

Pegasus Protection Services’
Indoor Positioning Security

System
Christian Silva, Isaiah Williams, Dylan

Sauerbrun, Aundre’ Fredericks

Dept. of Electrical and Computer Engineering

University of Central Florida, Orlando, Florida

32816 – 2450

Abstract — Wireless Indoor Positioning Systems (IPS) are

commonly used in commercial and industrial applications to

monitor the movement of entities (objects and people) throughout

secure locations where protocols such as GPS lack the required

precision. While these systems excel at providing information

about entity location, they fail at providing accurate entity

identification as well without significant human involvement

(having security personnel on-site to confirm identity). To remedy

this issue of identification, a more holistic approach to security is

required. This paper outlines the design and implementation of an

indoor security system that utilizes Bluetooth Low Energy (BLE)

beacons and tags in tandem with Computer Vision to provide both

personnel positioning and personnel identification, respectively.

The combination of these technologies results in an automated

real-time security system that will provide the information about

where personnel are located as well as their identities without the

need of significant human involvement.

Index Terms -- Security., Bluetooth, Indoor Positioning System,

Computer Vision, Personnel tracking

I. INTRODUCTION

In this day and age organizations across many industries

make use of asset tracking systems to increase their operation

efficiency as well as operation security. To maximize the

amount of information available, many of these organizations

make use of real-time tracking systems to gather information

about the location of equipment, merchandise, and even

personnel. One such use-case is the implementation of

passive Radio-Frequency identification (RFID) cards and

readers to determine and restrict location access of certain

personnel. Many indoor tracking systems make use of a form

of passive tracking, such as RFID or NFC as it reduces the

technological overhead, while still providing asset location.

While these passive systems are acceptable for ascertaining

the location history of assets, they fail at providing the real-

time location accuracy required for more high-security use-

cases. In such cases active (real-time) systems are required in

order to provide an organization with accurate up-to-date

information about an assets position. These active systems

through the use of wireless technologies such as Bluetooth

Low Energy (BLE) or Ultra-Wide Band (UWB). When

concerning security, these systems solve the problem of

obtaining position data of assets, however they do not

completely solve the issue of asset identification.

When considering the tracking of people throughout secure

locations one must consider a situation in which intruders can

obtain or fabricate the credentials of validated personnel. In

this situation having just the tracking system alone will not

ensure site security, so a system of identity verification must

be used in addition to these systems. To solve this aspect of

security it is common to rely on biometric identification, as

generally those cannot be easily replicated by bad actors.

When concerning a real time system one valid solution is the

introduction of a facial recognition component in order to

provide identification and with the combination of these

solutions one can achieve a real-time security system that

provides position information as well as identification of the

personnel that are being tracked.

The Security System designed in this project will solve the

issues of obtaining real-time personnel location along with

personnel identification. The issue of obtaining positioning is

resolved through the use of Bluetooth Low Energy (BLE)

tags and beacons along with the use of a trilateration

algorithm to accurately calculate indoor position data of

tagged personnel. The matter of identifying personnel is

resolved with the implementation of a computer vision

component of the system. This component utilizes facial

detection and facial recognition to identify registered and

non-registered personnel entering a secure location.

The BLE beacons and tags in this project make use of the

Bluetooth component from the Espressif ESP32

microcontroller. Proper implementation of this system

requires at minimum three stationary beacons, along with one

tag that will be on the target that is being tracked. The three

Beacons will calculate their relative Received Signal Strength

Indicator (RSSI) values and will send this data to a local

application that will process these values through a

trilateration algorithm and display the estimated locations

onto the application.

The computer vision system that will work in tandem with

this BLE system will determine the identity of the target that

enters a secure location, assuming that they are located within

the system’s database. The facial detection and recognition

software were developed in Python using the open source

OpenCV software library. The camera system will

continuously monitor the entrance to a secure room and will

detect and identify personnel entering the room. The

information concerning the identity of these individuals are

sent to the software application and this data is processed to

provide security personnel with alerts depending on who is

identified.

II. PROJECT OBJECTIVES

A. Group Goals

For our group the main objective for this project was to use

the knowledge gained through our education and prior

experiences and apply that to solving a real-world problem.

