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1.0 Executive Summary 

The only form of automated commercial vacuum which the average consumer 
can buy are Roomba®-style devices. The main issue with these devices is the 
size of objects that can be picked up. Typically, the size of a candy wrapper, 
small cereal, or dust is the maximum that these autonomous vacuums can grab. 
These autonomous vacuums also have trouble when they encounter things that 
can tangle their wheels such as pet or human hair. Our robot will be able to pick 
up larger objects using an arm and pincer mechanic.  
 

In this project we will create Trash-E, an autonomous robot that detects litter and 
picks it up utilizing computer vision. It is meant to help automate the process of 
cleaning up a venue such as a ballroom, sporting event field, or even a backyard. 
Trash-E differs from a Roomba®-style device because Trash-e is not an 
autonomous vacuum. Trash-E instead uses an arm to pick up objects such as cups 
that were thrown on the ground. The purpose of the project is to create a device 
that reduces the manpower required to do a tedious task such as cleaning up after 
an event. The robot is not meant to replace Roomba®-style devices, as they 
perform a different function. The autonomous vacuums are meant for home use.  
 

Our robot may be useful in any event with a large gathering of people such as a 
concert, football game, or party. In these events the last thing on attendee’s minds 
is their trash and it is not uncommon for the venues to be filled with garbage after 
the event ends. These events have teams of workers who are dedicated to 
cleaning up all the trash that is left over. With larger venues, cleaning up may 
require upwards of 100 people.  
 

The most important part of Trash-E is the ability to detect objects that we determine 
is trash. For this project, we limit the scope by determining trash only as red solo 
cups at first. This allows us to have a set goal in mind, rather than finding random 
objects and determining it is litter. By limiting the description of trash, we can focus 
on making sure the robot excels at detecting that object and fine tuning any 
mechanical movements before branching out into things such as aluminum cans, 
plastic bags, or bags of chips. The object detection of Trash-E also entirely controls 
all the hardware.  
 
On the hardware side, Trash-E must be able to properly pick up these red solo 
cups. The entire system should be powered by a single rechargeable battery pack. 
The voltage from the battery pack will be stepped down to meet the needs of the 
different components on Trash-E such as the microcontroller, and the different 
motors that need to be driven. While the battery pack can be charged with a power 
supply, we also want to implement solar panels, so the robot is slightly charging 
when it is outside. We will need to implement diodes into the circuit so that the 
current does not flow from the battery to the panels.  
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2.0 Project Description 

2.1 Project Background 

Litter is an increasingly difficult problem to address as the world progresses. Large 
amounts of money is spent to pay individuals to pick up leftover objects after many 
different events such as tailgates, and parties. Due to the chaotic nature of those 
situations, it is extremely difficult to govern and manage each individual and ensure 
every piece of litter is brought to a place to be disposed of. Therefore, venues 
choose to clean up after the event rather than take preventative measures. This 
leads to another problem that once litter reaches a certain size, it is too large to 
pick up multiple at one time. One must bend down, grab the litter, then put it in a 
receptacle for storage until they may properly dispose of it. 
 

A robot does not tire from doing repetitive tasks for hours on end, making it a 
perfect fit for this situation. Robots that pick objects up have an arm apparatus, 
pincers to grip the objects, and a place to store them. They’re driven by different 
motors which are controlled either manually or autonomously. This robot must also 
utilize a way to move about an area autonomously and detect a cup using 
computer vision. 
 

To be autonomous, it needs to have a power source attached to it. One of the most 
common options is a battery. This either needs to be recharged or replaced, but 
there’s no way to make the robot run continuously without stopping at some point.  
 

One feature that will be implemented is a receptacle that is attached to the robot 
for ease of storage. This eliminates the need to go back to a predetermined spot 
to drop the object off. 

2.2 Objectives 

2.2.1 Motivation 

The motivation for this project is to not only utilize the knowledge we have acquired 
over the course of our academic careers into a single project, but to challenge 
ourselves and build upon those skills while learning new ones. The team dynamic 
makes it more realistic in terms of what we will be facing if we exit our 
undergraduate career and choose to pursue a career in industry or research. The 
topics that are covered in this project like embedded system design and 
programming, computer vision and machine learning, and power system 
engineering are things that each member expressed interest contributing to at least 
one of, if not more. To put more marketable skills on our resume, we wanted to do 
a full system design that utilizes multiple different aspects of the engineering 
design process so we may realize a product from start to finish. 
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2.2.2 Goals 

The goal of this project is to create a functional robot that can: 
• Move on its own. 
• See an object on the floor. 
• Determine if the object is litter. 
• Pick up the litter. 

Dispose of the litter into the bin on its chassis. 

2.2.3 Definition of Litter 

Litter is a broad term, and to create a robot that can pick up all litter would not fit 
within the scope of the project. According to Merriam-Webster, litter is defined as 
“trash, wastepaper, or garbage lying scattered about”. With such a generic 
definition, many different objects could fit into that. Examples of some common 
items that can be referred to as litter include: candy wrappers, cans, cups, and 
bottles. With the word “garbage” being in the definition also, this makes litter even 
more ambiguous. The famous saying “one man’s trash is another man’s treasure” 
truly comes into effect here. Because of this uncertainty, we will define what the 
robot will see as litter, trash, and garbage. To start off, we plan to use 16-ounce 
Red SOLO cups. These cups are 3 x 3 x 5 inches in size. We plan to use these 
cups because they are very popular at large events and often are discarded on the 
ground at events such as college parties. The cups are a distinct red color and 
have a distinct shape, which will aid in easing the process of identifying the cups. 
Once we are able to distinguish the Red Solo Cups, we plan on moving to 12-
ounce aluminum soda cans. The reasons being like the Red Solo Cups, except 
the aluminum cans have more variety of color and design. 

2.2.4 Definition of Obstacle 

In our use case, an obstacle is anything that can impede the pathing of the robot. 
Anything greater than the size of a Red Solo Cup, 3 x 3 x 5 inches, will be classified 
as an obstacle to avoid. We plan to use wheels big enough to roll over anything 
smaller than the size of a Red Solo Cup if necessary. As we run testing for obstacle 
avoidance, we may need to refine our algorithm for what counts as an obstacle.  
 

Other obstacles we may need to consider are obstacles that are too big for the 
camera to see. For example, a wall may throw off the obstacle detection, and thus 
need to be considered when programming.  
 
 
 
 
 
 



4 
 

2.3 Requirements Specifications 

 * “The system” refers to Trash-E and all equipment 

 
Table 1: Requirements Specifications 

Description Value Unit 

Maximum amount of trash picked up at once 1 - 

Maximum weight of trash picked up at once 2 lbs 

Maximum size of trash 3x3x5 in3 

The system shall be able to detect Red Solo Cups - - 

The system shall be able to be moved by a human - - 

Maximum time to pick up one piece of trash 30 sec 

Maximum speed of robot 5 mph 

Maximum height of robot 13 in 

Maximum width of robot 14 in 

Maximum length of robot 20 in 

Maximum weight of robot 10 lbs 

Maximum rotation of robot 360 degrees 

Range of motion of the robot arm 0-100 degrees 

Range of motion of the gripper 0-180 degrees 

Max cost of robot 400 USD 

The robot will have ample heat dissipation to protect the 
components 

- - 

Minimum power supplied to circuitry 12 V 

Minimum voltage supplied by voltage regulator 3.3 V 

Maximum voltage supplied to microcontroller 3.63 V 

Minimum voltage supplied to microcontroller 3.15 V 

Maximum voltage supplied by voltage regulator 5 V 

Minimum battery life 1 hr 
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The battery shall be rechargeable - - 

Maximum size of bucket on the robot 8 L 

The battery pack shall be capable of charging through a US 
wall plug. 

- - 

Battery pack maximum current discharge 10 A 

Maximum battery pack weight 300 g 

Maximum number of batteries 6 - 

Minimum battery capacity 1250 mAh 

 

2.4 Customers, Sponsors, Contributors 

For this project there are no customers. There is no intention of selling the result 
of this product on any market, to any company, or to any individual. This project 
also has no sponsor. Each member of the group will be individually contributing 
to the expenses of the project. The design of this project was thought of by the 
members of this group. The decision to do this project was unanimously voted by 
everyone in the group. Each member has their own section that was agreed 
upon at the start of the project. 
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2.5 Marketing and Engineering Requirements 

 

Figure 1: House of Quality 

2.6 Product Features 

The features table is split up between initial, primary, secondary, and stretch goals. 
The initial and primary goals are what we want to make sure the robot does. The 
secondary are goals that we hope to accomplish, and the stretch goals are goals 
that are unnecessary but may be added if we have the time and budget. 
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Table 2: Project Features 

Description Feature Type 

Identify Red Solo Cup Initial Feature 

Move Around Freely with SLAM Initial Feature 

Able To Pick Up Litter Primary Feature 

Move Arm To Litter And Bin Properly Primary Feature 

Identify Aluminum Can Primary Feature 

Identify And Avoid Obstacles Primary Feature 

Store Litter In Bin Primary Feature 

Solar Panels Secondary Feature 

IR Remote Control Secondary Feature 

Sense When Bin Is Full Secondary Feature 

Function For 1 Hour Secondary Feature 

Return Home When Bin Is Full Stretch Goal 

Maneuver Through Hard Terrain Stretch Goal 

Visual And Audio Cue When An Object Is Picked Up Stretch Goal 

Empty Bin Into Large Trash Bag Stretch Goal 

Smart Arm Stretch Goal 
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3.0 Research 

3.1 Existing Products 

A general consumer’s options for a device that completes this task autonomously 
is very limited. Based on our research, there is only a Roomba® style device that 
can be purchased. One problem with this style of robot is the size of objects it can 
pick up. Roomba®’s are designed with the intention of replacing vacuum cleaners 
that companies such as Dyson® and Bissell® manufacture. This means their goal 
is to pick up very small objects like crumbs, dirt, dust, and other similar things that 
can be collected without the use of the vacuum wand. 

Another problem with the Roomba® is the capacity of the container it stores litter 
in. Even if a venue only had litter that was capable of being picked up by it, the 
container would get full too quickly and would require a person to empty it too often. 

3.2 Microcontrollers 

A microcontroller will be used to control the movement of Trash-E. The Jetson 
Nano, which is responsible for computer vision and object detection, will send 
information regarding the position of the cup with a serial communication protocol 
using GPIO pins on both the microcontroller and Nano. Microcontrollers are an 
optimal choice to accomplish this task due to their versatility and low cost. Since 
they have many operations built in like pulse-width modulation and analog-to-
digital converters, the overall PCB design will be simpler since we don’t have to 
implement these circuits ourselves. 

3.2.1 Communication Protocols 

3.2.1.1  Universal Asynchronous Receiver/Transmitter (UART) 

UART is the simplest of the three. Using a maximum of two pins per device, 
receiving and transmitting can be achieved between two devices easily. Since this 
protocol is asynchronous, it does not need a pin for a clock signal which will free 
up a pin on our microcontroller that can be used for other functions. While this 
method is very straightforward, it has major drawbacks. Due to the asynchronicity 
of UART, data can be transmitted whenever it wants and both devices must be 
listening constantly. Another drawback is that only two devices can communicate 
at once. 
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Figure 2: Example Transmission Using UART (Courtesy of SparkFun) 

With this information in mind, UART would be a good choice to communicate 
between the microcontroller and the Jetson Nano. We can minimize the number 
of pins utilized since data will only be sent from the Nano to the microcontroller. 
Since the communication will always be happening due to the asynchronicity, more 
processing power will be consumed on both the Jetson Nano and the 
microcontroller. Figure 2 illustrates how we will send data from the Jetson Nano to 
the microcontroller using a low start bit, a high stop bit, and no parity bits. On the 
other hand, it would be troublesome to utilize this protocol between the 
microcontroller and the peripherals. A separate UART would need to be created 
for each microcontroller and peripheral, resulting in excess pins being used. 

3.2.1.2 Serial Peripheral Interface (SPI) 

Unlike UART, SPI is a synchronous protocol meaning it utilizes a clock signal to 
communicate between two devices. SPI also offers multiple peripheral capabilities 
by utilizing a chip select signal per device. With the addition of the clock signal and 
chip select signals, this can greatly increase the number of pins needed to 
implement this protocol which isn’t ideal for a project with many different 
peripherals.  
 

SPI could be used for the communication between the Nano and microcontroller 
but is not needed due to the one-way transmission between the devices and will 
be wasting pins. It is very helpful for the communication between the 
microcontroller and the peripherals. Having a dedicated way to talk to multiple 
destinations from one source is very beneficial even with the extra pin cost. This 
method also allows for one way communication to movement peripherals such as 
continuous servos, while having two-way communication between others like the 
precision servos all in the same system. If pin space becomes a problem, the 
daisy-chaining method can be a potential solution to reduce the amount of pins 
used. 

3.2.1.3 Inter-Integrated Circuit (I2C) 

I2C is a synchronous communication like I2C but only uses two pins, much like the 
UART. I2C offers the advantages of both UART and SPI but falls short in speed. 
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For a single frame of data, UART and SPI can accomplish this task in one total 
frame, whereas I2C accomplishes it in two. This method is certainly viable for the 
communication between the Jetson Nano and microcontroller, but again is 
unnecessary since there is only one controller and one device. I2C is very useful 
for the communication between the microcontroller and peripherals because of the 
low number of pins used, as well as the two-way communication. Many boards, 
like the TM4C1232H6PMI7, have an I2C interface which will help us implement 
this protocol. 
 
3.2.2 STMicroelectronics (STM) vs. Texas Instruments (TI) 

 

 

  STM32G
0B1KCT6 

STM32L1
51CCT6J 

STM32L0
71CBT6 

TM4C123
3H6PZI 

TM4C123
2H6PMI7 

STM32G
0B1KET6
N 

Price $5.62 $5.44 $5.01 $8.66 $7.14 $6.30 

Core 
Processor 

ARM 
Cortex-
M0+ 

ARM 
Cortex-M3 

ARM 
Cortex-
M0+ 

ARM 
Cortex-
M4F 

ARM 
Cortex-
M4F 

ARM 
Cortex-
M0+ 

Operating 
Voltage 

1.7V – 
3.6V 

1.8V – 
3.6V 

1.8V – 
3.6V 

1.08V – 
3.63V 

1.08V – 
3.63V 

1.7 – 
3.6V 

Core Size 
(Bit) 

32 32 32 32 32 32 

Speed 
(MHz) 

64 32 32 80 80 64 

# of I/O 
pins 

30 37 40 69 49 29 

Program 
Memory 
(kB) 

256 256 128 256 256 512 

CoreMark
®/MHz 

2.46 3.34 2.46 3.42 3.42 2.46 

Mounting 
Type 

SMD SMD SMD SMD SMD SMD 

Package LQFP LQFP LQFP LQFP LQFP LQFP 

Table 3: Microcontroller Comparison 
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To determine the candidates in Table 3, we decided to narrow the manufacturers 
to two companies. Even though two microcontrollers could utilize the same core 
processor, there are many differences in how companies design their 
microcontrollers and expect the user to interact with them. For this project we 
decided to research microcontrollers made by TI and STM. 
 

TI is a company that we became familiar with through our academic program at 
UCF, making it a great choice to pick a microcontroller from. We previously utilized 
the MSP430FR6989 to learn common embedded practices which allowed us to 
get accustomed to the recommended IDE, as well as utilize their syntax and 
processes to accomplish the basics. We didn’t want to reuse the MSP430FR6989 
for this project so we can learn more about what different TI microcontrollers have 
to offer, while not straying too far from our current knowledge base. 
 

STM is another company that has a good reputation through word of mouth and 
forums on the internet. With many different microcontrollers that are specific to 
embedded applications, they also have plenty of development boards that we can 
utilize to prototype our system with before ordering a custom PCB. None of us 
have worked with an STM microcontroller or their software. This makes STM 
microcontrollers perfect for us to research and compare to the more familiar TI.  

3.2.3 ARM Cortex-M 

ARM Cortex-M is a 32-bit Reduced Instruction Set Computer (RISC) processor 
core which is optimized for low-cost, energy efficient integrated circuits in many 
embedded applications[1]. With the huge popularity of this instruction set, we 
wanted to pick a microcontroller that utilizes this technology. 

 
Figure 3: Benchmarks for Different Cortex-M Processors (Courtesy of ST) 
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3.2.3.1 CoreMark and ULPBench Analysis 

To determine how well a processor performs, we looked at the ULPBench score 
as well as the CoreMark score. ULPBench (Ultra Low Power Bench) determines 
how energy efficient a particular microcontroller is. CoreMark tests the functionality 
of a specific processor core. Table 3 has the CoreMark score divided by the 
frequency it was running at to get a more accurate representation of the score as 
this considers how many instructions the processor can execute in a second. [2][3] 
Figure 3 displays the ULPBench scores in the bars and the CoreMark score on the 
line for each STM32 variation. While this information isn’t for the specific 
microcontrollers in our table, each Cortex-M in the figure utilized the same specs 
as the microcontrollers we were researching. We investigated the official EEMBC 
benchmark table for these scores, the company in charge of maintaining the 
benchmarks these scores are made from but couldn’t find anything regarding the 
microcontrollers we picked. This is because scores do not have to be submitted, 
but also can only be submitted by members or licensees of EEMBC [4]. Therefore, 
this is the closest information we can acquire without buying each microprocessor 
and conducting the benchmarks ourselves. 
 

