaller than most drivers, they are small and fit on the back side of the motor which
makes it convenient for saving on the housing space overall. A more accurate driver can
be accounted for once the proper motor is selected for use.

12.3.1 Driver/Pulse Width Modulator Testing

Most of the testing that was done for the driver was the ULN2003 driver board although
it was mainly used for the software testing purposes with the current 28BYJ-48 5 V
stepper motor this driver is only compatible with unipolar stepper motors. When the actual
swap was made to the bipolar stepper motor the driver was no longer useful for testing
purposes and the SN754410NE was used for testing the Nema 16 bipolar stepper motor
when it was acquired.

24

Figure 10, UL2003 Driver Board (left), L298N Motor Driver Control Board (right)

This board was only used in testing purposes for the software and was not included in the
final components of the tuner. The driver was compatible with the ESP8266 processor
that the main programming was being implemented with. When testing for the bipolar
stepper motor the L298N motor driver control board supplied by Amazon for $10 for a
pack of 4 was used for the testing of the Nema 16 motor, but it was not implemented in
the final design.

Due to changing the motor to an even smaller motor that uses and encoder. A driver was
still able to be used for the motor, but with the simpler motor that was used in the final
design. After testing, the driver was not used in the final design. The previous driver that
was going to be used was said to be a wrong choice for the final design and was removed
from the final system design.

12.3.2 Driver/Pulse Width Modulator Conclusion/Encoder

There was no need for a pulse width modulator since the servo motor was a throw away
option, but the driver was necessary for the motor to function the way we want it to for the
tuner. There were encoder brushless motors, but they are harder to control and use pulse
width modulation, rather than for the stepper motor and driver can accurately be told how
much to turn and knowing how much it will turn. It makes life a little easier for being able
to tell the driver to tell the motor how many steps need to be done for a quick restring so
it can already be close to being tuned and would only need smaller fine tuning afterwards.
There are ways to run the motor without the driver but there would have been a need for
more testing with the new motor with the encoder. Usually there are usually four types of
encoders being an optical, mechanical, electromagnetic, magnetic encoder type. The
Jowoom uses a magnetic encoder due to the magnet that juts out on the back of the
whole motor encoder section. All that is known for the encoder is that it is incremental
motor type, but between the different types of methods that it uses to read was not stated
in the data sheet between the four different types and it is just known that it is not a
magnetic type at least. The only thing that is known is that it uses pulse width modulation
to control the speed and rotation of the motor, if the encoder is completely taken apart to

25

determine what type it exactly is it will be stated later otherwise there is no risk wanted in
breaking the current motor just the find the exact type.

12.4 Peg Winder

The peg winder is the head attachment at the end of the tuner that grabs the peg heads
to be tightened or loosened. It may be a simple piece, but it needed to be able to function
with enough strength so that it wouldn’t break after a couple of windings. The thought was
to design it out of a strong thick plastic that allowed the vibration sensor to make proper
readings through the material of choice. There were two potential design heads that were
tested, one of hard plastic and another made of metal that needed to be coated with clear
epoxy so not to scratch the actual pegs of the instruments being tuned.

There were additional thoughts on adding an interchangeable peg winder head for the tip
of the motor since the pegs on a bass guitar are much larger than average guitars. If the
winder head was too small, it might break or damage the motor since it would not allow
the proper torque to be applied towards the tuning pegs of the guitar. There was also the
possibility to make a peg winder head that would be ergonomic and usable for both plain
guitars and bass guitars.

12.4.1 Peg Winder Testing

For the peg winder there were a variety of peg winding heads to choose from. The
competitor chose to use a 4 prong styled head piece for their tuner and it being the third
iterations there are not many more improvements that they could make to the peg head
design to make it more robust. Their peg head seems to be either made of aluminum or
a dense plastic and is rather low profile. Being in a lower budget range and with the
friendly use of 3D printers it saves a bit of time and money to 3D print a peg head for the
for the tuner. There was a file that was made public and required small modifications to
the back side of the tuner piece to make a proper keyhole for it to fit on the end of the
motor.

Figure 11, Universal Peg Winder Head

26

The dimensions for the peg winder head’s outer shape is 25mm in diameter and 42mm
in height, the internal peg notch perpendicular to crevasse is 21mm long by 6mm wide by
7mm deep. The whole notch is crevasse is also 21mm deep and tiers down in 3 widths
all the way down from 6mm to 4.5mm to 2mm. The larger middle notch in line with the
crevasse is 17mm long by 10mm wide by 8mm deep and the current peg head for the
design is a universal tuning head since the aim is to try and get a wider variety of stringed
instruments. It has a longer peg head than the Roadie 3, but it has deeper notches to
make up for all the varying tuning knob types there are on varying stringed instruments.
It is also not a four-prong design and is a split 2 prong head which allows it to run deeper.
There was a thought to modify it to be four prongs, but there was a risk of the prongs
breaking since the shaft is relatively long the tuner knobs would possibly break due to the
torque at the tip of the peg head. Even if the peg head for the tuner was 100% infill plastic
it would still possibly break. If the peg head was made from metal, then it would have
been more possible to make that adjustment. There were more modifications that needed
to be made to the file since the current modifications were made for testing the 5 V motor.
Once the bipolar Nema 16 was ready for testing, the motor shaft might have been too
long for the peg head and would need an extension made in the file. Also, the keyhole for
the back would need to be changed to match the shaft.

The final form of the peg winder was edited to have a 15mm long screw to thread in the
lower side of the peg winder and meet the flat side of the motor time, so it is well secure
to the tuner. There was an issue making the hole large enough in the Freecad software
and making the STL and porting the final version as a STL file to Cura. Varying at what
layer height and how big of a flat end screw that was used it should still make a tight fit,
this helped keep the universal tuning peg on the end of the motor tip without the need of
gluing the piece to stay in place. It needed to have a solid enough contact so that the
vibrations could be picked up better by the tuning device. The back peg winder keyhole
needed to be changed to allow a 4mm diameter, but the round head of the motor tip was
cut and flattened out 3mm and it needed to be relatively accurate because if the motor
head was slightly off it wouldn’t feel smooth for fast windings when restringing a guitar or
any musical instrument.

12.5 Filament and Cura

Most of the part making for housing and the peg winder was crafted using a 3D printer
from one of the team members. The filament being used was supplied by Amazon and is
around $20 from when last purchased. It is 1.75mm grey PLA+ filament, we used PLA+
because it holds better than regular PLA and ABS, ABS filament was not chosen to be
used for two main reasons, the filament tends to warp and bend due to changing
temperatures and humidity in the air, where being in Florida there is a lot of humidity in
the air which would cause problems for clean and level prints. The second reason ABS
is not being used is because it gives off toxic fumes which are not healthy for humans to
be inhaling. An additional note is that most printers do not like swapping between the two
different filaments and the nozzles must be changed more frequent if that is the case.

27

Only perks of ABS are a lower print temperature, but the after product in the end is still
usually not as strong as PLA or PLA+ is.

PLA+ melts at varying temperatures if not being heated at the proper temperature could
cause the filament to not feed at a proper rate and the stepper motor of the printer will
start skipping which is bad. Heat the filament too high and it will no longer melt and go
straight to burning. The melting point for the filament is anywhere from 180 - 230 °C, but
for most printing the housing and the peg winder are going to be printed at 218 °C with a
layer height being .2mm which gives a better layer adhesion which should help with the
vibrations carried through the housing to be a little better than other layer height options.
PLA+ is strong and durable enough for containing all the components in a compact
fashion. PLA+ is mostly made from recycled corn starch so it does not burn any toxic
fumes and smells sweeter than burning plastic.

When using Cura, it is the main software allowed the file that is going to be made in
FreeCad and put in a STL file. Cura runs taking STL and other 3D file types and makes
a pathing for the 3D printer to follow by making a gcode file time where the printer can
understand what is meant to be made and make a real-life version of the 3D model
designed. For the settings made in Cura for the prints the infill will be 100% meaning it
will be a solid plastic fill for the best rigidity structure and best way for the vibrations to be
picked up by the sensors. Setting the printer to do 100% infill also allows some other
parameters to be ignored like wall thickness and wall count since it will just be a solid
piece of plastic, other fields that are ignored are the infill pattern because the printer is at
max infill percentage it will only follow one specific pattern doing each print layer’s print
lines 90° from each other so it maximizes the layer adhesion.

For the bed of the printer, it was heated to the temperature of 55 °C. However, the print
bed usually can almost be skipped because it can still allow prints to stick to the bed even
at room temperature or a little warm, varies on how much power you want the printer to
be drawing, but that was the temperature of the print bed for the housing and peg winder
head. For the print speed, it was 60 mm/s which is a decent speed for running on max
infill to keep the layers warm while printing. Each print was printed on a breakaway raft,
so it had better contact to the print bed and kept from prints failing and snapping off the
print bed. Supports were used for both prints whether it needed them or not, but the motor
end of the shaft needed support since that end was circular and the peg winder head only
needed a small amount of support on the base just for the keyhole on the back. That is
mostly all the settings that were used by Cura for printing with an addition of a light layer
of glue put down by a glue stick on the print bed for the initial layer to stick the best. It was
run on a slightly older version of Cura on 4.4.1 version since it is an open-source type of
slicer and constantly gets added features to it, but with small variations from each
software version.

12.6 Battery

The Pick Pocket Tuner is operated with a battery. The options that we had were making

the project rechargeable battery with USB power charger, or simply using a 9V battery. A

28

9V battery was the original thought for a version where the battery replacement would be

quick and easy. The only downside was determining how long it would be able to power

everything before it runs out of power. Currently the main competitor, the Roadie 3, is

powered by a 500 mAh LiPo rechargeable battery however they did not give a voltage

range for their battery but most of the batteries that match that criterion are 3.7 V LiPo.

Having a rechargeable battery was a selling point, due to the sustainability and common

place of having a chargeable device. Replacing batteries for devices has been phased

out in most common appliances, therefore implementing a rechargeable battery makes

our product more marketable and competitive.

The battery choice was determined by the voltage ratings for all our components. If the
components for the device only required a maximum of 5V, then getting a battery as close
to that output would be great for dealing with the regulation of the voltage. Another key
feature that was important for the battery was the current output. We did not want the
output to be too low to where our project will not function properly, but also not too high
in case anything was burned up.

12.6.1 Battery Theory

Once all main components were accounted for, the battery was the final decision for how
much power will be needed to run the system. For the final project, the group stuck with
a 3.7 Volt Lithium-ion polymer 1200 mAh battery supplied by Amazon for $12, where it
weighs about 23 grams, it is a larger battery than the competitor of the Roadie 3 but is
smaller than the Jowoom, but where the Roadie 3 did not state the what exact voltage
that they used but they did use a battery rated at 500 mAh and is a Lithium-ion type
battery most of those batteries with those 2 parts going together are rated at 3.7 V. It
could be higher but based on the size it is most likely that the battery used by Roadie 3.
The battery did not have enough voltage to power mainly the motor and driver since the
two together require a little more than 12 Volts. The overall system needs to power an
LCD screen, processor, driver, and motor. There was further investment in a voltage step
up or booster for when running power for the motor and driver. The reason of using a 3.7
Volt battery was because most of the competitors ended up using that as their voltage
amount. The thought was to do a voltage divider followed by a necessary regulator to
give a more exact voltage when going into the processor and LCD screen.

Since the battery is a DC power supply there was going to be a way to recharge the
battery after it is depleted. A USB-C type charging cable was chosen for recharging the
battery. This was the choice because it is commonly found along most phone charger
types so if the charger for the device is ever lost a phone charging cable will make a good
substitute for it. The battery pack was a bit larger than what we were planning for, but
there was a decent amount of room in the housing that could be accommodated, it also
allowed for balancing of weight distribution in the housing to counter the weight of the
motor, although it put a damper on the overall weight of the tuner, but it is reliable and
gives it a more solid feel in the user’s hand. The dimensions for the battery are 60mm
long by 35mm wide by 5mm height with a 100mm lead wire length.

29

Figure 12, 3.7V Lithium Ion Polymer 1200 mAh Battery

The thought was to use Lithium-ion battery like the competitors, we thought there would
be an issue in finding them in a higher voltage, but we decided to use more regulators to
deal with that issue. There was a thought of getting around with a higher voltage at first
and thought that is combining two or three of them in series giving either 6.4V – 11.1V
however, the method may have sounded nice but would have led to hazards and was not
recommended. There was a possibility of one of the Lithium-ion battery packs to not
charge properly, it would be like putting water into two cups, an overflowing cup, and an
empty cup where the now overflowing cup must leak water into the empty cup. If that
were to happen a battery could be overloaded when charging and potentially explode. It
did not offer a balanced way for recharging the batteries to have a proper functioning
system. It would ruin the consistent voltage rating for each of the components that is
needed for the design. Another battery option was the standard 9V Alkaline battery there
were slight plus sides and down sides to the option.

The main upsides to them was that they are commonly found in almost any store, but
they can be a little costly if they are constantly getting burned through, also most
musicians use them for some of their other devices so it would add a slight convenience
if they are already on hand. The downside is how long they would last in tuner which
would be less than hour if not even 30 minutes if the motor was constantly running. They
only have about 500 mAh which is the same as the Roadie 3 battery rating but higher
voltage rating than the Roadie 3.

It was not the best choice so we decided to stay away from using that option since it would
not be as efficient, so rather than being wasteful, the decision for a rechargeable battery
is the better option and it made it more user friendly. Power efficiency was not the main
concern for the system, but it was a concern to be focused on when trying not to waste

30

power and drain the battery quicker than what was wanted. The plan was to optimize the
system at the end with tweaking components and parts as we kept moving forward. The
main part was getting the closest parts that would comply with the system and allowed it
to at least run. Once getting past that, the fine tuning could happen, and more accurate
parts could be attained after proper testing.

12.7 Switch and Buttons

Most of the interacting with the interface was done through the buttons. There were 2

types of button layouts that were considered. First layout was to have a five button

Directional pad layout to make it easy for the user to interact with the interface on the

display screen. The basic D pad would cover the options to move around on the selection

screen with up, down, left, right, and a center select option. There was the thought of

adding two extra side buttons that will be a back button and or a home button varying on

how complex the interface was going to be.

The other option was more of a limited option where it would minimize the number of

buttons needed to be pressed which would be an either a left, right, and select, or it would

be a up, down and select. The button choices would mainly be determined by the interface

and how many features that were made available for the user. Lastly, the switch for the

tuner so the device can be turned on and off. There were thoughts about either adding

and additional button or switch for a turbo mode on the device allowing for quick tuning

from the device to where it will still be accurate enough for the instrument to sound proper

and in tune.

12.7.1 Switch and Buttons Options

For the main power option, we used a simple on off switch. There are a few other options
that were considered but rather than having a switch that is tied down to the PCB layout
where it is physically on the board. The idea was to run wires to connect and solder them
in so the switch can be used in a more practical spot rather than being limited where the
PCB layout must be at. It gave a little more freedom when it came down to the finalized
housing of the tuner, where the option to put the switch could go almost anywhere on the
outside surface of the housing. The switch was supplied by Radio Shack and comes with
two just in case and switches break they can be replaced easily.

The switch is rated 30 VDC 0.5A which was not a big worry since we were not going any
higher than 12V in the system. The switch is 23mm in length and 7.5 mm in width and a
12mm in depth, it then runs with wires that connect to the main power supply before the
regulators. The switch has a lifetime of 20,000-40,000, which is good enough to last the
user a long while since they won’t be tuning their instrument every day. The switch comes
with metal flap with port screw hole more M1 rated screws at 6mm so drilling with a 1/64”
drill bit allows it to thread nicely.

31

Figure 13, Switch Mounted

As for the buttons there are 3 buttons for interacting with the interface being left, right,
and select. The buttons used were color coded with the schools coloring being black and
gold so the left and right select were made black with the center select be yellow which
was as close as we could get to it being gold. There was a question for adding a back
button so for going back a menu the left button was opted, also the select center button
is an option for some of the menus when it offers the prompt of done or not.

Figure 14, Full Button Layout for Connections

The thought is to have a minimal number of buttons of the device, so it is simplistic for the
user and not too many buttons to where is starts becoming confusing to use the device.
The dimensions for the buttons are 12mm by 12mm by 7.2mm height, but that is without
the top caps of the colored buttons on the actual push buttons. These are momentary

32

push buttons for inputs with the interface and are not toggle inputs. They work up to a
12V DC environment which works for our tuner design. The buttons also have a lifetime
of around 30,000 pressed before possible failure. The buttons are 4 pin buttons and will
be soldered onto the PCB layout. The kit comes with 25 push buttons and 5 varying color
caps for the buttons making for a total of 25 push caps too.

The buttons are going to be wired to the 3V output from the ESP8266 then out to the
three buttons that will have their own lines tied to their corresponding GPIO pins to be
read as an input by the processor. Each button will have a 10kΩ resistor then run off tied
to ground. For example, how one of the buttons is wired up using the schematic pin
numbers from above in figure 14. The 3V line would go out form the ESP8266 and
connect to either pin one or two then on pin three the line would run into the corresponding
GPIO pin for that button’s action on the interface. Lastly pin four on the button would
connect to a 10kΩ resistor to then ground.

Figure 15, Multicolor Changeable Buttons

12.8 Housing

The housing of all the components was the last part of the process once all the proper

parts are attained. The overall quality that needed to be met with the housing is that all

the components are concealed except for the few parts that need to extrude from the

housing being the: push buttons, power switch, motor head, ¼” output jack, and the toggle

switch to swap between piezo sensors and ¼” setting. The whole design is made to fit in

the comfort of one of the user’s hands. There is a consideration to make the design

ambidextrous so if the user were to play the guitar lefthanded or righthanded they could

still see the display screen properly, however if one were to use the tuner in the right hand

it is a little more difficult to see the screen but it is viewable if you angle it a bit more.

The Roadie 3 has a flaw with this, and it is not friendly for the user to tune a guitar peg
head with the right hand since the display screen for their design would be on the
underside facing away from the user. There are a few design concepts that were though
of on how to fix the issue but was not used because it did not look right as a design option
and made the housing even larger and awkward to hold if we did. As for the housing
design a Fusion360 software was used to make prototype builds for all the parts to fit

33

while keeping an ergonomic and comfortable feeling for the user. The design material is
PLA+ and 3D printed to keep costs down for the budget.

12.8.1 Housing Theory

The final determination for the housing for all the components was the very last part of
the project, most components were not finalized since there were changes and fixes to
the PCBs that were being made while testing. Once the PCB layout was created and
designed the housing began to be designed. Its design was going to have to be a tight
and compact design with most of the bulky components being on the outside perimeter,
the design looked closer to the Roadie Bass which is bit bigger than the Roadie 3. It has
a bulkier design to it, there is an obviously larger motor in it.

The housing for the Pick Pocket tuner was split into two half case designs. The front facing
case side holds the motor, display, power switch, two 10mm piezo sensors epoxied down,
and main PCB unit that has the MCU. In the back side case housing, it held the 12V
regulator, charging circuit, and the ¼” output jack. The other component that was not tied
down was the battery, but it was sandwiched between all the components free floating
but secured from the wires pressing on both sides when sealed. The housing can be
shaken and there are no rattling components. Since the motor is a cylinder-shaped design
most of the components were put below it and out of the way. From the front face of the
design the motor is directly behind the screen while the power switch being just off to the
left of the motor, and the PCB just below that. The PCB and charging are both held down
by four 4mm M2 screws. The two case panels when put together are held by five 8mm
M2 screws around the perimeter of the housing, two on the left, two on the right, and one
on the bottom side. There was an added pick holder on the front face for an easy access
ready pick whether for using it to aid in the tuning process or just need an extra pick. The
overall housing is designed to be simple and easy to hold in one hand when using the
tuner.

34

Figure 16, Pick Pocket Tuner Housing Model

There is one main issue with most of the designs and that they are not ambidextrous
friendly that allow the user to still view the screen when tuning the guitar. If the screen is
on the left side of the device, it could still be viewable in either hand it would just take a
little proper angling from the user’s side. Since the screen is a nice square shape, it would
fit nicely on the opposite side of the motor. There are still some issues with tuning some
instruments where some pegs are on the opposite side of the guitar head like most
classical guitar heads.

When tuning those types of guitars, it is in the hand of the user at that point whether they
want to spin the guitar around and tune it backwards or reach their hand around to the
other side and lose visibility of the screen. Since there is a high chance that the user will
lose visibility of the screen in this way, there is a thought to either add an audio beep that
will notify the user to go to the next peg or whether the tuning is complete. There are a
couple ideas on how to model it to be comfortable in the hand and provide functionality
for the user. The design of the housing will be done in Fusion360 which if a user-friendly
provided access given from the school. The material used will be standard white PLA +
1kg spool supplied from Amazon. When using the material on hand the walls thickness
the final design will use 100% infill for when printing the housing so we can maximize on
the vibrations carrying through the unit to be read from the peg winder head that is in
contact with the instrument. The main housing design is going to be a split in half case
design like the Jowoom but in a different shape or to do a lid shape design that will allow
all the components to be easily accessed the lid would be held down by five M2 8mm
screws. The motor will follow a similar front facing screw mounting like the Jowoom.

12.9 Buzzer

35

As an added in thought the has been a question of how the user will know when the tuner
is done tuning the peg of the instrument. There is an added buzzer in the system as an
extra notification feature for the user. The main reason this arose was because of a
housing issue where if the user was tuning their instrument and have the tuner in a
position where they are unable to see the screen and know whether to go on to the next
peg or not. Most people would not notice a small detail be there as an extra aid, but it
would be beneficial for the user in the end than getting frustrated not knowing whether
the tuning is done, and the device needs to be moved to the next peg. The main feature
of the buzzer is a simple notification to the user where once the vibration sensor meets
the proper tuned note and the motor no longer needs to make a turn, the buzzer will give
off a beep to let the user that the tuning is done for that peg and to move on to the next
peg. There is also the option to have a different beep for the final beep to let the user
know they are fully done with their tune.

12.9.1 Buzzer Testing

The buzzer does not require an alternating current signal and just needs a 3V – 5V to
allow it to give off a 2 kHz beep. Another good point about the buzzer it does not need a
control signal sent to it, just a voltage input to give off sound which is completely fine for
the system. The only downside to the buzzer it does not give off any other frequency
besides the 2 kHz frequency, which still works for our system. For when tuning is done
for one peg and needs to go to the next peg the buzzer can give off a simple quarter
second long beep to let the user know. When the tuning is fully done for the instrument,
we can have the buzzer give off 2 beeps so do quarter long beep and wait another quarter
second and beep again for another quarter second duration or it could a whole one
second beep. The specs for the buzzer’s dimensions are 12mm in diameter and 9.7mm
in height. For the pins they are 6mm long wires separated by 7.6mm. Supplied by Amazon
and salvaged from the Piezo sensor, also available for individual ordering.

Figure 17, HYDZ 3-5V Buzzer

12.10 Vibration Sensor

36

The vibration sensor will be the pseudo-heart of the project, since this is the piece that
will enable the tuner to function in just about all environments (i.e., loud, quiet, on stage,
etc.). The sensor to use is still under determination, due to testing and parts acquisition.
As it stands the vibration sensor is due to operate by taking the vibrational input from the
guitar, through the wood, and through the guitar tuning peg, and interface with the
processor to determine what frequency the string is reverberating at. Once that frequency
is determined the processor does the rest and ‘tells’ the motor to be used to turn to tune.
The choice of the vibration sensor has been hampered through determining what kind to
use, MEMS, Piezoelectric, etc. Through research and direct comparison with other
products already in market that accomplish a vibration-based tuning approach, it was
determined that the most cost-effective sensor to go with seemed to be a piezoelectric
device (PES for short). We opted to use two 10mm diameter piezoelectric sensors that
were epoxied down just below the main PCB that holds the MCU.

The operational concept of this device, and size/shape of a PES determined that due to
cost and ease of integration that it would give a device that is very sensitive and relatively
accurate to be able to accomplish what our project is set out to do. Since the PES can
effectively ‘generate’ the voltage due to the vibration being sensed through the guitar
strumming, we then should be able to use those voltage peaks to determine the frequency
at which the string is vibrating at, and thus relay through the processor to turn the stepper
motor accordingly.

One aspect of the vibration sensor that might often get overlooked is that the choosing of
a PES sensor makes sense due to its innate resistance to electromagnetic radiation, and
electric fields. Take for example an end-user utilizing the product in a live performance
setting. In such a setting there are typically multiple electric devices around, and with a
guitar you also have magnets, high currents and other electromagnetic field generating
devices, such as amplifiers, effects cabinets/racks, circuit breaker panels, computers,
etc., that could interfere with the vibration sensors.

For the PES as our vibration sensor, anticipated that the device wouldn’t have this issue
and would then be an issue to not worry about. As previously mentioned, the integration
of the PES sensor was simple, and straightforward. The PES device takes two leads, or
two contact points, to then be able to be interfaced with. Those two leads, one a
‘signal/voltage’ lead and the other a ground, is what we directly interface with to be able
to determine the voltage being generated by the vibrational sensations, then use some
mathematical formulas to convert those voltages generated to the appropriate
frequencies to determine what note to tune the guitar to.

