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Abstract – The objective of this project is to design 

an automatic tuner for stringed instruments, 

mainly guitars. Our project is designed to be 

utilized for all skill levels of musicians, from 

beginners to skilled players, to quickly tune their 

instrument regardless of whether they are on stage 

in a loud environment, or in a closed practice room. 

The user should be able to tune their guitars in an 

accurate and fast manner to the correct frequency. 

 

I. INTRODUCTION 

 

To tune a stringed instrument, a peg 

is used for tightening or loosening the string 

threaded into a cylinder. This peg usually 

consists of a worm drive and the peg head 

or key. The worm drive consists of a screw-

like gear and a spur gear to create a smaller 

volume object with similar gear ratios. 

Some players also use peg locks to help 

ensure that the peg will stay in place to help 

reduce loss in tuning on the string. 

 

The purpose of tuning a stringed 

instrument is to create sounds that illicit 

emotions in those who hear and play it. 

Tuning the strings to the correct pitches 

ensures that all notes that can be played on 

the instrument will make the correct sounds 

and will create captivating music. To 

ascertain that the tuning of a stringed 

instrument is correct, the user would match 

the frequency of the plucked string to a 

known frequency, such as a tuning fork or 

another audible device, by ear. However, 

tuning stringed instruments by ear could 

lead to incorrect tuning and incorrect 

pitches across the strings. This has led to 

the creation of automatic guitar tuners to 

eliminate human error and make the tuning 

process faster. 

 

Sensors are used by these automatic 

guitar tuners to help eliminate the human 

error. These include vibrational and 

microphone sensors that pick up the 

frequency of the plucked string. This gives 

an accurate reading of the string’s 

frequency that can then be compared to the 

tuning specifications. Our group’s Pick 

Pocket guitar tuner uses a Piezo vibrational 

sensor that will sit in the housing of the 

product to pick up that string’s frequency. 

This frequency, read in as analog voltage, 

will then have to be transformed into the 

frequency domain to read its value. To 

achieve this, the Fast Fourier Transform is 

used. The Fast Fourier Transform was 

chosen as opposed to the Discrete Fourier 

Transform solely on computation time. 

Since time is valuable to our automatic 

tuner and is one of the deciding factors 

among competitors. 

 

II. TUNING BACKGROUND 

 

For a guitar, the tuning standards have 

been established for some time, and many 

people will argue about which frequency to 

use for a specific intonation. When 

referring to standard tuning on a guitar it is 

usually EADGBe tuning, which is based on 

the pitch standard of A440. Breaking this 

down, the thickest and lowest tone string is 

the E, followed by A, all the way until you 

get to the thinnest which is the e string, on 

a traditional, right-handed guitar it would 

be that the strings go from left to right, from 

thickest to thinnest.  

 



The A440 standard is referred to as the 

Stuttgart Pitch, and it is corresponding to 

the 440Hz frequency for the A note above 

the middle C in a Piano. This A440 pitch is 

standardized by the International 

Organization for Standardization as ISO 

16, and as such it is used as a reference 

frequency to calibrate the equipment and 

instruments to be used in tuning. EADGBe 

was chosen as the ‘standard’ tuning for a 

guitar, mostly due to playability across keys 

and scales, making the arrangement of 

music to be the most pragmatic in this 

tuning.  With that said, since we are 

operating under the generally accepted 

standardization of EADGBe tuning, with 

accompanying Scientific Musical Notation. 

 
Tuning Frequency Units Scientific 

Musical Notation 

E 82 Hz E2 

A 110 Hz A2 

D 147 Hz D3 

G 196 Hz G3 

B 247 Hz B3 

e  330 Hz E4 
Table 1,Frequencies for Guitar Standard Tuning 

Tuning any stringed instrument, is 

essentially following math formulas. For 

the purpose of our project, as can be 

surmised from the statements thus far, a 

guitar was chosen as the basis for the 

determination, testing, and conclusion of 

our project. This ties in easily, specifically, 

to the tuning methodology since a guitar is 

divided easily into the different 

components that allow the tuning to be 

changed on the system significantly quicker 

than with other instruments due to our 

group’s familiarity with the instrument. [1] 

 

The process for tuning a guitar is broken 

down into using the tuning pegs that 

correspond to the order of the strings 

previously mentioned, that are typically 

located at the headstock of the guitar. Each 

tuning peg is turned to either tighten the 

string that is attached increasing the tension 

and thus pitch, or loosening the string, 

decreasing tension, and thus decreasing the 

pitch of the guitar. This changing of the 

pitch, through the vibrations through the 

strings and into the body of our device is 

what will aid in determining the frequency, 

octave, and cents necessary for final tuning. 

