
Trash-E

Group: 26

Senior Design 1 EEL 4914-0001

Members

Thomas Greco: Computer Engineering

Christian Mayo: Computer Engineering

Alex Rizk: Computer Engineering

Chrizzell Jay Sanchez: Electrical
Engineering

ii

Contents
1.0 Executive Summary .. 1

2.0 Project Description... 2

2.1 Project Background .. 2

2.2 Objectives .. 2

2.3 Requirements Specifications.. 4

2.4 Customers, Sponsors, Contributors ... 5

2.5 Marketing and Engineering Requirements .. 6

2.6 Product Features .. 6

3.0 Research ... 8

3.1 Existing Products .. 8

3.2 Microcontrollers... 8

3.3 Computer Vision .. 17

3.4 Power ... 25

3.5 Locomotion and Mapping .. 36

4.0 Constraints ... 46

4.1 Description ... 46

4.2 Economic .. 46

4.3 Environmental .. 46

4.4 Social .. 46

4.5 Sustainability .. 46

4.6 Ethical ... 47

4.7 Time ... 47

4.8 Safety ... 47

4.9 Manufacturing ... 48

5.0 Standards ... 49

5.1 Lithium-Ion Battery Safety Standards .. 49

5.2 Standard SystemC ® Language Reference Manual Standard ... 49

5.3 Software and Systems Engineering – Software Testing ... 50

5.4 Programming language – C Standard .. 51

iii

5.5 Robot Systems – Safety Requirements Standard .. 52

6.0 System Design .. 54

6.1 Software Design ... 54

6.2 Hardware Design .. 77

6.3 Bill of Materials (BOM) ... 113

7.0 Prototyping, Build, Test, Evaluation Plans ... 115

7.1 Prototyping .. 115

7.2 Computer Vision Testing .. 116

7.3 Hardware Testing Plans ... 118

7.4 Evaluation .. 122

7.5 Hardware Component Testing ... 126

8.0 Administrative Content .. 131

8.1 Milestones .. 131

8.2 Budget and Finance.. 132

9.0 Project Summary and Conclusion .. 133

10.0 Appendices ... 134

10.1 Bibliography ... 134

iv

List of Figures

Figure 1: House of Quality ... 6

Figure 2: Example Transmission Using UART (Courtesy of SparkFun) ... 9

Figure 3: Benchmarks for Different Cortex-M Processors (Courtesy of ST) 11

Figure 4: Object Detection Using Computer Vision (Courtesy of TowardsDataScience.com) 17

Figure 5: Traditional Learning (Courtesy of TowardsDataScience.com) .. 18

Figure 6: Convolutional Neural Network Architecture (Courtesy of TowardsDataScience.com) .. 20

Figure 7: Available Models (Courtesy of Tensorflow) .. 22

Figure 8: The TensorRT Flow (Courtesy of Nvidia) ... 24

Figure 9: TensorRT Optimization Performance Graph (Courtesy of Nvidia).................................. 24

Figure 10: Minicomputer Deep Learning Benchmarks (Courtesy of Nvidia) 25

Figure 11: Battery Charging from a DC Power Supply ... 31

Figure 12: Battery Pack Charging with Buck/Boost Converter .. 31

Figure 13: Linear Voltage Regulator (Courtesy Rohm) .. 34

Figure 14: Standard Voltage Regulator .. 34

Figure 15: Typical Switching Voltage Regulator Circuit of a LM5017 .. 35

Figure 16: Comparison between no SLAM and SLAM (Courtesy of MathWorks) 37

Figure 17: Flow of SLAM process (Courtesy of MathWorks) ... 38

Figure 18: Example of pose graph optimization (Courtesy of MathWorks) 40

Figure 19: Robot Path Using VLSAM. (courtesy of Gianmarco Chumbe/CNET) 41

Figure 20: Robot Path Using SLAM with a Lidar Sensor (courtesy of Gianmarco Chumbe/CNET) 42

Figure 21: Use of Maximum, Restricted, and Operating Space ... 53

Figure 22: Nvidia GPU Optimized Models (Courtesy of Nvidia) .. 57

Figure 23: Object Detection Model Performance on Jetson Nano (Courtesy of Nvidia) 60

Figure 24: Labeling the Dataset With LabelImg Tool (Courtesy of LabelImg GitHub) 62

Figure 25: Object Detection Bounding Box Coordinates ... 64

Figure 26: Object Detection Bounding Boxes (Courtesy of Algorithmia) 65

Figure 27: Detection Bounding Box Displacement From Image Center .. 66

Figure 28: MCU Software Flowchart .. 69

Figure 29: Three Wheel Design Created in TinkerCAD .. 73

Figure 30: Project Illustration by Alex Rizk .. 78

Figure 31: Prototype designs for textured gripper and soft robotics gripper for the purpose of

picking up litter .. 79

Figure 32: Flexible gripper at rest (Courtesy Layershift) .. 82

Figure 33: Flexible Gripper Actuating (Courtesy Layershift) .. 82

Figure 34: 3D Model of the Soft Portion of the Gripper .. 83

Figure 35: 3D Model Dimensions of the Soft Portion of the Gripper .. 84

Figure 36: Top-down view schematic for trash bucket.. 85

Figure 37: Side view schematic for bucket .. 86

Figure 38: Illustration of modular arm pieces.. 87

Figure 39: Illustration of modular arm as one piece .. 88

Figure 40: 3D model of the solid component of hybrid gripper .. 91

Figure 41: Dimensions of hybrid gripper ... 92

v

Figure 42: Four Wheel Design for Trash-E ... 93

Figure 43: Full design of the hybrid gripper ... 94

Figure 44: Wiring Diagram for A4988 Motor Driver (Courtesy Polulu) ... 95

Figure 45: 12V to 5V Buck TPS52903RPJ Voltage Regulator .. 99

Figure 46: 12V to 3.3V TPS52903RPJ Voltage Regulator ... 99

Figure 47: 12V to 5V Buck SC4524F Voltage Regulator Circuit .. 101

Figure 48: 5V to 3.3V Buck SC4524F Voltage Regulator Circuit ... 102

Figure 49: 12V to 5V Buck NR110E Voltage Regulator Circuit ... 102

Figure 50: Voltage Regulator PCB .. 104

Figure 51: Microcontroller PCB Schematic .. 107

Figure 52: Design 1 PCB Layout.. 109

Figure 53: Design 2 PCB Layout.. 110

Figure 54: Top Side of Trash-E MCU Breakout ... 112

Figure 55: Bottom Side of Trash-E MCU Breakout ... 112

Figure 56: Trash-E Hardware Block Diagram ... 115

Figure 57: Electrical Connection Layout .. 125

Figure 58: 12-5V Voltage Regulator Breadboard ... 126

Figure 59: 12-5V Voltage Regulator Breadboard ... 126

Figure 60: Test Setup for Ultrasonic Sensor .. 128

Figure 61: 60cm Output (Left) and 30cm Output (Right) .. 129

Figure 62: 15cm Output (Left) and 5cm Output (Right) .. 129

vi

List of Tables

Table 1: Requirements Specifications .. 4

Table 2: Project Features ... 7

Table 3: Microcontroller Comparison .. 10

Table 4: Components Requiring Power ... 26

Table 5: Possible Battery Types (Courtesy Radek Jarema) .. 27

Table 6: Battery Specifications ... 28

Table 7: INR18650 Li-Ion Batteries Specifications ... 29

Table 8: LP616594 Li-Poly Batteries Specifications .. 30

Table 9: Lidar Sensors .. 42

Table 10: UART Baud Rate Register Configuration .. 68

Table 11: PWM Register Configuration ... 70

Table 12: Battery Options .. 96

Table 13: BMS Board Options .. 98

Table 14: Possible Voltage Regulators ... 100

Table 15: Components Needed for Regulator Circuits .. 103

Table 16: Possible Solar Panels .. 105

Table 17: Conflicting Pin Functionalities .. 106

Table 18: Microcontroller Schematic Components ... 107

Table 19: PCB Manufacturing Costs ... 110

Table 20: Bill of Materials .. 113

Table 21: Components used in breadboard testing .. 127

Table 22: Input and Output Voltage of 12 - 5 V Step Down Regulator .. 127

Table 23: Input and Output Voltage of 5 - 3.3 V Step Down Regulator 128

Table 24: Ultrasonic Sensor Testing Results .. 129

Table 25: Fall Milestones ... 131

Table 26: Spring Milestones ... 132

1

1.0 Executive Summary

The only form of automated commercial vacuum which the average consumer
can buy are Roomba®-style devices. The main issue with these devices is the
size of objects that can be picked up. Typically, the size of a candy wrapper,
small cereal, or dust is the maximum that these autonomous vacuums can grab.
These autonomous vacuums also have trouble when they encounter things that
can tangle their wheels such as pet or human hair. Our robot will be able to pick
up larger objects using an arm and pincer mechanic.

In this project we will create Trash-E, an autonomous robot that detects litter and
picks it up utilizing computer vision. It is meant to help automate the process of
cleaning up a venue such as a ballroom, sporting event field, or even a backyard.
Trash-E differs from a Roomba®-style device because Trash-e is not an
autonomous vacuum. Trash-E instead uses an arm to pick up objects such as cups
that were thrown on the ground. The purpose of the project is to create a device
that reduces the manpower required to do a tedious task such as cleaning up after
an event. The robot is not meant to replace Roomba®-style devices, as they
perform a different function. The autonomous vacuums are meant for home use.

Our robot may be useful in any event with a large gathering of people such as a
concert, football game, or party. In these events the last thing on attendee’s minds
is their trash and it is not uncommon for the venues to be filled with garbage after
the event ends. These events have teams of workers who are dedicated to
cleaning up all the trash that is left over. With larger venues, cleaning up may
require upwards of 100 people.

The most important part of Trash-E is the ability to detect objects that we determine
is trash. For this project, we limit the scope by determining trash only as red solo
cups at first. This allows us to have a set goal in mind, rather than finding random
objects and determining it is litter. By limiting the description of trash, we can focus
on making sure the robot excels at detecting that object and fine tuning any
mechanical movements before branching out into things such as aluminum cans,
plastic bags, or bags of chips. The object detection of Trash-E also entirely controls
all the hardware.

On the hardware side, Trash-E must be able to properly pick up these red solo
cups. The entire system should be powered by a single rechargeable battery pack.
The voltage from the battery pack will be stepped down to meet the needs of the
different components on Trash-E such as the microcontroller, and the different
motors that need to be driven. While the battery pack can be charged with a power
supply, we also want to implement solar panels, so the robot is slightly charging
when it is outside. We will need to implement diodes into the circuit so that the
current does not flow from the battery to the panels.

2

2.0 Project Description

2.1 Project Background

Litter is an increasingly difficult problem to address as the world progresses. Large
amounts of money is spent to pay individuals to pick up leftover objects after many
different events such as tailgates, and parties. Due to the chaotic nature of those
situations, it is extremely difficult to govern and manage each individual and ensure
every piece of litter is brought to a place to be disposed of. Therefore, venues
choose to clean up after the event rather than take preventative measures. This
leads to another problem that once litter reaches a certain size, it is too large to
pick up multiple at one time. One must bend down, grab the litter, then put it in a
receptacle for storage until they may properly dispose of it.

A robot does not tire from doing repetitive tasks for hours on end, making it a
perfect fit for this situation. Robots that pick objects up have an arm apparatus,
pincers to grip the objects, and a place to store them. They’re driven by different
motors which are controlled either manually or autonomously. This robot must also
utilize a way to move about an area autonomously and detect a cup using
computer vision.

To be autonomous, it needs to have a power source attached to it. One of the most
common options is a battery. This either needs to be recharged or replaced, but
there’s no way to make the robot run continuously without stopping at some point.

One feature that will be implemented is a receptacle that is attached to the robot
for ease of storage. This eliminates the need to go back to a predetermined spot
to drop the object off.

2.2 Objectives

2.2.1 Motivation

The motivation for this project is to not only utilize the knowledge we have acquired
over the course of our academic careers into a single project, but to challenge
ourselves and build upon those skills while learning new ones. The team dynamic
makes it more realistic in terms of what we will be facing if we exit our
undergraduate career and choose to pursue a career in industry or research. The
topics that are covered in this project like embedded system design and
programming, computer vision and machine learning, and power system
engineering are things that each member expressed interest contributing to at least
one of, if not more. To put more marketable skills on our resume, we wanted to do
a full system design that utilizes multiple different aspects of the engineering
design process so we may realize a product from start to finish.

3

2.2.2 Goals

The goal of this project is to create a functional robot that can:
• Move on its own.
• See an object on the floor.
• Determine if the object is litter.
• Pick up the litter.

Dispose of the litter into the bin on its chassis.

2.2.3 Definition of Litter

Litter is a broad term, and to create a robot that can pick up all litter would not fit
within the scope of the project. According to Merriam-Webster, litter is defined as
“trash, wastepaper, or garbage lying scattered about”. With such a generic
definition, many different objects could fit into that. Examples of some common
items that can be referred to as litter include: candy wrappers, cans, cups, and
bottles. With the word “garbage” being in the definition also, this makes litter even
more ambiguous. The famous saying “one man’s trash is another man’s treasure”
truly comes into effect here. Because of this uncertainty, we will define what the
robot will see as litter, trash, and garbage. To start off, we plan to use 16-ounce
Red SOLO cups. These cups are 3 x 3 x 5 inches in size. We plan to use these
cups because they are very popular at large events and often are discarded on the
ground at events such as college parties. The cups are a distinct red color and
have a distinct shape, which will aid in easing the process of identifying the cups.
Once we are able to distinguish the Red Solo Cups, we plan on moving to 12-
ounce aluminum soda cans. The reasons being like the Red Solo Cups, except
the aluminum cans have more variety of color and design.

2.2.4 Definition of Obstacle

In our use case, an obstacle is anything that can impede the pathing of the robot.
Anything greater than the size of a Red Solo Cup, 3 x 3 x 5 inches, will be classified
as an obstacle to avoid. We plan to use wheels big enough to roll over anything
smaller than the size of a Red Solo Cup if necessary. As we run testing for obstacle
avoidance, we may need to refine our algorithm for what counts as an obstacle.

Other obstacles we may need to consider are obstacles that are too big for the
camera to see. For example, a wall may throw off the obstacle detection, and thus
need to be considered when programming.

4

2.3 Requirements Specifications

 * “The system” refers to Trash-E and all equipment

Table 1: Requirements Specifications

Description Value Unit

Maximum amount of trash picked up at once 1 -

Maximum weight of trash picked up at once 2 lbs

Maximum size of trash 3x3x5 in3

The system shall be able to detect Red Solo Cups - -

The system shall be able to be moved by a human - -

Maximum time to pick up one piece of trash 30 sec

Maximum speed of robot 5 mph

Maximum height of robot 13 in

Maximum width of robot 14 in

Maximum length of robot 20 in

Maximum weight of robot 10 lbs

Maximum rotation of robot 360 degrees

Range of motion of the robot arm 0-100 degrees

Range of motion of the gripper 0-180 degrees

Max cost of robot 400 USD

The robot will have ample heat dissipation to protect the
components

- -

Minimum power supplied to circuitry 12 V

Minimum voltage supplied by voltage regulator 3.3 V

Maximum voltage supplied to microcontroller 3.63 V

Minimum voltage supplied to microcontroller 3.15 V

Maximum voltage supplied by voltage regulator 5 V

Minimum battery life 1 hr

5

The battery shall be rechargeable - -

Maximum size of bucket on the robot 8 L

The battery pack shall be capable of charging through a US
wall plug.

- -

Battery pack maximum current discharge 10 A

Maximum battery pack weight 300 g

Maximum number of batteries 6 -

Minimum battery capacity 1250 mAh

2.4 Customers, Sponsors, Contributors

For this project there are no customers. There is no intention of selling the result
of this product on any market, to any company, or to any individual. This project
also has no sponsor. Each member of the group will be individually contributing
to the expenses of the project. The design of this project was thought of by the
members of this group. The decision to do this project was unanimously voted by
everyone in the group. Each member has their own section that was agreed
upon at the start of the project.

6

2.5 Marketing and Engineering Requirements

Figure 1: House of Quality

2.6 Product Features

The features table is split up between initial, primary, secondary, and stretch goals.
The initial and primary goals are what we want to make sure the robot does. The
secondary are goals that we hope to accomplish, and the stretch goals are goals
that are unnecessary but may be added if we have the time and budget.

7

Table 2: Project Features

Description Feature Type

Identify Red Solo Cup Initial Feature

Move Around Freely with SLAM Initial Feature

Able To Pick Up Litter Primary Feature

Move Arm To Litter And Bin Properly Primary Feature

Identify Aluminum Can Primary Feature

Identify And Avoid Obstacles Primary Feature

Store Litter In Bin Primary Feature

Solar Panels Secondary Feature

IR Remote Control Secondary Feature

Sense When Bin Is Full Secondary Feature

Function For 1 Hour Secondary Feature

Return Home When Bin Is Full Stretch Goal

Maneuver Through Hard Terrain Stretch Goal

Visual And Audio Cue When An Object Is Picked Up Stretch Goal

Empty Bin Into Large Trash Bag Stretch Goal

Smart Arm Stretch Goal

8

3.0 Research

3.1 Existing Products

A general consumer’s options for a device that completes this task autonomously
is very limited. Based on our research, there is only a Roomba® style device that
can be purchased. One problem with this style of robot is the size of objects it can
pick up. Roomba®’s are designed with the intention of replacing vacuum cleaners
that companies such as Dyson® and Bissell® manufacture. This means their goal
is to pick up very small objects like crumbs, dirt, dust, and other similar things that
can be collected without the use of the vacuum wand.

Another problem with the Roomba® is the capacity of the container it stores litter
in. Even if a venue only had litter that was capable of being picked up by it, the
container would get full too quickly and would require a person to empty it too often.

3.2 Microcontrollers

A microcontroller will be used to control the movement of Trash-E. The Jetson
Nano, which is responsible for computer vision and object detection, will send
information regarding the position of the cup with a serial communication protocol
using GPIO pins on both the microcontroller and Nano. Microcontrollers are an
optimal choice to accomplish this task due to their versatility and low cost. Since
they have many operations built in like pulse-width modulation and analog-to-
digital converters, the overall PCB design will be simpler since we don’t have to
implement these circuits ourselves.

3.2.1 Communication Protocols

3.2.1.1 Universal Asynchronous Receiver/Transmitter (UART)

UART is the simplest of the three. Using a maximum of two pins per device,
receiving and transmitting can be achieved between two devices easily. Since this
protocol is asynchronous, it does not need a pin for a clock signal which will free
up a pin on our microcontroller that can be used for other functions. While this
method is very straightforward, it has major drawbacks. Due to the asynchronicity
of UART, data can be transmitted whenever it wants and both devices must be
listening constantly. Another drawback is that only two devices can communicate
at once.

9

Figure 2: Example Transmission Using UART (Courtesy of SparkFun)

With this information in mind, UART would be a good choice to communicate
between the microcontroller and the Jetson Nano. We can minimize the number
of pins utilized since data will only be sent from the Nano to the microcontroller.
Since the communication will always be happening due to the asynchronicity, more
processing power will be consumed on both the Jetson Nano and the
microcontroller. Figure 2 illustrates how we will send data from the Jetson Nano to
the microcontroller using a low start bit, a high stop bit, and no parity bits. On the
other hand, it would be troublesome to utilize this protocol between the
microcontroller and the peripherals. A separate UART would need to be created
for each microcontroller and peripheral, resulting in excess pins being used.

3.2.1.2 Serial Peripheral Interface (SPI)

Unlike UART, SPI is a synchronous protocol meaning it utilizes a clock signal to
communicate between two devices. SPI also offers multiple peripheral capabilities
by utilizing a chip select signal per device. With the addition of the clock signal and
chip select signals, this can greatly increase the number of pins needed to
implement this protocol which isn’t ideal for a project with many different
peripherals.

SPI could be used for the communication between the Nano and microcontroller
but is not needed due to the one-way transmission between the devices and will
be wasting pins. It is very helpful for the communication between the
microcontroller and the peripherals. Having a dedicated way to talk to multiple
destinations from one source is very beneficial even with the extra pin cost. This
method also allows for one way communication to movement peripherals such as
continuous servos, while having two-way communication between others like the
precision servos all in the same system. If pin space becomes a problem, the
daisy-chaining method can be a potential solution to reduce the amount of pins
used.

3.2.1.3 Inter-Integrated Circuit (I2C)

I2C is a synchronous communication like I2C but only uses two pins, much like the
UART. I2C offers the advantages of both UART and SPI but falls short in speed.

10

For a single frame of data, UART and SPI can accomplish this task in one total
frame, whereas I2C accomplishes it in two. This method is certainly viable for the
communication between the Jetson Nano and microcontroller, but again is
unnecessary since there is only one controller and one device. I2C is very useful
for the communication between the microcontroller and peripherals because of the
low number of pins used, as well as the two-way communication. Many boards,
like the TM4C1232H6PMI7, have an I2C interface which will help us implement
this protocol.

3.2.2 STMicroelectronics (STM) vs. Texas Instruments (TI)

 STM32G
0B1KCT6

STM32L1
51CCT6J

STM32L0
71CBT6

TM4C123
3H6PZI

TM4C123
2H6PMI7

STM32G
0B1KET6
N

Price $5.62 $5.44 $5.01 $8.66 $7.14 $6.30

Core
Processor

ARM
Cortex-
M0+

ARM
Cortex-M3

ARM
Cortex-
M0+

ARM
Cortex-
M4F

ARM
Cortex-
M4F

ARM
Cortex-
M0+

Operating
Voltage

1.7V –
3.6V

1.8V –
3.6V

1.8V –
3.6V

1.08V –
3.63V

1.08V –
3.63V

1.7 –
3.6V

Core Size
(Bit)

32 32 32 32 32 32

Speed
(MHz)

64 32 32 80 80 64

of I/O
pins

30 37 40 69 49 29

Program
Memory
(kB)

256 256 128 256 256 512

CoreMark
®/MHz

2.46 3.34 2.46 3.42 3.42 2.46

Mounting
Type

SMD SMD SMD SMD SMD SMD

Package LQFP LQFP LQFP LQFP LQFP LQFP

Table 3: Microcontroller Comparison

11

To determine the candidates in Table 3, we decided to narrow the manufacturers
to two companies. Even though two microcontrollers could utilize the same core
processor, there are many differences in how companies design their
microcontrollers and expect the user to interact with them. For this project we
decided to research microcontrollers made by TI and STM.

TI is a company that we became familiar with through our academic program at
UCF, making it a great choice to pick a microcontroller from. We previously utilized
the MSP430FR6989 to learn common embedded practices which allowed us to
get accustomed to the recommended IDE, as well as utilize their syntax and
processes to accomplish the basics. We didn’t want to reuse the MSP430FR6989
for this project so we can learn more about what different TI microcontrollers have
to offer, while not straying too far from our current knowledge base.

STM is another company that has a good reputation through word of mouth and
forums on the internet. With many different microcontrollers that are specific to
embedded applications, they also have plenty of development boards that we can
utilize to prototype our system with before ordering a custom PCB. None of us
have worked with an STM microcontroller or their software. This makes STM
microcontrollers perfect for us to research and compare to the more familiar TI.

3.2.3 ARM Cortex-M

ARM Cortex-M is a 32-bit Reduced Instruction Set Computer (RISC) processor
core which is optimized for low-cost, energy efficient integrated circuits in many
embedded applications[1]. With the huge popularity of this instruction set, we
wanted to pick a microcontroller that utilizes this technology.

Figure 3: Benchmarks for Different Cortex-M Processors (Courtesy of ST)

12

3.2.3.1 CoreMark and ULPBench Analysis

To determine how well a processor performs, we looked at the ULPBench score
as well as the CoreMark score. ULPBench (Ultra Low Power Bench) determines
how energy efficient a particular microcontroller is. CoreMark tests the functionality
of a specific processor core. Table 3 has the CoreMark score divided by the
frequency it was running at to get a more accurate representation of the score as
this considers how many instructions the processor can execute in a second. [2][3]
Figure 3 displays the ULPBench scores in the bars and the CoreMark score on the
line for each STM32 variation. While this information isn’t for the specific
microcontrollers in our table, each Cortex-M in the figure utilized the same specs
as the microcontrollers we were researching. We investigated the official EEMBC
benchmark table for these scores, the company in charge of maintaining the
benchmarks these scores are made from but couldn’t find anything regarding the
microcontrollers we picked. This is because scores do not have to be submitted,
but also can only be submitted by members or licensees of EEMBC [4]. Therefore,
this is the closest information we can acquire without buying each microprocessor
and conducting the benchmarks ourselves.

Due to product availability, we considered three different Cortex-M variations:
Cortex-M0+, Cortex-M3, and Cortex-M4. With M0+ and M3 being run at much
lower processor speeds, we compared them more closely to each other than with
M4. We see that M0+ has a significantly lower CoreMark score than M3, it also
has a larger ULPBench score, indicating that the processor could potentially be
more energy efficient. When looking at M4, we see that the CoreMark and
ULPBench scores are drastically higher than the other two, making the architecture
more enticing. This is due to “The combination of high-efficiency signal processing
functionality with the low-power, low cost and ease-of-use benefits of the Cortex-
M family”. [5] Based on these results, Cortex-M4 is very enticing for us to choose.

3.2.4 Core Size

Core size of the microcontroller’s processor indicates how many bits of information
can be passed into the data bus and processed in one clock cycle. The higher the
core size, the more bits can be processed and the larger the value can be for one
variable, but also requires more storage even for variables with few amounts of
bits used. We decided to go with a 32-bit core size since many languages utilize
this size and we are familiar with programming languages that have 32-bit
variables standard.

3.2.5 Core Speed

Core speed tells how many clock cycles happen in one second. Generally, the
higher the core speed means that more instructions can be computed in one
second although this is not always true since it is based on the instruction set used.
All the microcontrollers we investigated have a minimum core speed of 32MHz
which will be adequate for Trash-E’s application.

13

3.2.6 I/O Pins

These pins will be used to connect to other devices/peripherals and communicate
between them. We must be careful that we don’t choose a microcontroller with too
few pins since we won’t be able to implement all planned functions of Trash-E. We
also want to have some excess pins in case we can implement some of our stretch
goals later. For this reason, we decided the microcontroller should at least have
40 I/O pins.

3.2.7 Program Memory

The amount of FLASH storage in the microcontroller is critical to the decision-
making process. This storage is the area where our code will reside. The more
complex the application, the more lines of code we write which, in turn, increases
the size of our file. If we get a microcontroller that has too little storage space, we
have to either buy a new microcontroller that has more storage or increase the
storage capacity by adding an external storage device of some sort. Without
having any code written it is extremely difficult to determine how much is “too little”.
Two different algorithms can achieve the same thing but take two different
approaches. If one approach is poorly optimized or has more lines of code, that
option will be larger and could go over the FLASH capacity. With our inexperience
in the subject we decided on 256kB as the minimum FLASH storage.

3.2.8 Mounting Type

Since the PCB will be soldered ourselves, the mounting type of our components
has a big influence on our decision. There are two types of components we can
choose from: Through-hole (TH) and Surface Mount (SM).

3.2.8.1 Through-Hole

Since this mounting type utilizes pins that go through the board and the
components being relatively large, it’s easier to solder and can normally be done
using only a soldering iron and solder. It will be easy to verify the solder process
went well and there’s no solder bridging due to the spacing between pins being
greater than SM components. They are also compatible with solderless
breadboards which is a huge advantage. Prototyping on breadboards will allow us
to attach the components directly into the breadboard, exchange parts, and alter
our design without needing to solder and desolder each component. With the
larger sizes of TH components, they take up more space and increase the total
PCB size. A disadvantage to microcontrollers specifically is that as the
microcontroller increases in complexity and adds more features, more pins are
needed, and TH is no longer viable. This restricts the complexity of circuits if TH is
being used for a microcontroller. We wanted to utilize TH for all the components to
make the soldering process simpler but it isn’t viable for the scope of our project.

14

3.2.8.2 Surface Mount

SM utilizes pads instead of holes for the component to connect to. SM components
are much smaller than a TH component which greatly reduces total PCB cost and
size. Size can potentially be further reduced, or functionality can be increased for
the same size, by mounting components to both sides of the PCB. Soldering SM
components by hand can be very challenging compared to TH since the pads are
very close together. Verifying the quality of the completed solder is also more
difficult and will require the use of a microscope to ensure there is no solder
bridging and the pins are making direct contact with the pads. To ensure costs of
the PCB and components stay down, we will be utilizing SM technology for our
microcontroller and any other basic components as much as we can.

