
The Pick Pocket Tuner

Lucas Grayford, Paul Grayford, Luis

Vargas, Jamie Henry

University of Central Florida,

Department of Computer and

Electrical Engineering, Orlando,

Florida, 32816, U.S.A.

Abstract – The objective of this project is to design

an automatic tuner for stringed instruments,

mainly guitars. Our project is designed to be

utilized for all skill levels of musicians, from

beginners to skilled players, to quickly tune their

instrument regardless of whether they are on stage

in a loud environment, or in a closed practice room.

The user should be able to tune their guitars in an

accurate and fast manner to the correct frequency.

I. INTRODUCTION

To tune a stringed instrument, a peg

is used for tightening or loosening the string

threaded into a cylinder. This peg usually

consists of a worm drive and the peg head

or key. The worm drive consists of a screw-

like gear and a spur gear to create a smaller

volume object with similar gear ratios.

Some players also use peg locks to help

ensure that the peg will stay in place to help

reduce loss in tuning on the string.

The purpose of tuning a stringed

instrument is to create sounds that illicit

emotions in those who hear and play it.

Tuning the strings to the correct pitches

ensures that all notes that can be played on

the instrument will make the correct sounds

and will create captivating music. To

ascertain that the tuning of a stringed

instrument is correct, the user would match

the frequency of the plucked string to a

known frequency, such as a tuning fork or

another audible device, by ear. However,

tuning stringed instruments by ear could

lead to incorrect tuning and incorrect

pitches across the strings. This has led to

the creation of automatic guitar tuners to

eliminate human error and make the tuning

process faster.

Sensors are used by these automatic

guitar tuners to help eliminate the human

error. These include vibrational and

microphone sensors that pick up the

frequency of the plucked string. This gives

an accurate reading of the string’s

frequency that can then be compared to the

tuning specifications. Our group’s Pick

Pocket guitar tuner uses a Piezo vibrational

sensor that will sit in the housing of the

product to pick up that string’s frequency.

This frequency, read in as analog voltage,

will then have to be transformed into the

frequency domain to read its value. To

achieve this, the Fast Fourier Transform is

used. The Fast Fourier Transform was

chosen as opposed to the Discrete Fourier

Transform solely on computation time.

Since time is valuable to our automatic

tuner and is one of the deciding factors

among competitors.

II. TUNING BACKGROUND

For a guitar, the tuning standards have

been established for some time, and many

people will argue about which frequency to

use for a specific intonation. When

referring to standard tuning on a guitar it is

usually EADGBe tuning, which is based on

the pitch standard of A440. Breaking this

down, the thickest and lowest tone string is

the E, followed by A, all the way until you

get to the thinnest which is the e string, on

a traditional, right-handed guitar it would

be that the strings go from left to right, from

thickest to thinnest.

The A440 standard is referred to as the

Stuttgart Pitch, and it is corresponding to

the 440Hz frequency for the A note above

the middle C in a Piano. This A440 pitch is

standardized by the International

Organization for Standardization as ISO

16, and as such it is used as a reference

frequency to calibrate the equipment and

instruments to be used in tuning. EADGBe

was chosen as the ‘standard’ tuning for a

guitar, mostly due to playability across keys

and scales, making the arrangement of

music to be the most pragmatic in this

tuning. With that said, since we are

operating under the generally accepted

standardization of EADGBe tuning, with

accompanying Scientific Musical Notation.

Tuning Frequency Units Scientific

Musical Notation

E 82 Hz E2

A 110 Hz A2

D 147 Hz D3

G 196 Hz G3

B 247 Hz B3

e 330 Hz E4
Table 1,Frequencies for Guitar Standard Tuning

Tuning any stringed instrument, is

essentially following math formulas. For

the purpose of our project, as can be

surmised from the statements thus far, a

guitar was chosen as the basis for the

determination, testing, and conclusion of

our project. This ties in easily, specifically,

to the tuning methodology since a guitar is

divided easily into the different

components that allow the tuning to be

changed on the system significantly quicker

than with other instruments due to our

group’s familiarity with the instrument. [1]

The process for tuning a guitar is broken

down into using the tuning pegs that

correspond to the order of the strings

previously mentioned, that are typically

located at the headstock of the guitar. Each

tuning peg is turned to either tighten the

string that is attached increasing the tension

and thus pitch, or loosening the string,

decreasing tension, and thus decreasing the

pitch of the guitar. This changing of the

pitch, through the vibrations through the

strings and into the body of our device is

what will aid in determining the frequency,

octave, and cents necessary for final tuning.