[2] 

 

For facilitating the discussion, the 

previous three terms are defined as such: 

 

a) Frequency – this is the vibrational 

frequency carried from the moment 

the string is plucked, through the 

body, and detected by the sensor on 

the device, or it is the signal picked 

up by the electric pickups on a guitar 

and then the signal is carried onto 

the device to determine what 

frequency is picked up. 

 

b) Octave – An octave is an interval in 

which the frequency of vibration of 

a higher note has twice the 

frequency than a note who’s lower. 

For example, the standard pitch A 

above middle C has a frequency of 

440 Hz, and so an octave above this 

vibrates at 880 Hz, and the octave 

below this vibrates at 220 Hz. This 

doubling/halving is consistent 

across all notes.  

  

c) Cents – A cent is a unit of pitch that 

is based on an octave. Between each 

octave there are 1200 cents, and so 

the division of each interval 

between octaves is used in 

determining the semitones with 

different subdivisions to determine 

the notes that lie within that octave.  

[3] 



An octave has a span of twelve equally 

tempered semitones, which is why we can 

determine that in an octave there are 1200 

cents.  Our approach to determine the 

accuracy of tuning based on our inputs 

utilizes both concepts, hand in hand. Our 

system utilizes a table of known values that 

would serve as a basis to compare to, to 

then calculate the number cents the device 

needs to adjust the string tension by.  

 

To determine the cents (¢) we use Formula 

(1).  

¢ =  1200 × log2 (
𝑅𝑒𝑓. 𝐹𝑟𝑒𝑞.

𝐼𝑛𝑝𝑢𝑡 𝐹𝑟𝑒𝑞.
) (1) 

 

Where 𝑅𝑒𝑓. 𝐹𝑟𝑒𝑞 is our reference frequency 

from the table of known values used, and 

𝐼𝑛𝑝𝑢𝑡 𝐹𝑟𝑒𝑞. is the input frequency 

originating from the guitar after being simply 

processed by our software. [4] 

 

The calculation of an octave comes into 

play when there are multiple strings, at 

different octaves, being tuned. Since they are 

still the same note we don’t need to change 

the overall workings of the system, just adjust 

the frequencies in order to read that they’re 

the same, but at a different pitch. 

 

𝑂𝑐𝑡𝑎𝑣𝑒 =  log2 (
𝑅𝑒𝑓.𝐹𝑟𝑒𝑞.

𝐼𝑛𝑝𝑢𝑡 𝐹𝑟𝑒𝑞.
) (2) 

  

Similarly, we use the known 𝑅𝑒𝑓.  𝐹𝑟𝑒𝑞. 
and calculate the ratio by dividing with the 

𝐼𝑛𝑝𝑢𝑡 𝐹𝑟𝑒𝑞. and taking the logarithm with a 

base of 2 to determine if the 𝐼𝑛𝑝𝑢𝑡 𝐹𝑟𝑒𝑞. is 

an octave of the 𝑅𝑒𝑓.  𝐹𝑟𝑒𝑞. , using these two 

equation in conjunction allows the system to 

determine how much to spin the motor based 

on the accuracy parameters defined.  

 
III. SYSTEM COMPONENTS 

 

The system is best described as having 

multiple key components that are shown in 

Figure 1 below. 

 

 
Figure 1, Hardware Block Diagram 

 

A. ESP – 12E Module 

The main functioning component of the 

project is the ESP8266, with the ESP12-E 

as the main module that is utilized to 

integrate all the components with. This 

module was chosen for its memory 

capacity, low power consumption, and 

WIFI connection capabilities. The Arduino  

IDE and the built-in compiler are used in 

conjunction with a burner fixture test board 



to program, develop, and test the individual 

ESP12-E module.  