Another reason we have chosen the PES is because most tuners have a device like this
in them already. Therefore, we would be using something that is already accurate and
used in the market. We also decided against choosing a microphone because of the
inaccuracies that can be factored in such as background noise or electromagnetic
frequencies. Many phone applications for tuning a guitar use a microphone, and there
have been common complaints of this feature not working very well because of people
trying to tune in a noisy environment. Since we want to stick to the accuracy of our project,

37

the PES made a lot more sense. Overall, the PES is much more impressive on an
electrical standard because of the simple, yet complex way the device performs. Finding
the correct PES will be a challenge because there are many options in the market. Further
testing concluded between the two piezoelectric sensors that were going to be used the
two options that were being used was the 20mm diameter or the 10mm diameter. After
epoxying to two different housing cases with each case piece having two of the same
diameter type piezoelectric sensors. One case having 2 x 20mm diameter and the other
having 2 x 10 mm diameter sensors. The case with the 10mm diameter sensor ended up
giving more consistent and fluctuating results so we opted for using them.

12.11 Display

Our device will include a small 1.3” TFT display to make the user
experience more intuitive and enjoyable. Our screen is compact since we want the whole
project to fit in one hand comfortably. The screen displays instructions, frequency values,
waveforms, menu options, and other useful information. The screen connects to the
processor through an SPI configuration. The screen that is used is a thin-film-transistor
liquid-crystal display and has a driver. The display also has an Arduino library which works
with our chosen ESP8266 processor as it is an Arduino processor. This allows us to spend
more time on creating an esthetic display that is user friendly and that will complement
our software design.

We also thought of making a phone application for this device, however, the decision was

made that having a physical display on our device would be a better fit for our

project. Making a phone app for our project did not make sense for a few reasons. The

goal for the tuner is to be useable by anyone from any age. If we were to force the user

to use a smartphone, we would be missing out on anyone who does not own one like

young children or adults who do not own one. Also, it will decrease our overall budget

because there is no need to buy a license for an application. Having an app available for

this device one day might make sense as an additional feature, but not as a

necessary tool. Therefore, we stuck with having a streamlined high-quality screen on the

device that will make the experience a pleasurable one.

Figure 18, Rounded IPS-TFT LCD Display

38

12.12 Analog to Digital Converter

After some more design efforts, we concluded that we wouldn’t need to implement an
analog to digital converter (ADC) because the node MCU already comes with it as one of
its pin ports. The ADC is used to translate the analog signal from the guitar and convert
them into digital signals, which the algorithm can read. This means that when the
frequency reading from the vibration sensor comes in, it will pass through the ADC and
be converted to a decimal value. The value that will be read by the processor and read
the feedback from the device. We can be accurate with a simple 10-bit converter, as the
values are divided by 1024 accuracy division. Since the frequency range of a guitar has
only 4 significant figures maximum, this is a sufficient degree of accuracy, while allowing
us to maintain the cost low on this specific component. A fair amount of research went in
how to determine the best way of utilizing the ADC since it is a crucial part for being used
to determine the accuracy of the tuning.

12.12.1 Selection of ADC

After performing some technical investigation, our team has considered ordering and
testing a 10-bit ADC from Texas Instruments (Part number: ADS7888SDBVT).

But the main option we went with was the analog input pin (A0) on the ESP8266 which
also includes a 10-bit ADC. This ADC can receive an input voltage of 0-3.3 Volts. This
would be perfect to use for the piezo sensor which does not in generate nearly enough
voltage for this to be destroy the ADC on the ESP8266 itself. If the voltage is greater than
3.3V it could fry the A0 pin and render our tuner obsolete. We ended up adding a voltage
divider for the ¼” output jack so the electric guitar would not fry the A0 pin. This was
tested and was successful so there was no need to have an external ADC connect to the
MCU and the A0 pin was able to be utilized which helped reduce the cost of our project,
and allow our PCB to be smaller.

12.12.2 Testing Process

Once the output jack goes under the correct testing procedure, we were able to see if
we needed to implement the external ADC. From there, we moved forward with one of
two options:

1. Using the internal ADC alone:
­ Testing the software, and getting correct digital values to what voltage is

being produced
­ Find the maximum and minimum digital values that are attained
­ Reach desired results

2. Using the internal ADC along with external ADC:

­ Find out how to transmit the digital value to the ESP8266 from the external
ADC

39

­ Use the software to extract the data from the ADCs and use them in
conjunction to give information

­ Find the maximum and minimum digital values that are attained
­ Reach Desired results

12.12.3 Testing Results

The team has concluded that the ADC on the ESP8266 itself is going to be sufficient for
the purposes of our project.

12.12.4 Implementation
The ADC is between the output jack, and the processor. The job of this component will

be to take the analog inputs from the sensor/jack and make a digital signal for the

processor to use in the calculation algorithms. The data is translated and directed to the

correct results. The Vin terminal will have to positive branches coming from the jack and

the sensor, and the negative terminals will be tied to ground.

12.13 Voltage regulators

For the voltage regulation for our system, we need inputs of 3.3V and one at 12V. The
current plan for the regulators is to regulate a voltage from a battery, down to one of those
expected levels. A linear regulator will be used for the 3.7V to 3.3V since it is easier to
drop down in a small voltage amount without losing too much power and potentially frying
the input. We expect to use a buck boost regulator to regulate to the correct 3.7V to 12V.
This should not overheat our product and should allow for our project to run efficiently.

The regulator that is already on the NodeMCU-ESP8266, is the AMS1117. It was a
optional regulator but it was unavailable for trying to get the regulator and components
separate from the node MCU. We ended up going with a 3.3V regulator MCP1700T-
33002E/TT. It was a relatively easier fix for at least the first regulator and it was relatively
efficient being up to 91% efficient. An issue with these regulators is that they are linear
regulators. The team believes that it will still be useful to test these regulators our to see
if we can manage the heat and power dissipation properly. These regulators worked
properly, and it saved a lot of time and headaches when figuring out how to regulate the
voltage correctly throughout the circuit.

If these linear regulators did not work as intended, then we would have resorted to the

buck boost converters that were used for the motor. These are prototyping regulators that

electronic distributors sell, which were helpful for us test with.

12.13.1 Prototyping Regulation

To get the design correct for our project, we needed to prototype the voltage regulators
to see if our calculations were correct. To do this, we used the XL6009 buck boost

40

converters. These converters can take in 1.25-35V. this is plenty of DC regulation for our
project and work for what we need it to do. It could be said as well that the regulators
would not run at an above average efficiency, due to their wide input and output voltage
ranges, however, they are still efficient enough for our device. This board is larger than
we want for our project, but only need 1 of these boards to accomplish a complete
prototype. They allow our project to function and are a good way to test and understand
how different voltage levels are used in the system. This whole process helped us
tremendously in showing how we need to incorporate all the correct components and
regulators we implemented.

12.13.2 Voltage Regulation Strategy

Since our voltage source is going to output 3.7V we need to be strategic about the
different regulators we decide to use. The three components that require different voltage
levels are the motor (12V), the display (3.3-5V), and the ESP8266 (3.3V). The strategy
for satisfying all these requirements is to design one step down regulator and one step
up regulator. Below is a flowchart that shows the progression of all these regulators.

Figure 19, Regulation Diagram

From the diagram above, one can tell that this is the most effective regulation solution to
our problem. It allows every component to receive its correct voltage, while allowing for
optimal regulation. The display that we are using, has a 3.3V Ultra low-dropout voltage
regulator, which means it can take an input of 3.3V and use that to run whatever logic it
needs. This is very convenient for use, because it allows us to use the 3.3V output pin
from the ESP8266 to power our display, and we do not need an extra voltage regulator
to get us to 5V because it is already included on this module. This will not only save us
money, but it will also save us on power consumption for the circuit, which means our
battery life will be extended. Using the least number of regulators possible is crucial for
being able to physically build this product since so many regulators were and still are on
backorder.

Also, worth noting is the charging circuit we are using, the plan for the charging circuit is
to implement a USB C Charging port. The voltage level that the battery will be charging

41

at will be slightly higher than the battery voltage, to reach the correct charging value. USB
charging usually stands at around 5 volts.

12.13.3 Buck Converters

The ideal design for our PCB would be to include buck-boost or buck converters.
However, the problem our team was having, as well as every other team, was actually
being able to order these converters. Voltage regulators especially have insane backlog
times (39 weeks or greater). This obviously did not work for us since our project had to
be built in about 20 weeks. Most of the regulator designs we wanted to use were efficient
and size ratings were small but were all out of stock. This did not leave the team with
many options for making our design.

The next section will discuss the type of voltage regulators we would have used for our
project if it had not been for the global supply chain issues. The design below is a very
efficient, compact, and useful designs for what could have been implemented into our
project. We also used the TI WEBENCH tool to design each specific regulator.
WEBENCH is a very useful tool and provides ample information for each design. After
the very good design option is shown, for the schematics that has the parts in stock so
we could actually build our project. They are not the most efficient or impressive designs,
but we are hoped that they would work for our project.

12.13.4 Voltage Regulator Designs, 3.3V

The example for an improved design compared to the one used in our final project, is
shown in the figures below. The specifications of this schematics are shown in the tables
right below the figures. This shows a good comparison of what we wanted to use versus
what we used for our project.

Figure 20, Desired Voltage Regulator Design

Vin 3.0 - 3.7V

Vout 3.3V

42

Iout 200mA

BOM Cost $1.09

BOM Count 9 items

Power Draw 0.04W

Table 3, Critical Specifications for Efficient Regulators

Figure 21, Schematic Design Choice

Vin 3.0 – 4.2V

Vout 3.3V

Iout 200mA

BOM Cost $5.87

BOM Count 29 items

Power Draw 0.28W

Table 4, Critical Specifications for Chosen Regulator

Unfortunately, these comparisons aren’t even close as to the what the better design is.
The battery used has a total of 4.4Wh, and one of these regulators is already using up
0.21W to run. With one more inefficient regulator, our battery life is suffering. However,
this was still be the best way of dealing with the supply chain issues.

Since we did not want to waste space in this document, we used efficient back up
regulators along with one we attempted to use. However, the other efficient schematic
will be shown in the appendix for reference, and the regulators that were chosen will be
shown along with all specifications for each circuit.

43

12.13.5 Regulator Schematic and Specifications, 3.7-12V

To design the next regulator, we again used the WEBENCH tool on TI, and put in the
parameters we wanted our circuit to have. As expected, we ran into some supply chain
issues, and ended up using a similar circuit to our last design. Both circuits are going to
use an LM25118 IC to achieve the correct voltage regulation. This integrated circuit has
a very wide input range (3 - 42V). There are regulators out there that have a much smaller
range, and a much smaller output range, however, this regulator should serve us well in
this project. There was an option of using a different regulator that was also available,
however that regulator had an even wider voltage range, which would cause our circuit
to be less efficient, and it would take up more of a footprint on our PCB. The output
voltage range is 1.23 – 38V, which is way more than our project would need. However,
this circuit is available which means we were able to receive these ICs for when we went
to order our printed circuit board. This was one of the few circuits that suited us well for
this device and was available at the same time.

Figure 22, 12V Regulator Design

Vin 3.0 – 4.2V

Vout 12V

Iout 700mA

BOM Cost $6.87

BOM Count 28 items

Power Draw 1.27W

Table 5, Critical Specifications For 12V Regulator

44

The circuit above seems like a complex circuit, just to get us to 12V, however it runs at a
decent efficiency and was attempted to be implemented into our design. The footprint for
this circuit took up some real estate, however we able to minimize on its layout to make
everything fit on our board in an efficient way.

12.13.6 Ordering Process for Regulators

Since voltage regulators were in such high demand, we could not waste any time in
ordering these components. After doing many thorough technological investigations
online, there were enough parts for us to order for the regulators we need. This does not
necessarily mean it was the case for the second part of the semester. Therefore, it was
only wise to start ordering these regulators as soon as possible. A great way to achieve
this was to have a completed design of our PCB before the next semester came, to simply
implement the circuits and get our PCB built all at one time. However, we thought there
would not be many opportunities to improve the regulator design or build another PCB if
there was something else wrong with the board itself. Which is why another option was
on the table.

Another plan for our design was to order separate smaller PCBs. This means we could
order a few regulators of each kind and test them. The main 12V regulator was not
functioning properly. This made us make a major adjustment towards the end of the
semester since it was too late to fix the troubleshooting issue we were having with the
regulator.

12.13.7 Testing Process for Regulators

Since we went with separating the regulators from each other to test. Below are the steps
that were taken, to ensure a proper testing to be conducted on our products.

1. Connect the regulator to a breadboard using lead wires.
2. Turn on DC power supply and set to 3.7V first.
3. Connect the supply to the breadboard
4. Connect a load on the other end of the voltage regulator and connect a multimeter

in parallel with the load to measure the voltage travelling across the load.
5. After correct voltage is being measured across the load, increase the voltage up

to 4.2V to see if the same output is being generated.
6. Record data and results.

This test can be conducted for both regulators and was an effective and safe way for us
to test the voltage regulation. If the regulators did not function as they should, then we
would have had to go back to the drawing board and start over on our regulation designs.
If the regulators were not working after the first or second time it would have been
detrimental to the project as a whole, because of the supply chain issues could prevent
us from improving on our design. However, we were hopeful that the designs we were
going to implement would be effective and work.

45

12.13.8 Implementation of Voltage Regulators

Implementing the regulators into our design would be straightforward. The regulators will
both be connected to the terminals of the battery in parallel. The end of the 3.3V regulator
will go straight into the ESP8266 to give it the voltage required to power that design. The
12V regulator will have its input connected to the battery and its output connected to the
positive and negative terminals of the motor we are using. This provided the correct
voltage levels needed for both the MCU and motor to operate at peak performance. The
motor however also has three wires going to the MCU to be controlled by pulse width
modulation. The implementation of these regulators again were fairly simple and allowed
all components to operate as they should.

12.14 Processor / Controller

The processor we have chosen for this project is the ESP8266 which is a CPU with low

power consumption and Wi-Fi capabilities. The processor is 32-bit with a maximum clock

speed of 160 MHz which is more than capable of reading our input sensor, powering our

motor, and drawing to the display. The processor also has low power consumption is also

ideal for our project as one of our technical requirements is to have around 100 strings

tuned in respect to battery life. For memory, the processor has 80 KB of RAM and flash

storage. With the standard for flash memory being 4 MB. This amount of storage is plenty

for our software to run and for our user-saved string frequencies to be stored for faster

selection and ease-of-use.

As for communication, the ESP8266 has pins for SPI, UART, and I^2 C. This is ideal as

we have choices for which communication method, we implemented for interacting with

the other devices of the project. These multiple communications are also able to be used

for concurrent communication among multiple connected devices. This is ideal for our

technical requirement of timing as we wanted to be able to tune all the strings on a guitar

in around 3 minutes and around 5 minutes for a newly stringed guitar.

Our group researched and tested different ways to implement our project in terms of

reading the frequency from the plucked guitar string. One implementation that we

researched was having the sensor attached to the bridge communicate with an ESP8266

and have that processor communicate with the handheld device that has the same

ESP8266 to wind the motor for maximum accuracy. This processor can be ideal for that

implementation as they have Wi-Fi capabilities and could communicate with each other.

With the sensor on the bridge of the guitar, we can achieve a greater accuracy in terms

of reading frequency which would satisfy our technical requirement of being within 5 cents

of the user desired frequency.

46

Figure 23, ESP8266 on NodeMCU Development Board

12.15 Clock

With the ESP8266, compatible clocks were further researched. From what was gathered
it was better off to use the internal clock that already came standard in the ESP8266,
being the 80-160 MHz adjustable clock. There were thoughts of adding a external crystal
clock mainly because we were opposed to internal RC clocks which tend to be inaccurate
and are influenced by temperature changes. For external clocks, we had the choices of
a quartz or ceramic crystal, silicon, or an external RC circuit. Our Pick Pocket Tuner will
require the utmost accuracy when communicating. The processor will be communicating
with the sensor, the display, and the motor driver all to perform precise measurements
and calculations. Since our project has the engineering requirement of having the
frequency accuracy be within 5 cents, we thought we were likely going with the silicon or
quartz crystal choice, as these clocks have the best accuracy. But after going through the
research and hassle of adding a new on-board clock the one that came standard with the
ESP 12E was good enough for us to test and implement.

12.16 Charging Circuit

Since the team has decided on using battery, we wanted to implement a charging circuit.
This is an enticing feature since it allows our project to have a sustainable way of being
used. Replacing batteries is a hassle, and it creates waste by going through so many
batteries assuming this product is used every time a musician wants to tune his guitar.
Having replaceable batteries is more sustainable on the environment and just makes it
more convenient if you want to reuse this product regularly. This product will be draining
quite a bit of power as well because of the motor that will be implemented in the project.
This means that the battery life can deplete quickly if the motor is consistently running,
thus making it more inconvenient to go through many 2AA batteries all of the time, rather
than being able to just quickly recharge.

47

12.16.1 Design of Charging Circuit

When performing some technical investigation, it can be verified that we needed to find a
circuit that can charge a lithium Polymer (LiPo) battery. Luckily LiPo Batteries charge the
same way, by requiring a constant voltage to charge the circuit. One important parameter
to keep in mind is the charging current rate. The original charging circuit was designed
but due to supply chain issues we were unable to use or implement the design. We ended
up having to resort to our plan B for the charging circuit and used a premade Adafruit
charger that was also designed to work with the battery we already got and used for
testing.

Integrated circuits have been created by companies such as TI to make help
rechargeable circuits easier to design. One of the Integrated circuits we planned on using
for our charging circuit is the LM317 from TI. Below is the basic schematic we decided
not to use for our design. The output voltage to the battery should usually be about 17-
18% higher than the voltage listed on the battery, according to online resources.
Therefore, since we plan on using the 3.7V battery, this means that the output voltage
from the charging circuit should be around 4.3-4.4V. Also, we only wanted a current of
0.5A to be entering the battery, so this parameter is known as well. Since we know these
two parameters, we used simple equations to solve for what the resistor values should
be in this circuit. The equations we used are shown below.

(1) 𝑉𝑜𝑢𝑡 = 1.25 (1 +
𝑅3

𝑅2
)

(2) 𝑍𝑜𝑢𝑡 = 𝑅1 (1 +
𝑅3

𝑅2
)

(3) 𝐼𝑜𝑢𝑡 =
𝑉𝑜𝑢𝑡

𝑍𝑜𝑢𝑡

Final Values:
𝑅1 = 2.5 Ω, 𝑅2 = 1 𝐾Ω, 𝑅3 = 2.5 𝐾Ω, 𝑍𝑜𝑢𝑡 = 8.8 Ω, 𝑉𝑜𝑢𝑡 = 4.4 𝑉, 𝐼𝑜𝑢𝑡 = 0.5 𝐴

Figure 24, Charging Circuit Design with LM317 (Intellectual Design Provided by Texas

Instruments)

48

As one can see, this circuit may not be the best to charge our battery, because the
LM3117 is not very efficient and finding 2Ohm resistors is not easy and would not fit well
into our circuit. Also, since the devices in our project either run off 12V or 3.3V, having a
3.7V battery may be a more efficient battery for us to use. Since the voltage regulation
should be much easier, and more efficient, our team will move forward with the 3.7V LiPo
battery.

12.16.2 Charging Circuit Using MCP73831/2

After doing some further research on circuits for charging batteries, we found that there
are many other options to use, that are more efficient, smaller, and cheaper. One of these
circuits is the MCP73831/2. The integrated circuit has all the requirements we need for
our project. The following paragraphs will discuss the circuit to be built around it, suppliers,
implementation and plans to test this circuit.

12.16.3 Requirements and Specifications of MCP73831/2

The integrated circuit has five pins, each with specific labels. These labels are STAT,
VSS, VBAT, VDD, and PROG. The VDD label is the input voltage that is being provided
by either a wall outlet or a USB-C cable. In our design used a cable that comes from a
premade wall outlet that worked for our conditions. The VSS label is the designator for
ground that the company who made this circuit chose. VBAT is where the positive end of
the battery connects to. This is where our red lead wire coming from the battery will be
connecting. That STAT pin is used to determine the charging status of the battery. In most
diagrams, LEDs will be connected to this pin to indicate that the battery is charging and
will turn green to indicate that the battery has been fully charged. Finally, the PROG pin
is used to determine the charging current rate. The datasheet for the IC shows different
resistor values that one can use to regulate the current rate that goes into the battery to
charge it.

The output voltage for this product is 4.4V which is perfect for what is needed for our
project to be charged by. Since the LiPo batteries use the constant voltage method to be
charged, the voltage charging the battery needs to be slightly higher than the rated
voltage for the battery. However, most of the charging comes from the constant current
method. The battery is mainly charged by receiving a constant current which will
eventually raise the voltage of the battery until the rated voltage is reached. The circuit
shown below is the layouts that are using in our own design.

49

Figure 25, Simple Application Circuit by Microchip

The 4.7uF capacitors are the values recommended for the capacitances because it
compensates for when there is no load.

One more component that will be added into out schematic for this circuit is the USB-C
Charging port. This I where Vin will pass through so our circuit is able to be interacted
with by the user. There are data lines on the USB-C port, but these not be used, since we
are just trying to charge a battery. Adding this USB-C Port will also us to be competitive
in a global market since the world is trending mostly towards the desired USB-C interface.

Something that our team was aware that the circuit can get hot and heat dissipation that
might occur in this circuit. It seems that this IC can run warm, but through designing and
testing different components used in this circuit, out team knows that the heat will not be
a problem.

12.16.4 Suppliers for MCP73831/2

Our team plans on ordering this circuit from Mouser electronics. They seem to have a
very reliable track record, and they have plenty of these chips in stock. Microchip
themselves seem to distribute to a warehouse in Atlanta, which means that the shipping
time for this product should not be too much of an issue. It also will help since this seems
to be a common circuit to come by.

12.16.5 Testing Process for MCP73831/2

Testing the design for our circuit should be simple. We shall build the circuit using the
components stated above, using a breadboard and electronic equipment to simulate and
test our circuit. This IC can be ordered on a breakout board which will make it very easy
to test. Once the circuit has been checked and all the connections have been made
correctly, we moved forward with the simulation process. After the simulation was ran
correctly, we finally connected a battery to the charging side so we can ensure that the
circuit is functioning correctly. After some charging is done to the battery, we tested the
voltage level and make sure that the battery is charging properly. We also took into
account any heat that may come from the battery or from the IC and made sure nothing

50

was overheating or damaging any components. Once this method was perfected, we
created the final schematic layout in Fusion 360/EAGLE and saved the schematic.

12.16.6 Implementation Process for MCP73831/2

Implementing the charging circuit design will first start with implementing it into our PCB
design. Once the schematic is created, it will be imported into our final PCB schematic.
Once the PCB Design is finished, we then design the board layout to have the charging
circuit near an edge of the board so we can build our housing around that spot to allow a
place for the port to stick out and be plugged into. This process is simple, however
designing the 3D model of the housing around this component should be the same as the
other PCBs, since none of us have a great deal of experience working with CAD modeling,
however, we believe that after some trial and error we were able to incorporate it well.

12.16.7 Prototyping Charging Circuit

For efficiencies sake, and the sake of gathering more data on the battery consistently, we
needed a reliable way to charge the battery multiple times to give a detail specifications
sheet. Therefore, having a charging circuit prototype benefitted the process of design and
implementation. There are many premade circuits on the market that help with charging
batteries, but there is one made by Adafruit, that gave us exactly what we were looking
for in our project. The device is very small and compact and uses 5V USB Charging to
charge the circuit. We chose the option to use USB-C which would be an even better
implementation since most electronics are starting to use USB-C more commonly. The
circuit is shown below in comparison to a small LiPo battery and a laptop. I can also be
charged with any phone charger that uses a USB C port

Figure 26, LiPo charging circuit to be used in prototyping and testing phase of project

This means that our project can be distributed anywhere in the world, and it should be
able to be charged without a hitch. And as one can see, the circuit is very compact, and
fits well within our design requirements and specifications. Below discusses how to
implement and test the charger for our project.

51

12.16.8 Testing Charging Circuit

There are multiple criteria that were be tested on this circuit, so that we could become
very comfortable in utilizing this circuit. The different questions were attempting to find
answers for are as follows:

- Does it work?

- How long does it take to charge a fully depleted, half depleted or quarter depleted

battery?

- Can the circuit damage the battery?

Our team believes that these questions gave us all we need to know about how to use
this prototype for our device.

The testing process to answer the first question is simple. All that needed to happen was
to connect the charger through a reliable USB-C port that already works. Once the
connection was made, and the indicator light turns on, we knew that the circuit was
receiving power. After it starts working, we disconnected the source and plug the
terminals of the battery into the correct terminals on the charging circuit. It is worth noting
that the voltage level of the battery was tested before the circuit started charging it. The
voltage that was measured before the charge was recorded and compared with the
voltage levels. The circuit plugged back into a source and left on for about 30 minutes.
After the 30 minutes were up, we measured the voltage level of the battery and noted if it
increased. We knew the circuit was effective when we noticed the voltage of the battery
increase.

The next step in testing the charging circuit was to see how long it takes to charge the
battery at different battery lives. To test these ranges, we depleted the battery to each of
the levels stated in the question above. After each level was reached, we measured the
time it took to charge to full capacity at each charge. Once we found all our times, we saw
consistent rate that the charging circuit supplies was 500mAh.

Finally, we tested overcharging, and saw it can either damage the life of the battery or
damage the battery in any other way such as heat. To test this, we connected a fully
charged battery to the charging circuit for a certain period of time, and then discharged
the battery completely. This process was be repeated several times to track the life of the
battery and see if the battery life becomes weaker, or if there are any signs of damage.
This gave us a good understanding of how our customers should go about charging their
product safely.

12.16.9 Prototype Charging Circuit Implementation

The reason for prototyping a charging circuit, would be to learn how to implement a design
of our own, or more specifically condense or improve designs that already exist on the

52

market today. It also allows us to make sure other parts of our circuit are operating
correctly and how we expect them to.