[2]

For facilitating the discussion, the

previous three terms are defined as such:

a) Frequency – this is the vibrational

frequency carried from the moment

the string is plucked, through the

body, and detected by the sensor on

the device, or it is the signal picked

up by the electric pickups on a guitar

and then the signal is carried onto

the device to determine what

frequency is picked up.

b) Octave – An octave is an interval in

which the frequency of vibration of

a higher note has twice the

frequency than a note who’s lower.

For example, the standard pitch A

above middle C has a frequency of

440 Hz, and so an octave above this

vibrates at 880 Hz, and the octave

below this vibrates at 220 Hz. This

doubling/halving is consistent

across all notes.

c) Cents – A cent is a unit of pitch that

is based on an octave. Between each

octave there are 1200 cents, and so

the division of each interval

between octaves is used in

determining the semitones with

different subdivisions to determine

the notes that lie within that octave.

[3]

An octave has a span of twelve equally

tempered semitones, which is why we can

determine that in an octave there are 1200

cents. Our approach to determine the

accuracy of tuning based on our inputs

utilizes both concepts, hand in hand. Our

system utilizes a table of known values that

would serve as a basis to compare to, to

then calculate the number cents the device

needs to adjust the string tension by.

To determine the cents (¢) we use Formula

(1).

¢ = 1200 × log2 (
𝑅𝑒𝑓. 𝐹𝑟𝑒𝑞.

𝐼𝑛𝑝𝑢𝑡 𝐹𝑟𝑒𝑞.
) (1)

Where 𝑅𝑒𝑓. 𝐹𝑟𝑒𝑞 is our reference frequency

from the table of known values used, and

𝐼𝑛𝑝𝑢𝑡 𝐹𝑟𝑒𝑞. is the input frequency

originating from the guitar after being simply

processed by our software. [4]

The calculation of an octave comes into

play when there are multiple strings, at

different octaves, being tuned. Since they are

still the same note we don’t need to change

the overall workings of the system, just adjust

the frequencies in order to read that they’re

the same, but at a different pitch.

𝑂𝑐𝑡𝑎𝑣𝑒 = log2 (
𝑅𝑒𝑓.𝐹𝑟𝑒𝑞.

𝐼𝑛𝑝𝑢𝑡 𝐹𝑟𝑒𝑞.
) (2)

Similarly, we use the known 𝑅𝑒𝑓. 𝐹𝑟𝑒𝑞.
and calculate the ratio by dividing with the

𝐼𝑛𝑝𝑢𝑡 𝐹𝑟𝑒𝑞. and taking the logarithm with a

base of 2 to determine if the 𝐼𝑛𝑝𝑢𝑡 𝐹𝑟𝑒𝑞. is

an octave of the 𝑅𝑒𝑓. 𝐹𝑟𝑒𝑞. , using these two

equation in conjunction allows the system to

determine how much to spin the motor based

on the accuracy parameters defined.

III. SYSTEM COMPONENTS

The system is best described as having

multiple key components that are shown in

Figure 1 below.

Figure 1, Hardware Block Diagram

A. ESP – 12E Module

The main functioning component of the

project is the ESP8266, with the ESP12-E

as the main module that is utilized to

integrate all the components with. This

module was chosen for its memory

capacity, low power consumption, and

WIFI connection capabilities. The Arduino

IDE and the built-in compiler are used in

conjunction with a burner fixture test board

to program, develop, and test the individual

ESP12-E module.

B. Flash Memory

All the necessary code for operation of

the final prototype, the miscellaneous GUI

elements, and stored frequency libraries are

stored on the module’s internal

ROM/RAM. As such, the libraries that

were ultimately used, the software that was

developed and integrated into our final

project was all chosen after determining

that the memory consumption when

loading/executing the instructions for the

entire program could be run from the

available on-board memory contained

within the ESP12-E module.