3.2.9 Package

The package refers to the way a component connects with the PCB. For the
microcontroller, there were three different SM package variations: Quad Flat
Package (QFP), Ball Grid Array (BGA), and Quad Flat No-Lead (QFN).

3.2.9.1 QFP

The closest to a TH component, QFP has little leads coming out of the chip that
allows it to sit directly on the pads. Due to the leads being visible, this makes it
easier for an individual to solder by hand and is a highly sought-after package for
us. The problem with this package is that as the number of pins on a chip
increases, the size of the leads and pads, as well as the space between them,
decreases. We determined that a total pin size of around 64 pins is ideal to
reasonably be able to solder this by hand. This package will also help us keep
utility costs down as it can be soldered with a regular soldering iron. This package
is also very prone to mistakes since we will be using a soldering iron. If we are not
careful, we can damage the board itself and have to restart on a new one.

3.2.9.2 QFN

This package is very similar to the QFP but instead of the leads coming out of the
chip, the leads are tucked under the chip, and has a metal pad that acts as a heat
sink in the center. This can be more beneficial for our PCB than the QFP due to
this extra heat dissipation from the center pad. Without having leads extending
from the chip, this makes it more difficult to solder. An easier solution is to coat the
pads with a flux paste and drag the solder across. The chemical interaction
between the flux and solder will allow the solder to fall into place on the pads. This
is still not ideal for us but is doable while also keeping costs low.

15

3.2.9.3 BGA

BGA is the least optimal for us to use and we steered clear of when looking for
potential microcontrollers. Because the connections are on the bottom of the
board, more can be placed than the other two packages. The more connections
mean more placement of solder balls and doing this by hand can take a long time
and requires high precision. To solder them, a hot air solder gun or reflow oven is
needed which we do not have and will increase our costs since we would have to
purchase a hot air solder gun. Because of this, we decided QFP or QFN are the
packages we need to restrict our search to.

3.2.10 Price Per Unit

We want to select a microcontroller that fits the above needs/preferences, while
also keeping costs to a minimum since the price per unit of the microcontroller can
break our budget. With it being our first time getting PCBs printed and soldering
components onto them for a project, we have to account for mistakes. This means
we will be ordering multiple PCBs and microcontrollers to verify our prototype still
works after soldering on the components. With this in mind, we set our absolute
max price to $10 per microcontroller.

3.2.11 TM4C1232H6PMI7

With the considerations of sections 3.2.1 through 3.2.10, we have decided to select
Texas Instruments’ TM4C1232H6PMI7. One key factor to this decision is the
familiarity of the software IDE will allow us to move quickly while developing and
not spend unnecessary time relearning the basics. Another key factor is the cost.
We want to keep everything under budget and this microcontroller allows us to buy
multiple in case one gets damaged and needs to be replaced. Most of the following
information comes from the TM4C1232H6PMI7 datasheet and is not my work.

3.2.11.1 JTAG

Since we aren’t using a development board, we need to implement a way to
program the microcontroller. “The Joint Test Action Group (JTAG) port is an IEEE
standard that defines a Test Access Port and Boundary Scan Architecture for
digital integrated circuits and provides a standardized serial interface for controlling
the associated test logic.” [6] JTAG allows us to flash our code onto the
microcontroller with an IEEE backed protocol. Only four pins will be used on the
microcontroller due to this protocol. Those pins are: TCK, TMS, TDI, and TDO.
Using serial transmission, we can send data to the microcontroller with TDI with
the TCK clock signal for controlling the speed.

16

3.2.11.2 Clock Signal

The TM4C1232H6PMI7 has multiple options for clock signals that can be used in
the microcontroller. The Main Oscillator (MOSC) provides a very accurate clock
source by utilizing an external crystal oscillator. The microcontroller supports
crystal oscillators with frequencies between 5 and 25 MHz. While the speed and
accuracy is enticing, using the MOSC will introduce more required capacitors on
the PCB, increasing size and decreasing space on the PCB while increasing
production costs. Due to this reasoning we will be selecting the Precision Internal
Oscillator (PIOSC).

The PIOSC is a clock source that is integrated onto the chip and used by default.
There is no required use of external parts or crystals for it to function. It provides a
16-MHz clock source to the chip with a +/- 3% accuracy due to temperature. The
internal clock is implemented using resistors and capacitors which makes it less
accurate than a crystal oscillator due to the increased temperature of the
components. While the max speed of the PIOSC is 36% slower than the MOSC
and also less accurate, it will be more than sufficient for Trash-E which only needs
to generate signals for servo/stepper motors and ultrasonic sensors.

3.2.11.3 PWM Generation

To generate the PWM signals for the motors and sensors, multiple timers need to
be used which the microcontroller is in no short supply of. “The TM4C1232H6PM
General-Purpose Timer Module (GPTM) contains six 16/32-bit GPTM blocks and
six 32/64-bit Wide GPTM blocks. Each 16/32-bit GPTM block provides two 16-bit
timers/counters (referred to as Timer A and Timer B) that can be configured to
operate independently as timers or event counters, or concatenated to operate as
one 32-bit timer or one 32-bit Real-Time Clock (RTC). Each 32/64-bit Wide GPTM
block provides 32-bit timers for Timer A and Timer B that can be concatenated to
operate as a 64-bit timer.” [6] With twelve GPTM blocks and two timers per block,
we have the potential to generate twenty four PWM signals. This will be plenty to
implement our original design as well as accommodate for any stretch goals that
can be implemented in the future

3.2.11.4 UART Interfaces

The TM4C1232H6PMI7 also has eight separate UART interfaces that are fully
programmable. With baud rate generation of 5 Mbps for regular speed and 10
Mbps for high speed, there will be no problem sending data between the
microcontroller and Jetson Nano. There’s also separate transmit and receive
FIFOs that reduce the CPU interrupt service loading and also have programmable
length. The interface also gives us full control over the serial communication
characteristics such as the amount of data bits, either one or two stop bit, and
even, odd, or no parity bit.

17

3.2.11.5 Sleep Modes

Arguably the most important feature that this and many other microcontrollers offer
is the Low Power Modes, or in the TM4C1232H6PMI7’s case, Sleep Modes. By
entering a Sleep Mode, power consumption is kept to a minimum. Depending on
what functions are needed to keep running during sleep, either Sleep mode or
Deep-sleep mode can be chosen. Sleep mode only stops the processor clock while
Deep-sleep mode stops the system clock as well as switches off the Phase Locked
Loop (PLL) and Flash memory. Since Deep-sleep mode turns off not only the
processor clock but the system clock, PLL and flash, we will want to use Sleep
mode. This mode will allow us to keep Trash-E moving while there is nothing to
process from the Jetson Nano. In comparison to other microcontrollers, like the
MSP430 family which has four different Low Power Modes, the power conservation
options of this microcontroller is pretty limited but is sufficient for our power needs
since we can’t go into too deep of sleep with Trash-E doing continuous movement
at almost all times. It’s also important to note that the deeper sleep modes might
reduce the power consumed by the microcontroller, but also increase the amount
of time required to sleep and wake.

3.3 Computer Vision

3.3.1 Computer Vision Overview

For computer vision to work, a lot needs to get done before it is used for cases like
Trash-E identifying trash in real time. Computer vision requires a lot of data and
would need to use machine learning techniques to accomplish it. It needs to
analyze a lot of data and learn from it until it can make certain distinctions in images
and ultimately recognize what it needs to find in an image or video. Figure 4 is an
example of what a computer sees after identifying objects via computer vision.

Figure 4: Object Detection Using Computer Vision (Courtesy of TowardsDataScience.com)

18

To accomplish computer vision, we need certain algorithms that can learn from
given inputs and produce an outcome on its own in a way that the human brain
would. The best way to accomplish this is to use a form of machine learning called
deep learning.

3.3.2 Machine Learning

Machine Learning is the term that refers to a machine becoming capable of
learning from a large data set and performing actions based on what the computer
has learned and the input data it is receiving. There are many types of learning
that machine learning can be done in.

Supervised learning datasets are labelled manually prior to being given to a
machine learning model for training. These datasets also include the expected
output that the model will use to become very accurate at predicting when it comes
to new input data. Unsupervised learning uses datasets that are not labelled and
have no specified structure. The model will learn on its own and make
classifications based on the data.

Semi-supervised learning is an approach that combines a small portion of labelled
input data along with a large amount of data that is not labelled that the model will
use to learn. This is typically used when there isn’t a lot of labelled data available
or having a complete set of labelled data is too challenging or expensive but still
want to use some amount of labelled data. This type of learning can achieve better
performance and accuracy than its supervised counterpart.

Figure 5: Traditional Learning (Courtesy of TowardsDataScience.com)

19

Transfer learning involves using a pretrained model and using the existing
knowledge from previously learned tasks and applying that knowledge to a new
task that is related as shown in Figure 5. If we had trained a previous model for
object detection on cars, we could use that model’s knowledge to learn how to
detect trucks and other forms of vehicles and make learning faster.

3.3.3 Deep Learning

Deep learning is a subset of machine learning that uses neural networks to learn
large amounts of data through lots of training.

Neural Networks are the brain of the AI and are used extensively in deep learning.
These networks are meant to simulate the way that humans learn with the brain.
Our brain has neurons that make connections and so does the neural network that
we use for machine learning. All the neurons in a neural network are
interconnected and are organized into multiple layers. These layers consist of the
input layer, the hidden layers, and the output layer. The input layer of our neural
network receives information to learn via our input data. The next few hidden layers
in between the input and output layers are where most of the work and training is
done in a neural network.

In these layers many mathematical computations are performed on our input data.
The connections between all the neurons in these layers have weights which
determine the importance of the input value and the strength of the connection.
Each of these go through an activation function which in simple terms standardizes
the outputs of the neurons. The number of hidden layers you could have in a neural
network is arbitrary. These are the layers where people usually spend time
tweaking and testing this area by increasing and decreasing the number of hidden
layers and number of neurons in each layer. With deep learning, the neural
networks have more than one hidden layer, which is where the deep term comes
from.

Once these layers have been passed and we reach the output layer, there is a loss
function that determines how wrong our network's output was from the real output
data. We want that function to be as close to zero as possible to get the most
accurate output from our deep neural network. To improve accuracy and reduce
loss, we use optimization algorithms called gradient descent and backpropagation
which find the minimum of a function and in this case that is the loss. It allows a
deep neural network to change its weights automatically in incremental steps after
each iteration of training to achieve a loss as close to zero as possible.

Deep learning networks can be supervised but they can also be unsupervised as
well. Unsupervised training is where deep learning typically shines. With deep
learning, data preprocessing can be mostly eliminated. Deep learning algorithms
can process unstructured data and automate feature extraction. For example,

20

feature extraction for computer vision can be a very challenging task to do
manually and involves a lot of manual work. Images must be put through many
processes to extract features such as edges, colors, and brightness. A deep
learning network can be given a set of images and it will be able to determine
important features that allow it to distinguish objects from each other. Through
algorithm processes and training with the neural network it can learn from the data
and become very accurate. This allows it to make accurate predictions based on
new input data.

3.3.4 Convolutional Neural Networks

There are many types of neural networks out there. For our purposes of this
project, the most tried and true deep learning algorithm for computer vision is a
convolutional neural network. A convolutional neural network should be the best
algorithm to implement for Trash-E to detect trash objects using image recognition.
Convolutional Neural Networks (CNN) are deep learning algorithms that can take
an input image and then learn various patterns and features about that image and
make decisions about the image. Figure 6 is a diagram of a convolutional neural
network showing its general architecture.

Figure 6: Convolutional Neural Network Architecture (Courtesy of TowardsDataScience.com)

The first step in the convolution neural network is the convolution layer. An image
is fed into a CNN in the form of a matrix with pixel values. In the convolution layer
a kernel/filter, which is a square matrix of a certain size, is typically used to hover
over the original image in a certain number of shifts and strides. Each time the filter
is over a new section of the image matrix, a matrix multiplication is performed and
produces a new value for the image matrix. Depending on the kernel/filter values,
different types of high-level features can be extracted from the input image. A CNN
can capture spatial and temporal dependencies in an image through these filters.
The main objective of the convolution is to extract high level features from the input
image such as edges, color, gradient orientation and more. There can be more
than one convolutional layer.

21

Following convolutions, the pooling layer follows which is responsible for further
extracting dominant features and reducing the spatial size of the convolved feature
by using a smaller kernel and certain techniques. This reduces computational
power that Is needed further into the network. There are two types of pooling
techniques: average pooling and max pooling. Max pooling returns the maximum
value of the image matrix that the pooling kernel is on. Average pooling returns the
average of all the values of the image currently in the pooling kernel.

Now, the output is flattened into a column vector and fed into a feed-forward neural
network and backpropagation is applied in every training epoch. This layer is
referred to as the fully connected layer and is where the network learns the many
features we have extracted from the image. After a certain number of epochs, the
model can distinguish between features of the input image and classify them using
the SoftMax activation function. This function will produce multiple probabilities
ranging from 0 to 1 for all the classes our CNN is trained to find and output what
the image likely contains.

3.3.5 Convolutional Neural Network Architectures

There are many CNN architectures out there. Some of the notable ones are:
LeNet, AlexNet, VGGNet, GoogLeNet, ResNet, and ZFNet. Each are different
takes and variations on the general CNN architecture shown earlier. For Trash-E,
we have many options available to choose for the CNN architecture and would
likely involve more experimentation and fine tuning down the line to decide which
architecture would return the best results. There are also many pre-trained state
of the art models available on Google's TensorFlow GitHub that were trained on
the COCO 2017 dataset. Some of the most popular ones that we could use are
SSD MobileNet V2 and SSD ResNet. Each of these architectures have
configurations for certain image sizes such as 320x320, 640x640, etc.

22

Figure 7: Available Models (Courtesy of Tensorflow)

A higher resolution architecture will take more computational power and won’t be
as fast as a lower resolution one but offers better mean average precision as
shown in Figure 7, where the speed in milliseconds is on the left and the mean
average precision is on the right. This is a tradeoff we will have to decide on for
Trash-E’s computer vision implementation.

3.3.6 Programming Languages for Machine Learning

We have many options for the programming language we could use for writing
Trash-E’s software. Several programming languages are used for AI and machine
learning nowadays. Some of the popular ones are Python, C/C++, and Java. The
most popular of these languages for AI and Machine Learning is by far Python. For
computer vision and robotics, the most popular languages to use are C/C++ and
Python.

Python is an interpreted high level programming language, so it is less performant
than a compiled language since the code is executed line by line. Python is one of
the most supported machine learning languages out there. It is a relatively simple
language in comparison to C/C++ and Java. Python has an extensive number of
tools and libraries for machine learning such as TensorFlow, scikit-learn, PyTorch,
and Keras to name a few. These libraries support computer vision and deep

23

learning allowing the ability to easily create convolutional neural networks and train
them.

C/C++ are very much used in embedded and robotics programming. C/C++ are
compiled languages and have very high performance. The areas they’re used most
for in AI are gaming and robot locomotion. They’re not as simple as python when
it comes to building new machine learning applications and getting what you want
quickly. However, they are favored when control, high performance and efficiency
is needed. C/C++ have some libraries for machine learning and computer vision
such as MLPACK, SHARK, and OpenCV.

Java is less popular for embedded and robotics and is used more for desktop and
enterprise applications. Java does come with a decent amount of machine learning
libraries such as TensorFlow, Deep Java Library, Kubeflow, and Java-ML.

3.3.7 Libraries and Tools for Machine Learning and Computer Vision

There are many libraries available for machine learning and computer vision. We
decided to investigate the most popular libraries since they have the most support
and have everything we would need for Trash-E.

3.3.7.1 TensorFlow

TensorFlow is a machine learning open-source library by Google. It allows users
to build and train machine learning models using high level Keras APIs. It is a more
general machine learning library for python but still offers functions that can be
used for computer vision.

3.3.7.2 PyTorch

PyTorch is an open-source machine learning library for Python developed by
Facebook. PyTorch can work for both Python and C++. It provides tensor
computing with acceleration via a graphics processing unit or GPU. It also offers
the ability to create deep neural networks

3.3.7.3 OpenCV

OpenCV is a popular open-source computer vision library. It provides common
infrastructure for computer vision applications. It has thousands of optimized
algorithms for both computer vision and machine learning. It would allow the ability
to use computer vision algorithms and techniques to enable computer vision
needed on Trash-E quickly and efficiently. It has C++, Python, and Java interfaces
and supports most of the common platforms. These include Windows, Linux,
Android, and MacOS. This library also works very well with real time computer
vision applications which is essential for what Trash-E needs to accomplish.

24

3.3.7.4 LabelImg

LabelImg is a graphical image annotation tool. The tool is written in Python and is
a popular way to label images to use in a dataset for object detection models. It
will allow us to easily label our data and save it in a format that can be used in
object detection models.

3.3.7.5 TensorRT

TensorRT is an SDK by Nvidia that optimizes inference performance of models for
Nvidia GPUs. It is used to optimize trained models from a machine learning library
so that it runs faster and more efficiently on an Nvidia Jetson Nano. When a model
is finished training and ready to be deployed to a Jetson Nano, first the model or
in other words graph is frozen. This essentially saves the model. Once the model
graph is frozen, it can be optimized by TensorRT as shown in Figure 8.

Figure 8: The TensorRT Flow (Courtesy of Nvidia)

TensorRT will parse the model and apply optimizations to the graph where it is
able to. When it detects a compatible subgraph, TensorRT replaces it with a
TensorRT optimized node. First, layers within the TensorFlow graph that have
unused output are destroyed so that unnecessary computation is avoided. Next,
convolution, bias, and ReLU layers are merged to form a single layer. Further
optimizations include layer aggregation which also improves performance. Most
importantly the overall original computation of the graph or model is unchanged
but it is restructured to optimally perform operations more efficiently and faster as
shown in Figure 9.

Figure 9: TensorRT Optimization Performance Graph (Courtesy of Nvidia)

25

3.3.8 Hardware Options for Machine Learning

Our robot will be using computer vision in real-time. To process the data and
algorithms we need for computer vision and deep learning we would need a
minicomputer on our robot capable of handling these tasks. These tasks include
object detection, and classification. There are several out on the market such as
the Nvidia Jetson Nano, Raspberry Pi 3, and Google Edge TPU. Figure 10shows
benchmark comparisons for these products. The Nvidia Jetson Nano appears to
drastically outperform the other two boards in this comparison and while using
the object detection model architectures that we previously stated in our research
on convolutional neural network architecture.

Figure 10: Minicomputer Deep Learning Benchmarks (Courtesy of Nvidia)

3.4 Power

3.4.1 Power Supply

In order to determine the power supply necessary for the robot, the requirements
of the components must be looked at. In Table 4, the possible components that
will be needing power are listed along with their required specifications.

From table 4, most of the components should be able to be powered by a normal
battery bank that is often used for phones. This is because most of these
components are able to be powered through the USB port on a computer, which
normally has a maximum supply of 5V, 0.5A. The maximum current and maximum
power columns are the maximum, and thus the devices will not be drawing that
much on regular use. The Blink Mini claims that it requires wall power on the
amazon website, however with further investigation and after testing it, it should
be able to be powered through a power supply. Some of the other cameras did not
have readily available datasheets and without purchasing it, it will be hard to find
the requirements to power them.

26

Table 4: Components Requiring Power

Component Voltage
Requirement

Maximum
Current

Maximum
Power

Jetson Nano 4.75V 4A 19W

Arduino Uno 7-12V 50mA .35-.6W

Raspberry Pi 3 5V 2.5A 12.5W

Motor Driver 8-35V 1A 8-35W

MG996R 55g Metal Gear
Torque Digital Servo Motor

5V

3A

15W

Stepper Motor 12V 1.2A 14.4W

AREBI Spy Camera Wireless
Hidden WiFi Mini Camera HD

4.2V

300mA

1.26W

Blink Mini 100-240V .15A 15-36W

Logitech C270 HD Webcam 5V 1A 5W

NexiGo N60 USB Computer
Camera

5V 1A 5W

HC-SR04 ultrasonic sensor 5V 15mA .075W

There are a few options for powering Trash-E. The first option and the least likely
one will be a readily made battery bank that normally are used as backup batteries
for phones. This option is the least likely, as we want to integrate our own design,
from the batteries to the voltage regulation. The next few options that can be used
are readily made batteries such as Li-Ion (Lithium Ion) batteries, Li-Poly (Lithium
Polymer) batteries, or NiMH (Nickel-Metal Hydride) batteries. These three batteries

27

are the best options because while there are many more, these are inexpensive,
and are not difficult to find or charge.

Table 5: Possible Battery Types (Courtesy Radek Jarema)

The above table showcases the batteries that were outlined previously. From this
table, it can be noted that the Li-Ion/Li-Poly batteries may be the best for our use
case because they have a much higher voltage than the NiMH batteries, though
NiMH have a better power-to-weight ratio and are safer than the Lithium batteries.
The “C” in the current rows of the table is the capacity divided by hour. To
understand the significance of “2C”, take an example battery capacity such as
4000mAh, and multiply by 2C and the result is 8000mA. Once all the parts are fully
determined, we have to find the battery necessary to last 1 hour based off battery
consumption of the different parts.

The batteries can also come in different constructions such as cylindrical,
prismatic, or in a pouch. The Li-Ion batteries can come in cylinders or prismatic,
but they require metal enclosures, whereas Li-Poly batteries can come in the
previous or in a pouch as well. There are many cylindrical Li-Ion batteries, ranging
in different diameters and lengths such as 14500, also known as AAs. These
cylindrical batteries are a likely option, as battery packs can be constructed from
them that we can use to power the Trash-E. The prismatic cells are unlikely to be
useful in our application. Li-Poly pouches are another possibility, as they can be
stacked and are often used for RC cars, drones, and other high-power

28

applications. However, the Li-Poly pouches must be secured safely within the robot
and there must not be any sharp objects inside, because the Li-Poly batteries are
much easier to be pierced than the Li-Ion ones.

Since our parts need to have a maximum of 12V, we can aim to create a 12V
battery pack to power Trash-E. Using voltage regulators, we can down step the
voltage to necessary voltages when needed such as for Jetson Nano.

3.4.2 Battery Requirements

Table 6: Battery Specifications

Requirement Specification

Size Less than 200cm3

Weight Less than 1kg

Nominal Voltage 10-12V

Maximum Discharge Current 10A

Capacity Greater than 1250mAh

In table 6, the specifications of the battery can be found. The size of our battery
pack needs to be small enough to fit on Trash-E while minimizing the space it
takes. We hope that this size and weight will be sufficient. To find the capacity and
maximum discharge current, we use the following equation.

Thus, we need batteries that can handle 10A discharge current. To calculate the
capacity, we use the following equation. We found the average A by adding the
average current of the components together. We want to power the robot for at
least 1 hour.

29

3.4.3 Battery Options

Between the three batteries: NiMH, Li-Ion, Li-Poly, we will examine which one is
the best. Since we will be requiring a lot of energy, Lithium based cells are a better
option than NiMH.

Possible Li-Ion batteries that we can consider are the INR18650-35E 3500mAh
batteries made by Samsung. The plan is to have 6 batteries, with 3 in series and
those two rows in parallel. The table below shows the specifications of the batteries
in this configuration. The batteries meet all of the criteria set in Table 7. The
batteries are also less than $50 in total.

Table 7: INR18650 Li-Ion Batteries Specifications

Specification Detail

Dimensions 67 x 57 x 38 mm

VNOM 10.8V (3.6VNOM 4.2VMAX Single Cell)

VMIN 9V

Max Discharge Current 16A

Volume 145 cm3

Weight 300g

Capacity 7000mAh

The Li-Poly batteries that we found are the LP616594 4700mAh batteries. The
configuration is 3 batteries in series. Table 8 shows the battery specifications. The
Li-Poly batteries in this configuration do not meet the maximum discharge current
that we specified, but it should be sufficient because the robot will not be running
at maximum current. Otherwise, the Li-Poly batteries meet the rest of the
requirements.

30

Table 8: LP616594 Li-Poly Batteries Specifications

Specification Detail

Dimensions 94 x 65 x 19 mm

VNOM 10.8V

VMIN 9V

Max Discharge Current 9.5A

Volume 113 cm3

Weight 236g

Capacity 4700mAh

Out of the three batteries we considered, the Li-Ion batteries seem to be the best
option. They meet all of the requirements set out for the robot.

3.4.4 Recharging

The batteries will need to be recharged. We can have two methods to recharge
the batteries. The first method would be to use a DC power supply to fully charge
the battery pack. With a DC power supply, we can limit the current flowing into the
battery from the power supply. Figure 11 showcases a Li-Poly battery charging
from a power supply. While it is a different battery from what we will be using, the
concept is still the same. Another method would be to use a separate battery such
as a 12V lead acid battery and use a Buck/Boost converter to step the voltage
down so the batteries can charge properly. Figure 12 shows a possible
configuration.

31

Figure 11: Battery Charging from a DC Power Supply

Figure 12: Battery Pack Charging with Buck/Boost Converter

Another option would be to design an AC to DC converter so that we can plug an
AC adapter into the robot. The input AC adapter will be converted to DC and
stepped down to a safe voltage so the batteries can safely charge.

3.4.5 Photovoltaic Cells

As a secondary goal, we hope to implement photovoltaic (PV) cells, or solar panels
that can passively regenerate the batteries while Trash-E is operating. Things we
have to consider for the photovoltaic cells are the size of the panels as compared
to the size of the robot, the placement of the panels, and the recharge rate.
Depending on the size of Trash-E, the implementation of photovoltaic cells may
not be worthwhile, as they may not be able to provide any substantial energy at
all.

32

The sun radiates photons, which contain varying energy, which varies based on
the wavelength of sunlight. When the photons hit a PV cell, the cell attempts to
absorb the photons, although all the photons are not fully absorbed, as some are
reflected off. Once there is enough photon energy absorbed within the
semiconductor material, the electrons inside the cell are free to move. When
enough electrons have moved to the front of the PV cell, a voltage potential will
have been created. Once the cell is connected to a load, such as a light
bulb, electricity will flow. We can use this to help charge the battery while it is
operating outside. We will have to make sure that the charge from the battery does
not flow to the solar cells while the cells are not charging.

Photovoltaics have many advantages and disadvantages. PV cells are good for
the environment because their energy generation releases no carbon emissions.
This is beneficial for our robot because Trash-E will be able to work outdoors. Thus,
we hope to be able to run Trash-E for longer periods of time when outside on a
sunny day. Because PV cells have no mechanical parts, there will be little to no
maintenance regarding them once they have been implemented.

3.4.5.1 Monocrystalline Silicon Cell

Monocrystalline Silicon Cells are generally more efficient than other types of PV
cells. While they are more efficient, they also are much more expensive. As a
result, we do not plan on using these types of cells, but they were considered in
the preliminary stages. If we find low cost Monocrystalline PV cells, we may
consider using them.

3.4.5.2 Polycrystalline Silicon Cell

Polycrystalline Silicon Cells are the cells that we will most likely use. They are
cheap and abundant since they are the most popular types of photovoltaic cells.
Section 6.2.9 further covers the types of solar cells that we will consider using in
our robot design.

3.4.5.3 Thin Film Cells

It is highly unlikely that we will use Thin Film Cells because the flexibility and
thinness of these cells are not necessary for our application. Furthermore, since
they are less generally less efficient than the two previous cells, it is unhelpful to
our design. In addition to the previous, some thin cells contain rare or toxic
elements. These elements would be detrimental to our design because they would
add unnecessary dangers to our robot. To make up for these dangers we may
need to add potting to our circuits, which would add too much complexion that we
do not need.

33

3.4.5.4 Miscellaneous Cells

These cells such as high efficiency cells are out of the scope of this project
because they are either exceptionally expensive, or are still a new technology
that is not fully developed.