Due to product availability, we considered three different Cortex-M variations: 
Cortex-M0+, Cortex-M3, and Cortex-M4. With M0+ and M3 being run at much 
lower processor speeds, we compared them more closely to each other than with 
M4. We see that M0+ has a significantly lower CoreMark score than M3, it also 
has a larger ULPBench score, indicating that the processor could potentially be 
more energy efficient. When looking at M4, we see that the CoreMark and 
ULPBench scores are drastically higher than the other two, making the architecture 
more enticing. This is due to “The combination of high-efficiency signal processing 
functionality with the low-power, low cost and ease-of-use benefits of the Cortex-
M family”. [5] Based on these results, Cortex-M4 is very enticing for us to choose. 

3.2.4 Core Size 

Core size of the microcontroller’s processor indicates how many bits of information 
can be passed into the data bus and processed in one clock cycle. The higher the 
core size, the more bits can be processed and the larger the value can be for one 
variable, but also requires more storage even for variables with few amounts of 
bits used. We decided to go with a 32-bit core size since many languages utilize 
this size and we are familiar with programming languages that have 32-bit 
variables standard. 

3.2.5 Core Speed 

Core speed tells how many clock cycles happen in one second. Generally, the 
higher the core speed means that more instructions can be computed in one 
second although this is not always true since it is based on the instruction set used. 
All the microcontrollers we investigated have a minimum core speed of 32MHz 
which will be adequate for Trash-E’s application. 
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3.2.6 I/O Pins 

These pins will be used to connect to other devices/peripherals and communicate 
between them. We must be careful that we don’t choose a microcontroller with too 
few pins since we won’t be able to implement all planned functions of Trash-E. We 
also want to have some excess pins in case we can implement some of our stretch 
goals later. For this reason, we decided the microcontroller should at least have 
40 I/O pins. 

3.2.7 Program Memory 

The amount of FLASH storage in the microcontroller is critical to the decision-
making process. This storage is the area where our code will reside. The more 
complex the application, the more lines of code we write which, in turn, increases 
the size of our file. If we get a microcontroller that has too little storage space, we 
have to either buy a new microcontroller that has more storage or increase the 
storage capacity by adding an external storage device of some sort. Without 
having any code written it is extremely difficult to determine how much is “too little”. 
Two different algorithms can achieve the same thing but take two different 
approaches. If one approach is poorly optimized or has more lines of code, that 
option will be larger and could go over the FLASH capacity. With our inexperience 
in the subject we decided on 256kB as the minimum FLASH storage. 

3.2.8 Mounting Type 

Since the PCB will be soldered ourselves, the mounting type of our components 
has a big influence on our decision. There are two types of components we can 
choose from: Through-hole (TH) and Surface Mount (SM). 

3.2.8.1 Through-Hole 

Since this mounting type utilizes pins that go through the board and the 
components being relatively large, it’s easier to solder and can normally be done 
using only a soldering iron and solder. It will be easy to verify the solder process 
went well and there’s no solder bridging due to the spacing between pins being 
greater than SM components. They are also compatible with solderless 
breadboards which is a huge advantage. Prototyping on breadboards will allow us 
to attach the components directly into the breadboard, exchange parts, and alter 
our design without needing to solder and desolder each component. With the 
larger sizes of TH components, they take up more space and increase the total 
PCB size. A disadvantage to microcontrollers specifically is that as the 
microcontroller increases in complexity and adds more features, more pins are 
needed, and TH is no longer viable. This restricts the complexity of circuits if TH is 
being used for a microcontroller. We wanted to utilize TH for all the components to 
make the soldering process simpler but it isn’t viable for the scope of our project. 
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3.2.8.2 Surface Mount 

SM utilizes pads instead of holes for the component to connect to. SM components 
are much smaller than a TH component which greatly reduces total PCB cost and 
size. Size can potentially be further reduced, or functionality can be increased for 
the same size, by mounting components to both sides of the PCB. Soldering SM 
components by hand can be very challenging compared to TH since the pads are 
very close together. Verifying the quality of the completed solder is also more 
difficult and will require the use of a microscope to ensure there is no solder 
bridging and the pins are making direct contact with the pads. To ensure costs of 
the PCB and components stay down, we will be utilizing SM technology for our 
microcontroller and any other basic components as much as we can. 

3.2.9 Package 

The package refers to the way a component connects with the PCB. For the 
microcontroller, there were three different SM package variations: Quad Flat 
Package (QFP), Ball Grid Array (BGA), and Quad Flat No-Lead (QFN). 

3.2.9.1 QFP 

The closest to a TH component, QFP has little leads coming out of the chip that 
allows it to sit directly on the pads. Due to the leads being visible, this makes it 
easier for an individual to solder by hand and is a highly sought-after package for 
us. The problem with this package is that as the number of pins on a chip 
increases, the size of the leads and pads, as well as the space between them, 
decreases. We determined that a total pin size of around 64 pins is ideal to 
reasonably be able to solder this by hand. This package will also help us keep 
utility costs down as it can be soldered with a regular soldering iron. This package 
is also very prone to mistakes since we will be using a soldering iron. If we are not 
careful, we can damage the board itself and have to restart on a new one.  

3.2.9.2 QFN 

This package is very similar to the QFP but instead of the leads coming out of the 
chip, the leads are tucked under the chip, and has a metal pad that acts as a heat 
sink in the center. This can be more beneficial for our PCB than the QFP due to 
this extra heat dissipation from the center pad. Without having leads extending 
from the chip, this makes it more difficult to solder. An easier solution is to coat the 
pads with a flux paste and drag the solder across. The chemical interaction 
between the flux and solder will allow the solder to fall into place on the pads. This 
is still not ideal for us but is doable while also keeping costs low. 
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3.2.9.3 BGA 

BGA is the least optimal for us to use and we steered clear of when looking for 
potential microcontrollers. Because the connections are on the bottom of the 
board, more can be placed than the other two packages. The more connections 
mean more placement of solder balls and doing this by hand can take a long time 
and requires high precision. To solder them, a hot air solder gun or reflow oven is 
needed which we do not have and will increase our costs since we would have to 
purchase a hot air solder gun. Because of this, we decided QFP or QFN are the 
packages we need to restrict our search to. 

3.2.10 Price Per Unit 

We want to select a microcontroller that fits the above needs/preferences, while 
also keeping costs to a minimum since the price per unit of the microcontroller can 
break our budget. With it being our first time getting PCBs printed and soldering 
components onto them for a project, we have to account for mistakes. This means 
we will be ordering multiple PCBs and microcontrollers to verify our prototype still 
works after soldering on the components. With this in mind, we set our absolute 
max price to $10 per microcontroller. 

3.2.11 TM4C1232H6PMI7 

With the considerations of sections 3.2.1 through 3.2.10, we have decided to select 
Texas Instruments’ TM4C1232H6PMI7. One key factor to this decision is the 
familiarity of the software IDE will allow us to move quickly while developing and 
not spend unnecessary time relearning the basics. Another key factor is the cost. 
We want to keep everything under budget and this microcontroller allows us to buy 
multiple in case one gets damaged and needs to be replaced. Most of the following 
information comes from the TM4C1232H6PMI7 datasheet and is not my work. 

3.2.11.1 JTAG 

Since we aren’t using a development board, we need to implement a way to 
program the microcontroller. “The Joint Test Action Group (JTAG) port is an IEEE 
standard that defines a Test Access Port and Boundary Scan Architecture for 
digital integrated circuits and provides a standardized serial interface for controlling 
the associated test logic.” [6] JTAG allows us to flash our code onto the 
microcontroller with an IEEE backed protocol. Only four pins will be used on the 
microcontroller due to this protocol. Those pins are: TCK, TMS, TDI, and TDO. 
Using serial transmission, we can send data to the microcontroller with TDI with 
the TCK clock signal for controlling the speed. 
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3.2.11.2 Clock Signal 

The TM4C1232H6PMI7 has multiple options for clock signals that can be used in 
the microcontroller. The Main Oscillator (MOSC) provides a very accurate clock 
source by utilizing an external crystal oscillator. The microcontroller supports 
crystal oscillators with frequencies between 5 and 25 MHz. While the speed and 
accuracy is enticing, using the MOSC will introduce more required capacitors on 
the PCB, increasing size and decreasing space on the PCB while increasing 
production costs. Due to this reasoning we will be selecting the Precision Internal 
Oscillator (PIOSC). 
 

The PIOSC is a clock source that is integrated onto the chip and used by default. 
There is no required use of external parts or crystals for it to function. It provides a 
16-MHz clock source to the chip with a +/- 3% accuracy due to temperature. The 
internal clock is implemented using resistors and capacitors which makes it less 
accurate than a crystal oscillator due to the increased temperature of the 
components. While the max speed of the PIOSC is 36% slower than the MOSC 
and also less accurate, it will be more than sufficient for Trash-E which only needs 
to generate signals for servo/stepper motors and ultrasonic sensors. 

3.2.11.3 PWM Generation 

To generate the PWM signals for the motors and sensors, multiple timers need to 
be used which the microcontroller is in no short supply of. “The TM4C1232H6PM 
General-Purpose Timer Module (GPTM) contains six 16/32-bit GPTM blocks and 
six 32/64-bit Wide GPTM blocks. Each 16/32-bit GPTM block provides two 16-bit 
timers/counters (referred to as Timer A and Timer B) that can be configured to 
operate independently as timers or event counters, or concatenated to operate as 
one 32-bit timer or one 32-bit Real-Time Clock (RTC). Each 32/64-bit Wide GPTM 
block provides 32-bit timers for Timer A and Timer B that can be concatenated to 
operate as a 64-bit timer.” [6] With twelve GPTM blocks and two timers per block, 
we have the potential to generate twenty four PWM signals. This will be plenty to 
implement our original design as well as accommodate for any stretch goals that 
can be implemented in the future 

3.2.11.4 UART Interfaces 

The TM4C1232H6PMI7 also has eight separate UART interfaces that are fully 
programmable. With baud rate generation of 5 Mbps for regular speed and 10 
Mbps for high speed, there will be no problem sending data between the 
microcontroller and Jetson Nano. There’s also separate transmit and receive 
FIFOs that reduce the CPU interrupt service loading and also have programmable 
length. The interface also gives us full control over the serial communication 
characteristics such as the amount of data bits, either one or two stop bit, and 
even, odd, or no parity bit. 
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3.2.11.5 Sleep Modes 

Arguably the most important feature that this and many other microcontrollers offer 
is the Low Power Modes, or in the TM4C1232H6PMI7’s case, Sleep Modes. By 
entering a Sleep Mode, power consumption is kept to a minimum. Depending on 
what functions are needed to keep running during sleep, either Sleep mode or 
Deep-sleep mode can be chosen. Sleep mode only stops the processor clock while 
Deep-sleep mode stops the system clock as well as switches off the Phase Locked 
Loop (PLL) and Flash memory. Since Deep-sleep mode turns off not only the 
processor clock but the system clock, PLL and flash, we will want to use Sleep 
mode. This mode will allow us to keep Trash-E moving while there is nothing to 
process from the Jetson Nano. In comparison to other microcontrollers, like the 
MSP430 family which has four different Low Power Modes, the power conservation 
options of this microcontroller is pretty limited but is sufficient for our power needs 
since we can’t go into too deep of sleep with Trash-E doing continuous movement 
at almost all times. It’s also important to note that the deeper sleep modes might 
reduce the power consumed by the microcontroller, but also increase the amount 
of time required to sleep and wake. 

3.3 Computer Vision 

3.3.1 Computer Vision Overview 

For computer vision to work, a lot needs to get done before it is used for cases like 
Trash-E identifying trash in real time. Computer vision requires a lot of data and 
would need to use machine learning techniques to accomplish it. It needs to 
analyze a lot of data and learn from it until it can make certain distinctions in images 
and ultimately recognize what it needs to find in an image or video. Figure 4 is an 
example of what a computer sees after identifying objects via computer vision. 
 

  
Figure 4: Object Detection Using Computer Vision (Courtesy of TowardsDataScience.com) 
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To accomplish computer vision, we need certain algorithms that can learn from 
given inputs and produce an outcome on its own in a way that the human brain 
would. The best way to accomplish this is to use a form of machine learning called 
deep learning. 

3.3.2 Machine Learning 

Machine Learning is the term that refers to a machine becoming capable of 
learning from a large data set and performing actions based on what the computer 
has learned and the input data it is receiving. There are many types of learning 
that machine learning can be done in. 
 

Supervised learning datasets are labelled manually prior to being given to a 
machine learning model for training. These datasets also include the expected 
output that the model will use to become very accurate at predicting when it comes 
to new input data. Unsupervised learning uses datasets that are not labelled and 
have no specified structure. The model will learn on its own and make 
classifications based on the data. 
 

Semi-supervised learning is an approach that combines a small portion of labelled 
input data along with a large amount of data that is not labelled that the model will 
use to learn. This is typically used when there isn’t a lot of labelled data available 
or having a complete set of labelled data is too challenging or expensive but still 
want to use some amount of labelled data. This type of learning can achieve better 
performance and accuracy than its supervised counterpart. 
 

 
Figure 5: Traditional Learning (Courtesy of TowardsDataScience.com) 
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Transfer learning involves using a pretrained model and using the existing 
knowledge from previously learned tasks and applying that knowledge to a new 
task that is related as shown in Figure 5. If we had trained a previous model for 
object detection on cars, we could use that model’s knowledge to learn how to 
detect trucks and other forms of vehicles and make learning faster. 

3.3.3 Deep Learning 

Deep learning is a subset of machine learning that uses neural networks to learn 
large amounts of data through lots of training.  
 

Neural Networks are the brain of the AI and are used extensively in deep learning. 
These networks are meant to simulate the way that humans learn with the brain. 
Our brain has neurons that make connections and so does the neural network that 
we use for machine learning. All the neurons in a neural network are 
interconnected and are organized into multiple layers. These layers consist of the 
input layer, the hidden layers, and the output layer. The input layer of our neural 
network receives information to learn via our input data. The next few hidden layers 
in between the input and output layers are where most of the work and training is 
done in a neural network.  
 

In these layers many mathematical computations are performed on our input data. 
The connections between all the neurons in these layers have weights which 
determine the importance of the input value and the strength of the connection. 
Each of these go through an activation function which in simple terms standardizes 
the outputs of the neurons. The number of hidden layers you could have in a neural 
network is arbitrary. These are the layers where people usually spend time 
tweaking and testing this area by increasing and decreasing the number of hidden 
layers and number of neurons in each layer. With deep learning, the neural 
networks have more than one hidden layer, which is where the deep term comes 
from. 
 

Once these layers have been passed and we reach the output layer, there is a loss 
function that determines how wrong our network's output was from the real output 
data. We want that function to be as close to zero as possible to get the most 
accurate output from our deep neural network. To improve accuracy and reduce 
loss, we use optimization algorithms called gradient descent and backpropagation 
which find the minimum of a function and in this case that is the loss. It allows a 
deep neural network to change its weights automatically in incremental steps after 
each iteration of training to achieve a loss as close to zero as possible. 
 

Deep learning networks can be supervised but they can also be unsupervised as 
well. Unsupervised training is where deep learning typically shines. With deep 
learning, data preprocessing can be mostly eliminated. Deep learning algorithms 
can process unstructured data and automate feature extraction. For example, 
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feature extraction for computer vision can be a very challenging task to do 
manually and involves a lot of manual work. Images must be put through many 
processes to extract features such as edges, colors, and brightness. A deep 
learning network can be given a set of images and it will be able to determine 
important features that allow it to distinguish objects from each other. Through 
algorithm processes and training with the neural network it can learn from the data 
and become very accurate. This allows it to make accurate predictions based on 
new input data.  
 

3.3.4 Convolutional Neural Networks 

There are many types of neural networks out there. For our purposes of this 
project, the most tried and true deep learning algorithm for computer vision is a 
convolutional neural network. A convolutional neural network should be the best 
algorithm to implement for Trash-E to detect trash objects using image recognition. 
Convolutional Neural Networks (CNN) are deep learning algorithms that can take 
an input image and then learn various patterns and features about that image and 
make decisions about the image. Figure 6 is a diagram of a convolutional neural 
network showing its general architecture. 

  

Figure 6: Convolutional Neural Network Architecture (Courtesy of TowardsDataScience.com) 

The first step in the convolution neural network is the convolution layer. An image 
is fed into a CNN in the form of a matrix with pixel values. In the convolution layer 
a kernel/filter, which is a square matrix of a certain size, is typically used to hover 
over the original image in a certain number of shifts and strides. Each time the filter 
is over a new section of the image matrix, a matrix multiplication is performed and 
produces a new value for the image matrix. Depending on the kernel/filter values, 
different types of high-level features can be extracted from the input image. A CNN 
can capture spatial and temporal dependencies in an image through these filters. 
The main objective of the convolution is to extract high level features from the input 
image such as edges, color, gradient orientation and more. There can be more 
than one convolutional layer. 
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Following convolutions, the pooling layer follows which is responsible for further 
extracting dominant features and reducing the spatial size of the convolved feature 
by using a smaller kernel and certain techniques. This reduces computational 
power that Is needed further into the network. There are two types of pooling 
techniques: average pooling and max pooling. Max pooling returns the maximum 
value of the image matrix that the pooling kernel is on. Average pooling returns the 
average of all the values of the image currently in the pooling kernel. 

Now, the output is flattened into a column vector and fed into a feed-forward neural 
network and backpropagation is applied in every training epoch. This layer is 
referred to as the fully connected layer and is where the network learns the many 
features we have extracted from the image. After a certain number of epochs, the 
model can distinguish between features of the input image and classify them using 
the SoftMax activation function. This function will produce multiple probabilities 
ranging from 0 to 1 for all the classes our CNN is trained to find and output what 
the image likely contains. 