Our group is composed of all CpEs so we wanted a project

that included a significant software portion, but also had

hardware and embedded components to it. With the inclusion

of Computer vision, embedded programming, and BLE,

beacons and tags we feel as if our security system idea

accomplished our personal requirements for this project. We

felt that this security system was sufficiently challenging

while also containing elements that each member was

comfortable with working on and could also be accomplished

within the scope of this senior design course.

B. REQUIREMENT SPECIFICATIONS

The engineering specifications we decided on were aimed at

the accuracy and speed of our positioning component and

recognition software. We felt that these attributes were

important as we wanted to create a real-time system where it

is necessary to set specific time constraints. The facial

recognition component is the backbone of the security system

as it provides identification of individuals, so it was important

to ensure that it was able to detect and recognize an individual

the instant they came into view of the camera. We felt as if 5

seconds was the absolute maximum time the system should

take to identify before it became a security issue. In the

implementation of our system, it takes approximately 0.5

seconds to recognize a face and provide that data to our

security application.

As for the positioning component of our system, the accuracy

and maximum detection range is important to ensure that the

security system is aware of what tag is being detected and

where they are as early as possible. We decided on the

maximum range of 10m as we felt that this distance is suitable

for accurate positioning in most medium sized rooms, we

tested the system in. This range can be increased by

improving the actual broadcasting power of the BLE

antennas. We felt that the positioning being within 1 meter of

accuracy was sufficient enough to represent the location of an

individual for security purposes. Finally, since this is meant

to be an automated system with relatively low involvement

from individuals we wish to detect we wanted the beacons to

be as small as possible so that they could be placed in a user’s

pocket or perhaps attached to an ID card of some kind so we

decided to restrict the size of the beacon to at least 120mm x

70mm x 40mm. Figure 1 shows the demonstrable engineering

specifications from those discussed above.

Some standards we adhered to include IEC 62676-

5:2018,ISO/IEC 19794-5:2005 and ISO/IEC 30137-1:2019

for quality requirements for security camera images, as well

as proper specifications for implementing a biometric

recognition system. For the Bluetooth component we also

followed standards such as ISO/IEC 18305:2016 and IEEE

802.15.1-2002 which regard the testing and evaluation of

tracking systems, as well as specifications for wireless

personal area networks.

 Engineering
Specifications

Values

Beacon Size < 120mm x 70mm x40mm

Successful Recognition < 5s

BLE tag detection range Up to 10m

Detection Range < 3 Meters

BLE position accuracy 1 meter accuracy

Fig. 1. Demonstrable engineering Specifications

IV. System Design

Our system is made up of three major components, the indoor

positioning component, computer vision component, and the

software application. The indoor position component

involves the use of 3 BLE stationary beacons and 1 BLE tag.

This tag will be in possession of the person we are tracking

and when activated will be constantly broadcasting a

Bluetooth signal to the 3 beacons. These beacons will store a

tag’s MAC address and Received Signal Strength indicator

(RSSI) value into a data payload that will be sent to a

Mosquitto MQTT server. This MQTT will then send

(publish) the payload to our software application where the

distance is calculated using RSSI, and with that distance we

will determine the position of the tag through trilateration.

Fig. 2. System Block Diagram

The purpose of the computer vision component of this system

is to identify personnel entering a room for our security

system. All verified personnel will have their pictures placed

in a dataset and we will train the recognition software when

a new user is registered within our system. When a user enters

the frame of a video the recognition software will determine

if they are in our dataset and if they are not then they are given

an ‘unknown’ tag. This information is sent to the software

application where it will be processed accordingly.

Finally, the software application is where the data from our

edge devices is collected and manipulated to give us the

automated alerts. This software Application is where we

manipulate the data from the beacons and create alerts based

on security infractions that we determine. The software

application will also display the real-time position of the BLE

tags on a map of the location we are monitoring. Any BLE

devices or faces that are detected by the network will populate

tables within our main dashboard page.

A. PCB Design

For our project we have two generations of design. Our

printed circuit boards (PCBs) were designed in Eagle and

EasyEDA due to the extensive library available. The

microcontroller we selected based on popularity, price, and

extensive documentation was the ESP32 WROOM 32D

module. The ESP32 module satisfied our requirement for

Bluetooth and Wi-Fi components since Bluetooth will be

used for the implementation of our indoor tracking and Wi-

Fi will be used to send over data from our printed circuit

board to our web application.

