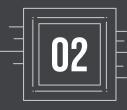


CSS: CAR SENTRY SYSTEM

Group 38

Qrizelle Crisostomo, CpE Ricardo Nunes Alcobia, CpE Ari Pantoja, EE Robert Zarrella, EE


TABLE OF CONTENTS

PROJECT Overview

Motivation, Project Goals/Objectives, Specifications & Requirements

COMPUTER VISION & MOBILE APPLICATION

CV/App Flow & Design, Physical Components Used, & Software Technologies Used


FIRMWARE & Modules

Firmware Flow & Design, Components Implemented with Firmware

TABLE OF CONTENTS

POWER & PCB

Power Supply Flow & Design, Schematics, & System Integration,

- ENCLOSURE

Construction & Specifications

ightarrow conclusion

Successes/Challenges, Administration, & Open to Questions

PROJECT OVERVIEW

 $\left(\right)$

MOTIVATION

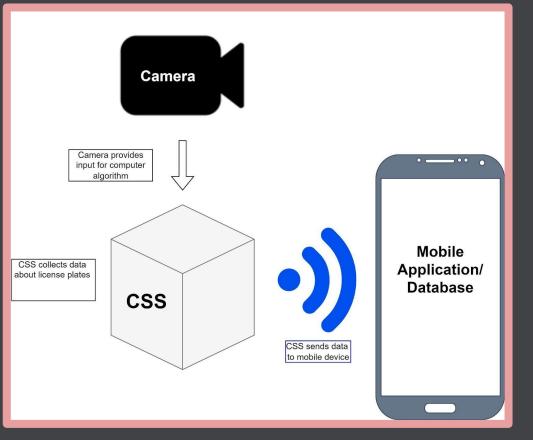
- Driving is a <u>dangerous</u> activity
 O Hit & Run/Reckless Driving
- Difficulty in Memorization
- Wide range of applications
 - Parking
 - \circ Tolls
 - Grounds Management

GOALS AND OBJECTIVES

GOAL: Produce a low-cost, portable license plate scanner for the average day-to-day driver

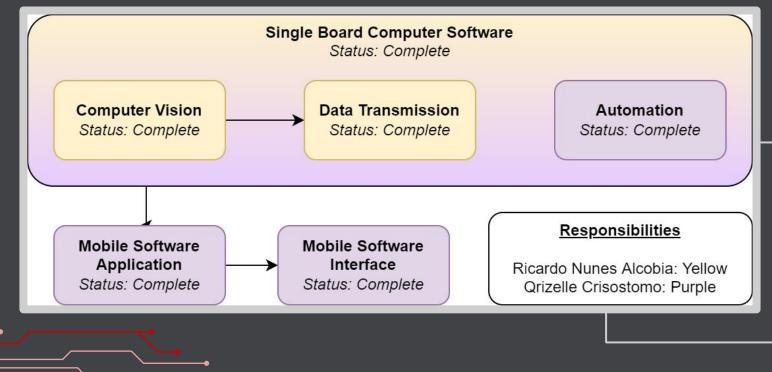
OBJECTIVES:

- Scan license plate information for enclosed, 4-wheel civilian vehicles
- Plug-and-Play functionality
- Lightweight & Portable Design
- Crash Survivability
- Prevent Obstruction in Driver View
- Build to IEEE/IEC/UL Standards
- Modular codebase
- Accessible and Convenient to Users (Mobile Application)


SPECIFICATIONS

Demonstrable

Component	Parameter	Design Specification
Battery	Discharge Life	3-5 days (Avg. 40-60 mins/day)
Camera	Resolution	1080p with accuracy of \geq 90%
Camera	Frame Rate	Process video feed ≥ 20 fps
System	Dimensions	Will not exceed 5"x4"x4"
System	Weight	< 2lb
Enclosure	Survivability	Readable storage after 2-story drop


HIGH-LEVEL Overview

 $\mathbf{02}$

SOFTWARE BLOCK DIAGRAM

SBC ANALYSIS

PROCESSING POWER

Single Board Computer	CPU Clock Frequency (MHz)	GPU Clock Frequency (MHz)	
Arduino Nano 33 BLE Sense	64 MHz	N/A	
Asus Tinker Board S	1800 MHz	600 MHz	
NVIDIA Jetson Nano	1430 MHz	640 MHz	
Raspberry Pi 4 Model B	1500 MHz	N/A	

