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Abstract — Wireless Indoor Positioning Systems (IPS) are 

commonly used in commercial and industrial applications to 

monitor the movement of entities (objects and people) throughout 

secure locations where protocols such as GPS lack the required 

precision. While these systems excel at providing information 

about entity location, they fail at providing accurate entity 

identification as well without significant human involvement 

(having security personnel on-site to confirm identity). To remedy 

this issue of identification, a more holistic approach to security is 

required. This paper outlines the design and implementation of an 

indoor security system that utilizes Bluetooth Low Energy (BLE) 

beacons and tags in tandem with Computer Vision to provide both 

personnel positioning and personnel identification, respectively. 

The combination of these technologies results in an automated 

real-time security system that will provide the information about 

where personnel are located as well as their identities without the 

need of significant human involvement. 

 

Index Terms -- Security., Bluetooth, Indoor Positioning System, 

Computer Vision, Personnel tracking 

 

I. INTRODUCTION  

In this day and age organizations across many industries 

make use of asset tracking systems to increase their operation 

efficiency as well as operation security. To maximize the 

amount of information available, many of these organizations 

make use of real-time tracking systems to gather information 

about the location of equipment, merchandise, and even 

personnel. One such use-case is the implementation of 

passive Radio-Frequency identification (RFID) cards and 

readers to determine and restrict location access of certain 

personnel.  Many indoor tracking systems make use of a form 

of passive tracking, such as RFID or NFC as it reduces the 

technological overhead, while still providing asset location. 

 

While these passive systems are acceptable for ascertaining 

the location history of assets, they fail at providing the real-

time location accuracy required for more high-security use-

cases. In such cases active (real-time) systems are required in 

order to provide an organization with accurate up-to-date 

information about an assets position. These active systems 

through the use of wireless technologies such as Bluetooth 

Low Energy (BLE) or Ultra-Wide Band (UWB). When 

concerning security, these systems solve the problem of 

obtaining position data of assets, however they do not 

completely solve the issue of asset identification. 

 

When considering the tracking of people throughout secure 

locations one must consider a situation in which intruders can 

obtain or fabricate the credentials of validated personnel. In 

this situation having just the tracking system alone will not 

ensure site security, so a system of identity verification must 

be used in addition to these systems. To solve this aspect of 

security it is common to rely on biometric identification, as 

generally those cannot be easily replicated by bad actors. 

When concerning a real time system one valid solution is the 

introduction of a facial recognition component in order to 

provide identification and with the combination of these 

solutions one can achieve a real-time security system that 

provides position information as well as identification of the 

personnel that are being tracked. 

 

The Security System designed in this project will solve the 

issues of obtaining real-time personnel location along with 

personnel identification. The issue of obtaining positioning is 

resolved through the use of Bluetooth Low Energy (BLE) 

tags and beacons along with the use of a trilateration 

algorithm to accurately calculate indoor position data of 

tagged personnel. The matter of identifying personnel is 

resolved with the implementation of a computer vision 

component of the system. This component utilizes facial 

detection and facial recognition to identify registered and 

non-registered personnel entering a secure location. 

 

The BLE beacons and tags in this project make use of the 

Bluetooth component from the Espressif ESP32 

microcontroller. Proper implementation of this system 

requires at minimum three stationary beacons, along with one 

tag that will be on the target that is being tracked. The three 

Beacons will calculate their relative Received Signal Strength 

Indicator (RSSI) values and will send this data to a local 

application that will process these values through a 

trilateration algorithm and display the estimated locations 

onto the application. 

 

The computer vision system that will work in tandem with 

this BLE system will determine the identity of the target that 

enters a secure location, assuming that they are located within 

the system’s database. The facial detection and recognition 

software were developed in Python using the open source 

OpenCV software library. The camera system will 

continuously monitor the entrance to a secure room and will 

detect and identify personnel entering the room. The 

information concerning the identity of these individuals are 

sent to the software application and this data is processed to 

provide security personnel with alerts depending on who is 

identified. 

II. PROJECT OBJECTIVES 

A. Group Goals 

For our group the main objective for this project was to use 

the knowledge gained through our education and prior 



experiences and apply that to solving a real-world problem. 