Originally our first-generation design was made with the

intention that it would be a standalone beacon. Our first-

generation design was mainly a voltage regulator designed to

power on a 30 pin ESP32 development kit module that we

had purchased prior for testing our initial code. Due to its

relatively large size of (115mm x 67mm) we decided that it

would be best for this design to act as just a stationary beacon

that will emit Bluetooth signal using the ESP32 module from

the development kit, as it would be too big for an individual

person to carry around as a tag. The main voltage regulator

being used in this design is an LM7805 voltage regulator. The

regulator is an old component that turned out to be inefficient.

To power on our first generation design we used 12 volts to

9 volts male power jack, which the regulator outputted to 5

volts giving us an efficiency rating around 41% - 55%.

For our second generation design we decided we wanted to

essentially create our own development kit and get rid of

other features that we do not need. The main component of

this design was again the ESP32 chip module. Unlike our

other design, which consisted of through-hole components,

our second-generation design used surface-mount devices

which are smaller, cheaper, and more efficient. Our second-

generation design consists of three main subsystems, the

ESP32 module, the power circuitry for the module and the

USB-C circuitry which is used for uploading and pushing

code onto our ESP32 module. Our new printed circuit board

design can be powered on by either a USB-C input or by

connecting a LiPo battery pack, giving it the option to be

either stationary as a beacon or mobile as a tag. The LiPo

battery is also able to be charged via USB-C connection by

the MCP73831T component to increase the lifespan of our

beacon/tag printed circuit board design. The surface mounted

regulator we used is the XC6220B331MR-G. This regulator

is more efficient than our first-generation design, taking in

input voltages of 3.7 volts from LiPo and 5 volts from the

USB-C connection we see an efficiency rating of 66% to 89%

which is a huge increase compared to our first-generation

design.

Fig. 3. 2nd. generation PCB design for use as BLE

Tag/Beacon

The main improvement our second generation had was size.

Due to the use of surface mount devices, we were able to

reduce the size to 50mm x 28mm x 10mm.As a result, our

new design is now able to act as either a beacon or a tag

depending on what code we plan to upload on them and

whether you want it to be powered on via a regular USB-C

connection or LiPo battery. This reduction in size makes it

easier for consumers to place around their specialized

location(beacon) and easy enough for them to carry around in

their pockets(tags). In figure 3 you can see the finalized

design of our second-generation beacon.

B. Communication Protocols

In order to send data from our beacons to our software

application, a communication network must be established.

For our indoor tracking system, we decided to choose the

popular open-source message broker known as Mosquitto.

Mosquitto implements the Message Queuing Telemetry

Transport (MQTT) protocol to establish a bi-directional

communication server to allow messaging. This connection

acts as a bridge between the beacons/tags and the web

application. Because the protocol is lightweight in nature [1],

sending RSSI data at a high rate is no issue. With the ability

to publish and subscribe to MQTT, tracking data visually is

made easier and more efficient.

For our face recognition system, we decided to use Socket.io

to pull incoming data. Unlike MQTT, Socket.io is an event-

based communication protocol. Socket.io implements the

WebSocket communication protocol which provides a full-

duplex and low latency channel between the server and the

browser [2].We use Socket.io to implement a connection

between the facial recognition software (client) and the Web

Application utilizing the Socket.io WebSocket protocol

(server).

C. Trilateration

Fig. 4. Trilateration Implementation

Trilateration uses distance estimation against RSSI data to

indicate where our tag is in reference to the three stationary

beacons. The three stationary beacons all hold an (x, y)

coordinate and based on signal strength from the tag in

comparison to the coordinates, estimated coordinates for the

tag are calculated. Trilateration requires multiple steps before

the algorithm reaches a result that accurately represents

indoor position within 1 meter. Firstly, the RSSI value from

the incoming tag is received from beacon. The RSSI is

calculated using ESP32’s built in getRSSI() function. Once

the RSSI value from the tag to its respective beacon is

transmitted, the data is transferred over to the software

application using MQTT where the data will be manipulated.

