
Pegasus
Protection

Services
Christian Silva - CpE
Isaiah Williams - CpE

Dylan Sauerbrun - CpE
Aundre’ Fredericks - CpE

➢ Create a security system that could be used to monitor personnel secure
locations.

➢ Be able to keep track of all individuals entering and leaving an area (known
or unknown)

➢ Wanted to implement a project/system that is based around the IoT
architecture

Project Goals

Computer Vision Software App

❏ Security Infraction Alerts

❏ Tags visible on Map

❏ Face recognition

❏ Backend connection

System Objectives

Real-Time Location
Tracking

❏ Implement Trilateration

❏ Constant location
updates

System Overview

Security Infraction Alerts:

- Non-employee face detected (not in database) or fails to recognize face
- Face detected, but no corresponding beacon detected in the area

Employee(in dataset):
- insufficient access level
- Employee travels too far from secure area
- Employee travels to close to beacon

System Behavior Examples

● The system should be able to detect BLE tags within 1 meter of accuracy

● Facial Recognition system should have a detection range up to 3m

● Facial Recognition system should take less than 5s to identify a person

● Size of beacons should be no larger than 120 x 70mm x 40mm (should be handheld)

● Components should communicate wirelessly

● Live positioning should update within 1s

● Beacons should be able to detect tag within 10m

Requirements and Specifications

Existing Systems

Camera Selection

Camera Raspberry Pi
Camera V2

Logitech C920s Lenovo 500

Resolution 8 Megapixels 15 megapixel 1080p

Frames per
second

30 fps @ 1080p 30 fps @ 1080p 30 fps @ 1080p

Field of
View

62.2° 78° 75°

● Popular for computer vision
projects

● Supports up to 4K @ 60 fps
video

● Will be used support our
projects Facial Recognition
system

Microcomputer Selection

MicroController Nvidia Jetson Nano

CPU Quad-core ARM® A57
@ 1.43 GHz

GPU 128-core NVIDIA
Maxwell

Memory 2 GB 64-bit LPDDR4
25.6 GB/s

I/O ports 1x USB 3.0 Type A,2x
USB 2.0 Type A, USB
2.0 Micro-B, 1x MIPI
CSI-2 connector 1x

HDMI

Computer Vision Overview

Leo
ALERT! Possible Intruder…

Unknown

?

Face detection

Face recognition

● Using Python language
○ Comfortable language for our group
○ OpenCV is supported by Python
○ Useful for future career plans

● What is OpenCV?
○ Computer Vision library
○ Provides several modules for different aspects in

robot vision, machine learning, image augmentation
○ Open-source (free to use!)

● What is Dlib?
○ Like OpenCV, is a library providing algorithms and

methods to perform computer vision concepts.
○ Written in C++, but provides Python API

Python, OpenCV, and Dlib: The
three resources

● Face detection
○ Used for locating faces in images
○ Classifies an image as containing a face or not
○ If a face is found, proceed to identifying
○ Saves us computational resources (don’t have to always try

to recognize a face in continuous streaming images)
● On the face detection front, we utilized the Histogram of Gradients

method.
○ For each pixel in the image, determine a direction in which

it becomes darker (gradient)
○ HOG images compared to provide a fair comparison

● Why this method specifically?
○ When compared to the other options, it is generally faster

and less computationally expensive.
○ Intrigued by how the computer sees faces from the camera

Classifying the images: a face or not?

HOG representation of face

● Facial recognition.
○ Compare observed face to the faces in the ‘accepted

faces’ set.
○ If a face cannot be ruled as ‘accepted’, the program will

then issue an alert on the software application.
● Encoding the images with measurements:

○ Deep learning model identifies measurements to be taken
○ Allows us to extract ‘face encodings’ from images
○ Encodings are sent to be classified as a face in the set

● Things we have noticed on this matter:
○ Angle of face matters
○ Facial accessories (masks, hats) make it difficult
○ Light has to be decent enough (so face can show up better

in image)
○ Distance can vary depending on the brightness in room

Putting a name to the face: resolve!

Face represented in encoding

● Face detection
○ Lots of existing online resources that provide

datasets with faces (Labeled Faces in the Wild,
CelebFaces, etc.), which we used for testing

○ Want to prioritize frontal face detection
○ As live camera feed gets sent to computer, face

detection will be performed on the incoming
frames.

● Facial recognition
○ Need images for each person that wants to be

recognized by the computer
○ If pictures are too small, may not be able to

resolve
○ Accepted faces stored in dataset used by

program

What’s needed for the computations

Program Flowchart for
Computer Vision System

● The helpful stuff:
○ Thanks to OpenCV, we are able to get suitable face

detection running on the Nano
○ Lots of resources online that show various strategies for

implementing computer vision
○ Code for throwing alert can be easily triggered by using

the results of the facial recognition program.
● Problems that have arised:

○ When using Neural Networks, limited by memory of Nano
○ How delayed is the video computation result to when it is

fed into the Nano?
○ What if people want to wear masks?
○ If we opt to use multiple models, how can the Nano’s

memory handle it?
○ Because of computation, Nano begins to run hot.