MEMORY SIZE

Single Board Computer	Memory (GB)
Arduino Nano 33 BLE Sense	0.001 GB FLASH 0.000256 GB SRAM
Asus Tinker Board S	2GB Dual Channel DDR3
NVIDIA Jetson Nano	2 GB LPDDR4
Raspberry Pi 4 Model B	2 GB LPDDR4

ENERGY CONSUMPTION

Single Board Computer	Operating Voltage (V)	DC Current Min - Max (mA)	Power Consumption Min - Max (mW)
Arduino Nano 33 BLE Sense	3.3V	15 - 330 mA	49.5 - 1089 mW
Asus Tinker Board S	5 V	500 - 1000 mA	2500 - 5000 mW
NVIDIA Jetson Nano	5 V	1000 - 2000 mA	5000 - 10000 mW
Raspberry Pi 4 Model B	5 V	540 - 1280 mA	2700 - 6400 mW

COST ANALYSIS

Single Board Computer	Board Price (\$)	Percentage of System Cost (%)
Arduino Nano 33 BLE Sense	\$22.50	4.5%
Asus Tinker Board S	\$199.99	40%
NVIDIA Jetson Nano	\$62.84	12.6%
Raspberry Pi 4 Model B	\$83.95	16.9%

SINGLE-BOARD COMPUTER (SBC)

FEATURES

Powerful GPU in a compact form factor

OVERALL VALUE

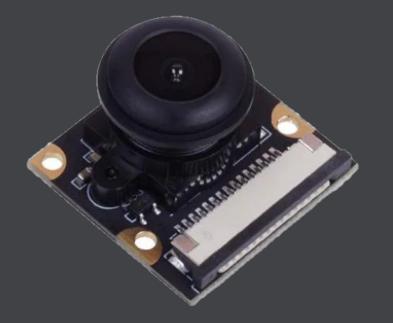
Great Value Proposition

JETSON NANO

WEALTH OF Knowledge

Extensive Developer Community and Resources

COSTS


Cheaper than comparable alternatives

CAMERA IMX219-130 SEEED STUDIO 114992262

8 MEGAPIXELS Exceeds 1080p Requirements

130° FIELD OF VIEW

Allows for little distortion

MADE FOR US

Designed specifically to interface with Jetson

COMPUTER VISION

OPENALPR

Supports license plates for over 70 countries Model trained with a significantly larger dataset

OBJECT DETECTION

Identify and isolate license plate area

OPENCV

Large library of APIs for object detection Powerful pretrained models

TENSORRT

Used for training Optimized for Nvidia GPUs

TESSERACT FOR OPTICAL CHARACTER RECOGNITION (OCR)

To recognize characters

EDGE DETECTION

To isolate characters

GRAPHICAL USER INTERFACE & FEATURES

Users are able to create their own accounts and access License Plate data.

MOBILE Application Development

Progressive Web Application (PWA)

→ FERN Stack

FERN STACK

FIREBASE

EXPRESS

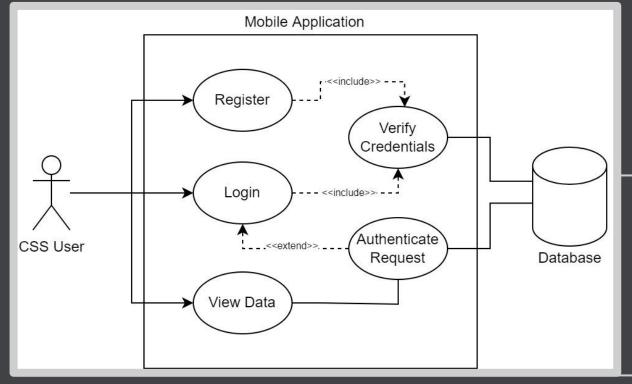
APIs

Framework for

Robust and scalable database system

Tried and true technology stack. Facilitates faster development

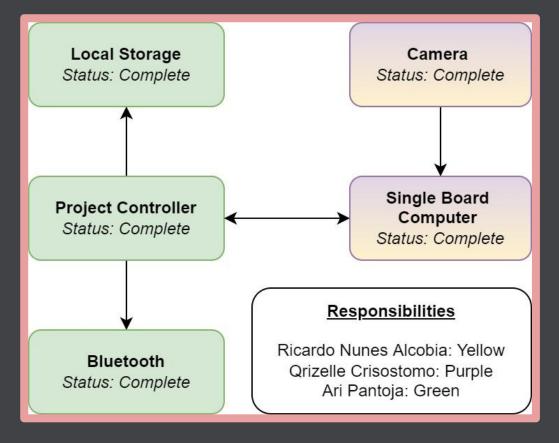
(JS)


REACT

Team members have experience with REACT frontend dev.