 

B. Flash Memory 

All the necessary code for operation of 

the final prototype, the miscellaneous GUI 

elements, and stored frequency libraries are 

stored on the module’s internal 

ROM/RAM. As such, the libraries that 

were ultimately used, the software that was 

developed and integrated into our final 

project was all chosen after determining 

that the memory consumption when 

loading/executing the instructions for the 

entire program could be run from the 

available on-board memory contained 

within the ESP12-E module.  

 

C. DC Brushless Motor 

We used a brushless DC motor that 

operates at 12V that can function up to 159 

rpm. The motor comes with an encoder so 

there is no extra need for a on board driver. 

The holding torque is .231 Nm which falls 

into the range that is needed to be able to 

turn. The motor is compatible with the 

Arduino software that is being used.  

 

D. 3.7V LiPo Battery 

For powering the whole system, a 3.7 

Volt Lithium-ion polymer 1200 mAh 

battery is used. The overall system is going 

to need power an OLED screen, processor, 

driver and motor. Since the battery is going 

to be a DC power supply there is going to 

be a way to recharge the battery after it is 

depleted. The charging is USB-C charging 

since it is commonly found along most 

phone charger types so if the charger for the 

device is ever lost a phone charging cable 

will make a good substitute for it. 

 

E. ¼” OP jack 

The Pure Tone output jack has two live 

connection pins and two ground connection 

pins that connect to the cable coming from 

the guitar, mainly for electric. It also has an 

extra ground pin to complete the 

connection in the circuit it plugs into. The 

advantage of having these two extra pins is 

added reliability, accuracy and longevity of 

the product.  

 

F. TFT Display 

The TFT display screen is a 1.3” LCD 

and is 240x240 pixels. The screen features 

a clock and data pin to set up an SPI 

connection with our ESP8266. It also 

comes equipped with an Arduino integrated 

circuit driver with a documented library for 

implementing graphics in the Arduino ide 

to help create our graphical user interface. 

The screen is used for an interactive display 

for the user to swap between settings for the 

tuner. 

 

G. Piezoelectric sensor 

This Piezoelectric sensor will be 

directly connected to the MCU to be able to 

utilize it as the main point of contact at 

which we will begin to test the capabilities 

of vibrational sensing and thus begin our 

signal processing. For the sensor it 

communicates to the MCU through the 

analog input pin that the board has, as these 

are devices that generate an analog ‘signal’, 

vibration, to be processed into what we 

ultimately need to be able to accomplish 

what Pick Pocket Tuner set out to do. 
 

IV. SYSTEM CONCEPT 

 

The device could be understood as a 

whole system with the following flowchart 

showing in detail the operation procedure. 

Figure 2 shows how the device carries out 

all the functions and computations that are 

necessary to achieve the desired result of 

this system. 



.  
 

V. HARDWARE DETAIL 

 

Various components were utilized for 

this project. Between all of the components, 

the electrical engineering students design 

two printed circuit boards and a housing 

that would enclose the entire device in a 

small hand-held product that could fit in a 

pocket.  

 

A. Microcontroller  

The microcontroller board contains the 

esp12-E module and all the connections for 

the peripherals. The main goal for this design 

was to design a board that would be smaller 

in size to be able to fit in the palm of your 

hand. This was accomplished after creating 

smaller the board needed to be redesigned 3 

different times, and on the third model, 

everything but one component was working 

how we wanted it to work. Some components 

that are included on the board are: a low 

dropout regulated that supplies 3.3V from the 

battery with an efficiency of 78% to 91%, 

connections for the direction wires on the 

motor, connections for the screen, 

connections for the sensors, and buttons to 

control the interface. There was no need for 

pins that create a serial connection to the 

programming setup since we can program the 

device using over the air transmission. This 

we very useful when the device was 

completely assembled, and we were able to 

debug the device without disassembling the 

entire project every time we wanted to flash 

code. The only issue that we ran into without 

circuit board was the incorporation of a 

buzzer. The buzzer was connected to GPIO0 

and was not allowing the board to boot 

properly. This as the only peripheral that we 

were not able to fix in time for our final 

presentation. [5] 

 