Our group is composed of all CpEs so we wanted a project 

that included a significant software portion, but also had 

hardware and embedded components to it. With the inclusion 

of Computer vision, embedded programming, and BLE, 

beacons and tags we feel as if our security system idea 

accomplished our personal requirements for this project. We 

felt that this security system was sufficiently challenging 

while also containing elements that each member was 

comfortable with working on and could also be accomplished 

within the scope of this senior design course. 

 

B. REQUIREMENT SPECIFICATIONS   

The engineering specifications we decided on were aimed at 

the accuracy and speed of our positioning component and 

recognition software. We felt that these attributes were 

important as we wanted to create a real-time system where it 

is necessary to set specific time constraints. The facial 

recognition component is the backbone of the security system 

as it provides identification of individuals, so it was important 

to ensure that it was able to detect and recognize an individual 

the instant they came into view of the camera. We felt as if 5 

seconds was the absolute maximum time the system should 

take to identify before it became a security issue. In the 

implementation of our system, it takes approximately 0.5 

seconds to recognize a face and provide that data to our 

security application.  

 

As for the positioning component of our system, the accuracy 

and maximum detection range is important to ensure that the 

security system is aware of what tag is being detected and 

where they are as early as possible. We decided on the 

maximum range of 10m as we felt that this distance is suitable 

for accurate positioning in most medium sized rooms, we 

tested the system in. This range can be increased by 

improving the actual broadcasting power of the BLE 

antennas. We felt that the positioning being within 1 meter of 

accuracy was sufficient enough to represent the location of an 

individual for security purposes. Finally, since this is meant 

to be an automated system with relatively low involvement 

from individuals we wish to detect we wanted the beacons to 

be as small as possible so that they could be placed in a user’s 

pocket or perhaps attached to an ID card of some kind so we 

decided to restrict the size of the beacon to at least 120mm x 

70mm x 40mm. Figure 1 shows the demonstrable engineering 

specifications from those discussed above. 

 

Some standards we adhered to include IEC 62676-

5:2018,ISO/IEC 19794-5:2005 and ISO/IEC 30137-1:2019 

for quality requirements for security camera images, as well 

as proper specifications for implementing a biometric 

recognition system. For the Bluetooth component we also 

followed standards such as ISO/IEC 18305:2016 and IEEE 

802.15.1-2002 which regard the testing and evaluation of 

tracking systems, as well as specifications for wireless 

personal area networks. 

 Engineering 
Specifications 

Values 
 

Beacon Size  < 120mm x 70mm x40mm 

Successful Recognition  < 5s 

BLE tag detection range  Up to 10m 

Detection Range  < 3 Meters 

BLE position accuracy 1 meter accuracy 

Fig. 1. Demonstrable engineering Specifications 

 

IV.  System Design 

Our system is made up of three major components, the indoor 

positioning component, computer vision component, and the 

software application. The indoor position component 

involves the use of 3 BLE stationary beacons and 1 BLE tag. 

This tag will be in possession of the person we are tracking 

and when activated will be constantly broadcasting a 

Bluetooth signal to the 3 beacons. These beacons will store a 

tag’s MAC address and Received Signal Strength indicator 

(RSSI) value into a data payload that will be sent to a 

Mosquitto MQTT server. This MQTT will then send 

(publish) the payload to our software application where the 

distance is calculated using RSSI, and with that distance we 

will determine the position of the tag through trilateration. 

 

 

Fig.  2. System Block Diagram 

 

 

 



The purpose of the computer vision component of this system 

is to identify personnel entering a room for our security 

system. All verified personnel will have their pictures placed 

in a dataset and we will train the recognition software when 

a new user is registered within our system. When a user enters 

the frame of a video the recognition software will determine 

if they are in our dataset and if they are not then they are given 

an ‘unknown’ tag. This information is sent to the software 

application where it will be processed accordingly. 

 

Finally, the software application is where the data from our 

edge devices is collected and manipulated to give us the 

automated alerts. This software Application is where we 

manipulate the data from the beacons and create alerts based 

on security infractions that we determine. The software 

application will also display the real-time position of the BLE 

tags on a map of the location we are monitoring. Any BLE 

devices or faces that are detected by the network will populate 

tables within our main dashboard page. 
 

