

TABLE OF CONTENTS

Motivation, Project Goals/Objectives, Specifications, & Requirements

DESIGN

Block Diagrams, System
Design Diagram, Approach,
& Proposed Implementation

DESIGN DECISIONS & IMPLEMENTATION

Important Design
Decisions & Component
Selection

TABLE OF CONTENTS

MOTIVATION

- Driving is a <u>dangerous</u> activity
 - Hit & Run/Reckless Driving
- Difficulty in Memorization
- Wide range of applications
 - Parking
 - o Tolls
 - Grounds Management

GOALS AND OBJECTIVES

GOAL:

Produce a low-cost, portable license plate scanner for the average day-to-day driver

OBJECTIVES:

- Scan license plate information for enclosed, 4-wheel civilian vehicles
- Plug-and-Play functionality
- Lightweight & Portable Design
- Crash Survivability
- Prevent Obstruction in Driver View
- Build to IEEE/IEC/UL Standards
- Modular codebase
- Accessible and Convenient to Users (Mobile Application)

SPECIFICATIONS

Demonstrable

Component	Parameter	Design Specification
Battery	Discharge Life	3-5 days (Avg. 40-60 mins/day)
Camera	Resolution	1080p with accuracy of ≥ 90%
Camera	Frame Rate	Process video feed ≥ 20 fps
System	Dimensions	Will not exceed 5"x4"x4"
System	Weight	< 2lb
Enclosure	Survivability	Readable storage after 2-story drop

HIGH-LEVEL OVERVIEW

ELECTRONICS BLOCK DIAGRAM

SOFTWARE BLOCK DIAGRAM

POWER BLOCK DIAGRAM

HARDWARE

SBC ANALYSIS

PROCESSING POWER

Single Board Computer	CPU Clock Frequency (MHz)	GPU Clock Frequency (MHz)
Arduino Nano 33 BLE Sense	64 MHz	N/A
Asus Tinker Board S	1800 MHz	600 MHz
NVIDIA Jetson Nano	1430 MHz	640 MHz
Raspberry Pi 4 Model B	1500 MHz	N/A

MEMORY SIZE

Single Board Computer	Memory (GB)
Arduino Nano 33 BLE Sense	0.001 GB FLASH 0.000256 GB SRAM
Asus Tinker Board S	2GB Dual Channel DDR3
NVIDIA Jetson Nano	2 GB LPDDR4
Raspberry Pi 4 Model B	2 GB LPDDR4

ENERGY CONSUMPTION

Single Board Computer	Operating Voltage (V)	DC Current Min - Max (mA)	Power Consumption Min - Max (mW)
Arduino Nano 33 BLE Sense	3.3V	15 - 330 mA	49.5 - 1089 mW
Asus Tinker Board S	5 V	500 - 1000 mA	2500 - 5000 mW
NVIDIA Jetson Nano	5 V	1000 - 2000 mA	5000 - 10000 mW
Raspberry Pi 4 Model B	5 V	540 - 1280 mA	2700 - 6400 mW

COST ANALYSIS

Single Board Computer	Board Price (\$)	Percentage of System Cost (%)
Arduino Nano 33 BLE Sense	\$22.50	4.5%
Asus Tinker Board S	\$199.99	40%
NVIDIA Jetson Nano	\$62.84	12.6%
Raspberry Pi 4 Model B	\$83.95	16.9%

SINGLE-BOARD COMPUTER (SBC)

FEATURES

Powerful GPU in a compact form factor

OVERALL VALUE

Great Value Proposition

WEALTH OF KNOWLEDGE

Extensive Developer Community and Resources

COSTS

Cheaper than comparable alternatives

JETSON NANO

SPECIFICATIONS

	ATmega2560	MSP430BT5190	MSP430FR698x	MSP430F249
Architecture	8-bit RISC	16-bit RISC	16-bit RISC	16-bit RISC
Clock Speed	16 MHz	25 MHz	16 MHz	16 MHz
Voltage Range	2.7V - 5.5V	1.8V - 3.6V	1.8V - 3.6V	1.8V - 3.6V
Active Power Mode	500 μΑ	230 μA/MHz	100 μA/MHz	270 μA/MHz
Standby Power Mode	11.85 mA	1.2 μΑ	0.4 μΑ	0.3 μΑ
Wake Time from Sleep/LP Mode	Unknown	< 5 μs	б µs	< 1 μs
Non-Volatile Memory (kB)	256	256	128	60
RAM (kB)	8	16	2	2
UART	4	0	2	2
12C	1	4	2	2
SPI	1	4	4	2
Bluetooth Version	N/A	2.1	N/A	N/A