3.4.6 Voltage Regulator

3.4.6.1 Linear Voltage Regulators

Each component within Trash-E requires certain voltages to operate correctly. By
supplying 12V, each component should be able to be powered, either at 12V or
stepped down to the required voltage. Certain components such as the ultrasonic
sensor or the motors controlled by the Arduino will be taking power from the
Arduino, thus it will not need to be stepped down. However, the Jetson Nano uses
5V to power, thus the 12V will need to be stepped down. The purpose of a voltage
regulator is to keep a constant voltage output regardless of input voltage or current
draw from the load. There are two types of voltage regulators, linear and switching,
each with their own benefits and drawbacks. A linear regulator, which can be found
in the figure below, is a simple circuit with low noise and few parts necessary
externally. It uses the control circuit to monitor and change the output voltage.
Linear voltage regulators are slower at changing the output voltage if there is a
large change in the input voltage because it is using a feedback loop to control the
output voltage. In our application there should not be huge drops or rises in our
input voltage, so this should not be a problem. The linear voltage regulator often
has poor efficiency between the input and output voltage conversion. The linear
voltage regulator can also only be used as a buck converter. This is not an issue
in our use case, as we only want to step down our voltage. It can also get hot
easily, so temperature must be taken into account. This is because when stepping
down voltage, the excess power has to go somewhere, and thus the voltage
regulator expels it as heat. To calculate the power loss, the following equation is
used. Figure 13 shows a basic Linear Voltage Regulator

34

Figure 13: Linear Voltage Regulator (Courtesy Rohm)

3.4.6.1.1 Standard Voltage Regulator

Figure 14: Standard Voltage Regulator

The standard voltage regulator in Figure 14, is a basic configuration using a
Darlington pair of transistors. The Standard voltage regulator circuit can be
replaced with an Integrated Circuit of a regulator. These options are later
discussed in Section 6.28. Standard voltage regulators can have large voltage
drops depending on the device specifications. Voltage dropouts for a standard
regulator can vary between 1V and 2V. In cases where a regulator needs to drop
from 120V to 12V, 1V voltage dropout is not a big issue. However, in a case where
a voltage needs to be converted from 3.6V to 3.3V, the voltage dropout is a third
of the input voltage. The output voltage must be less than the input voltage minus
the dropout voltage, otherwise the regulator will be unable to function.

35

3.4.6.1.2 Low Dropout Regulator

Low Dropout Regulators (LDO) regulators are useful when needing small voltage drop
amounts. Some LDO regulators can have drops of 100mV, this is useful for cases between
3.3V and 3V. Since we are dropping down 12V to 5V, and possibly 12V to 3.3V or 5V to
3.3V, we will not be needing a LDO regulator.

3.4.6.2 Switching Voltage Regulators

Figure 15: Typical Switching Voltage Regulator Circuit of a LM5017

A switching voltage regulator is a type of regulator that allows for both buck and
boost of a voltage. This is possible by having a switching element that the circuit
uses to change input power into a pulse. The voltage is smoothed out with the use
of different capacitors and inductors, FETs, and other components. Figure 15
shows a typical circuit of the switching voltage regulator. It is more complex than
the linear voltage regulator in Figure 13. The output power is set to the desired
voltage, and once it reaches it, the switch is turned off. When the switch is off,
there is no input power being supplied. By continuously doing this process at high
speeds, the efficiency between the output voltage and input voltage is much higher
than a linear regulator, which also results in lower temperatures because there is
not as much power being dissipated as heat. Although the switching voltage
regulator has these advantages, there are also several disadvantages such as the
regulator being much more complex and requiring more external parts.

Within Trash-E we will not be requiring precise voltage drops with tight margins,
we also want to keep costs down. As a result, we will end up using a Standard
Linear Voltage Regulator circuit, as that should be sufficient.

36

3.5 Locomotion and Mapping

3.5.1 Different Types of Movement

There are a few options to how we can approach maneuvering Trash-E around on
its own. As a recap, Trash-E needs to be able to maneuver any area to find trash,
assuming it is physically capable of traversing the area given its physical
limitations. Given Trash-E’s physical limitations, Trash-E should be able to
maneuver on any flat surface. However, this area or environment that Trash-E is
placed into won’t always be familiar and can be entirely new every time. So, there
must be certain methods in our design that allow Trash-E to maneuver around an
unknown environment and accomplish its tasks while being autonomous or without
manual control via a controller.

One way of detecting obstacles in the robot’s path is using bumper sensors. These
are the least useful in terms of Trash-E since we have no way of determining where
it is, where it’s been, and where it will go. It is essentially random movement that
is up to chance and the layout of the environment and can’t guarantee every spot
will be reached. The robot can also get stuck in an area depending on the
configuration of the environment and the movement capabilities of the robot itself.

Facing some of the same challenges as the bumper sensors, this approach
involves using ultrasonic sensors on all sides of Trash-E that will detect incoming
obstacles in order for it to keep moving and avoid obstacles. If the sensors don’t
detect anything close to the chassis, then the robot would continue to move
forward until a sensor has detected an obstacle that is too close. If the sensor
detects an object in front, Trash-E will maneuver to the right or left depending if the
sensors on those sides do not detect any obstacles. In the case where Trash-E
leads itself into a dead end in which case the sensors on the front, left and right
are triggered, then Trash-E would reverse out of that spot. However, there are a
couple of downsides to this approach. There is a chance that Trash-E could get
stuck in a loop and not be able to explore the whole area that we want it to clean.
Another downside is that the movement would be completely random. This is bad
because it would lead to a lot of repeated work since Trash-E would not know if it
had traversed the area, it is currently traversing. This could lead to a much longer
runtime to complete its cleaning task.

This approach we considered is a very simple approach to this problem but has
some major downfalls. This approach involves Trash-E solely being guided by the
computer vision algorithm and the objects that the camera will detect. In any case,
when the robot detects an object of interest then it will approach it accordingly and
then pick it up. Once it completed its task, it will then spin until it detects another
object of interest. This method would have worked fine if all the objects are always
right next to each other, however, this will usually not be the case. If there were
objects scattered across a room, there is a chance that Trash-E would not be able

37

to detect an object either because it is too far away or there is an obstacle
obstructing the view of that object.

Another way is with a camera. Visual detection is better than the bumpers since
we can gather points of interest in the surrounding environment. It also allows us
to keep track of the robot’s position by using landmarks. The issue with visual
detection is it is more sensitive to light and can throw off the calculations or blind
the robot entirely.

One way to fix this issue is using a lidar sensor. These sensors are similar to an
ultrasonic sensor except it uses light waves. “A typical lidar sensor emits pulsated
light waves into the surrounding environment. These pulses bounce off
surrounding objects and return to the sensor. The sensor uses the time it took for
each pulse to return to the sensor to calculate the distance it traveled”.
[https://velodynelidar.com/what-is-lidar/] Sending out these pulses many times per
second in a complete circle around the sensor achieves a real-time map of the
immediate environment. This information can then be processed by an algorithm
that makes a graphical representation of the surrounding area. lidar is a very
valuable technology when generating detailed maps of the environment around a
robot.

3.5.2 Simultaneous Localization and Mapping (SLAM)

The third approach is a fully autonomous approach and method that utilizes both
localization and mapping which is called simultaneous localization and mapping.
SLAM is a method that allows autonomous robots and vehicles to build a map of
its surroundings and localize itself within that map at the same time. With this
method an autonomous robot can use these algorithms to map out an unknown
environment. At the same time, the robot is able to know where it is in the
environment. With this map information, robots can use path planning and obstacle
avoidance.

Figure 16: Comparison between no SLAM and SLAM (Courtesy of MathWorks)

38

A popular example of simultaneous localization and mapping in the real world is
the home robot vacuum. These robot vacuums can navigate the floor of a home
autonomously and figure out a path that can ensure it will vacuum every part of the
floor. At the same time, these robot vacuums are in new environments and can
create a map of the floorplan so that the path taken is the most efficient and avoids
any obstacles or obstructions. In figure 16, we see the difference SLAM makes for
the robot vacuums. This is very similar to the comparison of approach two and
three for Trash-E. With our second approach we would move very randomly while
in the third approach utilizing SLAM, our movement would be more defined and
efficient for time and battery life.

Figure 17: Flow of SLAM process (Courtesy of MathWorks)

There are two things that need to be done to achieve simultaneous localization
and mapping. This includes the front end and back-end processing. The front-end
processing is where sensor signal processing is done. The back-end processing
is where pose-graph optimization is done. In figure 17 we can see the flow of the
SLAM process, which goes from taking in sensor data to frontend processing,
backend processing, and finally we get our map. SLAM uses different methods of
gathering data such as from a camera, lidar device, odometer, wheel revolutions,
or other imaging sensors to determine the amount of movement needed and its
location in the map which is called localization.

There are also different versions of SLAM that have been developed. Two that we
are considering for Trash-E are visual SLAM and LiDAR SLAM. Visual SLAM
primarily uses images acquired from cameras and other image sensors. The
cameras or sensors that are used can range from complex to simple and can be
very expensive or inexpensive depending on the needs of accuracy. The next
popular SLAM is LiDAR SLAM which uses a LiDAR device that is a laser sensor
that have a 360 view. This method of SLAM is significantly more precise than visual
SLAM.

For Trash-E it would be best to use LiDAR SLAM as this method is much more
accurate and efficient. Therefore, we would need to place a LiDAR device on

39

Trash-E that will use 360 laser scans to detect the area around it. Trash-E will
maneuver along an area and simultaneously create the map of it and localizing
itself as well within that map to plan its path.

We have a couple of options for implementing SLAM on Trash-E. One is to use
MATLAB’s robotic systems tools that offer capabilities for implementing SLAM.
MATLAB offers toolkits for implementing the SLAM onto Trash-E as well as for
what comes after which is path planning for autonomous driving over that map.
The downside with MATLAB however is that it is not free and in fact very
expensive. We would need to spend approximately hundreds to use the toolkits
from MATLAB on top of paying to use MATLAB in the first place. This is out of our
budget range and doesn’t make sense for us to use. However, we could use
MATLAB on the computers located on UCF and work on SLAM at the UCF
facilities. But in terms of personal use and working on the project at home,
MATLAB is not the most feasible option.

The other option is to use an open-source SLAM library called BreezySLAM

developed by Professor Simon Levy from Washington and Lee University. This

package library gives us the ability to implement a LiDAR based SLAM on our

robot at no cost and with Python or C++. Compared to using MATLAB, using this

open-source library makes sense financially and allows us to develop at home.

However, being that it is an open-source package created by an individual, it

might not have all the features that are available on MATLAB for SLAM.

3.5.2.1 SLAM Implementation

When we initially place Trash-E in a new location, we will need to map the area
that it will autonomously drive through. This is where SLAM will come into play.
Trash-E will have a LiDAR on its body that will do a scan of the objects surrounding
it to sense the distances and angles of obstacles around it. If needed, we can use
the wheels on the body to determine the distance that has been driven by Trash-
E and how it has turned. We can do this by calculating the rotations of our
continuous servo motors that control the wheels with the circumference of them to
get the distance traveled.

40

Figure 18: Example of pose graph optimization (Courtesy of MathWorks)

During this process we will be creating our map with pose graph optimization. Pose
graph optimization helps fix the errors of positions and distances when using SLAM
to create the map. Without pose graph optimization our map would likely look very
inaccurate and have a lot of errors when relying solely on the sensors. Pose graph
optimization will use nodes of poses (positions on the map) and constraints
between the nodes which we can call edges. At some point in the process of
SLAM, we will detect the same features once again with the sensors. This means
that we can likely close the loop of our map traversal between these two nodes.
Our pose graph optimization algorithm will pull these two nodes as close as
possible until the features they detected match. During this process all other nodes’
edges in the map experience “tension” and are pulled simultaneously as the
original two nodes are being pulled together. After this is done the errors in the
map have been mostly corrected and the is much more accurate than before the
pose graph optimization. An example of this is optimization is shown in figure C
where you can see the original map had many errors and very uncertain but after
pose graph optimization the map is a lot cleaner and has less errors.

41

Once we have the map for our area, we can make a binary occupancy grid out of
it which we can use to determine an optimal path to traverse this area/grid while
avoiding any obstacles. For this we can use many shortest path algorithms and
search algorithms. One that we can use is the A* search algorithm which is more
efficient than normal graph search algorithms. We could also use RRT and RRT*
(Rapidly Exploring Random Trees) algorithms which are sampling based search
methods.

With the map and path planning made Trash-E will continuously and
autonomously navigate the area which it has mapped using its path planning on
the grid. While navigating autonomously through the area, our computer vision
will be looking for the trash objects in its view. If while traversing Trash-E detects
a trash object, priority will be given to the computer vision algorithm so that it can
control the movement of it towards that piece of trash so that it can complete its
task of picking it up and placing it in its bin. After it has been placed in it’s been,
control will be given back, and it will continuously keep searching the area for
more trash.

3.5.3 Visual vs. Lidar

Figure 19: Robot Path Using VLSAM. (courtesy of Gianmarco Chumbe/CNET)

42

Figure 20: Robot Path Using SLAM with a Lidar Sensor (courtesy of Gianmarco Chumbe/CNET)

While utilizing visual locomotion can still complete the task, it is not very efficient
as it has a lot of retracing, which can be seen above in Figure 19, due to only
collecting points from in front of the robot at any given time. Lidar allows the same
situation to be optimized and be more efficient which is why we want to utilize this
technology. The highest efficiency and least amount of extra movement is
necessary for Trash-E to keep power consumption to a minimum. When compared
to VSLAM, Figure 20 shows significantly less retracing and a more optimized path.

3.5.4 Lidar Options

Table 9: Lidar Sensors

 Slamtec
A1M8

MakerFocu
s YDLIDAR

X2L

EAI
YDLIDAR

X4

getSurreal
XV Lidar

Hokuyo
URG-
04LX-
UG01

Price $100 $70 $80 $150 $975

Availability In Stock In Stock In Stock In Stock In Stock

Weight 370g 126g 180g 370g 160g

Input Power 5V 5V 5V 5V 5V

Power
Consumption

500mA 500mA 500mA 500mA 500mA

Laser Safety Class 1 Class 1 Class 1 Class 1 Class 1

Scan Radius 12m 8m 10m 6m 5.6m

Laser Range
Scanning

360° 360° 360° 360° 240°

Accuracy +/- 3.5% +/- 3.5% +/- 3.5% +/- 3.5% +/- 3%

43

Scan Rate 5.5 Hz
(10Hz
Max)

6 Hz 7 Hz 5 Hz 10 Hz

Ambient
Illuminance

No
Informatio

n

No
Information

No
Informatio

n

No
Informatio

n

Florescen
t Max:

6,000 Lux

Communicatio
n

UART/US
B

UART UART UART Mini USB
2.0

3.5.4.1 Price

Since we are choosing to do a lidar based SLAM, we must purchase a sensor to
gather the necessary data. Due to the nature of the technology, lidar can become
quite expensive very quickly. Our first choice of sensor was the Hokuyo URG-
04LX-UG01 due to it being tested by others using the Python library BreezySLAM
that we will be using and knowing that there are no compatibility issues. The issue
with this sensor for our use case is the price of $975 which is over double our total
budget. Even though this is a very good sensor for education and researchers, we
won’t be able to use it. Instead, we did some searching for lower end, or hobbyist,
sensors. The prices range from $70-$150 which are more realistic for our robot.

3.5.4.2 Weight

Weight is a large consideration for our robot when choosing hardware parts. The
more the robot weighs, the more energy we need to expend to move it which
depletes our batteries quicker. The goal for our sensor is to be as compact and
lightweight as possible. The MakerFocus YDLIDAR X2L boasts its impressive
weight of only 126g, while the Slamtec A1M8 is more than double at 370g, along
with the getSurreal XVLidar. We want to keep our sensor below 200g as to
minimize the total weight of our robot to prolong the up time we can pick up trash.

3.5.4.3 Power Specifications

Since lidar sensors spin around to send the laser signals, they need something
that can accomplish this task. All the sensors we looked at utilize DC motors. Each
DC motor has an input power of 5V and consumes a maximum current of 500mA
while the motor is running. We will be able to supply the required 5V using the
voltage regulator boards that were designed for Trash-E. The idle currents varied
between them in the range of 200-300mA, but we must use the worst case where
the motor is running all the time to spin the sensor. This gives us an accurate
measurement of how long the robot can run at the minimum.

3.5.4.4 Laser Safety

Working with lasers of any kind requires certain safety specifications. Different
safety procedures and PPE are required with different classes of laser safety.

44

According to the Environment, Health and Safety, Class 1 lasers are “eye-safe
under all operating conditions. A Class 1 laser is safe for use under all reasonably
anticipated conditions of use; in other words, it is not expected that the MPE can
be exceeded”. [X] They also describe a Class 1 Product as “a laser product or
device which may include lasers of a higher class whose beams are confined
within a suitable enclosure so that access to laser radiation is physically prevented.
Such products do not require a laser warning label on the exterior”. [X] The lidar
sensors we are considering utilize an enclosure to ensure the laser radiation is
physically prevented, making them a Class 1 Product.

3.5.4.5 Scan Radius

This specification of the sensor indicates how far from the center of the sensor the
laser can accurately measure. The lowest radius in our price range is 6m. Given
our robot will be used indoors, this minimum radius is sufficient. At any given point
we will be within 6m of a wall for our robot to locate an obstacle of some sort,
whether it be a wall or an unknown object.

3.5.4.6 Laser Range Scanning

Creating a full map of the environment is essential for Trash-E to traverse
efficiently. If the map is not generated completely, there will be discrepancies with
the path it should take since the information is not there. To generate a full and
complete map, we will need the lidar sensor to be able to fully spin 360°. This will
omit the possibility that obstacles weren’t detected due to the robot having not
faced that direction. All the sensors we are considering are capable of rotating
360°.

3.5.4.7 Accuracy

Measurements of the environment also need to be accurate so the robot may
traverse efficiently. Out of all the sensors we investigated, the lowest accuracy
range is +/- 3% and the average is +/- 3.5%. With the 3% variance being a higher
costing sensor, we must stick with the 3.5% variance. This will not affect our real-
time measurements greatly and will be sufficient for the environment mapping
since the robot will not be going that close to walls and obstacles to begin with.

3.5.4.8 Scan Rate

The scan rate determines how many full scans of the environment can be
completed during one second. Given that our robot will be moving relatively slow
to other autonomous mobile robots, like quadcopters, the scan rate is not too
important for our decision making. Since we will also be using the Jetson Nano for
our computation, the extra information that we would gain from having a higher
scan rate won’t be properly utilized like it would if we were using a higher-powered
CPU.

45

3.5.4.9 Ambient Illuminance

This specification is a very important one, although unfortunately most of the
sensors did not have information regarding it on the manufacturer’s websites or on
their datasheets. Ambient illuminance tells us the brightness conditions that the
lasers will work in without error for different lighting types. The only option that tells
us this information is the Hokuyo URG-04LX-UG01 which is no longer under
consideration. For this sensor, the maximum florescent max is 6,000 lux.
According to Green Business Light UK[/], “the lux of artificial indoor lighting,
however, is typically 1,000 lux or below…”. They also point out that the lux of direct
sunlight is a minimum of 32,000 lux and the minimum of ambient daylight is 10,000
lux. Given this information, even if the maximum ambient illuminance for the
sensors that had no information is only 25% of the Hokuyo sensor, the robot will
have a maximum of 1,500 lux and is still above the 1,000 typical lux. Sunlight is
the only cause for concern when it comes to light. The robot will still be able to
successfully complete the environment map without error if the shades are drawn
to keep the sun out.

3.5.4.10 Communication

All sensors utilize UART at the minimum which is sufficient for one way
communication from the sensor to the Jetson Nano. At least one sensor utilizes
USB but this is not necessary to use as there is enough GPIO pins for us to use
with the Jetson Nano.

3.5.4.11 Conclusion

Given all the considerations above, we are choosing the MakerFocus YDLIDAR
X2L. The price point keeps us within our budget and the weight will keep power
usage low. The other features that this sensor is lower in than the competitors are
negligible for our use case.

46

4.0 Constraints

4.1 Description

This section covers the design constraints for Trash-E the litter picking up robot,
and the associated standards with its design.

4.2 Economic

As the whole team consists of a group of students, it is to be expected that our
capacity to spend resources is relatively small. Therefore, in order to complete the
design in a cost efficient and on time manner the cost will be no more than four
hundred dollars. The four hundred dollars allocated will be split amongst the four
members of the group, which allows the burden of purchasing parts to be evenly
distributed. Being mindful of what each member has spent will ensure that no
conflict is had between the members. To reinforce this a bill of materials with who
funded was implemented.

4.3 Environmental

Terrain was immediately taken into consideration when brainstorming ideas for the
robot. Having a robot operating in several different kinds of terrains would take
away from our main focus and consume more of our time and resources. For
Trash-E, we mainly plan on operating on flat terrain such as tile floors, carpet,
cement, or anything similar. With two wheels and a swivel wheel in a triangular
configuration would not allow us to travel in any rough terrain. Implementing a
design for rough terrain would be impractical for its intended use as well.

4.4 Social

The design of the robot will be mainly built around functionality as it is not intended
to be used for anything other than picking up trash/litter, looks may be important
later down the line. Therefore, in exchange for soft and aesthetic looks we can
focus on functionality for the sake of development. Take for example iRobot®’s
Roomba®, it’s sleek and functional design allows it to do its job while not being an
eyesore. As a stretch goal, a proper casing that is appealing may be developed.

4.5 Sustainability

In the case of sustainability, this robot would be fully sustainable as it will be 3D
printed with polyethylene terephthalate glycol (PETG). The production of plastic is
at an all-time high in the twenty-first century damaging the Oceans and polluting
the environment around us. The majority of 3D plastics can be easily recycled back
into its unused filament string form leading to less plastic ending up in the
environment. Manufacturing metal parts specific to the project may lead to further

47

trash in the garbage heap when the robot is no longer operating or is not needed.
To combat the issue of pollution, a shredder designed for cutting plastic along with
a filament extruder should allow for the reuse of this plastic material.

4.6 Ethical

Concerning the job security of janitors and people whose job it is to clean up after
public events or parties. This robot is designed in such a way that it should not put
people in this occupation at risk as it was never intended to perform the entirety of
their jobs in the first place.

4.7 Time

For this project we have two semesters to design, build, test, and present. This
greatly impacts the sophistication of our robot as we have to make sure we can
implement our idea in about 3 to 4 months. This can also affect the amount of
primary and secondary features we get to. If something goes wrong or takes longer
than expected, we will have to re-evaluate what we can get done in the remaining
time. To combat this, work will be done in the first semester in making sure
everything is researched and planned out as it will lead to a smooth development.
Documentation as well as research and some testing should be done by December
2021. Having most of the research, testing, and documentation done by then
should give enough time to make slight mistakes for the completion of the project
by April 2022.

4.8 Safety

This robot is to autonomously operate in areas where human traffic is taking place;
there must be multiple fail-safes as well as safety practices to prevent harm during
operation. In the case of collision, Trash-E is plastic and light weight, the max
voltage supplied to the motors is capped to ensure that the robot moves at a
specific low speed. The gripper arm is designed in a way to avoid sharp edges and
protrusion, this also goes for the chassis design. With the use of Ultrasonic,
collision detection can be implemented to prevent the collision case mentioned
earlier; on top of that, a camera for object detection can also be trained to not
operate while a human is nearby. Electronics for the robot should all be grounded
and hidden from direct contact from users. Stored inside the chassis, the
electronics will be contained in a separate compartment to give easy access to
developers and to protected users of the robot. Finally, an option for manual
shutdown should be included in the case of an unforeseen action during runtime
or if the robot is found to not be operating properly. Further elaboration on safety
can be viewed in the standards section of the document.

48

4.9 Manufacturing

This robot being designed to operate indoors, operation outdoors is outside of the
project scope at the moment. Furthermore, manufacturing costs can be saved
since we do not need to deal with outdoor elements. Despite this the robot should
still be reliable and durable enough to operate for several hours. Currently we are
limited to the following methods for making parts for our robot:

1. 3D Printing: Using the 3D printer in the Innovation Lab or using a printer
that a group member owns. Manufacturing of parts this way allows for
greater creativity and less time for production. Using Autodesk can make
for short work of chassis designs and moving components for the robot.
This option is also relatively cheap if we provide our own plastic or use the
schools.

2. Purchasing wood: Going to a home improvement store and getting the
required wood to build into what we need. We also need access to a
workshop that is provided by UCF. This would be one of the cheapest
options, but it also requires the skills for woodwork as well as being able to
design the specific measurements for schematics. Replacing parts would
be cheap but would take some time, similar to 3D printing, to reproduce.

3. Purchasing metal: This approach would be potentially most expensive and
difficult due to not having the correct tools. Similarly, we would be able to
use the workshop provided by UCF, but working with metal is the hardest
and, potentially, the most dangerous option. Replacing broken components
on the chassis would take a great amount of time to do, but the likelihood
of it happening in the first place would be low. Weight also has to be taken
into consideration, as metal would be the heaviest out of all of the three
options.

49

5.0 Standards

5.1 Lithium-Ion Battery Safety Standards

Several international/universal industry practices are used in upholding standards
in lithium-ion battery safety, this also applies to regular lead acid batteries.
Organizations such as IEEE, ICE, IECCEE, U.S based OSHA, NRT, ANSI,
ISO/IEC, UN/DOT, UL, and many more have thoroughly created many standards
for the regulation of lithium-ion batteries, all have the facilities and equipment to do
so. For this project we will follow the IEC 62133 (International Electrotechnical
Commission) as they create non-profit standards internationally. The scope in this
standard states that “IEC 62133 specifies requirements and tests for the safe
operation of portable sealed secondary lithium cells and batteries containing non-
acid electrolyte, under intended use and reasonably foreseeable misuse” (IEC).
Several testing procedures, as well as maintenance requirements are
recommended by this standard.

5.2 Standard SystemC ® Language Reference Manual Standard

The standard IEEE 1666 2012 lays out clear definitions on how to go about with
syntax and proper procedure on developing certain aspects of C language
including C++. Seeing as this project involves heavy usage of both software and
hardware as well as the communication between the two, for example, serial data
transmission from the Nvidia Jetson to the microcontroller that interprets data sent
and act out instructions. In other words, it provides an extensive list of core
language class definitions, predefined channel class definitions, system C data
types, system C utilities, terminology, and simulation semantics. All of those listed
previously will be in use during the development and documentation of our project.

As a side note, this standard uses the words “shall”[16], “should”[16], “may”[16],
and “can”[16] that carry their own significance. Shall being the most important
meaning that what is requested in the standard is mandatory. Should is mainly a
recommendation and nothing more. Finally, can is used to imply that something is
possible, or within the scope of operation. For example, shall is used when dealing
with function definition and side effects in section 3.3.2 in the standard. The use of
such is explicitly used throughout the standard like in this case: “Such functions
shall not have any side-effects that would contradict the behavior explicitly
mandated by this standard.”[16]. They clearly define what should be done
throughout the standard with similar cases to the previous quote. Not following the
advice indicated by the word “shall”[16] will typically cause issues within the C
system you are designing.

Using this standard will “provide a C++-based standard for designers and
architects who need to address complex systems that are a hybrid between
hardware and software”[16]. Therefore, it will increase our options as well as

50

provide us with guidance for the solutions to our complex software and hardware
systems.

5.3 Software and Systems Engineering – Software Testing

ISO/IEC/IEEE 29119 is a standard that takes multiple other standards and
compiles them into one coherent standard. Developed by the International
Organization for Standardization and the International Electrotechnical
Commission, they attempt to make a worldwide standardization that could be
adapted to work internationally.

Mainly, the concepts applied from this standard are the testing process, as well as
the testing techniques. Outlining the testing process consists of splitting up and
organizing several processes that need to be done. In our case, with four team
members we can organize the software and hardware processes by assigning the
preferred roles of them.

Test management will undoubtedly be the largest section as it is paramount that
proper testing procedures are taken to ensure quality code and operation. First,
coming up with a plan on how to execute a testing plan until its completion; this
can consist of several techniques to accomplish this with liberty to adjust plans to
meet design goals. For example, the test plan is created, testing starts and is
monitored while providing needed updates, and finally test completion. In the test
completion phase plans for further improvements or maintenance can be made,
but it also serves as a final check if guidelines were followed before the release of
the product.

Testing techniques include specification-based testing, structure-based testing, as
well as experience-based testing. Each comes with its own approach to the testing
process, and with their respective advantages and disadvantages. Specification-
based testing is more about using previous information gathered such as
documentation gathered from part manufacturers about specifications for
operation. Furthermore, there are several ways to implement structure-based
testing as there are many sources to pull from. Structure-based testing can pull
from outside datasets, sample codes, models, and documentation to achieve
design goals during testing; there are several ways to go about this. Experience-
based testing relies on the testers previously gathered experience and knowledge.
The tester in this case could create a model to aid in the structuring and
development of code and the software, though it is slightly limited due to the fact
of not relying on outside sources. This technique is also not as predictable since
each developer/tester has varying skills in different fields. In this case, direct
debugging and testing of code is utilized to develop features which would take
more time, but it can lead to creative solutions. Errors encountered will also depend
on the testers ability to predict the operation of written code as well as the ability
to create unit tests to cover many different input cases.

51

Conforming to the standard as well as its shown practices will make it so that the
structure of the software we develop will be able to apply to this standard. Although
ISO/IEC/IEEE 29119 provides many options for test management and testing
techniques, many of them will be excluded from this robot’s development as
several of them provide enough guidance for a small development group. The
testing techniques as well as the organizational procedures will be taken into
consideration. With the combination of those two principles, proper planning, and
adequate testing of each testing block will ensure proper adherence to the
standard.