Next, is to calculate the distance from the respective tag to

beacon using that incoming RSSI value (1).

 d = 10((𝑇𝑥𝑃𝑜𝑤𝑒𝑟 − 𝑅𝑆𝑆𝐼) / (10 ∗ 𝑛)) (1)

The distance formula consists of three parameters that must

be accounted for. The first parameter TxPower, is known as

Measured Powered, in other words the 1-meter RSSI [6]

which for the ESP32 module is -60 at 1 meter. Next is the

value of the incoming RSSI from the detected device. In this

case, the tag is being detected by beacons and emitting

respective RSSIs readings to its appropriate beacon. Lastly,

is the ‘N’ parameter. ‘N’ is a constant that we choose to set

based on the environmental factors. This variable usually

ranges from 2 to 4, for our project we ran multiple tests to

determine the optimal value of ‘N’. Once all the parameters

are filled in by the incoming data, we can now calculate the

distance ‘𝑅𝑖’ from the respective beacons to tag. Each beacon

should theoretically receive a different RSSI value unless the

tag is in the center of the coordinate grid. Our stationary

beacons will each have their own (x, y) coordinates

accompanied with a relative distance, where distance will be

calculated by the incoming RSSI, and this will form the

matrix in equation (2):

Tag Position =

[[x1, y1, R1]

 [x2, y2, R2] (2)

 [x3, y3, R3]]

From here, the trilateration implementation uses a point

estimation equation based on Pythagoras Theorem [7], to

obtain a resulting coordinate pair (3) to approximate the

location of the tag that the system is currently detecting.

𝑇𝑎𝑔 𝑋 =
|

R12-R22-(X12-X22)-(Y12-Y22) 2(Y2-Y1)

R12-R32-(X12-X32)-(Y12-Y32) 2(Y3-Y1)
|

|2(X2-X1) 2(Y2-Y1)

2(X3-X1) 2(Y3-Y1)|

 (3)

 𝑇𝑎𝑔 𝑌 =
|

2(𝑌2−𝑌1) 𝑅12−𝑅22−(𝑋12−𝑋22)−(𝑌12−𝑌22)

2(𝑌3−𝑌1) 𝑅12−𝑅32−(𝑋12−𝑋32)−(𝑌12−𝑌32)
|

|2(X2-X1) 2(Y2-Y1)

2(X3-X1) 2(Y3-Y1)
|

Theoretically, the trilateration algorithm gives us an

approximation within 1 meter of the actual position. In

practice, each beacon reaches within .14 meters of the actual

position at our tested distance. Achieving accuracy while

remaining computationally efficient (low cost) was important

and trilateration made this possible. On average, the response

time between movement of the tag to a new location and

publishing the change on the software application stays

around 1 - 2 seconds due to latency.

D. Computer Vision

Our group designed the computer vision component

so that it would accomplish the following:

1. Locate faces on images coming from the cameras

2. For each face, determine if that face is ‘accepted’ or

not (according to database)

3. Update the web app with data pertaining to what the

camera is currently seeing.

4. Issue alerts to the web app if a face could not be

identified.

With a list of tasks to be done, we started off by preparing a

machine with the tools necessary to carry out computer

vision. From our research, this included installing the popular

code editor VSCode, the Python programming language, and

several helpful python libraries (pandas, pickle, opencv, dlib,

face_recogniton, etc.). These tools gave us the critical

components for programming computer vision into our

system. We now share a brief description on what some of

these tools provided us in the code design:

● OpenCV - All-in-one open-source computer vision

library, enabling us to establish a connection with the camera,

read individual frames at a time, and define shapes/text on

images to show computer vision results.

● Dlib - open-source collection of machine learning

algorithms, which for our case, provided us means for

implementing face detection/face recognition algorithms.

Originally a C++ library, but thanks to the provided Python

API, enables software coded in Python to use it.

● Face_recognition - One of the most helpful libraries

throughout this endeavor, providing excellent documentation

[3] for building face recognition/detection, as well as

including several examples for guiding users through the

different features provided.

● Pickle - Useful library making the training stage as

least repetitive as possible. For each dataset we worked with,

we could train the set once, without having to waste time

during every performance test training on the set again.