C. DC Brushless Motor

We used a brushless DC motor that

operates at 12V that can function up to 159

rpm. The motor comes with an encoder so

there is no extra need for a on board driver.

The holding torque is .231 Nm which falls

into the range that is needed to be able to

turn. The motor is compatible with the

Arduino software that is being used.

D. 3.7V LiPo Battery

For powering the whole system, a 3.7

Volt Lithium-ion polymer 1200 mAh

battery is used. The overall system is going

to need power an OLED screen, processor,

driver and motor. Since the battery is going

to be a DC power supply there is going to

be a way to recharge the battery after it is

depleted. The charging is USB-C charging

since it is commonly found along most

phone charger types so if the charger for the

device is ever lost a phone charging cable

will make a good substitute for it.

E. ¼” OP jack

The Pure Tone output jack has two live

connection pins and two ground connection

pins that connect to the cable coming from

the guitar, mainly for electric. It also has an

extra ground pin to complete the

connection in the circuit it plugs into. The

advantage of having these two extra pins is

added reliability, accuracy and longevity of

the product.

F. TFT Display

The TFT display screen is a 1.3” LCD

and is 240x240 pixels. The screen features

a clock and data pin to set up an SPI

connection with our ESP8266. It also

comes equipped with an Arduino integrated

circuit driver with a documented library for

implementing graphics in the Arduino ide

to help create our graphical user interface.

The screen is used for an interactive display

for the user to swap between settings for the

tuner.

G. Piezoelectric sensor

This Piezoelectric sensor will be

directly connected to the MCU to be able to

utilize it as the main point of contact at

which we will begin to test the capabilities

of vibrational sensing and thus begin our

signal processing. For the sensor it

communicates to the MCU through the

analog input pin that the board has, as these

are devices that generate an analog ‘signal’,

vibration, to be processed into what we

ultimately need to be able to accomplish

what Pick Pocket Tuner set out to do.

IV. SYSTEM CONCEPT

The device could be understood as a

whole system with the following flowchart

showing in detail the operation procedure.

Figure 2 shows how the device carries out

all the functions and computations that are

necessary to achieve the desired result of

this system.

.

V. HARDWARE DETAIL

Various components were utilized for

this project. Between all of the components,

the electrical engineering students design

two printed circuit boards and a housing

that would enclose the entire device in a

small hand-held product that could fit in a

pocket.

A. Microcontroller

The microcontroller board contains the

esp12-E module and all the connections for

the peripherals. The main goal for this design

was to design a board that would be smaller

in size to be able to fit in the palm of your

hand. This was accomplished after creating

smaller the board needed to be redesigned 3

different times, and on the third model,

everything but one component was working

how we wanted it to work. Some components

that are included on the board are: a low

dropout regulated that supplies 3.3V from the

battery with an efficiency of 78% to 91%,

connections for the direction wires on the

motor, connections for the screen,

connections for the sensors, and buttons to

control the interface. There was no need for

pins that create a serial connection to the

programming setup since we can program the

device using over the air transmission. This

we very useful when the device was

completely assembled, and we were able to

debug the device without disassembling the

entire project every time we wanted to flash

code. The only issue that we ran into without

circuit board was the incorporation of a

buzzer. The buzzer was connected to GPIO0

and was not allowing the board to boot

properly. This as the only peripheral that we

were not able to fix in time for our final

presentation. [5]

B. 12V Regulator

The regulator that we designed contained

twenty-nine components and utilized an

LM25118 controller to regulate to the correct

voltage. The input range that the regulator

was designed for 3V to 4.2V and the output

was designed for an output of 12V and

Figure 2. Software flow of system

700mA. 700mA was the max amperage that

the motor would draw which is the reason the

regulator was designed this way. There were

four iterations of the board, and the final

design was very close to working. There were

some issues with the footprints that were

gathered from UltraLibrarian that were

causing the board to have an internal short

that was very difficult to find. It was finally

found on the final iteration, however there

was not enough time to order a final PCB that

was expected to work. We substituted the

regulator for a premade Buck boost converter

that was found online and used for most of

our prototyping. [6]

 This provided enough current ad voltage

to power the motor to full capacity.