3.3.5 Convolutional Neural Network Architectures 

There are many CNN architectures out there. Some of the notable ones are: 
LeNet, AlexNet, VGGNet, GoogLeNet, ResNet, and ZFNet. Each are different 
takes and variations on the general CNN architecture shown earlier. For Trash-E, 
we have many options available to choose for the CNN architecture and would 
likely involve more experimentation and fine tuning down the line to decide which 
architecture would return the best results. There are also many pre-trained state 
of the art models available on Google's TensorFlow GitHub that were trained on 
the COCO 2017 dataset. Some of the most popular ones that we could use are 
SSD MobileNet V2 and SSD ResNet. Each of these architectures have 
configurations for certain image sizes such as 320x320, 640x640, etc.  
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Figure 7: Available Models (Courtesy of Tensorflow) 

A higher resolution architecture will take more computational power and won’t be 
as fast as a lower resolution one but offers better mean average precision as 
shown in Figure 7, where the speed in milliseconds is on the left and the mean 
average precision is on the right. This is a tradeoff we will have to decide on for 
Trash-E’s computer vision implementation. 

3.3.6 Programming Languages for Machine Learning 

We have many options for the programming language we could use for writing 
Trash-E’s software. Several programming languages are used for AI and machine 
learning nowadays. Some of the popular ones are Python, C/C++, and Java. The 
most popular of these languages for AI and Machine Learning is by far Python. For 
computer vision and robotics, the most popular languages to use are C/C++ and 
Python. 
 

Python is an interpreted high level programming language, so it is less performant 
than a compiled language since the code is executed line by line. Python is one of 
the most supported machine learning languages out there. It is a relatively simple 
language in comparison to C/C++ and Java. Python has an extensive number of 
tools and libraries for machine learning such as TensorFlow, scikit-learn, PyTorch, 
and Keras to name a few. These libraries support computer vision and deep 
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learning allowing the ability to easily create convolutional neural networks and train 
them. 
 

C/C++ are very much used in embedded and robotics programming. C/C++ are 
compiled languages and have very high performance. The areas they’re used most 
for in AI are gaming and robot locomotion. They’re not as simple as python when 
it comes to building new machine learning applications and getting what you want 
quickly. However, they are favored when control, high performance and efficiency 
is needed. C/C++ have some libraries for machine learning and computer vision 
such as MLPACK, SHARK, and OpenCV. 
 

Java is less popular for embedded and robotics and is used more for desktop and 
enterprise applications. Java does come with a decent amount of machine learning 
libraries such as TensorFlow, Deep Java Library, Kubeflow, and Java-ML. 

3.3.7 Libraries and Tools for Machine Learning and Computer Vision 

There are many libraries available for machine learning and computer vision. We 
decided to investigate the most popular libraries since they have the most support 
and have everything we would need for Trash-E. 

3.3.7.1 TensorFlow 

TensorFlow is a machine learning open-source library by Google. It allows users 
to build and train machine learning models using high level Keras APIs. It is a more 
general machine learning library for python but still offers functions that can be 
used for computer vision. 

3.3.7.2 PyTorch 

PyTorch is an open-source machine learning library for Python developed by 
Facebook. PyTorch can work for both Python and C++. It provides tensor 
computing with acceleration via a graphics processing unit or GPU. It also offers 
the ability to create deep neural networks  

3.3.7.3 OpenCV 

OpenCV is a popular open-source computer vision library. It provides common 
infrastructure for computer vision applications. It has thousands of optimized 
algorithms for both computer vision and machine learning. It would allow the ability 
to use computer vision algorithms and techniques to enable computer vision 
needed on Trash-E quickly and efficiently. It has C++, Python, and Java interfaces 
and supports most of the common platforms. These include Windows, Linux, 
Android, and MacOS. This library also works very well with real time computer 
vision applications which is essential for what Trash-E needs to accomplish. 
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3.3.7.4 LabelImg  

LabelImg is a graphical image annotation tool. The tool is written in Python and is 
a popular way to label images to use in a dataset for object detection models. It 
will allow us to easily label our data and save it in a format that can be used in 
object detection models. 

3.3.7.5 TensorRT  

TensorRT is an SDK by Nvidia that optimizes inference performance of models for 
Nvidia GPUs. It is used to optimize trained models from a machine learning library 
so that it runs faster and more efficiently on an Nvidia Jetson Nano. When a model 
is finished training and ready to be deployed to a Jetson Nano, first the model or 
in other words graph is frozen. This essentially saves the model. Once the model 
graph is frozen, it can be optimized by TensorRT as shown in Figure 8.  
 

 
Figure 8: The TensorRT Flow (Courtesy of Nvidia) 

 

TensorRT will parse the model and apply optimizations to the graph where it is 
able to. When it detects a compatible subgraph, TensorRT replaces it with a 
TensorRT optimized node. First, layers within the TensorFlow graph that have 
unused output are destroyed so that unnecessary computation is avoided. Next, 
convolution, bias, and ReLU layers are merged to form a single layer. Further 
optimizations include layer aggregation which also improves performance. Most 
importantly the overall original computation of the graph or model is unchanged 
but it is restructured to optimally perform operations more efficiently and faster as 
shown in Figure 9. 
 

 
Figure 9: TensorRT Optimization Performance Graph (Courtesy of Nvidia) 
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3.3.8 Hardware Options for Machine Learning 

Our robot will be using computer vision in real-time. To process the data and 
algorithms we need for computer vision and deep learning we would need a 
minicomputer on our robot capable of handling these tasks. These tasks include 
object detection, and classification. There are several out on the market such as 
the Nvidia Jetson Nano, Raspberry Pi 3, and Google Edge TPU. Figure 10shows 
benchmark comparisons for these products. The Nvidia Jetson Nano appears to 
drastically outperform the other two boards in this comparison and while using 
the object detection model architectures that we previously stated in our research 
on convolutional neural network architecture. 
 

 
Figure 10: Minicomputer Deep Learning Benchmarks (Courtesy of Nvidia) 

3.4 Power 

3.4.1 Power Supply 

In order to determine the power supply necessary for the robot, the requirements 
of the components must be looked at. In Table 4, the possible components that 
will be needing power are listed along with their required specifications. 

From table 4, most of the components should be able to be powered by a normal 
battery bank that is often used for phones. This is because most of these 
components are able to be powered through the USB port on a computer, which 
normally has a maximum supply of 5V, 0.5A. The maximum current and maximum 
power columns are the maximum, and thus the devices will not be drawing that 
much on regular use. The Blink Mini claims that it requires wall power on the 
amazon website, however with further investigation and after testing it, it should 
be able to be powered through a power supply. Some of the other cameras did not 
have readily available datasheets and without purchasing it, it will be hard to find 
the requirements to power them. 
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Table 4: Components Requiring Power 

Component Voltage 
Requirement 

Maximum 
Current 

Maximum 
Power 

Jetson Nano 4.75V 4A 19W 

Arduino Uno 7-12V 50mA .35-.6W 

Raspberry Pi 3 5V 2.5A 12.5W 

Motor Driver 8-35V 1A 8-35W 

MG996R 55g Metal Gear 
Torque Digital Servo Motor 

  

5V 

  

3A 

  

15W 

Stepper Motor 12V 1.2A 14.4W 

AREBI Spy Camera Wireless 
Hidden WiFi Mini Camera HD 

  

4.2V 

  

300mA 

  

1.26W 

Blink Mini 100-240V .15A 15-36W 

Logitech C270 HD Webcam 5V 1A 5W 

NexiGo N60 USB Computer 
Camera 

5V 1A 5W 

HC-SR04 ultrasonic sensor 5V 15mA .075W 

 
There are a few options for powering Trash-E. The first option and the least likely 
one will be a readily made battery bank that normally are used as backup batteries 
for phones. This option is the least likely, as we want to integrate our own design, 
from the batteries to the voltage regulation. The next few options that can be used 
are readily made batteries such as Li-Ion (Lithium Ion) batteries, Li-Poly (Lithium 
Polymer) batteries, or NiMH (Nickel-Metal Hydride) batteries. These three batteries 
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are the best options because while there are many more, these are inexpensive, 
and are not difficult to find or charge. 
 

Table 5: Possible Battery Types (Courtesy Radek Jarema) 

 

The above table showcases the batteries that were outlined previously. From this 
table, it can be noted that the Li-Ion/Li-Poly batteries may be the best for our use 
case because they have a much higher voltage than the NiMH batteries, though 
NiMH have a better power-to-weight ratio and are safer than the Lithium batteries. 
The “C” in the current rows of the table is the capacity divided by hour. To 
understand the significance of “2C”, take an example battery capacity such as 
4000mAh, and multiply by 2C and the result is 8000mA. Once all the parts are fully 
determined, we have to find the battery necessary to last 1 hour based off battery 
consumption of the different parts. 

The batteries can also come in different constructions such as cylindrical, 
prismatic, or in a pouch. The Li-Ion batteries can come in cylinders or prismatic, 
but they require metal enclosures, whereas Li-Poly batteries can come in the 
previous or in a pouch as well. There are many cylindrical Li-Ion batteries, ranging 
in different diameters and lengths such as 14500, also known as AAs. These 
cylindrical batteries are a likely option, as battery packs can be constructed from 
them that we can use to power the Trash-E. The prismatic cells are unlikely to be 
useful in our application. Li-Poly pouches are another possibility, as they can be 
stacked and are often used for RC cars, drones, and other high-power 
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applications. However, the Li-Poly pouches must be secured safely within the robot 
and there must not be any sharp objects inside, because the Li-Poly batteries are 
much easier to be pierced than the Li-Ion ones. 

Since our parts need to have a maximum of 12V, we can aim to create a 12V 
battery pack to power Trash-E. Using voltage regulators, we can down step the 
voltage to necessary voltages when needed such as for Jetson Nano. 

3.4.2 Battery Requirements 

Table 6: Battery Specifications 

Requirement Specification 

Size Less than 200cm3 

Weight Less than 1kg 

Nominal Voltage 10-12V 

Maximum Discharge Current 10A 

Capacity Greater than 1250mAh 

In table 6, the specifications of the battery can be found. The size of our battery 
pack needs to be small enough to fit on Trash-E while minimizing the space it 
takes. We hope that this size and weight will be sufficient. To find the capacity and 
maximum discharge current, we use the following equation. 

 

Thus, we need batteries that can handle 10A discharge current. To calculate the 
capacity, we use the following equation. We found the average A by adding the 
average current of the components together. We want to power the robot for at 
least 1 hour. 
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3.4.3 Battery Options 

Between the three batteries: NiMH, Li-Ion, Li-Poly, we will examine which one is 
the best. Since we will be requiring a lot of energy, Lithium based cells are a better 
option than NiMH. 
 

Possible Li-Ion batteries that we can consider are the INR18650-35E 3500mAh 
batteries made by Samsung. The plan is to have 6 batteries, with 3 in series and 
those two rows in parallel. The table below shows the specifications of the batteries 
in this configuration. The batteries meet all of the criteria set in Table 7. The 
batteries are also less than $50 in total. 
 

Table 7: INR18650 Li-Ion Batteries Specifications 

Specification Detail 

Dimensions 67 x 57 x 38 mm 

VNOM 10.8V (3.6VNOM 4.2VMAX Single Cell) 

VMIN 9V 

Max Discharge Current 16A 

Volume 145 cm3 

Weight 300g 

Capacity 7000mAh 

 
The Li-Poly batteries that we found are the LP616594 4700mAh batteries. The 
configuration is 3 batteries in series. Table 8 shows the battery specifications. The 
Li-Poly batteries in this configuration do not meet the maximum discharge current 
that we specified, but it should be sufficient because the robot will not be running 
at maximum current. Otherwise, the Li-Poly batteries meet the rest of the 
requirements. 
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Table 8: LP616594 Li-Poly Batteries Specifications 

Specification Detail 

Dimensions 94 x 65 x 19 mm 

VNOM 10.8V 

VMIN 9V 

Max Discharge Current 9.5A 

Volume 113 cm3 

Weight 236g 

Capacity 4700mAh 

Out of the three batteries we considered, the Li-Ion batteries seem to be the best 
option. They meet all of the requirements set out for the robot.  

3.4.4 Recharging  

The batteries will need to be recharged. We can have two methods to recharge 
the batteries. The first method would be to use a DC power supply to fully charge 
the battery pack. With a DC power supply, we can limit the current flowing into the 
battery from the power supply. Figure 11 showcases a Li-Poly battery charging 
from a power supply. While it is a different battery from what we will be using, the 
concept is still the same. Another method would be to use a separate battery such 
as a 12V lead acid battery and use a Buck/Boost converter to step the voltage 
down so the batteries can charge properly. Figure 12 shows a possible 
configuration. 
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Figure 11: Battery Charging from a DC Power Supply 

 

Figure 12: Battery Pack Charging with Buck/Boost Converter 

Another option would be to design an AC to DC converter so that we can plug an 
AC adapter into the robot. The input AC adapter will be converted to DC and 
stepped down to a safe voltage so the batteries can safely charge. 

3.4.5 Photovoltaic Cells 

As a secondary goal, we hope to implement photovoltaic (PV) cells, or solar panels 
that can passively regenerate the batteries while Trash-E is operating. Things we 
have to consider for the photovoltaic cells are the size of the panels as compared 
to the size of the robot, the placement of the panels, and the recharge rate. 
Depending on the size of Trash-E, the implementation of photovoltaic cells may 
not be worthwhile, as they may not be able to provide any substantial energy at 
all. 
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The sun radiates photons, which contain varying energy, which varies based on 
the wavelength of sunlight. When the photons hit a PV cell, the cell attempts to 
absorb the photons, although all the photons are not fully absorbed, as some are 
reflected off. Once there is enough photon energy absorbed within the 
semiconductor material, the electrons inside the cell are free to move. When 
enough electrons have moved to the front of the PV cell, a voltage potential will 
have been created. Once the cell is connected to a load, such as a light 
bulb,  electricity will flow. We can use this to help charge the battery while it is 
operating outside. We will have to make sure that the charge from the battery does 
not flow to the solar cells while the cells are not charging. 

Photovoltaics have many advantages and disadvantages. PV cells are good for 
the environment because their energy generation releases no carbon emissions. 
This is beneficial for our robot because Trash-E will be able to work outdoors. Thus, 
we hope to be able to run Trash-E for longer periods of time when outside on a 
sunny day. Because PV cells have no mechanical parts, there will be little to no 
maintenance regarding them once they have been implemented.  

3.4.5.1 Monocrystalline Silicon Cell 

Monocrystalline Silicon Cells are generally more efficient than other types of PV 
cells. While they are more efficient, they also are much more expensive. As a 
result, we do not plan on using these types of cells, but they were considered in 
the preliminary stages. If we find low cost Monocrystalline PV cells, we may 
consider using them. 

3.4.5.2 Polycrystalline Silicon Cell 

Polycrystalline Silicon Cells are the cells that we will most likely use. They are 
cheap and abundant since they are the most popular types of photovoltaic cells. 
Section 6.2.9 further covers the types of solar cells that we will consider using in 
our robot design. 

3.4.5.3 Thin Film Cells 

It is highly unlikely that we will use Thin Film Cells because the flexibility and 
thinness of these cells are not necessary for our application. Furthermore, since 
they are less generally less efficient than the two previous cells, it is unhelpful to 
our design. In addition to the previous, some thin cells contain rare or toxic 
elements. These elements would be detrimental to our design because they would 
add unnecessary dangers to our robot. To make up for these dangers we may 
need to add potting to our circuits, which would add too much complexion that we 
do not need. 
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3.4.5.4 Miscellaneous Cells 

These cells such as high efficiency cells are out of the scope of this project 
because they are either exceptionally expensive, or are still a new technology 
that is not fully developed. 

3.4.6 Voltage Regulator 

3.4.6.1 Linear Voltage Regulators 

Each component within Trash-E requires certain voltages to operate correctly. By 
supplying 12V, each component should be able to be powered, either at 12V or 
stepped down to the required voltage. Certain components such as the ultrasonic 
sensor or the motors controlled by the Arduino will be taking power from the 
Arduino, thus it will not need to be stepped down. However, the Jetson Nano uses 
5V to power, thus the 12V will need to be stepped down. The purpose of a voltage 
regulator is to keep a constant voltage output regardless of input voltage or current 
draw from the load. There are two types of voltage regulators, linear and switching, 
each with their own benefits and drawbacks. A linear regulator, which can be found 
in the figure below, is a simple circuit with low noise and few parts necessary 
externally. It uses the control circuit to monitor and change the output voltage. 
Linear voltage regulators are slower at changing the output voltage if there is a 
large change in the input voltage because it is using a feedback loop to control the 
output voltage. In our application there should not be huge drops or rises in our 
input voltage, so this should not be a problem. The linear voltage regulator often 
has poor efficiency between the input and output voltage conversion. The linear 
voltage regulator can also only be used as a buck converter. This is not an issue 
in our use case, as we only want to step down our voltage. It can also get hot 
easily, so temperature must be taken into account. This is because when stepping 
down voltage, the excess power has to go somewhere, and thus the voltage 
regulator expels it as heat. To calculate the power loss, the following equation is 
used. Figure 13 shows a basic Linear Voltage Regulator 
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Figure 13: Linear Voltage Regulator (Courtesy Rohm) 

3.4.6.1.1 Standard Voltage Regulator 

 
Figure 14: Standard Voltage Regulator 

The standard voltage regulator in Figure 14, is a basic configuration using a 
Darlington pair of transistors. The Standard voltage regulator circuit can be 
replaced with an Integrated Circuit of a regulator. These options are later 
discussed in Section 6.28. Standard voltage regulators can have large voltage 
drops depending on the device specifications. Voltage dropouts for a standard 
regulator can vary between 1V and 2V. In cases where a regulator needs to drop 
from 120V to 12V, 1V voltage dropout is not a big issue. However, in a case where 
a voltage needs to be converted from 3.6V to 3.3V, the voltage dropout is a third 
of the input voltage. The output voltage must be less than the input voltage minus 
the dropout voltage, otherwise the regulator will be unable to function.  
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3.4.6.1.2 Low Dropout Regulator 

Low Dropout Regulators (LDO) regulators are useful when needing small voltage drop 
amounts. Some LDO regulators can have drops of 100mV, this is useful for cases between 
3.3V and 3V. Since we are dropping down 12V to 5V, and possibly 12V to 3.3V or 5V to 
3.3V, we will not be needing a LDO regulator. 