It is important to discuss the algorithms we wanted our face

detection and face recognition to use for our system. The face

recognition library supports two models to use for face

detection, the two being the Histogram of Gradients (HOG)

and using a Convolutional Neural Network (CNN). It should

be noted as per the documentation [4], the HOG method

works generally faster and easier for a CPU, whereas the

CNN model uses a GPU in combination with CUDA libraries

to achieve a higher accuracy. We decided to go with the HOG

method as we wanted to identify faces as fast as possible so

that it could then proceed to recognize faces on the camera as

soon as possible. To summarize how the HOG method works,

you look at each pixel in an image, and for each pixel,

compare it to the surrounding pixels, and determine a

direction in which it becomes darker. Here is an example of

what the computer generates for each face it would see on the

camera:

Fig. 5. Conversion to HOG Face

Notice that from the HOG version of the face, there are some

notable features that you can extract fairly easily (the eyes,

noise, and mouth). The face detection works by comparing

the HOG version of the image it sees to a pre-trained HOG

image of a face (imagine the left image was derived from a

collection of HOG versions of faces), such as this:

Fig. 6. Comparing General HOG to Observed

From here you can see the similar features one would expect

from a human face, and thus the computer would deem the

image observed as having a face. For facial recognition, the

computer takes multiple measurements from a face on the

perceived image to create an encoding of that image. Next,

the encoding is compared to a pre-established dataset of

encodings for people that are to be recognized. The computer

uses a deep learning model to determine the measurements

that closely relate 2 images of the same face, and separate

images of different people. With this approach, we can take a

raw image and convert it to a set of numbers the computer

can work with [5].

Computer Vision requires a computer to perform the

algorithms developed for machine learning. Furthermore, the

system was intended to be portable, and so a microcomputer

was needed. We opted to experiment with the Jetson Nano as

the computer that would be responsible for performing the

computer vision for our security system. After preparing the

Nano with the tools necessary to perform some computer

vision, we began testing. It is worth mentioning that while

face detection and recognition of a single image each time

functioned without issue, introducing the complexity of

multiple images at a time through video presented problems.

Particularly speaking, the Nano having 2 GB memory

capacity meant there was little room to compute all the

incoming frames from the camera. With different attempts to

free up the memory (running Nano in headless mode to avoid

any applications on screen from taking up memory,

uninstalling any unnecessary software from the device),

nothing seemed to allow the computer vision to run in real

time. In addition, extra processing power and space would be

needed to stream the output computations to the software

application. From there we then tried setting up the Nano to

stream the raw footage (using RTSP protocol) to an external

PC (one of our computers at home) and have the computer do

the computation, but there ended up being difficulty in getting

a consistent smooth stream between the Nano and the

computer. This was not ideal, as we want to make sure there

were no extended periods of dropped frames, or else the

security of the system would be in jeopardy. It was then that

we decided to just run a direct connection from the camera to

the computer, which seemed to allow the program to function

at the very least.

E. Software Application

The software application is the central component of our

system, it brings together our indoor tracking and our facial

recognition system into one. Data coming in will be

constantly updated in real time since packets will be

continuously coming in from our beacons and our facial

recognition system. Our software application consists of two

main components, a dashboard to display alerts and a live

indoor tracking feed.

Our live indoor tracking feed is implemented by the use of

trilateration. For the live tracking, our web application uses a

system of coordinates, in this case pixels, to display the real

time location. Icons will appear on the site once three beacons

are detected. The Bluetooth icon represents the beacons

which can be moved around and placed relative to the

location of your floorplan. The user icons represent the tag

which cannot be manually placed and are calculated relative

to the 3 PCB beacons that are setup around the room. The

beacons hold positions X and Y relative to their position on

the map in pixels. This X and Y position for each beacon icon

is found using JavaScript’s Mouse event functions. Using the

distance equation (1), the software application calculates the

distance from each beacon to that current tag it is detecting

and prepares a matrix (2) to pass to the trilateration

implementation discussed above. JavaScript has its own

built-in Trilateration function, based on the point estimate

equations (3). The built- in Trilateration function will then

return an X and Y position for the detected tags. On the

software application the tag icon will update to display

location relative to the floorplan that has been uploaded to the

site.