A.  PCB Design 

 

For our project we have two generations of design. Our 

printed circuit boards (PCBs) were designed in Eagle and 

EasyEDA due to the extensive library available. The 

microcontroller we selected based on popularity, price, and 

extensive documentation was the ESP32 WROOM 32D 

module. The ESP32 module satisfied our requirement for 

Bluetooth and Wi-Fi components since Bluetooth will be 

used for the implementation of our indoor tracking and Wi-

Fi will be used to send over data from our printed circuit 

board to our web application. 

 

Originally our first-generation design was made with the 

intention that it would be a standalone beacon. Our first-

generation design was mainly a voltage regulator designed to 

power on a 30 pin ESP32 development kit module that we 

had purchased prior for testing our initial code. Due to its 

relatively large size of (115mm x 67mm) we decided that it 

would be best for this design to act as just a stationary beacon 

that will emit Bluetooth signal using the ESP32 module from 

the development kit, as it would be too big for an individual 

person to carry around as a tag. The main voltage regulator 

being used in this design is an LM7805 voltage regulator. The 

regulator is an old component that turned out to be inefficient. 

To power on our first generation design we used 12 volts to 

9 volts male power jack, which the regulator outputted to 5 

volts giving us an efficiency rating around 41% - 55%.    

 

For our second generation design we decided we wanted to 

essentially create our own development kit and get rid of 

other features that we do not need. The main component of 

this design was again the ESP32 chip module. Unlike our 

other design, which consisted of through-hole components, 

our second-generation design used surface-mount devices 

which are smaller, cheaper, and more efficient. Our second-

generation design consists of three main subsystems, the 

ESP32 module, the power circuitry for the module and the 

USB-C circuitry which is used for uploading and pushing 

code onto our ESP32 module. Our new printed circuit board 

design can be powered on by either a USB-C input or by 

connecting a LiPo battery pack, giving it the option to be 

either stationary as a beacon or mobile as a tag. The LiPo 

battery is also able to be charged via USB-C connection by 

the MCP73831T component to increase the lifespan of our 

beacon/tag printed circuit board design. The surface mounted 

regulator we used is the XC6220B331MR-G. This regulator 

is more efficient than our first-generation design, taking in 

input voltages of 3.7 volts from LiPo and 5 volts from the 

USB-C connection we see an efficiency rating of 66% to 89% 

which is a huge increase compared to our first-generation 

design.  

 

Fig. 3. 2nd. generation PCB design for use as BLE 

Tag/Beacon 

The main improvement our second generation had was size. 

Due to the use of surface mount devices, we were able to 

reduce the size to 50mm x 28mm x 10mm.As a result, our 

new design is now able to act as either a beacon or a tag 

depending on what code we plan to upload on them and 

whether you want it to be powered on via a regular USB-C 

connection or LiPo battery. This reduction in size makes it 

easier for consumers to place around their specialized 

location(beacon) and easy enough for them to carry around in 

their pockets(tags). In figure 3 you can see the finalized 

design of our second-generation beacon. 

 

B.  Communication Protocols 

In order to send data from our beacons to our software 

application, a communication network must be established. 

For our indoor tracking system, we decided to choose the 

popular open-source message broker known as Mosquitto. 

Mosquitto implements the Message Queuing Telemetry 

Transport (MQTT) protocol to establish a bi-directional 

communication server to allow messaging. This connection 

acts as a bridge between the beacons/tags and the web 

application. Because the protocol is lightweight in nature [1], 

sending RSSI data at a high rate is no issue. With the ability 

to publish and subscribe to MQTT, tracking data visually is 

made easier and more efficient.  

 

For our face recognition system, we decided to use Socket.io 

to pull incoming data. Unlike MQTT, Socket.io is an event-

based communication protocol. Socket.io implements the 

WebSocket communication protocol which provides a full-

duplex and low latency channel between the server and the 



browser [2].We use Socket.io to implement a connection 

between the facial recognition software (client) and the Web 

Application utilizing the Socket.io WebSocket protocol 

(server). 