NODE.JS

Backend environment


MOBILE **APPLICATION USE CASE** DIAGRAM

FIRMWARE & MODULES

ELECTRONICS Block Diagram

PROJECT CONTROLLER TI MSP430FR6989

CONVENIENCE

Familiar and Previously Acquired

CAPABLE

Enough channels to run all communications

STORAGE UNIT

MORE PERMANENT

Less risk of data loss than BT

PORTABILITY

Can be removed and read in any device that can access uSD Card SanDisk Ultra 32GB

MICRO SD CARD

RELIABLE

Shown to consistently store .txt files

EASILY ACCESSIBLE

Large variety of uSD Card compatible with FatFs Library

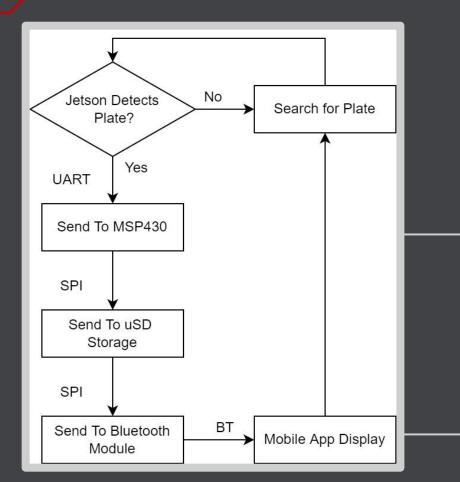
BLUETOOTH Raytac MDBT42Q-P192

AVAILABILITY

Readily available on many online retailers

USER SUPPORT

Plenty of examples to work with



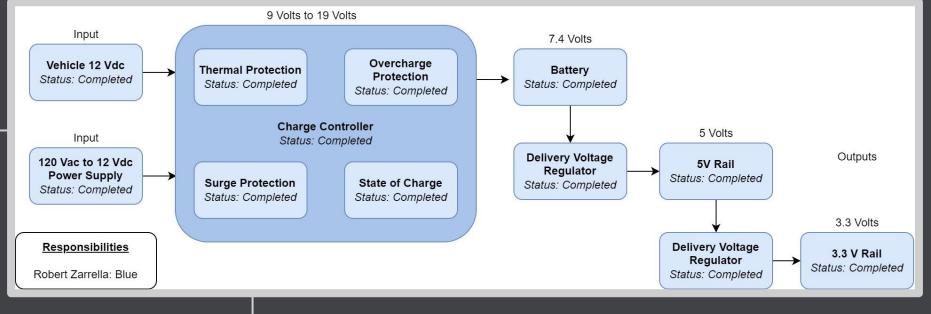
BLUETOOTH 5.0

Fits our Bluetooth 5.0 requirement

EASILY PROGRAMMABLE J-Link via Nordic Dev Kit

FIRMWARE DATAFLOW

FIRMWARE DEVELOPMENT


L V 5	Keil uVision 5	
	TI CODE Composer Studio	NORDIC [®] SEMICONDUCTOR

POWER & PCB

POWER BLOCK DIAGRAM

BATTERY MAKERFOCUS 9065115

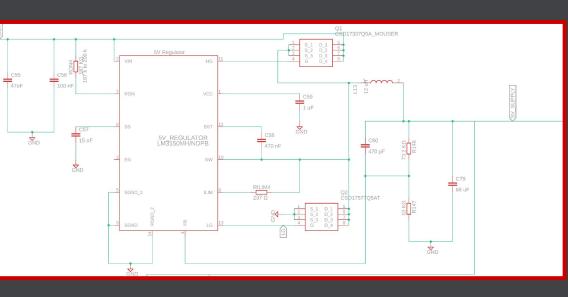
LITHIUM POLYMER