Our dashboard, which is the main page of our software

application, is used to display alerts. The dashboard has four

tables, a table to display latest indoor tracking, latest tracking

alerts, latest face tracking and latest face tracking alerts. The

latest indoor tracking table publishes the payload data coming

in from the Mosquitto server. This data includes the detected

tag MAC address, the name associated with the tag, which

beacon is emitting data, the associated RSSI reading along

with a measured distance in meters and a timestamp. The

purpose of this table is to display the activity going on in the

secure location the beacons are placed around. Next is the

Latest Tracking Alerts table. This table is responsible for

populating alerts that our system detects, some of the alerts

that will appear are shown below:

● User tags shows that they do not have access to this

area

● User is too close to secured beacon

● User is too far from designated area

The ‘Latest Face Tracking’ table displayed the data coming

in from the socket connection, in this case the faces that the

camera system is currently detecting. This data populates

who it is currently identifying, its respective location and the

timestamp of the detection. The ‘Latest Face Tracking’ Alerts

displays alerts that are prompted by the face recognition

system, some of the alerts that will appear are displayed

below:

● Unknown user in the area has been detected

● User has no access to this area

● A user with no tag has been detected

Using the incoming data from the Mosquitto server and the

Socket we are able to manipulate the data to produce alerts

and display live location.

IV. DESIGN IMPLEMENTATION & TESTING

A. BLE Signal Interference

In the Distance equation (1) mentioned in the section above,

our team decided to run some tests to determine the optimal

value for ‘N’ for our indoor tracking. As stated before, ‘N’ is

a constant that depends on Environmental Factor, so the more

obstacles that are in the way between two emitted signals, the

more it will negatively affect the Received Signal Strength.

In the test we conducted we decided to place a beacon and tag

3 meters apart and tested three different scenarios, Nothing in

between the beacon and tag, a Human body in between the

beacon and tag, and a wall between the beacon and tag. In

Figure 7 you can see the results of our testing:

Fig. 7. RSSI value base on Interference

In figure 7, the blue line represents the signal with no physical

interference between the beacon and the tag, the Orange

represents a human body interference, and the green

represents a wall interference. The blue line represents the

strongest signal strength at an average of -68.8 for the RSSI.

With Bluetooth signals the value of RSSI can fluctuate when

there is a physical object between a transmitter and a receiver.

When testing the effects of a human body or wall between the

tags and beacons we observed an average decrease of 8.45

and 12.35 respectively. In situations where a wall or human

body will be between the tags and beacons, we can adjust for

the environmental factors in our distance equation. For this

implementation we decided to select a value of 3 for our

environmental factor variable ‘N’. These tags will ideally be

carried in the pockets or close to the body of the monitored

personnel, so to calculate accurate distances we must

consider that the incoming received signal strength is inflated

due the environment around the beacon and the tag.

B. Indoor Positioning Accuracy

Fig. 8. Distance accuracy test for Beacon

Figure 8 represents the results of the testing to check that the

variance for the calculated distance was acceptable. In this

test we set a tag 3 meters away from a beacon and recorded

20 calculated distance values. When averaging out the

calculated distance over this span we found that on average

the system calculated a distance of 2.86 meters (14 cm error)

which is within our engineering specifications for the

positioning system.

C. Computer Vision Metrics

When implementing the computer vision component, there

were two metrics that we investigated to understand the

proper conditions for the camera to operate in.

1. Effective Distance Range (at 800 lumens)

2. Effective Light Range (at 7 ft)

 Several trials for both metrics were conducted, with the

camera in a stationary position.

Fig. 9. Effective Distance Chart

Figure 9. depicts several trials of the effective distance, where

the lights used are kept at 800 lumens (100% brightness).

Note that on average, we see the effective distance at this

brightness is 14 ft. Trials that performed slightly better/worse

than average can be attributed to factors such as blurriness

due to auto-focus, sunlight making the room brighter, and

different locations for testing.

Fig. 10. Cutoff brightness at 7 ft.

The light range trials were conducted using Philips Hue A21

light bulbs, and by varying the brightness, this has shown that

around 80-90 lumens is when the computer vision will fail on

a face. Some outliers can be attributed to the blurriness of the

camera at that point, or sunlight increasing the overall

brightness in the room.

 V. CONCLUSION

 The purpose of this project was to automate the

monitoring of secured locations using an Indoor Positioning

System (IPS) in conjunction with facial recognition software.

This provides a method of tracking an individual's path

throughout these locations, while also obtaining the

individual’s identity. The IPS component was implemented

using BLE 5.0 tags and beacons. These tags/beacons make

use of the ESP32 Bluetooth antenna module. With three

stationary beacons and at least one tag, trilateration can be

used to approximate the position of the tag using the beacon's

RSSI values. The computer vision component uses Python,

OpenCV and the face recognition library to detect and

recognize faces of people that enter a location. This

identification info is then sent to our software application. In

this software application alerts are created using the data

obtained from our edge devices (camera, beacons, etc.), and

all of this is done in real-time to provide the most accurate

information about people’s whereabouts.