 

C. Trilateration 

 

 

Fig.  4. Trilateration Implementation 

Trilateration uses distance estimation against RSSI data to 

indicate where our tag is in reference to the three stationary 

beacons. The three stationary beacons all hold an (x, y) 

coordinate and based on signal strength from the tag in 

comparison to the coordinates, estimated coordinates for the 

tag are calculated. Trilateration requires multiple steps before 

the algorithm reaches a result that accurately represents 

indoor position within 1 meter. Firstly, the RSSI value from 

the incoming tag is received from beacon. The RSSI is 

calculated using ESP32’s built in getRSSI() function. Once 

the RSSI value from the tag to its respective beacon is 

transmitted, the data is transferred over to the software 

application using MQTT where the data will be manipulated.  

Next, is to calculate the distance from the respective tag to 

beacon using that incoming RSSI value (1). 

 d = 10((𝑇𝑥𝑃𝑜𝑤𝑒𝑟 − 𝑅𝑆𝑆𝐼) / (10 ∗ 𝑛))   (1) 

The distance formula consists of three parameters that must 

be accounted for. The first parameter TxPower, is known as 

Measured Powered, in other words the 1-meter RSSI [6] 

which for the ESP32 module is -60 at 1 meter. Next is the 

value of the incoming RSSI from the detected device. In this 

case, the tag is being detected by beacons and emitting 

respective RSSIs readings to its appropriate beacon. Lastly, 

is the ‘N’ parameter. ‘N’ is a constant that we choose to set 

based on the environmental factors. This variable usually 

ranges from 2 to 4, for our project we ran multiple tests to 

determine the optimal value of ‘N’. Once all the parameters 

are filled in by the incoming data, we can now calculate the 

distance ‘𝑅𝑖’ from the respective beacons to tag. Each beacon 

should theoretically receive a different RSSI value unless the 

tag is in the center of the coordinate grid. Our stationary 

beacons will each have their own (x, y) coordinates 

accompanied with a relative distance, where distance will be 

calculated by the incoming RSSI, and this will form the 

matrix in equation (2): 

 

Tag Position = 

[[x1, y1, R1] 

                                   [x2, y2, R2]                            (2) 

 [x3, y3, R3]] 

 

From here, the trilateration implementation uses a point 

estimation equation based on Pythagoras Theorem [7], to 

obtain a resulting coordinate pair (3) to approximate the 

location of the tag that the system is currently detecting. 

𝑇𝑎𝑔 𝑋 =  
|

R12-R22-(X12-X22)-(Y12-Y22)         2(Y2-Y1)

R12-R32-(X12-X32)-(Y12-Y32)       2(Y3-Y1)
|

|2(X2-X1)         2(Y2-Y1)

2(X3-X1)         2(Y3-Y1)|
 

                                                                                            (3) 

     𝑇𝑎𝑔 𝑌 =  
|

2(𝑌2−𝑌1)        𝑅12−𝑅22−(𝑋12−𝑋22)−(𝑌12−𝑌22)

2(𝑌3−𝑌1)       𝑅12−𝑅32−(𝑋12−𝑋32)−(𝑌12−𝑌32)
|

|2(X2-X1)         2(Y2-Y1)

2(X3-X1)         2(Y3-Y1)
|

 

Theoretically, the trilateration algorithm gives us an 

approximation within 1 meter of the actual position. In 

practice, each beacon reaches within .14 meters of the actual 

position at our tested distance. Achieving accuracy while 

remaining computationally efficient (low cost) was important 

and trilateration made this possible. On average, the response 

time between movement of the tag to a new location and 

publishing the change on the software application stays 

around 1 - 2 seconds due to latency.  

 

D. Computer Vision 

Our group designed the computer vision component 

so that it would accomplish the following: 

1. Locate faces on images coming from the cameras 

2. For each face, determine if that face is ‘accepted’ or 

not (according to database) 

3. Update the web app with data pertaining to what the 

camera is currently seeing. 

4. Issue alerts to the web app if a face could not be 

identified. 