PROJECT CONTROLLER ANALYSIS

Part	Communication Scheme
Accelerometer	I2C
SD Card	SPI*
Bluetooth	UART, I2C, or SPI*
GPS (Stretch Goal)	UART
Single Board Computer	SPI

>>>>> METHOD OF COMMUNICATION

PROJECT CONTROLLER TI MSP430FR6989

CONVENIENCE

Familiar and Previously Acquired

CAPABLE

Enough channels to run all communications

ACCELEROMETER MEMSIC MXC4005XC-B

IMPACT SURVIVAL

Maximum Acceleration 200,000g

TINY FOOTPRINT

6 solder pads 0.25mm wide each underneath chip

INTERRUPTS

Shake Detection

SOLUTION

Breakout board will plug directly into PCB

CAMERA SEEED STUDIO 114992262

8 MEGAPIXELS

Exceeds 1080p Requirements

130° FIELD OF VIEW

Allows for little distortion

MADE FOR US

Designed specifically to interface with Jetson

STORAGE UNIT

MORE PERMANENT

Less risk of data loss than BT

PORTABILITY

Can be removed and read in any device that can access uSD Card

MICRO SD CARD

RELIABLE

Shown to consistently store .txt files

EASILY ACCESSIBLE

Large variety of uSD Card compatible with FatFs Library

BLUETOOTH RAYTAC MDBT42Q-P192

AVAILABILITY

Readily available on many online retailers

USER SUPPORT

Plenty of examples to work with

BLUETOOTH 5.0

Fits our Bluetooth 5.0 requirement

EASILY PROGRAMMABLE

J-Link via Nordic Dev Kit

ENCLOSURE

3D PRINTED

ABS Filament for added strength

ACETONE VAPOR POLISHING

Added strength and temperature tolerance

PCB SLIDE SHELVING

PCB will slide and lock into place

HIGH GRADE SUCTION CUPS

Affixed to Windshield

BATTERY MAKERFOCUS 9065115

LITHIUM POLYMER

Low Self-Discharge Resilient to High Temperatures

PROTECTION CIRCUIT MODULE

Thermal Protection
Overcurrent Protection
Short-Circuit Protection

HIGH CAPACITY

10,000 mAh 74 Wh = 5.6 Hrs of CSS operation

STANDARD ADHERENCE

IEEE 1725-2021 IEC/UL 62133

5 VOLT REGULATOR TEXAS INSTRUMENTS LM3150

HIGH EFFICIENCY

96.3% Drives high efficiency external MOSFETs

OVERCURRENT PROTECTION

Feedback network monitors current

LOW COST

Only 61% cost of comparably efficient topologies

ADDITIONAL PROTECTION

Short Circuit Soft Start Thermal

3.3 VOLT REGULATOR TEXAS INSTRUMENTS TLV62568

HIGH EFFICIENCY

96.26 % With Minimal PCB Area and Cost

OVERCURRENT PROTECTION

Integral current detection with auto shut-off and restart

SOFT START

Limits dV/dT to protect sensitive downstream devices

DYNAMIC FREQUENCY

Provides additional efficiency under low load

CHARGE CONTROLLER

HIGH EFFICIENCY

Low quiescent power consumption when on battery power

CONCURRENT LOAD/CHARGE

Provides system power from AC while simultaneously charging the batteries

DYNAMIC SOURCE SWITCHING

Seamlessly changes from AC supply to battery supply without interruption

PROTECTION

Overcurrent Undervoltage Thermal Short Circuit

TEXAS INSTRUMENTS BQ24702

INTEGRATED SCHEMATIC

5 VOLT RAIL

3.3 VOLT RAIL

PCB PROTOTYPING

CHARGE CONTROLLER

PCB Layout

PCB LAYOUT WITH NVIDIA JETSON NANO

SOFTWARE/FIRMWARE

SINGLE BOARD COMPUTER SOFTWARE FLOW

COMPUTER VISION

OPENALPR

Easy to get up and running
Used for testing purposes

OBJECT DETECTION

Identify and isolate license plate area

OPENCV

Powerful pretrained algorithms

TENSORRT

Used for training Optimized for Nvidia GPUs

OPTICAL CHARACTER RECOGNITION (OCR)