Our system was able to determine the position of an

individual with approximately 1 meter of accuracy. And

when interference is expected, we can account for this by

altering our RSSI calculations accordingly to calculate the

values more accurately. Although we can account for this, the

security system is best used if there are no solid walls

between the Beacons and Tags to minimize signal loss. In

regard to the computer vision component, the biggest

environmental factor was the brightness of the room, and

testing found that ~80 Lumens was the minimum light level

at a distance of about 7ft, and at 800 lumens the maximum

detectable range was about 14ft. The alert functionality was

important for this system as it lets the person monitoring the

software know when there are security infractions being

committed. The system is able to detect if users are cleared

for access based on their face and/or tag. The system is also

able to detect if users are getting too far from or too close to

the secure location as well. And the facial recognition system

acts as a last point of failure, so if a person is caught by the

camera trying to enter the area without a BLE tag being

detected, an alert will be sent to the application.

The system was successful at providing a variety of security

alerts in real time, but there is still room for improvement in

the development of a system like this. Getting more accurate

RSSI is crucial to obtaining more precise position data, and

one way of getting that RSSI is to use stronger Bluetooth

antennas. Another alternative communication protocol is

Ultra-Wide Band, which provides low energy usage while

also detecting small changes in distance and direction.

Another improvement to consider is the use of a camera

system with pan-tilt-zoom functionality as it provides much

more coverage and recognition range than the current

system’s implementation.

VI. REFERENCES

[1] S. Cope, “Beginners guide to the MQTT protocol”, 2018.
[Online]. Available: http://www.steves-internet-guide.com/mqtt/

[2] M.Othman, “An Introduction to Socket.IO”, May 16th, 2020.
[Online].Available: https://dev.to/mohamedashrafothman/an-introduction-
to-socket-io-3ncb

[3] A. Geitgrey, D. King , “Face recognition”, version ‘87a8449a’,
2017. [Online]. Available: https://face-recognition.readthedocs.io

[4] A. Geitgrey, D. King , “Face_recognition package”, version
‘87a8449a’, 2017. [Online]. Available: https://face-
recognition.readthedocs.io

[5] A. Geitgey, “Machine learning is fun! part 4: Modern face
recognition with deep learning,” Medium, 24-Sep-2020. [Online].

Available: https://medium.com/@ageitgey/machine-learning-is-fun-part-4-

modern-face-recognition-with-deep-learning-c3cffc121d78. [Accessed: 16-
Apr-2022].

[6] A. Ghosh, “Calculating distance from RSSI value of BLE
Devices”, March 18, 2020. [Online]. Available:

https://thecustomizewindows.com/2020/03/note-on-calculating-distance-
from-rssi-value-of-ble-devices/

[7] B. Yang, L. Guo, R. Guo, M. Zhao, T. Zhao, “ A novel

trilateration algorithm for RSSI-based indoor localization” , July 15th,

2020, pp. 8164-8172. [Online]. Available:
https://ieeexplore.ieee.org/document/9036937.

VII. AUTHORS

Christian M. Silva will graduate
with his bachelor’s degree in
Computer Engineering from the
University of Central Florida. He
will start work after graduating
in the field of IT and Software
engineering with Leidos. After
working for some time, he plans
on returning to the University of
Central Florida to pursue his
master’s degree.

Dylan Sauerbrun is

going to be graduating with a

Bachelor’s in Computer

Engineering granted by the

University of Central Florida.

Intrigued by the capabilities

cloud computing has to offer,

Dylan will pursue companies

that allow him to work more

closely with cloud services.

Isaiah Williams will be

graduating with a bachelor’s

degree in Computer Engineering

from the University of Central

Florida. After graduation he

plans to pursue a career in

software engineering.

Aundre’ Fredericks will be

graduating with a bachelor’s

degree in Computer Engineering

from the University of Central.

After graduation, he will start

working for Texas Instruments

as a Reliability Engineer as part

of his first Rotation in their 2-

year rotational program. After

completing the rotation, he plans

to leverage the skills he has

learned to advance his career and

eventually begin contract work

or start a business of his own.