Firstly, we ordered one of the USC-C charging circuits from Adafruit and tested it, with
our 3.7V battery that was going to be tied to it. Most of the teammates on the team have
the capability of plugging this circuit into their laptops or walls with different devices that
take the USB-C connection. This will make the process of testing very easy and
convenient for us. Also, it is worth noting that the circuit comes with a standard charging
rate of 100mA, which is going to be very slow if our battery has a capacity of 1200mAh.
However, there was a jumper on the board that we soldered and changed the charging
rate to 500mA. This means that if our battery becomes fully depleted, it will reach a full
charge in about two and a half hours. This may seem like a large charge time; however,
we are expecting the battery to last a long time on a single charge. The Roadie3 only has
a 500mA LiPo battery, which means it charges quickly, but can also deplete quickly as
well. Therefore, we expect the decision to include the longer battery life will be worth it in
the end.

The implementation process for testing purposes was simple. There are positive and
negative terminals on the battery charger that connect to the positive and negative
terminals on the battery. We must ensure that the connections are at the right terminals,
or we could damage the battery or even the charging circuit. Once everything was
connected properly, we started to connect other parts of the circuit that would be powered
with the battery to see how well everything is functioning.

12.16.10 Using the Prototype as Plan B

The goal for prototyping this circuit is so that we can learn how to design and implement
our own. However, our plan B for this prototype, is using it in our final device. The team
did not plan on using this circuit; however, we were able to get a working product the next
semester and using this circuit was a huge benefit we were able to implement into our
design. All measures were taken to ensure our best effort was put forth in designing a
charging circuit that works, however, the supply chain issues were ultimately led us to the
decision to use the prototyping circuit in our complete project.

12.16.11 Mounting Prototype in Housing

It is necessary to use the Adafruit LiPo charger in our final project, and had to figure out
a plan to mount the circuit to our housing design. The board comes with four through
holes and each hole has a diameter of 2.5mm. The image to depict these holes are shown
below.

53

Figure 27, Image of Adafruit Charger Showing Mounting Holes

The plan was to mount the circuit using the four holes and developing the mounting holes
on the housing itself. We used four very small M2 4mm screws. The screws also are
Philips heads type screws, since it is the most common design to find for screws this
small. This circuit is very well secured when placed in the housing because it must be
able to withstand people unplugging and plugging in the charging cable. This can be a
difficult process for some people, as some people struggle with depth perception, and
plugging the cable into the small port with too much force could cause the mounting
screws to shift or come out, rendering the mount useless. Therefore, it will be essential
to ensure the circuit is secured tightly to be able to withstand uncommon forces.

12.16.12 Testing Process

The first step will be to deplete the battery at a decent rate. This can be done by making
a circuit that will drain the battery at a steady rate, without overheating or damaging any
of the components. Once the battery is depleted to about half of its battery life, it will be
disconnected from the circuit that it was powering and set aside. This gives us a
benchmark as to how much batter life is left and allows us to proceed with this knowledge.

The next step is to build the charging circuit on a breadboard and test the output voltage
and current we are getting without connecting this circuit to the battery. We wanted to
ensure that it is operating at a safe voltage and current for the battery before we could
connect the two together. Once the team was satisfied with the results, then we use the
battery. If the next step was to proceed with connecting the battery. After it is connected,
we tested to see if the battery was charging like it should. Once the circuit was working
properly, we would start a timer to measure how long the battery takes to charge once it
is half depleted. All things went well, and the battery becomes fully charged and on how
to implement it into our design.

12.16.13 Implementation Plan

The implementation process for this circuit was somewhat simple once the design was

complete. The circuit will be connected to the positive and negative terminals of the

54

battery, a switch will also be tied in between the battery and the regulators to control the

overall power to be able to flow. The terminals of the battery will also be connected in

parallel with the voltage regulators that will be used to distribute the correct power

throughout the system.

13.0 Printed Circuit Board Design

Designing a PCB was no small task. This part alone had the ability to make or break our
entire project. There are also many steep learning curves when learning how to design
and build a working PCB. This is something that comes with practice; however, our team
planned on breaking the process down into smaller pieces to make the process go over
smoothly. The following subjects will be discussed thoroughly as the regard to the design
of the PCB:

­ Overall layout of how we think the components will connect
­ Power distribution and ratings
­ Fusion 360
­ Suppliers
­ Prototyping and testing

13.1 Overall Layout of PCB

The layout of our PCB shall be a very important quality in our overall project. We planned
on making it a compact as possible and have a good shape that is affordable and will fit
in an ergonomic housing. Most of the components we shall have on the circuit board have
small footprints, so this will aid in keeping our PCB relatively small. The ESP8266 has a
very small footprint, however it should have plenty of computing power for what we need
to accomplish.

13.2 Power Distribution

Determining how power will be distributed throughout our project is essential to make
sure all components are operating at the correct ratings. The table below shows all our
devices that draw power, and at what rate they draw electricity. There are some
components that still need to be put under load and tested to see what kind of current
they will draw. So far, this table gives us most of the measurements and estimates that
we know of.

Component Voltage Current Power
Motor/Encoder 12V 200ma (expected Load current) 2400mW

TFT Display 3.3V – 5V 100mA 330-500mW

ESP8266 3.0V - 3.6V 200mA 600-720.mW

3.3V Regulator 3.3V 200mA 280mW

12V Regulator 12V 0.7A 1270mW

Total 4,880 – 5170mW

55

Table 6, Power Distribution Calculations (Incomplete Table)

Finding out these measurements is crucial for when we started designing our PCB. Using
what we measured will allow us to make sure every component gets the correct voltage
and current they need to receive. Otherwise, we could run into problems of components
being overloaded, or not running at the load they need to be running at, which could cause
major issues for our final PCB. Knowing these calculations also aided us in estimating
our battery life. Knowing how many watts or amps everything draws is crucial in
determining battery longevity, and it can also show us some areas where we could
improve upon.

13.3 Fusion 360

The software that will be used to design our PCB is Fusion 360. Fusion 360 is a versatile
tool and allows us to intuitively design our PCB from scratch. This was also the software
that everyone on the team seemed to be most familiar with, so it made sense to choose
this as our design tool.

Another contributing factor as to why we chose to use Fusion 360 as our development
software was because it was made available to us through an education license. The
license to use the software costs $400 and since we have four group members, the total
we would have to pay would be around $1600 not including taxes. This was a huge
savings on our development costs and will allow us to be able to spend more of our budget
on the physical components for our project.

Fusion 360 also has a very attractive user interface. Other Programs like EAGLE seem
to be a little more rigid and outdated on the interface tools, however Fusion 360 has very
good labels and icons that are easy to differentiate between. This feature does not seem
super important but enjoying and thriving on the design software should translate directly
to the efficiency and ability to get work done on our design in a positive trend. So far, this
trend has shown to be true, and the team is able to work comfortably and on schedule.
All the listed reasons above show why our team chose Fusion 360 to complete all of our
design for the printed circuit board we are developing.

13.4 Collaboration Method

Something else that was discovered throughout the development of our PCB, was the
collaboration method that can be utilized in Fusion 360. This collaboration method works
similarly to how Google Drive works, except it is used for the development and design for
a printed circuit board. The students were able to create one big project for all senior
design and share the emails used for their accounts and allowed the folder to be shared
between all of the students. The two electrical engineering students Paul Grayford and
Lucas Grayford are the main developers of the PCB and can work efficiently together
through this process of collaboration. The folder containing all the schematics that were
designed are shared between everyone, and both students can work on the schematics

56

together in real time. The most efficient way that the two students are utilizing the tool
that Fusion 360 implemented is to work on different circuits of the PCB to and once they
are finished, copy, and paste them into our main design file. This allows the circuit to be
built in individual parts, which will aid us in our overall design by being able to adjust
wherever we see fit. It also allowed each student to become more familiar with the subject
matter for each part of the circuit by allowing each team member to have a hand in
something that they were able to design and research themselves.

An example of utilizing this feature would be when Paul Grayford was designing the
voltage regulator Circuit, and Lucas Grayford was figuring out the connections from the
ESP8266 to the LCD display within our project. As Paul was developing the regulators,
in the same folder Lucas was able to work on figuring out and troubleshooting the
connections for the LCD display in real time. Both were available to ask each other
questions and see what the other was working on real time. Both students were able to
assist each other, and in the end complete the design for each circuit and paste them into
the main PCB file making the process run very smoothly. This was only one example of
many where we were effectively able to communicate and collaborate on different parts
of the circuit together.

13.5 Designing Components Using Fusion 360

In a perfect world Ultra Librarian would have all the footprints and symbols we needed for
our project, however that is not the case. There are some components that we had to
design in our project on Fusion 360 itself. An example of using the design tools would be
designing a footprint for our piezoelectric component. Also, one of the footprints was
improper for the 12V regulator and caused a lot of problems and troubleshooting to deal
with until the actual problem was found being a footprint error with one of the files.

There was another component that was also not in the library and needed to be designed.
Paul Grayford headed up this task by first creating a new library that would include all the
student made components for our project. After the library was created, he attempted to
create a new part from scratch. After a substantial amount of time learning how to create
a symbol, he still was running into issues on how to design the component needed. Since
he did not want to waste time, after doing some research, he tried importing a similar
design and modifying it to the specifications required for the component. This seemed to
work better, as he found a library that had a buzzer with a similar footprint. Since buzzers
use the piezoelectric disks like the sensor we are trying to implement into our project, it
ended up being a good choice to modify. After he modified the symbol, for the schematic
diagram, he was able to modify what it would look tike for the footprint to be on the PCB.
The symbol and footprint are shown below.

57

Figure 28, Student-Made Piezoelectric Sensor (Symbol on Left and Footprint on Right)

The actual modification process was learned very quickly. Once the old part was
imported, one could select the lines, pins, and other important features of the symbol and
modify them so that they fit the description of the part needed. The creation tool also lets
you delete segments that will not be used and add segments that will be used. The circular
features on the footprint were added in with the draw tool and were modified with accuracy
using the dialogue box that changes the width and height of the shapes. The pins that
connect the wires also had to be adjusted with their position They can be seen as the
very faint gray circles that have the labels on them. For the footprint itself, the modification
was very simple. All that had to be done was adjust the radiuses of the circles so that they
would reflect more of what the component looks like. Once this was accomplished both
parts of the component were complete and ready to be used.

After the footprint and symbol were made, it was saved in the library that was mentioned
before. This allowed our new component to be added to the PCB design by importing the
library with the library manager into the main design file. After it was added to the project,
the part can now be added with ease by anyone who has access to the main printed
circuit board file. Other components needed to be adjusted as well like the Zener diodes,
because they were taking up a lot of real estate in the schematic diagram.

Learning how to use the creation tool was very useful and will continue to become a
convenient way for us to implement components into our design, even if we could not find
a file online that has everything we need. It will also be valuable experience for us to learn
how to make different components if this ever comes up in our career path.

58

13.6 Supplier

The team plans on using the company JLCPCB to supply us with our printed circuit
boards. After doing some technical investigation, they seem to be the best company for
our needs. JLC provides boards for an affordable price, and they allow the buyer to buy
in bulk, which will come in handy once the PCB design is perfected and we are able to
have backup boards in case of sustained damaged or unexpected roadblocks. Overall,
the company seems to have a great track record and will serve us best once the team is
ready to start ordering PCBs.

13.6.1 How to Order from JLCPCB
Ordering from this company is simple. Once the board layout and schematic designs are
complete, then a Gerber file will need to be generated. The file is used to show all the
traces that are used on the board and will allow them to print the device clearly. Once the
file is uploaded, there are many options to choose from such as: How many layers, area
of the board, color, thickness of the PCB, how many boards to be ordered etc. Once all
the selections and preferences have been made, the billing addresses and the checkout
is then filled out. JLCPCB claims that the build time for most of the PCB’s they build only
takes up to 24 hours and then will only take 3-5 Business days to ship. This is a very
quick turn-around time and will be beneficial if some of our boards do not function properly
because it will allow us to order replacements in a timely manner.

JLCPCB also gives the option to assemble the components on your board for you. This
could be a helpful tool for us to use since we have so many small resistors and capacitors
to keep track of, which means that our team could spend a substantial amount of time
soldering all the small components and could make us lose time on testing and design
fixes. Therefore, this could be a good option for us, even if we can have JLCPCB
assemble certain parts of our PCB, it would save us a lot of time. Also, soldering on the
ESP8266 will be a challenge because the distance between the pins on the MCU itself is
very small and would be very difficult to solder as amateur engineers. If this piece can
also be assembled on the PCB before it ships to us, it would save us a lot of time as well.
As the PCBs starts to get ordered, and the process becomes more familiar, we can then
be able to adjust and order everything we need for the completion of this project. The only
downside to this method would be the price. Having it assembled for you is about 3.5x
times the price in some cases. This may be something we look towards down the road if
we are in a pinch and do not have the time to spend on the task of soldering every little
piece as previously mentioned. Overall, this method is something to keep in mind if we
are

Finally, the pricing of the boards is very affordable, and can be as low as $2.00. This is
not case for our board; the shipping was most of the cost for the boards rather than the
cost of the boards themselves. Overall, this was not outside of our budget when it came
to finally ordering multiple PCBs.

59

13.7 PCB Assembly

If the team decides to assemble the PCB on our own without the help of any supplier,
there needed to be a process to assemble the PCB smoothly. Something that made this
process go well was the labeling of the location where each specific component will go.
This labeling will have to be placed on the PCB by the fabricator of the board. Something
else to consider will be how to keep all the parts separated to not get any resistors or
capacitors mixed up. Since we have so many semiconductor devices on our PCB that are
of different value, it was a challenge to keep everything organized to not solder on the
wrong component in the wrong spot of the board. One way to mitigate this risk is to keep
the resistor or capacitor in the package until it is ready to be placed. Once it is ready to
be placed, the semiconductor will be taken out of the package, and immediately soldered
onto the board in the correct spot. This ensured that we do not have any random
semiconductors laying around that could be lost. This process was time consuming,
however it reduced the chance of losing certain components or placing them in the wrong
place. Another way to keep track of all the pieces would be to have the bill of materials
open as we’re placing materials. This allowed us to cross components off as we work and
reduce the risk of missing components. It will also help us to stay organized as to what
was put on the board already and what was not.

If the above theory somehow goes wrong and a semiconductor is taken out of the
package before it is marked where it needs to go, then there needs to be a plan to make
sure that the component is taken care of accordingly. The following steps should be taken
to ensure the product is placed where it belongs:

1. Once the semiconductor is found outside of the package and the package is
nowhere to be found, stop all production.

2. Measure the semiconductor to see what value it carries, and take one of two steps
below

3. Either:
a. Find the location on the PCB and immediately solder the component on
b. Or mark the value and label it as such, stash it in a safe, organized place

and continue working on the task at hand before placing the part down
4. Continue work once all steps above are complete.

Taking these steps should ensure that every component is accounted for properly and in
an organized manner. Not only will these steps reduce the amount of headache during
the process of assembling, but it also allowed us to reduce any unnecessary waste when
it comes to cost and time. Cost because if we lose components or damage them, had to
buy more time because the ordering time of these components could set us back a
substantial amount of time. Overall, we need to be careful about how we approach the
whole assembly process of the PCB.

The actual order that the components be soldered to the PCB could be significant in the
amount time spend soldering on the components. Not only could it be time saving, but it
could reduce confusion on where components should go. The plan to solder the PCB

60

components on to the board is to start with the largest components and work our way
down. This means soldering on components like the regulators, power transistors, and
the ESP8266. This will allow the rest of the components wall into place more easily.
Because the larger components will be places, the small semiconductors will start to line
up, and it will start to make more sense where stuff goes.

13.8 Testing the PCB

Once our first PCB is ordered, it will be smart to assume that the design will not work the
very first time it is created. Testing our PCB effectively will be crucial on how we proceed
with the project. If the PCB has a design issue and is not working for whatever reason,
efficient trouble shooting and critically thinking effectively will be imperative to improving
the design and acquiring the desired results for the circuit. It will also be important to test
if ALL functions of the PCB are operating properly. The team will not be satisfied if the
PCB design is just “good enough.” We want to ensure that the PCB is doing what was
intended of it, and to make sure that every single function works on the board.

The process for testing the PCB is self-explanatory. We connected all the components of
our project to the board and generate a signal with a DC power supply to the project to
see how everything behaves. Once we have diagnosed and fixed all the bugs that we
shall most likely have, then we shall start trying to implement our design with the battery
we choose and see if we can generate a similar response. Once all of this is
accomplished, all that was left was to design the housing for the whole project to fit into
and putting everything together in a way that allowed everything to operate at maximum
efficiency.

14.0 Prototype Construction

14.1 Prototype Construction Beginning Notes

This prototyping section is considered to be complete, however it is noted that due to
shipping delays, parts availability, cost, and/or defects during construction, components
used or specific parts used may have been adjusted in order to meet final deadlines
and/or project requirement specifications. This is important to distinguish as some
components which were initially to be designed and implemented by our team were
instead swapped out for off-the-shelf components due to the inherent inability to continue
re-designing and re-ordering PCB’s to be reprinted for testing due to the increasing
shipping costs, and further parts costs and availability. With that said, we described the
changes made, as they were necessary or as they were done in previous sections, and
in subsequent sections.

14.2 Prototyping Components

14.2.1 Processor/Controller

61

The processor/controller used for prototyping the Pick Pocket Tuner, is based around the
ESP8266 microcontroller. The board used during breadboard testing is the NodeMCU
Amica-ESP8266 prototyping board which contains the ESP8266 microcontroller as well
as soldered on-board pins for prototyping ease through a traditional breadboard or direct
connection to the soldered-on pins, with a micro-USB connection for ease of use when
necessary to implement software to use for testing. This board was procured by the Team
Member Luis Vargas, as he was previously familiar with the board and had spares to be
able to provide for testing. This board is a simple open-source IoT platform and is
connected/interfaced with through the Arduino IDE and the CP2102 Driver and the
appropriate ESP8266 board manager library for the Arduino IDE platform. For readability
this board will be referred to as ESP8266, the board, or simply MCU.

The set up for the testing environment for the Arduino IDE assumes that the Arduino IDE
is already installed and is working correctly prior to proceeding further. The interfacing
between the Arduino IDE and the MCU requires that the board manager for the ESP8266
family of boards be added, manually, to the Arduino IDE to then add the correct board
explicitly to be able to upload the software appropriately. In doing so, this enables the
Arduino IDE to communicate through a serial connection to the ESP8266 board allowing
for the total use of the available pins and functionality of the board. Once this is
accomplished, the Arduino IDE must be configured to recognize the board at the correct
COM port to be able to gain full functionality at 9600 Baud, which is especially important
when using the Serial Plotter or the Serial Monitor in the Arduino IDE. With the assumption
that this works correctly, we are now ready to begin utilizing the ESP8266 for prototyping
the project.

14.2.2 Sensor

The sensor utilized in the prototyping of the Pick Pocket Tuner remains to be the
Piezoelectric sensor defined under the previous Vibration Sensor section, where it is
explained what function this sensor is to serve. This Piezoelectric sensor will be directly
connected to the MCU to be able to utilize it as the main point of contact at which we shall
begin to test the capabilities of vibrational sensing and thus begin our signal processing.
Given the importance of this piece to the Pick Pocket Tuner, there were two sensors
initially purchased to be able to submit to testing from SparkFun Electronics, the first a
circular ceramic disk Piezo sensor (part no. SEN-10293), and the second being a flexible
PVDF polymer-film Piezo vibration sensor (part no. SEN-09196).

For both devices they are connected to the MCU through the analog input pin that the
board has, as these are devices that generate an analog ‘signal’, vibration, to be
processed into what we ultimately need to be able to accomplish what Pick Pocket Tuner
set out to do.

14.2.3 Motor

62

The motor utilized in the prototyping of the Pick Pocket Tuner will start with a 5V DC
Stepper Motor, model 2BYJ-48. This motor has a 4-coil unipolar arrangement with each
coil rated for +5V, a torque of 0.03 Newton-Meters, and has 64 steps per revolution, thus
making it a relatively simple motor to begin prototyping with since it is not difficult to control
with microcontrollers, like our ESP8266. This motor was procured through a kit that Team
Member Jamie Henry already had in his possession. This motor is interfaced directly with
the motor driver, which is identified in the Motor Driver section below. This motor/driver
combination is then directly interfaced with the GPIO Pins on the MCU corresponding
with the appropriate pins on the soldered-on board. Additionally, this motor requires an
additional and/or externally supplied 5V DC power to operate appropriately.

After determining that the previously mentioned motor did not produce sufficient torque
to appropriately turn the tuning pegs on a guitar, much less so for a bass guitar, and
because of this we decided to move towards using the DFRobot FIT0441 Brushless DC
Motor with an operating voltage of 12V that has a torque rating of 2.4 kg*cm. This motor
is able to provide enough torque to turn the tuning pegs of guitars, and in comparison, to
other motors on competitor’s products, would be enough to turn the tuning pegs of other
instruments.

14.2.4 Motor Driver

The motor driver used in the prototyping of the Pick Pocket Tuner will start with a Texas
Instruments ULN2003AN Stepper Motor Driver, which is already connected to a pre-made
PCB. This PCB is to be used as the primary interface/driver for the 2BYJ-48 motor
mentioned previously. For the remainder of the Prototyping Components, the Prototype
Testing, and Integration of Parts sections, when referencing ‘the motor’, the reader is to
assume that the nomenclature is inclusive of the motor AND the driver simultaneously for
simplification and ease-of-readability by the reader.

This 16-pin driver from Texas Instruments is chosen for initial prototyping since it came
with the 2BYJ-48 motor in the parts kit that Team Member Jamie Henry already had
procured previously. This ULN2003AN driver is made up of seven high-voltage, high-
current, NPN Darlington transistor pairs that utilize suppression diodes for inductive loads
with a base resistor to each Darlington pair. This combination of devices allows for the
driver to maximize the effectiveness allowing operation directly with supply voltages of
5V, over a wide temperature range of 40°C to 105°C. This driver will be directly connected
to the appropriate GPIO/Digital pins on the board so that we are able to control the stepper
motor appropriately.

Similar to the progress of the initial motor went, the ULN2003AN Stepper Motor Driver
was be changed for the encoder that comes integrated with the DFRobot FIT0441 DC
Brushless Motor described previously. This integrated controller comes with the leads
necessary to be able to interface with, and integrate into our prototype, while being directly
attached to the rear portion of the housing on the motor itself.

63

14.2.5 LCD Display

The LCD Display that will be used in the prototyping of the Pick Pocket Tuner is the
Adafruit 1.69” Round Rectangle Color IPS TFT Display. For simplicity, and ease-of-
readability-and-reference, for the remainder of this document this LCD Display will be
referred to as simply as the ‘display’, ‘LCD’, or as the ‘screen’. The display is an IPS-TFT,
which means that this is an In-Plane Switching Thin-Film-Transistor display. This IPS-
TFT model is an LED based LCD that due to the IPS allows for some of the best color
reproduction and viewing angles among other types of common display panels, and the
TFT allows for improvements in image contrast as well as addressability.

This device was procured by Team Member Paul Grayford from Adafruit (Model No.
ST7789, Product ID: 5206). The interfacing and integration of the display was determined
through technical research such that the display can be integrated using the SPI
communication interface on the ESP8266 based on the datasheets of the display. The
interface for the display through the MCU is through the SDMOSI, SDCK, SDMISO lines
which the MCU can utilize to communicate the necessary data to and from the display’s
controller.

14.2.6 USB-C Charging Circuit

The USB-C Charging circuit utilized in the prototyping of the Pick Pocket Tuner, is the
Adafruit Micro-LiPo Charger for LiPoly Batt with USB Type C Jack from Adafruit. This
charging circuit was procured by team member Lucas Grayford. This charging circuit has
breakout pads that allow for 5V, two data lines, D+ and D-, a GND, and VBAT. This
charging circuit already has a USB-C jack soldered on, has a 100mA charging current
with the capabilities of increasing that charging current to 500mA by shorting a jumper to
facilitate fast charging in the device once integrated. Attempts were made to access the
data lines on this charging circuit to try and include a battery status readout on the display,
however due to a lack of publicly available data sheets on this specific charging circuit,
we were unable to include this feature.

14.2.7 Battery

The battery utilized in the prototyping of the Pick Pocket Tuner, at the time of writing this
document will start with the Lithium-Ion Polymer Battery – 3.7V 1200mAh from Adafruit.
This battery was procured by team member Lucas Grayford. This battery, as described
above, is 3.7V output with a 1200mAh runtime. It is currently our choice for prototyping,
and further integrating into our design choice.

14.3 Additional Components in Prototype Construction

14.3.1 Piezo Sensor Filter

64

The filter that was considered being used in the prototyping of the Pick Pocket Tuner was
a Resistor-Capacitor based circuit. The purpose this filter serves is to take the input signal
from the piezo sensor and then ‘clean-up’ the signal so that it is more easily read by the
analog input pin on the MCU. This filter takes two resistors at 1MΩ, R1 and R2, and two
capacitors. One capacitor, C1, is 0.1µF and the other, C2, is 0.01µF. They are all
connected in parallel in the following order: In – R1 – C1 – R2 – C2 – Out. On the input
side, we connect the Piezo electric sensor on the positive terminal and the negative to
ground, on the output side we connect the positive terminal to the analog input pin and
then the negative to ground. This is what we shall initially use to clean-up the input analog
signal from additional signal noise to the ESP8266 so that we may progress in our
prototyping.