3.4.6.2 Switching Voltage Regulators 

 
Figure 15: Typical Switching Voltage Regulator Circuit of a LM5017 

A switching voltage regulator is a type of regulator that allows for both buck and 
boost of a voltage. This is possible by having a switching element that the circuit 
uses to change input power into a pulse. The voltage is smoothed out with the use 
of different capacitors and inductors, FETs, and other components. Figure 15 
shows a typical circuit of the switching voltage regulator. It is more complex than 
the linear voltage regulator in Figure 13. The output power is set to the desired 
voltage, and once it reaches it, the switch is turned off. When the switch is off, 
there is no input power being supplied. By continuously doing this process at high 
speeds, the efficiency between the output voltage and input voltage is much higher 
than a linear regulator, which also results in lower temperatures because there is 
not as much power being dissipated as heat. Although the switching voltage 
regulator has these advantages, there are also several disadvantages such as the 
regulator being much more complex and requiring more external parts.  
 

Within Trash-E we will not be requiring precise voltage drops with tight margins, 
we also want to keep costs down. As a result, we will end up using a Standard 
Linear Voltage Regulator circuit, as that should be sufficient. 
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3.5 Locomotion and Mapping 

3.5.1 Different Types of Movement 

There are a few options to how we can approach maneuvering Trash-E around on 
its own. As a recap, Trash-E needs to be able to maneuver any area to find trash, 
assuming it is physically capable of traversing the area given its physical 
limitations. Given Trash-E’s physical limitations, Trash-E should be able to 
maneuver on any flat surface. However, this area or environment that Trash-E is 
placed into won’t always be familiar and can be entirely new every time. So, there 
must be certain methods in our design that allow Trash-E to maneuver around an 
unknown environment and accomplish its tasks while being autonomous or without 
manual control via a controller. 
 

One way of detecting obstacles in the robot’s path is using bumper sensors. These 
are the least useful in terms of Trash-E since we have no way of determining where 
it is, where it’s been, and where it will go. It is essentially random movement that 
is up to chance and the layout of the environment and can’t guarantee every spot 
will be reached. The robot can also get stuck in an area depending on the 
configuration of the environment and the movement capabilities of the robot itself. 
 
Facing some of the same challenges as the bumper sensors, this approach 
involves using ultrasonic sensors on all sides of Trash-E that will detect incoming 
obstacles in order for it to keep moving and avoid obstacles. If the sensors don’t 
detect anything close to the chassis, then the robot would continue to move 
forward until a sensor has detected an obstacle that is too close. If the sensor 
detects an object in front, Trash-E will maneuver to the right or left depending if the 
sensors on those sides do not detect any obstacles. In the case where Trash-E 
leads itself into a dead end in which case the sensors on the front, left and right 
are triggered, then Trash-E would reverse out of that spot. However, there are a 
couple of downsides to this approach. There is a chance that Trash-E could get 
stuck in a loop and not be able to explore the whole area that we want it to clean. 
Another downside is that the movement would be completely random. This is bad 
because it would lead to a lot of repeated work since Trash-E would not know if it 
had traversed the area, it is currently traversing. This could lead to a much longer 
runtime to complete its cleaning task. 
 
This approach we considered is a very simple approach to this problem but has 
some major downfalls. This approach involves Trash-E solely being guided by the 
computer vision algorithm and the objects that the camera will detect. In any case, 
when the robot detects an object of interest then it will approach it accordingly and 
then pick it up. Once it completed its task, it will then spin until it detects another 
object of interest. This method would have worked fine if all the objects are always 
right next to each other, however, this will usually not be the case. If there were 
objects scattered across a room, there is a chance that Trash-E would not be able 
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to detect an object either because it is too far away or there is an obstacle 
obstructing the view of that object. 
 
Another way is with a camera. Visual detection is better than the bumpers since 
we can gather points of interest in the surrounding environment. It also allows us 
to keep track of the robot’s position by using landmarks. The issue with visual 
detection is it is more sensitive to light and can throw off the calculations or blind 
the robot entirely. 
 
One way to fix this issue is using a lidar sensor. These sensors are similar to an 
ultrasonic sensor except it uses light waves. “A typical lidar sensor emits pulsated 
light waves into the surrounding environment. These pulses bounce off 
surrounding objects and return to the sensor. The sensor uses the time it took for 
each pulse to return to the sensor to calculate the distance it traveled”. 
[https://velodynelidar.com/what-is-lidar/] Sending out these pulses many times per 
second in a complete circle around the sensor achieves a real-time map of the 
immediate environment. This information can then be processed by an algorithm 
that makes a graphical representation of the surrounding area. lidar is a very 
valuable technology when generating detailed maps of the environment around a 
robot. 

3.5.2 Simultaneous Localization and Mapping (SLAM) 

The third approach is a fully autonomous approach and method that utilizes both 
localization and mapping which is called simultaneous localization and mapping. 
SLAM is a method that allows autonomous robots and vehicles to build a map of 
its surroundings and localize itself within that map at the same time. With this 
method an autonomous robot can use these algorithms to map out an unknown 
environment. At the same time, the robot is able to know where it is in the 
environment. With this map information, robots can use path planning and obstacle 
avoidance.  
 

 
Figure 16: Comparison between no SLAM and SLAM (Courtesy of MathWorks) 
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A popular example of simultaneous localization and mapping in the real world is 
the home robot vacuum. These robot vacuums can navigate the floor of a home 
autonomously and figure out a path that can ensure it will vacuum every part of the 
floor. At the same time, these robot vacuums are in new environments and can 
create a map of the floorplan so that the path taken is the most efficient and avoids 
any obstacles or obstructions. In figure 16, we see the difference SLAM makes for 
the robot vacuums. This is very similar to the comparison of approach two and 
three for Trash-E. With our second approach we would move very randomly while 
in the third approach utilizing SLAM, our movement would be more defined and 
efficient for time and battery life.  

 

 
Figure 17: Flow of SLAM process (Courtesy of MathWorks) 

 
There are two things that need to be done to achieve simultaneous localization 
and mapping. This includes the front end and back-end processing. The front-end 
processing is where sensor signal processing is done. The back-end processing 
is where pose-graph optimization is done. In figure 17 we can see the flow of the 
SLAM process, which goes from taking in sensor data to frontend processing, 
backend processing, and finally we get our map. SLAM uses different methods of 
gathering data such as from a camera, lidar device, odometer, wheel revolutions, 
or other imaging sensors to determine the amount of movement needed and its 
location in the map which is called localization.  
 
There are also different versions of SLAM that have been developed. Two that we 
are considering for Trash-E are visual SLAM and LiDAR SLAM. Visual SLAM 
primarily uses images acquired from cameras and other image sensors. The 
cameras or sensors that are used can range from complex to simple and can be 
very expensive or inexpensive depending on the needs of accuracy. The next 
popular SLAM is LiDAR SLAM which uses a LiDAR device that is a laser sensor 
that have a 360 view. This method of SLAM is significantly more precise than visual 
SLAM.  
 
For Trash-E it would be best to use LiDAR SLAM as this method is much more 
accurate and efficient. Therefore, we would need to place a LiDAR device on 
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Trash-E that will use 360 laser scans to detect the area around it. Trash-E will 
maneuver along an area and simultaneously create the map of it and localizing 
itself as well within that map to plan its path.  
 
We have a couple of options for implementing SLAM on Trash-E. One is to use 
MATLAB’s robotic systems tools that offer capabilities for implementing SLAM. 
MATLAB offers toolkits for implementing the SLAM onto Trash-E as well as for 
what comes after which is path planning for autonomous driving over that map. 
The downside with MATLAB however is that it is not free and in fact very 
expensive. We would need to spend approximately hundreds to use the toolkits 
from MATLAB on top of paying to use MATLAB in the first place. This is out of our 
budget range and doesn’t make sense for us to use. However, we could use 
MATLAB on the computers located on UCF and work on SLAM at the UCF 
facilities. But in terms of personal use and working on the project at home, 
MATLAB is not the most feasible option. 
 
The other option is to use an open-source SLAM library called BreezySLAM 

developed by Professor Simon Levy from Washington and Lee University. This 

package library gives us the ability to implement a LiDAR based SLAM on our 

robot at no cost and with Python or C++. Compared to using MATLAB, using this 

open-source library makes sense financially and allows us to develop at home. 

However, being that it is an open-source package created by an individual, it 

might not have all the features that are available on MATLAB for SLAM. 

3.5.2.1 SLAM Implementation 

When we initially place Trash-E in a new location, we will need to map the area 
that it will autonomously drive through. This is where SLAM will come into play. 
Trash-E will have a LiDAR on its body that will do a scan of the objects surrounding 
it to sense the distances and angles of obstacles around it. If needed, we can use 
the wheels on the body to determine the distance that has been driven by Trash-
E and how it has turned. We can do this by calculating the rotations of our 
continuous servo motors that control the wheels with the circumference of them to 
get the distance traveled.  
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Figure 18: Example of pose graph optimization (Courtesy of MathWorks) 

During this process we will be creating our map with pose graph optimization. Pose 
graph optimization helps fix the errors of positions and distances when using SLAM 
to create the map. Without pose graph optimization our map would likely look very 
inaccurate and have a lot of errors when relying solely on the sensors. Pose graph 
optimization will use nodes of poses (positions on the map) and constraints 
between the nodes which we can call edges. At some point in the process of 
SLAM, we will detect the same features once again with the sensors. This means 
that we can likely close the loop of our map traversal between these two nodes. 
Our pose graph optimization algorithm will pull these two nodes as close as 
possible until the features they detected match. During this process all other nodes’ 
edges in the map experience “tension” and are pulled simultaneously as the 
original two nodes are being pulled together. After this is done the errors in the 
map have been mostly corrected and the is much more accurate than before the 
pose graph optimization. An example of this is optimization is shown in figure C 
where you can see the original map had many errors and very uncertain but after 
pose graph optimization the map is a lot cleaner and has less errors. 
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Once we have the map for our area, we can make a binary occupancy grid out of 
it which we can use to determine an optimal path to traverse this area/grid while 
avoiding any obstacles. For this we can use many shortest path algorithms and 
search algorithms. One that we can use is the A* search algorithm which is more 
efficient than normal graph search algorithms. We could also use RRT and RRT* 
(Rapidly Exploring Random Trees) algorithms which are sampling based search 
methods.  
 
With the map and path planning made Trash-E will continuously and 
autonomously navigate the area which it has mapped using its path planning on 
the grid. While navigating autonomously through the area, our computer vision 
will be looking for the trash objects in its view. If while traversing Trash-E detects 
a trash object, priority will be given to the computer vision algorithm so that it can 
control the movement of it towards that piece of trash so that it can complete its 
task of picking it up and placing it in its bin. After it has been placed in it’s been, 
control will be given back, and it will continuously keep searching the area for 
more trash. 

3.5.3 Visual vs. Lidar 

 

Figure 19: Robot Path Using VLSAM. (courtesy of Gianmarco Chumbe/CNET) 
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Figure 20: Robot Path Using SLAM with a Lidar Sensor (courtesy of Gianmarco Chumbe/CNET) 

While utilizing visual locomotion can still complete the task, it is not very efficient 
as it has a lot of retracing, which can be seen above in Figure 19, due to only 
collecting points from in front of the robot at any given time. Lidar allows the same 
situation to be optimized and be more efficient which is why we want to utilize this 
technology. The highest efficiency and least amount of extra movement is 
necessary for Trash-E to keep power consumption to a minimum. When compared 
to VSLAM, Figure 20 shows significantly less retracing and a more optimized path. 

3.5.4 Lidar Options 

Table 9: Lidar Sensors 

 Slamtec 
A1M8 

MakerFocu
s YDLIDAR 

X2L 

EAI 
YDLIDAR 

X4 

getSurreal 
XV Lidar 

Hokuyo 
URG-
04LX-
UG01 

Price $100 $70 $80 $150 $975 

Availability In Stock In Stock In Stock In Stock In Stock 

Weight 370g 126g 180g 370g 160g 

Input Power 5V 5V 5V 5V 5V 

Power 
Consumption 

500mA 500mA 500mA 500mA 500mA 

Laser Safety Class 1 Class 1 Class 1 Class 1 Class 1 

Scan Radius 12m 8m 10m 6m 5.6m 

Laser Range 
Scanning 

360° 360° 360° 360° 240° 

Accuracy +/- 3.5% +/- 3.5% +/- 3.5% +/- 3.5% +/- 3% 
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Scan Rate 5.5 Hz 
(10Hz 
Max) 

6 Hz 7 Hz 5 Hz 10 Hz 

Ambient 
Illuminance 

No 
Informatio

n 

No 
Information 

No 
Informatio

n 

No 
Informatio

n 

Florescen
t Max: 

6,000 Lux 

Communicatio
n 

UART/US
B 

UART UART UART Mini USB 
2.0 

 

3.5.4.1 Price 

Since we are choosing to do a lidar based SLAM, we must purchase a sensor to 
gather the necessary data. Due to the nature of the technology, lidar can become 
quite expensive very quickly. Our first choice of sensor was the Hokuyo URG-
04LX-UG01 due to it being tested by others using the Python library BreezySLAM 
that we will be using and knowing that there are no compatibility issues. The issue 
with this sensor for our use case is the price of $975 which is over double our total 
budget. Even though this is a very good sensor for education and researchers, we 
won’t be able to use it. Instead, we did some searching for lower end, or hobbyist, 
sensors. The prices range from $70-$150 which are more realistic for our robot. 

3.5.4.2 Weight 

Weight is a large consideration for our robot when choosing hardware parts. The 
more the robot weighs, the more energy we need to expend to move it which 
depletes our batteries quicker. The goal for our sensor is to be as compact and 
lightweight as possible. The MakerFocus YDLIDAR X2L boasts its impressive 
weight of only 126g, while the Slamtec A1M8 is more than double at 370g, along 
with the getSurreal XVLidar. We want to keep our sensor below 200g as to 
minimize the total weight of our robot to prolong the up time we can pick up trash. 

3.5.4.3 Power Specifications 

Since lidar sensors spin around to send the laser signals, they need something 
that can accomplish this task. All the sensors we looked at utilize DC motors. Each 
DC motor has an input power of 5V and consumes a maximum current of 500mA 
while the motor is running. We will be able to supply the required 5V using the 
voltage regulator boards that were designed for Trash-E. The idle currents varied 
between them in the range of 200-300mA, but we must use the worst case where 
the motor is running all the time to spin the sensor. This gives us an accurate 
measurement of how long the robot can run at the minimum. 

3.5.4.4 Laser Safety 

Working with lasers of any kind requires certain safety specifications. Different 
safety procedures and PPE are required with different classes of laser safety. 
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According to the Environment, Health and Safety, Class 1 lasers are “eye-safe 
under all operating conditions. A Class 1 laser is safe for use under all reasonably 
anticipated conditions of use; in other words, it is not expected that the MPE can 
be exceeded”. [X] They also describe a Class 1 Product as “a laser product or 
device which may include lasers of a higher class whose beams are confined 
within a suitable enclosure so that access to laser radiation is physically prevented. 
Such products do not require a laser warning label on the exterior”. [X] The lidar 
sensors we are considering utilize an enclosure to ensure the laser radiation is 
physically prevented, making them a Class 1 Product. 

3.5.4.5 Scan Radius 

This specification of the sensor indicates how far from the center of the sensor the 
laser can accurately measure. The lowest radius in our price range is 6m. Given 
our robot will be used indoors, this minimum radius is sufficient. At any given point 
we will be within 6m of a wall for our robot to locate an obstacle of some sort, 
whether it be a wall or an unknown object. 

3.5.4.6 Laser Range Scanning 

Creating a full map of the environment is essential for Trash-E to traverse 
efficiently. If the map is not generated completely, there will be discrepancies with 
the path it should take since the information is not there. To generate a full and 
complete map, we will need the lidar sensor to be able to fully spin 360°. This will 
omit the possibility that obstacles weren’t detected due to the robot having not 
faced that direction. All the sensors we are considering are capable of rotating 
360°. 

3.5.4.7 Accuracy 

Measurements of the environment also need to be accurate so the robot may 
traverse efficiently. Out of all the sensors we investigated, the lowest accuracy 
range is +/- 3% and the average is +/- 3.5%. With the 3% variance being a higher 
costing sensor, we must stick with the 3.5% variance. This will not affect our real-
time measurements greatly and will be sufficient for the environment mapping 
since the robot will not be going that close to walls and obstacles to begin with. 