5.4 Programming language – C Standard

International standard ISO/IEC 9899 intends to specify: “the representation of C
programs”, “the syntax and constraints of the C language”, “the semantic rules
for interpreting C programs”, “the representation of input data to be processed by
C programs”, “the representation of output data produced by C programs”, and
“the restriction and limits imposed by a conforming implementation of C” [19].
This is what we will be using for the majority of the embedded software design for
the project.

Within the standard document, the language section includes notation, concepts,
conversion, lexical elements, (constant) expressions, declarations, statements
and blocks, external definitions, preprocessing directives, and future language
directions. Typical concepts for programming languages like syntax, data type
identifiers, and more are included under annex A. Following this is further
information on several libraries that aid with specific operations, for example, the
math.h or string.h libraries that will be very useful during development. Before the
creation of the C standards, a large amount of functionality may have been
difficult to know about.

Previously mentioned aspects of the standard will aid in the development of
drivers on the embedded side of Trash-E the litter cleaning robot.
Communication between the Nvidia Jetson and the microcontroller will use a
serial communication protocol dealing with parsing through strings. For example,
the Nvidia Jetson sends a compressed string of instructions to the microcontroller
for motor control; the way to interpret this string is to make an algorithm and use
functions given to us by libraries to do so. We are doing a Python to C
conversion as well, so data types will also be important to keep track of. While
testing we must keep in mind what data type is being sent. An example of this
would be sending a string from python and having to use a conversion to make it
a long int or unsigned float for interpretation. Pulse width modulation will also
need to be calculated for the motor controls, so the math library will be of great
use for handling the work required. Without the use of this standard, much of the
functionality for the embedded/hardware side would be mediocre in efficiency at
best, as the saying goes “don’t reinvent the wheel”. Having a fast and efficient
system is essential to operating in real time to improve the responsiveness of the

52

robot. Coincidentally, next to assembly, C language is one of the fastest
languages to choose from.

5.5 Robot Systems – Safety Requirements Standard

The scope for the standard ANSI/RIA R15.06 states that “this safety standard
applies to the manufacture, remanufacture, rebuild, installation, safeguarding,
maintenance, testing and start-up, and training requirements for industrial robots
and robot systems” [20]. A general overview of the sections provided by the
standard: definitions, hazards to personnel, actuating controls, Installation of
robot systems, safeguarding personnel, safeguarding devices, and maintenance.
The purpose of this standard in our case is to avoid potential setbacks and
damages in the development of Trash-E. It also provides several propositions for
certain designs for power systems and other features. Some of these
suggestions include designing reliable circuitry for controls, robot stopping
circuits and emergency stop, grounding requirements, and much more.

To avoid any injury to users of the robot we are following several of the pieces of
advice given by ANSI/RIA R15.06. Circuitry being implemented for the power
systems need to be safe to avoid electrical shocks and shorting of the system.
Section 6.10 encourages the grounding of any electrical system within the robot;
this also includes limiting access to the electronics during use. Since Trash-E will
be interacting with its surrounding environment, it's important to include an
emergency stop for unforeseen actions by the robot. Developing reliable circuitry
with minimal interference from outside sources will also be essential to the
robot’s operation, because if the motor controls and power supply DC to DC
converter are not reliable unforeseen operations may happen.

In the case of our alternate design of having an articulate arm, rather than a stiff
one directional one, ANSI/RIA R15.06 also provides safety standards for this.
The standard suggests defining a maximum, restricted, and operating space for
articulate robot arms. Shown in Figure 16 below is a graphical representation of
this concept.

53

Figure 21: Use of Maximum, Restricted, and Operating Space

Maximum space, as the name suggests, the complete reach of the articulate arm
to show the potential reach of it. This is useful in the case of estimating the safe
range a user or bystander can be in during operation. Restricted space indicates
the areas where the articulate arm should not move to. In the case of Trash-E, the
arm would have a 180-degree arc of restriction behind, because if it would rotate
into that range, it would hit the electronics as well as the chassis. The operating
space in front of it, also a 180-degree arc, will be its operating space to pick up
trash. For throwing away the trash after it had been picked up, we would use the
case of dynamic restricted space for the arm to be able to bend into the restricted
zone and drop the garbage into the garbage can. The definition for dynamic
restricted space is as follows: “the safeguarding interlocking logic may be such that
the restricted space is redefined as the robot performs its tasks”[20]. The stiff arm
design would not require as many restrictions due to its two dimensional plane of
movement.

54

6.0 System Design

6.1 Software Design

In this section we will be going over how the Trash-E software will be designed.
The following subsections will split the information for the software design on the
three main software platforms. These will involve design explanations of the
various features and algorithms that will be used on the microcontroller, Jetson
Nano, and computer vision.

6.1.1 Software Overview

Trash-E should be able to maneuver and spot trash and pick it up on its own.
Trash-E will be roaming on its own until it finds a piece of trash. Trash-E will be
constantly using computer vision to be able to recognize these trash items and
maneuver its way towards each object. Once a trash item has been detected,
Trash-E will move towards it until it gets a certain distance close to it. Trash-E will
have an arm with pincers that it will use to pick up the trash. It will need to be able
to decide how it will approach the pickup of the item. It should be able to precisely
grab the item and put it into its trash bin.

6.1.2 Computer Vision

6.1.2.1 Functionality

Trash-E will have a camera connected to its main computer on the Jetson Nano.
A camera will be used to capture images of what is in front of Trash-E. The camera
will be capturing video and our computer vision software will be analyzing each
frame. In each frame our algorithm will perform object detection and look for the
trash items of interest. If there are multiple items in front of Trash-E that are of
interest, the software will decide to follow the item that is closest to Trash-E. The
Jetson Nano will be powerful enough to process the images so that Trash-E can
scan and identify trash objects in its view in real time. Once Trash-E has decided
which trash object is detected it will move towards that object. The software will be
sending data to the microcontroller through serial communication in order to
determine a PWM signal that will control Trash-E’s direction of movement. Once
Trash-E is close enough to the object, the software will stop accelerating Trash-E
and bring it to a complete stop so that it can now pick up the trash. Once the item
is in Trash-E’s bin, the computer vision software will initiate once and again and
begin to look for an object. If there is no object in view, Trash-E will rotate until one
is detected or a certain amount of time has passed in order to conserve power.

55

6.1.2.2 Development Environment and Platforms

6.1.2.2.1 Programming Language for Computer Vision

We are going to primarily use Python to develop the computer vision and machine
learning software that we will be using on Trash-E. Although not as performant as
languages like C++ due the nature of it being compiled at runtime, Python is a very
powerful language, has a lot of machine learning libraries, and the code syntax is
very easy to read.

With Python we will worry less about the syntax of the code and its semantics since
it has no types, pointers, and everything is handled for you in easily readable code
while still having all the powerful data structures and object-oriented functionalities
that C++ provides. Leaving all the focus on the implementation of our machine
learning and computer vision algorithms for our application. If we would have gone
with C++ as our primary language, there would have been a lot of nuances in the
language that we would have to deal with aside from the machine learning and
computer vision implementation. C++ has things like types and pointers that could
possibly complicate our program that are handled behind the scenes in python.
However, C++ is a faster language and is very popular for robotics programming.

Python is already supported with many machine learning and computer vision
libraries that we can use as well as many other frameworks, and extensions that
provide a lot of functionality. Python is platform independent meaning that we could
develop and implement our computer vision code on our desktop using the
Windows operating system and pass on our code to a Linux operating system and
it would still work as intended. This makes implementation of what Trash-E needs
a lot more simple and more efficient.

6.1.2.2.2 Development Environment

For this project the plan is to use an IDE to develop our code for computer vision
and machine learning such as PyCharm. Using an IDE like PyCharm will give us
the best development environment to be able write our code with great debuggers.
PyCharm is also directed towards use for writing code in Python and offers a lot of
support for doing so. We will be developing code on a Windows operating system
since it is the current operating system that we own and the libraries and tools we
need to develop our machine learning computer vision platform are mostly cross-
platform in terms of the operating system.

We will be installing another necessary tool and platform for our development
environment called Anaconda. This is specifically to configure our development
environment for machine learning and computer vision development in Python. It
is an open source Python distribution platform that acts as a data science toolkit.
Anaconda offers a quick way to install and use thousands of data science and
machine learning packages for Python that include many tools and libraries using
an easy to use desktop GUI. These include but are not limited to TensorFlow,

56

PyTorch, NumPy, SciPy, PyCharm. Extra packages and libraries not included in
the original install of Anaconda will be very easy to acquire using the Conda
environment and command console. Anaconda also allows the ability for us to
have more than one environment setup that can be run and maintained separately
from each other. Having Anaconda provides us the boilerplate environment for
our machine learning software development, and will allow us to start coding and
testing our machine learning models quicker and skip the tedious development
environment setup.

The computer vision software that we develop will end up being transferred and
run on the Nvidia Jetson Nano. The Jetson Nano runs on a Linux operating system
and has a RAM capacity of 2GB. Our software will be able to run on this system
as an inference model meaning it will not be training on the Jetson Nano. The
training of the machine learning model will be done on a desktop PC using a
dedicated GPU to process the training. This will save lots of time for development
and ease the stress on the Jetson Nano RAM and processing power. The machine
learning object detection model will also be optimized by a proprietary Nvidia tool
called TensorRT that will optimize our model so that it can perform only necessary
computations and save performance on the Jetson Nano while still ensuring the
same results as if it were unoptimized.

6.1.2.2.3 Libraries

There are many ways to go about creating computer vision applications using the
extensive amount of libraries that are available to use. Using these libraries will
allow us to use state of the art algorithms and architectures already created by AI
researchers. This cuts down the development time and overall will give us a more
efficient performing product. Python comes supported by many machine learning

libraries as well as some that are tailored toward computer vision.

One route that we could go with designing our machine learning software is to use
the more recent PyTorch library. This is Facebook’s open source machine learning
framework that was released in 2016 and is relatively new to the industry and is
primarily used by researchers and people who want a more pythonic framework.
In comparison to TensorFlow, PyTorch is a bit more simple to read and is more
intuitive since it is more like python making it easier to learn than TensorFlow. This
allows people to make quicker prototypes and get projects going much quicker too.
Debugging with PyTorch is also more simple to do with common tools compared
to TensorFlow which requires you to use another tool for debugging. Using
PyTorch would involve similar processes as if we were using TensorFlow. We
could use a pretrained model such as Faster R-CNN that is offered by PyTorch
and attempt to leverage it for transfer learning to be able to train it to our custom
dataset a lot quicker and potentially get better accuracy than training from scratch.
If we ultimately decide to write our own CNN architecture instead of using a
researched model during prototyping, PyTorch makes building our neural network
a lot more simpler than on TensorFlow. This is because PyTorch uses dynamic
computational graphs which allows us to change behaviour of our model at runtime

57

which makes optimizing models much easier. Since PyTorch is newer than
TensorFlow, that means that it is not as extensive. However, for our use case in
designing this computer vision application that should not be an issue.

On the other hand the other route to developing our computer vision software is
using TensorFlow which is the most popular machine learning framework in the
industry for production. The reason we would want to use TensorFlow is because
it will allow us to use a bigger selection of famous state of the art pretrained models
and give us the option to train our own custom object detection models using our
custom objects just like we would be able to with PyTorch. TensorFlow is backed
by Google and has frequent updates and support. It is also open-source so we
don't have to spend a dime in order to use it like PyTorch. TensorFlow is packed
with many built-in functions for machine learning that will make training and testing
our models a lot quicker and testing more efficient than from scratch. TensorFlow
also includes TensorBoard integration which can help us in fine tuning our model
by showing us our testing evaluation metrics. One downside for TensorFlow is that
in order to train your model on a graphics processing unit or GPU it must be
manufactured by Nvidia and is only supported with Python. However, this will not
be a problem for us since we will be using an Nvidia GPU that we already own to
train our model. TensorFlow also has a much steeper learning curve than
PyTorch.

Figure 22: Nvidia GPU Optimized Models (Courtesy of Nvidia)

Both PyTorch and TensorFlow are supported by Nvidia TensorRT. This is an SDK
by Nvidia that is written in C++ that takes a trained model from libraries like
TensorFlow and PyTorch and converts to a more optimized model for Nvidia GPUs
as shown in figure 17 while maintaining the same results which includes the Jetson
Nanos GPU. This will drastically increase performance on the Jetson Nano while
using our inference model on it.

There are a couple of options of how we will run the model on our Jetson Nano.
With PyTorch we would convert the model to ONNX format and convert it straight
to TensorRT to run on the Jetson Nano. With TensorFlow, we could either use the

58

Tensorflow-TensorRT integration on TensorFlow to be able to still use
unsupported parts of the model on TensorFlow on runtime while everything in the
model that is compatible will be using TensorRT converted computations. The last
option will offer the best performance for the Jetson Nano which is to convert the
TensorFlow model to UFF format and convert it straight to a TensorRT model. This
would be the most optimized way of going about it.

For our decision on which major library will be primarily used for deep learning,
we'll be using TensorFlow. The reason is that TensorFlow has a lot more support
available online to help us accomplish what we want to do for Trash-E, even though
PyTorch is catching up to where TensorFlow is in terms of community and support.
TensorFlow also has a much wider selection of pre-trained models that we can
use than PyTorch has. PyTorch has about only five models to choose from. Using
a pretrained model from these libraries will allow us to get our software working a
lot quicker. If for some reason we decide that the TensorFlow library isnt working
out for what we want during prototyping, switching over to PyTorch wouldn't be a
difficult task since in the big picture they are very similar and work to achieve the
same task.

OpenCV will be used towards the end of our software implementation to connect
the camera on Trash-E and send the video feed into the inference model on the
Jetson Nano for real time object detection. It comes with many builtin functions
and capabilities that will make camera connectivity and image capture a lot more
simple and we will use a specific function to access our system's camera and use
it as the input for our object detection model.

Other libraries that we will be using to assist the main computer vision
implementation are PySerial and LabelImg. PySerial is a python library that
encapsulates the access for the serial port. It provides backends to python that will
automatically be configured for the platform we will make a serial connection to.
The serial connection we have to make is by UART to the Jetson Nano. With this
library we will initialize that connection so that the computer vision software can
guide Trash-E to the trash items. Computer vision models can give results in
bounding boxes, these coordinates from these boxes will be sent to the
microcontroller via serial connection on PySerial so that it can guide Trash-E’s
movements with a PWM signal.

LabelImg will be used to create the labels and annotations for the images in our
training dataset. The reason we want to use this is so that the labeling process for
our image training dataset is much more efficient and is done well. It will also help
save development time in the most tedious step of the process which is creating
and labeling our dataset.

6.1.2.3 Object Detection Model Architecture

The algorithm that we need in order to achieve good object detection is a
convolutional neural network. As mentioned before, both Pytorch and TensorFlow

59

offer many state of the art pretrained models that are based on convolutional
neural networks and have very good results in object detection. These models are
already trained with very good weights which allows us to leverage transfer
learning for quicker and efficient training on new objects.

We will be using a pretrained model from the TensorFlow Model Zoo located on
their GitHub [21]. These models are high quality researched architectures or
models that are provided by Google’s TensorFlow GitHub. Using a pretrained
model gives us the advantage of utilizing transfer learning and could ultimately
make our training more efficient and more accurate in the end. The models
available in the model zoo have been previously trained on a dataset with
hundreds of thousands of images and have already been trained to have the best
weights to detect very common objects. Leveraging the technique of transfer
learning will enable us to train the final layers with our new images and classes in
much less time since the weights from previous training are already very good and
it will be accurate at detecting our new classes of objects as well. These models
also offer the option to be trained from scratch. The TensorFlow model zoo offers
a lot of options for pretrained models. Some of the object detection choices we
have include SSD MobileNet v2, SSD ResNet50 v1, Faster R-CNN ResNet, and
Mask R-CNN.

Mask R-CNN offers normal object detection such that it uses detection boxes.
However, a main key feature that differentiates this model from the others is that it
offers masks as well. These masks essentially wrap the object instead of just
placing a box around the detected object. This feature comes with a heavy cost
however. The performance runtime of this model can take as long as 301 ms. This
number could likely be worse if we were to run it on the Jetson Nano. This model
also has a high mAP accuracy but comes with a great performance cost. For the
purposes of our project this model would be overkill, and the masks are an
unnecessary feature and would be extremely inefficient for Trash-E.

The Faster R-CNN is another high accuracy model but has better performance
than the mask R-CNN. This model only uses detection boxes for identifying objects
and has a much better average runtime of the range 53 - 236 ms depending on
the choice of resolution and the ResNet architecture.

SSD ResNet50 v1 performs very similarly to the Faster R-CNN models. At the
lowest resolution it offers a faster runtime and also gives a slightly higher average
accuracy for the model. However when we compare this model with the SSD
MobileNet v2, it is surpassed in speed.

The SSD MobileNet v2 model option offers us the best performing runtime for
object detection. At the lowest resolution it offers object detection in 19 ms,
surpassing all the previously mentioned models. However, this increase in speed
does come with a tradeoff of accuracy. The accuracy for the fastest version of

60

MobileNet is averaged at 20.2 mAP. Compared to all the previous models this is
the lowest average accuracy.

An alternative option in our design would be instead of using TensorFlow models,
we use PyTorch instead for our implementation. If we were to switch to using this
alternate library for any reason we still have a wide selection of pretrained models
that we could use from the PyTorch library that offer similar performance. Another
alternative option is to use pretrained models that come from a library called YOLO
which offers another good selection of object detection models. Lastly, if for some
reason none of these models give us satisfactory results both TensorFlow and
PyTorch offer us the tools to create our own neural networks or object detection
models to use for our project.

After considering all our options for the object detection models available in the
TensorFlow Model Zoo. The model we will specifically be using from the
TensorFlow Model Zoo is the SSD MobileNet v2 320x320 model. This is a single
stage object detection model. This model has been previously trained on the
COCO 2017 dataset which was a large-scale dataset with hundreds of thousands
of images that include many common objects in the real world. We will train the
model to be able to detect our own custom objects only, which in our case are
cups. However, this custom dataset can be easily expanded upon in the future.

Figure 23: Object Detection Model Performance on Jetson Nano (Courtesy of Nvidia)

The SSD MobileNet v2 320x320 model shows a 320x320 resolution in its name.
There are a couple of reasons for choosing this specific model, one being that it
had very high performance compared to the other models as shown in Figure 18,
which is very important for our application since we are running the inference
model on a Jetson Nano in real time. One of the advantages of using this model is
that it will preprocess the images we feed into it in a smaller resolution and in this

61

case, they will be 320x320. That will make the model more efficient in terms of
speed and performance but we trade off some accuracy.

Since our model will be running on the Jetson Nano, we should optimize for
performance and efficiency for the sake of hardware capabilities so therefore we
are going with a lower resolution model. The RAM that is available on our Nvidia
Jetson Nano is 2 GB, the main operating system on the Jetson Nano already
consumes a decent portion of the RAM so it would be critical that our design uses
a performant algorithm with lower computational cost so that we don't run into
issues of crashing or overheating our Jetson Nano which would render our product
useless. Our dataset and objective does not require the most precise and most
accurate model to detect trash objects.

Therefore, it is best to go with performance over accuracy for our convolutional
neural network architecture or object detection model. As stated previously, the
SSD MobileNet v2 model runs a low resolution and consequently is less taxing
computationally on the Jetson Nano. The SSD MobileNet v2 model runs very well
on the Jetson Nano around this resolution as can be seen in Figure 18. When we
take a look at the SSD MobileNet v2 model with 960x544 resolution, the
performance drops drastically from 39 frames per second to 8 frames per second.

6.1.2.4 Creating The Dataset

The first step in every computer vision task is to gather the data that we will use to
train our model for computer vision. For our project, we need to gather photos of
all the objects that we want Trash-E to detect. We can take pictures using the
camera that we will buy to use on Trash-E or we could even just take pictures with
our smartphones. In the end it doesn't matter as the images will be preprocessed
automatically before entering our model into the lower resolution.

There are techniques involving scripts that we could write to automatically take
pictures from a webcam attached to our desktop computer. This script can
automatically take pictures for the appropriate classes. The script will loop through
each class that we want to detect and take a certain number of pictures accordingly
until we've completed taking pictures of all classes. This method would be great if
we were only creating computer vision software that would only run from a webcam
on top of a desktop inside a normal room. Such as signing into your account by
face detection or placing filters on peoples background. However, for our project
this would not be ideal since Trash-E will be operating in many different conditions
and not just one room in place.

The approach we will have to go with is to manually take these photos for our
dataset. These photos need to have to show the items in many orientations,
lighting conditions, colors, and distances. It is important that the pictures are done
in all these ways so that our algorithm can recognize them from any position in any
condition that Trash-E can operate in. If we did not take these steps to consider

62

the different conditions in our images then we would get a very inaccurate model
with many false positives as well as false negatives.

We will need at least 100 photos per class to have a good enough training on it
and luckily with transfer learning the accuracy will be good even with the new small
dataset since the pretrained models weights were already very good. Each class
is attached to an object we are trying to find.

Figure 24: Labeling the Dataset With LabelImg Tool (Courtesy of LabelImg GitHub)

Once we have gathered these images, we will label the data based on the object
it is and what we want our network to classify it as. We are going to use a library
called LabelImg from python that allows us to easily select the objects in our
images that we want to label. These labels that we put on our images must be as
tight as possible as shown in Figure 19 so that we ensure our model learns that
object better.

We also will need to create a label map for our dataset. This map data structure
will hold all the labels for our dataset including the label name as well as a unique
identifier for that label in the map.

We also want to create our TensorFlow records. TensorFlow records are a binary
file format for storing data and using them will help speed up the training for our
object detection model by converting our label annotations and images into a file
format that our model can use.

6.1.2.5 Training The Object Detection Model

We will be training our model using the TensorFlow library for Python. The training
will be done on a desktop using a GPU or graphics processing unit rather than on

63

the Jetson Nano. Training on a dedicated GPU on a desktop will make training go
a lot faster than it would on the Jetson Nano. In order to be able to do that we need
to install both CUDA and cuDNN to our desktop, so that TensorFlow can utilize our
desktop’s graphics card.

TensorFlow comes with an object detection API, which we can utilize to easily
perform functions on our model. The object detection API also comes with a
training script designed for the specific model that we chose from the model zoo.
This script is modifiable and we can change some parameters. One of the
parameters we will be changing a bit is the number of epochs the model will train
for or the amount of training iterations it makes. The model will train for about 5000
epochs at first. If we feel that the accuracy is not good, we can train it for longer or
increase the amount of images in our dataset for training.

Once our model is trained, we can use the OpenCV library to access a camera
connected to our computer and feed live video to our object detection model. Then
our object detection model will examine each frame and detect our custom objects
that are in them. Using our object detection API, we will be able to draw boxes
around these objects in each frame to show the location of the object on the image
that the model predicted as well as return the values of the coordinates in the
detection boxes that will come as a list of bounding boxes.

6.1.2.6 Moving our Trained Model to Jetson Nano

Once we are satisfied with the accuracy of our model, we will move it onto the
Jetson Nano. Nvidia offers tools that will allow our model to run efficiently on the
Jetson Nano. We will need to freeze our TensorFlow model or in other words
freezing the graph. This is essentially saving our model so that we can use it in
another instance. We can use the TensorFlow TensorRT API to do this and the
following steps. After freezing the graph into a savedModel format, we will convert
the frozen graph to a TensorRT optimized model. Then we will call an API for
TensorRT object detection that will build our optimized TensorRT graph which
creates a TensorRT execution engine. This will allow for better performance on the
inference graph than just using the converted graph. However, we must build this
execution engine on the Jetson Nano since it is required to build it on the same
GPU that the inference model will be executed on, even if both of the graphics
cards are by Nvidia. In our case, we are using an Nvidia GTX 1080 Ti for training
our model on our desktop, and the Jetson Nano is using an Nvidia Maxwell GPU.
With this TensorRT optimized model we can run our trained object detection model
on our Jetson Nano more efficiently than just the native TensorFlow model.

6.1.2.7 Serial Communication with Microcontroller

One of the most important aspects of our software design is the connection
between the computer vision software and the microcontrollers software. The
microcontroller is in charge of maneuvering Trash-E as well as controlling the arm
in which it will use to pick up trash. However, there is no way that the

64

microcontroller would know where a trash object is on its own. Therefore, the
computer vision software must gather necessary data that it can send to the
microcontroller via serial communication so that it can determine what to do. So,
the main two problems we must solve for Trash-E’s vision and maneuverability
decision making are how will Trash-E know which trash object to approach in a
scene as well as how will Trash-E know how to maneuver itself to that particular
trash object. Then finally, how will it send that information between the Jetson
Nano computer vision software and the microcontrollers software which controls
all the motors.

Figure 25: Object Detection Bounding Box Coordinates

TensorFlow’s object detection API already offers bounding box coordinates that
surround all the objects of interest in the algorithm's view. These coordinates in
each bounding box include the xmin, xmax, ymin, and ymax as shown in figure 20. This
essentially gives us the coordinates in the image that this object was found in and
creates a tight box around it. With these coordinates we can determine many
interesting bits of information that we can use to eventually guide Trash-E.

These coordinates can be used to determine the area of each bounding box that
is detected by our camera. Our software will sort the areas of each object's
bounding box that it has detected in decreasing order of area. In other words, the
biggest area detection bounding box will be in the front of the sorted list of bounding
boxes. Why is this necessary for Trash-E? With these bounding box areas sorted,
we now have a way that Trash-E can decide which object in its view it should
approach. A bigger detection box area will mean that the object is closer, and

65

Trash-E will approach the specific object or biggest bounding box. For testing
purposes later on, we will draw a green circle outline around the closest object in
the program window that will appear when we run the model.

Figure 26: Object Detection Bounding Boxes (Courtesy of Algorithmia)

For example, let us say our object detection model was tracking fruits. In figure 21
we see that the closest pear has the largest bounding box area. In this case Trash-
E would approach that pear since it has the largest area and will continue to be the
largest since as we get closer the area can only increase. In our real case of trash
objects, which are red solo cups, they will always be of the same or very similar
size. Therefore, the edge case of a huge object in the background being mistaken
as the closest object compared to a smaller object that is closer will be very rare.

Trash-E must eventually stop the approach towards the object when it gets close
enough for pickup. A method that we have designed to solve this problem is to
have a sensor towards the front of Trash-E that will detect the presence of an
object in front of it. The computer vision software will keep signaling Trash-E’s
microcontroller to move forward until the sensor detects the object is close enough
to grab with its arm for trash removal. Once at that point, the computer vision
software will be overridden and the microcontroller will take control of moving the
robot's arm to place the item in its trash bin and ignore incoming data from the
Jetson Nano’s computer vision software.

This would all work great if Trash-E was always in a straight path to the object.
However, that will rarely be the case so there is another aspect of Trash-E’s
maneuvering that must be solved. An object that is detected and is closest can be
anywhere in Trash-E’s camera view on the x-plane. In order to turn Trash-E so
that it turns and moves straight towards the object, we can use the coordinates to
determine that maneuver.

66

Figure 27: Detection Bounding Box Displacement From Image Center

With the coordinates from the closest bounding box, we can determine the center
of that particular bounding box. We can calculate the center of the bounding box
by taking the midpoint of x minimum and maximum and the midpoint y minimum
and maximum. We would then do the same for the overall image size to get the
center of our screen or image. With both the coordinates of the center of the
bounding box and the center of our image we can determine the displacement
between these two points as shown in figure 22 as well as the direction it is from
the center origin of the image.

Since in our use case Trash-E will only ever need to turn right or left or go straight,
only the x-plane is of significance to us. Therefore the displacement calculation
between our bounding box’s center and our image center will only need the x-
coordinates and will be the difference between the bounding box’s x-coordinate
and the image’s center x-coordinate. If that displacement is negative, that means
that the object is to the left of our origin and Trash-E should turn left. Otherwise if
the displacement is positive, then Trash-E should turn right. Trash-E will continue
to turn until the image center and the bounding box’s center displacement has
reached a certain threshold from zero. The reason we don't want the Trash-E to
turn until the displacement hits exactly zero is because that would lead to an
extremely fidgety movement. Due to real world limitations and scenarios Trash-E
would constantly try to correct itself because it will overshoot zero from the
negative and positive side. Having the small buffer threshold around zero would
eliminate this mediation issue.