Ultimately this filter was removed altogether as once the piezo sensors were affixed to
the housing of the device, the group decided that there was no additional input filtering
necessary. In future iterations, it may become necessary to revisit, as there may be signal
noise emitting from the piezo sensors at very low frequencies.

14.3.2 DC-IN Power for Breadboard

This piece, although seemingly inconsequential, is necessary since it will be used during
breadboard prototyping to provide power to our devices when they require additional
external power that the MCU cannot provide. This piece is unlabeled; however, it was
procured by Team Member Jamie Henry in the same parts kit that was used to procure
the initial motor used for prototyping. This DC-IN board takes power from a 9V/1000mA
power supply and converts it to either 5V or 3V for use on breadboards. For initial
prototyping purposes, it was primarily utilized as a 5V output to provide the necessary
power for the motor to be used.

14.3.3 3D Printed Guitar Peg-Winder

The peg-winder that will be used in the prototyping of the Pick Pocket Tuner is a 3D
printed peg-winder procured by Team Member Lucas Grayford. This device is attached
through friction onto the moving stem on the FIT0441 motor so that we can affix the winder
to the tuning peg on a guitar to test if the motor produces sufficient torque to be able to
move the tuning peg during initial testing, and ultimately to be able to determine how
much to turn the peg-winder to be able to tune the guitar.

14.4 Next Prototype Construction Steps and Ending Notes

At this point we have finalized our first ‘official’ version of the device prototype.
Additionally, the preliminary artist rendition of the mock-up of our system prototype is in
Figure 20, below. Fig. 20 contains a breakdown of all the included parts in this initial
breadboard prototyping phase with the wiring diagrams of the tested devices. Those
devices which are part of the Prototyping Construction section but are still under technical
research, i.e. the display, will be included in the mock-up, however specific wiring will not
be included in this diagram.

65

Figure 29, Artistic Rendition of the Initial Prototype Mock-Up

15.0 Inside of the Jowoom

We ended up finding a similar style of a tuning device as the Roadie but a bit more of a
primitive type of system that follows most of the same principles that we are trying to
reverse engineer. When taking apart the Jowoom it was held together by 5 screws mainly,
three 20mm x 2mm screws and two 8mm x 2.5mm screws on the front face behind the
peg head where there is also a screw holding the peg head in place too. After prying the
case aside there were a quite a few things to learn how the Jowoom was manufactured.

The first thing that was noticed was the brushless DC motor that they decided to use for
their tuner which inspired us to make the change to a similar type of motor for our design.
The motor we decided to use we is a little slower in RPMs in comparison to the Jowoom,
but comparing it to the Roadie 3, our motor has a higher RPM. The motor used inside the
Jowoom is about 25% longer than the motor that is being used in our design. The other
thing that was noticed about the Jowoom’s motor was that it had a 6-pin interface rather
than our 5-pin motor. We do not know what their extra pin line was for, but we consider
that it could be an extra control line.

There were a couple other things that we noticed that could help us improve upon our
design, and one of the things was an extra vibration sensor that was connected in parallel
to their system. The first of the two sensors were connected and mounted to the plastic
housing of the Jowoom itself, on the inside, so it would be able to pick up the vibrations

66

better when the housing is in contact with the instruments peg head. Then, the second
sensor was connected to the circuit board directly so it could transmit the vibration signal
to their embedded system. It seems like a smart decision to do that for our housing and
properly mount the secondary vibration sensor on the inside of the housing like the
Jowoom.

The reason in stating that their system is a bit primitive is that they did not have a
processor for determining most of their calculations and it was more of an embedded type
of system. Their system has three different select modes for the styles of tuning, which
are a little hard to navigate through without the use of the user manual to get the exact
setting type that the user is looking for, thus leading to a clunky outdated User Interface
and User Experience. The first standard startup mode is the auto mode, which is the
easiest mode to understand and works well overall. Just put it on the tuning peg and pluck
the corresponding string for that peg and it quickly reads the frequency range that the
string is close to and make the adjustment to the peg and does a double beep and lights
the green led to tell the user that the string is done and to go on to the next string.

The other two modes are custom, and semi and the user can press the “s”, button on the
Jowoom to select the string type customization, which can be a little confusing for a novice
to use its interface. The nice thing it has is a string number and the corresponding letter
pitch for the string. It also allows the user to select through three different selections being
guitar, “uke”, and “chrom.” Uke being short for ukulele setup and chrom for chromatic
selection. However, it is important to note that the interface was being stubborn going to
those selections after taking the device apart and putting it back together, even following
the user manual to get to the settings.

The Jowoom has five buttons but only two of those buttons are really used for the
Jowoom, technically there are six buttons if including the reset button, but to access the
reset button it requires a needle or pin to press it as it is recessed into the housing. The
two main buttons used are the power and mode, simply to just turn on the device and
mode button to change between the three available modes of operation when pressed
and held. When just simply pressing the mode button it allows the user to manually select
between the strings. Two of the other buttons are a up and down for manual winding
mainly for quick manual restringing, but our tuner will not have that and rather a restring
option in the interface that will get the string to a close tune. Then the last button is the
select button which allows the user to change the mode more for guitar, uke, or the
chromatic settings.

There is only a plan to use three buttons in total for the Pick Pocket tuner. The buttons
will be mainly as stated before in the buttons and switches section to have a left, right and
select option, and hold select feature to go back or back to the main menu. Another
feature the device has that was noticed later after using it was that it has an auto shut off
feature when the device is not used for around over a minute. For our device that won’t
be possible if we use a switch method to delegate whether the device is on or off, but
there is a thought to add a chirp or beep to notify the user to turn off the tuner if it is no
longer being used, so that the power can be saved in the system.

67

Figure 30, Jowoom internals

They had it set to be very simplified to where it had more of thresholds to adjust the tuning
to match the frequency it needed. So, most of the outcomes are already hard set than
calculated which can make the system quick and simple to use. For the system that is
being designed by us, our intent is going to be more of a mix of the Roadie and the
Jowoom so there can be best of both worlds type of scenario. Our device will be more
like the Roadie in terms of capabilities, but a cheaper option, however it will be lighter
than the Jowoom because their system is not heavy in the hand weighing in at 212 grams,
but it still has a solid feel to it, where most of the weight is the motor and battery.

For the Jowoom, their PCB design was a little odd, since it did not actually use a
processor. The board fills up most of the upper side of the housing, and there is a lot of
empty space not being utilized in the housing next to the battery. We believe that the
design of the Jowoom could have been much slimmer, but there are 3 large components
on the back of the PCB that caused the void space, these components being a large
inductor, capacitor, and a buzzer. We believe that there could have been saved space
based on the battery used, if they used a LiPo battery like the Roadie, but our group
determined that the idea behind this design decision was that for the Jowoom, they were
using this battery choice more for longevity and not needing to make as many recharges.

68

Figure 31, Jowoom internals front side

Overall, we are not going to reverse engineer an exact version of the Jowoom. However,
dismantling a competitors product gave our group a significant insight on which direction
to begin, and ultimately how to implement some small changes on our system that we
may have missed in the first place, or not thought of whatsoever. Additionally, and more
importantly, this process allowed us to reevaluate over certain changes in our original
design like the battery and motor change.

16.0 PCB Layout

Once all parts were finally picked, and procured, the final PCB design can commence,
and we are to begin determining a final layout of all the components on the PCB. First
thing is determining what specific components are going to end up being on the PCB,
since most of the components are going to have lead wires running to the actual board.
The components that are going to have pin headers and run lead wires to the board are
going to be the battery, switch, motor, and screen. The main components that are going
to be on the actual PCB are the two main regulators, the two regulators stepping our 3.7V
battery output to 3.3V for our main PCB and a second step-up regulator going to 12V for
our motor. The last component attached to the board is going to be the ESP8266. The
rest of the components will have varying pin headers placed on the board.

69

There are some problems with a significant amount of the components, for example a few
of the component’s wire-pin headers do not come with matching connector types, so the
problem is trying to find the end connectors and making sure they match. The other
problem is that the libraries for most of the pin connectors are not available and either
need to be downloaded from a potential unknown source or custom design. Instead of
potentially wasting money on buying wrong connectors and trying to waste time
troubleshooting, our group ultimately decided to cut the lead wires and attach these wires
directly onto the pin headers. As we are aware, currently there is also a problem in supply
chain issues with many of the components which brought us back to the cost saving idea.
A large amount of the connectors that were available, were only available in a large bulk
orders amount, and that’s if they were even the right connector. Beyond that, most of the
vendors had supply chain issues and were quoting a 30-week lead time on their
components. The idea for our project’s PCB is more for ease of use than looking pretty,
also the housing design is going to be determined after the finalized version of the PCB
is done so the wires will be out of sight, and outside possible interference from the user.
There will be some cable management done when this is all put together within the
housing so it will look more presentable, and serviceable, if someone were to open the
housing. This was the main idea for getting around some basic problems and keeping the
PCB design method to be practical, and relatively simple.

16.1 Ultra-Librarian

Ultra-Librarian was what was mainly used to get most of the schematic and footprint
designs for the PCB layout. There were problems with most of the products that were
from the Adafruit library, where they would have lookup information for the components
on file but not have any actual footprint and schematic files to go with them. It does not
make much sense to have products on file then have zero things to provide under the file
type for the product. Ultra-Librarian gave footprints and schematics for regulators,
ESP8266 and the power MOSFETs for the regulators. For the regulators, even though
we were limited to the regulator types that were available for use, due to supply and
demand issues that were present for most of the more common and efficient types of
regulators. Ultimately, we ended up using the largest regulators, which weren’t the most
efficient ones because there is not much that could be done about the situation. The
ESP8266 gave a nice schematic and the only changes that needed to be made to it was
some channel labeling for the input and output pins for all the possible lines that need to
be run to interface all the proper components for the system. Even though Ultra-Librarian
had its limited uses for what we were able to find and use, it was still a helpful tool with
key parts that were needed in the overall PCB layout and design.

16.2 PCB Parts Placement

The first component on the far left of the schematic is going to be the USB-C type charger
for the battery, which will connect to the power line of the battery to allow for recharging.
The battery and the switch are going to be tied to a 4-pin header. The idea is to cut the
lead wires for both the battery and the and the switch and attach female end adaptors so
that they can plug into the male pin headers. Ground will run to pin 1 and power from the

70

battery will run to pin 2. Pin 2 and 3 will be wired together on the PCB board design and
the power switch lines will be connected to 3 and 4, where 4 will be the main line that runs
off to the two regulators that will run in parallel to the rest of the system. The 3.3V regulator
will then run into the ESP 8266 input pin. From there are mostly interconnections with all
the GPIO pins and other data lines running to each set components. There are a total of
eight main components that are going to be interconnected with the ESP 8266, which are
the four different pin header runoffs, two 1x2, one 1x5, and 1x7 pin headers. The other 4
components are going to be the three buttons that will be connected to three different
GPIO lines and having a data line voltage sent through them to know which buttons are
going to be pushed. Each button requires a 10kΩ resistor runoff to ground. The last
component tied to the ESP 8266 is the buzzer that is going to be used for indicating when
the tuning is complete for the peg being tuned and to go to the next peg or when fully
done tuning.

Most of the components are going to be laid out surrounding the ESP8266 to make routing
lines as short as possible and keep it as efficient in layout planning as we can. Since most
of the components plugging in are going to be done through pin headers it allows us to
line up most of the lines to the right places without tangling lines up too much. The two
largest pieces that are going to be in the way on the PCB are the two rather large inductors
which will take up most of the room on the PCB layout design. The target design is to
have the board be nice and compact but not too compact where the inductors might give
off some interference to the other electrical components. The layout is going to roughly
follow a similar layout to how it is setup in the schematic and for how it is arranged too.
The battery and switch will be far off to the left-hand side of the setup where the charging
section will be too. Next the regulators will follow and will be formed rather close together
and will sit parallel to each other, but inductors will be slightly off stacked diagonally from
each other so there will be some room for them. Next to follow is the ESP8266, pin
headers, buttons, and buzzer which will off to the right-hand side of the regulators.

The locations for most of the components are going to lead to a more elongated type of
breadboard design which is okay for what we want since the housing and PCB are going
to be going hand and hand with each other. There are other options for changing the
variation on the PCB since there may be problems that could arise on the first board that
determine whether it will work correctly or not. This in turn would take a little more time to
finalize our design since corrections would need to be made and any adjustments in the
layout placement for the board would lead to reprinting the PCB. The board is going to
have a flush fit to sit at the base of the housing or to the top of the housing. The main
cause for it being on the top side is because of the buttons need to be able to get pressed
or else it makes the useless if they are not accessible for the user. The layout could have
a change to make them run lead wires too if they are not able to extrude from the housing
to be pressed by the user. The goal is to have the board mounted with 4 through holes
on the edge of the board with backside surface mounts on the housing that will line up
with the holes to hold it in place securely. The through hole size will be for 2.5 mm screws
whose length may vary with the final housing design.

71

16.3 PCB Lead Wired Part Placements

There are some other components that need to be considered for how they are going to
be placed around the PCB. This specifically applies to our battery, motor, display, audio
jack and the power switch. The battery will be tucked on the lid of the housing with a
plastic bracket holding it in place with a small dab of glue to make sure it stays in place
better in case the device gets dropped or knocked around. The motor was already
described for how it is going to be mounted in the housing, and it will sit just above the
ESP 8266 and out of the way of the lead wire. It may protrude out slightly depending how
much room is going to be given. The display screen is going to be as close to the buttons
as it can possibly be so it is more user friendly because it will not make sense to have the
buttons on the opposite side of the screen, original idea for the screen was to put it on
the butt-end of the device opposite of the motor head, if that were to be the case then the
buttons would need lead wires run to them. The audio jack and switch are the two most
flexible pieces for the design because they can be mounted to the housing wherever there
is room left over for them to sit, both also are having lead wires run to the board, the only
thing to focus on is not tangling up all the lead wires that are running inside of the housing.

Figure 32, Final Internal Housing Layout

72

Figure 33, Final External Housing

As can be seen in Figures 32 and 33 above, ultimately, we decided that the motor, and
power switch would be set on the top of the housing, with a bracket holding on the motor
to the housing, with screws to make sure it didn’t spin in place. Secondly, the screen,
buttons, selector switch for the ¼-inch input jack and Piezo sensor were affixed to the
front face of the housing, where they would allow the user to interact with easily, the
buttons and the selector switch were the only things that were attached to the “back” of
the PCB so that the housing design would make sense, and on the PCB’s “front” is where
the remaining components were attached. Additionally, the ¼-inch input jack was
attached on the bottom of the front of the device housing, with the 12V regulator, USB-C
charging circuit and battery being on the bottom of the back side of the housing. This led
us to a finalized compact design without any visible, or extraneous wires, that can be
seen in Figure 33 above.

73

16.4 PCB Prototype

Figure 34, PCB prototype v1.0

There are some finishing touches that still need to be made to it mainly being the through
holes for the drilled location, and routing the vias in. There is a difference in the version
being used which does not have a rat’s nest option to put everything together. There is
also an issue where converting the whole piece to the 3D design would not work and put
the layers in and it would just put the component pieces in only.

74

Figure 35, PCB Prototype V3.0

Ultimately after finding some grounding pad errors, and component wire errors that
wouldn’t allow our device boot, we simplified the design and made our third and final
revision of our PCB, seen in Figure 35 above. This board only includes a step-down
regulator from our battery supplied voltage of 3.7V to 3.3V, the USB-C charging circuit,
and 12V step-up regulator were removed from this PCB, and due to budgetary restraints
and supply chain issues we ultimately decided to use off-the-shelf components for our
USB-C charging circuit and 12V regulator, the USB-C circuit and 12V regulator can be
seen in Figure 33 above.

16.5 PCB Wiring

We decided to keep track in of what wires had which pins of the ESP8266 were
associated with to avoid any confusion. This will help keep track of what pins were used
and save time from second guessing for what wire went where, while also serve as
reference for later if changes in the design were made where, for example, if there was a
wire that was previously sent to the wrong spot and can easily be fixed with a simple
rerouting. It is not mentioned in any of the tables but the input line for the ESP 8266 for
voltage in coming from the regulator is pin 7- CHIP_EN, which enables the chip high for
on and low for off and small current consumption.

75

ESP 8266 Pin # / Type / Other Motor pin # / Type

10 – MTDI, GPIO12 1 – PWM

33 – GND 2 – Power (GND)

13 – MTDO, GPIO15 3 – Direction

9 – MTMS, GPIO14 4 – FG signal (requires 5kΩ resistor)

12V Regulator 5 – Power (12V+)

Table 7, Motor Pin Connections

Most of the pin connections of the motor were a little more complicated that what they
should be. For the first part the motor lines come with a nice ribbon with partial incorrect
labeling which is bad and already led to confusing some of the wiring. The ribbon does
not mention that is goes with any proper method for the final joint end connector. Some
of the lines trade places so it made it harder to determine what each line was connected
to and what each line’s function was on top of that.

The motor datasheets said it could be used to plug straight into an Arduino board which
was incorrect, because even in the diagram that they provide they do not use the straight
plug-in connector and rather send out lead wires to the corresponding pin ports that are
also poorly shown. Beyond that, the documentation was poorly written, and we had to
determine which pins on the Arduino itself were used, why, and how to “convert” them for
use with our ESP8266. For the side that is supposed to go straight to Arduino, we snipped
that end off completely, so there is no hassle needed to go around and find the proper
end connection that will work and trying to configure the lines that were mixed up on the
wire ribbon.

To make matters worse, the lead wires do not match the diagrams color coding sequence.
The only lines that do match the two power lines for line two being the black power line
for negative/ground and line five being red for positive power. The wire coloring coming
out from the motor from line one to five was: blue, black, yellow, green, and red. In the
diagram provided on the pdf for the layout of the wires from one to five was labeled: grey,
black, blue, yellow, and red. This already leads to basic confusion if the lines are even
the same, but it’s not all bad in the end because the three wires that are the main source
of confusion are all going to different GPIO pins. The actual truth will come from the GPIO
pins when testing the software through each pin. The lines took more time with having to
reconfigure the motor commands in the code.

ESP 8266 Pin # / Type Display pin # / Type

33 – GND 1 – GND

3 – VDD3P3 3V 2 – 3v3

21 – SDIO_CLK, GPIO6 3 – CLK

20 – SDIO_CMD, GPIO11 4 – CMD

23 – SDIO_DATA_1, GPIO8 5 – SD1

24 – GPIO5 6 – D1

76

25 – GPIO3 7 – D2

Table 8, Display Pin Connection

The display connection pins are more straight forward when connecting the lines to the
ESP 8266. Most of the lines corresponded between the datasheets, but the displays data
sheet was not every clear with some of the pin run offs. The first five lines are using the
main descriptions and not the GPIO pins, but they were added for labeling just in case,
however, the last 2 pin line for D1 and D2 are going to be using GPIO pins for the digital
display. There was a debate to whether the display should have been directly mounted
to the PCB using a 1x11 pin header so all the pin slots would be filled on the display but
not all of them would be used. Instead, it was a better idea to use only the pins that are
going to be used on the display and run the necessary lines only. It allows room to be
saved on the actual PCB for the final run.

Since the regulators are taking up the most room on the actual board there needs to be
anyways that can be used to save room in the end. If the screen were to be placed on
the actual PCB too it would also take up unnecessary room where other components
could be instead. Running lead lines for the display fixes this main issue, the only other
issue is making sure a pin line is not missed for the display to work properly.

ESP 8266 Pin # / Type Button #

16 – GPIO4 1

18 – GPIO9 2

19 – GPIO10 3

17 – VDDPST, Digital Power Supply 1.8-3.6V All buttons

Table 9, Push Button Pin Connections

All the buttons will be tied to the set GPIO pin numbers. When a button is pressed it will
draw a voltage from the ESP 8266 pin 17 and take the voltage in tied through the
connected GPIO line which will allow the system to read the set input given to interact
with the interface for the tuner. The buttons will mainly be used for the user to do
directional interactions with the interface in this method. Each button will also have a 10kΩ
resistor tied to them.

ESP 8266 Pin # / Type Frequency in Pin #

6 – TOUT, ADC 1

33 – GND 2

14 – GPIO2 Buzzer

Table 10, Frequency Device Pin Connects

The last pin headers are the 2 pins that are going to connect the Piezo vibration sensor
and the audio jack. Even though they are two different 1x2 pin headers both pin lines
number one are going to run into the ESP 8266 pin 6 which is used for all frequency

77

measurements that will be read from the instrument when the tuner is pressed up against
the tuning knobs picking up the string’s vibration. The audio jack acts as a more precise
way for measuring the vibrations due to picking the direct signals from the electric guitar’s
pick-ups. It has the same approach where the tuner will be pressed up against the tuning
peg but will take the readings through the ¼” jack to tell the tuner how much it needs to
tune instead.

17.0 Project Summary – Hardware

A large amount of the time for the hardware side was researching proper parts and part
acquisition for the project. It came down to what was mainly needed to achieve the end
objective goals and determining what was going to be the best approach to accomplish
this. There were a few ways for going about making the correct component choice and it
was more of a group effort to figure out what should be used and what worked well for
other members in the group. Most of the tasks were divided off into split group objectives.
The hardware side oversaw most of the physical components that were going to be used
in the system and integrating them together to have a finished form. Only a few parts
were managed by the software side which was mainly the ESP 8266 since this choice
directly affected the software implementations.

There was a fair amount of second guessing within our group, and where somethings
needed further research before moving on to the next step. If both the software side and
hardware side were out of sync with each other certain processes started to slow down
and would take more unnecessary time to resolve when there could be an easier solution
to the answer than what was already being thought of.

However, this is not to say that, for example, the software side did not need the hardware
components to proceed because they needed a good amount of the components to do
the actual software testing on them to make sure they would work properly to move on.
Some of the main parts were mainly the screen and motor for the system testing. There
were other side components tested too like the vibration sensor to see if it would pick up
the necessary frequencies for instrument testing. After most part acquisition was
completed and out of the way it came down to tying everything together in a schematic
and forming a PCB layout.

There were significant supply chain issues and ordering certain parts for testing purposes,
this also limited what was either originally going to be used for some components, like for
example two of these changes were the regulators and the motor choices being changed.
Towards the end, even with making some of these component level decisions we were
able to accomplish most of the things that needed, or what was at least wanted. The plan
was to end with a prototype PCB by the end of our Senior Design I semester so there
would be less time lost when it comes to finishing the final design in the Senior Design II
semester. The only thing that we fell behind on was having a pre-running breadboard
prototype or a more makeshift version to see all the parts working together by the end of
Senior Design I, but that ended up being what was worked on first thing of the Senior

78

Design II semester. We know that our components work but have not been fully integrated
with all the pieces together to have at least a partial working system. That was one of the
big goals that we wanted to end Senior Design I with, but we were at least able to get
relatively close to that end goal and have a PCB design to start with for Senior Design II
which led us to being able to have a more refined completed design earlier in the final
semester.

18.0 Prototype Testing

18.1 Prototype Testing Beginning Notes

The testing procedures were not specifically written beforehand, and as such, are based
on a trial-and-error methodology that is primarily used to determine compatibility and
proof-of-concept prototyping. For the sections beyond the ESP8266 section below, it is
assumed that the device has been properly set up with use on the Arduino IDE platform
and can successfully communicate via the USB connection to be able to upload the
testing software onto the board for use, therefore no additional setup beyond testing will
be explained.

18.2 Prototype Component Testing

18.2.1 ESP8266 Testing

The MCU that was chosen has been researched and tested by all team members, across
various meetings to determine whether or not this MCU would be the choice for our
project. It was determined and agreed upon by all of the members in Group 42 that the
ESP8266 would be utilized as the center of operations for our Pick Pocket Tuner. The
testing methods employed for this device, due to parts constraints, availability, and time,
were simple.

We determined that the core components of our project (i.e., motor, LCD, and piezo
sensor) were able to be interfaced through the available number of pins, and
communication methods (SPI, UART, etc.) available on the MCU. Through further
technical research we additionally determined that an external Analog to Digital Converter
is likely to not be necessary and was determined to be correct through the testing done
of the piezoelectric sensor and ¼-inch input jack. Initially, for this device, since it was
already connected to a prototyping board, all we did was connect the pins used as
needed, and/or connected the board/pins to a breadboard to then use Dupont jumper
cables as needed for the necessary wiring.

Additionally, we tested the ESP8266 with both a Windows based machine and Mac-OS
based machine and determined that due to the Arduino IDE framework/platform, this
resulted in the MCU being platform independent and able to be programmed by either
operating system, if the correct drivers and libraries were installed correctly as it was

79

discussed in the Prototype Construction ESP8266 section. Once we had determined that
this preliminary testing was a success, we began to add more and more components,
and software, to the breadboard prototype until we ended up finalizing a working
breadboarded prototype.

18.2.2 Piezo Sensor and Filter Testing

The Piezo sensors that were chosen were tested primarily by Team Members Paul
Grayford, and Luis Vargas. Since it wasn’t immediately clear which piezo sensors would
be needed, the team procured a Snark ST-8 Super Tight Clip-on Tuner to disassemble,
to attempt to reverse engineer the method in which this device operates. This Snark ST-
8 operates using a silicone-like covered clip that would be placed on the headstock of a
stringed instrument, like a guitar, and then would pick up on the vibration waves carried
from the instrument to then display whether the string strummed is in correctly in tune or
not. The waves would travel from the headstock to the silicone clip, then through a ball-
and-socket joint made of similar silicone/plastic material, and then through the ST-8
housing where it would be picked up by the sensor that would transmit the information on
to determine the tuning. Knowing this, we disassembled the ST-8, and determined that
the sensor used by the ST-8 is a ceramic disc piezo sensor. We utilized this information
as encouragement that the disc sensor that we already had would likely be the correct
choice but kept the option for utilizing the polymer film sensor as well just in case.