3.5.4.8 Scan Rate 

The scan rate determines how many full scans of the environment can be 
completed during one second. Given that our robot will be moving relatively slow 
to other autonomous mobile robots, like quadcopters, the scan rate is not too 
important for our decision making. Since we will also be using the Jetson Nano for 
our computation, the extra information that we would gain from having a higher 
scan rate won’t be properly utilized like it would if we were using a higher-powered 
CPU. 
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3.5.4.9 Ambient Illuminance 

This specification is a very important one, although unfortunately most of the 
sensors did not have information regarding it on the manufacturer’s websites or on 
their datasheets. Ambient illuminance tells us the brightness conditions that the 
lasers will work in without error for different lighting types. The only option that tells 
us this information is the Hokuyo URG-04LX-UG01 which is no longer under 
consideration. For this sensor, the maximum florescent max is 6,000 lux. 
According to Green Business Light UK[/], “the lux of artificial indoor lighting, 
however, is typically 1,000 lux or below…”. They also point out that the lux of direct 
sunlight is a minimum of 32,000 lux and the minimum of ambient daylight is 10,000 
lux. Given this information, even if the maximum ambient illuminance for the 
sensors that had no information is only 25% of the Hokuyo sensor, the robot will 
have a maximum of 1,500 lux and is still above the 1,000 typical lux. Sunlight is 
the only cause for concern when it comes to light. The robot will still be able to 
successfully complete the environment map without error if the shades are drawn 
to keep the sun out. 

3.5.4.10 Communication 

All sensors utilize UART at the minimum which is sufficient for one way 
communication from the sensor to the Jetson Nano. At least one sensor utilizes 
USB but this is not necessary to use as there is enough GPIO pins for us to use 
with the Jetson Nano. 

3.5.4.11 Conclusion 

Given all the considerations above, we are choosing the MakerFocus YDLIDAR 
X2L. The price point keeps us within our budget and the weight will keep power 
usage low. The other features that this sensor is lower in than the competitors are 
negligible for our use case. 
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4.0 Constraints 

4.1 Description 

This section covers the design constraints for Trash-E the litter picking up robot, 
and the associated standards with its design. 

4.2 Economic 

As the whole team consists of a group of students, it is to be expected that our 
capacity to spend resources is relatively small. Therefore, in order to complete the 
design in a cost efficient and on time manner the cost will be no more than four 
hundred dollars. The four hundred dollars allocated will be split amongst the four 
members of the group, which allows the burden of purchasing parts to be evenly 
distributed. Being mindful of what each member has spent will ensure that no 
conflict is had between the members. To reinforce this a bill of materials with who 
funded was implemented. 

4.3 Environmental 

Terrain was immediately taken into consideration when brainstorming ideas for the 
robot. Having a robot operating in several different kinds of terrains would take 
away from our main focus and consume more of our time and resources. For 
Trash-E, we mainly plan on operating on flat terrain such as tile floors, carpet, 
cement, or anything similar. With two wheels and a swivel wheel in a triangular 
configuration would not allow us to travel in any rough terrain. Implementing a 
design for rough terrain would be impractical for its intended use as well. 

4.4 Social 

The design of the robot will be mainly built around functionality as it is not intended 
to be used for anything other than picking up trash/litter, looks may be important 
later down the line. Therefore, in exchange for soft and aesthetic looks we can 
focus on functionality for the sake of development. Take for example iRobot®’s 
Roomba®, it’s sleek and functional design allows it to do its job while not being an 
eyesore. As a stretch goal, a proper casing that is appealing may be developed.   

4.5 Sustainability 

In the case of sustainability, this robot would be fully sustainable as it will be 3D 
printed with polyethylene terephthalate glycol (PETG). The production of plastic is 
at an all-time high in the twenty-first century damaging the Oceans and polluting 
the environment around us. The majority of 3D plastics can be easily recycled back 
into its unused filament string form leading to less plastic ending up in the 
environment. Manufacturing metal parts specific to the project may lead to further 
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trash in the garbage heap when the robot is no longer operating or is not needed. 
To combat the issue of pollution, a shredder designed for cutting plastic along with 
a filament extruder should allow for the reuse of this plastic material. 

4.6 Ethical 

Concerning the job security of janitors and people whose job it is to clean up after 
public events or parties. This robot is designed in such a way that it should not put 
people in this occupation at risk as it was never intended to perform the entirety of 
their jobs in the first place. 

4.7 Time 

For this project we have two semesters to design, build, test, and present. This 
greatly impacts the sophistication of our robot as we have to make sure we can 
implement our idea in about 3 to 4 months. This can also affect the amount of 
primary and secondary features we get to. If something goes wrong or takes longer 
than expected, we will have to re-evaluate what we can get done in the remaining 
time. To combat this, work will be done in the first semester in making sure 
everything is researched and planned out as it will lead to a smooth development. 
Documentation as well as research and some testing should be done by December 
2021. Having most of the research, testing, and documentation done by then 
should give enough time to make slight mistakes for the completion of the project 
by April 2022. 

4.8 Safety 

This robot is to autonomously operate in areas where human traffic is taking place; 
there must be multiple fail-safes as well as safety practices to prevent harm during 
operation. In the case of collision, Trash-E is plastic and light weight, the max 
voltage supplied to the motors is capped to ensure that the robot moves at a 
specific low speed. The gripper arm is designed in a way to avoid sharp edges and 
protrusion, this also goes for the chassis design. With the use of Ultrasonic, 
collision detection can be implemented to prevent the collision case mentioned 
earlier; on top of that, a camera for object detection can also be trained to not 
operate while a human is nearby. Electronics for the robot should all be grounded 
and hidden from direct contact from users. Stored inside the chassis, the 
electronics will be contained in a separate compartment to give easy access to 
developers and to protected users of the robot. Finally, an option for manual 
shutdown should be included in the case of an unforeseen action during runtime 
or if the robot is found to not be operating properly. Further elaboration on safety 
can be viewed in the standards section of the document. 
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4.9 Manufacturing 

This robot being designed to operate indoors, operation outdoors is outside of the 
project scope at the moment. Furthermore, manufacturing costs can be saved 
since we do not need to deal with outdoor elements. Despite this the robot should 
still be reliable and durable enough to operate for several hours. Currently we are 
limited to the following methods for making parts for our robot: 
 

 

1. 3D Printing: Using the 3D printer in the Innovation Lab or using a printer 
that a group member owns. Manufacturing of parts this way allows for 
greater creativity and less time for production. Using Autodesk can make 
for short work of chassis designs and moving components for the robot. 
This option is also relatively cheap if we provide our own plastic or use the 
schools. 

2. Purchasing wood: Going to a home improvement store and getting the 
required wood to build into what we need. We also need access to a 
workshop that is provided by UCF. This would be one of the cheapest 
options, but it also requires the skills for woodwork as well as being able to 
design the specific measurements for schematics. Replacing parts would 
be cheap but would take some time, similar to 3D printing, to reproduce. 

3. Purchasing metal: This approach would be potentially most expensive and 
difficult due to not having the correct tools. Similarly, we would be able to 
use the workshop provided by UCF, but working with metal is the hardest 
and, potentially, the most dangerous option. Replacing broken components 
on the chassis would take a great amount of time to do, but the likelihood 
of it happening in the first place would be low. Weight also has to be taken 
into consideration, as metal would be the heaviest out of all of the three 
options.  
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5.0 Standards 

5.1 Lithium-Ion Battery Safety Standards 

Several international/universal industry practices are used in upholding standards 
in lithium-ion battery safety, this also applies to regular lead acid batteries. 
Organizations such as IEEE, ICE, IECCEE, U.S based OSHA, NRT, ANSI, 
ISO/IEC, UN/DOT, UL, and many more have thoroughly created many standards 
for the regulation of lithium-ion batteries, all have the facilities and equipment to do 
so. For this project we will follow the IEC 62133 (International Electrotechnical 
Commission) as they create non-profit standards internationally. The scope in this 
standard states that “IEC 62133 specifies requirements and tests for the safe 
operation of portable sealed secondary lithium cells and batteries containing non-
acid electrolyte, under intended use and reasonably foreseeable misuse” (IEC). 
Several testing procedures, as well as maintenance requirements are 
recommended by this standard. 

5.2 Standard SystemC ® Language Reference Manual Standard 

The standard IEEE 1666 2012 lays out clear definitions on how to go about with 
syntax and proper procedure on developing certain aspects of C language 
including C++. Seeing as this project involves heavy usage of both software and 
hardware as well as the communication between the two, for example, serial data 
transmission from the Nvidia Jetson to the microcontroller that interprets data sent 
and act out instructions. In other words, it provides an extensive list of core 
language class definitions, predefined channel class definitions, system C data 
types, system C utilities, terminology, and simulation semantics. All of those listed 
previously will be in use during the development and documentation of our project. 
 

As a side note, this standard uses the words “shall”[16], “should”[16], “may”[16], 
and “can”[16] that carry their own significance. Shall being the most important 
meaning that what is requested in the standard is mandatory. Should is mainly a 
recommendation and nothing more. Finally, can is used to imply that something is 
possible, or within the scope of operation. For example, shall is used when dealing 
with function definition and side effects in section 3.3.2 in the standard. The use of 
such is explicitly used throughout the standard like in this case: “Such functions 
shall not have any side-effects that would contradict the behavior explicitly 
mandated by this standard.”[16]. They clearly define what should be done 
throughout the standard with similar cases to the previous quote. Not following the 
advice indicated by the word “shall”[16] will typically cause issues within the C 
system you are designing.  
 

Using this standard will “provide a C++-based standard for designers and 
architects who need to address complex systems that are a hybrid between 
hardware and software”[16]. Therefore, it will increase our options as well as 
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provide us with guidance for the solutions to our complex software and hardware 
systems. 

5.3 Software and Systems Engineering – Software Testing 

ISO/IEC/IEEE 29119 is a standard that takes multiple other standards and 
compiles them into one coherent standard. Developed by the International 
Organization for Standardization and the International Electrotechnical 
Commission, they attempt to make a worldwide standardization that could be 
adapted to work internationally. 

Mainly, the concepts applied from this standard are the testing process, as well as 
the testing techniques. Outlining the testing process consists of splitting up and 
organizing several processes that need to be done. In our case, with four team 
members we can organize the software and hardware processes by assigning the 
preferred roles of them. 

Test management will undoubtedly be the largest section as it is paramount that 
proper testing procedures are taken to ensure quality code and operation. First, 
coming up with a plan on how to execute a testing plan until its completion; this 
can consist of several techniques to accomplish this with liberty to adjust plans to 
meet design goals. For example, the test plan is created, testing starts and is 
monitored while providing needed updates, and finally test completion. In the test 
completion phase plans for further improvements or maintenance can be made, 
but it also serves as a final check if guidelines were followed before the release of 
the product. 

Testing techniques include specification-based testing, structure-based testing, as 
well as experience-based testing. Each comes with its own approach to the testing 
process, and with their respective advantages and disadvantages. Specification-
based testing is more about using previous information gathered such as 
documentation gathered from part manufacturers about specifications for 
operation. Furthermore, there are several ways to implement structure-based 
testing as there are many sources to pull from. Structure-based testing can pull 
from outside datasets, sample codes, models, and documentation to achieve 
design goals during testing; there are several ways to go about this. Experience-
based testing relies on the testers previously gathered experience and knowledge. 
The tester in this case could create a model to aid in the structuring and 
development of code and the software, though it is slightly limited due to the fact 
of not relying on outside sources. This technique is also not as predictable since 
each developer/tester has varying skills in different fields. In this case, direct 
debugging and testing of code is utilized to develop features which would take 
more time, but it can lead to creative solutions. Errors encountered will also depend 
on the testers ability to predict the operation of written code as well as the ability 
to create unit tests to cover many different input cases. 
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Conforming to the standard as well as its shown practices will make it so that the 
structure of the software we develop will be able to apply to this standard. Although 
ISO/IEC/IEEE 29119 provides many options for test management and testing 
techniques, many of them will be excluded from this robot’s development as 
several of them provide enough guidance for a small development group. The 
testing techniques as well as the organizational procedures will be taken into 
consideration. With the combination of those two principles, proper planning, and 
adequate testing of each testing block will ensure proper adherence to the 
standard. 

5.4 Programming language – C Standard 

International standard ISO/IEC 9899 intends to specify: “the representation of C 
programs”, “the syntax and constraints of the C language”, “the semantic rules 
for interpreting C programs”, “the representation of input data to be processed by 
C programs”, “the representation of output data produced by C programs”, and 
“the restriction and limits imposed by a conforming implementation of C” [19]. 
This is what we will be using for the majority of the embedded software design for 
the project. 

Within the standard document, the language section includes notation, concepts, 
conversion, lexical elements, (constant) expressions, declarations, statements 
and blocks, external definitions, preprocessing directives, and future language 
directions. Typical concepts for programming languages like syntax, data type 
identifiers, and more are included under annex A. Following this is further 
information on several libraries that aid with specific operations, for example, the 
math.h or string.h libraries that will be very useful during development. Before the 
creation of the C standards, a large amount of functionality may have been 
difficult to know about. 

Previously mentioned aspects of the standard will aid in the development of 
drivers on the embedded side of Trash-E the litter cleaning robot. 
Communication between the Nvidia Jetson and the microcontroller will use a 
serial communication protocol dealing with parsing through strings. For example, 
the Nvidia Jetson sends a compressed string of instructions to the microcontroller 
for motor control; the way to interpret this string is to make an algorithm and use 
functions given to us by libraries to do so. We are doing a Python to C 
conversion as well, so data types will also be important to keep track of. While 
testing we must keep in mind what data type is being sent. An example of this 
would be sending a string from python and having to use a conversion to make it 
a long int or unsigned float for interpretation. Pulse width modulation will also 
need to be calculated for the motor controls, so the math library will be of great 
use for handling the work required. Without the use of this standard, much of the 
functionality for the embedded/hardware side would be mediocre in efficiency at 
best, as the saying goes “don’t reinvent the wheel”. Having a fast and efficient 
system is essential to operating in real time to improve the responsiveness of the 
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robot. Coincidentally, next to assembly, C language is one of the fastest 
languages to choose from.   

5.5 Robot Systems – Safety Requirements Standard 

The scope for the standard ANSI/RIA R15.06 states that “this safety standard 
applies to the manufacture, remanufacture, rebuild, installation, safeguarding, 
maintenance, testing and start-up, and training requirements for industrial robots 
and robot systems” [20]. A general overview of the sections provided by the 
standard: definitions, hazards to personnel, actuating controls, Installation of 
robot systems, safeguarding personnel, safeguarding devices, and maintenance. 
The purpose of this standard in our case is to avoid potential setbacks and 
damages in the development of Trash-E. It also provides several propositions for 
certain designs for power systems and other features. Some of these 
suggestions include designing reliable circuitry for controls, robot stopping 
circuits and emergency stop, grounding requirements, and much more.    

To avoid any injury to users of the robot we are following several of the pieces of 
advice given by ANSI/RIA R15.06. Circuitry being implemented for the power 
systems need to be safe to avoid electrical shocks and shorting of the system. 
Section 6.10 encourages the grounding of any electrical system within the robot; 
this also includes limiting access to the electronics during use. Since Trash-E will 
be interacting with its surrounding environment, it's important to include an 
emergency stop for unforeseen actions by the robot. Developing reliable circuitry 
with minimal interference from outside sources will also be essential to the 
robot’s operation, because if the motor controls and power supply DC to DC 
converter are not reliable unforeseen operations may happen. 

In the case of our alternate design of having an articulate arm, rather than a stiff 
one directional one, ANSI/RIA R15.06 also provides safety standards for this. 
The standard suggests defining a maximum, restricted, and operating space for 
articulate robot arms. Shown in Figure 16 below is a graphical representation of 
this concept. 
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Figure 21: Use of Maximum, Restricted, and Operating Space 

Maximum space, as the name suggests, the complete reach of the articulate arm 
to show the potential reach of it. This is useful in the case of estimating the safe 
range a user or bystander can be in during operation. Restricted space indicates 
the areas where the articulate arm should not move to. In the case of Trash-E, the 
arm would have a 180-degree arc of restriction behind, because if it would rotate 
into that range, it would hit the electronics as well as the chassis. The operating 
space in front of it, also a 180-degree arc, will be its operating space to pick up 
trash. For throwing away the trash after it had been picked up, we would use the 
case of dynamic restricted space for the arm to be able to bend into the restricted 
zone and drop the garbage into the garbage can. The definition for dynamic 
restricted space is as follows: “the safeguarding interlocking logic may be such that 
the restricted space is redefined as the robot performs its tasks”[20]. The stiff arm 
design would not require as many restrictions due to its two dimensional plane of 
movement. 
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6.0 System Design 

6.1 Software Design 

In this section we will be going over how the Trash-E software will be designed. 
The following subsections will split the information for the software design on the 
three main software platforms. These will involve design explanations of the 
various features and algorithms that will be used on the microcontroller, Jetson 
Nano, and computer vision. 

6.1.1 Software Overview 

Trash-E should be able to maneuver and spot trash and pick it up on its own. 
Trash-E will be roaming on its own until it finds a piece of trash. Trash-E will be 
constantly using computer vision to be able to recognize these trash items and 
maneuver its way towards each object. Once a trash item has been detected, 
Trash-E will move towards it until it gets a certain distance close to it. Trash-E will 
have an arm with pincers that it will use to pick up the trash. It will need to be able 
to decide how it will approach the pickup of the item. It should be able to precisely 
grab the item and put it into its trash bin.  