Low Self-Discharge Resilient to High Temperatures

PROTECTION CIRCUIT MODULE

Thermal Protection Overcurrent Protection Short-Circuit Protection

HIGH CAPACITY 10,000 mAh 74 Wh = 8.8 Hrs of CSS operation


STANDARD ADHERENCE IEEE 1725-2021 IEC/UL 62133

5 VOLT REGULATOR TEXAS INSTRUMENTS LM3150

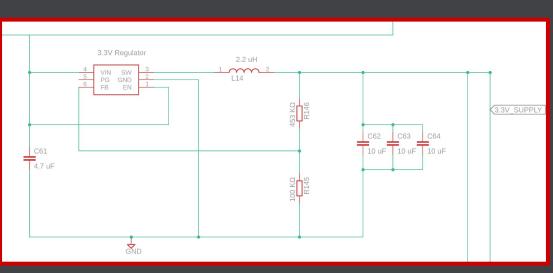
HIGH EFFICIENCY

96.3% Drives high efficiency external MOSFETs

OVERCURRENT PROTECTION Feedback network monitors current

LOW COST

Only 61% cost of comparably efficient topologies

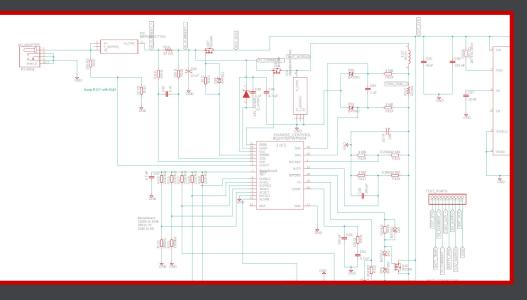

ADDITIONAL PROTECTION Short Circuit Soft Start Thermal

3.3 VOLT REGULATOR TEXAS INSTRUMENTS TLV62568

HIGH EFFICIENCY

96.26 % With Minimal PCB Area and Cost

OVERCURRENT PROTECTION Integral current detection with auto shut-off and restart


SOFT START

Limits dV/dT to protect sensitive downstream devices

DYNAMIC Frequency

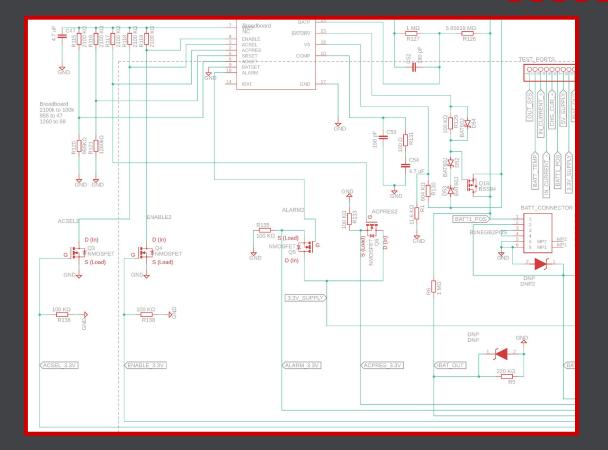
Provides additional efficiency under low load

CHARGE CONTROLLER

DYNAMIC SOURCE Switching

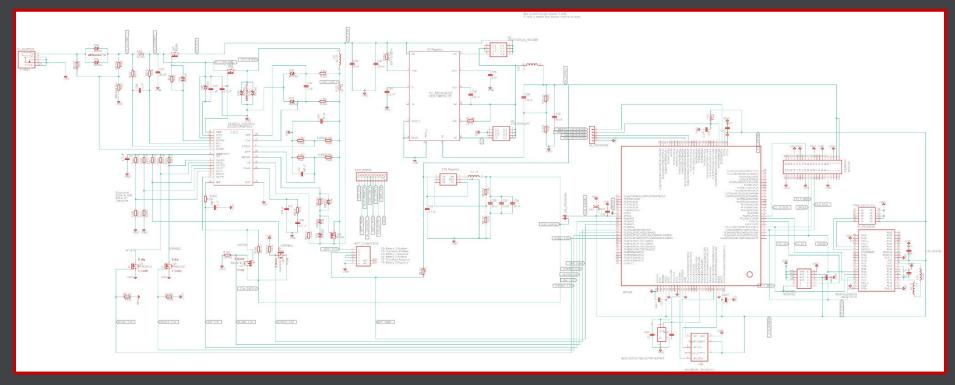
Seamlessly changes from AC supply to battery supply without interruption