In both the piezo disc and the film sensor, we had to solder on some longer wires to be
able to use as leads so that they may not only fit the breadboard, but also reach it to begin
with as the leads that were soldered on during manufacturing were insufficient in length
and thickness to be able to be used appropriately during testing. The testing of each
sensor was initially carried out in a manner to determine if they were operational, then to
determine how the analog input of the ESP8266 would read the information generated by
the sensor, then how the sensitive the sensor itself would be based on testing methods.

The operational tests of the sensors were simple, we used a circuit with a resistor of 1MΩ
between the positive lead of the sensor and ground to attenuate the generated signal,
and then connected this into the analog input pin, A0, of the MCU board, with the negative
terminal of the sensor into ground with a ground pin from the MCU board into the
breadboard to complete the circuit. Once this was done, we initialized the Arduino IDE,
and utilized the sketch example “Knock”, which is included with the Arduino IDE, but also
describes how to set up the analog sensor so that the program can recognize the input
from it. Following this, the Knock program was compiled and uploaded onto the MCU so
that we could begin testing of the sensors.

Once the IDE informed us that the upload completed successfully, we opened the Serial
Plotter that is a part of the Arduino IDE, and we noticed a single line in a graph that would
greet us whenever we ran this program. In doing so, we then began to test the sensor by
ensuring that it was lying flat upon a wooden desk/table, and we would knock on the table
at varying forces and repeated this process for both the Piezo disc and film sensors. From
this we determined that the disc sensor would be optimal in detecting the vibrations from

80

the stringed instrument, since the film piezo requires that the film itself vibrate/resonate
for it to detect the necessary information, so it would not be used.

For the next test of the piezo sensor chosen, we separated the main housing of the ST-8
from the clip and utilized the ball-and-socket joint with the clip to simulate a string vibration
to see if the sensor/MCU combo would be able to pick up on the signal at all. To do this,
we took the clip and covered an iPhone XS earpiece speaker and used the YouTube app
to play a series of tones at different frequencies, 440Hz, 1000Hz, and 323Hz. Once those
frequencies were playing, the ball end of the stem attached to the clip that is then attached
to the iPhone XS speaker, is placed on top of the sensor as the Knock program is still
running to see if we would be able to detect the tone from the frequency as it travels
through a different medium.

This test proved to be successful, and we were able to see in the Serial Plotter that the
different frequencies on the tones generated different analog inputs on through the
sensor, which meant we were in the right direction. However, it was at this point that we
also noticed that the sensor was always introducing some sort of noise into the signal,
and we devised a simple filter to try and attenuate that noise from the sensor into the
Analog input of the MCU.

Using the filter mentioned in the previous section and repeating these two tests, we
determined that the noise introduced was reduced, and the analog signal read by the
analog pin was not adversely affected. To solidify our initial findings, we utilized an
oscilloscope to determine whether the piezo sensor was transmitting the correct
frequency into the analog input, and we found that immediately after the sensor we were
matching the frequency from the tone. This same test, we repeated using two channels
to test both the signal coming off of the piezo sensor directly and then after the filter, as
a comparison, and the resulting frequency reading at both ends was matching to the tone
being generated. Figure 21, Figure 22, and Figure 23 below, serve to demonstrate the
prototyping breadboard set up, before including the motor for movement, and the
oscilloscope response when reading from the piezo lead wires, and then after the filter is
added.

This testing done on the piezo sensor the base point for the testing for the rest of the
devices used. Since we are able to accurately read a vibration at a specified frequency,
and correctly transmit that information to the MCU via the analog pin, we decided to move
on to not only testing the other devices, but further refining this basic operation of the
piezo sensor in our prototype.

While completing further technical research, the general consensus was determined to
be that we should add a second piezo sensor to our prototype/device. Initially, while using
one sensor we determined that the sensitivity while knocking on a wooden table, and
through the iPhone XS ‘test’ employed previously yielded satisfactory results. However,
once we procured the Jowoom Guitar tuner, and subsequently disassembled the product,
one of the immediate things that stood out to us is that the Jowoom employs the use of

81

two piezoelectric disc sensors simultaneously, however they are connected in parallel as
seen in Figure 36 below.

Figure 36, Jowoom Automatic Tuner (deconstructed) showing two piezoelectric sensors

in parallel

Without being able to compare it to other in-market competitors, like the Roadie3 Tuner,
to see if these other competitors employed this parallel-piezo design the team decided to
implement this piezo sensor set up to see how the sensitivity and accuracy would be
affected by connecting the two in parallel.

Through further technical research, our group determined that the implementation of the
piezo sensors in parallel, without being able to 100% confirm with the manufacturer of the
Jowoom tuner, was a design decision to produce more consistent results. As can be seen
in Figure 36 above, there is one piezo sensor directly attached to the housing of the
Jowoom device, and another to the PCB, when noticing this specifically it led us to look
into “seeing” the piezo sensor as a device akin to an electric guitar’s pickups, where wiring
pickups in parallel is a fairly standard procedure since you can modulate the incoming
signal from the strings using a switch and the pickups on the guitar to obtain a different
sound. The concept of adding a secondary piezo sensor is similar to this, when
considering the piezo sensors as pickups rather than the individual electric sensors that

82

they are. So, this reasoning leads us to believe that the integration of a secondary piezo
sensor would assist in further isolating the incoming analog signal while also boosting the
necessary sensitivity so that we are able to take the analog input from the piezo sensors
and obtain a more accurate representation of the incoming frequency when repeating the
iPhone XS “test” that previously yielded satisfactory results.

With further testing methodologies implemented, we found that the input of the
oscilloscope was introducing unnecessary noise into our piezo sensors, giving us
erroneous readings. It was through this discovery that we decided to then simplify our
design and remove the filters altogether since there was no real discernible difference in
accuracy when testing the piezoelectric sensors with or without them.

Figure 37, Breadboard Prototype Demonstrating iPhone Speaker Vibration/Tone Test

83

Figure 38, Oscilloscope Frequency from Piezo Sensor, iPhone Test

Figure 39, Oscilloscope Frequency from Piezo Sensor, iPhone Test, with Filter

84

18.2.3 Motor Testing

The testing of the motor is very similar to that of the Piezo Sensor. It follows a step-by-
step sequencing of attempting to determine the operational capacity, then introduction of
variability to determine if the device is adequate for our final operational purposes. To test
the motor/driver, aka motor, similarly to the piezo, we utilized the Arduino IDE provided
example of “stepper_oneRevolution” program and modified it slightly to match the
operational capacity of the motor so that the steps for one revolution and speed in the
program matched the specifications of our motor, and we also changed the pins used in
the program to those we would use on the MCU.

After doing so, we wired up the motor driver board to the appropriate pins so that in the
driver PCB pins IN1, IN2, IN3, IN4 correspond with physical pins D1, D2, D5, D6 on the
MCU prototyping board. Once done, we added the necessary power using the DC-IN
board mentioned earlier and attempted to compile the program so that we could get the
motor turning. After some debugging of the program, due to non-matching GPIO pins in
the code, we were able to get it turning. The testing of the operational capacity of the
motor was a success.

It was at this point that we would attempt to run the device again, however we would
attach the 3D Printed Peg-Winder onto the stem to see if we could turn a tuning peg on
a guitar. After completing this test, we determined that this specific motor, the 2BYJ-48,
does not produce enough torque to turn the tuning peg thus we would have to do more
technical research to choose a motor that would work. However, with these findings, we
decided that it would be beneficial to test the integration of the motor into the prototype
so that we can test to see if the ESP8266 can transmit the information so that we can turn
the motor based on whether the sensor detects a knock, or a tone.

So, we first set up the testing environment first so that the filtered sensor inputs into the
analog input of the MCU, and with the sensor lying flat on the table to sense a knock on
the wooden table. In doing so, we also wired up the motor so that it could also be used
when the analog input is recognized by the MCU the motor would rotate. We modified the
existing code and integrated the working parts of the “Knock” Arduino example so that we
could turn our motor head whenever there was a knock sensed. After compiling and
uploading the code, we opened the Serial Plotter and began knocking the table to find if
the integration of the two devices worked, and it did. The motor moved whenever a knock
was sensed from the table.

Building upon this success, we took the sensor set-up and modified it so that it would now
resemble the testing setup for the detecting the tone generated from the iPhone speaker.
Using this set-up, we began playing a 440Hz tone and placed the ball-and-socket ball
end on the sensor and saw that the sensor was picking up the tone successfully, and the
motor was moving consistently since the vibration was non-stop. This successful test
demonstrated to us that the integration of the three devices, so far, was successful. From
here, however, since this motor was not adequate to turn the device, it was determined

85

that further testing on the motor would be suspended since we would need to replace it
with a different one.

Once we changed the motor, we re-conducted the above testing, with the appropriate pin
and software changes, and we were able to achieve the same response based on input
from the piezoelectric sensor. Further into the testing, of the motor, we integrated the
three main components, ESP8266, piezo sensor, and motor, even further through
implementing a simple fast Fourier transform function that would allow us to determine
an input frequency reading and seeing if we would be able to relay a PWM signal to the
motor so that it would move if a specific frequency was detected. This all proved to be
successful so far, and so we decided that we would then spin the motor for a small amount
of time to see if it was strong enough to turn the tuning pegs of the guitar. Once both of
these tests were successful, we moved into the next testing.

18.2.4 LCD Display Testing

The testing of our LCD Display is very similar to that of the Piezo sensor. We essentially
attempted to follow a step-by-step sequencing to determine the operational capacity of
the procured piece. This was done in order to ensure that the LCD that we received was
not a dead-on-arrival piece. To test the device, successfully, we had to solder on the
header pins onto the device in order for us to be able to interface with it through the
ESP8266 and the Arduino software. Once the header pins were soldered on successfully,
it was noticed that the LCD Display was able to accept a voltage input of 3V to 5V DC
and was capable of outputting a regulated voltage of 3.3V, thus reducing the need for an
added voltage regulator in the overall project by one.

To really begin testing the LCD, we used the guide that Adafruit has for wiring it to an
Arduino development board and made the necessary pin adjustments in order for our
ESP8266 development board to connect and interface with the display via SPI. Initially,
the wiring diagrams were seemingly correct and were properly implemented when
conducting the previously mentioned adjustments, however there was no backlight after
connecting the correct DC voltage to the appropriate pins. Thinking that this may be due
to the controller for the LCD not being directed to utilize the supplied voltages to turn on,
we proceeded to attempt the connection of the two devices through the Arduino software
using the libraries for this LCD display supplied by Adafruit for use with the Arduino IDE.
These libraries, “Adafruit_GFX”, “Adafruite BusIO”, “Adafruit Zero DMA”, “Adafruit
ST7735 and ST7789”, “Adafruit SPIFlash”, and “SdFat – Adafruit Fork”, are the ones that
would initially be used to try to interface the ESP8266 MCU with the LCD display through
the ST7789 TFT driver that this LCD display uses.

Further following the supplied Adafruit guide for testing this LCD, we attempted to utilize
an Arduino IDE example provided by the “Adafruit ST7735 and ST7789” library called
“graphicstest”. This example driver code needed to be updated/modified according to the
specific display and display driver that was being used, since this is a general-use code
provided by the manufacturer. Once this code was updated, we ran into significant issues
trying where the compiling of the program would fail, and we were unable to determine

86

the operational capacity of the LCD display. In order to determine the source of the issue
so that we could come to a solution, we began testing each and every one of the libraries
being used in the “graphicstest” example code and determined that the very library that
provided the example, was causing compilation errors on a MacBook Air.

Further testing was done on the Arduino environment on another computer, but the same
errors were run into when trying to flash the example code to the processor. These issues
led to the switching of testing the LCD screen on the uPyCraft environment with a self-
created test code in MicroPython. The SPI connection was researched and implemented
based off similar displays and processors. However, further issues were run into when
testing the display on the new environment.

The SPI connection was successfully created, but unfortunately the test code was not
drawing onto the display correctly. After conducting further research to iron out all the
issues, since the tuner is heavily reliant on visual feedback to the users, we determined
that the cause of our issues was software based, and not hardware based, so it would be
a relatively easy fix. Once the connections were successfully made, we were able to begin
drawing onto the screen and we created our own modular GUI functions that would draw
the necessary info onto our display.

18.2.5 FFT Input Testing

Alongside testing the input piezo sensor, we shall also test the implementation of the fast
Fourier transform on the input data sent from the sensor. We shall use this information to
then display the computed frequency onto the display once they are all connected. The
procedure would be the same as the testing of the piezo sensor. However, we shall have
a program sampling the analog voltage input and performing the transform to test the
accuracy of the sensor and the accuracy of the written code. This would let us use an
average of the input voltage to be able to determine what the frequency being read is.
The implementations that we used after testing and modifying some of the parameters
led us to being within 0.05Hz accuracy within certain testing cases.

18.2.6 USB-C Charging Circuit and Battery Testing

The testing of our USB-C Charging Circuit and battery was more for a verification of
operational capacity to determine if either of the two devices were dead-on-arrival, then
finally overall use time. Further integration into the system will determine the runtime on
a single charge, the time needed to charge the battery with both a 100mA charging current
as well as with a 500mA charging current from 0% to 100%, amongst other tests. We
have determined that the battery and charging circuit both work since we are able to
connect the battery and charge it and determine that it has been charged with an external
voltmeter used once the parts were acquired.

87

Additionally, since the charging circuit we are prototyping with has two data line pads, D+
and D-, it is our group’s intent to utilize these pads during testing to try and determine the
current status of the battery, i.e., whether it is charged or not and the percentage of battery
remaining on the device. Ultimately, due to not being able to find appropriate datasheets
that pertained to these data lines, we were unable to fully integrate the battery
percentage/status into our finalized version.

Finally, once we had fully integrated and defined all the components into our breadboard
prototype, we fully charged the battery, and we found that even when heavily using the
motor, starting, and restarting the device, it was not necessary to recharge the battery for
4+ hours. This came as a pleasant surprise because it proved to us that we didn’t need
to keep charging the device in between uses. This was determined by the fact that the
motor was the component that had the largest current draw and thus being able to run it
consistently would be no challenge for our battery.

18.3 Next Prototype Testing Steps and Ending Notes

Once the previous preliminary testing was completed, we began testing the breadboarded
prototype thoroughly. We began by determining the parameters for which we would
measure accuracy of our tuner, and then how we would refine the motor movements
based on the inputs received from the vibration sensors/input jack.

The usage of the Fast Fourier Transform is what allowed us to get an accurate
representation of the input frequency by converting the analog signal input into the digital
signal needed to be able to use our software-based calculations to analyze it, and
therefore, adjust the necessary motor movement so that we could “officially” tune a guitar.
Since we have determined that the motor had sufficient torque to turn the tuning pegs on
the guitars, we had available for testing, we decided that the overall integrating and testing
of our device would begin, and we began collecting the necessary data and information
to ascertain the overall effectiveness of our device.

Through what essentially was trial and error we were able to fully accomplish what our
project requirement specifications, and more importantly meet the tuning accuracy and
speed of tuning required.

19.0 Software Block Diagram

The main purpose of the software component for the project is to take in inputs from both
the user and the sensor. This will provide a created algorithm with the desired string tuning
frequency and what frequency the string is currently tuned to. This will allow the algorithm
to detect the difference between the two frequencies and then turn the motor accordingly
to wind the tuning peg to the user desired frequency. The software will also communicate
with the display to show any measured inputs and an interface for easier access to options
for the user to select their input.

88

Our software will have preset frequency values for the user to choose from when tuning
strings along with past used frequencies, stored in a library. The program will display to
the user the frequencies in order of most used for convenience. This will also save some
time since our users will most likely be re tuning instruments to their previous frequency
with our project. After the frequency is selected, the software will prompt the user to pluck
the string that they are tuning, and our sensor will pick up its frequency with a fast Fourier
transform to save computation time.

Figure 40, Software Block Diagram

20.0 Algorithm

Using data science, we shall find a correlation between a string’s gauge and the torque
needed to tune that string, 𝐶𝑔𝑎𝑢𝑔𝑒. This correlation will then be translated to voltage

supplied to the motor to turn the string to the correct frequency dependent of the gauge.
We then can use this data and test our motor to find the relationship between voltage
supplied to the motor and the change in frequency of the string that was winded, 𝐶𝑓𝑎𝑐𝑡𝑜𝑟.

This will allow our algorithm to scale with many string gauges.

The process for acquiring the constant, 𝐶𝑔𝑎𝑢𝑔𝑒, is to study the relationship between torque

needed to turn the string based on the certain string’s gauge. With this torque relationship
between gauges, we can then translate that into a factor of voltage needed to send to the
stepper motor for the certain gauge. Further researching and testing will have to be done
on the stepper motor to find out the steps needed for a certain amount of torque applied
to the string peg.

89

The process for acquiring the constant, 𝐶𝑓𝑎𝑐𝑡𝑜𝑟, will be plotting steps sent to the stepper

motor against the change in frequency on the string being winded. Using this data and
plotting the results will help find a correlation between the two values and that correlation
will present a constant that is present within the points and will allow more accurate
calculations in the algorithm.

The algorithm will have two inputs, 𝑓𝑠𝑒𝑛𝑠𝑜𝑟 , 𝑓𝑢𝑠𝑒𝑟_𝑖𝑛𝑝𝑢𝑡, and use them alongside the defined

constants/correlations, 𝐶𝑔𝑎𝑢𝑔𝑒 , 𝐶𝑓𝑎𝑐𝑡𝑜𝑟, to output the correct voltage to the motor to turn

the peg winder so the string reads the desired frequency, 𝑉𝑚𝑜𝑡𝑜𝑟_𝑜𝑢𝑡𝑝𝑢𝑡. The function

created is the difference between the desired frequency and the frequency of the string
that was read by the sensor. This difference is the main factor of how far we need to turn
our peg winder to match the desired frequency. This difference is then multiplied by the
constant and correlation defined to create the correct voltage to send to the motor/motor
driver based on the string’s gauge and how much torque is needed to correct the string’s
frequency.

𝑉𝑚𝑜𝑡𝑜𝑟_𝑜𝑢𝑡𝑝𝑢𝑡 = (𝑓𝑢𝑠𝑒𝑟_𝑖𝑛𝑝𝑢𝑡 − 𝑓𝑠𝑒𝑛𝑠𝑜𝑟) × 𝐶𝑔𝑎𝑢𝑔𝑒 × 𝐶𝑓𝑎𝑐𝑡𝑜𝑟

Equation 1. Algorithm for Motor Output

Ultimately, due to time constraints, and inability to obtain sufficient data points to be
able to create an accurate data model representation for use during our motor
movement, we ultimately decided that a time-based motor control would also work. This
cut down the necessary time in software testing and implementation as we could have a
pre-set time input that is determined by the calculation of the distance from what our
desired tuning is in relation to what the device is currently reading as an input from the
guitar.

21.0 Software Features/Functions

21.1 Fast Fourier Transform

When reading the filtered analog voltage from our vibrational sensor, in order to use it we
must convert it to the frequency domain to send to the algorithm for accurate tuning. The
input from the vibrational sensor is in the time domain and a Fourier transform would
convert that reading from the time domain to the frequency domain. However, the discrete
Fourier transform has a time complexity of 𝑂(𝑛2) where n is the size of the input data
being read. The fast Fourier transform will be used in our project as it has a time
complexity of 𝑂(𝑛𝑙𝑜𝑔𝑛) which is significantly faster and will save computation time when
tuning each string. This transform will help satisfy our multiple time-restraint technical
requirements with fast computation at each string. During the tuning process, the sensor
will sample the readings from the plucked string over a certain amount of time. After the
reading is complete, we then perform the fast Fourier transform on the wave and obtain
the frequency to send over to the main algorithm to finish tuning the string.

21.2 Tuning a New String

90

The Pick Pocket Tuner will have an option for tuning a brand-new string. This means that
when a string is being replaced, the user will select an option for tuning a new string.
When the user selects this option, it will prompt the guitar player to select the string they
are replacing on the interface, and then select a “go” option for when the string is ready
to be wound. The motor will automatically start to turn, bringing the string up to tension.
The device will then ask the user to start plucking the string of the guitar. As the string
gets tighter, the device will be able to read the frequency with the sensor or the output
jack and tune the string in one easy step. The goal is to be able to complete this process
in under a minute. The challenge will come with the quality of the electrical components,
as well as with the quality of the software behind this option. The way that this code is
written is a crucial part in how fast and accurately the tuner can tine the string. This feature
will be required, because the competition does not have a setting like this, thus causing
our product to have a competitive edge.

When this option is selected, the software will turn the peg winder a certain amount
without prompting to get close to the lowest frequency among the six strings. This amount
will be calculated with further testing and researching. We shall find the average
frequency of a newly installed string from a sample of users, and we shall use that
average frequency to calculate the difference between this and the resulting low
frequency. After the string is brought to the low frequency, the software will work as
normal and prompt the user for the desired frequency of the string and tune it.

Making this process as automatic as possible is key when trying to stay under roughly the
same time frame when tuning a guitar with six new strings as opposed to a guitar with six
strings that are only slightly loosened over time. This will provide ease-of-use for all
occasions and reasons to tune multiple strings on a guitar and make our product more
valuable.

21.3 Display Interface

The interface for the device is where some artistic liberty can be taken. The final interface
was constructed towards the end phase of the project. The group wants to make sure
that user input with the interface works before the display is modern looking and
streamlined. However, this will be a fun part of the project, as it allows the device to have
a personality, and has the potential to be an effective selling point to a customer. Most
interfaces today follow a simplistic approach, using neutral colors, and following a defined
color scheme. Even though this does not seem to have too much of an importance on the
project, it can really elevate the user’s experience and make it more enjoyable to use.
Similar to the construction of the interface, our finalized style was determined late into the
project, and inspiration was gathered from devices such as the Roadie3, smartphones,
and other small handheld appliances with screens on them.

Creating this seamless and modern looking display was a challenge as we only have
three buttons for the user to interact with our device. These buttons will be two directional
buttons with a selection button as the third. The interface will play to these directional
buttons to create simplistic menu changes and user selections for choosing modes of

91

string tuning and frequency selection. Knowing the button layout before creating the menu
hierarchy will play a big role in creating the aesthetic ease-of-use display for our users
and clients.

Creating a simple interface also helped us achieve our technical requirement for ease-of-
use display and our timing requirement for tuning all the strings on a guitar. If the user
can access the desired frequencies and menus to tune the strings to those frequencies,
the faster our device will tune the user’s guitar. Our device will also allow the user to save
past used frequencies for easier access, at a later iteration so this is more of a stretch
goal. This will provide even faster access to string tuning as our device will be used mostly
for retuning guitars back to the past frequency they were set at as the peg will naturally
loosen over time. If we allow for more saved frequencies, then the user will have an easier
time with tuning their guitar to multiple sets that they enjoy playing. Instead, what we
implemented to have a quicker interface time we decided to create a pre-stored library of
common tunings that are used.

The Adafruit graphics library is created for Arduino, and this is essential to our project as
the display driver library is well programmed, and our group will have access to many
high-level graphic drawing functions to create our simple and ease-of-use interface.
Ultimately the GUI design was determined to be the final step in completion, and we took
a simple approach that allowed us to display the necessary, and relevant, information on
the screen during use. This modular approach allowed us to make changes on the fly and
give us freedom for using and reusing display elements to achieve a user-friendly design.

21.4 Tuning Libraries (Stretch Goal)

One of the stretch goals that was implemented into our project is to create different tuning
libraries, to be able to accommodate a wide range of guitar players of varying skill levels.
The purpose of this is to be able to store a preferred tuning of an electric guitar on the
Pick Pocket Tuner’s internal memory so that the user will to be able to change from
standard tuning (EADGBe) to an alternate tuning, for example DADGAD, with ease.
Additionally, this feature would allow the user to store a preferred tuning for use with
different guitars, or even different use cases like performances, recording, or just
practicing. In order to achieve this, we stored on the device memory a pre-set library of
12 tunings that would be able to be accessed by the end user whenever they needed or
felt like changing the tuning on their guitar.

21.5 Tuning Other Instruments (Stretch Goal)

An additional stretch goal that we would like to implement in the future, is to have the

capability to tune different stringed instruments, including but not limited to banjos,

Ukuleles, Cello, Violin, etc. The software needed for these other instruments would

change slightly since different frequencies would be necessary to be read due to the pitch

changes based on the size/length of the instrument, and the torque output to the tuning

92

pegs would also need to change based on the type of strings used. What this means, for

example, is that tuning a string to a G note on a guitar requires “x” ft. Lbs. of torque,

meanwhile tuning a ukulele to that same G would require “y” ft. Lbs. of torque.

Ultimately, during testing we found that our device’s software was able to analyze the

input of a ukulele so adding this instrument, for example, would entail updating the

libraries to accommodate for a 4 stringed instrument and the corresponding notes of the

device in essence not changing the core components of our software, but instead

adding/changing profiles to correspond with the number of strings and what the

frequencies expected are.

21.6 Programming Language(s)

The programming language(s) to be used and implemented are still in a research/to-be-
determined stage due to still picking out the necessary parts, and testing for the parts as
they are acquired. As it currently stands, the Piezoelectric Sensor (a.k.a. PES) and most
other parts would be able to be utilized and interfaced via the Arduino environment using
the Arduino IDE.