6.1.2 Computer Vision 

6.1.2.1 Functionality 

Trash-E will have a camera connected to its main computer on the Jetson Nano. 
A camera will be used to capture images of what is in front of Trash-E. The camera 
will be capturing video and our computer vision software will be analyzing each 
frame. In each frame our algorithm will perform object detection and look for the 
trash items of interest. If there are multiple items in front of Trash-E that are of 
interest, the software will decide to follow the item that is closest to Trash-E. The 
Jetson Nano will be powerful enough to process the images so that Trash-E can 
scan and identify trash objects in its view in real time. Once Trash-E has decided 
which trash object is detected it will move towards that object. The software will be 
sending data to the microcontroller through serial communication in order to 
determine a PWM signal that will control Trash-E’s direction of movement. Once 
Trash-E is close enough to the object, the software will stop accelerating Trash-E 
and bring it to a complete stop so that it can now pick up the trash. Once the item 
is in Trash-E’s bin, the computer vision software will initiate once and again and 
begin to look for an object. If there is no object in view, Trash-E will rotate until one 
is detected or a certain amount of time has passed in order to conserve power. 
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6.1.2.2 Development Environment and Platforms 

6.1.2.2.1 Programming Language for Computer Vision 

We are going to primarily use Python to develop the computer vision and machine 
learning software that we will be using on Trash-E. Although not as performant as 
languages like C++ due the nature of it being compiled at runtime, Python is a very 
powerful language, has a lot of machine learning libraries, and the code syntax is 
very easy to read.  
 

With Python we will worry less about the syntax of the code and its semantics since 
it has no types, pointers, and everything is handled for you in easily readable code 
while still having all the powerful data structures and object-oriented functionalities 
that C++ provides. Leaving all the focus on the implementation of our machine 
learning and computer vision algorithms for our application. If we would have gone 
with C++ as our primary language, there would have been a lot of nuances in the 
language that we would have to deal with aside from the machine learning and 
computer vision implementation. C++ has things like types and pointers that could 
possibly complicate our program that are handled behind the scenes in python. 
However, C++ is a faster language and is very popular for robotics programming.  
 

Python is already supported with many machine learning and computer vision 
libraries that we can use as well as many other frameworks, and extensions that 
provide a lot of functionality. Python is platform independent meaning that we could 
develop and implement our computer vision code on our desktop using the 
Windows operating system and pass on our code to a Linux operating system and 
it would still work as intended. This makes implementation of what Trash-E needs 
a lot more simple and more efficient. 

6.1.2.2.2 Development Environment 

For this project the plan is to use an IDE to develop our code for computer vision 
and machine learning such as PyCharm. Using an IDE like PyCharm will give us 
the best development environment to be able write our code with great debuggers. 
PyCharm is also directed towards use for writing code in Python and offers a lot of 
support for doing so. We will be developing code on a Windows operating system 
since it is the current operating system that we own and the libraries and tools we 
need to develop our machine learning computer vision platform are mostly cross-
platform in terms of the operating system. 
 

We will be installing another necessary tool and platform for our development 
environment called Anaconda. This is specifically to configure our development 
environment for machine learning and computer vision development in Python.  It 
is an open source Python distribution platform that acts as a data science toolkit. 
Anaconda offers a quick way to install and use thousands of data science and 
machine learning packages for Python that include many tools and libraries using 
an easy to use desktop GUI. These include but are not limited to TensorFlow, 
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PyTorch, NumPy, SciPy, PyCharm. Extra packages and libraries not included in 
the original install of Anaconda will be very easy to acquire using the Conda 
environment and command console. Anaconda also allows the ability for us to 
have more than one environment setup that can be run and maintained separately 
from each other. Having Anaconda provides us  the boilerplate environment for 
our machine learning software development, and will allow us to start coding and 
testing our machine learning models quicker and skip the tedious development 
environment setup. 
 

The computer vision software that we develop will end  up being transferred and 
run on the Nvidia Jetson Nano. The Jetson Nano runs on a Linux operating system 
and has a RAM capacity of 2GB. Our software will be able to run on this system 
as an inference model meaning it will not be training on the Jetson Nano. The 
training of the machine learning model will be done on a desktop PC using a 
dedicated GPU to process the training. This will save lots of time for development 
and ease the stress on the Jetson Nano RAM and processing power. The machine 
learning object detection model will also be optimized by a proprietary Nvidia tool 
called TensorRT that will optimize our model so that it can perform only necessary 
computations and save performance on the Jetson Nano while still ensuring the 
same results as if it were unoptimized. 

6.1.2.2.3 Libraries  

There are many ways to go about creating computer vision applications using the 
extensive amount of libraries that are available to use. Using these libraries will 
allow us to use state of the art algorithms and architectures already created by AI 
researchers. This cuts down the development time and overall will give us a more 
efficient performing product. Python comes supported by many machine learning 

libraries as well as some that are tailored toward computer vision.  
 

One route that we could go with designing our machine learning software is to use 
the more recent PyTorch library. This is Facebook’s open source machine learning 
framework that was released in 2016 and is relatively new to the industry and is 
primarily used by researchers and people who want a more pythonic framework. 
In comparison to TensorFlow, PyTorch is a bit more simple to read and is more 
intuitive since it is more like python making it easier to learn than TensorFlow. This 
allows people to make quicker prototypes and get projects going much quicker too. 
Debugging with PyTorch is also more simple to do with common tools compared 
to TensorFlow which requires you to use another tool for debugging. Using 
PyTorch would involve similar processes as if we were using TensorFlow. We 
could use a pretrained model such as Faster R-CNN that is offered by PyTorch 
and attempt to leverage it for transfer learning to be able to train it to our custom 
dataset a lot quicker and potentially get better accuracy than training from scratch. 
If we ultimately decide to write our own CNN architecture instead of using a 
researched model during prototyping, PyTorch makes building our neural network 
a lot more simpler than on TensorFlow. This is because PyTorch uses dynamic 
computational graphs which allows us to change behaviour of our model at runtime 
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which makes optimizing models much easier. Since PyTorch is newer  than 
TensorFlow, that means that it is not as extensive. However, for our use case in 
designing this computer vision application that should not be an issue. 
 

On the other hand the other route to developing our computer vision software is 
using TensorFlow which is the most popular machine learning framework in the 
industry for production. The reason we would want to use TensorFlow is because 
it will allow us to use a bigger selection of famous state of the art pretrained models 
and give us the option to train our own custom object detection models using our 
custom objects just like we would be able to with PyTorch. TensorFlow is backed 
by Google and has frequent updates and support. It is also open-source so we 
don't have to spend a dime in order to use it like PyTorch. TensorFlow is packed 
with many built-in functions for machine learning that will make training and testing 
our models a lot quicker and testing more efficient than from scratch. TensorFlow 
also includes TensorBoard integration which can help us in fine tuning our model 
by showing us our testing evaluation metrics. One downside for TensorFlow is that 
in order to train your model on a graphics processing unit or GPU it must be 
manufactured by Nvidia and is only supported with Python. However, this will not 
be a problem for us since we will be using an Nvidia GPU that we already own to 
train our model. TensorFlow also has a much steeper learning curve than 
PyTorch.  
 

 
Figure 22: Nvidia GPU Optimized Models (Courtesy of Nvidia) 

Both PyTorch and TensorFlow are supported by Nvidia TensorRT. This is an SDK 
by Nvidia that is written in C++ that takes a trained model from libraries like 
TensorFlow and PyTorch and converts to a more optimized model for Nvidia GPUs 
as shown in figure 17 while maintaining the same results which includes the Jetson 
Nanos GPU. This will drastically increase performance on the Jetson Nano while 
using our inference model on it. 
 

There are a couple of options of how we will run the model on our Jetson Nano. 
With PyTorch we would convert the model to ONNX format and convert it straight 
to TensorRT to run on the Jetson Nano. With TensorFlow, we could either use the 
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Tensorflow-TensorRT integration on TensorFlow to be able to still use 
unsupported parts of the model on TensorFlow on runtime while everything in the 
model that is compatible will be using TensorRT converted computations. The last 
option will offer the best performance for the Jetson Nano which is to convert the 
TensorFlow model to UFF format and convert it straight to a TensorRT model. This 
would be the most optimized way of going about it. 
 

For our decision on which major library will be primarily used for deep learning, 
we'll be using TensorFlow. The reason is that TensorFlow has a lot more support 
available online to help us accomplish what we want to do for Trash-E, even though 
PyTorch is catching up to where TensorFlow is in terms of community and support. 
TensorFlow also has a much wider selection of pre-trained models that we can 
use than PyTorch has. PyTorch has about only five models to choose from. Using 
a pretrained model from these libraries will allow us to get our software working a 
lot quicker. If for some reason we decide that the TensorFlow library isnt working 
out for what we want during prototyping, switching over to PyTorch wouldn't be a 
difficult task since in the big picture they are very similar and work to achieve the 
same task. 
 

OpenCV will be used towards the end of our software implementation to connect 
the camera on Trash-E and send the video feed into the inference model on the 
Jetson Nano for real time object detection. It comes with many builtin functions 
and capabilities that will make camera connectivity and image capture a lot more 
simple and we will use a specific function to access our system's camera and use 
it as the input for our object detection model. 
 

Other libraries that we will be using to assist the main computer vision 
implementation are PySerial and LabelImg. PySerial is a python library that 
encapsulates the access for the serial port. It provides backends to python that will 
automatically be configured for the platform we will make a serial connection to. 
The serial connection we have to make is by UART to the Jetson Nano. With this 
library we will initialize that connection so that the computer vision software can 
guide Trash-E to the trash items. Computer vision models can give results in 
bounding boxes, these coordinates from these boxes will be sent to the 
microcontroller via serial connection on PySerial so that it can guide Trash-E’s 
movements with a PWM signal. 
 

LabelImg will be used to create the labels and annotations for the images in our 
training dataset. The reason we want to use this is so that the labeling process for 
our image training dataset is much more efficient and is done well. It will also help 
save development time in the most tedious step of the process which is creating 
and labeling our dataset. 

6.1.2.3 Object Detection Model Architecture 

The algorithm that we need in order to achieve good object detection is a 
convolutional neural network. As mentioned before, both Pytorch and TensorFlow 



59 
 

offer many state of the art pretrained models that are based on convolutional 
neural networks and have very good results in object detection. These models are 
already trained with very good weights which allows us to leverage transfer 
learning for quicker and efficient training on new objects. 
 

We will be using a pretrained model from the TensorFlow Model Zoo located on 
their GitHub [21]. These models are high quality researched architectures or 
models that are provided by Google’s TensorFlow GitHub. Using a pretrained 
model gives us the advantage of utilizing transfer learning and could ultimately 
make our training more efficient and more accurate in the end. The models 
available in the model zoo have been previously trained on a dataset with 
hundreds of thousands of images and have already been trained to have the best 
weights to detect very common objects. Leveraging the technique of transfer 
learning will enable us to train the final layers with our new images and classes in 
much less time since the weights from previous training are already very good and 
it will be accurate at detecting our new classes of objects as well. These models 
also offer the option to be trained from scratch. The TensorFlow model zoo offers 
a lot of options for pretrained models. Some of the object detection choices we 
have include SSD MobileNet v2, SSD ResNet50 v1, Faster R-CNN ResNet, and 
Mask R-CNN.  
 

Mask R-CNN offers normal object detection such that it uses detection boxes. 
However, a main key feature that differentiates this model from the others is that it 
offers masks as well. These masks essentially wrap the object instead of just 
placing a box around the detected object. This feature comes with a heavy cost 
however. The performance runtime of this model can take as long as 301 ms. This 
number could likely be worse if we were to run it on the Jetson Nano. This model 
also has a high mAP accuracy but comes with a great performance cost. For the 
purposes of our project this model would be overkill, and the masks are an 
unnecessary feature and would be extremely inefficient for Trash-E. 
 

The Faster R-CNN is another high accuracy model but has better performance 
than the mask R-CNN. This model only uses detection boxes for identifying objects 
and has a much better average runtime of the range 53 - 236 ms depending on 
the choice of resolution and the ResNet architecture. 
 

SSD ResNet50 v1 performs very similarly to the Faster R-CNN models. At the 
lowest resolution it offers a faster runtime and also gives a slightly higher average 
accuracy for the model. However when we compare this model with the SSD 
MobileNet v2, it is surpassed in speed. 
 

The SSD MobileNet v2 model option offers us the best performing runtime for 
object detection. At the lowest resolution it offers object detection in 19 ms, 
surpassing all the previously mentioned models. However, this increase in speed 
does come with a tradeoff of accuracy. The accuracy for the fastest version of 
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MobileNet is averaged at 20.2 mAP. Compared to all the previous models this is 
the lowest average accuracy. 
 

An alternative option in our design would be instead of using TensorFlow models, 
we use PyTorch instead for our implementation. If we were to switch to using this 
alternate library for any reason we still have a wide selection of pretrained models 
that we could use from the PyTorch library that offer similar performance. Another 
alternative option is to use pretrained models that come from a library called YOLO 
which offers another good selection of object detection models. Lastly, if for some 
reason none of these models give us satisfactory results both TensorFlow and 
PyTorch offer us the tools to create our own neural networks or object detection 
models to use for our project. 
 

After considering all our options for the object detection models available in the 
TensorFlow Model Zoo. The model we will specifically be using from the 
TensorFlow Model Zoo is the SSD MobileNet v2 320x320 model. This is a single 
stage object detection model. This model has been previously trained on the 
COCO 2017 dataset which was a large-scale dataset with hundreds of thousands 
of images that include many common objects in the real world. We will train the 
model to be able to detect our own custom objects only, which in our case are 
cups. However, this custom dataset can be easily expanded upon in the future. 
 

 

 
Figure 23: Object Detection Model Performance on Jetson Nano (Courtesy of Nvidia) 

The SSD MobileNet v2 320x320 model shows a 320x320 resolution in its name. 
There are a couple of reasons for choosing this specific model, one being that it 
had very high performance compared to the other models as shown in Figure 18, 
which is very important for our application since we are running the inference 
model on a Jetson Nano in real time. One of the advantages of using this model is 
that it will preprocess the images we feed into it in a smaller resolution and in this 
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case, they will be 320x320. That will make the model more efficient in terms of 
speed and performance but we trade off some accuracy.  
 

Since our model will be running on the Jetson Nano, we should optimize for 
performance and efficiency for the sake of hardware capabilities so therefore we 
are going with a lower resolution model. The RAM that is available on our Nvidia 
Jetson Nano is 2 GB, the main operating system on the Jetson Nano already 
consumes a decent portion of the RAM so it would be critical that our design uses 
a performant algorithm with lower computational cost so that we don't run into 
issues of crashing or overheating our Jetson Nano which would render our product 
useless. Our dataset and objective does not require the most precise and most 
accurate model to detect trash objects.  
 

Therefore, it is best to go with performance over accuracy for our convolutional 
neural network architecture or object detection model. As stated previously, the 
SSD MobileNet v2 model runs a low resolution and consequently is less taxing 
computationally on the Jetson Nano. The SSD MobileNet v2 model runs very well 
on the Jetson Nano around this resolution as can be seen in Figure 18. When we 
take a look at the SSD MobileNet v2 model with 960x544 resolution, the 
performance drops drastically from 39 frames per second to 8 frames per second. 

6.1.2.4 Creating The Dataset 

The first step in every computer vision task is to gather the data that we will use to 
train our model for computer vision. For our project, we need to gather photos of 
all the objects that we want Trash-E to detect. We can take pictures using the 
camera that we will buy to use on Trash-E or we could even just take pictures with 
our smartphones. In the end it doesn't matter as the images will be preprocessed 
automatically before entering our model into the lower resolution.  
 

There are techniques involving scripts that we could write to automatically take 
pictures from a webcam attached to our desktop computer. This script can 
automatically take pictures for the appropriate  classes. The script will loop through 
each class that we want to detect and take a certain number of pictures accordingly 
until we've completed taking pictures of all classes. This method would be great if 
we were only creating computer vision software that would only run from a webcam 
on top of a desktop inside a normal room. Such as signing into your account by 
face detection or placing filters on peoples background. However, for our project 
this would not be ideal since Trash-E will be operating in many different conditions 
and not just one room in place. 
 

The approach we will have to go with is to manually take these photos for our 
dataset. These photos need to have to show the items in many orientations, 
lighting conditions, colors, and distances. It is important that the pictures are done 
in all these ways so that our algorithm can recognize them from any position in any 
condition that Trash-E can operate in. If we did not take these steps to consider 
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the different conditions in our images then we would get a very inaccurate model 
with many false positives as well as false negatives.  
 

We will need at least 100 photos per class to have a good enough training on it 
and luckily with transfer learning the accuracy will be good even with the new small 
dataset since the pretrained models weights were already very good. Each class 
is attached to an object we are trying to find.   
 

 
Figure 24: Labeling the Dataset With LabelImg Tool (Courtesy of LabelImg GitHub) 

Once we have gathered these images, we will label the data based on the object 
it is and what we want our network to classify it as. We are going to use a library 
called LabelImg from python that allows us to easily select the objects in our 
images that we want to label. These labels that we put on our images must be as 
tight as possible as shown in Figure 19 so that we ensure our model learns that 
object better.  
 

We also will need to create a label map for our dataset. This map data structure 
will hold all the labels for our dataset including the label name as well as a unique 
identifier for that label in the map. 
 

We also want to create our TensorFlow records. TensorFlow records are a binary 
file format for storing data and using them will help speed up the training for our 
object detection model by converting our label annotations and images into a file 
format that our model can use. 