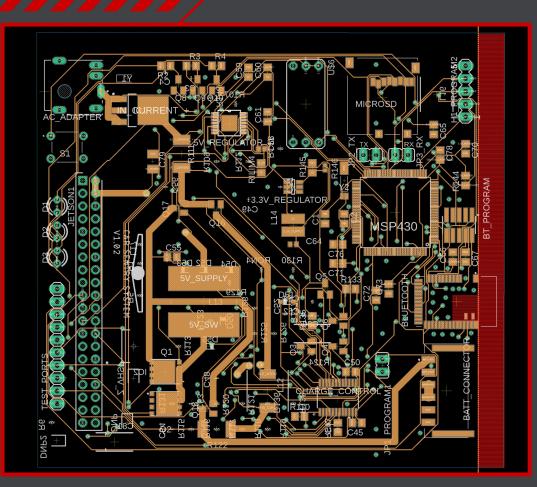
PROTECTION Overcurrent Undervoltage Thermal Short Circuit

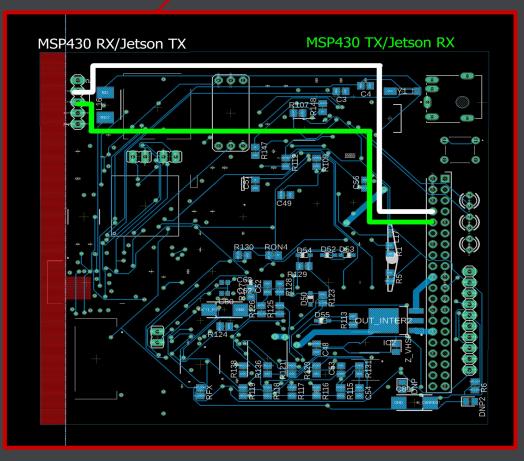

HIGH EFFICIENCY

Low quiescent power consumption when on battery power

CONCURRENT LOAD/CHARGE


Provides system power from AC while simultaneously charging the batteries

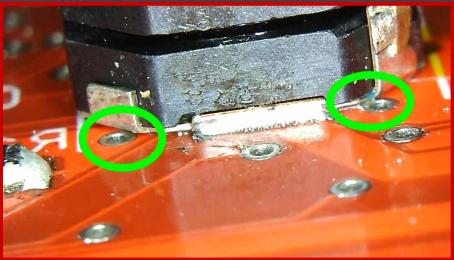

TEXAS INSTRUMENTS BQ24703


CHARGE **CONTROLLER TO SYSTEM** CONTROLLER COMMUNICATION

INTEGRATED SCHEMATIC

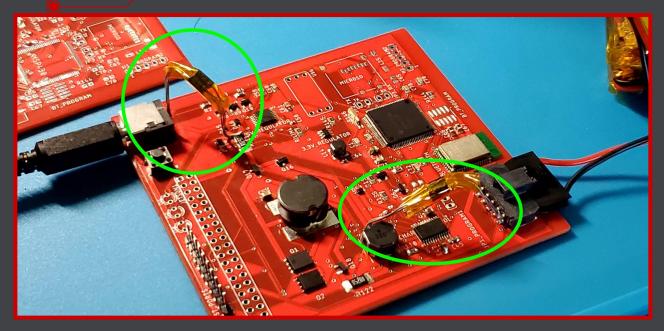
PCB Layout: Top layer

PCB LAYOUT: **BOTTOM LAYER**


PCB ASSEMBLY WITH NEODEN REFLOW OVEN

Special Thanks to

Dr. Avra Kundu Lab Specialist Zhou


PCB TESTING

PCB TESTING

FINAL PCB

SYSTEM INTEGRATION

- Four distinct subsystems:
 - Power System
 - System Controller and System Modules
 - Single board computer
 - Mobile Application
- Tested independently before integrating and performing system tests

ENCLOSURE

ENCLOSURE

3D PRINTED

ABS Filament for added strength

PCB SLIDE SHELVING PCB will slide and lock into place

HIGH GRADE Suction Cups

Affixed to Windshield

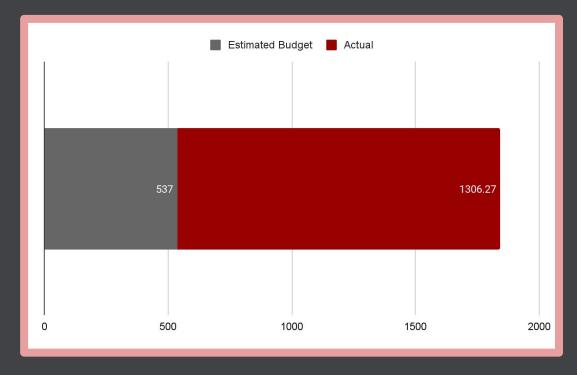
SLIDE DOOR

Inaccessible while installed

CONCLUSION

SUCCESSES

- Getting the Nano to read a license plate
- Seamless transition from different power sources
- Data Transmission Across All Modules
- CSS automation