 

With a list of tasks to be done, we started off by preparing a 

machine with the tools necessary to carry out computer 

vision. From our research, this included installing the popular 

code editor VSCode, the Python programming language, and 

several helpful python libraries (pandas, pickle, opencv, dlib, 

face_recogniton, etc.). These tools gave us the critical 

components for programming computer vision into our 

system. We now share a brief description on what some of 

these tools provided us in the code design: 

● OpenCV - All-in-one open-source computer vision 

library, enabling us to establish a connection with the camera, 

read individual frames at a time, and define shapes/text on 

images to show computer vision results.  



● Dlib - open-source collection of machine learning 

algorithms, which for our case, provided us means for 

implementing face detection/face recognition algorithms. 

Originally a C++ library, but thanks to the provided Python 

API, enables software coded in Python to use it. 

● Face_recognition - One of the most helpful libraries 

throughout this endeavor, providing excellent documentation 

[3] for building face recognition/detection, as well as 

including several examples for guiding users through the 

different features provided. 

● Pickle - Useful library making the training stage as 

least repetitive as possible. For each dataset we worked with, 

we could train the set once, without having to waste time 

during every performance test training on the set again. 

 

It is important to discuss the algorithms we wanted our face 

detection and face recognition to use for our system. The face 

recognition library supports two models to use for face 

detection, the two being the Histogram of Gradients (HOG) 

and using a Convolutional Neural Network (CNN). It should 

be noted as per the documentation [4], the HOG method 

works generally faster and easier for a CPU, whereas the 

CNN model uses a GPU in combination with CUDA libraries 

to achieve a higher accuracy. We decided to go with the HOG 

method as we wanted to identify faces as fast as possible so 

that it could then proceed to recognize faces on the camera as 

soon as possible. To summarize how the HOG method works, 

you look at each pixel in an image, and for each pixel, 

compare it to the surrounding pixels, and determine a 

direction in which it becomes darker. Here is an example of 

what the computer generates for each face it would see on the 

camera: 

 
Fig.  5.  Conversion to HOG Face 

 

Notice that from the HOG version of the face, there are some 

notable features that you can extract fairly easily (the eyes, 

noise, and mouth). The face detection works by comparing 

the HOG version of the image it sees to a pre-trained HOG 

image of a face (imagine the left image was derived from a 

collection of HOG versions of faces), such as this: 

 

Fig.  6. Comparing General HOG to Observed 

 

From here you can see the similar features one would expect 

from a human face, and thus the computer would deem the 

image observed as having a face. For facial recognition, the 

computer takes multiple measurements from a face on the 

perceived image to create an encoding of that image. Next, 

the encoding is compared to a pre-established dataset of 

encodings for people that are to be recognized. The computer 

uses a deep learning model to determine the measurements 

that closely relate 2 images of the same face, and separate 

images of different people. With this approach, we can take a 

raw image and convert it to a set of numbers the computer 

can work with [5]. 

 

Computer Vision requires a computer to perform the 

algorithms developed for machine learning. Furthermore, the 

system was intended to be portable, and so a microcomputer 

was needed. We opted to experiment with the Jetson Nano as 

the computer that would be responsible for performing the 

computer vision for our security system. After preparing the 

Nano with the tools necessary to perform some computer 

vision, we began testing. It is worth mentioning that while 

face detection and recognition of a single image each time 

functioned without issue, introducing the complexity of 

multiple images at a time through video presented problems. 

Particularly speaking, the Nano having 2 GB memory 

capacity meant there was little room to compute all the 

incoming frames from the camera. With different attempts to 

free up the memory (running Nano in headless mode to avoid 

any applications on screen from taking up memory, 

uninstalling any unnecessary software from the device), 

nothing seemed to allow the computer vision to run in real 

time. In addition, extra processing power and space would be 

needed to stream the output computations to the software 

application. From there we then tried setting up the Nano to 

stream the raw footage (using RTSP protocol) to an external 

PC (one of our computers at home) and have the computer do 

the computation, but there ended up being difficulty in getting 

a consistent smooth stream between the Nano and the 

computer. This was not ideal, as we want to make sure there 

were no extended periods of dropped frames, or else the 

security of the system would be in jeopardy. It was then that 

we decided to just run a direct connection from the camera to 

the computer, which seemed to allow the program to function 

at the very least.       