6.1.2.5 Training The Object Detection Model 

We will be training our model using the TensorFlow library for Python. The training 
will be done on a desktop using a GPU or graphics processing unit rather than on 
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the Jetson Nano. Training on a dedicated GPU on a desktop will make training go 
a lot faster than it would on the Jetson Nano. In order to be able to do that we need 
to install both CUDA and cuDNN to our desktop, so that TensorFlow can utilize our 
desktop’s graphics card.  
 

TensorFlow comes with an object detection API, which we can utilize to easily 
perform functions on our model. The object detection API also comes with a 
training script designed for the specific model that we chose from the model zoo. 
This script is modifiable and we can change some parameters. One of the 
parameters we will be changing a bit is the number of epochs the model will train 
for or the amount of training iterations it makes. The model will train for about 5000 
epochs at first. If we feel that the accuracy is not good, we can train it for longer or 
increase the amount of images in our dataset for training. 
 

Once our model is trained, we can use the OpenCV library to access a camera 
connected to our computer and feed live video to our object detection model. Then 
our object detection model will examine each frame and detect our custom objects 
that are in them. Using our object detection API, we will be able to draw boxes 
around these objects in each frame to show the location of the object on the image 
that the model predicted as well as return the values of the coordinates in the 
detection boxes that will come as a list of bounding boxes. 

6.1.2.6 Moving our Trained Model to Jetson Nano 

Once we are satisfied with the accuracy of our model, we will move it onto the 
Jetson Nano. Nvidia offers tools that will allow our model to run efficiently on the 
Jetson Nano. We will need to freeze our TensorFlow model or in other words 
freezing the graph. This is essentially saving our model so that we can use it in 
another instance. We can use the TensorFlow TensorRT API to do this and the 
following steps. After freezing the graph into a savedModel format, we will convert 
the frozen graph to a TensorRT optimized model. Then we will call an API for 
TensorRT object detection that will build our optimized TensorRT graph which 
creates a TensorRT execution engine. This will allow for better performance on the 
inference graph than just using the converted graph. However, we must build this 
execution engine on the Jetson Nano since it is required to build it on the same 
GPU that the inference model will be executed on, even if both of the graphics 
cards are by Nvidia. In our case, we are using an Nvidia GTX 1080 Ti for training 
our model on our desktop, and the Jetson Nano is using an Nvidia Maxwell GPU. 
With this TensorRT optimized model we can run our trained object detection model 
on our Jetson Nano more efficiently than just the native TensorFlow model.  

6.1.2.7 Serial Communication with Microcontroller 

One of the most important aspects of our software design is the connection 
between the computer vision software and the microcontrollers software. The 
microcontroller is in charge of maneuvering Trash-E as well as controlling the arm 
in which it will use to pick up trash. However, there is no way that the 
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microcontroller would know where a trash object is on its own. Therefore, the 
computer vision software must gather necessary data that it can send to the 
microcontroller via serial communication so that it can determine what to do. So, 
the main two problems we must solve for Trash-E’s vision and maneuverability 
decision making are how will Trash-E know which trash object to approach in a 
scene as well as how will Trash-E know how to maneuver itself to that particular 
trash object. Then finally, how will it send that information between the Jetson 
Nano computer vision software and the microcontrollers software which controls 
all the motors. 
 

 
Figure 25: Object Detection Bounding Box Coordinates 

TensorFlow’s object detection API already offers bounding box coordinates that 
surround all the objects of interest in the algorithm's view. These coordinates in 
each bounding box include the xmin, xmax, ymin, and ymax as shown in figure 20. This 
essentially gives us the coordinates in the image that this object was found in and 
creates a tight box around it. With these coordinates we can determine many 
interesting bits of information that we can use to eventually guide Trash-E.  
 

These coordinates can be used to determine the area of each bounding box that 
is detected by our camera. Our software will sort the areas of each object's 
bounding box that it has detected in decreasing order of area. In other words, the 
biggest area detection bounding box will be in the front of the sorted list of bounding 
boxes. Why is this necessary for Trash-E? With these bounding box areas sorted, 
we now have a way that Trash-E can decide which object in its view it should 
approach. A bigger detection box area will mean that the object is closer, and 
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Trash-E will approach the specific object or biggest bounding box. For testing 
purposes later on, we will draw a green circle outline around the closest object in 
the program window that will appear when we run the model. 
 

 
Figure 26: Object Detection Bounding Boxes (Courtesy of Algorithmia) 

For example, let us say our object detection model was tracking fruits. In figure 21 
we see that the closest pear has the largest bounding box area. In this case Trash-
E would approach that pear since it has the largest area and will continue to be the 
largest since as we get closer the area can only increase. In our real case of trash 
objects, which are red solo cups, they will always be of the same or very similar 
size. Therefore, the edge case of a huge object in the background being mistaken 
as the closest object compared to a smaller object that is closer will be very rare. 
 

Trash-E must eventually stop the approach towards the object when it gets close 
enough for pickup. A method that we have designed to solve this problem is to 
have a sensor towards the front of Trash-E that will detect the presence of an 
object in front of it. The computer vision software will keep signaling Trash-E’s 
microcontroller to move forward until the sensor detects the object is close enough 
to grab with its arm for trash removal. Once at that point, the computer vision 
software will be overridden and the microcontroller will take control of moving the 
robot's arm to place the item in its trash bin and ignore incoming data from the 
Jetson Nano’s computer vision software. 
 

This would all work great if Trash-E was always in a straight path to the object. 
However, that will rarely be the case so there is another aspect of Trash-E’s 
maneuvering that must be solved. An object that is detected and is closest can be 
anywhere in Trash-E’s camera view on the x-plane. In order to turn Trash-E so 
that it turns and moves straight towards the object, we can use the coordinates to 
determine that maneuver. 
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Figure 27: Detection Bounding Box Displacement From Image Center 

With the coordinates from the closest bounding box, we can determine the center 
of that particular bounding box. We can calculate the center of the bounding box 
by taking the midpoint of x minimum and maximum and the midpoint y minimum 
and maximum. We would then do the same for the overall image size to get the 
center of our screen or image. With both the coordinates of the center of the 
bounding box and the center of our image we can determine the displacement 
between these two points as shown in figure 22 as well as the direction it is from 
the center origin of the image.  
 

Since in our use case Trash-E will only ever need to turn right or left or go straight, 
only the x-plane is of significance to us. Therefore the displacement calculation 
between our bounding box’s center and our image center will only need the x-
coordinates and will be the difference between the bounding box’s x-coordinate 
and the image’s center x-coordinate. If that displacement is negative, that means 
that the object is to the left of our origin and Trash-E should turn left. Otherwise if 
the displacement is positive, then Trash-E should turn right. Trash-E will continue 
to turn until the image center and the bounding box’s center displacement has 
reached a certain threshold from zero. The reason we don't want the Trash-E to 
turn until the displacement hits exactly zero is because that would lead to an 
extremely fidgety movement. Due to real world limitations and scenarios Trash-E 
would constantly try to correct itself because it will overshoot zero from the 
negative and positive side. Having the small buffer threshold around zero would 
eliminate this mediation issue.  
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Now we have our way of determining which direction Trash-E should turn and 
which object it should move towards using the data that we receive from our object 
detection model. The only part left is to design a way that we can pass this 
information to our microcontroller that ultimately controls these movements based 
on the information it receives from the Jetson Nano. We will have a Python script 
that will be able to send that data in a UART method to the microcontroller. The 
Jetson Nano will never need information from the microcontroller so the 
communication will be one-directional. Through this python script we will initialize 
a connection over UART with the microcontroller. There is a library that we will use 
to make this process simple and it is called PySerial and it has support for serial 
support access on many platforms. 
 

Once our computer vision software has determined which direction Trash-E needs 
to turn after the previous mentioned steps in our design, we will send a value over 
UART that the microcontroller will interpret to perform the corresponding 
maneuvers. We only have three decisions to make on which turn to make, which 
are left, right, or forward. Therefore, we can hardcode three values to send over 
UART that the microcontroller can easily translate. Each value sent over UART will 
be a hexadecimal number. If the displacement calculations return a 0 value then 
0x1 will be sent over UART which corresponds to going straight. If it returns a 
negative number, 0x2 will be sent over UART which corresponds to turning left. If 
it returns a positive number then 0x3 will be sent over UART which corresponds to 
turning right. If in this case our object detection model does not detect any objects 
that we are looking for, our calculations will return a null value and we will send a 
value of 0x0 over UART. 

6.1.3 Microcontroller Software Design 

The movement of Trash-E will be controlled by the microcontroller using the 
Cortex-M4 processor. The main tasks of the microcontroller will be to: move the 
robot using servos on the wheels, determine when the trash is close enough to be 
picked up, lower and raise the arm of the robot with a stepper motor to put the 
trash into the bucket on the chassis, and to grip the trash with the gripper using a 
servo. The software will be written using Texas Instruments’ Code Composer 
Studio IDE since the microcontroller is also made by TI and we are familiar with 
using the IDE. 

6.1.3.1 Flowchart 

The overall structure of the software will be implemented using a finite state 
machine (FSM). Since the overall processes that the robot will do is linear and 
needs to be completed in order, the FSM is perfect for this application. The overall 
logic that the microcontroller software will follow is shown in Figure 23 below.  
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6.1.3.2 Wheel movement 

To move Trash-E, there will be two servo motors attached to two of the four wheels. 
These motors will be attached diagonally from each other, for example, one in the 
front left and the other in the back right. Having the motors attached in this way will 
allow us to spin the robot without moving too much forward or backward. The 
microcontroller will generate a PWM signal on the GPIO pin that is connected to 
each servo. For the wheels we have chosen pins 13 and 14 to generate the PWM 
signals. To move the robot straight, equal duty cycles will be generated to keep 
both sides of the robot moving at the same speed. To turn left, the right servo will 
be given a higher duty cycle and/or the left servo will be given a lower duty cycle. 
The opposite is true to turn right where the left side will have a higher duty cycle. 

6.1.3.3 Baud rate 

The decision on whether to move straight or to turn will be decided by the Jetson 
Nano and sent to the microcontroller using UART on pins 15 and 16. A baud rate 
of 9600 will be chosen to send the information. We don’t need a high amount of 
bits as too much information could result in the robot over-correcting or potentially 
under-correcting with the PWM signal generation being overwritten too quickly. To 
achieve this 9600 baud, we need to alter the registers shown in Table 10.  
 

Table 10: UART Baud Rate Register Configuration 

Name Description Value 

UARTIBRD UART Integer Baud-Rate 
Divisor 

Determined by formula below 

UARTFBRD UART Fractional Baud-Rate 
Divisor 

Determined by formula below 

UARTLCRH UART Line Control 0x00 

UARTLCTL bit 5 HSE of UART Control 1’b0 

 

The values for the integer and fraction portions of the BRD can be found using this 
formula: 

 

𝐵𝑅𝐷 =
𝑈𝐴𝑅𝑇𝑆𝑦𝑠𝐶𝑙𝑘

(𝐶𝑙𝑘𝐷𝑖𝑣 ∗ 𝐵𝑎𝑢𝑑 𝑅𝑎𝑡𝑒)
 

 

The PIOSC will be used for the UARTSysClk and the ClkDiv is determined by a bit 
in UARTCTL. This bit will be set to 0 to achieve the divide by 16 we need for our 
regular speed operation. 
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Figure 28: MCU Software Flowchart 

6.1.3.4 Command handling 

While the robot is in this movement state, it will be continuously listening to the 
Jetson Nano for instructions. There are three different commands that can be sent 
to the microcontroller: steer left, steer right, or continue straight. With the small 
amount of commands we are going to implement, the amount of bits that need to 
be sent from the Jetson Nano to the microcontroller can also be kept low. We will 
be utilizing the lowest amount of data bits that the UART interface allows us to 
send, five data bits, to send a single hexadecimal character. If a value of 0x0 is 
parsed from the Jetson Nano, the PWM of the two servos will not be altered and 
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the robot will continue to move forward. If 0x1 is sent it means we need to turn left. 
If 0x2 is sent it means we need to turn right. 
 

6.1.3.5 PWM Signal Generation 

The PWM signals for the motors need to be generated using the timers in the 
microcontroller. For each servo a separate PWM will need to be used. We chose 
pins 13, 14, 43, 44, 61, 62, 63, and 64 for the PWM signals since they are all 32/64 
bit counters which will give us the most flexibility in timing. To set the timers to 
PWM mode, the registers in Table 11 need to be altered in each GPTM block for 
the corresponding timer. The timer period is set in GPTMTnILR and the match 
value is set in GPTMTnMATCHR. The signal will stay high while the counter is 
increasing, then goes low after the value is the same as the match register. This 
allows us to set any duty cycle that we want and can be unique and individually 
controlled for each motor.  
 

Table 11: PWM Register Configuration 

Name Description Value 

GPTMCFG GPTM Configuration 0x4 

GPTMTnMR GPTM Timer A/B Mode 0x006 

GPTMCTL bit 14 GPTM Control 1’b0 

GPTMTnILR GPTM Timer A/B 
Interval Load 

0xFFFFFFFF 

GPTMTnMATCHR GPTM Timer A/B Match Determined by what duty 
cycle is required 

 

6.1.3.6 Wheel Stopping 

As the robot gets closer to the trash that it is going to pick up, the ultrasonic sensor 
will start sending response signals to the microcontroller indicating how far away 
the object is. The sensor needs a PWM signal as input to trigger the detection, and 
the response will be sent back to the microcontroller on a GPIO pin. Pin 43 will be 
used to send the PWM to the sensor. The microcontroller will then sample how 
long the response is high which will indicate how far away the object is. The 
response will be sampled on pin 44. Pin 43 will be set according to Table 10. 
Interrupts will be used to sample the signal from the ultrasonic sensor. The 
interrupt will trigger whenever the value is high and a flag will be set to indicate the 
start of a reading. If the flag is set and another interrupt is enabled, the counter will 
be incremented. A separate interrupt will occur when the flag is set and the 
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incoming signal is set to low. This will calculate the distance based on the counter 
then set both the flag and counter to zero. 
 

Since the Jetson Nano will be communicating with the microcontroller to direct it 
towards the trash, we need a way to have the robot stop when it’s close enough to 
pick it up. The ultrasonic sensor will be attached to the end of the arm where it will 
have a good view of the area in front of the robot and won’t be obstructed by other 
pieces of equipment. Once the sensor indicates that the object is about one inch 
away, an interrupt will occur to set the duty cycle of the wheel servos to 0% and 
move the state to pick up the trash. 

6.1.3.7 Grabbing Trash 

A smaller servo will be attached to the end of the arm to handle opening and 
closing the robot arm’s claw mechanism. By utilizing the servo we will always know 
what position the claw is in and can adjust it accordingly. This servo will be 
connected to pins 61 and 62 set to PWM mode. With the motor starting out at 180°, 
it will be rotated to 0° by altering the value in the corresponding GPTMTnMATCHR 
register to clamp onto the trash. The process will be reversed to let go of the trash 
at the top of the arm movement over the bucket. 

6.1.3.8 Raising/Lowering the Arm 

Once the trash has been picked up, the robot must move it to the bucket on its 
back. The microcontroller will be interfacing with an A4988 motor controller to drive 
the stepper motor. The input on the A4988 will be hooked up to pin 64 which will 
be set up in PWM mode. The microcontroller will continue to step the motor 
upwards until a certain amount of steps has been achieved that is going to be 
determined during the prototyping phase. We can use a single value to move the 
motor up and down since the arm will always have to travel a set distance up and 
down.  

6.1.3.9 Function Descriptions 

This section will describe the overall steps that happen in each state the robot can 
be in. There will be three states total. After the third state, the microcontroller will 
return to the first state which acts as an idle state. 

6.1.3.9.1 Discover Trash Function 

The goal of this function is to find trash that is on the ground. 
 

• START 
• Generate 50% duty cycle PWM to rotate the robot. 
• If an interrupt is triggered by the signal 0xF being sent to the microcontroller 

o Start moving forward 
• END 
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6.1.3.9.2 Acquire Trash Function 

The goal of this function is to move Trash-E towards the trash based on the Jetson 
Nano’s commands. 
 

• START 
• Keep moving forward until the ultrasonic sensor reports the trash is one inch 

away from the claw. 
o Read input from Jetson Nano. Change PWMs accordingly for 

hexadecimal inputs. 
• Set duty cycle to 0% for wheel motors. 
• Generate 50% duty cycle for servo at the end of the arm until it has reached 

0°. 
• END 

6.1.3.9.3 Move Trash to Bucket Function 

The goal of this function is to move the grabbed trash to the bucket on the back of 
Trash-E. 
 

• START 
• Set the DIR pin connected to the motor controller high. 
• Generate 25% duty cycle PWM and increment counter on each pulse. 
• Once the counter is at the specified value, generate 0% duty PWM. 
• Generate 50% duty cycle for servo at the end of the arm until it has reached 

180°. 
• Generate 25% duty cycle PWM and decrement counter on each pulse until 

it’s zero. 
• END 

6.1.4 3D Modeling Software 

There are many options when it comes to choosing a piece of 3D modeling 
software. Software that was under consideration: Tinkercad, Solidworks, 
AutoCAD, FreeCAD, Fusion 360, and OpenSCAD. Each has varying features 
and learning curves, and some may be more appropriate for the project than 
others. Depending on which software will take the least amount of time to learn, 
provides an adequate number of features, and is free would be the best for this 
project. 