67

Now we have our way of determining which direction Trash-E should turn and
which object it should move towards using the data that we receive from our object
detection model. The only part left is to design a way that we can pass this
information to our microcontroller that ultimately controls these movements based
on the information it receives from the Jetson Nano. We will have a Python script
that will be able to send that data in a UART method to the microcontroller. The
Jetson Nano will never need information from the microcontroller so the
communication will be one-directional. Through this python script we will initialize
a connection over UART with the microcontroller. There is a library that we will use
to make this process simple and it is called PySerial and it has support for serial
support access on many platforms.

Once our computer vision software has determined which direction Trash-E needs
to turn after the previous mentioned steps in our design, we will send a value over
UART that the microcontroller will interpret to perform the corresponding
maneuvers. We only have three decisions to make on which turn to make, which
are left, right, or forward. Therefore, we can hardcode three values to send over
UART that the microcontroller can easily translate. Each value sent over UART will
be a hexadecimal number. If the displacement calculations return a 0 value then
0x1 will be sent over UART which corresponds to going straight. If it returns a
negative number, 0x2 will be sent over UART which corresponds to turning left. If
it returns a positive number then 0x3 will be sent over UART which corresponds to
turning right. If in this case our object detection model does not detect any objects
that we are looking for, our calculations will return a null value and we will send a
value of 0x0 over UART.

6.1.3 Microcontroller Software Design

The movement of Trash-E will be controlled by the microcontroller using the
Cortex-M4 processor. The main tasks of the microcontroller will be to: move the
robot using servos on the wheels, determine when the trash is close enough to be
picked up, lower and raise the arm of the robot with a stepper motor to put the
trash into the bucket on the chassis, and to grip the trash with the gripper using a
servo. The software will be written using Texas Instruments’ Code Composer
Studio IDE since the microcontroller is also made by TI and we are familiar with
using the IDE.

6.1.3.1 Flowchart

The overall structure of the software will be implemented using a finite state
machine (FSM). Since the overall processes that the robot will do is linear and
needs to be completed in order, the FSM is perfect for this application. The overall
logic that the microcontroller software will follow is shown in Figure 23 below.

68

6.1.3.2 Wheel movement

To move Trash-E, there will be two servo motors attached to two of the four wheels.
These motors will be attached diagonally from each other, for example, one in the
front left and the other in the back right. Having the motors attached in this way will
allow us to spin the robot without moving too much forward or backward. The
microcontroller will generate a PWM signal on the GPIO pin that is connected to
each servo. For the wheels we have chosen pins 13 and 14 to generate the PWM
signals. To move the robot straight, equal duty cycles will be generated to keep
both sides of the robot moving at the same speed. To turn left, the right servo will
be given a higher duty cycle and/or the left servo will be given a lower duty cycle.
The opposite is true to turn right where the left side will have a higher duty cycle.

6.1.3.3 Baud rate

The decision on whether to move straight or to turn will be decided by the Jetson
Nano and sent to the microcontroller using UART on pins 15 and 16. A baud rate
of 9600 will be chosen to send the information. We don’t need a high amount of
bits as too much information could result in the robot over-correcting or potentially
under-correcting with the PWM signal generation being overwritten too quickly. To
achieve this 9600 baud, we need to alter the registers shown in Table 10.

Table 10: UART Baud Rate Register Configuration

Name Description Value

UARTIBRD UART Integer Baud-Rate
Divisor

Determined by formula below

UARTFBRD UART Fractional Baud-Rate
Divisor

Determined by formula below

UARTLCRH UART Line Control 0x00

UARTLCTL bit 5 HSE of UART Control 1’b0

The values for the integer and fraction portions of the BRD can be found using this
formula:

𝐵𝑅𝐷 =
𝑈𝐴𝑅𝑇𝑆𝑦𝑠𝐶𝑙𝑘

(𝐶𝑙𝑘𝐷𝑖𝑣 ∗ 𝐵𝑎𝑢𝑑 𝑅𝑎𝑡𝑒)

The PIOSC will be used for the UARTSysClk and the ClkDiv is determined by a bit
in UARTCTL. This bit will be set to 0 to achieve the divide by 16 we need for our
regular speed operation.

69

Figure 28: MCU Software Flowchart

6.1.3.4 Command handling

While the robot is in this movement state, it will be continuously listening to the
Jetson Nano for instructions. There are three different commands that can be sent
to the microcontroller: steer left, steer right, or continue straight. With the small
amount of commands we are going to implement, the amount of bits that need to
be sent from the Jetson Nano to the microcontroller can also be kept low. We will
be utilizing the lowest amount of data bits that the UART interface allows us to
send, five data bits, to send a single hexadecimal character. If a value of 0x0 is
parsed from the Jetson Nano, the PWM of the two servos will not be altered and

70

the robot will continue to move forward. If 0x1 is sent it means we need to turn left.
If 0x2 is sent it means we need to turn right.

6.1.3.5 PWM Signal Generation

The PWM signals for the motors need to be generated using the timers in the
microcontroller. For each servo a separate PWM will need to be used. We chose
pins 13, 14, 43, 44, 61, 62, 63, and 64 for the PWM signals since they are all 32/64
bit counters which will give us the most flexibility in timing. To set the timers to
PWM mode, the registers in Table 11 need to be altered in each GPTM block for
the corresponding timer. The timer period is set in GPTMTnILR and the match
value is set in GPTMTnMATCHR. The signal will stay high while the counter is
increasing, then goes low after the value is the same as the match register. This
allows us to set any duty cycle that we want and can be unique and individually
controlled for each motor.

Table 11: PWM Register Configuration

Name Description Value

GPTMCFG GPTM Configuration 0x4

GPTMTnMR GPTM Timer A/B Mode 0x006

GPTMCTL bit 14 GPTM Control 1’b0

GPTMTnILR GPTM Timer A/B
Interval Load

0xFFFFFFFF

GPTMTnMATCHR GPTM Timer A/B Match Determined by what duty
cycle is required

6.1.3.6 Wheel Stopping

As the robot gets closer to the trash that it is going to pick up, the ultrasonic sensor
will start sending response signals to the microcontroller indicating how far away
the object is. The sensor needs a PWM signal as input to trigger the detection, and
the response will be sent back to the microcontroller on a GPIO pin. Pin 43 will be
used to send the PWM to the sensor. The microcontroller will then sample how
long the response is high which will indicate how far away the object is. The
response will be sampled on pin 44. Pin 43 will be set according to Table 10.
Interrupts will be used to sample the signal from the ultrasonic sensor. The
interrupt will trigger whenever the value is high and a flag will be set to indicate the
start of a reading. If the flag is set and another interrupt is enabled, the counter will
be incremented. A separate interrupt will occur when the flag is set and the

71

incoming signal is set to low. This will calculate the distance based on the counter
then set both the flag and counter to zero.

Since the Jetson Nano will be communicating with the microcontroller to direct it
towards the trash, we need a way to have the robot stop when it’s close enough to
pick it up. The ultrasonic sensor will be attached to the end of the arm where it will
have a good view of the area in front of the robot and won’t be obstructed by other
pieces of equipment. Once the sensor indicates that the object is about one inch
away, an interrupt will occur to set the duty cycle of the wheel servos to 0% and
move the state to pick up the trash.

6.1.3.7 Grabbing Trash

A smaller servo will be attached to the end of the arm to handle opening and
closing the robot arm’s claw mechanism. By utilizing the servo we will always know
what position the claw is in and can adjust it accordingly. This servo will be
connected to pins 61 and 62 set to PWM mode. With the motor starting out at 180°,
it will be rotated to 0° by altering the value in the corresponding GPTMTnMATCHR
register to clamp onto the trash. The process will be reversed to let go of the trash
at the top of the arm movement over the bucket.

6.1.3.8 Raising/Lowering the Arm

Once the trash has been picked up, the robot must move it to the bucket on its
back. The microcontroller will be interfacing with an A4988 motor controller to drive
the stepper motor. The input on the A4988 will be hooked up to pin 64 which will
be set up in PWM mode. The microcontroller will continue to step the motor
upwards until a certain amount of steps has been achieved that is going to be
determined during the prototyping phase. We can use a single value to move the
motor up and down since the arm will always have to travel a set distance up and
down.

6.1.3.9 Function Descriptions

This section will describe the overall steps that happen in each state the robot can
be in. There will be three states total. After the third state, the microcontroller will
return to the first state which acts as an idle state.

6.1.3.9.1 Discover Trash Function

The goal of this function is to find trash that is on the ground.

• START
• Generate 50% duty cycle PWM to rotate the robot.
• If an interrupt is triggered by the signal 0xF being sent to the microcontroller

o Start moving forward
• END

72

6.1.3.9.2 Acquire Trash Function

The goal of this function is to move Trash-E towards the trash based on the Jetson
Nano’s commands.

• START
• Keep moving forward until the ultrasonic sensor reports the trash is one inch

away from the claw.
o Read input from Jetson Nano. Change PWMs accordingly for

hexadecimal inputs.
• Set duty cycle to 0% for wheel motors.
• Generate 50% duty cycle for servo at the end of the arm until it has reached

0°.
• END

6.1.3.9.3 Move Trash to Bucket Function

The goal of this function is to move the grabbed trash to the bucket on the back of
Trash-E.

• START
• Set the DIR pin connected to the motor controller high.
• Generate 25% duty cycle PWM and increment counter on each pulse.
• Once the counter is at the specified value, generate 0% duty PWM.
• Generate 50% duty cycle for servo at the end of the arm until it has reached

180°.
• Generate 25% duty cycle PWM and decrement counter on each pulse until

it’s zero.
• END

6.1.4 3D Modeling Software

There are many options when it comes to choosing a piece of 3D modeling
software. Software that was under consideration: Tinkercad, Solidworks,
AutoCAD, FreeCAD, Fusion 360, and OpenSCAD. Each has varying features
and learning curves, and some may be more appropriate for the project than
others. Depending on which software will take the least amount of time to learn,
provides an adequate number of features, and is free would be the best for this
project.

TinkerCAD offers a simple user interface along with fewer features than other
modeling software. The number one thing about TinkerCAD is it’s learning

73

curve. Testing the software itself, it walks you through several tutorials to help
you get familiar with the interface as well as how to use all of its tools (there’s
not many). Due to its simple design STL file for 3D printing can be made
relatively fast, but if you plan on adding any detail to the model it's not for you.
After working with it for about an hour I was able to create a simple model based
off the initial design for the robot shown in figure 24 below. The cherry on top
would be that this software is completely free and no download is needed.

Figure 29: Three Wheel Design Created in TinkerCAD

SOLIDWORKS offers a 3D CAD software free for students while having a code
given by my.cecs.ucf.edu. This truly is a professional piece of software that takes
many hours of training/practice to get the hang of. It offers many tools to get the
job done, and it even lets you simulate the movements of models you are making.
Despite that, the first time you open it AUTODESK recommends reading through
hundreds of pages of documentation on how each tool works and so forth. Of
course, our group consists only of computer and electrical engineers, no one has
ever worked with a software on this kind of level before, so the documentation was
very overwhelming. Instead, opting for a YouTube tutorial was able to give a good
introduction to the software and how to make basic shapes and such, but it wasn’t
enough to make a robot chassis. If one were to train with SOLIDWORKS for a year
undoubtedly great designs would be made, but the time is of the essence and
spending too much trying to develop a chassis with complex software would not
be efficient. All in all, it’s a great free package, but it’s too much of a time sink to
learn what we’re trying to accomplish.

Being one of the most used AutoCAD undoubtedly one of the most powerful 3D
CAD software on the market. Reviewing its features, you can create detailed
designs while being able to collaborate with other people while you work. It
provides many visualization tools to aid in the production of 3D models. Essentially,

74

AutoCAD is SOLIDWORKS for students, but with twice the number of features and
tools to learn. Knowing this, the large number of tools and features is overwhelming
to a beginner with limited time and without direct guidance. This suffers from the
same issue SOLIDWORKS does, on top of that a 30-day free trial is offered before
a subscription is needed.

FreeCAD is a step up from TinkerCAD since it's capable of much more such as
configuring settings, it has more than quadruple the number of tools, clear and
descriptive UI, and it's able to turn a two-dimensional schematic into a 3D model.
In terms of complexity, it is a decent amount above TinkerCAD and a bit below
both AutoCAD and SOLIDWORKS. FreeCAD is at a decent middle ground. If a
more complex model is needed FreeCAD would be a good choice. There are
plenty of videos that showcase its tools and features in a manner that covers all
bases and is easy to follow. Overall, its open-source platform allows it to compete
with larger paid software’s like the two previously mentioned while still being free.
Fusion 360 is another solid choice and slightly better than FreeCAD in terms of an
easily navigable user interface while still maintaining the same number of features.
2D design schematics can be made and transformed into 3D models. Eagle can
also be used in tandem with Fusion 360 to seamlessly integrate the CAD and PCB
software to give a more accurate representation of the orientation of components
after printing the Chassis. This extra feature would be useful, but it doesn’t have
the same collaboration features AutoCAD has. We would have to complete our
designs separately and merge them together at the end. Though it has great
compatibility with several popular slicing products, making 3D printing easier by
reducing errors in the STL file. Compared to the top end software like AUTODESK
and AutoCAD it has nearly the same number of features, but with a friendlier
looking UI along with a package that lets you port over your PCB designs.

OpenSCAD is a nearly limitless 3D modeling software that relies mainly on a
scripting language to generate models. Out of all the choices OpenSCAD has the
largest learning curve, but if you’re able to code it OpenSCAD can make it. It has
little to no interactive UI making it very unfriendly to new users. Much time and
effort is needed to become efficient because a new language must be learned. To
make matters worse, taking the time to code together models is a slow and tedious
process compared to predesigned tools in other user interfaces. There is no
chance OpenSCAD will be used for this project, the complexity is just too high.

Obviously, TinkerCAD would be the safest option as the interface and tools are
minimal and easy to understand. As mentioned before, experimenting with it for
the first time I was able to make a rough model of the chassis. For comparison, I
spent three hours attempting to learn AUTODESK and at most I could turn a 2D
shape into a 3D shape. Building the complete chassis in TinkerCAD then
disassembling it into individual pieces should allow for easy printability. The build
plate volume of the Prusa i3 MK3S+ is 9.84 x 8.3 x 8.3 inches (250 x 210 x 210
mm), and if the disassembled piece is greater than that volume it can be split to
two separate pieces and glued together.

75

6.1.5 3D Printing Software

Typically, 3D printing software, or slicers, can take several different kinds of 3D
modeling file types such as 3MF, STL, OBJ, AMF, and sometimes unique file types
that contain special information. Depending on what brand or version of a 3D
printer will determine the possible software’s that are compatible with it. Some
slicers are more capable and provide more features than others. Printer brand and
the way each machine generates g code (instructions for 3D printer) can also
contribute to the quality of a print. Several 3D printers available on campus are
open for use for a fee, to save money and have more convenience we are using a
team owned Prusa i3 MK3S+ for printing parts for Trash-E. For the software our
options are Cura, Simplify3D, Slic3r, KISSlicer, Tinkerine Suite, Prusa Slicer,
Repetier, OctoPrint, an SelfCAD.

Cura is the most widely used 3D slicing software out on the internet. Part of its
success is from its free price tag along with being open source. Of course, Cura is
specifically designed for Ultimaker 3D printer users, but it offers compatibility with
several others. Unlike most printer software, this software has three different
stages of processing during the process: in the first phase you can configure
printing settings and decide how you’re going to slice the model, the second scans
the model after generating the g-code finding any areas in need of structural
support or that could potentially fail, and in the last stage its possible to what your
prints progress live and even remotely.

Simplify3D is probably one of the most powerful and far-reaching slicers. Its
greatest strength would be its ability to easily implement detachable supports, this
is a category most slicers struggle in. It allows for configuration of the material and
support thickness which no other slicer provides. By having effective supports it
ends up leaving a better surface finish due to its supports being able to cleanly
detach. It ends up leaving less of a clean up job for post processing resulting in
better looking prints. Its pre-print simulations are even better than Cura’s because
of how accurate its error detection system is. Out of all slicers Simplify3D has the
most accurate and precise calibration system for tuning retraction, infill settings,
cooling fans, and brims. There is no comparison in terms of quality in any other
slicer software. Despite this there is a price point of 150 dollars making it too
expensive for the scope of this project.

Slic3r, while being relatively old, created in 2011, is probably one of the best open
source 3D slicer. Initially, it was released as a non-profit project and it ended up
beng one of the greatest 3D model slicer on the internet due to its massive
community on github with more than a 1000 people contributing to the project. It’s
a great all rounder having the ability to display a preview of your print, and it can
even do so with multi extruder 3D printers that allow different support materials to
be used to make removing supports easy. It's also a lightweight piece of software
requiring no dependencies. Other features include brim, microlayering, bridge
detection, command line slicing, variable layer heights, sequential printing,

76

honeycomb infill, mesh cutting, object splitting into parts, AMF support, perimeter
avoidance, and different extrusion lengths. Slic3r may beat Cura in terms of its
functionality, but it doesn’t have a user interface.

KISSlicer seems to be like every other slicer with a more detail oriented setup.
Some of the options in KISSlicer are settings no casual 3D printer would mess with
, this is clearly for experienced engineers and 3D printer hobbyists. This slicer is
only able to work with single extruder 3D printing, while the dual extruder version
will cost an extra 42 dollar cost with it. There is a premium option that has a 82
dollar fee that allows you to combine multiple STL files and print them out at once.
Compared to other slicers KISSlicer seems a bit lackluster for its cost. Though if
the free version is used, it still has access to every content update that adds new
mesh topologies, filaments, types of 3D printer, and print styles. Finally, the user
interface is not that great compared to other slicers that are free, so in our case
KISSlicer is a no go.

Tinkerine Suite is very similar to TinkerCAD, it’s a great introductory piece of
slicer software for people new to 3D printing. The barrier to entry is nothing since
all you need to do is create an account and you can log on the website and start
slicing. Originally it was designed for teaching children about 3D printing, but it
has enough features like descriptions on how each setting change will effect the
print, or how long a print will take to finish, as well as indicators for unsupported
bridges and weak points in the print. Although it’s a great learning tool, most
slicing technology isn’t that hard to get a grasp of. As a result, after reviewing the
slicers it’s a bit too simplistic for what we need to ensure in the design of our
parts.

Prusa Slicer takes advantage of Slic3r’s open source software and reimagines it
into something more specialized. It’s main selling point is the attention to detail
and the ability to tune almost every aspect of a print. Part of the reason why this
slicer is so popular is due to it’s great software features that improve upon every
aspect of Slic3r as well as the quality of the Prusa printers themselves.
Furthermore, it’s specifically tuned to enhance the printing quality of Prusa
printers making their printers even more appealing. On the other hand, Prusa
slicer is able to work with several other non-Prusa printers and over 50 different
3D printer filaments, it even works with resin printers. Just like Slic3r, Prusa
Slicer is open source, so it’s easily modifiable for anything a user might need to
accomplish. A member of our group owns a Prusa printer so this is most likely
going to be the slicer software we use unless we need a specific feature from
another.

These next two slicers fit within the same category since they both allow for
remote printing, but with their own pros and cons. OctoPrint and Repetier Host
both set out to accomplish the same goal of allowing users to print remotely.
Octo print isn’t so much of a slicer as it is a platform for monitoring 3D prints
remotely. Even though it doesn’t offer much in terms of slicing it’s still able to do

77

so, but it’s remote monitoring abilities are the best out there as of today. You can
even add a temperature sensor for monitoring and adjustment, and can stop
printing from any location as long as you’re connected to the internet. Repetier
Host has a better slicing system than Octoprint, and it allows for larger scale
remote printing services. For what we need Repetier Host is too much, Octoprint
may turn out to be useful for cutting down on prototyping time.

SelfCAD is probably the most well rounded compared to the rest of the selections
for slicer software. It’s more of an all-in-one tool that allows you to create 3D
models from scratch like CAD softwares, but then you can import that model
within the same system and use slicing software to prepare it for printing. The
streamlined and simplistic UI makes it easy to learn SelfCAD. No download is
needed since it’s entirely a cloud-based service, but you need an internet
connection to work with it. For modeling it uses a system like FreeCAD that is
integrated within the software itself. After modeling, SelfCAD provides a few
options for slicing, but it’s not as in depth as some of the slicers previously
mentioned. Furthermore, it is compatible with almost all fused deposition
modeling printers. There are two downsides to SelfCAD and that would be it’s
monthly subscription of 14.99 a month and it’s lack of slicing features; free slicers
have more functionality than it.

As a final verdict, taking into consideration that the team has access to a
personal Prusa i3 MK3S+ it would be best to use the software designed for it,
Prusa Slicer. Although, it should be noted that slicers like Cura and Slic3r may
have better support options if any overhangs need support while printing.
Octoprint integrated into the Prusa printer will allow for less time wasted on failed
prints since monitoring it live gives us the option to cancel the print before any
time is wasted. The best results will be achieved by using several slicing
softwares for their strengths.

6.2 Hardware Design

6.2.1 Robot Design

To have Trash-E pick up cups, it must have a chassis, an arm to pick up and grip
the cups, a place to store them, and a way to move around. This section will
discuss the possible designs that Trash-E can utilize to complete the task.

78

6.2.2 Design Overview

Figure 30: Project Illustration by Alex Rizk

6.2.2.1 Arm and Gripper Design 1

As shown in Figure 25, Design 1 will utilize a straight arm powered by a stepper
motor that will drive the arm vertically until it hovers above the garbage bin. At the
end of the arm will be a gripping device utilizing a ball and socket joint that can
pick up a plastic cup in any position after Trash-E drives up to it. After driving up
to the cup the open gripper, using the gear system, will close around the cup with
the action of a miniature servo. Also, at the end of the arm will be an ultrasonic
sensor to aid in figuring out the distance of the trash in front of the gripper, this way
knowing when to close the gripper will be easy to determine.

6.2.2.2 Arm and Gripper Design 2

Design 2 differs with the arm implementation. Instead of one long arm, it will be
broken up into two segments with a motor controlling each segment. At the end of
the arm will be the gripper. Two motors will control the gripper: one to open and
close and one to rotate the pincers. This will allow the arm to center itself to the
middle of the cup and grab it based on the orientation of the cup. This design is a
stretch goal as it requires more hardware, using more motors, and software
development to figure out how it should orient itself.

6.2.2.3 Arm and Gripper Design 3

Despite being a little bit more experimental, design 3 will have a soft robotics
themed gripper. Using soft robotics, the main advantage over traditional servo-
gear based robotic grippers is its flexibility. This gripper will consist of two
appendages with hollow cores that allow for air to be pumped into and out, this
causes a closure and release motion. Direction of movement is determined by
ridges on the back of it that push it in an inward motion when inflated. As mentioned

79

before, when the core is filled with air the appendage will move in an inward motion
and conform to the object it is grabbing shown in figure 26. With a textured grip
adhesive grip, it could potentially grab any object we set out for it; it would allow
for greater operability later down the line.

Figure 31: Prototype designs for textured gripper and soft robotics gripper for the purpose of picking up litter

Components and tools needed to create the mold: cardboard, box cutter, hot glue,
scotch tape, and gloves. Though, using cardboard would be the cheapest option,
but 3D printing would be available for a reusable mold; the downside to this is that
it makes prototyping time consuming since we would need to print a new model
every time, so we wanted to change the design. Furthermore, to make the gripper
itself: Smooth on Ecoflex 00-30 (rubber), scissors, printer paper, a nail, water bottle
with lid that is at least one liter, 1/8 inch outside diameter pneumatic tubing, and a
curling ribbon.

First, to set up the cardboard mold we fashion two small rectangles out of 3 x .5-
inch pieces of cardboard by stacking two of them and scotch taping them together
then covering with a thin layer of hot glue, these are put aside for later use. To
make the walls of the mold four pieces of rectangular cardboard 4 x .75 inches are
cut and the edges are taped and the entirety of the cardboard is covered in a thin
layer of hot glue to smooth it out. Taking a 9 x 9-inch plane of cardboard and
drawing a dot in the center then hot gluing and placing the previously made
cardboard blocks ¾ inches away from it at 180 degrees and -180 degrees mirroring
each other. Next, place the walls and draw some lines that are ¼ inches away from
the blocks previously glued down, and then place the walls on those lines and glue
it. Between the two walls at each end will be a ¼ inch gap which should be filled

80

by an appropriately sized piece of cardboard matching the height of the previously
placed walls. Finishing the air chambers, connect the two rectangular blocks with
a generous channel of glue, avoiding the walls, and keep applying layers of glue
until half the height of the block. Finally, seal any remaining cracks/gaps in the
walls of the mold to make sure the rubber mixture doesn’t leak out later down the
line, and the mold for the top part of the gripper is done.

Following this, the rubber pouring mix needs uncured Ecoflex 00-30, which is a
mild skin irritant, so as a safety precaution, gloves and safety goggles are needed.
Pour the mold very slowly into the mold until the air chamber blocks are submerged
by at least 1/8 inches of the rubber mix while keeping an eye out for potential leaks.
In the case of a leak a paper towel should be placed over the area to seal the gap,
and if the mixture seems uneven some small object should be placed underneath
the cardboard to level the mixture. It should take around 4 hours for the mixture to
completely cure. Once the mix has finished curing it should be pulled out by its
outside edges towards the center until the mold is removed entirely.

Now for the second mold, A trace of the first mold made of hot glue should be
made with a space of ¼ inches from the newly made rubber gripper; two to three
layers of glue should make walls high enough for the next mold. Similarly, take the
recently made appendages and trace them on a piece of paper. Making a smaller
new batch of Ecoflex, use it to cover just the bottom of the new mold, then place
the paper in the center of the mold and fill the rest of it with the remaining Ecoflex.
After both bottom and top pieces are made, check for imperfections, and if there
are any such as gaps or holes, fill them with some more rubber and spread it
evenly. To put the two pieces together, place the thinner piece back into its mold
and put some more Ecoflex evenly across it, then, place the larger piece to seal
them together ensuring that there is still an air chamber. Finally, after waiting
another four hours for the rubber to cure, the two pieces will be melded together
to form one cohesive soft robotics gripper.

With the completion of the gripper the air pump needs to be made, for this to be
done hands free it needs a small electric air pump or a servo that controls a liter
sized syringe. To hook up the pump to the gripper we will need the components
mentioned earlier. Connecting the tubing by using hot glue along with some shrink
wrap, or with other adhesive along with a pneumatic air seal. Going back to the
gripper, pierce the center of the gripper ensuring it lines up with the central air
cavity and insert the tubing, blow air into the gripper to test inflation. After ensuring
air can cleanly enter and leave the gripper, take it out. Taking two strips of about
20 inches of curling ribbon wrap it around up one of the appendages counter
clockwise with the first strip, and with the second strip wrap it clockwise up the
same appendage ensuring they overlap on the top and cross on the bottom. When
done wrapping that appendage, tie up the ends and remove the excess ribbon;
repeat the process for the other side. When the wrapping is done, take the end of
the tubing that connects to the gripper, cover it with a layer of Ecoflex keeping it
away from the hole, and reinsert it back into the hole previously made to let it cure.

81

Once finished curing, we inflate the gripper to test how the curling ribbon interacts
and ensure that a pinching motion occurs, if not, then testing with different ribbon
configurations is needed until the desired result is reached. Now, curling ribbons
tend to slip around when force is applied, so a friction layer is needed on the end
picking up objects. Taking out the mold for the small layer, fill it with a thin layer of
Ecoflex and place the end picking up object in it to cover the curling ribbons. After
waiting for it to cure for another 4 hours, the robotic gripper is done and finally able
to be used.

Overall, this is a low cost and effective way to make an entry level soft robotics
gripper. Despite the several hours this takes to develop, it saves a considerable
amount of time compared to designing a new gripper and waiting hours for it to
print.

6.2.2.4 Unique Materials and Gripper Design 4

The fourth gripper design, and open-source project by Marc Schömann [22], is a
hybrid between designs three and one. It takes the advantages of both designs
and combines them into one gripper. From design one it pulls the ease of
manufacturing because it can be 3D printed, and from two it somewhat takes the
flexibility of a entierly soft robotics gripper. It is composed of two parts: the solid
layer which controls the contractions of the limbs and the flexible layer that allows
the limbs to return to their original position. As a result, two different plastic
filaments need to be used to realize the design; the flexible one being either TPE
or TPU and the solid one being PETG or nylon (Talked about under the materials
sections).

As can be seen in Figure 32, the three-prong design is flat when the servo is not
actuated. However, in Figure 33, the gripper bends and can easily grip the object.
We believe that a design like this can help solve our issue of needing to pick up
more than just red solo cups and picking up things at different angles.