However, as further development and investigations occurred, the members of Group 42
were able to make informed decisions on the software development process as needed.
These decisions, impacting what languages or methods to use for software
implementation, are sometimes simple determinations made for the group by the
algorithm that we wish to employ itself, as is the case with the fast Fourier transform.

Additionally, since we know we are utilizing the Arduino IDE for prototyping, we know that
both the Arduino-based framework language will be used, as well as C/C++, especially
since the Arduino-based framework language is directly based off of C/C++. As stated
previously, we are not limiting ourselves to any one set of languages, and during the early
stages of development primarily, during the integration of all the different components
with the ESP8266 and other functions, this led to changes in our choices. We were initially
set in utilizing Python for most of our project, however we found that there were issues
using Python and the display we selected, amongst others, and so we opted to utilize
C/C++ as our final programming language for our project.

21.7 Programming/Software Libraries

During the prototyping stages of our project design is where we ultimately decided on
what to specifically use, however it is known that there are various libraries in existence
already that would not only aid in facilitating the mathematical processes for analyzing
the frequencies but would aid in the integration and interfacing of the hardware that we
are to use.

93

Additionally, we are utilizing some Arduino libraries in conjunction with the listed C/C++
libraries to accomplish some of the fine control that is necessary for the motor, and in
order to interface with the display correctly.

These libraries in the Arduino/C/C++ suite are Stepper.h, math.h, Adafruit_GFX.h,
Adafruit_ST7789.h, Adafruit_ST7736.h, and SPI.h, and other open-source libraries that
are available for use. The one other library/software packages that we thought about
using were the MicroPython or CPython, where these two libraries are optimized for
operating on a microcontroller as they are lightweight and quick in program execution.

However, as mentioned in the Programming Language(s) section, we found that using
Python was not possible when considering the necessity for our display to work as
intended. Ultimately since we decided on using the Arduino/C/C++ libraries available, we
made the decision of implementing a modular approach to our GUI and created custom
functions that would handle the formulas and calculations necessary to meet the tuning
parameters described.

94

Figure 41, UI/UX Software Hierarchy/Design

22.0 UI/UX Software Hierarchy and Design

22.1 Software Hierarchy Description

In Figure 41 above, we have decided to visually mark how the overall UI/UX Software
Hierarchy is loosely intended to work. The intended method of interfacing between the
Pick Pocket Tuner and the end-user is dependent on the utilization of buttons that are on
the device itself and the software necessary to receive the inputs from said buttons.
Through all this, the device displays all the information back through a GUI that is
designed by the members of Group 42 in an attempt to relay the most information in an
accessible and readable manner. The LCD display software hierarchy/design will be
discussed in a different section; however, it is relevant to mention at this juncture since
almost all of the feedback of the tuner and interfacing depends on the performance and
implementation of the LCD display. Additionally, it is worth mentioning that the
assumption for user inputs to the device are performed strictly through the buttons on the
device as there is no other input required of the user. At the moment, this implementation
allows for further refining and addition of other elements to facilitate in providing a positive,
intuitive user interface. After testing and integration, we have achieved providing a usable
and easy-to-navigate user interface for our device.

95

In discussing the specific flow this diagram, we have determined this pathing as it is
relatively self-explanatory. Once the device boots up, at the Start block, the software
package will automatically load the method that would enable the automatic tuning to
occur in order to tune the guitar to E Standard. Then, the UI will prompt the user for input
to tune the correct string and thus proceed through the tuning process. Next, the device
contains a switch that allows the user to choose whether they want to use the 1/4” input
or the vibration sensor. Through a combination of buttons, they also have to option to
navigate between Free Mode, New String, or Regular (a.k.a. Automatic) tuning. Once the
mode of operation is chosen, the display will proceed through the necessary software
steps to accomplish the tuning process, and loop back to select the string, in other words
move the Pick Pocket Tuner, to the next string to tune, or if the user is done with all the
strings, to the end of the process.

22.2 Software Tuning

The process of tuning a string on the software side requires communication between the
piezo sensor (or the ¼” input), the display, and the ESP8266. When the user is prompted
to pluck the string, the software will read in the input analog voltage from the piezo sensor
over a determined duration. The duration of the analog reading is currently 0.5 seconds,
s this was the most accurate option. This also is fast enough to meet both of our technical
requirements of accuracy within 4 cents and a short time duration to tune all strings on
the guitar in 3 minutes.

For electric guitars, the ¼” input jack will be used to bypass the piezo sensor due to the
guitar’s internal circuit. Reading the string frequency from the guitar’s circuit will result in
a more accurate reading than if the string pluck was read by the piezo sensor. However,
the ¼” input jack will send its analog voltage into the same ESP8266 pin resulting in the
same steps with tuning an electric guitar. This allows our product to have multiple ways
of tuning and allow multiple instruments to be tuned without multiple steps of code for the
differing steps.

To test the frequency and accuracy of the fast Fourier transform, we shall connect the
piezo sensors to the NodeMCU and created an Arduino program using the arduinoFFT
function that is already built into the IDE to read in the input. We shall perform the
transform on the input sensor values and graph the resulting frequency value for
accuracy.

This input frequency value is then compared to the frequency chosen by the user, which
is the desired string frequency. This comparison will result in a difference of frequency
values that will be used to calculate the amount of voltage needed to send to the motor
which will then turn the peg winder. If the voltage sent to the motor was correct to tune
the string to the desired frequency, the buzzer will have voltage sent to it to provide the
user feedback. The amount of voltage needed to send to the motor will be tested as it is
related to the torque of the winded peg and to the change in frequency onto the tensioned
string.

96

22.3 Software Display

During the tuning process, the display shows the menu options for the user to traverse
through with directional buttons. The menu options will be displayed in a hierarchy that
can be selected with the selection button. Backwards menu traversing will be made
possible with the user using the left most button to travel back to the previous menu
screen.

Reusing buttons for other actions while traversing through the menu allows our product
to have a simpler design that is not too complicated for the user to understand and use.
These will both help result in a faster tuning time and an easier product for all users to
use.

After the user has selected their string and desired frequency, the display will then prompt
the user to pluck the string. Further iterations of this prompt are desired to be more
aesthetically pleasing, such as an image or an animated image. However, after the string
is plucked, the display will then show the read frequency, the string being tuned, and the
desired frequency. This text will be shown alongside a graphic that shows the range of
the tuned string within its sharp/flat frequency.

Figure 42, TFT display GUI Layout During Tuning

Having the diagram display this graphic shows the user the whole tuning process with a
simplistic display with the green bar being the tuned frequency. With the middle rectangle
being the correct and in-pitch frequency. The diagram also displays the flat and sharp
frequency placements for comparison. These being on the display also allows for users

97

to have more knowledge in their string frequencies if they are tuning to certain flat and
sharp notes compared to the natural frequency.

Using this diagram as opposed to simply displaying the frequency values in text form will
result in a more aesthetically pleasing display to the user. This diagram will also work as
more interactive feedback, as frequency values are not as well-known while flats and
sharps are more relatable information when tuning certain instruments.

This will also show the accuracy of our product’s tuning more graphically with the midpoint
lines shown within the arc of the flat, natural, and sharp frequencies. Since a big technical
and customer requirement is accuracy, this diagram hits all the points of a simplistic, yet
effective, design.

For more aesthetic appeal and to have more unique designs, a stretch goal for the display
would have graphics during user downtime. This would include the device powering on/off
and during the string frequency reading processes. Having these graphics would help
bring more appeal to our product as opposed to our competitors and would allow for
graphical uniqueness on the market for users to pick from.

Throughout the process of tuning strings and navigating the menu, another stretch goal
is for the display will be displaying battery indications. This would preferably be in the top
right corner as users are more familiar with that location for any battery indications for
handheld devices. This indication will also be useful for users to know if they will need to
charge the device before planning any events that our product will be needed for.

This can be implemented with our current recharging circuit as it has two data pads (D+
and D-). We intend to use these pins to communicate the battery percentage/status to the
display and further provide the user with knowledge of the device and how much longer
it is needing charging.

22.4 Handling Flat and Sharp Notes

The purpose of this section is to define and identify a potential issue with how different
notes are interpreted by the system in order to display the correct feedback to the user
based on the specific pitch of the string that is actively being tuned and the desired pitch
that the user wishes. For simplicity, Figure 27 below is what will be used to reference the
information to be described here. The content of this section will be explained as if it were
a keyboard, however, since this information is based on music theory the same
information applies universally across instruments.

98

Figure 43, Natural Notes Written on the Keys of a Keyboard

As can be seen above in Figure 27, we can see that the white keys all repeat periodically,
from the letters A through G. These seven letters name all the natural notes in music. The
black keys in this instance are the remaining 5 notes that are in an octave, these black
keys are referred to as sharp or flat corresponding to either the preceding or following
letter. When describing a sharp note, like A#, it means that the note A# is one half step
higher than the natural note A, and when the note is flat, like Ab, it means that the note
Ab is one half step lower than the natural note A. One distinction to be made, which can
be seen in the figure above, is that not all natural notes have intermediate steps to go
through, like between natural notes E and F, and between B and C, so in this instance
when referring to E sharp, E#, it would mean the same as if one were referring to the
natural note F since there is only one-half step between the notes E and F, likewise with
notes B and C.

Flat Note -
Frequency

Natural Note -
Frequency

Sharp Note -
Frequency

Cb – 246.94 Hz C – 261.63 Hz C# - 277.18 Hz

Db – 277.18 Hz D – 293.66 Hz D# - 311.13 Hz

Eb – 311.13 Hz E – 329.63 Hz E# - 349.23 Hz

Fb – 329.63 Hz F – 349.23 Hz F# - 369.99 Hz

Gb – 369.99 Hz G – 392.00 Hz G# - 415.30 Hz

Ab – 415.30 Hz A – 440.00 Hz A# - 466.16 Hz

Bb – 466.16 Hz B – 493.88 Hz B# - 523.25 Hz

Table 11, Flat/Natural/Sharp Frequency Example starting at Middle C

With that brief music theory out of the way, the idea behind how this is being utilized is
when specifically determining what tuning a string is in, it is necessary to be able to
distinguish whether the tuning is natural, sharp, or flat, and thus be able to relay that

99

information to the user so that it can be used. Since each note has a specific frequency,
we can determine an offset for the device to display back to the user whether the note will
be flat, natural, or sharp. Typically, a difference in 10-15Hz, either higher or lower, would
cause the note to become flat or sharp, as shown in found. Above, when considering
starting at what is referred to as ‘Middle C’.

From this table it is clearly shown that the range for where a note is determined to be flat
or sharp varies. So, between each half step, it would be necessary to find a range so that
when it crosses that 10-15 Hz threshold the information relayed to the user would display
the note as being sharp, natural, or flat. Similarly, to what was previously stated, this
threshold has been adjusted and tested to fully determine what the most appropriate
‘stepping’ for the frequencies to go through is and to determine the pitch accurately.

22.5 Motor communication with FFT
The determining factor for how we shall tune our guitar will be the implementation of the
Fast Fourier transform with the DC motor. The Transform will be constantly picking up
frequency signals from the vibration of the strings, and the motor must adjust according
to if the string is flat or sharp. To make this work together, our team came up with a
code that relates cents to the amount of time the motor would spin for.

The code would read how many cents from the desired frequency the string was and
react with turning the motor in a direction that would get the string closer. The software
has a tolerance for different cent ranges such as turn X long if string is X flat or sharp.
Through testing we found that the motor turned the guitar peg faster when unwinding he
string and slightly slower when winding the string. Therefore, we made an adjustment in
the code to turn the motor less if the guitar was sharp so that the cent change would be
so drastic. This feature allowed us to get the guitar to tune faster and more accurately at
the same time.

22.6 New String Mode

This mode of operation, at first, would be limited to just guitar and bass, however, could
be expanded to include additional stringed instruments determined by testing and further
refining of the software. Since we have identified the rudimentary frequency threshold to
determine whether the string is flat, sharp, or natural one of the first methods for utilization
and improving the UI/UX with the Pick Pocket Tuner is our implementation of a New String
mode.

The intended method of accomplishing this gives us the capabilities of stringing a guitar
faster than a human, and faster than the competitors already in the market. The manner
in which the software method would accomplish this would take into account octaves on
a guitar/bass, and music theory.

As seen in Figure 27, each note repeats, which means that when the note interval repeats
are that it’s changing octave. This means that each frequency also repeats by a specific

100

factor, the distinguishing feature between a higher/lower pitch is whether or not the
frequency of that same note is doubled or halved.

For example, if a C note at 65.4Hz, one octave higher means the frequency doubles to
130.8Hz, and one octave lower means that the frequency halves to 32.7Hz. Table X below
shows this for other notes to further exemplify this. When each octave moves from one
to the next, the pitch is what changes, and since the pitch determines the sound, we hear
as either being high or low, it corresponds to the frequency.

Octave Lower - Frequency Note - Frequency Octave Higher - Frequency

A – 220.00 Hz A – 440.00 Hz A – 880.00 Hz

B – 246.94 Hz B – 493.88 Hz B – 987.77 Hz

C – 261.63 Hz C – 523.25 Hz C – 1046.50 Hz

D – 293.66 Hz D – 587.33 Hz D – 1174.66 Hz

E – 329.63 Hz E – 659.25 Hz E – 1318.51 Hz

F – 349.23 Hz F – 698.46 Hz F – 1396.91 Hz

G – 392.00 Hz G – 783.99 Hz G – 1567.98 Hz

Table 12, Frequency Examples of One Higher and Lower Octave For Each Frequency

We can use this information to set an arbitrary ‘new string mode’ note to achieve with the
correct octave, to not over tighten the string causing the string to snap, and conversely to
not leave the string so loose so that the vibrations won’t be picked up by the tuner due to
low frequencies.

When in the “new string mode” we are to guide the tuner to wind a string to one or two
steps below the E standard tuning, during the initial winding. What this looks like is that if
the string is meant to be tuned to G, this mode of operation would wind the string to E
and then ask the user to move to the next string, the octave and thus frequency which is
tuned to would be determined by which string is being tuned.

When doing this, it allows the guitar body and other strings to ease into the tension that
is required to tune it to E Standard and help in mitigating damage. While undergoing this
process, the UI/UX would prompt the user to either change strings or to continue plucking
the current string until the preset tuning is achieved. The following table visually
demonstrates the tunings which would be produced given the one or two steps below E
Standard.

E Standard Tuning 1 Step Lower (D Standard) 2 Steps Lower (C Standard)

Low E Low D Low C

A G F

D C A#

G F D#

B A G

101

High E High D C

Table 13, Demonstrating One and Two Step Offset Tuning from E Standard Tuning

All of this winding is a response to the strumming that generates the soundwaves that
are then read and analyzed by the rest of the system and the motor responds in a way to
turn the tuning peg. All of this, would be used to facilitate the tuning mode the relayed
information to the user would be displayed through the LCD screen so that the user will
be able to know when to strum or switch to the next string. Additional feedback could be
implemented by adding a buzzer and/or an LED that could also be used to alert the user
that the tuning of that string is complete.

22.7 Autotune Mode

The purpose of this section is to demonstrate the way we intend to implement the
autotune mode for a positive, intuitive UI/UX experience. At the time of writing this
document, we intend to make the Autotune mode the initial mode of operation that the
Pick Pocket Tuner would load into after booting up. The idea behind this mode is that the
user can just turn on the device and tune to whatever the closest string is at, be able to
use the on-device buttons to tune to a preset tuning chosen from the library of tunings
available, or to choose from a user-defined preset tuning that is recalled from the device
memory.

When using the autotune mode without the presets, the user would utilize the tuner,
assuming that the string isn’t too far from whatever the intended string is supposed to be
tuned to, by just placing the tuning peg in the peg winder of the Pick Pocket Tuner, and
be prompted by the LCD screen to strum so that the device can begin tuning the guitar,
as is shown when following the flow chart in Figure X above. Once complete, as with all
other modes, the user can either move on to the next string needing to be tuned, or end
the tuning process altogether.

The second sub-mode of operation, would entail having accomplished our stretch goal of
including/implementing a tuning library that could store both preset tunings, and/or the
storage of user-defined tunings for their guitar, or other stringed instruments. What this
sub-mode of operation would entail is adding an additional step. This step would be where
the user, through interacting with the buttons on the housing of our Pick Pocket Tuner,
would lead them to select a tuning to tune to or create a new preset that would be stored
based on the tuning that they tell the device what tuning they want as they move through
all the strings.

If choosing from the preset tunings, all the device would do is load the tuning and prompt
the user to start from the lowest string, and pluck the string to begin reading/analyzing the
frequency, inform the user through the LCD screen and/or a buzzer/LED that the tuning
of that string is complete, and then prompt to move to the next string. If there is no next
string then the user can simply be done with tuning.

102

If the user would like to create a new tuning preset for them to use, they would instead
select the necessary prompt so that they can begin setting the string as necessary. They
can then start to proceed through selecting the note they want the guitar tuned to, tune
the guitar, then once tuned save that string in that preset, and move on to the next,
repeating the process until all strings are saved/completely tuned.

To recall this user-defined tuning, all it would be is choosing it from the library of tunings
as if it were a preset tuning from the library of available tunings. As with the other tuning
methods, the feedback for creating a new user-defined tuning would be through the LCD
display where the necessary prompts would display to the user instructing them what to
do, but it would also give the user the feedback from a buzzer and/or an LED relaying
that the step they are currently on is complete, until no other strings remain, or the user
is done.

22.8 Free Move Mode

If the user selects the free move mode, the directional UI buttons are used to turn the peg
winder both clockwise and counterclockwise. For example, the “up” directional button
would turn the peg counterclockwise, tightening the string, and the opposite for the “down”
directional button, by loosening the string. This mode is also very helpful when the guitar
player wants to unwind the strings or wind them when they are changing them. It loosens
and tightens the strings very quickly, which makes changing the strings more desirable
and take less time.

23.0 Software Summary

Software was implemented to our project with the ESP8266 microprocessor and with C++
as our programming language. Using the Arduino IDE programming environment, C++
was utilized to easily write the software onto the processor. This software setup was
chosen as opposed to the Micropython environment and their programming language
Python. Arduino’s environment was ultimately used because of the very easy to
implement Fast Fourier Transform. Since this transform was an important aspect of the
project, C++ was implemented and tested on.

The software for the Pick Pocket tuner consists of hierarchal menus to guide the user to
tuning the correct string at their desired frequency. This menu is displayed to a TFT LCD
screen via a SPI connection. The input vibrational sensor sends its frequency reading to
the processor via an analog voltage. The software will read this value for a specified
polling time and the resulting voltage wave will be transformed into the frequency domain.
After the algorithm decides the amount of voltage to be sent to the motor/peg winder, the
software will update the user onto the LCD screen visually and audibly with a voltage sent
to a buzzer located on the housing. The software will then repeat with tuning the remaining
strings until the user is done.

103

24.0 Project Budget Estimates

For the project budget estimations, we researched most of the components we intend to
use for this project. The final table lists roughly how much each component will cost, and
the quantity used for the final product. We expect to keep the budget of our final prototype
below $100, but the overall budget of the project will be greater because of early
prototypes and testing materials. The table below shows the optimistic cost for the final
prototype. This budget will likely be subject to change, especially since we do not have
the full design down yet, however we are hopeful about keeping the cost to a minimum.

24.1 Final Prototype Cost (Estimated Range)

Components Quantity Costs
Battery 1 $12

Charging Circuit 1 $10

Motor 1 $20

Display screen 1 $20

Regulator 2 $5 (total)

Vibration sensor 2 $2(total)

On/off switch 1 $1

buttons/inputs 3 $0.50 (each)

Peg winder head 1 $1

Housing 1 $1

Micro controller 1 $2

PCB 1 $2

Shipping Costs 1 $20

Total 15 $96.50

Table 14, Estimated Final Cost for Device

Some of the budget estimations may vary due to some supply chain issues that have
arisen. Most parts just not being in supply or have too long of expected restock dates that
are too far out where some range over a year and other alternative methods for items are
required. For one instance, the voltage regulators are out of stock on most suppliers and
even third-party suppliers and the back order are multiple weeks out if not even more than
a year out of stock. Most of the other parts are attained from Amazon as the main supplier
for most parts except specific ones such as the motor and semiconductor devices.

24.2 Project Development Costs

Along with other project requirements there are the development costs that came in and
are larger in costs than the actual prototype. These costs mostly came from buying testing
equipment to make sure the specific components work properly to fit the design

104

specifications. These costs varied largely as the project proceeds in the right direction.
The standard development estimate range is around $500. Another part of the
development costs is time to learn how the parts work and the time it takes to research
the right parts that are need for the job.

24.3 Development Cost (Estimated Range)

Components Quantity Costs
Snark ST 8 Clip-on Super-Tight Chromatic Tuner 1 $14

ADXL345 Digital Accelerometer 1 $17.50

Nema 16 Stepper Motor 1 $12

Nema 17 Stepper Motor 1 $15

3D print material 1kg 1 $20

Node MCU ESP8266 1 (3 pack) $15

SN754410NE 5 $3

L298N Motor Driver 1 (4 pack) $10

Piezo Vibration Sensor 1 $4.95

Piezo Element 4 $1.50

28byj 5V DC Stepper Motor with Drivers 1 (5 pack $12

12V DC Brushless Stepper Motor 1 $20

Stepper Driver 1 $35

Jowoom 1 $34

Guitar Strings 1 (3 pack) $17

Electric Guitar Strings 1 (3 pack) $15

Lithium-ion Polymer battery 1 $12

Boost up Converter 2V-24V 1 (10 pack) $11

Adafruit 4410 Micro LiPo charger USB type C 1 $9

Rocker on /off switch 1 (8pack) $9

Tactile Momentary Push Buttons 1 (25 pack) $8

¼” Output Jack 1 $5

Total Estimated Development Cost Range: 29 $316.45

Table 15, Estimated Cost for Development of Project

Most of the research costs are going to go towards the vibration sensor which is a key
component that is needed for the device to work the best. There are multiple vibration
sensors that need to be tested and only on will be chosen which meets the best
requirements for the overall system. Another big research cost is going to be getting ahold
of the parts themselves due to production delays or costs from manufacturers
themselves. Another development cost will be finding the torque needed to turn the pegs
of multiple string instruments.

Some instruments mostly being the orchestra styled instruments being the violin or cello,
the tuning pegs work slightly different where the pegs must be pushed inwards and turned

105

at the same time to properly be adjusted and tuned. Whereas most of the basic stringed
instruments can simply be turned at the peg heads. Now not all the stringed instruments
will be tested or can even be tested for since some will not be compliant, for example the
harp is a stringed instrument and is somewhat well known, but it does not have peg heads
to tune them, and it would take a long time to tune all the strings so it’s not a logical
choice. Other instruments that will not be tested are instrument that are more oriental or
have oblong peg heads that are meant to be tuned by hand or with a very special tool. As
many things that have a basic or friendly peg head design and is a well-known instrument
will be trialed and tested. The music department at UCF has agreed to lend us any aid in
testing stringed instruments through UCF’s music program’s students and supply any”
Subjects,” we may need, which will save costs of having to go out and rent instruments.

There have also been a few issues with the development costs that are big things that
should try to be avoided but arise in any case. Most of the issues are buying things then
realizing they are wrong or not going to end up working for the project. Most of these
issues came from trying to pick already end version types of products than testing purpose
types of products. Most of them came down to the motor and battery type for what was
going to be used.

The next part was finding the components that were mostly going to be compatible to
work along-side with the software. There were some issues at first when deciding on the
motor which was planned for testing a stepper motor that would meet the torque
requirement at first. The first motor that we ended up getting was a Nema 17 stepper
motor that did over the amount of torque that was needed to potentially help reach the
stretched goals right away. There was one main issue with it being a little too big for the
design and heavy also. Then there was the decision to step down from the Nema 17 to a
Nema 16 which was about half the size and half the torque but still had enough torque for
what was desired.

There was one good thing that came out next and that was buying a Jowoom and seeing
the internals of what they used and how they implemented everything together. Getting
the Jowoom also saved a substantial amount of spending on the development costs from
saving the group of buying a Roadie 3 which would have costed $129 plus shipping off
Roadies website, but instead we were able to find a Jowoom on eBay for only $32. That
alone saved the spending costs of $97 for the development costs section. Buying and
taking apart the Jowoom gave a lot of insight to finalize the decision of the motor for the
final design. Besides accidentally buying a few extraneous parts the budget has mainly
been on a good track of getting most of the other proper parts.

25.0 Project Milestones

Project Task Assignee Date
Started

Date Due Status

Decide project idea All 08/27/2021 09/17/2021 Completed

Identify Parts All 08/27/2021 10/01/2021 Completed

106

Final Report Subtasks

 D&C v1.0 All 09/07/2021 09/17/2021 Completed

 D&C v2.0 All 09/17/2021 10/01/2017 Completed

 60-page Draft All 10/01/2021 11/05/2021 Completed

 100-page Draft All 11/05/2021 11/19/2021 Completed

 Final Document All 11/19/2021 12/07/2021 TBA

Final Design Parts

 Motor/Motor Driver Lucas 09/10/2021 10/01/2021 In Progress

 Vibration Sensor Luis 09/10/2021 10/01/2021 Completed

 Display Jamie 09/10/2021 10/01/2021 Completed

 System Controller Luis 09/10/2021 10/01/2021 Completed

 Voltage Regulator Paul 09/10/2021 10/01/2021 Completed

 Input Buttons Jamie 09/10/2021 10/01/2021 Completed

 Switch Lucas 09/10/2021 10/01/2021 Completed

 Battery Paul 09/10/2021 10/01/2021 Completed

 Housing Lucas 09/10/2021 10/01/2021 Completed

 PCB Paul 09/10/2021 10/01/2021 Completed

End of Project Design Goals

 Acquisition of Parts Completed

 Final PCB Design Completed

 Working Prototype Completed

Table 16, Project Milestones Chart

26.0 Hardware & Software Requirement Specifications Tables

This section is to be utilized as a simple-to-navigate portion of the present documentation,
in conjunction with the following section, which relates to the final testing plan that will
determine a successful and/or failed implementation of the corresponding Requirement
Specifications.