 

E. Software Application  

The software application is the central component of our 

system, it brings together our indoor tracking and our facial 

recognition system into one. Data coming in will be 

constantly updated in real time since packets will be 

continuously coming in from our beacons and our facial 

recognition system. Our software application consists of two 

main components, a dashboard to display alerts and a live 

indoor tracking feed.   

Our live indoor tracking feed is implemented by the use of 

trilateration. For the live tracking, our web application uses a 

system of coordinates, in this case pixels, to display the real 

time location. Icons will appear on the site once three beacons 



are detected. The Bluetooth icon represents the beacons 

which can be moved around and placed relative to the 

location of your floorplan. The user icons represent the tag 

which cannot be manually placed and are calculated relative 

to the 3 PCB beacons that are setup around the room. The 

beacons hold positions X and Y relative to their position on 

the map in pixels. This X and Y position for each beacon icon 

is found using JavaScript’s Mouse event functions. Using the 

distance equation (1), the software application calculates the 

distance from each beacon to that current tag it is detecting 

and prepares a matrix (2) to pass to the trilateration 

implementation discussed above. JavaScript has its own 

built-in Trilateration function, based on the point estimate 

equations (3). The built- in Trilateration function will then 

return an X and Y position for the detected tags. On the 

software application the tag icon will update to display 

location relative to the floorplan that has been uploaded to the 

site. 

 

Our dashboard, which is the main page of our software 

application, is used to display alerts. The dashboard has four 

tables, a table to display latest indoor tracking, latest tracking 

alerts, latest face tracking and latest face tracking alerts. The 

latest indoor tracking table publishes the payload data coming 

in from the Mosquitto server. This data includes the detected 

tag MAC address, the name associated with the tag, which 

beacon is emitting data, the associated RSSI reading along 

with a measured distance in meters and a timestamp. The 

purpose of this table is to display the activity going on in the 

secure location the beacons are placed around. Next is the 

Latest Tracking Alerts table. This table is responsible for 

populating alerts that our system detects, some of the alerts 

that will appear are shown below: 

● User tags shows that they do not have access to this 

area 

● User is too close to secured beacon 

● User is too far from designated area 

The ‘Latest Face Tracking’ table displayed the data coming 

in from the socket connection, in this case the faces that the 

camera system is currently detecting. This data populates 

who it is currently identifying, its respective location and the 

timestamp of the detection. The ‘Latest Face Tracking’ Alerts 

displays alerts that are prompted by the face recognition 

system, some of the alerts that will appear are displayed 

below: 

● Unknown user in the area has been detected 

● User has no access to this area 

● A user with no tag has been detected 

Using the incoming data from the Mosquitto server and the 

Socket we are able to manipulate the data to produce alerts 

and display live location. 

IV. DESIGN IMPLEMENTATION & TESTING 

A. BLE Signal Interference 

In the Distance equation (1) mentioned in the section above, 

our team decided to run some tests to determine the optimal 

value for ‘N’ for our indoor tracking. As stated before, ‘N’ is 

a constant that depends on Environmental Factor, so the more 

obstacles that are in the way between two emitted signals, the 

more it will negatively affect the Received Signal Strength. 

In the test we conducted we decided to place a beacon and tag 

3 meters apart and tested three different scenarios, Nothing in 

between the beacon and tag, a Human body in between the 

beacon and tag, and a wall between the beacon and tag. In 

Figure 7 you can see the results of our testing: 

 

 

Fig.  7.  RSSI value base on Interference 

 

In figure 7, the blue line represents the signal with no physical 

interference between the beacon and the tag, the Orange 

represents a human body interference, and the green 

represents a wall interference. The blue line represents the 

strongest signal strength at an average of -68.8 for the RSSI. 

With Bluetooth signals the value of RSSI can fluctuate when 

there is a physical object between a transmitter and a receiver. 

When testing the effects of a human body or wall between the 

tags and beacons we observed an average decrease of 8.45 

and 12.35 respectively. In situations where a wall or human 

body will be between the tags and beacons, we can adjust for 

the environmental factors in our distance equation. For this 

implementation we decided to select a value of 3 for our 

environmental factor variable ‘N’. These tags will ideally be 

carried in the pockets or close to the body of the monitored 

personnel, so to calculate accurate distances we must 

consider that the incoming received signal strength is inflated 

due the environment around the beacon and the tag. 