82

Figure 32: Flexible gripper at rest (Courtesy Layershift)

Figure 33: Flexible Gripper Actuating (Courtesy Layershift)

To continue, TPE (thermoplastic elastomer) filament, which stands for
thermoplastic elastomer filament, is hard plastic blended with rubber. Its elasticity
can vary greatly depending on its specific composition, different versions of TPE
serve different purposes. For example, one variation of TPE may have a hardness
suitable for high impact and friction while the other may have more of a stretchy
characteristic like rubber products. Furthermore, its rubbery like nature also makes
it great for a gripper limb, allowing for a better grip on objects. Rigidity (ability to
return to its original shape) of TPE isn’t the best, TPU is better in this category, but
depending on the type used it still has some presence. Due to its very flexible
nature TPE happens to be difficult to print. It needs temperatures of around 230ºC
for the extruder head, a print bed temperature of 110ºC (very hot for print bed
temps) and must be printed very slowly making hard to prototype with. Luckily, the

83

Prusa i3 MK3S+ 3D printer we will be using has a direct drive extruder which can
handle TPE well enough to print without jams.

TPU (thermoplastic polyurethane) filament is a category of TPE that has several
major differences to standard TPE. TPU tends to be harder than TPE, meaning it
can resist surface deformities better than TPE. Its shore hardness classifies it as
being a medium hard rubber and hard runner which is like a tire head or shopping
wheel care respectively. Despite its hardness it still manages to be very elastic
which gives it a wider range of applications. Mentioned before, TPU has a greater
rigidity compared TPE allowing to recover from deformations better, for the soft
robotics gripper this can come in handy when we need to retract the limbs. Though,
TPU tends to have a smoother texture which would lead to possible troubles when
it comes to gripping objects. TPU also has a higher durability compared to similar
TPEs because it shrinks at a slower rate. Due to its stiffness, TPU is much easier
to print, but not as easy as non-flexible plastic filaments. Printing properties are
like TPE, but slightly more manageable with lower temperatures. It still needs to
be printed slowly to ensure print quality is up to snuff.

The hybrid gripper would work with either thermoplastic, so other factors must be
taken into consideration to figure out which plastic would fit better into the scope
of this project. A comparison of TPE and TPU prices shows that, in general, a roll
of TPE is 10 to 20 dollars cheaper than most rolls TPU. The effort of printing is
very similar so in this way it does not matter. Durability of the soft part of the gripper
is not a concern, so the main advantages of TPU don’t seem that appealing, while
the rubber like grip of TPE would benefit us more. Overall, TPE would seem to be
ideal filament to use in the soft part of the gripper shown below in Figure 34 along
with its dimensions in Figure 35.

Figure 34: 3D Model of the Soft Portion of the Gripper

84

Figure 35: 3D Model Dimensions of the Soft Portion of the Gripper

6.2.2.5 Chassis Considerations for all Designs

Two different designs were taken into consideration for the chassis of Trash-E.
The first design consists of two wheels towards the back of the chassis while one
swivel wheel is positioned in the front forming a triangular shape. In this case, there
would be a servo on each rear wheel for movement left, right, and forward. The
second design has more of a car shape with four wheels and a compartment below
the operating plate to store the electronics. Placement of the driving servos can be
placed in two ways with this design: one servo driving the left rear wheel and the
other driving the right front wheel, or vice versa (this allows for a swivel movement
like the triangular design).

Weight is a big consideration for the design of the chassis, as it would cut down on
power consumption by reducing the watts needed for the motors providing
movement. Without having to create a separate compartment for the electronics
we can place everything on the front plate; this gives us easy access to the
components and makes sufficient airflow to the Nvidia Jetson easy to achieve.
Furthermore, it saves on plastic, money, and time since we would need to take the
time to figure out a compartment system and use up more plastic trying to print it.
On the other hand, its greatest disadvantage is its stability. Leaving the front part
of the chassis reliant on a swivel wheel may introduce some wiggle to the
movement of the robot. Having this unnecessary movement could lead to further
power consumption due to making corrections during navigation. Calibration of the
servos may be difficult since the triangular wheel orientation may introduce
unpredictable movements.

On the other hand, the four-wheel design, though using a bit more power, comes
with its own advantages. The first advantage of this design would be its clean
design which would protect the components in its specially made compartment. As
mentioned before, there would only be a design issue having to figure out how to
achieve enough airflow for the jetson to not overheat during operation. This could
be remedied by adding some holes near the jetson for intake as well as some for
the expulsion of hot air. Unlike the triangular design that is unstable, the four-wheel

85

design, shown in figure 27 below, can maintain a relatively stable movement during
its operation. Due to having a wheel on each side, each opposing wheel acts as a
sort of counterbalance when rotating. Whereas, with the triangular design it may
wiggle. In turn, the more stable design would make it easier to calibrate the motors,
as we don’t have to worry about unpredictable movements during operation.

As a side note, the bucket design, although simple, needs some attention to ensure
it’s able to contain what we are picking up. To formulate a proper design, we need
to take into consideration the largest item we plan on picking up, a red solo cup
(though this may change later down the line). A red solo cups dimension is irregular
since the rim of the cup is larger in diameter than the base, height is also a big
concern. The dimension of the rim is 3 5/8”, height is 4 5/8”, and the base is 2 1/4”,
to determine the length and width of the bucket we need to specify how many cups
need to be picked up. For the scope of this project, we’re not going to be picking
up hundreds of cups, more of a proof of concept, we should account for around 12
cups taking the height and rim to simplify measurements. The cups will not be
stacked since they’ll essentially be dropped into the bucket, so we can get a rough
estimate of the dimension of the bucket. Schematics for the bucket have been
drawn to give guidance for 3D modeling it shown in figures 36 and 37.

Figure 36: Top-down view schematic for trash bucket

86

Figure 37: Side view schematic for bucket

6.2.2.6 Final Arm Design

The biggest flaw in previous arm designs mentioned before is that they don’t allow
for tweaking of the shape and length of the arm. Rather than having to print several
versions of the arm we can just create a fully modular one. Like Legos the pieces
of the arm shown in figure 38 will interlock. As a result, it forms a tight seal that
resists vertical forces while somewhat resisting horizontal ones. More specifically,
the three forces we need to account for when designing these joints: Friction,
Tension, and Shear. Furthermore, using PETG for the choice of plastic for each of
these blocks will ensure a durable design.

87

Figure 38: Illustration of modular arm pieces

Length of the arm can be increased or decreased based on the number of pieces

interlocked shown in figure 39. Attaching each piece can easily be done with one

bolt, two washers to distribute force evenly, and one hex nut to tighten it all. In

the center, the screw holes open several configuration and reinforcement

possibilities that can also be seen in the figure. For the arm to operate

successfully the gripper has to be hovering over the bucket to ensure that the

litter can be dropped without issue. The arm will need various tweaks to be in the

proper position. Testing that follows would be to start with a base arm size, check

if it’s above the trash bucket, and if it is no adjustment is needed, otherwise

adjust arm length and orientation.

Price wise, this arm is inexpensive since PETG is relatively cheap and easy to

work with. The greatest issue would be the time it would take to print each

individual piece one by one, or in batches. Dimensions being 1.5 x 1 x .65

inches, the estimated print time on each piece should be around 15 minutes. If

each piece takes 15 minutes and we need to print 20 pieces, it will take around 5

hours (granted there are no issues printing within those 5 hours). Although it will

take 5 hours it will be worth it since the design is modular and it would save time

compared to other designs.

88

Figure 39: Illustration of modular arm as one piece

When the final length and configuration is determined adhesives can be used to

further solidify the connections between the pieces. Ideally, plastic bonding glue

would be used to ensure that the plastic is permanently bonded at a molecular

level. Other glues will work such as super glue, polyurethane, hot glue, and

epoxies. Overall, this design saves time and money in the case changes occur in

other components. For this to be achievable, attention to print settings is

paramount since each piece must ensure a snug fit, otherwise the design may

fall apart. .Several configurations for the Prusa i3 MK3S+ are available online to

prevent the hassle of tweaking the settings related to this.

6.2.2.7 Material Considerations

There is a plethora of plastics available on the market and can be easily found on
several websites for a reasonable price. Here is a list of the most used plastics
available: ABS, PLA, ASA, PET, PETG, Polycarbonate (PC), high performance
materials (PEEK, PEKK, ULTEM, etc.), PP, Nylon, composite material, hybrid
material, Alumide, and resins. Research was done for each of these plastics to see
which one fit the best into the scope of the project. As a side note, no person on
the team has experience with materials or mechanical engineering so careful
consideration into each of these materials had to be made.

To start, acrylonitrile butadiene styrene, or ABS for short, is one of the most used
plastics used in 3D printing. Its usages can be seen in appliances, mobile phone
cases, and car bodywork. Being a thermoplastic, it is resistant to drops/shocks and
is not brittle making it bendable, in turn, reducing the chances of cracking and
breakage. In terms of recyclability ABS is easily reusable when run through a
shredder and filament extruder, and it can also be welded together with other
pieces of ABS with chemicals like alcohol and acetone. This plastic can even

89

withstand temperatures between -20ºC (-4ºF) to 80ºC (176ºF). Though, this
plastic is not biodegradable and shrinks while in contact with open air causing
warping during printing. This can be prevented by taking the following precautions:
having a chamber with hot ambient air temperatures, complete restriction of airflow
to the outside, a heated build platform, and a nozzle temperature of 230ºC (446ºF)
and 260ºC (500ºF). for printing. It’s also important to keep in mind that ABS while
heated/printing has one of the heavier particle emissions of microplastics out of all
plastics, so an enclosed printing space is essential. Even though ABS is durable
and checks all the requirements for the components of Trash-E it just requires too
much to manufacture. To add, equipment for safe and easy ABS printing is not
available to us, we would have to risk printing on a standard open air 3D printer.

Polylactic acid or PLA’s greatest strength is its environmentally friendly properties
and printability, but it stops there. Unlike ABS, PLA is biodegradable as well as
easily recyclable, it is more ethical to print with. Moreover, it is one of the easiest
plastics to print with as it doesn’t require a heated build plate or as many
restrictions as ABS. It prints at much lower temperatures between 190ºC (374ºF)
to 230ºC (446ºF), which is virtually possible on all 3D printers. In terms of
manipulation, PLA is very difficult to meld due to cooling and solidifying very
quickly, but in our case, this is not an issue. When in contact with water it
deteriorates very slowly over time, and in the case of Florida weathers year-round
humidity would not see long term use. More of a decorative plastic, PLA comes in
many colors, but is on the lower end of durability when it comes to 3D printable
plastics.

Acrylonitrile styrene acrylate (ASA) is extremely similar to ABS in its properties
with the benefit of UV resistance. This plastic would be great for use outdoors with
the durability and heat resistance of ABS. Despite having all these benefits, its
production cost is even higher than ABS due to a component added to grant its UV
resistance. Styrene and microplastics are emitted during printing which can cause
symptoms of styrene poisoning if one neglects to print it in an enclosed space. This
plastic would be a great choice if we had planned Trash-E to operate outdoors, but
the proper equipment to work with ASA is not available to us.

Polyethylene terephthalate (PET) like PLA is easy to work with but lacks the
biodegradability. PET is somewhat rigid making it good for pieces that are not
exposed to constant movement or collisions. It has great resistance to various
chemicals making it good for contact with food, it can be seen in use with water
bottles, synthetic fibers, and similar products. Unlike ABS it releases a minuscule
amount of plastic during printing, as well as being odorless it is very safe to print
in any 3D printer. Its biggest downside is its overall brittleness and fragility, it
cannot handle high temperatures or impacts. Based off the previous statement,
Trash-E being an autonomous robot, may encounter collisions during testing, so
PET would not be the best choice since we want something durable and reusable.
Luckily, its cousin glycolized polyester (PETG) is able to make up for its weakness
while still retaining the same safety. It combines the durability of ABS and the

90

simplicity of PLA. The glycol added improves the ductility, chemical resistance,
transparency, hardness, and impact resistance. Though it does require a heated
build plate along with extrusion temperatures of 220ºC (428ºF) to 260ºC (500ºF),
it's nothing most standard 3D printers can’t accomplish. PETG is one of the easiest
and durable 3D printable plastics and it will most likely be used for the entirety of
the chassis as it is durable, easily printable, and affordable.

Polycarbonate (PC) would be one of the greatest plastics to use for our application,
but it has many pitfalls if not managed properly. This plastic is extremely durable,
lightweight, as well as being able to withstand temperatures of 150ºC (302ºF). It's
so durable that it’s used in the production of bulletproof glass and other glass
products. Although the durability is great, production and safety are just too taxing.
It releases bisphenol A (BPA) particles which can have several negative side
effects. It is sensitive to humidity and UV rays making it practically unusable
outdoors. Troubles during printing include trouble sticking to the build plate
resulting in print failures, warping (peeling) from the build plate, and pretty much
all the difficulties of printing ABS. High temperatures are needed not only for the
nozzle, 260ºC (500ºF) to 310ºC (590º), but also for the build plate that would have
to reach temps of 80ºC (176ºF) to 120ºC (248ºF). On top of this, a sealed chamber
is required if you want the optimal and safe printing results. Overall, this plastic is
very far out of reach to work with and would be extremely overdeveloped if we
were to implement this plastic for Trash-E.

Several high-performance polymers like polyaryletherketones (PAEK) and
polyetherimides (PEI) are great choices as it is one of most durable and
multipurpose plastics out there. In terms of physical and temperature resistance it
can be higher than PC, and in most cases it is. Mostly found in the medical,
aerospace, automotive, and military sectors it’s almost the end all be all industrial
plastics. Despite the plastic being an amazing all rounder it is just not meant to be
used by the average person as expensive equipment is needed to work with it. To
print PEI/PAEK nozzle temperatures need to reach temperatures over 350°C
(660°F) along with build plate temperatures needing to reach 230°C (450°F). Even
more, an enclosed chamber is needed to properly balance the temperature within,
needing very capable cooling systems. Being one of the best plastics out there the
price is also high (for good reason) with prices of PEEK reaching 195 dollars per
250 grams, which is possibly one of the most expensive options. Over time the
barrier of entry for these kinds of plastics have lowered, but it is not at the point
where a group of students can afford the cost or facilities to work with this plastic
unless sponsored and given access to the proper equipment. Hence, high-
performance polymers are completely infeasible for use with Trash-E.

An alternative to PETG, Polypropylene (PP) has similar properties, but it has great
interlayer adhesion allowing for it to stretch before breaking. Its overall cohesion
allows it to be a better version of PETG with the ability to resist abrasions and
shocks while still maintaining good rigidity. Much of the time it's used in the
automotive industry but is used in much of our everyday objects since it's non-toxic

91

and poses no risk from using it. Printing with it is easier than with PETG with print
temperatures of 220°C (428°F) to 240°C (464°F) and can even be printed without
a heat bed (it helps though). It’s hard to find any downsides to this plastic as it’s
easily accessible and printable through normal means, this is a great contender
instead of PETG. Given that price is a known constraint, a spool of PP (40$) is
almost double the price of a spool of PETG(20$). Despite the great properties,
PETG is still the number one choice for the chassis.

Nylon finds a good middle ground between user friendly and durable, as it has a
crystalline structure consisting of carbon. Alternatively, it is much easier to work
with than PC, it removes the hassle of having to deal with the absurdly high
temperatures and safety risks during printing while still maintaining a durability that
rivals PP. Because nylon is composed of carbon it has amazing temperature
resistant properties being better than PC at 180°C (356°F). It’s also
environmentally friendly since it’s bio sourced from castor oil. Overall, it’s a highly
stable material with one weakness, and that would be its high propensity to absorb
humidity from the surrounding air and a heated chamber of at least 40°C is needed
for a successful print. This one downside removes it from outdoor applications, but
for a lot of companies nylon is the go to plastic for high end prototyping. The extra
hassle from having to store nylon in a dry box and having a heated chamber isn’t
worth it, PETG seems to still be the best option so far. Although, it may be
considered for the internal structure of the hybrid soft robotics gripper in figure 40
since it’s very flexible when printed thinly.

Figure 40: 3D model of the solid component of hybrid gripper

92

Figure 41: Dimensions of hybrid gripper

Composite material consists of various plastics like PLA, ABS, or nylon that are
mixed with short fibers of (in most cases) carbon fiber or various other materials to
achieve certain unique properties. This category is just too expansive to delve into,
there are just too many combinations that could be made with composite materials.
There may be one material out there that has the properties we need, but the
majority of composite materials are priced a bit heavier than their non composite
counterparts. Besides, carbon fibers mixed into any of the aforementioned plastics
can deteriorate the nozzle of a 3D printer, starching it as its extruded. Taking into
consideration money and time it’s not worth considering as we just need a material
that is relatively durable while still being able to easily work with and print.

Delving into hybrid materials, they suffer from the same issue as composite
materials. Many hybrid filaments, or might I say the most popular, are typically
composed of PLA mixed with various materials to achieve a certain look or
mechanical property. For example, PLA can be mix with several wood products
like wood dust, oak, mahogany, etc. to achieve a look that is like wood but retains
the properties of PLA. Metal like copper or brass can also be mixed in to make a
print have conductive properties or make it look like either metal. Hybrid filaments
can also cause damage to nozzles, so special reinforced nozzles are needed to
print this material. Like before, adding extra material to filament incurs extra costs
and requirements to print, so to remove unnecessary complexity from the project
we will avoid hybrid materials.

Alumide would be a decent alternative to almost everything on this list as it shares
the properties of aluminum. Its temperature resistant and is great for use on small
models that require a lot of detail, great for use in creating replacement parts.
Though, unlike every other material in this section it is not printable through normal
means. A selective laser sintering (SLS) machine is needed to even work with it.
On top of this, it’s not purchasable through Amazon and seems to be only available
to the manufacturing industry. Basically, this material is inaccessible to average
students and not to even mention the expensive equipment needed. Alumide is
unusable for Trash-E.

The last considered material is resins, the best way to describe this would be to
say it has the same properties as ABS with half the benefits. It can only be used in

93

special printers that utilize UV light to harden the resin into whatever shape
needed. The greatest advantage is the amount of detail achievable by resin, the
results are comparable to injection molding. Resin printers are cheap, cheaper
than some extruder printers, but working with them is a hassle. There are several
kinds of resins that can be used for many kinds of applications such as dentistry
and various hobbies, but there really isn’t a use case for this project.

In summation, after running through the available 3D printable plastics such as
ABS, PLA, ASA, PET, PETG, PC, high performance materials, PP, Nylon,
composite material, hybrid material, Alumide, and resins I now have a greater
understanding of 3D printing. Considering the various pros and cons of all the
mentioned materials PETG offers the best middle ground in terms of price,
strength, accessibility, and printability. PETG will be the final decision for the plastic
used in the prototyping, build, and testing sections. It came close between PP and
Nylon because they we’re the best affordable options when it came to what we
were looking for, but the main deciding factors among these options was price. In
this case, PETG is 20 dollars, PP is 40 dollars, and nylon is 30 dollars; when we
only have 400, minimizing our expenses is paramount.

6.2.2.8 Overall Design

In the end, the four-wheel design the prototype four-wheel design shown in figure
27 will most likely be the final design for Trash-E. Not shown in the figure is the
canopy holding the Lidar sensor positioned above the box shaped trash bucket,
this feature may be implemented during the development phase of the robot (low
priority). The gripper will be the hybrid design option since it offers the greatest
amount of flexibility when it comes to picking up various items. Last, the gripper
arm will be a modular and adjustable in the case that modification need to be made
to improve the functionality of Trash-E. Furthermore, the final model of the gripper
in figure 43 will cover all bases. Considerations for weight distribution of
components will also be considered to have adequate maneuverability.

Figure 42: Four Wheel Design for Trash-E

94

Figure 43: Full design of the hybrid gripper

6.2.3 Motors

6.2.3.1 Stepper Motors

Stepper motors are very useful for moving in precise increments while also having
high torque at low power. It can achieve these precise movements because each
stepper motor has a specific step angle which it turns every time the motor moves
one step. The Twotrees Nema 17 motor has a step angle of 1.8°. Using the
formula

𝑆𝑡𝑒𝑝𝑠 𝑝𝑒𝑟 𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =
360

𝑆𝑡𝑒𝑝 𝑎𝑛𝑔𝑙𝑒

we can rotate the motor 200 times until it has completed one full revolution. For
the tradeoff of torque, we can increase the number of total steps by dividing the
step angle even further. The movement will be more precise, but the max weight
we can lift will be reduced. To calculate the microstep we use the following formula:

𝑀𝑖𝑐𝑟𝑜𝑠𝑡𝑒𝑝 =
𝑆𝑡𝑒𝑝 𝐴𝑛𝑔𝑙𝑒

𝑆𝑡𝑒𝑝 𝐷𝑖𝑣𝑖𝑠𝑜𝑟

If we wanted to divide the current step angle by a step divisor of 16, we would have
a new step angle of 0.1125° and achieve 3,200 total steps instead of the original
200. These motors best fit the application of moving the arm vertically when it has
picked up a cup and then when it needs to return to rest. We will know how many
steps it has moved since being at rest so it can be returned exactly to the same
place.

6.2.3.2 Servo Motors

Two types of servos will be utilized in Trash-E: positional and continuous.
Positional servos allow the user to control the position of the servo using a
potentiometer driven by a pulse-width modulation (PWM). Based on how long
PWM is high, the motor can be all the way to the left, right, or somewhere in-

95

between. This type of servo will be used for the gripper at the end of the arm to
grab the cup and release it.

Continuous servos allow the control of speed and direction but lose the positioning
information. Altering the PWM signal will change the speed and direction of the
servo rotation. This will be utilized in the movement of Trash-E to move it forward,
backward, and/or turn.

6.2.4 Motor Driver

The output power of the microcontroller is too small to activate the stepper motors.
This requires the use of a motor driver. Motor drivers allow a signal to still be sent
from a microcontroller on how it should move, but the motor will be powered by an
external source. Figure 44 depicts the typical wiring for the A4988 stepper motor
driver we will be using. The motor power supply will be powered by the onboard
battery.

Figure 44: Wiring Diagram for A4988 Motor Driver (Courtesy Polulu)

6.2.5 Ultrasonic Sensor

Determining how far away the cup is from the grabber is necessary for picking it
up. If the cup isn’t close enough or is too far away, the gripper won’t be in the
correct position leading to the cup not being picked up. The computer vision will
guide the robot left and right to go straight into the cup. Once the ultrasonic sensor
starts getting input from the distance to the cup, the microcontroller will take over
the forward movement. Once the ultrasonic sensor determines the cup is a set
distance away, Trash-E will stop and proceed to pick up the cup.

6.2.6 3D Printing

After looking online for a pre-made chassis we could utilize for the base of this
project, we could only find options out of our budget that met the size requirements.
We will be utilizing 3D printing for the chassis and the bucket that sits on the back.
Printing of the arm and gripper will also be performed.

96

6.2.7 Power Supply

6.2.7.1 Battery Options

Table 12: Battery Options

Part # Manufacturer Availability Price/Unit
($)

Capacity

(mAh)

Discharge
Max

Current (A)

35E 18650 Samsung ☑ $7.99 3500 8

ICR18650-
2600-F

PKCELL ☑ $6.00000 2600 3.9

LION-1865-
26

Dantona
Industries

☑ $4.99000 2600 ?

ICR18650-
2200-F

PKCELL ☑ $5.00000 2200 3.3

ICR14430-
650-F

PKCELL ☑ $3.00000 650 ?

PRT-12895 SparkFun
Electronics

☑ $5.95000 2600 3.9

ASR00050 TinyCircuits ☑ $5.95000 2500 ?

LI18650JL
PROTECTED

Jauch Quartz

☑

$13.05000

3250

4.875

MJ1 18650 LG ☑ $6.99 3500 10

NCR 18650B

Protected

Panasonic

☑

$9.99

3400

4.9?

Epoch 18650
Protected

Epoch

☑

$9.99

3500

8

35E 18650 -
Protected

Button Top
Battery

Samsung

🅇

$6.99

3500mAh

8

Table 12 showcases several batteries that we are considering using. The
highlighted batteries are batteries that have battery management systems built into
them. For our use case, we believe that 18650 batteries are the best bang for our

97

buck. They can have high maximum discharge current, and can be used to create
a battery pack with our desired voltage output. The batteries with capacities over
3000 mAh are the most expensive from the ones put in our table. The batteries
that have a question mark under the Discharge Max Current column are ones that
we had trouble finding the datasheet for. The specs they have are shown on the
product page, but for some reason or another the datasheets were unavailable
and the specs page did not show the discharge current.

We will most likely use batteries that are above 3000 mAh. The batteries in the
2000 mAh or less range were considered because they are cheaper, but to get the
same output, we would end up using more batteries, which would cost more. For
example, to get 7000 mAh using the ICR18650-2200-F, with the same max
discharge that we calculated in Section 3.4, we would need 15 batteries. The total
cost would be 75$, while with the Samsung 35E unprotected, the price is 42$.

Another decision we have to make is whether or not to use batteries with built in
Battery Management System (BMS), buy separate BMS circuits that we can
implement, or create our own that we can use. The benefits of having built in BMS
in our batteries is that we will not have to worry as much about incorrectly
recharging the batteries. We also will not need to worry about designing our own
BMS or finding a third party BMS. However, the price is much steeper when the
batteries have built-in BMS. Comparing the Samsung 35E and the Epoch
Protected battery, the price is 2$ more. If we are buying 6 batteries, the price will
end up being 12$ more. We may be able to find a third party BMS that costs less
than 12$, or even design our own for less.

Ideally, we would want to use the Samsung 35E 18650 3500mAh 8A - Protected
Button Top Battery because it is cheap, with a large capacity, and is protected.
However, due to supply chain issues, this battery will not be in stock for the
foreseeable future. Therefore, we have to assume we will not be able to get these
batteries at all. If we decide to use batteries that have BMS built in, we will likely
use the Epoch 18650 Protected batteries. The NCR 18650B Protected batteries
have good specs, but no datasheet was able to be found for them, so it might be
hard to work with the batteries in the future. The LI18650JL PROTECTED batteries
are usable, but they are very expensive. For batteries that do not have BMS built
in, the Samsung 35E 18650 3500mAh is the best battery that we could find. As
stated above, the other non protected circuits do not meet the requirements that
we need for our use case.

98

6.2.7.2 Battery Management System (BMS)

Table 13: BMS Board Options

Part Name Price

2Pcs 3S 11.1V 12.6V 25A W/Balance 18650 Li ion Lithium Battery PCB
Protection Board

$9.99

5S 20A 18V 21V Li-Ion Lithium Battery Pack Battery Charger Protection
Board Circuit

$8.88

Anmbest Balancer 4S 16.8V 30A 18650 Charger PCB BMS Protection
Board

$9.49

For the 3 possible BMS boards found in Table 13, we are not confident in using
any of them. This is because many of the reviews found for these boards said that
the boards were not able to handle the rated currents, and some got obscenely hot
even at low current. Furthermore, there was little to no information on the technical
specifications of the boards. No datasheets could be found for these boards.

6.2.7.3 Battery Test Plan

In the end, we believe that it would be best to buy the batteries with BMS
protection. Buying a third party board to connect will add unnecessary bulk to the
interior of our robot. Furthermore, out of the ones that we found, the reviews
seemed to indicate that the boards had heat problems, which would cause a large
problem within our robot. Creating our own circuit may add more complexion to
our robot, because we will need to have an esp32 and create more code to help
keep track of the voltage and current.

6.2.7.3.1 Procedure

We can run tests by fully discharging and fully charging the batteries to make sure
the capacities and max discharge currents are correct. We can further look at the
discharge curve to make sure that the batteries are discharging at a steady rate.

1. Connect battery pack to voltage recording device such as an 34970A Data
Acquisition / Data Logger Switch Unit

2. Connect battery to power supply and set power supply to 4.2V

3. Allow battery to reach Nominal Voltage at 4.2V

1. If we decide to get batteries without BMS, we need to keep careful watch
of the batteries when they are charging and discharging because they
can very easily catch fire. The batteries with BMS will still need to be
monitored regardless.