B. 12V Regulator 

The regulator that we designed contained 

twenty-nine components and utilized an 

LM25118 controller to regulate to the correct 

voltage. The input range that the regulator 

was designed for 3V to 4.2V and the output 

was designed for an output of 12V and 

Figure 2. Software flow of system 



700mA. 700mA was the max amperage that 

the motor would draw which is the reason the 

regulator was designed this way. There were 

four iterations of the board, and the final 

design was very close to working. There were 

some issues with the footprints that were 

gathered from UltraLibrarian that were 

causing the board to have an internal short 

that was very difficult to find. It was finally 

found on the final iteration, however there 

was not enough time to order a final PCB that 

was expected to work. We substituted the 

regulator for a premade Buck boost converter 

that was found online and used for most of 

our prototyping. [6] 

 This provided enough current ad voltage 

to power the motor to full capacity.  

 

C. Product Housing 

The product housing was designed using 

Fusion 360. The reason nwe chose to use 

fusion 360, was that it already contained all 

our PCB files and were able to model the 

housing around the 3D models of the PCBs. 

Paul Grayford modeled most of the housing 

and Lucas was able to 3D print three 

iterations of the housing. The final iteration 

can fit in one hand, and fits all of the 

components for our project very securely.  

 

 

 

 

VI. SOFTWARE DETAIL 

 

Before the software portion of the 

entire system can be thoroughly explained, 

we must establish that the purpose for the 

whole project is to control the motor, 

screen, and take the input from a piezo 

sensor to tune a guitar accurately. The 

whole crux of this project depends on the 

proper execution and determination of all 

the pieces compose a “musical note”. To 

define this, we reference the formulas 

defined in the Tuning Background section, 

and then based on the expected response 

our designed GUI will relay the necessary 

information.  

Figure 3, 3.7V to 12V Schematic 

Figure 4, PCB Schematic 



 

 

A. System Firmware 

 

The software is developed entirely in 

Arduino which utilizes C/C++ dialect. Our 

microcontroller communicates with the 

TFT display via SPI, with the brushless DC 

motor via PWM, and the buttons via 

interrupts. 

The Wi-Fi module on the 

microcontroller was used for over-the-air 

programming. This was required for any 

changes to the code that were made after the 

ESP12-E device was soldered onto our 

PCB. The libraries necessary for making 

this WIFI connection were EEPROM, 

ESP8266WiFi, ESP8266WebServer, 

ArduinoOTA. The ESP12-E is setup to 

connect to a certain Wi-Fi for programming 

purposes and if the connection is failed it 

will create its own web server. This web 

server can then be connected to for 

reconfiguring the connections. This is vital, 

as a connection to the microcontroller can 

be always made even if initial Wi-Fi 

connections fail. 

The graphics drivers necessary for 

communicating with the display were the 

Adafruit_GFX and Adafruit_ST7789 

libraries. These libraries aided into the 

creation of the GUI for the software with 

their built-in functions for drawing shapes 

and displaying text. 

The utilization of the formulas defined 

by section II above are paramount in 

determining that the software we have 

implements is working appropriately. 

Through the previously mentioned 

hardware components we take the raw 

input from the source and passes the input 

through an open-source Fast Fourier 

Transform implementation for us to obtain 

a frequency value to use. Once this is done, 

we then take that input value, calculate the 

cents and octave to ensure where the 

accuracy of the sensor reading lies, all the 

while relaying the necessary information to 

turn the motor in the correct direction and 

for a pre-determined amount of time. This 

turning of the motor is what adjusts the 

tuning peg tension, and this whole process 

repeats while still accepting the incoming 

input from the person strumming the guitar. 

Throughout this entire process, the GUI 

updates consistently to relay the 

information necessary to the display to 

show the user whether the string is at the 

desired frequency/note.  This above is the 

majority core of functionality of the 

software system and the functions involved 

in this process are as follows:  

 

 
 (1) The tuning() function takes the 

original transformed input frequency 

values and calculates the cents between the 

current frequency and the target frequency 

for the current string being tuned. Based on 

the cents value the spinMotor() functions 

are called. Then the new current frequency 

is calculated, and the new current cents 

value is calculated to start the process over 

until the string is tuned. 