C. Product Housing

The product housing was designed using

Fusion 360. The reason nwe chose to use

fusion 360, was that it already contained all

our PCB files and were able to model the

housing around the 3D models of the PCBs.

Paul Grayford modeled most of the housing

and Lucas was able to 3D print three

iterations of the housing. The final iteration

can fit in one hand, and fits all of the

components for our project very securely.

VI. SOFTWARE DETAIL

Before the software portion of the

entire system can be thoroughly explained,

we must establish that the purpose for the

whole project is to control the motor,

screen, and take the input from a piezo

sensor to tune a guitar accurately. The

whole crux of this project depends on the

proper execution and determination of all

the pieces compose a “musical note”. To

define this, we reference the formulas

defined in the Tuning Background section,

and then based on the expected response

our designed GUI will relay the necessary

information.

Figure 3, 3.7V to 12V Schematic

Figure 4, PCB Schematic

A. System Firmware

The software is developed entirely in

Arduino which utilizes C/C++ dialect. Our

microcontroller communicates with the

TFT display via SPI, with the brushless DC

motor via PWM, and the buttons via

interrupts.

The Wi-Fi module on the

microcontroller was used for over-the-air

programming. This was required for any

changes to the code that were made after the

ESP12-E device was soldered onto our

PCB. The libraries necessary for making

this WIFI connection were EEPROM,

ESP8266WiFi, ESP8266WebServer,

ArduinoOTA. The ESP12-E is setup to

connect to a certain Wi-Fi for programming

purposes and if the connection is failed it

will create its own web server. This web

server can then be connected to for

reconfiguring the connections. This is vital,

as a connection to the microcontroller can

be always made even if initial Wi-Fi

connections fail.

The graphics drivers necessary for

communicating with the display were the

Adafruit_GFX and Adafruit_ST7789

libraries. These libraries aided into the

creation of the GUI for the software with

their built-in functions for drawing shapes

and displaying text.

The utilization of the formulas defined

by section II above are paramount in

determining that the software we have

implements is working appropriately.

Through the previously mentioned

hardware components we take the raw

input from the source and passes the input

through an open-source Fast Fourier

Transform implementation for us to obtain

a frequency value to use. Once this is done,

we then take that input value, calculate the

cents and octave to ensure where the

accuracy of the sensor reading lies, all the

while relaying the necessary information to

turn the motor in the correct direction and

for a pre-determined amount of time. This

turning of the motor is what adjusts the

tuning peg tension, and this whole process

repeats while still accepting the incoming

input from the person strumming the guitar.

Throughout this entire process, the GUI

updates consistently to relay the

information necessary to the display to

show the user whether the string is at the

desired frequency/note. This above is the

majority core of functionality of the

software system and the functions involved

in this process are as follows:

 (1) The tuning() function takes the

original transformed input frequency

values and calculates the cents between the

current frequency and the target frequency

for the current string being tuned. Based on

the cents value the spinMotor() functions

are called. Then the new current frequency

is calculated, and the new current cents

value is calculated to start the process over

until the string is tuned.

(2) The cents_calculate() function is

used to calculate the cents of the two

frequencies passed in, this function is a

direct representation of the formula that

was discussed in section II. A negative

cents value is returned if the input

frequency is higher than the target

frequency and a positive cents value is

returned if the opposite is calculated. The

polarity of this value is essential for tuning

as the motor will turn the peg in the right

direction tightening/loosening the string.

(3) The octave_calc() function is

used to calculate the octave in which the

input is in. This allows the firmware to be

able to determine that at different octaves

the note is still the same, for example, an E

note with frequency 82.41 Hz is also the

same E note if it has double the frequency

at 164.82 Hz. This allows us to filter out

any errors and improve the efficiency in

which we tune.

(4) The spinMotorSharp() function

tightens the peg resulting in a higher

frequency. This function is called when the

cents value returned is positive, therefore

being les than the target frequency. Another

input for this function is the time duration

as it varies due to the magnitude of the cents

value as the higher the value, the larger

difference between the frequencies.

(5) The spinMotorFlat() function

works in the same way as the

spinMotorSharp() function. However, it

spins the motor in the opposite direction as

the cents value returned is negative and

therefore loosens the string to a lower

frequency.