4. Record time taken to reach maximum charge

5. Connect battery to load (Such as DC Electronic Load) and set discharge
rate to expected current draw

99

6. Record periodic voltages and current with Agilent until battery is depleted
(3.0 V)

7. Graph output voltage of the battery over time to make sure battery
discharge is sufficient

8. Current should be constant and voltage drop should be constant

6.2.8 Voltage Regulator

For our use, we will be using 12V input from the power supply that we make. We
will then use voltage regulators to step down the 12V input down to 5V, and 3.3V.
The different output voltages will be used to power the different components on
the robot such as the webcam, servos, sensors, and microcontrollers. Below are
possible configurations using the TPS52903RPJ regulator from Texas Instruments

Figure 45: 12V to 5V Buck TPS52903RPJ Voltage Regulator

Figure 46: 12V to 3.3V TPS52903RPJ Voltage Regulator

One of the parts that we are considering to use for the Voltage Regulator is the
TPS62903RPJR from Texas Instruments as shown in Figure 29. We believe that
this is a good part because it is low cost and has high efficiency at our load of 5V.
Furthermore, as seen in Figure 45 and 46, the circuits between the 12V to 5V and
the 12V to 3V are almost identical. By changing the resistance of Rset, we can
easily change the output voltage. This is beneficial because we can reduce the

100

variety of different parts that we order. We can also save money by buying the
same components aside from Rset.

While we want to use the part TPS62903RPJR for a voltage regulator, due to the
supply chain limitations from COVID, this part is currently out of stock on all known
websites, including TI’s, the original manufacturer. For the moment, we will
proceed as if this part will always be out of stock. However, if this part comes back
into stock, we will consider ordering it along with different regulators to test the
efficiency, in case this part ends up working better than the new parts.

After further investigation, most, if not all of the voltage regulators from Texas
Instruments that we planned to use are out of stock for the foreseeable future.
Therefore, we have to look at other manufacturers. Table 1 shows a compilation
of voltage regulators that we plan to use if they come into stock. This stock is based
off the stock available on Digikey. We aim to have at least 5 different voltage
regulators in case the stock suddenly changes, so we can have multiple layers of
backup. We want to minimize the cost of the unit, while being within the specs of
the robot. We know that the max current draw of the whole unit will be 10 A, but
the robot should never be running anywhere close to that maximum. Realistically,
it will be more likely that the max current will be at 5A, while the typical current
draw should be less than 3A. The regulator AP62150Z6-7 is the cheapest
price/unit regulator that we have on the table, but it has a current output of 1.5A. It
may be sufficient most of the time, but it is cutting close to the maximum expected
current.

Table 14: Possible Voltage Regulators

Part # Manufacturer Availability Price/Unit Current
(A)

TPS62903RPJR Texas Instruments
(TI)

🅇

$2.04000

3

TPS566238RQFR TI 🅇 $2.330 6

TPS564208DDC
R

TI 🅇 $0.788 4

BD86120EFJ-E2 Rohm
Semiconductor (RS)

☑

$2.19000

5

NR111E Sanken ☑ $1.69000 4

LM22673MR TI ☑ $6.04000 3

AP62150Z6-7 Diodes Incorporated
(DI)

☑

$0.54000

1.5

101

LMR14030SSQD
DAQ1

TI ☑ $3.94000 3.5

SC4524FSETRT Semtech
Corporation

☑ $1.56000 2

From Table 14, we decided that the voltage regulators NR111E or
SC4524FSETRT are the best cost performing price/unit for our case. NR111E has
much more room for error with a higher maximum current output. The voltage
regulator LM22673MR is very expensive compared to the other units, and
expensive in general for our budget, because if we order 10 for testing, it will be
60$, which is a large portion of our budget. The voltage regulator
LMR14030SSQDDAQ1 is a possible regulator, but is more on the expensive side.
We will keep this one in mind, but prefer not to use this or the previously discussed
one. TPS566238RQFR is a good regulator because it has a high current ceiling of
6A. It is in the middle in terms of pricing for all of the prices in our table. However,
it is out of stock for the foreseeable future. TPS564208DDCR is cheap, and has
good room for error in regards to current, but it is also out of stock. The regulator
BD86120EFJ-E2 is a possible candidate, as it has high current output, but begins
to encroach on the expensive territory. The top 3 candidates are: NR111E,
SC4524FSETRT, BD86120EFJ-E2.

Figure 47: 12V to 5V Buck SC4524F Voltage Regulator Circuit

Using the voltage regulator SC4524F, Figure 47 shows a possible circuit that we
can use to drop the 12V input from the battery down to the 5V output to power the
different devices such as the Jetson Nano. Furthermore, after dropping the voltage
down to 5V, we can add another SC4524F voltage regulator circuit after, to drop
the 5V even further down to 3.3V for the other components that require it. This
circuit can be found in Figure 48.

102

Figure 48: 5V to 3.3V Buck SC4524F Voltage Regulator Circuit

For the NR110E voltage regulator circuit, Figure 49 showcases the configuration
for 5V output. According to the table, Vo is controlled by changing the R5 resistor.

Figure 49: 12V to 5V Buck NR110E Voltage Regulator Circuit

From the figures above, it is likely that we will be using the SC4524F voltage
regulator made by the Semtech Corporation. While we may be using the SC4524F
regulator, it may be a good idea to still get the top 3 candidates, and run testing on
them and compare the results.

Once we have gathered the required components for the Buck Circuit in Figure 45,
we can test the circuit using a breadboard, before physically making the circuit on

103

a PCB. During testing, we want to test to make sure the output voltage is 5V, and
that the maximum current is 2A. This can be done by measuring with a DMM, and
using a DC Electronic Load to vary the current. We also want to make sure the
regulator does not have bad efficiency and thus does not heat up too much.

Table 15: Components Needed for Regulator Circuits

Component Value Quantity (for 1 board)

Capacitor

2.2µF 1

0.33µF 2

10nF 2

10pF 2

1nF 1

22µF 2

4.7µF 1

0.68nF 1

Resistor

102k 1

25.5k 1

15.8k 2

30.1k 1

17.8k 1

14.3k 1

33.2k 1

Inductor
6.8µH 1

2.2µH 1

Diode 1N4148 2

104

Zener Diode 20BQ030 2

SC4524F N/A 2

The above table shows the materials needed to implement the circuits from
Figures 31 and 31 onto a PCB. The table shows the minimum number of
components to make just one board, so if we wanted to create several boards to
test, more components would be required.

Figure 50: Voltage Regulator PCB

The PCB above is the voltage regulator design for Trash-E. The PCB includes both
the buck converters for the 12V-5V step down and the 5V-3.3V step down
converters. The 12V input from the battery is VCC+ on the left. The 5V output is
on the right and the 3.3V output is top left. This PCB should be able to handle all
the voltage regulation that we need done on the robot. If we need more output
ports, we can add more headers later after testing.

105

6.2.9 Solar Panels

Table 16: Possible Solar Panels

Part # Manufacturer Voltage @
mpp (V)

PV Cell Type Price/Unit ($)

SM500K12TF ANYSOLAR
Ltd

6.7 Monocrystalline $6.26000

SP3-37 PowerFilm
Inc.

3 ? $2.99000

10Pcs 5V
60mA Epoxy
Solar Panel

 SUNYIMA

5

Polycrystalline

$15.99/10

2 Pieces 2.5W
5V/500mAh
Solar Panel

ALLPOWERS

5

Polycrystalline

$12.99/2

Table 16 shows the solar panels that we found that are not too expensive. Since
the panels are not 12V, we can have 2 or 3 panels, depending on the Voltage at
mpp, in series to create a 12V output. The SM500K12TF panels are
monocrystalline, and claim to be highly efficient. We can test this following the
Solar Panel Test Plan outlined in the next section. The SP3-37 panels are cheap
per unit. We considered these cells because the spec sheet on the listing showed
promising specs. However, the datasheet of these cells do not contain much useful
information, and we believe that it would be best to stay away from the cells. The
solar cells made by SUNYIMA are a possible candidate, because they come in a
large quantity for a fair price. The only problem is that they can only supply up to
60mA at maximum output. This can be solved by adding more cells in parallel, but
that may conflict with how much room we have on Trash-E to add cells. The solar
cells made by ALLPOWERS are a good candidate because they can supply up to
half an amp at maximum output.

Out of the above options, we believe that it is a good idea to get the SM500K12TF
and the panels made by ALLPOWERS. These panels seem to have the best
output for our case, and we can compare the two panels once we physically have
them.

106

6.2.9.1 Solar Panel Test Plan

The test plan for the solar panels is to test the solar panels when they are receiving
the maximum amount of sun they can receive, and when the panels are getting
partial coverage.

1. Create a text fixture so the solar panel can get maximum coverage from the
sun on a sunny day.

2. Connect solar panels to a DC electronic load, and have a voltage recording
device such as a 34970A Data Acquisition / Data Logger Switch Unit.

3. When the sun is at its peak, and when there are no clouds, record the
voltage and current from the solar panels over an hour, as that is how long
we aim to have Trash-E running.

4. When the sun is not at its peak, or when there are partial clouds or
obstructions between the sun and the panels, repeat step 3.

5. Take the readings from the Data Acquisition Unit and plot a current and
voltage curve. With this, we can determine which panels are the best fit for
us, and if they follow the datasheet that are provided.

6.2.10 PCB Design

Due to the package of our microcontroller (LQFP), we must make a printed circuit
board (PCB) to use it. The plan for the PCB is to make a breakout-style board that
has headers connected to the desired pins we want to use. An issue we ran into
while selecting the pins was that a pin can have multiple functionalities, and the
specified use is configured in software. This means that while the microcontroller
can have a specified maximum amount of capabilities, that’s not always the case
depending on the amount of a specific feature the design requires. While
optimizing the PCB for space and shortest traces, we tried to use pins 13 and 14
which are not only PWM signal generators, but are also UART pins as shown
below in Table 17 and were the ones we are already using to communicate with
the Jetson Nano.

Table 17: Conflicting Pin Functionalities

Pin
Number

Pin Name Description

13 PC7
U3Tx
WT1CCP1

GPIO port C bit 7.
UART module 3 transmit.
32/64-BIt Wide Timer 1
Capture/Compare/PWM1.

107

14 PC6
U3Rx
WT1CCP0

GPIO port C bit 6.
UART module 3 receive.
32/64-BIt Wide Timer 1
Capture/Compare/PW0.

Before designing the PCB we made a schematic with all the necessary parts and
connections using Autodesk Fusion 360 as seen below in Figure 51. The selected
components are shown in Table 18. We decided on the 1206 package for the
slightly larger size and availability of components. Having the 1206 will make it a
bit easier for us to solder the components by hand due to the larger pad sizes when
compared to other packages like the 0805. Many basic components such as the
capacitors and resistors are relatively cheap across different packages so price
did not play a large role in this selection process.

Figure 51: Microcontroller PCB Schematic

Table 18: Microcontroller Schematic Components

Schematic Part Value Part Number Type

C1,C3,C5,C7 4.7uF UMJ316BC7475KLHTE Multilayer
Ceramic

C2,C4,C6,C8,C12,C13 100nF C1206C104K5RAC7867 Multilayer
Ceramic

108

C9 0.01uF C1206C103J3GECTU Multilayer
Ceramic

C10 1uF C1206F105M5RACAUTO7210 Multilayer
Ceramic

C11 4.0uF C1206C395K3PACTU Multilayer
Ceramic

U1 - TM4C1232H6PMI7 Microcontroller

J1 - - JTAG
connector

J2 - - Header 4x2-
pin Female

J3 - - Header 4-pin
Female

J4 - - Header 2-pin
Female

J5 - - Header 2-pin
Female

J6 - - Header 4-pin
Female

The datasheet indicated that decoupling capacitors are required to filter out high
frequencies as well as stabilizing the supply voltage to the microcontroller when
voltage dips occur due to changing load requirements. We opted for a design that
minimizes space and maximizes routability. To do this we chose the pins we knew
we would need to implement the basic peripherals as well as a few extra so we
can further expand upon our design in the future with stretch goals. We have two
pins dedicated to UART transmission between the microcontroller and Jetson
Nano, as well as eight pins that can be used for GPIO or PWM purposes to allow
for motor control or ultrasonic sensor trigger and feedback signals. Ground pins
are available for each PWM pin for the connections to motors.

There are two PCB designs that can be sent to a manufacturing house. Design 1
as shown in Figure 36 is the initial design that is focused on minimizing the amount
of layers as well as cost. Design 2 as shown in Figure 53 is focused on minimizing
space and traces to keep the board compact. The major difference between these
designs is that Design 2 has two copper ground pours, and the capacitors placed
on the bottom. The copper pour increases the cost of the overall board since there
are now two layers of copper, but it also reduces the amount of traces needed and

109

the routing is much simpler. As seen in Figure 52, the amount and length of traces
is drastically longer, as well as the number of vias drilled into the board. Design 2,
however, is much simpler and keeps the traces, especially between the capacitors
and microcontroller, nice and concise. It is also worthy to note that Design 2 has
the capacitors placed on the back to reduce the amount of vias needed for routing,
as well as ground vias placed throughout the board to ensure every component is
properly grounded to the copper pours. The microcontroller is placed in the middle
of both designs since it has the most connections. This reduces the complexity of
the board by keeping traces direct and not having to go roundabout ways to
connect to their destination. Finally, four mounting holes are added to the corners
to allow for easy attachment to the Trash-E’s chassis. With there only being one
voltage supplied to the board, this makes it easier to design as there’s no worries
about noise between nets. We considered adding the voltage regulators to this
board as well but decided against it. It would be more beneficial to have the voltage
regulators on their own boards so we can test their functionality easier by probing
the inputs and outputs of the regulators themselves. This also provides easier
placement of the voltage regulators on the chassis since different components
need to be powered by the different voltages and they won’t be near the
microcontroller PCB.

Figure 52: Design 1 PCB Layout

110

Figure 53: Design 2 PCB Layout

Table 19: PCB Manufacturing Costs

Manufacturing House Design Number of Boards Price

JLCPCB Breakout 2 5 $9.37

OSH Park Breakout 2 3 $11.50

PCB Way Breakout 2 5 $14.93

We uploaded the Gerber files for our PCB design to different PCB manufacturers’
websites to get quotes on how much it would cost for our PCB to be made. After
an online search to find a few reputable manufacturing houses, we decided on
these three as candidates: JLCPCB, OSHPark, and PCBWay. JLCPCB and
PCBWay are based in China, whereas OSHPark is based in the United States.
Being based in the US is nice for us because it can help save on shipping since
the boards don’t need to be shipped across the sea. For the base material of our
board we will be choosing FR-4. Aluminum has better heat dissipation and thermal
transfer than FR-4, but it is also more expensive and won’t be necessary for our
PCB with the few components we are putting on the board. Choosing aluminum
also restricts other decisions for our board, like the minimum thickness of the board
or the amount of layers to be one layer maximum. We know our board needs two
layers so aluminum is not an option based on that requirement. The delivery format
will be a single PCB where they only manufacture the design how it is and don’t
add components onto it. We want this option since we will be soldering the
components on ourselves. Doing the soldering ourselves will decrease the cost

111

and also increase our skills with dealing with electrical components and PCBs. The
outer copper weight will remain at 1oz since it will be sufficient for our ground
planes, as well as the 2oz option being much more expensive to have
manufactured. The default, also the cheapest, options will be chosen for color,
silkscreen, thickness, gold fingers, probe testing, and castellated holes.

Manufacturing houses have different requirements for the minimum amount of
boards that can be printed in a single order. Since we are not mass producing
these and don’t want to spend all of our budget on just the boards, being able to
order small batches is necessary. We want multiple boards to prototype, and also
to ensure we have extras in case one gets damaged while we are soldering.
JLCPCB allows a minimum of five boards to be printed. PCBWay also has the
same minimum requirement. OSHPark, however, has a minimum requirement of
three boards. Being able to have three boards is enticing to help keep costs down
since more materials won’t be used to manufacture more boards, specifically the
copper.

Speed of the manufacturing and delivery of our PCBs is also crucial for Trash-E.
Houses from China will obviously introduce longer shipping times and cost more
for the same time period shipping than a US based house. JLCPCB offers 12-20
business day shipping as their cheapest and slowest option and PCBWay offers
6-16 business day shipping for theirs. OSHPark has free, five business day
shipping since the company is in the US. We will be utilizing OSHPark for our PCB
manufacturing needs. We might be receiving less boards and the price per board
is higher than JLCPCB, but the turnaround time of the manufacturing and shipping
as well as the higher quality, lead-free boards make it worth the extra money for
the detail-oriented craftsmanship.

6.2.11 Manufactured PCBs

Figures 54 and 55 show the PCBs of the Trash-E Breakout Board. They were

ordered from OSHPark and took a turnaround time of two weeks from the initial

placement of the order to the boards being shipped to the final address. Overall,

the boards are good quality and do not bend. There is complete separation

between pads and the contacts are properly grounded.

112

Figure 54: Top Side of Trash-E MCU Breakout

Figure 55: Bottom Side of Trash-E MCU Breakout

6.2.12 Determining When the Bin is Full

Trash-E will continuously run until its power shuts off or its trash bin is full.
Therefore, we need a way of determining that the trash bin on Trash-E is full and
we can end the execution of the program.

113

We will use an ultrasonic sensor to determine whether the bin is full or not. This
sensor will be placed near the top the of the inside of the trash bin on one of its
sides. The sensor will be constantly reading the value of the distance from itself to
the other side of the bin. Every time that Trash-E picks up trash to throw into its
bin, the sensor will wait a few seconds so that it does not falsely detect a full bin
when the object passes it as it falls into the bin. Once those few seconds have
passed, the sensor will sample the reading and determine whether its distance is
within the threshold of the other side. In other words, if the distance from the sensor
and the other side of the bin has not changed significantly, then that means that
the bin is not full. Once the bin has been filled to a certain capacity, the reading
that the sensor samples will no longer be within the threshold set for the distance
between the sensor and the other side of the bin. It will be less and that means
that there is an object in between and that the bin has reached a capacity that we
determine as full. Once the sensor has determined that the bin is full, then Trash-
E should stop searching for trash and adding trash to its bin. This essentially will
stop Trash-E’s program execution until it is started up again with a bin that is no
longer full.

6.3 Bill of Materials (BOM)

Table 20: Bill of Materials

Type Part Name Description QTY Unit
Cost

Total
Cost*

Wheels Pololu Wheel for
Standard Servo

Wheel for robot to move. 2.00 $4.75 $9.50

Motor Driver A4988 Stepper Motor
Driver Carrier

Drive stepper motors. 5.00 $5.47 $27.35

Stepper
Motor

Twotrees Nema 17 Move the arm (Design 1) 1.00 $9.99 $9.99

Servos 154 Move the wheels 2.00 $11.95 $23.90

Micro Servo SER0006 Servo to open and close
gripper on arm.

1.00 $3.62 $3.62

Ultrasonic
Sensor

SainSmart HC-SR04 Sensor to detect cup
distance from gripper.

1.00 $4.45 $4.45

MCU TM4C1232H6PMI7 Microcontroller for
peripherals

1.00 $7.14 $7.14

Jetson Nano 2GB Mini-Computer For Computer Vision 1.00 $59.00 $59.00

Camera Logitech C270 For CV 1.00 $25.00 $25.00

Lidar
Rangefinder

MakerFocus
YDLIDAR X2L

For SLAM 1.00 $69.99 69.99

114

Chassis/
Bucket

3D Printed Robot Chassis 1.00 3D
Printed

3D
Printed

Arm 3D Printed Arm to pick up cups 1.00 3D
Printed

3D
Printed

Gripper 3D Printed To grip cups 1.00 3D
Printed

3D
Printed

115

7.0 Prototyping, Build, Test, Evaluation Plans

7.1 Prototyping

7.1.1 Block Diagram Explanation

The hardware composition of Trash-E is visualized on the block diagram below in
Figure 56. The block diagram contains the overall grasp of the project. This gives
a development path as well as a visual representation of how each part connects
to each other.

Figure 56: Trash-E Hardware Block Diagram

116

7.1.1.1 Electrical Components

Starting from the bottom of Figure 38, the power supply designed with constraints
and standards in mind should be grounded and have no exposed circuitry. It
should also be able to satisfy all power needs of one stepper, two continuous
servos, one regular servo,a microcontroller, an Nvidia Jetson 2GB, as well as all
the corrisponding peripheral components. To ensure everything receives the
specified voltage and wattage to perform optimally a voltage regulator for two
separate blocks of the project as they will have separate voltage requirements.

7.2 Computer Vision Testing

One of the most important aspects of Trash-E is the object detection component.
Our robot would not do anything at all if our object detection software is not working
or working optimally. For our computer vision object detection software we want to
test a few aspects before even proceeding to the microcontroller software. Our
object detection software should be able to accurately detect the trash objects that
we train it to detect and should ignore any other object. It should be able to detect
objects regardless of orientation and the surrounding environmental factors such
as lighting and background noise. The software should be able to select the closest
object of interest by the size of its bounding box. The software should be able to
correctly track where the closest object is on the image and use the coordinates
from its bounding box to calculate the correct result to send over to the
microcontroller. The performance of the object detection should be fast enough
that we can accurately detect objects while moving.

7.2.1 Testing Object Detection

The first step to successful object detection is being able to detect the object. For
each class item of trash that we train our model to detect, we want to test for
accurate detection meaning no false positives or negatives as well as accurate
detection in different orientations, lighting, and backgrounds. The object should be
detected from orientations horizontally and vertically. For example, we should
detect a cup that is standing upright, sideways, flipped, or even rotated. We expect
that we cannot detect objects in darkness but should function normally in natural
and artificial light. Different color backgrounds and noisy backgrounds should not
affect detection. We will be testing object detection before on the desktop instead
of on the Jetson Nano. The reason is that it will be a lot more convenient and
efficient to test on a desktop using a camera connected to it rather than the Jetson
Nano and the model will perform exactly the same on the Jetson Nano. Successful
detection of these objects means that we can move forward to sorting these
detections and moving on in our object detection process.

Procedure:
1. Run the object detection model while using the camera feed as the image

input.

117

2. Check that the video feed is live in the window.
3. Check that the frame rate performance of the model is more than 10

frames per second.
4. Check that no objects are being currently detected.
5. Place an unknown object in camera view and check that it is not detected.
6. For each trash object we have trained to detect, repeat steps 3 to 5.
7. In artificial light, place the object in view of the camera and do steps 7 to

10.
8. In natural light, place the object in view of the camera and do steps 7 to

10.
9. Check that the object is correctly identified and has been labeled correctly.
10. Check that the object is correctly identified in multiple orientations

(rotations by 45 degrees, flipped, sideways).
11. Check that the object is correctly detected with a solid background as well

as a noisy background.
12. Ensure there are no ghost objects or false positives being detected.

7.2.2 Testing Object Selection

Upon successful detection of trash, our algorithm should sort the detections and
their respective bounding box coordinates. These detections should be sorted by
decreasing area. This aspect is essential to Trash-E being able to decide which
object it should head towards out of all objects in the camera view. During this
testing we will use a plastic cup as our object.

Procedure:
1. Run the model and use the camera as the input.
2. Check that the program window is showing a live camera feed.
3. Check that the object detection is working by placing a plastic cup in the

view.
4. Grab at least four plastic cups and place them in view at different

distances away from the camera view.
5. Check that the program window has placed a circle outline on the closest

object.
6. Repeat steps 4 - 6 as many times as needed.

7.2.3 Testing Object Tracking

Once the object detection model has successfully detected and selected the object
that is closest, the algorithm should correctly calculate the position of this object
relative to the image center and determine the direction that the robot should turn
in order to make it face straight at the object. In this testing, we will only be checking
for correct results prior to serial communication over UART. This test will only focus
on the computer vision aspect of the software. During this testing we will use a
plastic cup as our object.

118

Procedure:
1. Run the model and use the camera as the input.
2. Check that the program window is showing a live camera feed.
3. Check that the object detection is working by placing a plastic cup in the

view.
4. With no objects in view of the camera, check that the displacement

calculation is a null value and the value to be sent via UART is 0.
5. Use valid objects for the following steps.
6. Place one cup on the image center.
7. Check that the displacement calculation is zero and the value to be sent

via UART is 1.
8. Place one cup to the left of the image center.
9. Check that the displacement calculation is negative and the value to be

sent via UART is 2.
10. Place one cup to the right of the image center.
11. Check that the displacement calculation is positive and the value to be

sent via UART is 3.

7.2.4 SLAM Test

The objective of this test is to ensure the SLAM algorithm can generate an accurate
map of an unknown environment.

Procedure:

1. Connect the lidar sensor to the Jetson Nano GPIO pins.

2. Connect the 5V power supply to the lidar sensor.

3. Place various obstacles around the room. Ensure there are obstacles on

every side of the lidar sensor to test the 360° rotation of the sensor.

4. Draw a map of the current environment, labeling walls and drawing the

shapes of obstacles the algorithm will detect.

5. Transfer the SLAM algorithm onto the Jetson Nano, provide a power source

and turn it on.

6. Wait for the algorithm to generate a map of the area.

7. Compare the generated map to the map that was drawn by the tester and

ensure they are identical.

7.3 Hardware Testing Plans

Before we can build Trash-E, we need to test the individual aspects our design will
achieve to ensure it will work overall. Testing will be done at the Senior Design lab
in Engineering 1 on UCF campus or at a group member’s residence. Location will
be determined by each specific test and the equipment required by said test. Each
test will have procedural steps so that the test can be replicated by anyone given
they have the required equipment.

119

Equipment:
The following equipment will be required to complete all tests below:

• Multimeter
• DC Power Supply
• Oscilloscope or Discovery Kit
• 12V battery configuration
• Voltage Regulator PCB
• TM4C1232H6PMI7 Design 2 PCB
• Power Rail Breakout Board

7.3.1 Voltage Regulator Testing

The objective of this test is to ensure the batteries can power the components at
the correct voltages using the voltage regulator PCB we had manufactured. This
also checks to make sure the soldering is done correctly.

Procedure:
1. Check all solder connections through a microscope to ensure all

components are secured and connected to the board, and that there is no
solder bridging between pins.

2. Connect a jumper cable to the 5V output header “5V OUT” pin.
3. Connect a jumper cable to the 5V output header “GND” pin.
4. Attach the positive multimeter probe to the “5V OUT” jumper cable.
5. Attach the negative multimeter probe to the “GND” jumper cable.
6. Connect a jumper cable to the input header “VCC” pin.
7. Connect a jumper cable to the input header “GND” pin.
8. Attach the positive DC power supply alligator clip to the “VCC” jumper cable.
9. Attach the negative DC power supply alligator clip to the “GND” jumper

cable.
10. Sample the voltages for ten seconds at each input voltage: 8V, 9V, 10V,

11V, 12V.
11. Ensure the multimeter is reading 5V +/- 0.2V at 10V and higher.
12. Turn off the power supply.
13. Connect a jumper cable to the 3V3 output header “3V3 OUT” pin.
14. Connect a jumper cable to the 3V3 output header “GND” pin.
15. Attach the positive multimeter probe to the “3V3 OUT” jumper cable.
16. Attach the negative multimeter probe to the “GND” jumper cable.
17. Sample the voltages for ten seconds at each input voltage: 8V, 9V, 10V,

11V, 12V.
18. Ensure the multimeter is reading 3.3V +/- 0.2V at 10V and higher.
19. Repeat steps 2-18 except change the DC power supply for the battery

configuration that will be used with the robot.

120

7.3.2 Powering of the Microcontroller

The objective of this test is to verify that the microcontroller is receiving power and
all soldering has been done correctly.

Procedure:
1. Check all solder connections through a microscope to ensure all

components are secured and connected to the board, and that there is no
solder bridging between pins.

2. Connect the DAOKI ST-Link V2 to the JTAG connector on the board using
the datasheet and Figure 35 in this document.

3. Flash the program “Hello.c” onto the microcontroller.
4. Connect a jumper cable to the input header “VCC” pin.
5. Connect a jumper cable to the input header “GND” pin.
6. Connect a jumper cable to the “WT4CCP1” pin.
7. Connect a jumper cable to a nearby “GND” pin.
8. Connect the probe of an oscilloscope to the “WT4CCP1” pin.
9. Connect the corresponding ground probe to the nearby “GND” pin.
10. Connect a DC power supply to the input header “VCC” and “GND” pin.
11. Turn on the DC power supply and set the voltage to 3.3V.
12. Verify the oscilloscope shows a square signal with a 50% duty cycle.

7.3.3 Powering a Servo Motor

The objective of this test is to ensure we can generate a PWM and power any
servo motor that will be hooked up.

Procedure:
1. Check all solder connections through a microscope to ensure all

components are secured and connected to the board, and that there is no
solder bridging between pins.

2. Connect the DAOKI ST-Link V2 to the JTAG connector on the board using
the datasheet and Figure 35 in this document.

3. Flash the program “Hello.c” onto the microcontroller.
4. Connect jumper cables to both the 5V and 3.3V and their respective ground

pins on the voltage regulator board.
5. Connect the 3.3V output of the voltage regulator to the input header “VCC”

pin on the microcontroller PCB.
6. Connect the 3.3V ground cable of the voltage regulator to the input header

“GND” pin on the microcontroller PCB.
7. Connect a jumper cable to the “WT4CCP1” pin.
8. Connect a jumper cable to a nearby “GND” pin.
9. Connect the 5V output of the voltage regulator to the positive power rail on

the breakout board.
10. Connect the 5V ground pin of the voltage regulator to the negative power

rail on the breakout board.