(2) The cents_calculate() function is 

used to calculate the cents of the two 

frequencies passed in, this function is a 

direct representation of the formula that 

was discussed in section II. A negative 

cents value is returned if the input 

frequency is higher than the target 

frequency and a positive cents value is 

returned if the opposite is calculated. The 

polarity of this value is essential for tuning 

as the motor will turn the peg in the right 

direction tightening/loosening the string. 



(3) The octave_calc() function is 

used to calculate the octave in which the 

input is in. This allows the firmware to be 

able to determine that at different octaves 

the note is still the same, for example, an E 

note with frequency 82.41 Hz is also the 

same E  note if it has double the frequency 

at 164.82 Hz. This allows us to filter out 

any errors and improve the efficiency in 

which we tune.   

(4) The spinMotorSharp() function 

tightens the peg resulting in a higher 

frequency. This function is called when the 

cents value returned is positive, therefore 

being les than the target frequency. Another 

input for this function is the time duration 

as it varies due to the magnitude of the cents 

value as the higher the value, the larger 

difference between the frequencies. 

(5) The spinMotorFlat() function 

works in the same way as the 

spinMotorSharp() function. However, it 

spins the motor in the opposite direction as 

the cents value returned is negative and 

therefore loosens the string to a lower 

frequency. 

(6) The fft() function reads in the 

analog voltage input from either the ¼” jack 

or the piezoelectric sensor and stores the 

values into a sample array. This sample 

array is transformed via the arduinoFFT 

library and returns the peak frequency 

value in hertz. 

Using these above functions, in one 

manner or another, through various 

comparisons is what achieves the automatic 

tuning based on the parameters we’ve 

defined. Throughout the entire firmware, 

the function fft() is used to convert the raw 

input data from the guitar, via either the ¼” 

input jack or the piezoelectric sensor,  to a 

usable frequency in hertz. The 

cents_calculate and octave_calc functions 

are implemented using the same 

methodology described in the Tuning 

Background section above using the 

corresponding formulas.  

 

VII. RESULTS 
 

After much debugging and testing, 

we were able to deliver a product that could 

tune a guitar in sixty seconds. There were a 

few design features that did not play out as 

we expected, like the accuracy of picking 

up the vibrations. When the device worked 

well, the accuracy was near perfect, but 

because of some issues with the housing 

and other unforeseen issues, the value that 

was being read was off at some points. We 

believe that this was due to the housing 

design. The piezoelectric sensors were 

placed farther away from the motor than we 

previously thought, and because of this, we 

were not able to pick up the signal as clearly 

as we would have liked to.  

Another design change that could 

have been implemented was to fine tune the 

Fast Fourier Transform function. Overall, 

function performed with accuracy, but 

there was still some margin of error, 

especially on the G string. The difficulty of 

this string was that it always gave a lower 

reading than what it was. Besides this issue, 

the function performed well enough to get 

us into the range we needed.  

Finally, the last issue we would have 

liked to solve was the bouncing of the 

center button on our device. This button 

would bounce the worst, and we tried 

increasing the resistance on the connection, 

and trying to add delays in the software, 

however, nothing we tried fixed it 

completely.  

 Other than these design issues, we 

were proud with how the final product 

came out. If the product was working 

smoothly, we were able to tune a guitar 

quickly and accurately as well as meet or 

exceed all of the specification for our 



product. The senior design team learned a 

substantial amount from this project and 

learned many lessons that will translate 

well, once our team enters the workforce. 

 

 

VIII. THE ENGINEERS 

 

Luke Grayford – Electrical Engineer  

Graduating under electrical 

engineering comprehensive 

track and pursuing the next 

steps toward a future career 

with any willing 

engineering company or 

firm. 

 

Paul Grayford – Electrical Engineer 

Graduating as an electrical 

engineering student, Paul 

will take his talents to 

Lockheed Martin and work 

at the Kennedy Space 

Center for the commercial 

project Orion as an electrical test engineer. 

 

Jamie Henry – Computer Engineer 

Graduating as a computer 

engineering student, Jamie 

has accepted an offer to 

work for SkillStorm as a 

Software Engineer in May. 

 

Luis Vargas – Computer Engineer  

Graduating as a Computer 

Engineering student, Luis 

will be joining Boeing in St. 

Louis, Mo as a Software 

Engineer working on the F-

15 Mission Systems. 
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