(6) The fft() function reads in the

analog voltage input from either the ¼” jack

or the piezoelectric sensor and stores the

values into a sample array. This sample

array is transformed via the arduinoFFT

library and returns the peak frequency

value in hertz.

Using these above functions, in one

manner or another, through various

comparisons is what achieves the automatic

tuning based on the parameters we’ve

defined. Throughout the entire firmware,

the function fft() is used to convert the raw

input data from the guitar, via either the ¼”

input jack or the piezoelectric sensor, to a

usable frequency in hertz. The

cents_calculate and octave_calc functions

are implemented using the same

methodology described in the Tuning

Background section above using the

corresponding formulas.

VII. RESULTS

After much debugging and testing,

we were able to deliver a product that could

tune a guitar in sixty seconds. There were a

few design features that did not play out as

we expected, like the accuracy of picking

up the vibrations. When the device worked

well, the accuracy was near perfect, but

because of some issues with the housing

and other unforeseen issues, the value that

was being read was off at some points. We

believe that this was due to the housing

design. The piezoelectric sensors were

placed farther away from the motor than we

previously thought, and because of this, we

were not able to pick up the signal as clearly

as we would have liked to.

Another design change that could

have been implemented was to fine tune the

Fast Fourier Transform function. Overall,

function performed with accuracy, but

there was still some margin of error,

especially on the G string. The difficulty of

this string was that it always gave a lower

reading than what it was. Besides this issue,

the function performed well enough to get

us into the range we needed.

Finally, the last issue we would have

liked to solve was the bouncing of the

center button on our device. This button

would bounce the worst, and we tried

increasing the resistance on the connection,

and trying to add delays in the software,

however, nothing we tried fixed it

completely.

 Other than these design issues, we

were proud with how the final product

came out. If the product was working

smoothly, we were able to tune a guitar

quickly and accurately as well as meet or

exceed all of the specification for our

product. The senior design team learned a

substantial amount from this project and

learned many lessons that will translate

well, once our team enters the workforce.

VIII. THE ENGINEERS

Luke Grayford – Electrical Engineer

Graduating under electrical

engineering comprehensive

track and pursuing the next

steps toward a future career

with any willing

engineering company or

firm.

Paul Grayford – Electrical Engineer

Graduating as an electrical

engineering student, Paul

will take his talents to

Lockheed Martin and work

at the Kennedy Space

Center for the commercial

project Orion as an electrical test engineer.

Jamie Henry – Computer Engineer

Graduating as a computer

engineering student, Jamie

has accepted an offer to

work for SkillStorm as a

Software Engineer in May.

Luis Vargas – Computer Engineer

Graduating as a Computer

Engineering student, Luis

will be joining Boeing in St.

Louis, Mo as a Software

Engineer working on the F-

15 Mission Systems.

IX. References

[1] Dan. (2019, October 2). What are the

guitar string frequencies? Fret

Success - Guitar Tuition. Retrieved

April 19, 2022, from

https://fretsuccess.com/what-are-the-

guitar-string-frequencies/

[2] Sengpiel, Eberhard. “Cents to Frequency

Ratios Conversion and Convert

Frequency Ratio to Cents -

Sengpielaudio Sengpiel Berlin.”

Conversion of Intervals - Cents to

Frequency,

www.sengpielaudio.com/calculator-

centsratio.htm. Accessed 19 Apr.

2022.

[3] Rod Nave, Carl. “The Use of Cents for

Expressing Musical Intervals.” The

Use of Cents for Expressing Musical

Intervals, 1999, hyperphysics.phy-

astr.gsu.edu/hbase/Music/cents.html

[4] Suits, B. H. “Making Sense of Cents.”

Making Sense of Cents,

pages.mtu.edu/%7Esuits/cents.html.

Accessed 19 Apr. 2022.

[5] Microchip. (2020, February 28).

MCP1700 low quiescent current

LDO data sheet. Retrieved April

19, 2022, from

https://my.mouser.com/datasheet/2/

268/MCP1700-Low-Quiescent-

Current-LDO-20001826E-

737536.pdf

[6] Power designer. (n.d.). Retrieved April

19, 2022, from

https://webench.ti.com/power-

designer/switching-

regulator/customize/12