121

11. Connect the power connection of the servo motor to the 5V power rail.
12. Connect the signal connection of the servo motor to the “WT4CCP1” pin.
13. Connect the ground connection of the servo motor to the ground power rail.
14. Connect the DC power supply to the “VCC” and “GND” pins of the voltage

regulator.
15. Turn on the DC power supply to 12V.
16. Observe that the servo motor is alternating between spinning one way 180°

and the other way 180°.

7.3.4 Powering a Stepper Motor

The objective of this test is to ensure we can generate a PWM for the stepper
motor and control it with the motor driver and microcontroller.

Procedure:
1. Check all solder connections through a microscope to ensure all

components are secured and connected to the board, and that there is no
solder bridging between pins.

2. Connect the DAOKI ST-Link V2 to the JTAG connector on the board using
the datasheet and Figure 35 in this document.

3. Flash the program “HelloStepper.c” onto the microcontroller.
4. Connect jumper cables to both the 5V and 3.3V output and their respective

ground pins on the voltage regulator board.
5. Connect the 3.3V output of the voltage regulator to the 3.3V power rail on

the power rail breakout board then to the input header “VCC” pin on the
microcontroller PCB.

6. Connect the 3.3V ground cable of the voltage regulator to the ground power
rail on the power rail breakout board then to the input header “GND” pin on
the microcontroller PCB.

7. Connect a jumper cable to the “WT4CCP1” pin.
8. Connect a jumper cable to a nearby “GND” pin.
9. Connect a jumper cable to the “WT4CCP0” pin.
10. Connect a jumper cable to a nearby “GND” pin.
11. Connect the positive terminal of the DC power supply to one of the positive

terminals of the power rail breakout board and the negative terminal to the
ground rail.

12. From the positive terminal on the power rail breakout board, make one
connection with a jumper cable to the “VCC” input on the voltage regulator
and another to the “VMOT” pin on the motor driver as well as their
corresponding ground connections to the power rail breakout board.

13. Connect the “WT4CCP0” and “WT4CCP1” pins to “STEP” and “DIR” on the
motor driver, respectively.

14. Connect the 3.3V and ground pin from the power rail breakout board to
“VDD” and the ground power rail to “GND” on the breakout board,
respectively.

15. Turn on the power supply and set the voltage to 12V.

122

16. Observe that the stepper motor is alternating between spinning one way
180° and the other way 180°.

7.3.5 Ultrasonic Sensor Testing

The objective of this test is to ensure we can get a reading from the ultrasonic
sensor with different distances.

Procedure:
1. Check all solder connections through a microscope to ensure all

components are secured and connected to the board, and that there is no
solder bridging between pins.

2. Connect the DAOKI ST-Link V2 to the JTAG connector on the board using
the datasheet and Figure 35 in this document.

3. Flash the program “HelloUltrasonic.c” onto the microcontroller.
4. Connect jumper cables to both the 5V and 3.3V output and their respective

ground pins on the voltage regulator board.
5. Connect the 3.3V output of the voltage regulator to the 3.3V power rail on

the power rail breakout board then to the input header “VCC” pin on the
microcontroller PCB.

6. Connect the 3.3V ground cable of the voltage regulator to the ground power
rail on the power rail breakout board then to the input header “GND” pin on
the microcontroller PCB.

7. Connect the 5V output of the voltage regulator to the 5V power rail on the
power rail breakout board then to the input header “VCC” pin on the
ultrasonic sensor.

8. Connect the 5V ground cable of the voltage regulator to the ground power
rail on the power rail breakout board then to the input header “GND” pin on
the ultrasonic sensor.

9. Connect the “WT4CCP0” and “WT4CCP1” pins to “Trigger” and “Echo” on
the motor driver, respectively.

10. Add an LED in series with the “Echo” pin.
11. Connect the DC power supply to the input header “VCC” and “GND” pin on

the voltage regulator.
12. Turn on the power supply and set the voltage to 12V.
13. Move things closer and further away from the sensor and view the LED

staying illuminated for longer intervals when the object is further away.

7.4 Evaluation

After component testing, building, and software has been completed, the following
tests will be run to evaluate Trash-E and confirm it works as intended.

123

7.4.1 Robot Movement Testing

The objective of this test is to ensure the robot can accomplish all types of required
movement: forward, backward, turn left, turn right, and spin. Before starting,
ensure the electrical components are hooked up correctly according to Figure 57.

Procedure:
1. Connect the DAOKI ST-Link V2 to the JTAG connector on the board using

the datasheet and Figure 56 in this document.
2. Flash the program “TestMovement.c” onto the microcontroller.
3. Connect the positive jumper cable of the battery to the “VCC” pin on the

voltage regulator, and their corresponding ground pins.
4. Observe the robot perform the movements in this order:

1. Move forward.
2. Move backward.
3. Turn left.
4. Recenter.
5. Turn right.
6. Recenter.
7. Spin 360°.

7.4.2 Collecting Trash Testing

The objective of this test is to ensure the robot can pick up trash in multiple different
orientations. Five different trash orientations will be tested. Before starting, ensure
the electrical components are hooked up correctly according to Figure 57.

Procedure:
1. Connect the DAOKI ST-Link V2 to the JTAG connector on the board using

the datasheet and Figure 56 in this document.
2. Flash the program “TestGrabbing.c” onto the microcontroller.
3. Connect the positive jumper cable of the battery to the “VCC” pin on the

voltage regulator, and their corresponding ground pins.
4. Place a cup one inch away from the base of the gripper with the mouth of

the cup facing up.
5. Observe the robot pick up the cup, raise it to the bucket on its back, drop it

in, and move the arm back to starting position.
6. Repeat steps 4 and 5 with the following cup configurations:

1. Mouth of the cup facing down.
2. Cup on its side, mouth facing left.
3. Cup on its side, mouth facing the robot.
4. Cup on its side, mouth facing 45° (in between facing left and facing the

robot).

124

7.4.3 Idle State Testing

The objective of this test is to ensure the robot will follow the path-planning
algorithm until a cup is detected. Before starting, ensure the electrical components
are hooked up correctly according to Figure 57.

Procedure:
1. Connect the DAOKI ST-Link V2 to the JTAG connector on the board using

the datasheet and Figure 56 in this document.
2. Flash the program “TestIdle.c” onto the microcontroller.
3. Connect the positive jumper cable of the battery to the “VCC” pin on the

voltage regulator, and their corresponding ground pins.
4. Put a cup in an arbitrary place on the ground in any configuration.
5. Observe the robot detect the cup once it is in frame and collect it into the

bin.

7.4.4 Multiple Cup Testing

The objective of this test is to ensure the robot can handle scenarios where there
is more than one cup present. Before starting, ensure the electrical components
are hooked up correctly according to Figure 57.

Procedure:
1. Connect the DAOKI ST-Link V2 to the JTAG connector on the board using

the datasheet and Figure 56 in this document.
2. Flash the program “main.c” onto the microcontroller.
3. Place two cups in the frame of the camera that are both equally close to the

robot.
4. Connect the positive jumper cable of the battery to the “VCC” pin on the

voltage regulator, and their corresponding ground pins.
5. Observe the robot pick up one of the cups, then the other.
6. Repeat steps 3 through 5 with one cup closer than the other.
7. Repeat steps 3 through 5 with both cups out of the frame and equally close

to the robot.
8. Repeat steps 3 through 5 with both cups out of the frame but with one cup

closer than the other.

125

Figure 57: Electrical Connection Layout

126

7.5 Hardware Component Testing

7.5.1 Voltage Regulator Prototyping

Figure 58: 12-5V Voltage Regulator Breadboard

Figure 59: 12-5V Voltage Regulator Breadboard

Figure 58 showcases the 12-5V voltage regulator that we have designed for the
robot. Figure 59 shows the output of the voltage regulator at 4.699V. This is
because while we were waiting for the specific resistor and capacitor values to
come in, we used common resistor and capacitor values that are close to the
values we want. Once we have the parts, we should be getting 5V output. If
necessary, we will do tuning to the circuit to get the 5V output. The circuit above
uses the SC4524F Integrated Circuit Voltage Regulator that we chose.
Table 21 shows the components that are to be used once the actual components
have come in. In the meantime, the part numbers for the capacitors and resistors
are omitted, as the current values are different. Once the new components arrive,
the part numbers for each component will be updated.

127

Table 21: Components used in breadboard testing

Component
Reference

Component Type Component
Value

Part Number

C1
C2
C4
C5
C7
C8

Capacitor

0.33uF
22uF
2.2uF
c5uF
10nF
10pF

-
-
-
-
-
-

R4
R5
R6
R7

Resistor

102kΩ

15.8kΩ
25.5kΩ
30.1kΩ

56-
MRS25000C1023FCT00CT-

ND
PPC15.8KYCT-ND

RNF14FTD25K5CT-ND
PPC30.1KZCT-ND

L1 Inductor 6.8uH

D1
D2

Diode -
-

1N4148
20BQ030

IC1 Integrated Circuit
Voltage Regulator

-

SC4524FSETRT

The circuit must be able to hold a constant voltage of 5V when the input varies,
from 10V to 14V, in case the battery pack has a fluctuation that may cause it to
change. Voltages were varied from the input with the power supply from 10V
to 20V. The results are in Table 22. From the table, we can see that the voltage
difference between the input voltage at 20 V and 10 V are 0.2 V. Thus, the voltage
regulator works for our use case. In Table 23 the output voltage differs by 0.3 V.

Table 22: Input and Output Voltage of 12 - 5 V Step Down Regulator

Input Voltage Output Voltage

20 V 5.5 V

18 V 5.4 V

16 V 5.4 V

14 V 5.3 V

12 V 5.3 V

10 V 5.3 V

We are concerned that the current of the regulator may not be high enough for the
autonomous robot, so we are considering using regulators with higher current
capabilities. Further testing will be required once we have gathered all the
components to the robot such as all the motors, sensors, and microcontrollers.

128

Table 23: Input and Output Voltage of 5 - 3.3 V Step Down Regulator

Input Voltage Output Voltage

20 V 3.6 V

18 V 3.6 V

16 V 3.5 V

14 V 3.5 V

12 V 3.5 V

10 V 3.5 V

8 V 3.4 V

6 V 3.3 V

5 V 3.3 V

7.5.2 Ultrasonic Sensor Testing

This test utilizes the TI Evaluation Kit EK-TM4C123GXL since we were unable to
complete the building of the PCB due to shipping delays from the PCB
manufacturer. The microcontroller on the Evaluation Kit is the same microcontroller
we will use on the PCB so it is an accurate representation of the environment the
ultrasonic sensor will be powered by.

To determine the distance of the object from the sensor, the following equation is
used

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
((𝐻𝑖𝑔ℎ 𝐿𝑒𝑣𝑒𝑙 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛) ∗ 340

𝑚
𝑠

)

2

Based on this equation, the shorter the high pulse is from the ultrasonic sensor,
the closer the object is to the sensor. Table X below compares the different values
of the ultrasonic sensor output pulse width between the set distances we chose to
test at. Since we want the ultrasonic sensor to be used to stop the robot when the
trash is close to the arm and gripper, we chose a maximum of two feet (60
centimeters) and a minimum distance of two inches (5 centimeters). This will give
us a realistic use case for the ultrasonic sensor when it is attached to the arm.

Figure 60: Test Setup for Ultrasonic Sensor

129

Figure 60 depicts the setup for this test. Code was written on the evaluation kit to
continuously generate a PWM at 12kHz with a 50% duty cycle. This signal was
sent to the trigger pin of the ultrasonic sensor which activates the ultrasonic waves
to be emitted for distance detection. The ultrasonic sensor is also being powered
by a DC power supply set to 5V. The output was viewed using an oscilloscope to
check the length of the returning square wave.

Table 24: Ultrasonic Sensor Testing Results

Distance
From

Sensor (cm)

Input Duty
Cycle

Frequency
(kHz)

Positive
Sensor
Output

Duration
(ms)

Measured
Distance

(cm)

60 50% 12 3.08 52.36

30 50% 12 1.6 27.2

15 50% 12 0.880 14.96

5 50% 12 0.360 6.12

Figure 61: 60cm Output (Left) and 30cm Output (Right)

Figure 62: 15cm Output (Left) and 5cm Output (Right)

While an object is further away, it is not as accurate as can be seen with the
distance of 60 centimeters. The measurements get more accurate as the object
gets closer which is good for our use case. When we read that the ultrasonic
sensor on the base of the arm is within two inches, we will want to stop the robot

130

to allow for picking up the trash. The inaccuracy of the further distances is
negligible for our use case since the closer distance accuracies are good.

131

8.0 Administrative Content

8.1 Milestones

For the fall semester we have established milestones for the project. This semester
will mainly be focused on research, documentation, and design as shown in table
20.

Fall 2021

Table 25: Fall Milestones

Week Date Milestone

1 8/23 - 8/29 • Group Formation

2 8/30 - 9/5 • Brainstorm Projects
• Choose Project
• Senior Design Bootcamp

3 9/6 - 9/12 • Determine Project Requirements
• Discuss Project Budget
• Divide Project Block Diagram

4 9/13 - 9/19 • Divide and Conquer 1.0

5 9/20 - 9/26 • Decide Primary and Secondary Features
• Revise Project

6 9/27 - 10/3 • Divide and Conquer 2.0

7-12

10/4 -
11/14

• 60 Page Draft
• Research and order Microcontrollers and

other parts
• Research Software
• Begin PCB Design
• Decide Pre-built or
• Custom Chassis

13 11/15 -
11/21

• 100 Page Draft

14-16 11/22 -
12/12

• Final Submission

132

Spring 2022

As the spring semester approaches and more design specifics are fleshed out,
the time frame will be determined. Table 21 below shows a general outline for
milestones of the semester.

Table 26: Spring Milestones

Week Date Milestone

TBD

Understand component Implementation

Construct Hardware

Create Software

Project Testing

Project Website

Final Presentation

Final Report

8.2 Budget and Finance

For this project, we decided that a $450 budget is possible for the four of us to
handle. Since there is no sponsor for this project, the funding is coming from all of
us split at $112 per person. For robotic movement parts and sensors, we plan to
have a maximum cost of $100. The mini-computer will be given a maximum cost
of $80. Utilization of a group member’s 3D printer, or the 3D printer that is on UCF’s
main campus, will be used to keep costs low for making the chassis. A budget of
$70 will be dedicated to 3D printing. For electronic components, like the
microcontroller and PCBS, a budget of $100 is allocated. Due to this project being
prone to human error when assembling, we need to have overhead in case
unforeseen issues arise and need to be fixed, or new parts need to be acquired.
There will be $50 of overhead to cover these costs. The final $50 is allocated to
implementing stretch goals and the possible new parts we will need to acquire.

133

9.0 Project Summary and Conclusion

During our research and prepared development of the trash picking up robot Trash-E, our
group has learned about many topics that can be applied when making an autonomous
robot. By researching topics from different projects such as autonomous drones, self-
driving cars and other similar emerging technologies, we believe that we will be able to
create Trash-E.

From our research, we were able to create an overall conceptual design that we believe
will be able to properly do the objectives we want to do. With the robot being on four
wheels, we will be able to maneuver terrain easily. The gripper will allow to pick up more
than just small particles such as dust that previous robots which have been made before
such as the Roomba, a robot vacuum. We hope to build upon these previous iterations by
broadening the capabilities of a robot by picking up trash instead of just being a vacuum.
Some self-driving cars and Roombas use LiDAR, which we believe is a fantastic way to help
our robot navigate through its surroundings. The reason we chose our specific
components were to keep costs down while also being efficient.

We chose to do this project because we are passionate about cleaning up the
environment. With the popularity of social media trends such as cleaning up the beach,
we hope to help motivate people to continuously keep the environment clean. We are
also all interested in robotics, so we felt that this would be right up our alley. We felt that
this robot would provide an adequate challenge to our abilities and allow us to learn a lot.

134

10.0 Appendices

This section is used to show the material that was referenced in the document.

10.1 Bibliography

[1] https://en.wikipedia.org/wiki/ARM_Cortex-M

[2] https://www.eembc.org/coremark/
[3] https://en.wikichip.org/wiki/coremark-mhz

[4] https://www.eembc.org/ulpmark/ulp-cp/scores.php

[5] https://developer.arm.com/ip-products/processors/cortex-m/cortex-m4
[6] https://www.ti.com/lit/ds/symlink/tm4c1232h6pm.pdf?HQS=dis-dk-null-
digikeymode-dsf-pf-null-
wwe&ts=1636819429333&ref_url=https%253A%252F%252Fwww.ti.com%252Fg
eneral%252Fdocs%252Fsuppproductinfo.tsp%253FdistId%253D10%2526gotoU
rl%253Dhttps%253A%252F%252Fwww.ti.com%252Flit%252Fgpn%252Ftm4c12
32h6pm
[7] https://www.ximea.com/support/wiki/apis/Jetson_Nano_Benchmarks

[8]https://www.rohm.com/electronics-basics/dc-dc-converters/linear-vs-switching-
regulators

[9]https://www.design-reuse.com/articles/42191/low-dropout-ldo-linear-voltage-
regulators.html
[10]https://www.analog.com/en/analog-dialogue/articles/low-dropout-regulators.html
[11]https://www.ti.com/lit/ml/slup239a/slup239a.pdf?ts=1635839833910&ref_url=
https%253A%252F%252Fwww.google.com.hk%252F#:~:text=There%20are%20
two%20types%20of,maintain%20a%20regulated%20output%20voltage.
[12]https://www.ti.com/lit/an/slva079/slva079.pdf?ts=1635911592573&ref_url=htt
ps%253A%252F%252Fwww.google.com%252F
[13]https://www.digikey.com/en/maker/blogs/introduction-to-linear-voltage-
regulators
[14]https://www.solarschools.net/knowledge-bank/renewable-energy/solar/how-a-pv-
cell-works

[15]https://components101.com/motors/nema17-stepper-motor
[16] IEEE standard for
systemC:https://paginas.fe.up.pt/~ee07166/lib/exe/fetch.php?media=1666-
2011.pdf#page=36&zoom=100,120,614

[17] Battery safety: https://webstore.iec.ch/preview/info_iec62133-
2%7Bed1.0%7Db.pdf
[18] Software engineering: https://www.iso.org/obp/ui/#iso:std:iso-iec-
ieee:29119:-1:ed-1:v1:en

[19]C standard link: http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf
[20] Robot safety: http://www.paragonproducts-
ia.com/documents/RIA%20R15_06-1999.pdf

https://en.wikipedia.org/wiki/ARM_Cortex-M
https://www.eembc.org/coremark/
https://en.wikichip.org/wiki/coremark-mhz
https://www.eembc.org/ulpmark/ulp-cp/scores.php
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m4
https://www.ti.com/lit/ds/symlink/tm4c1232h6pm.pdf?HQS=dis-dk-null-digikeymode-dsf-pf-null-wwe&ts=1636819429333&ref_url=https%253A%252F%252Fwww.ti.com%252Fgeneral%252Fdocs%252Fsuppproductinfo.tsp%253FdistId%253D10%2526gotoUrl%253Dhttps%253A%252F%252Fwww.ti.com%252Flit%252Fgpn%252Ftm4c1232h6pm
https://www.ti.com/lit/ds/symlink/tm4c1232h6pm.pdf?HQS=dis-dk-null-digikeymode-dsf-pf-null-wwe&ts=1636819429333&ref_url=https%253A%252F%252Fwww.ti.com%252Fgeneral%252Fdocs%252Fsuppproductinfo.tsp%253FdistId%253D10%2526gotoUrl%253Dhttps%253A%252F%252Fwww.ti.com%252Flit%252Fgpn%252Ftm4c1232h6pm
https://www.ti.com/lit/ds/symlink/tm4c1232h6pm.pdf?HQS=dis-dk-null-digikeymode-dsf-pf-null-wwe&ts=1636819429333&ref_url=https%253A%252F%252Fwww.ti.com%252Fgeneral%252Fdocs%252Fsuppproductinfo.tsp%253FdistId%253D10%2526gotoUrl%253Dhttps%253A%252F%252Fwww.ti.com%252Flit%252Fgpn%252Ftm4c1232h6pm
https://www.ti.com/lit/ds/symlink/tm4c1232h6pm.pdf?HQS=dis-dk-null-digikeymode-dsf-pf-null-wwe&ts=1636819429333&ref_url=https%253A%252F%252Fwww.ti.com%252Fgeneral%252Fdocs%252Fsuppproductinfo.tsp%253FdistId%253D10%2526gotoUrl%253Dhttps%253A%252F%252Fwww.ti.com%252Flit%252Fgpn%252Ftm4c1232h6pm
https://www.ti.com/lit/ds/symlink/tm4c1232h6pm.pdf?HQS=dis-dk-null-digikeymode-dsf-pf-null-wwe&ts=1636819429333&ref_url=https%253A%252F%252Fwww.ti.com%252Fgeneral%252Fdocs%252Fsuppproductinfo.tsp%253FdistId%253D10%2526gotoUrl%253Dhttps%253A%252F%252Fwww.ti.com%252Flit%252Fgpn%252Ftm4c1232h6pm
https://www.ti.com/lit/ds/symlink/tm4c1232h6pm.pdf?HQS=dis-dk-null-digikeymode-dsf-pf-null-wwe&ts=1636819429333&ref_url=https%253A%252F%252Fwww.ti.com%252Fgeneral%252Fdocs%252Fsuppproductinfo.tsp%253FdistId%253D10%2526gotoUrl%253Dhttps%253A%252F%252Fwww.ti.com%252Flit%252Fgpn%252Ftm4c1232h6pm
https://www.ximea.com/support/wiki/apis/Jetson_Nano_Benchmarks
https://www.rohm.com/electronics-basics/dc-dc-converters/linear-vs-switching-regulators
https://www.rohm.com/electronics-basics/dc-dc-converters/linear-vs-switching-regulators
https://www.design-reuse.com/articles/42191/low-dropout-ldo-linear-voltage-regulators.html
https://www.design-reuse.com/articles/42191/low-dropout-ldo-linear-voltage-regulators.html
https://www.analog.com/en/analog-dialogue/articles/low-dropout-regulators.html
https://www.ti.com/lit/ml/slup239a/slup239a.pdf?ts=1635839833910&ref_url=https%253A%252F%252Fwww.google.com.hk%252F#:~:text=There%20are%20two%20types%20of,maintain%20a%20regulated%20output%20voltage
https://www.ti.com/lit/ml/slup239a/slup239a.pdf?ts=1635839833910&ref_url=https%253A%252F%252Fwww.google.com.hk%252F#:~:text=There%20are%20two%20types%20of,maintain%20a%20regulated%20output%20voltage
https://www.ti.com/lit/ml/slup239a/slup239a.pdf?ts=1635839833910&ref_url=https%253A%252F%252Fwww.google.com.hk%252F#:~:text=There%20are%20two%20types%20of,maintain%20a%20regulated%20output%20voltage
https://www.ti.com/lit/an/slva079/slva079.pdf?ts=1635911592573&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/an/slva079/slva079.pdf?ts=1635911592573&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.digikey.com/en/maker/blogs/introduction-to-linear-voltage-regulators
https://www.digikey.com/en/maker/blogs/introduction-to-linear-voltage-regulators
https://www.solarschools.net/knowledge-bank/renewable-energy/solar/how-a-pv-cell-works
https://www.solarschools.net/knowledge-bank/renewable-energy/solar/how-a-pv-cell-works
https://components101.com/motors/nema17-stepper-motor
https://paginas.fe.up.pt/~ee07166/lib/exe/fetch.php?media=1666-2011.pdf#page=36&zoom=100,120,614
https://paginas.fe.up.pt/~ee07166/lib/exe/fetch.php?media=1666-2011.pdf#page=36&zoom=100,120,614
https://webstore.iec.ch/preview/info_iec62133-2%7Bed1.0%7Db.pdf
https://webstore.iec.ch/preview/info_iec62133-2%7Bed1.0%7Db.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf
http://www.paragonproducts-ia.com/documents/RIA%20R15_06-1999.pdf
http://www.paragonproducts-ia.com/documents/RIA%20R15_06-1999.pdf

135

[21] models/tf2_detection_zoo.md at master · tensorflow/models
[22] https://www.mathworks.com/discovery/slam.html#slam-with-matlab
[23] https://www.mathworks.com/help.nav/ref/posegraph.html
[24] https://www.youtube.com/watch?v=1GvSPzWagaM
[25] https://www.cnet.com/home/kitchen-and-household/this-is-why-your-
roombas-random-patterns-actually-make-perfect-sense/
[26] https://learn.sparkfun.com/tutorials/serial-communication/uarts
[27] https://www.st.com/en/microcontrollers-microprocessors/stm32-ultra-low-
power-mcus.html
[28] https://www.ibm.com/cloud/learn/deep-learning
[29] https://steelkiwi.com/blog/python-for-ai-and-machine-learning/
[30] https://towardsdatascience.com/a-comprehensive-hands-on-guide-to-
transfer-learning-with-real-world-applications-in-deep-learning-212bf3b2f27a
[31] https://www.tibco.com/reference-center/what-is-a-neural-network
[32] https://www.freecodecamp.org/news/want-to-know-how-deep-learning-
works-heres-a-quick-guide-for-everyone-1aedeca88076/
[33]
https://github.com/tensorflow/models/blob/master/research/object_detection/g3do
c/tf2_detection_zoo.md
[34] https://becominghuman.ai/how-to-label-image-data-for-machine-learning-
and-deep-learning-training-414686d0d1ee
[35] https://developer.nvidia.com/embedded/jetson-nano-dl-inference-
benchmarks
[36] https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html
[37] https://github.com/NVIDIA-AI-IOT/tf_trt_models
[38] https://github.com/tzutalin/labelImg
[39] https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-
neural-networks-the-eli5-way-3bd2b1164a53
[40]
https://semtech.my.salesforce.com/sfc/p/#E0000000JelG/a/2R0000001Nqs/AMb.
18ZAm39ERetIY08r3QeLPnB5WRTrfTOI0Sr3GAs

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://www.mathworks.com/discovery/slam.html#slam-with-matlab
https://www.mathworks.com/help.nav/ref/posegraph.html
https://www.youtube.com/watch?v=1GvSPzWagaM
https://www.cnet.com/home/kitchen-and-household/this-is-why-your-roombas-random-patterns-actually-make-perfect-sense/
https://www.cnet.com/home/kitchen-and-household/this-is-why-your-roombas-random-patterns-actually-make-perfect-sense/
https://learn.sparkfun.com/tutorials/serial-communication/uarts
https://www.st.com/en/microcontrollers-microprocessors/stm32-ultra-low-power-mcus.html
https://www.st.com/en/microcontrollers-microprocessors/stm32-ultra-low-power-mcus.html
https://www.ibm.com/cloud/learn/deep-learning
https://steelkiwi.com/blog/python-for-ai-and-machine-learning/
https://towardsdatascience.com/a-comprehensive-hands-on-guide-to-transfer-learning-with-real-world-applications-in-deep-learning-212bf3b2f27a
https://towardsdatascience.com/a-comprehensive-hands-on-guide-to-transfer-learning-with-real-world-applications-in-deep-learning-212bf3b2f27a
https://www.tibco.com/reference-center/what-is-a-neural-network
https://www.freecodecamp.org/news/want-to-know-how-deep-learning-works-heres-a-quick-guide-for-everyone-1aedeca88076/
https://www.freecodecamp.org/news/want-to-know-how-deep-learning-works-heres-a-quick-guide-for-everyone-1aedeca88076/
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://becominghuman.ai/how-to-label-image-data-for-machine-learning-and-deep-learning-training-414686d0d1ee
https://becominghuman.ai/how-to-label-image-data-for-machine-learning-and-deep-learning-training-414686d0d1ee
https://developer.nvidia.com/embedded/jetson-nano-dl-inference-benchmarks
https://developer.nvidia.com/embedded/jetson-nano-dl-inference-benchmarks
https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html
https://github.com/NVIDIA-AI-IOT/tf_trt_models
https://github.com/tzutalin/labelImg
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://semtech.my.salesforce.com/sfc/p/#E0000000JelG/a/2R0000001Nqs/AMb.18ZAm39ERetIY08r3QeLPnB5WRTrfTOI0Sr3GAs
https://semtech.my.salesforce.com/sfc/p/#E0000000JelG/a/2R0000001Nqs/AMb.18ZAm39ERetIY08r3QeLPnB5WRTrfTOI0Sr3GAs