B. Indoor Positioning Accuracy 

 



Fig.  8.  Distance accuracy test for Beacon 

 

Figure 8 represents the results of the testing to check that the 

variance for the calculated distance was acceptable. In this 

test we set a tag 3 meters away from a beacon and recorded 

20 calculated distance values. When averaging out the 

calculated distance over this span we found that on average 

the system calculated a distance of 2.86 meters (14 cm error) 

which is within our engineering specifications for the 

positioning system. 

C. Computer Vision Metrics 

When implementing the computer vision component, there 

were two metrics that we investigated to understand the 

proper conditions for the camera to operate in. 

1. Effective Distance Range (at 800 lumens) 

2. Effective Light Range (at 7 ft) 

 Several trials for both metrics were conducted, with the 

camera in a stationary position. 

 

Fig.  9.  Effective Distance Chart 

Figure 9. depicts several trials of the effective distance, where 

the lights used are kept at 800 lumens (100% brightness). 

Note that on average, we see the effective distance at this 

brightness is 14 ft. Trials that performed slightly better/worse 

than average can be attributed to factors such as blurriness 

due to auto-focus, sunlight making the room brighter, and 

different locations for testing. 

 

 

Fig.  10. Cutoff brightness at 7 ft. 

The light range trials were conducted using Philips Hue A21 

light bulbs, and by varying the brightness, this has shown that 

around 80-90 lumens is when the computer vision will fail on 

a face. Some outliers can be attributed to the blurriness of the 

camera at that point, or sunlight increasing the overall 

brightness in the room. 

 

   V. CONCLUSION 

 The purpose of this project was to automate the 

monitoring of secured locations using an Indoor Positioning 

System (IPS) in conjunction with facial recognition software. 

This provides a method of tracking an individual's path 

throughout these locations, while also obtaining the 

individual’s identity. The IPS component was implemented 

using BLE 5.0 tags and beacons. These tags/beacons make 

use of the ESP32 Bluetooth antenna module. With three 

stationary beacons and at least one tag, trilateration can be 

used to approximate the position of the tag using the beacon's 

RSSI values. The computer vision component uses Python, 

OpenCV and the face recognition library to detect and 

recognize faces of people that enter a location. This 

identification info is then sent to our software application. In 

this software application alerts are created using the data 

obtained from our edge devices (camera, beacons, etc.), and 

all of this is done in real-time to provide the most accurate 

information about people’s whereabouts.  

Our system was able to determine the position of an 

individual with approximately 1 meter of accuracy. And 

when interference is expected, we can account for this by 

altering our RSSI calculations accordingly to calculate the 

values more accurately. Although we can account for this, the 

security system is best used if there are no solid walls 

between the Beacons and Tags to minimize signal loss. In 

regard to the computer vision component, the biggest 

environmental factor was the brightness of the room, and 

testing found that ~80 Lumens was the minimum light level 

at a distance of about 7ft, and at 800 lumens the maximum 

detectable range was about 14ft. The alert functionality was 

important for this system as it lets the person monitoring the 

software know when there are security infractions being 

committed. The system is able to detect if users are cleared 

for access based on their face and/or tag. The system is also 

able to detect if users are getting too far from or too close to 

the secure location as well. And the facial recognition system 

acts as a last point of failure, so if a person is caught by the 

camera trying to enter the area without a BLE tag being 

detected, an alert will be sent to the application. 

 

The system was successful at providing a variety of security 

alerts in real time, but there is still room for improvement in 

the development of a system like this. Getting more accurate 

RSSI is crucial to obtaining more precise position data, and 

one way of getting that RSSI is to use stronger Bluetooth 

antennas. Another alternative communication protocol is 

Ultra-Wide Band, which provides low energy usage while 

also detecting small changes in distance and direction. 

Another improvement to consider is the use of a camera 

system with pan-tilt-zoom functionality as it provides much 

more coverage and recognition range than the current 

system’s implementation. 
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