26.1 Hardware Requirement Specifications

No: 26.1.1

Statement: The Pick Pocket Tuner shall tune the entire guitar within a maximum
amount of time.

Source: Team Member Discussions, In-Market Competitors, Technical Research

Dependency: 26.1.3

Conflicts: None

107

Supporting Materials: In-Market Competition

Evaluation Method: The User will be able to tune a guitar in 5 minutes, ±1 minute

Revision History: Luis Vargas, 11/29/2021, Created Table

No: 26.1.2

Statement: The Pick Pocket Tuner shall tune a new, individual, string within a
maximum amount of time.

Source: Team Member Discussions, In-Market Competitors, Technical Research

Dependency: 26.1.3

Conflicts: None

Supporting Materials: In-Market Competition

Evaluation Method: The User will be able to restring a string and tune it in 3 minutes,
±1 minute.

Revision History: Luis Vargas, 11/29/2021, Created Table

No: 26.1.3

Statement: The Pick Pocket Tuner shall tune the strings to the correct frequency for
that string.

Source: Team Member Discussions, In-Market Competitors, Technical Research

Dependency: None

Conflicts: None

Supporting Materials: In-Market Competition

Evaluation Method: The User will be able to tune the string of the instrument (guitar)
accurately, within ±5 cents of accuracy

Revision History: Luis Vargas, 11/29/2021, Created Table

108

No: 26.1.4

Statement: The Pick Pocket Tuner shall be able to tune more than 100 strings.

Source: Team Member Discussions, In-Market Competitors, Technical Research

Dependency: 26.1.3

Conflicts: None

Supporting Materials: In-Market Competition

Evaluation Method: The User will be able to tune more than 100 strings before needing
to recharge the device

Revision History: Luis Vargas, 11/29/2021, Created Table

No: 26.1.5

Statement: The Pick Pocket Tuner shall weigh less than 3 pounds.

Source: Team Member Discussions, In-Market Competitors, Technical Research

Dependency: None

Conflicts: None

Supporting Materials: In-Market Competition

Evaluation Method: The user will not need much strength to use the device.

Revision History: Luis Vargas, 11/29/2021, Created Table

No: 26.1.6

Statement: The Pick Pocket Tuner shall have the ability to tune to alternative tunings.

Source: Team Member Discussions, In-Market Competitors, Technical Research

Dependency: 26.1.3

Conflicts: None

Supporting Materials: In-Market Competition

109

Evaluation Method: The User will be able to tune to tunings such as Drop-D, Drop-C,
etc.

Revision History: Luis Vargas, 11/29/2021, Created Table

No: 26.1.7

Statement: The Pick Pocket Tuner shall have an easy-to-use physical User Interface.

Source: Team Member Discussions, In-Market Competitors, Technical Research

Dependency: None

Conflicts: None

Supporting Materials: In-Market Competition

Evaluation Method: The User will be able to easily reach and use all the physical
components of the device

Revision History: Luis Vargas, 11/29/2021, Created Table

No: 26.1.8

Statement: The Pick Pocket Tuner shall be ergonomic, and small enough to fit in one
hand.

Source: Team Member Discussions, In-Market Competitors, Technical Research

Dependency: 26.1.7., 26.1.5

Conflicts: None

Supporting Materials: In-Market Competition

Evaluation Method: The User will be able to hold and use the device comfortably with
one hand

Revision History: Luis Vargas, 11/29/2021, Created Table

No: 26.1.9

Statement: The Pick Pocket Tuner shall have an easy-to-read display.

110

Source: Team Member Discussions, In-Market Competitors, Technical Research

Dependency: None

Conflicts: None

Supporting Materials: In-Market Competition

Evaluation Method: The User will be able to read the screen in most light conditions

Revision History: Luis Vargas, 11/29/2021, Created Table

No: 26.1.10

Statement: The Pick Pocket Tuner shall be able to use a ¼ -inch input jack with a ¼ -
inch instrument cable.

Source: Team Member Discussions

Dependency: 26.1.3

Conflicts: None

Supporting Materials: In-Market Competition

Evaluation Method: The User will be able to use the jack/cable combo to tune the guitar
as a back-up method of tuning.

Revision History: Luis Vargas, 11/29/2021, Created Table

26.2 Software Requirement Specifications

No: 26.2.1

Statement: The Pick Pocket Tuner shall have an easy-to-understand software menu
structure

Source: Team Member Discussions, In-Market Competitors, Technical Research

Dependency: 26.1.3

Conflicts: None

Supporting Materials: In-Market Competition

111

Evaluation Method: The User will be able to easily choose the desired mode of
operation

Revision History: Luis Vargas, 11/29/2021, Created Table

No: 26.2.2

Statement: The Pick Pocket Tuner shall be able to choose between four available
modes of operation.

Source: Team Member Discussions, In-Market Competitors, Technical Research

Dependency: 26.2.1

Conflicts: None

Supporting Materials: In-Market Competition

Evaluation Method: The User will be able to choose how they want to utilize the device
to tune.

Revision History: Luis Vargas, 11/29/2021, Created Table

No: 26.2.3

Statement: The Pick Pocket Tuner shall display the current tuning to the display.

Source: Team Member Discussions, In-Market Competitors, Technical Research

Dependency: 26.1.3

Conflicts: None

Supporting Materials: In-Market Competition

Evaluation Method: The LCD Display will read the current tuning and the user will be
able to determine if the tuning is correct or not

Revision History: Luis Vargas, 11/29/2021, Created Table

No: 26.2.4

112

Statement: The Pick Pocket Tuner shall be able to distinguish between flat and sharp
notes

Source: Team Member Discussions, In-Market Competitors, Technical Research

Dependency: 26.1.3

Conflicts: None

Supporting Materials: In-Market Competition

Evaluation Method: The device will be able to display sharp and flat notes to the display
for the user to see

Revision History: Luis Vargas, 11/29/2021, Created Table

No: 26.2.5

Statement: The Pick Pocket Tuner shall be able to differentiate between octaves of the
same note.

Source: Team Member Discussions, In-Market Competitors, Technical Research

Dependency: 26.1.3

Conflicts: None

Supporting Materials: In-Market Competition

Evaluation Method: The device will be able to tune a string at an octave-length-
difference based on frequency

Revision History: Luis Vargas, 11/29/2021, Created Table

No: 26.2.6

Statement: The Pick Pocket Tuner shall report accurate notes and frequency values.

Source: Team Member Discussions, In-Market Competitors, Technical Research

Dependency: 26.1.3, 26.2.3, 26.2.4, 26.2.5

Conflicts: None

Supporting Materials: In-Market Competition

113

Evaluation Method: The device will move the motor according to the guitar’s tuning
frequency read

Revision History: Luis Vargas, 11/29/2021, Created Table

27.0 Final Testing Plan

27.1 Objective for Final Testing

The Objective for the hardware and software testing is a simple, and straightforward one,
which is to ensure that the final device outlined in this documentation meets the
requirements, specifications, and successfully executes/implements the necessary
combinations of hardware and software to accomplish the outlined goal: tune a
guitar/bass automatically. The assumption for this Test Plan, for all intents and purposes,
is that in the final version, the device will accomplish the goal within a reasonable “error-
free” experience.

27.2 Description of Final Testing Environment

For the Pick Pocket Tuner, the test environment will realistically be physically anywhere
that the group will be able to use a guitar/bass. Ideally, since the device is meant to be
hand-held and portable, we can implement our testing procedures in various spaces, and
settings, including but not limited to a garage, a recording studio, an auditorium, to an
empty lecture hall on the UCF campus. The benefit of this is that the testing parameters
aren’t all necessarily limited by environmental factors, unless specifically and discretely
noted. On both the hardware and software sides, the testing parameters outlined
throughout this documentation details how the intended use of each component is, and
in this section specifically it is assumed that the previously mentioned parameters will be
included in further testing.

For Hardware the Testing Environment is more closely related to the physical
environment, in which case, for optimal results, the group will be testing the device in the
same location, however using varying guitars with different tuning pegs. Ideally, we shall
be reaching out to the UCF College of Music to inquire about potentially using one of their
practice rooms for testing since they are built for the separation of sound between those
being emitted from the inside of the practice room versus those originating from the
surrounding hallways. The guitars that are to be initially used for testing will be provided
by Lucas Grayford, Paul Grayford, and Luis Vargas.

Lucas’ guitar was manufactured by Behringer, model METALIEN. The METALIEN is an
electric guitar with an unknown manufacturer of tuners, and as an electric guitar it has a
¼” jack for a ¼” instrument cable to be used with it. Additionally, this guitar also has a
floating bridge, which is also non-branded. Since the bridge is floating, we are going to
be “blocking” the floating bridge essentially turning it into a standardized “traditional” static

114

bridge. Paul’s guitar was manufactured by the Indiana Guitar Company, model Scout
Black Acoustic. The Scout is an entirely acoustic guitar, which means that there are no
electronic components with which to interact with, and has also non-branded tuners. The
bridge on this guitar, since it is acoustic, is a standardized “traditional” non-floating bridge
and as such, there are no necessary alterations needed to be made. Luis’ guitar was
manufactured by the ESP guitar company, model is the LTD-DJ600 and for tuners it uses
Sperzel Locking Tuners. The DJ600 is an electric guitar, which means it has a ¼” jack for
a ¼” instrument cable, and it also has a Floyd Rose Tremolo Floating Bridge, this typically
indicates that the tuning process is significantly more complex as a traditional tuner,
however, for Luis’ guitar in particular, this Bridge has been blocked off, and it does not
“float” but instead operates in the same manner as a traditional standardized guitar
bridge.

The brand and specific model of guitar strings to be used for testing is at this time still to
be identified, investigated, and reviewed by the group members, due to availability, cost,
and/or delivery constraints. For final verification of tuning accuracy, the tuning of the
strings individually will be checked against the AXE I/O guitar interface. The AXE I/O
interface houses a chromatic tuner, which through the electric guitar’s ¼” output and an
instrument ¼” cable, will let us confirm if the pitch that our final device adjusts the string
to is correct or not. Additional tools for confirming hardware testing successes and/or
failures include but are not limited to items such as oscilloscopes, voltmeters, stop-watch
timers, and/or a power supply to be used, as needed for different testing steps. These
devices will be implemented in an as needed basis, and shall be used as a ‘safety net’
for additional confirmation beyond that of what the Pick Pocket Tuner and the AXE I/O
reports as the tuning of the guitar string.

For the software aspect of our Testing Environment, our intended testing environment is
a straightforward one. The devices used to interface directly with the ESP8266 will be the
extent with which the device will need to be ‘ran’ on. The compilation of the final software
to be tested will be done on these machines, which will then upload onto the ESP8266
for the device to run on-device directly, with the available on-device memory. Information
regarding the hardware of the ESP8266 can be referenced above in the section detailing
the specifications of the ESP8266. The machines who will be used with interfacing with
the ESP8266, shall use an operating system agnostic environment for compiling and
uploading the code. This environment, which will also be used for testing is the most
recent, up-to-date version of the Arduino IDE software. For both Windows (7 and newer),
as well as for MacOS (10.10 or newer) it is Arduino IDE v1.8.16. Beyond these mentioned
devices/interfaces, the software testing will be more-or-less done simultaneously with the
hardware testing so initially the physical environment, as well as guitars, and hardware
used will be the same as the hardware testing environment.

While the testing environments isn’t meant to be a ‘catch-all’ for all situations, the reason
for detailing this information is to layout a baseline from which to begin the determinations
for the device to be marked as a successful product. Additionally, detailing these tools
and environments will aid in reducing the number of extraneous variables that could
introduce unneeded errors that can affect the results of our testing. As previously stated,

115

at the time of writing this document, this is what we have currently deemed necessary to
complete the final testing for the Pick Pocket Tuner. However, it is entirely within a
sizeable possibility that between now and final delivery of the product, the information in
this document could be outdated or have been altered to suit the needs of the Senior
Design team.

27.3 Stopping Criteria

The stopping criteria for each test case will be dependent on a Pass/Fail system. This
system will be used for test cases throughout the entire project, to determine how well the
individual components will be integrated into the overall system, however they will be
incredibly important when the final testing development phase has been reached. If the
test case at hand results in a “Pass” rating, we shall then move on to the next test case,
until a test case “Fail” rating is reached. If a “Fail” rating is reached, the failing test case
will be documented, and the hardware/software feature and/or module dependency for
that test case is determined. From there, the dependency is then analyzed as part of the
system and independently to determine the cause of failure. Once said cause of failure is
determined through said analysis, an attempt to address it shall begin immediately. If it
can be addressed immediately, we shall return the affected to the developer/integrator to
determine a solution. If it is determined that the fix cannot be done now, whether due to
missing/yet-to-be-implemented features/modules, or as an example due to waiting for
hardware to be acquired, the reasoning for this is also documented so that the team can
continue with other hardware/software feature/module implementations.

In addition to this, if no errors are found, and integration/development is still underway,
the team will re-assess the system and any currently unlisted/undetermined test cases
will be constructed to attempt to filter out any false positive “error free” test runs. If all
features/module implementations have been completed and the test case run returns with
all test cases receiving a “Pass” rating, additional test cases will be constructed at that
time to determine the reliability and robustness of the system. Once this is secondary,
more extensive testing is completed, if the reports return that all test cases, this includes
the original set and the new set, receive a “Pass” rating we shall then assess and
determine if the product is ready to be considered as a deliverable item. However, if there
is a “Fail” rating in these test cases, depending on the test case and cause for failure, we
shall either work to find a fix or find a work-around as a resolution for the issue, if it is an
issue that is determined to be a necessary issue to be fixed. Once no known errors are
found after fixing all the “Fail” ratings, the device will be submitted for approval for
consideration as a deliverable item.

27.4 Description of Individual Test Cases

As it was previously mentioned, this list is neither exhaustive, nor is it a comprehensive
list of test cases. At the time of writing this document, we are still determining additional
Test Cases to satisfy the Specification Requirements of the Pick Pocket Tuner, so for the
time being, the test cases we are initially considering are listed in the tables below.

116

Test Case Number 1

Test Case Objective Battery & System Test

Test Case Description The user will flip the switch on the device
providing power to the entire device and it
will boot to our “beginning” screen

Test Case Conditions See Testing Environment.

Expected Results The device turns on successfully.

Test Case Number 2

Test Case Objective User Interface Test
Test Case Description The user will use the display and

interface elements to navigate through
the menus.

Test Case Conditions See Test Environment.

Expected Results The user will be able to move in and out
of all the menu hierarchies.

Test Case Number 3

Test Case Objective User Interface Test

Test Case Description Using the UX/UI and display the user will
be able to change the tuning method to
utilize.

Test Case Conditions See Test Environment.

Expected Results The user will be able to change the mode
of operation from one of those available
to be selected.

Test Case Number 4

Test Case Objective Tuning Test

Test Case Description The user will be able to use the device
and tune a string as the string is being
plucked.

Test Case Conditions See Test Environment.

Expected Results The guitar will be in tune when the strings
are strummed at once, or individually.

Test Case Number 5

Test Case Objective Motor/Tuning Test

117

Test Case Description The user will use the device to signal the
device that there is a new string added.

Test Case Conditions See Test Environment.

Expected Results The new string will be re-strung to a yet-
to-be-decided frequency. Left to be ready
for “final tuning”

Test Case Number 6

Test Case Objective Tuning Test

Test Case Description The device will assist the user in tuning
the guitar faster than the human would be
able to do so manually.

Test Case Conditions See Test Environment.

Expected Results The time it takes to tune a single string
will be under 30 seconds.

Test Case Number 7

Test Case Objective Restring/Tuning Test

Test Case Description While in the appropriate tuning mode, the
user will be able to restring and tune a
new string on the guitar faster than a
human would be able to do so manually.

Test Case Conditions See Test Environment.

Expected Results The time for this process will be under 3
minutes.

Test Case Number 8

Test Case Objective Motor/User Interface Test

Test Case Description The user will be able to use the user
interface to manually drive the motor

Test Case Conditions See Test Environment.

Expected Results The motor turns in one of two directions
for as long as the corresponding button is
held down.

Test Case Number 9

Test Case Objective Tuning Test

Test Case Description The device’s components correctly
transfer the vibrational frequencies

118

through the housing/components to the
piezoelectric disc for analysis.

Test Case Conditions See Test Environment.

Expected Results The device can interpret a string vibrating
at a given frequency, after the string is
plucked.

Test Case Number 10

Test Case Objective Tuning Test

Test Case Description The user is able to use the interface to
tune strings to different, i.e. alternate,
tunings

Test Case Conditions See Test Environment.

Expected Results The tunings of the strings reflect the
desired tuning from the user.

Test Case Number 11

Test Case Objective Battery Test

Test Case Description The battery life will be tested to determine
how long the operational capacity will be.

Test Case Conditions See Test Environment.

Expected Results The device will be able to run all the
components simultaneously and tune
strings on a guitar.

Test Case Number 12

Test Case Objective Weight Test

Test Case Description The device will be weighed once all
components are acquired.

Test Case Conditions See Test Environment.

Expected Results The device will be weighed with the
housing to determine the overall weight of
the device.

Test Case Number 13

Test Case Objective User Interface Test

Test Case Description The UI of the device will be determined
how user-friendly and intuitive the
controls are based on how long it takes to

119

change the mode of operation until the
device is ready to tune a string.

Test Case Conditions See Test Environment.

Expected Results The user will be able to change between
menus/modes of operation and select the
desired information in a easy-to-use
manner.

Test Case Number 14

Test Case Objective Tuning Test

Test Case Description The device will be able to analyze the
lower frequency from a bass guitar string
and tune it.

Test Case Conditions See Test Environment.

Expected Results The bass guitar string will be in tune

Test Case Number 15

Test Case Objective Ergonomics Test

Test Case Description The device will take shape based on
designs described as ergonomic and
comfortable.

Test Case Conditions See Test Environment.

Expected Results Comfortable to hold and use

Test Case Number 16

Test Case Objective User Interface Test

Test Case Description The buttons on the device will be able to
navigate in the desired direction and
select the desired item.

Test Case Conditions See Test Environment.

Expected Results The user will be able to use buttons and
the display to navigate and use the
device

Test Case Number 17

Test Case Objective User Interface Test

Test Case Description The necessary, relevant, information will
be displayed on the device’s display.

Test Case Conditions See Test Environment.

120

Expected Results The user will be able to use visual
feedback to make a decision if the string
is in the tuning they want yet or not.

Test Case Number 18

Test Case Objective Tuning Test

Test Case Description The tuning process of the string doesn’t
take a long time for each string. The
device is able to handle the calculations
needed, and provide the necessary
signals to turn the motor appropriately

Test Case Conditions See Test Environment.

Expected Results The tuning is a lag free experience, and
the tuning isn’t plagued with processing
lag.

Test Case Number 19

Test Case Objective Tuning/ESP8266 Test

Test Case Description The device is able to store a
predetermined tuning for ease-of-use

Test Case Conditions See Test Environment.

Expected Results The default tuning to tune to when the
device boots up is E-Standard Tuning.

Test Case Number 20

Test Case Objective Display/Tuning Test

Test Case Description The device will display the correct tuning,
and frequency, when note is flat.

Test Case Conditions See Test Environment.

Expected Results The display will inform the user that the
string being plucked is X note but flat

Test Case Number 21

Test Case Objective Display/Tuning Test

Test Case Description The device will display the correct tuning,
and frequency, when the note is sharp.

Test Case Conditions See Test Environment.

121

Expected Results The display will inform the user that the
string being plucked is X note but sharp.

27.5 Trace of Individual Test Cases to Requirements

The purpose of this table below, was to map the previously outlined test cases to the
requirement specifications. This served as a starting point to be able to determine if the
Pick Pocket Tuner was ready to receive the mark of “Complete”.

Req. ID Req. Description Test Case Reference Status

26.1.1 The Pick Pocket Tuner shall tune an

entire guitar within a maximum amount of

time.

1, 3, 4, 6, 7, 9, 10, 11,

14, 18, 19, 20

Complete

26.1.2 The Pick Pocket Tuner shall tune a new,

individual string, within a maximum

amount of time.

1, 3, 4, 5, 6, 7, 9, 10,

11, 14, 18, 19, 20

Complete

26.1.3 The Pick Pocket Tuner shall tune the

strings to the correct frequency for that

string.

1, 3, 4, 5, 6, 7, 9, 10,

11, 14, 17, 18, 19, 20

Complete

26.1.4 The Pick Pocket Tuner shall be able to

tune more than 100 strings.

1, 3, 4, 5, 6, 7, 9, 10,

11, 14, 18, 19, 20

Complete

26.1.5 The Pick Pocket Tuner shall weigh less

than 3 pounds.

1, 3, 4, 11, 13, 14, 15,

16, 17,

Complete

26.1.6 The Pick Pocket Tuner shall have the

ability to tune to alternate tunings.

1, 2, 3, 4, 6, 7, 9, 10,

11, 14, 17, 18, 19, 20

Complete

26.1.7 The Pick Pocket Tuner shall have an

easy-to-use Physical User Interface.

1, 2, 3, 4, 6, 7, 8, 9,

10, 13, 15, 16, 17,

Complete

26.1.8 The Pick Pocket Tuner shall be

ergonomic, and small enough to fit in one

hand.

1, 2, 3, 4, 8, 9, 11, 13,

14, 15, 16, 17,

Complete

26.1.9 The Pick Pocket Tuner shall have an

easy-to-read display.

1, 2, 3, 4, 5, 6, 7, 9,

10, 14, 17, 19, 20

Complete

122

26.1.10 The Pick Pocket Tuner shall be able to

use a ¼” input jack with a ¼” instrument

cable.

1, 4, 6, 7, 10, 11, 18, Complete

26.2.1 The Pick Pocket Tuner shall have an

easy-to-understand software menu

structure.

1, 2, 3, 5, 6, 7, 8, 10,

14, 16, 17,

Complete

26.2.2 The Pick Pocket Tuner shall be able to

choose between four available modes of

operation.

1, 2, 3, 5, 6, 7, 8, 10,

16, 17,

Complete

26.2.3 The Pick Pocket Tuner shall display the

current tuning to the display.

1, 3, 4, 5, 6, 7, 9, 10,

11, 14, 17, 19, 20

Complete

26.2.4 The Pick Pocket Tuner shall be able to

distinguish between flat and sharp notes.

1, 3, 4, 5, 6, 7, 9, 10,

14, 17, 18, 19, 20

Complete

26.2.5 The Pick Pocket Tuner shall be able to

differentiate between octaves of the same

note.

1, 3, 4, 5, 6, 7, 9, 10,

14, 17, 18, 19, 20

Complete

26.2.6 The Pick Pocket Tuner shall report

accurate notes and frequency values.

1, 3, 4, 5, 6, 7, 9, 10,

14, 17, 18, 19, 20

Complete

28.0 Conclusion

The experience of designing this project has been very educational and encouraging. It
allowed our team the opportunity to learn much more than we did before, not only in the
designing aspect, but also in the day-to-day real world challenges engineers face on a
regular basis. Whether that be solving a design flaw, supply chain issues, team meeting
efficiency, collaboration with teammates and many other aspects we do not learn about
from a textbook, this experience provided us with valuable knowledge on how to tackle
common issues in the engineering realm. While our academic curriculum has given us
the necessary tools to successfully complete this project, the reality is that this project
has exposed each-and-everyone of us in the group to the different steps necessary in the
product development process, from inception to final product delivery. We are excited
about the outcome of our project, and are looking forward to what is next for the engineers
in this group.

A

Bibliography

Ada, Lady. “Li-Ion & LiPoly Batteries.” Adafruit Learning System, 6 Dec. 2021,
https://learn.adafruit.com/li-ion-and-lipoly-batteries/proper-charging.

“A440 (Pitch Standard).” Wikipedia, Wikimedia Foundation, 27 Nov. 2021,
https://en.wikipedia.org/wiki/A440_(pitch_standard).

“Brushless DC Motor vs. AC Motor vs. Brushed Motor.” Oriental Motor U.S.A. Corp.,
https://www.orientalmotor.com/brushless-dc-motors-gear-
motors/technology/AC-brushless-brushed-
motors.html?gclid=CjwKCAiAhreNBhAYEiwAFGGKPDWLT4VICIx25Se5uYD
dfa0hdppbdn4xKDQiR9ayByDR-rdY74ZJbBoCpK4QAvD_BwE.

“Designing an Electric Guitar with Shapes.” TeachRock, 22 Feb. 2021,
https://teachrock.org/lesson/designing-an-electric-guitar-with-shapes/.

“ESP LTD DJ-600 Dan Jacobs | ZZounds.” Www.zzounds.com,
https://www.zzounds.com/item--ESPDJ600.

“FIT0441_BRUSHLESS_DC_MOTOR_WITH_ENCODER_12V_159RPM.”
DFRobot,
https://wiki.dfrobot.com/FIT0441_Brushless_DC_Motor_with_Encoder_12V_1
59RPM.

“Fourier Transform in Python – Vibration Analysis.” AlphaBold , 2 Mar. 2021,
http://www.alphabold.com/fourier-transform-in-python-vibration-analysis/.