To recognize characters

EDGE DETECTION

To isolate characters

GRAPHICAL USER INTERFACE & FEATURES

Users are able to create their own accounts and access License Plate data.

Stretch Goal: Optional attributes can be stored, such as color, make, and model.

MOBILE APPLICATION DEVELOPMENT

Progressive Web Application (PWA)

→ FERN Stack

FERN STACK

FIREBASE

Robust and scalable database system

EXPRESS

Framework for APIs

Tried and true technology stack.
Facilitates faster development

REACT

Team members have experience with REACT frontend dev.

NODE.JS

Backend environment

MOBILE APPLICATION USE CASE DIAGRAM

ENTITY RELATIONSHIP DIAGRAM

CSS

CID: integer

SerialNum: string

USERS

ID: integer

Login: string

Password: string

Email: string

FirstName: string

LastName: string

SerialNum: string

VEHICLES

VID: integer

Date: date

Time: time

License Plate #: string

Color*: string

Make*: string

Model*: string

* Stretch Goal

FIRMWARE DATAFLOW

FIRMWARE DEVELOPMENT

SUCCESSES

- Getting the Nano to read a license plate
- MSP430FR6989 writing .txt files to uSD card on breadboard
- Raytac BT module programmable
- Breadboarding sensitive switching circuits

CHALLENGES

- Tackling CV/ML
- Data transmission across all components
- Specced some parts too small to solder by hand
- Nordic Software Bugs

BUDGET & FINANCING

BOUGHT TWO JETSON NANO DEV. KITS FOR TESTING

MISC COMPONENTS WERE ANOTHER MAJOR EXPENSE

PCB ORDER APPROX. \$130

Item	Price	Quantity	Shipping Cost	FL Tax	Total
MSP430FR6989	\$10.10	2	-	1.07	\$29.50
NVIDIA Jetson Nano	\$59.00	1	-	1.065	\$62.84
5V 4A Power Supply	\$12.59	2	-	1.065	\$26.82
2.5 to 2.1mm Adapter	\$8.96	2	-	1.065	\$19.08
4GB NVIDIA Jetson Nano	\$169.95	1	127	1.065	\$181.00
GY-521 MPU-6050 MPU6050 Module 3 Axis analog gyro sensors	\$2.64	1	•	1.00	\$2.64
WAVGAT Micro SD Storage Expansion Board	\$1.83	1	j.	1.00	\$1.83
Accelerometer & uSD expansion	\$3.25	1	-	1.00	\$3.25
10000mAh LiPo Batteries	\$12.00	2	-	1.00	\$24.00
Cooling Unit	\$24.38	2	\$1.50	1.00	\$50.26
uSD Module	\$0.20	1	\$1.80	1.00	\$2.00
GPS Module	\$2.60	1	\$1.65	1.00	\$4.25
Camera Module	\$19.90	1	127	1.07	\$21.29
Accelerometers	\$1.49	2	-	1.07	\$3.19
Mouser Shipping	\$7.99	1	-	1.00	\$7.99
10000mAh LiPo Battery	\$13.82	2	\$0.99	1.07	\$30.56
BL651/BL652 Breakout PCB	\$8.00	2	\$9.98	1.065	\$27.02

COST OF COMPONENTS

WORK DISTRIBUTION

	ROLES	RESPONSIBILITY		
QRIZELLE C.	Lead Mobile Developer	Computer Vision and Mobile Application		
RICARDO N.	Lead Computer Vision Developer	Computer Vision and Mobile Application		
ARI P.	Lead Firmware Developer	Hardware (PCB) and Firmware Development		
ROBERT Z.	Lead Power Systems Engineer	Hardware (PCB) and Schematic Integration		

PROGRESS

IMMEDIATE PLANS