CHALLENGES

- Automation of CV/ML on Jetson
- Data transmission across all components
- Specced some parts too small to solder by hand
- Nordic Software Bugs

BUDGET & FINANCING

BOUGHT TWO JETSON NANO DEV. Kits for testing

MISC COMPONENTS WERE ANOTHER MAJOR EXPENSE

SECOND VERSION OF PCB HAD TO BE REORDERED

Item	Price	Quantity	Shipping Cost	FL Tax	Total
Example	\$0.00	0.00	\$0.00	1.07	\$0.00
MSP430FR6989	\$10.10	2.00	\$0.00	1.07	\$29.50
NVIDIA Jetson Nano	\$59.00	1.00	\$0.00	1.065	\$62.84
5V 4A Power Supply	\$12.59	2.00	\$0.00	1.065	\$26.82
2.5 to 2.1mm Adapter	\$8.96	2.00	\$0.00	1.065	\$19.08
4GB NVIDIA Jetson Nano	\$169.95	1.00	\$0.00	1.065	\$181.00
GY-521 MPU-6050 MPU6050 Module 3 Axis analog gyro sensors	\$2.64	1.00	\$0.00	1	\$2.64
WAVGAT Micro SD Storage Expansion Board	\$1.83	1.00	\$0.00	1	\$1.83
Accelerometer & uSD expansion	\$3.25	1.00	\$0.00	1	\$3.25
10000mAh LiPo Batteries	\$12.00	2.00	\$0.00	1	\$24.00
Cooling Unit	\$24.38	2.00	\$1.50	1	\$50.26
uSD Module	\$0.20	1.00	\$1.80	1	\$2.00
GPS Module	\$2.60	1.00	\$1.65	1	\$4.25
Camera Module	\$19.90	1.00	\$0.00	1.07	\$21.29
Accelerometers	\$1.49	2.00	\$0.00	1.07	\$3.19
Mouser Shipping	\$7.99	1.00	\$0.00	1	\$7.99
10000mAh LiPo Battery	\$13.82	2.00	\$0.99	1.07	\$30.56
BL651/BL652 Breakout PCB	\$8.00	2.00	\$9.98	1.065	\$27.02
128GB uSD Cards	\$17.99	2.00	\$0.00	1.07	\$38.50
438-MXC4005XC-B Accelerometer Board	\$19.94	1.00	\$5.99	1.07	\$27.33
MSP430FR6989 to Solder Test and LFC Oscillators	\$34.98	1.00	\$0.00	1	\$34.98
nRF52 Dev Kit	\$39.00	1.00	\$0.00	1	\$39.00
Black ABS Enclosure Filament	\$18.09	1.00	\$0.00	1	\$18.09
Misc. Connectors and SMD Components	\$54.70	1.00	\$7.99	1.065	\$66.25
JLCPCB Order	\$37.93	1.00	\$42.68	1	\$80.61
Enclosure Suction Cups	\$15.97	1.00	\$0.00	1.065	\$17.01
Noctua 40mm Fan 5V	\$13.95	1.00	\$0.00	1.065	\$14.86
8MP IMX219-77 Camera		1.00			25.2
Arducam 5MP Camera and supplies		1.00			34.03
PCB (less what is already on here) Components Lump Sum	314.66				314.66
	36	10.00	62.24		98.24
Grand Total					\$1,306.27

COST OF COMPONENTS

WORK DISTRIBUTION

	ROLES	RESPONSIBILITY		
QRIZELLE C.	Lead Mobile Developer	Computer Vision and Mobile Application		
RICARDO N.	Lead Computer Vision Developer	Computer Vision and Mobile Application		
ARI P.	Lead Firmware Developer	Hardware (PCB) and Firmware Development		
ROBERT Z.	Lead Power Systems and PCB Design Engineer	Hardware (PCB) and Schematic Integration		

COLLABORATION

Two online meetings weekly

Working in the senior design lab

Almost always had a team member in the lab

FINAL THOUGHTS

FEEDBACK

Storing images as an added backup on the Nano

Streamlined wireless connectivity

Built in suction cup

BIGGEST LESSONS LEARNED

Communication is key

Start early on all components to get a better scope of the work required

Online forums are not the most reliable resource

QUESTIONS?