“Guitar Tuning Machines from Sperzel.” Www.sperzel.com, www.sperzel.com/guitar-
tuners.php.

“How to Properly Connect Lithium Batteries in Series and in Parallel.” Wsd, 1 Mar.
2019, https://www.lithium-battery-factory.com/ithium-batteries-parallel/.

“How to Tune the Guitar to Standard Tuning.” Www.guitar-Chord.org, www.guitar-
chord.org/articles/standard-tuning.html.

“How to Use the Stratocaster Pickup Selector Switch.” Www.fender.com,
www.fender.com/articles/tech-talk/sounds-aplenty-the-stratocaster-pickup-
selector-switch.

“Inductor Placement: Basic Knowledge.” ROHM TECH WEB: Technical Information
Site of Power Supply Design,
https://techweb.rohm.com/knowledge/dcdc/dcdc_pwm/dcdc_pwm04/9321.

“JOWOOM T2 Smart Automatic Guitar Tuner Peg String Winder for Guitar
Chromatic Us.” EBay,
https://www.ebay.com/itm/133889033602?chn=ps&_trkparms=ispr%3D1&am

https://learn.adafruit.com/li-ion-and-lipoly-batteries/proper-charging
https://en.wikipedia.org/wiki/A440_(pitch_standard)
https://www.orientalmotor.com/brushless-dc-motors-gear-motors/technology/AC-brushless-brushed-motors.html?gclid=CjwKCAiAhreNBhAYEiwAFGGKPDWLT4VICIx25Se5uYDdfa0hdppbdn4xKDQiR9ayByDR-rdY74ZJbBoCpK4QAvD_BwE
https://www.orientalmotor.com/brushless-dc-motors-gear-motors/technology/AC-brushless-brushed-motors.html?gclid=CjwKCAiAhreNBhAYEiwAFGGKPDWLT4VICIx25Se5uYDdfa0hdppbdn4xKDQiR9ayByDR-rdY74ZJbBoCpK4QAvD_BwE
https://www.orientalmotor.com/brushless-dc-motors-gear-motors/technology/AC-brushless-brushed-motors.html?gclid=CjwKCAiAhreNBhAYEiwAFGGKPDWLT4VICIx25Se5uYDdfa0hdppbdn4xKDQiR9ayByDR-rdY74ZJbBoCpK4QAvD_BwE
https://www.orientalmotor.com/brushless-dc-motors-gear-motors/technology/AC-brushless-brushed-motors.html?gclid=CjwKCAiAhreNBhAYEiwAFGGKPDWLT4VICIx25Se5uYDdfa0hdppbdn4xKDQiR9ayByDR-rdY74ZJbBoCpK4QAvD_BwE
https://teachrock.org/lesson/designing-an-electric-guitar-with-shapes/
https://www.zzounds.com/item--ESPDJ600
https://wiki.dfrobot.com/FIT0441_Brushless_DC_Motor_with_Encoder_12V_159RPM
https://wiki.dfrobot.com/FIT0441_Brushless_DC_Motor_with_Encoder_12V_159RPM
http://www.alphabold.com/fourier-transform-in-python-vibration-analysis/
http://www.sperzel.com/guitar-tuners.php
http://www.sperzel.com/guitar-tuners.php
https://www.lithium-battery-factory.com/ithium-batteries-parallel/
http://www.guitar-chord.org/articles/standard-tuning.html
http://www.guitar-chord.org/articles/standard-tuning.html
http://www.fender.com/articles/tech-talk/sounds-aplenty-the-stratocaster-pickup-selector-switch
http://www.fender.com/articles/tech-talk/sounds-aplenty-the-stratocaster-pickup-selector-switch
https://techweb.rohm.com/knowledge/dcdc/dcdc_pwm/dcdc_pwm04/9321
https://www.ebay.com/itm/133889033602?chn=ps&_trkparms=ispr%3D1&amdata=enc%3A15-djjHG3TxCbDkMqqaaAAw95&norover=1&mkevt=1&mkrid=711-117182-37290-0&mkcid=2&itemid=133889033602&targetid=1262906534602&device=c&mktype=&googleloc=9012409&poi=&campaignid=15275224983&mkgroupid=131097072938&rlsatarget=pla-1262906534602&abcId=9300697&merchantid=101492064&gclid=CjwKCAiAhreNBhAYEiwAFGGKPFQFowQx8HS73pbnVZhCFv1ftcTEQuzyFqCv9ZSv4oiV203XVDM_iRoCwjsQAvD_BwE

B

data=enc%3A15-
djjHG3TxCbDkMqqaaAAw95&norover=1&mkevt=1&mkrid=711-117182-
37290-
0&mkcid=2&itemid=133889033602&targetid=1262906534602&device=c&mkt
ype=&googleloc=9012409&poi=&campaignid=15275224983&mkgroupid=131
097072938&rlsatarget=pla-
1262906534602&abcId=9300697&merchantid=101492064&gclid=CjwKCAiAh
reNBhAYEiwAFGGKPFQFowQx8HS73pbnVZhCFv1ftcTEQuzyFqCv9ZSv4oi
V203XVDM_iRoCwjsQAvD_BwE.

“Measuring Vibration: The Complete Guide | Brüel & Kjær.” Www.bksv.com,
www.bksv.com/en/knowledge/blog/vibration/measuring-vibration.

“Piezo Vibration Sensor Hookup Guide - Learn.sparkfun.com.” Learn.sparkfun.com,
https://learn.sparkfun.com/tutorials/piezo-vibration-sensor-hookup-guide/all.

“Piezoelectric Pressure Sensors.” Avnet,
https://www.avnet.com/wps/portal/abacus/solutions/technologies/sensors/pre
ssure-sensors/core-technologies/piezoelectric/.

“Piezoelectric Sensors - How Do Piezoelectric Sensors Work.” Sensor Works, 3
Dec. 2019, www.sensor-works.com/how-do-piezoelectric-sensors-work/.

“Placement of Inductors: Basic Knowledge.” ROHM TECH WEB: Technical
Information Site of Power Supply Design, Tech Web, 7 Dec. 2017,
https://techweb.rohm.com/knowledge/dcdc/dcdc_pwm/dcdc_pwm03/3254.

“Pure Tone Mono Multi-Contact 1/4″ Output Jack.” Pure Tone Technologies,
https://puretonetechnologies.com/products/pure-tone-multi-contact-1-4-
output-jack.

“Scout BK.” Indiana Guitar Company, www.indianaguitarcompany.com/scout-
black.html.

“Software.” Www.arduino.cc, www.arduino.cc/en/software.

“Stepper vs Servo.” Tutorial: Stepper vs Servo, https://www.amci.com/industrial-
automation-resources/plc-automation-tutorials/stepper-vs-servo/.

“The String Family: Instruments, History & Facts - Video & Lesson Transcript |
Study.com.” Study.com, 2019, https://study.com/academy/lesson/the-string-
family-instruments-history-facts.html.

“What Is a Piezoelectric Sensor? - Utmel.” Www.utmel.com,
www.utmel.com/blog/categories/sensors/what-is-a-piezoelectric-sensor.

AXE I/O, http://www.ikmultimedia.com/products/axeio/index.php?p=specs.

Belokobylskiy, Ivan. “St7789py_mpy.” GitHub,
https://github.com/devbis/st7789py_mpy/blob/master/st7789py.py.

https://www.ebay.com/itm/133889033602?chn=ps&_trkparms=ispr%3D1&amdata=enc%3A15-djjHG3TxCbDkMqqaaAAw95&norover=1&mkevt=1&mkrid=711-117182-37290-0&mkcid=2&itemid=133889033602&targetid=1262906534602&device=c&mktype=&googleloc=9012409&poi=&campaignid=15275224983&mkgroupid=131097072938&rlsatarget=pla-1262906534602&abcId=9300697&merchantid=101492064&gclid=CjwKCAiAhreNBhAYEiwAFGGKPFQFowQx8HS73pbnVZhCFv1ftcTEQuzyFqCv9ZSv4oiV203XVDM_iRoCwjsQAvD_BwE
https://www.ebay.com/itm/133889033602?chn=ps&_trkparms=ispr%3D1&amdata=enc%3A15-djjHG3TxCbDkMqqaaAAw95&norover=1&mkevt=1&mkrid=711-117182-37290-0&mkcid=2&itemid=133889033602&targetid=1262906534602&device=c&mktype=&googleloc=9012409&poi=&campaignid=15275224983&mkgroupid=131097072938&rlsatarget=pla-1262906534602&abcId=9300697&merchantid=101492064&gclid=CjwKCAiAhreNBhAYEiwAFGGKPFQFowQx8HS73pbnVZhCFv1ftcTEQuzyFqCv9ZSv4oiV203XVDM_iRoCwjsQAvD_BwE
https://www.ebay.com/itm/133889033602?chn=ps&_trkparms=ispr%3D1&amdata=enc%3A15-djjHG3TxCbDkMqqaaAAw95&norover=1&mkevt=1&mkrid=711-117182-37290-0&mkcid=2&itemid=133889033602&targetid=1262906534602&device=c&mktype=&googleloc=9012409&poi=&campaignid=15275224983&mkgroupid=131097072938&rlsatarget=pla-1262906534602&abcId=9300697&merchantid=101492064&gclid=CjwKCAiAhreNBhAYEiwAFGGKPFQFowQx8HS73pbnVZhCFv1ftcTEQuzyFqCv9ZSv4oiV203XVDM_iRoCwjsQAvD_BwE
https://www.ebay.com/itm/133889033602?chn=ps&_trkparms=ispr%3D1&amdata=enc%3A15-djjHG3TxCbDkMqqaaAAw95&norover=1&mkevt=1&mkrid=711-117182-37290-0&mkcid=2&itemid=133889033602&targetid=1262906534602&device=c&mktype=&googleloc=9012409&poi=&campaignid=15275224983&mkgroupid=131097072938&rlsatarget=pla-1262906534602&abcId=9300697&merchantid=101492064&gclid=CjwKCAiAhreNBhAYEiwAFGGKPFQFowQx8HS73pbnVZhCFv1ftcTEQuzyFqCv9ZSv4oiV203XVDM_iRoCwjsQAvD_BwE
https://www.ebay.com/itm/133889033602?chn=ps&_trkparms=ispr%3D1&amdata=enc%3A15-djjHG3TxCbDkMqqaaAAw95&norover=1&mkevt=1&mkrid=711-117182-37290-0&mkcid=2&itemid=133889033602&targetid=1262906534602&device=c&mktype=&googleloc=9012409&poi=&campaignid=15275224983&mkgroupid=131097072938&rlsatarget=pla-1262906534602&abcId=9300697&merchantid=101492064&gclid=CjwKCAiAhreNBhAYEiwAFGGKPFQFowQx8HS73pbnVZhCFv1ftcTEQuzyFqCv9ZSv4oiV203XVDM_iRoCwjsQAvD_BwE
https://www.ebay.com/itm/133889033602?chn=ps&_trkparms=ispr%3D1&amdata=enc%3A15-djjHG3TxCbDkMqqaaAAw95&norover=1&mkevt=1&mkrid=711-117182-37290-0&mkcid=2&itemid=133889033602&targetid=1262906534602&device=c&mktype=&googleloc=9012409&poi=&campaignid=15275224983&mkgroupid=131097072938&rlsatarget=pla-1262906534602&abcId=9300697&merchantid=101492064&gclid=CjwKCAiAhreNBhAYEiwAFGGKPFQFowQx8HS73pbnVZhCFv1ftcTEQuzyFqCv9ZSv4oiV203XVDM_iRoCwjsQAvD_BwE
https://www.ebay.com/itm/133889033602?chn=ps&_trkparms=ispr%3D1&amdata=enc%3A15-djjHG3TxCbDkMqqaaAAw95&norover=1&mkevt=1&mkrid=711-117182-37290-0&mkcid=2&itemid=133889033602&targetid=1262906534602&device=c&mktype=&googleloc=9012409&poi=&campaignid=15275224983&mkgroupid=131097072938&rlsatarget=pla-1262906534602&abcId=9300697&merchantid=101492064&gclid=CjwKCAiAhreNBhAYEiwAFGGKPFQFowQx8HS73pbnVZhCFv1ftcTEQuzyFqCv9ZSv4oiV203XVDM_iRoCwjsQAvD_BwE
https://www.ebay.com/itm/133889033602?chn=ps&_trkparms=ispr%3D1&amdata=enc%3A15-djjHG3TxCbDkMqqaaAAw95&norover=1&mkevt=1&mkrid=711-117182-37290-0&mkcid=2&itemid=133889033602&targetid=1262906534602&device=c&mktype=&googleloc=9012409&poi=&campaignid=15275224983&mkgroupid=131097072938&rlsatarget=pla-1262906534602&abcId=9300697&merchantid=101492064&gclid=CjwKCAiAhreNBhAYEiwAFGGKPFQFowQx8HS73pbnVZhCFv1ftcTEQuzyFqCv9ZSv4oiV203XVDM_iRoCwjsQAvD_BwE
https://www.ebay.com/itm/133889033602?chn=ps&_trkparms=ispr%3D1&amdata=enc%3A15-djjHG3TxCbDkMqqaaAAw95&norover=1&mkevt=1&mkrid=711-117182-37290-0&mkcid=2&itemid=133889033602&targetid=1262906534602&device=c&mktype=&googleloc=9012409&poi=&campaignid=15275224983&mkgroupid=131097072938&rlsatarget=pla-1262906534602&abcId=9300697&merchantid=101492064&gclid=CjwKCAiAhreNBhAYEiwAFGGKPFQFowQx8HS73pbnVZhCFv1ftcTEQuzyFqCv9ZSv4oiV203XVDM_iRoCwjsQAvD_BwE
http://www.bksv.com/en/knowledge/blog/vibration/measuring-vibration
https://learn.sparkfun.com/tutorials/piezo-vibration-sensor-hookup-guide/all
https://www.avnet.com/wps/portal/abacus/solutions/technologies/sensors/pressure-sensors/core-technologies/piezoelectric/
https://www.avnet.com/wps/portal/abacus/solutions/technologies/sensors/pressure-sensors/core-technologies/piezoelectric/
http://www.sensor-works.com/how-do-piezoelectric-sensors-work/
https://techweb.rohm.com/knowledge/dcdc/dcdc_pwm/dcdc_pwm03/3254
https://puretonetechnologies.com/products/pure-tone-multi-contact-1-4-output-jack
https://puretonetechnologies.com/products/pure-tone-multi-contact-1-4-output-jack
http://www.indianaguitarcompany.com/scout-black.html
http://www.indianaguitarcompany.com/scout-black.html
http://www.arduino.cc/en/software
https://www.amci.com/industrial-automation-resources/plc-automation-tutorials/stepper-vs-servo/
https://www.amci.com/industrial-automation-resources/plc-automation-tutorials/stepper-vs-servo/
https://study.com/academy/lesson/the-string-family-instruments-history-facts.html
https://study.com/academy/lesson/the-string-family-instruments-history-facts.html
http://www.utmel.com/blog/categories/sensors/what-is-a-piezoelectric-sensor
http://www.ikmultimedia.com/products/axeio/index.php?p=specs

C

Frequencies of Musical Notes, https://pages.mtu.edu/~suits/notefreqs.

Industries, Adafruit. “Buzzer 5V - Breadboard Friendly.” Adafruit Industries Blog
RSS,
https://www.adafruit.com/product/1536?gclid=CjwKCAiAhreNBhAYEiwAFGG
KPMRSK4GWxT5ykCDRAdUEalYp7kv5BtQm__5SA5EDeYfPiEk45-
zi7BoCQkAQAvD_BwE.

Industries, Band. “Roadie Automatic Guitar Tuner.” Roadie Music's Automatic
Tuners,
https://www.roadiemusic.com/roadie3?gclid=CjwKCAiAhreNBhAYEiwAFGGK
PMOMM9OG3GPRvfUm8dTntVZuZueJNEqLsKVcnPJUSMaBilh0qSjVTRoC
X-YQAvD_BwE.

Kuklovskai︠ a︡ Elizaveta. “DP.” Amazon, "Books by Mail" Pub. Co.,
https://www.amazon.com/dp/B00J2QET64?psc=1&ref=ppx_yo2_dt_b_produc
t_details.

Kuklovskai︠ a︡ Elizaveta. “DP.” Amazon, "Books by Mail" Pub. Co.,
https://www.amazon.com/dp/B015RQ97W8?psc=1&ref=ppx_yo2_dt_b_produ
ct_details.

Kuklovskai︠ a︡ Elizaveta. “DP.” Amazon, "Books by Mail" Pub. Co.,
https://www.amazon.com/dp/B01E38OS7K?psc=1&ref=ppx_yo2_dt_b_produ
ct_details.

Kuklovskai︠ a︡ Elizaveta. “DP.” Amazon, "Books by Mail" Pub. Co.,
https://www.amazon.com/dp/B07BK1QL5T?psc=1&ref=ppx_yo2_dt_b_produ
ct_details.

Kuklovskai︠ a︡ Elizaveta. “DP.” Amazon, "Books by Mail" Pub. Co.,
https://www.amazon.com/dp/B07RNBJK5F?psc=1&ref=ppx_yo2_dt_b_produ
ct_details.

Kuklovskai︠ a︡ Elizaveta. “DP.” Amazon, "Books by Mail" Pub. Co.,
https://www.amazon.com/dp/B07XC5KB8D?ref=ppx_yo2_dt_b_product_detai
ls&th=1

Kuklovskai︠ a︡ Elizaveta. “DP.” Amazon, "Books by Mail" Pub. Co.,
https://www.amazon.com/dp/B08168GWVJ?psc=1&ref=ppx_yo2_dt_b_produ
ct_details.

LeVan, John, et al. “The ABCs of Output Jacks.” Premier Guitar, 9 Sept. 2021,
https://www.premierguitar.com/diy/guitar-shop-101/guitar-jack-wiring.

https://pages.mtu.edu/~suits/notefreqs
https://www.adafruit.com/product/1536?gclid=CjwKCAiAhreNBhAYEiwAFGGKPMRSK4GWxT5ykCDRAdUEalYp7kv5BtQm__5SA5EDeYfPiEk45-zi7BoCQkAQAvD_BwE
https://www.adafruit.com/product/1536?gclid=CjwKCAiAhreNBhAYEiwAFGGKPMRSK4GWxT5ykCDRAdUEalYp7kv5BtQm__5SA5EDeYfPiEk45-zi7BoCQkAQAvD_BwE
https://www.adafruit.com/product/1536?gclid=CjwKCAiAhreNBhAYEiwAFGGKPMRSK4GWxT5ykCDRAdUEalYp7kv5BtQm__5SA5EDeYfPiEk45-zi7BoCQkAQAvD_BwE
https://www.roadiemusic.com/roadie3?gclid=CjwKCAiAhreNBhAYEiwAFGGKPMOMM9OG3GPRvfUm8dTntVZuZueJNEqLsKVcnPJUSMaBilh0qSjVTRoCX-YQAvD_BwE
https://www.roadiemusic.com/roadie3?gclid=CjwKCAiAhreNBhAYEiwAFGGKPMOMM9OG3GPRvfUm8dTntVZuZueJNEqLsKVcnPJUSMaBilh0qSjVTRoCX-YQAvD_BwE
https://www.roadiemusic.com/roadie3?gclid=CjwKCAiAhreNBhAYEiwAFGGKPMOMM9OG3GPRvfUm8dTntVZuZueJNEqLsKVcnPJUSMaBilh0qSjVTRoCX-YQAvD_BwE
https://www.amazon.com/dp/B00J2QET64?psc=1&ref=ppx_yo2_dt_b_product_details
https://www.amazon.com/dp/B00J2QET64?psc=1&ref=ppx_yo2_dt_b_product_details
https://www.amazon.com/dp/B015RQ97W8?psc=1&ref=ppx_yo2_dt_b_product_details
https://www.amazon.com/dp/B015RQ97W8?psc=1&ref=ppx_yo2_dt_b_product_details
https://www.amazon.com/dp/B01E38OS7K?psc=1&ref=ppx_yo2_dt_b_product_details
https://www.amazon.com/dp/B01E38OS7K?psc=1&ref=ppx_yo2_dt_b_product_details
https://www.amazon.com/dp/B07BK1QL5T?psc=1&ref=ppx_yo2_dt_b_product_details
https://www.amazon.com/dp/B07BK1QL5T?psc=1&ref=ppx_yo2_dt_b_product_details
https://www.amazon.com/dp/B07RNBJK5F?psc=1&ref=ppx_yo2_dt_b_product_details
https://www.amazon.com/dp/B07RNBJK5F?psc=1&ref=ppx_yo2_dt_b_product_details
https://www.amazon.com/dp/B07XC5KB8D?ref=ppx_yo2_dt_b_product_details&th=1
https://www.amazon.com/dp/B07XC5KB8D?ref=ppx_yo2_dt_b_product_details&th=1
https://www.amazon.com/dp/B08168GWVJ?psc=1&ref=ppx_yo2_dt_b_product_details
https://www.amazon.com/dp/B08168GWVJ?psc=1&ref=ppx_yo2_dt_b_product_details
https://www.premierguitar.com/diy/guitar-shop-101/guitar-jack-wiring

D

Libretexts. “Pitch- Sharp, Flat, and Natural Notes.” Humanities LibreTexts,
Libretexts, 11 Apr. 2021,
https://human.libretexts.org/Bookshelves/Music/Book:_Understanding_Basic_
Music_Theory_(Schmidt-Jones)/01:_Notation_-_Pitch/1.03:_Pitch-
_Sharp_Flat_and_Natural_Notes.

Ltd, Magnolia International. “Behringer | Product | GPK836BK.” Www.behringer.com,
www.behringer.com/product.html?modelCode=P0836.

Maklin, Cory. “Fast Fourier Transform.” Medium, Towards Data Science, 29 Dec.
2019, https://towardsdatascience.com/fast-fourier-transform-937926e591cb.

Rembor, Kattni. “Adafruit 1.3’ and 1.54’ 240x240 Wide Angle TFT LCD Displays.”
Adafruit Learning System, https://learn.adafruit.com/adafruit-1-3-and-1-54-
240-x-240-wide-angle-tft-lcd-displays?view=all.

Rowley, Jared. “What Is the Difference Between a Mono And Stereo Jack?”
Guitarandampparts.com, Sheehan Enterprizes, 24 June 2019,
https://guitarandampparts.com/2019/06/24/what-is-the-difference-between-a-
mono-and-stereo-jack/.

Simple Projects, et al. “Interfacing Arduino with ST7789 TFT Display - Graphics Test
Example.” Simple Projects, 3 Sept. 2019, https://simple-circuit.com/arduino-
st7789-ips-tft-display-example/.

Study.com, 2021, https://study.com/cimages/multimages/16/violinconstruction.jpg.
Success, Dan-Fret. “What Are the Guitar String Frequencies?” Fret Success - Guitar

Tuition, 26 Mar. 2019, http://fretsuccess.com/what-are-the-guitar-string-
frequencies/.

Swagatam. “Designing a Customized Battery Charger Circuit.” Homemade Circuit
Projects, 31 Oct. 2020, https://www.homemade-circuits.com/designing-
customized-battery-charger/.

Taifur, and Instructables. “Seven pro Tips for ESP8266.” Instructables, Instructables,
24 Apr. 2018, https://www.instructables.com/ESP8266-Pro-Tips/.

Team, The Arduino. “Stepper Speed Control.” Arduino,
https://www.arduino.cc/en/Tutorial/LibraryExamples/StepperSpeedControl.

Thingiverse.com. “Superior Universal Guitar String Winder - Quick Tuner by
Mordraden.” Thingiverse, https://www.thingiverse.com/thing:46231.

https://human.libretexts.org/Bookshelves/Music/Book:_Understanding_Basic_Music_Theory_(Schmidt-Jones)/01:_Notation_-_Pitch/1.03:_Pitch-_Sharp_Flat_and_Natural_Notes
https://human.libretexts.org/Bookshelves/Music/Book:_Understanding_Basic_Music_Theory_(Schmidt-Jones)/01:_Notation_-_Pitch/1.03:_Pitch-_Sharp_Flat_and_Natural_Notes
https://human.libretexts.org/Bookshelves/Music/Book:_Understanding_Basic_Music_Theory_(Schmidt-Jones)/01:_Notation_-_Pitch/1.03:_Pitch-_Sharp_Flat_and_Natural_Notes
http://www.behringer.com/product.html?modelCode=P0836
https://learn.adafruit.com/adafruit-1-3-and-1-54-240-x-240-wide-angle-tft-lcd-displays?view=all
https://learn.adafruit.com/adafruit-1-3-and-1-54-240-x-240-wide-angle-tft-lcd-displays?view=all
https://guitarandampparts.com/2019/06/24/what-is-the-difference-between-a-mono-and-stereo-jack/
https://guitarandampparts.com/2019/06/24/what-is-the-difference-between-a-mono-and-stereo-jack/
https://simple-circuit.com/arduino-st7789-ips-tft-display-example/
https://simple-circuit.com/arduino-st7789-ips-tft-display-example/
https://study.com/cimages/multimages/16/violinconstruction.jpg
http://fretsuccess.com/what-are-the-guitar-string-frequencies/
http://fretsuccess.com/what-are-the-guitar-string-frequencies/
https://www.homemade-circuits.com/designing-customized-battery-charger/
https://www.homemade-circuits.com/designing-customized-battery-charger/
https://www.instructables.com/ESP8266-Pro-Tips/
https://www.arduino.cc/en/Tutorial/LibraryExamples/StepperSpeedControl
https://www.thingiverse.com/thing:46231