Computer Vision: The ups and downs

Communication Method Selection

Type BLE Wi-Fi

Location
Accuracy

< 5 m < 10 m

Range Up to 100 m Up to 500m

Latency 3-5 seconds 3-5 seconds

Power
Consumption

Low Moderate

Frequencies 2.4 GHz 5 GHz

Data Rate 2 Mbps 1 GBps

● Bluetooth Low Energy
○ Primarily being used for

indoor positioning system
● Wi-Fi

○ Sending data from
components to our cloud
platform

○ MQTT Server

● Supports Classic
Bluetooth and BLE

● Supports 802.11 b/g/n
Wi-Fi Connectivity

● UART IC
● I2S
● Popular component for

IOT projects

Microcontroller Selection

Board ESP32 ESP8266 CC3200

Manufact
urer

Expressif Expressif Texas
Instruments

Operating
Voltage

3.3v - 5v 2.7v - 4.0v 2.3v - 3.6v

Power
Consump

tion

Low Low Low

Price $10.00 $7.39 $55.00

Trilateration Implementation

Hardware Requirements:
3 Stationary Beacons
1 mobile Tag

Software Requirements:
Arduino (ESP32)
Web-App
Database

How it works:
3 stationary beacons work together to
create an interwoven field using RSSI.
Using both distance and point
estimations, transform signal data into
visual output.

BLE Signal Discussion

Signal Specification:

UART Signals will be used at a baud
rate between 9600 and 115200

Distance Estimation:

d represents distance from tag
C represents environment constant
n represents path loss exponent
RSSI (d) = -10nlog (d) - C

Point Estimation:
d1 = (x1, y1)
d2 = (x2, y2)
d3 = (x3, y3)
d0 = (x0, y0) = min ||AX* -B||2 (Purple star)

Data Transmission
Microcontroller -> BLE Tag

● Sends Serial Data via UART with UUID attached

BLE Tag -> Microcontroller
● Sends Serial Data via UART with UUID attached

Microcontroller -> Jetson Nano
● Sends packaged data to backend hosted by Microcomputer

○ UUID from Tag
○ UUID from Microcontroller
○ Timestamp

Jetson Nano -> Software
● Stores received data to database
● Compares UUID with those available in database
● Output Tag data on Dashboard (Tag w/ UUID should already exist)

RFID - Radio Frequency Identification considered for implementation, but deemed unfit for
the goals the group set.

WiFi - Cell phones receiving 802.11a signal used as tag for indoor tracking. User would need
to sign into our application and opt-in to allowing location services to be used.

UWB - Ultra Wide Band Technology considered for tracking indoors over a larger area, but
deemed less beneficial than BLE

Previous Considerations(Wireless)

ESP32 Module + USBC Component

Final PCB design

USB Circuitry + Auto Program

Power Component

Final PCB design

● More efficient design and Reduced
beacon size

○ 50mm x 28mm (2 x 1 inches)
○ SMD components

● Can be powered on by
○ Single cell Lipo Battery input (3.7V)
○ USB-C (5V max)

● Allows user to interface with IoT so they can view and send data
● Display recently captured activity on admin dashboard
● Admin are able to assign tags to specific user
● Admin are able to upload images for our facial recognition

system
● Using Mosquitto to acquire data sent via MQTT

○ MQTT protocol is used to carry messages from devices (ESP32)
● Using Socket.io to acquire real time incoming data from our Face

Recognition program
● Frontend : React
● Backend : Node.js/Express

Web Application

System
Flowchart

Indoor Tracking

Web Application

Admin Dashboard

Workload
Distribution

Members

Project
Work Christian Dylan Aundre Isaiah

Web-App P S

PCB Design P P

Beacon
Firmware S P

IoT S S P

Facial
Recognition

Training
P

BLE indoor
tracking
software

P S

P- Primary Focus
S- Secondary Focus

Project
Budget
and
Financing

Parts Cost

3x 38 pin ESP32 Dev
Board

$23.30

Arducam raspberry pi
Camera module v2

$51.35

Nvidia Jetson Nano 2GB $60

5x 32 pin ESP32 Dev
board

$41.59

5x power supply PCBs $11.28

Noctua NF-A4 Fan for
jetson nano

$15

Pan-tilt servo platform $29.01

Circuit Components ~$20

Total Estimated Cost $251.53

Successes

● 2nd Gen PCB design size requirement met
● 2nd Gen PCB design works as either Beacon/Tag
● All components able to communicate wirelessly
● Achieved sufficient accuracy with Indoor tracking
● Camera can reliably detect faces in frames
● Recognition is accurate on faces that are provided in

the training images
● Successfully able to display alerts based on indoor

tracking system and computer vision system

What we could have done better

● Obtain more accurate location
○ Speeding up beacon transmission
○ Using stronger Antenna rather than ESP module
○ Ultra-Wideband

● Pick better MCU for Computer Vision Component
○ Nvidia Jetson Nano 4GB

● Pan-tilt-zoom implementation
○ Provide more field of view for face recognition

● Data Storage
○ Keeping tracking of previous alert datas
○ Video feed into cloud for later review

Questions?