  
TinkerCAD offers a simple user interface along with fewer features than other 
modeling software. The number one thing about TinkerCAD is it’s learning 
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curve. Testing the software itself, it walks you through several tutorials to help 
you get familiar with the interface as well as how to use all of its tools (there’s 
not many). Due to its simple design STL file for 3D printing can be made 
relatively fast, but if you plan on adding any detail to the model it's not for you. 
After working with it for about an hour I was able to create a simple model based 
off the initial design for the robot shown in figure 24 below. The cherry on top 
would be that this software is completely free and no download is needed. 

  

 
Figure 29: Three Wheel Design Created in TinkerCAD 

SOLIDWORKS offers a 3D CAD software free for students while having a code 
given by my.cecs.ucf.edu. This truly is a professional piece of software that takes 
many hours of training/practice to get the hang of. It offers many tools to get the 
job done, and it even lets you simulate the movements of models you are making. 
Despite that, the first time you open it AUTODESK recommends reading through 
hundreds of pages of documentation on how each tool works and so forth. Of 
course, our group consists only of computer and electrical engineers, no one has 
ever worked with a software on this kind of level before, so the documentation was 
very overwhelming. Instead, opting for a YouTube tutorial was able to give a good 
introduction to the software and how to make basic shapes and such, but it wasn’t 
enough to make a robot chassis. If one were to train with SOLIDWORKS for a year 
undoubtedly great designs would be made, but the time is of the essence and 
spending too much trying to develop a chassis with complex software would not 
be efficient. All in all, it’s a great free package, but it’s too much of a time sink to 
learn what we’re trying to accomplish. 

  
Being one of the most used AutoCAD undoubtedly one of the most powerful 3D 
CAD software on the market. Reviewing its features, you can create detailed 
designs while being able to collaborate with other people while you work. It 
provides many visualization tools to aid in the production of 3D models. Essentially, 
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AutoCAD is SOLIDWORKS for students, but with twice the number of features and 
tools to learn. Knowing this, the large number of tools and features is overwhelming 
to a beginner with limited time and without direct guidance. This suffers from the 
same issue SOLIDWORKS does, on top of that a 30-day free trial is offered before 
a subscription is needed. 

  
FreeCAD is a step up from TinkerCAD since it's capable of much more such as 
configuring settings, it has more than quadruple the number of tools, clear and 
descriptive UI, and it's able to turn a two-dimensional schematic into a 3D model. 
In terms of complexity, it is a decent amount above TinkerCAD and a bit below 
both AutoCAD and SOLIDWORKS. FreeCAD is at a decent middle ground. If a 
more complex model is needed FreeCAD would be a good choice. There are 
plenty of videos that showcase its tools and features in a manner that covers all 
bases and is easy to follow. Overall, its open-source platform allows it to compete 
with larger paid software’s like the two previously mentioned while still being free. 
Fusion 360 is another solid choice and slightly better than FreeCAD in terms of an 
easily navigable user interface while still maintaining the same number of features. 
2D design schematics can be made and transformed into 3D models. Eagle can 
also be used in tandem with Fusion 360 to seamlessly integrate the CAD and PCB 
software to give a more accurate representation of the orientation of components 
after printing the Chassis. This extra feature would be useful, but it doesn’t have 
the same collaboration features AutoCAD has. We would have to complete our 
designs separately and merge them together at the end. Though it has great 
compatibility with several popular slicing products, making 3D printing easier by 
reducing errors in the STL file. Compared to the top end software like AUTODESK 
and AutoCAD it has nearly the same number of features, but with a friendlier 
looking UI along with a package that lets you port over your PCB designs. 
 

OpenSCAD is a nearly limitless 3D modeling software that relies mainly on a 
scripting language to generate models. Out of all the choices OpenSCAD has the 
largest learning curve, but if you’re able to code it OpenSCAD can make it. It has 
little to no interactive UI making it very unfriendly to new users. Much time and 
effort is needed to become efficient because a new language must be learned. To 
make matters worse, taking the time to code together models is a slow and tedious 
process compared to predesigned tools in other user interfaces. There is no 
chance OpenSCAD will be used for this project, the complexity is just too high. 
 

Obviously, TinkerCAD would be the safest option as the interface and tools are 
minimal and easy to understand. As mentioned before, experimenting with it for 
the first time I was able to make a rough model of the chassis. For comparison, I 
spent three hours attempting to learn AUTODESK and at most I could turn a 2D 
shape into a 3D shape. Building the complete chassis in TinkerCAD then 
disassembling it into individual pieces should allow for easy printability. The build 
plate volume of the Prusa i3 MK3S+ is 9.84 x 8.3 x 8.3 inches (250 x 210 x 210 
mm), and if the disassembled piece is greater than that volume it can be split to 
two separate pieces and glued together. 
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6.1.5 3D Printing Software 

Typically, 3D printing software, or slicers, can take several different kinds of 3D 
modeling file types such as 3MF, STL, OBJ, AMF, and sometimes unique file types 
that contain special information. Depending on what brand or version of a 3D 
printer will determine the possible software’s that are compatible with it. Some 
slicers are more capable and provide more features than others. Printer brand and 
the way each machine generates g code (instructions for 3D printer) can also 
contribute to the quality of a print. Several 3D printers available on campus are 
open for use for a fee, to save money and have more convenience we are using a 
team owned Prusa i3 MK3S+ for printing parts for Trash-E. For the software our 
options are Cura, Simplify3D, Slic3r, KISSlicer, Tinkerine Suite, Prusa Slicer, 
Repetier, OctoPrint, an SelfCAD. 
 

Cura is the most widely used 3D slicing software out on the internet. Part of its 
success is from its free price tag along with being open source. Of course, Cura is 
specifically designed for Ultimaker 3D printer users, but it offers compatibility with 
several others. Unlike most printer software, this software has three different 
stages of processing during the process: in the first phase you can configure 
printing settings and decide how you’re going to slice the model, the second scans 
the model after generating the g-code finding any areas in need of structural 
support or that could potentially fail, and in the last stage its possible to what your 
prints progress live and even remotely. 
 

Simplify3D is probably one of the most powerful and far-reaching slicers. Its 
greatest strength would be its ability to easily implement detachable supports, this 
is a category most slicers struggle in. It allows for configuration of the material and 
support thickness which no other slicer provides. By having effective supports it 
ends up leaving a better surface finish due to its supports being able to cleanly 
detach. It ends up leaving less of a clean up job for post processing resulting in 
better looking prints. Its pre-print simulations are even better than Cura’s because 
of how accurate its error detection system is. Out of all slicers Simplify3D has the 
most accurate and precise calibration system for tuning retraction, infill settings, 
cooling fans, and brims. There is no comparison in terms of quality in any other 
slicer software. Despite this there is a price point of 150 dollars making it too 
expensive for the scope of this project. 
 

Slic3r, while being relatively old, created in 2011, is probably one of the best open 
source 3D slicer. Initially, it was released as a non-profit project and it ended up 
beng one of the greatest 3D model slicer on the internet due to its massive 
community on github with more than a 1000 people contributing to the project. It’s 
a great all rounder having the ability to display a preview of your print, and it can 
even do so with multi extruder 3D printers that allow different support materials to 
be used to make removing supports easy. It's also a lightweight piece of software 
requiring no dependencies. Other features include brim, microlayering, bridge 
detection, command line slicing, variable layer heights, sequential printing, 
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honeycomb infill, mesh cutting, object splitting into parts, AMF support, perimeter 
avoidance, and different extrusion lengths. Slic3r may beat Cura in terms of its 
functionality, but it doesn’t have a user interface.  
 

KISSlicer seems to be like every other slicer with a more detail oriented setup. 
Some of the options in KISSlicer are settings no casual 3D printer would mess with 
, this is clearly for experienced engineers and 3D printer hobbyists. This slicer is 
only able to work with single extruder 3D printing, while the dual extruder version 
will cost an extra 42 dollar cost with it. There is a premium option that has a 82 
dollar fee that allows you to combine multiple STL files and print them out at once. 
Compared to other slicers KISSlicer seems a bit lackluster for its cost.  Though if 
the free version is used, it still has access to every content update that adds new 
mesh topologies, filaments, types of 3D printer, and print styles. Finally, the user 
interface is not that great compared to other slicers that are free, so in our case 
KISSlicer is a no go. 
 
Tinkerine Suite is very similar to TinkerCAD, it’s a great introductory piece of 
slicer software for people new to 3D printing. The barrier to entry is nothing since 
all you need to do is create an account and you can log on the website and start 
slicing. Originally it was designed for teaching children about 3D printing, but it 
has enough features like descriptions on how each setting change will effect the 
print, or how long a print will take to finish, as well as indicators for unsupported 
bridges and weak points in the print. Although it’s a great learning tool, most 
slicing technology isn’t that hard to get a grasp of. As a result, after reviewing the 
slicers it’s a bit too simplistic for what we need to ensure in the design of our 
parts. 
 
Prusa Slicer takes advantage of Slic3r’s open source software and reimagines it 
into something more specialized. It’s main selling point is the attention to detail 
and the ability to tune almost every aspect of a print. Part of the reason why this 
slicer is so popular is due to it’s great software features that improve upon every 
aspect of Slic3r as well as the quality of the Prusa printers themselves. 
Furthermore, it’s specifically tuned to enhance the printing quality of Prusa 
printers making their printers even more appealing. On the other hand, Prusa 
slicer is able to work with several other non-Prusa printers and over 50 different 
3D printer filaments, it even works with resin printers. Just like Slic3r, Prusa 
Slicer is open source, so it’s easily modifiable for anything a user might need to 
accomplish. A member of our group owns a Prusa printer so this is most likely 
going to be the slicer software we use unless we need a specific feature from 
another. 
 
These next two slicers fit within the same category since they both allow for 
remote printing, but with their own pros and cons. OctoPrint and Repetier Host 
both set out to accomplish the same goal of allowing users to print remotely. 
Octo print isn’t so much of a slicer as it is a platform for monitoring 3D prints 
remotely. Even though it doesn’t offer much in terms of slicing it’s still able to do 
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so, but it’s remote monitoring abilities are the best out there as of today. You can 
even add a temperature sensor for monitoring and adjustment, and can stop 
printing from any location as long as you’re connected to the internet. Repetier 
Host has a better slicing system than Octoprint, and it allows for larger scale 
remote printing services. For what we need Repetier Host is too much, Octoprint 
may turn out to be useful for cutting down on prototyping time. 
 
SelfCAD is probably the most well rounded compared to the rest of the selections 
for slicer software. It’s more of an all-in-one tool that allows you to create 3D 
models from scratch like CAD softwares, but then you can import that model 
within the same system and use slicing software to prepare it for printing. The 
streamlined and simplistic UI makes it easy to learn SelfCAD. No download is 
needed since it’s entirely a cloud-based service, but you need an internet 
connection to work with it. For modeling it uses a system like FreeCAD that is 
integrated within the software itself. After modeling, SelfCAD provides a few 
options for slicing, but it’s not as in depth as some of the slicers previously 
mentioned. Furthermore, it is compatible with almost all fused deposition 
modeling printers. There are two downsides to SelfCAD and that would be it’s 
monthly subscription of 14.99 a month and it’s lack of slicing features; free slicers 
have more functionality than it.  
 
As a final verdict, taking into consideration that the team has access to a 
personal Prusa i3 MK3S+ it would be best to use the software designed for it, 
Prusa Slicer. Although, it should be noted that slicers like Cura and Slic3r may 
have better support options if any overhangs need support while printing. 
Octoprint integrated into the Prusa printer will allow for less time wasted on failed 
prints since monitoring it live gives us the option to cancel the print before any 
time is wasted. The best results will be achieved by using several slicing 
softwares for their strengths. 

6.2 Hardware Design 

6.2.1 Robot Design 

To have Trash-E pick up cups, it must have a chassis, an arm to pick up and grip 
the cups, a place to store them, and a way to move around. This section will 
discuss the possible designs that Trash-E can utilize to complete the task. 
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6.2.2 Design Overview 

 
Figure 30: Project Illustration by Alex Rizk 

6.2.2.1 Arm and Gripper Design 1 

As shown in Figure 25, Design 1 will utilize a straight arm powered by a stepper 
motor that will drive the arm vertically until it hovers above the garbage bin. At the 
end of the arm will be a gripping device utilizing a ball and socket joint that can 
pick up a plastic cup in any position after Trash-E drives up to it. After driving up 
to the cup the open gripper, using the gear system, will close around the cup with 
the action of a miniature servo. Also, at the end of the arm will be an ultrasonic 
sensor to aid in figuring out the distance of the trash in front of the gripper, this way 
knowing when to close the gripper will be easy to determine. 

6.2.2.2 Arm and Gripper Design 2 

Design 2 differs with the arm implementation. Instead of one long arm, it will be 
broken up into two segments with a motor controlling each segment. At the end of 
the arm will be the gripper. Two motors will control the gripper: one to open and 
close and one to rotate the pincers. This will allow the arm to center itself to the 
middle of the cup and grab it based on the orientation of the cup. This design is a 
stretch goal as it requires more hardware, using more motors, and software 
development to figure out how it should orient itself. 

6.2.2.3 Arm and Gripper Design 3 

Despite being a little bit more experimental, design 3 will have a soft robotics 
themed gripper. Using soft robotics, the main advantage over traditional servo-
gear based robotic grippers is its flexibility. This gripper will consist of two 
appendages with hollow cores that allow for air to be pumped into and out, this 
causes a closure and release motion. Direction of movement is determined by 
ridges on the back of it that push it in an inward motion when inflated. As mentioned 



79 
 

before, when the core is filled with air the appendage will move in an inward motion 
and conform to the object it is grabbing shown in figure 26. With a textured grip 
adhesive grip, it could potentially grab any object we set out for it; it would allow 
for greater operability later down the line. 
 

 
Figure 31: Prototype designs for textured gripper and soft robotics gripper for the purpose of picking up litter 

Components and tools needed to create the mold: cardboard, box cutter, hot glue, 
scotch tape, and gloves. Though, using cardboard would be the cheapest option, 
but 3D printing would be available for a reusable mold; the downside to this is that 
it makes prototyping time consuming since we would need to print a new model 
every time, so we wanted to change the design. Furthermore, to make the gripper 
itself: Smooth on Ecoflex 00-30 (rubber), scissors, printer paper, a nail, water bottle 
with lid that is at least one liter, 1/8 inch outside diameter pneumatic tubing, and a 
curling ribbon. 
 
First, to set up the cardboard mold we fashion two small rectangles out of 3 x .5-
inch pieces of cardboard by stacking two of them and scotch taping them together 
then covering with a thin layer of hot glue, these are put aside for later use. To 
make the walls of the mold four pieces of rectangular cardboard 4 x .75 inches are 
cut and the edges are taped and the entirety of the cardboard is covered in a thin 
layer of hot glue to smooth it out. Taking a 9 x 9-inch plane of cardboard and 
drawing a dot in the center then hot gluing and placing the previously made 
cardboard blocks ¾ inches away from it at 180 degrees and -180 degrees mirroring 
each other. Next, place the walls and draw some lines that are ¼ inches away from 
the blocks previously glued down, and then place the walls on those lines and glue 
it. Between the two walls at each end will be a ¼ inch gap which should be filled 
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by an appropriately sized piece of cardboard matching the height of the previously 
placed walls. Finishing the air chambers, connect the two rectangular blocks with 
a generous channel of glue, avoiding the walls, and keep applying layers of glue 
until half the height of the block. Finally, seal any remaining cracks/gaps in the 
walls of the mold to make sure the rubber mixture doesn’t leak out later down the 
line, and the mold for the top part of the gripper is done. 
 
Following this, the rubber pouring mix needs uncured Ecoflex 00-30, which is a 
mild skin irritant, so as a safety precaution, gloves and safety goggles are needed. 
Pour the mold very slowly into the mold until the air chamber blocks are submerged 
by at least 1/8 inches of the rubber mix while keeping an eye out for potential leaks. 
In the case of a leak a paper towel should be placed over the area to seal the gap, 
and if the mixture seems uneven some small object should be placed underneath 
the cardboard to level the mixture. It should take around 4 hours for the mixture to 
completely cure. Once the mix has finished curing it should be pulled out by its 
outside edges towards the center until the mold is removed entirely. 
 
Now for the second mold, A trace of the first mold made of hot glue should be 
made with a space of ¼ inches from the newly made rubber gripper; two to three 
layers of glue should make walls high enough for the next mold. Similarly, take the 
recently made appendages and trace them on a piece of paper. Making a smaller 
new batch of Ecoflex, use it to cover just the bottom of the new mold, then place 
the paper in the center of the mold and fill the rest of it with the remaining Ecoflex. 
After both bottom and top pieces are made, check for imperfections, and if there 
are any such as gaps or holes, fill them with some more rubber and spread it 
evenly. To put the two pieces together, place the thinner piece back into its mold 
and put some more Ecoflex evenly across it, then, place the larger piece to seal 
them together ensuring that there is still an air chamber. Finally, after waiting 
another four hours for the rubber to cure, the two pieces will be melded together 
to form one cohesive soft robotics gripper. 

  
With the completion of the gripper the air pump needs to be made, for this to be 
done hands free it needs a small electric air pump or a servo that controls a liter 
sized syringe. To hook up the pump to the gripper we will need the components 
mentioned earlier. Connecting the tubing by using hot glue along with some shrink 
wrap, or with other adhesive along with a pneumatic air seal. Going back to the 
gripper, pierce the center of the gripper ensuring it lines up with the central air 
cavity and insert the tubing, blow air into the gripper to test inflation. After ensuring 
air can cleanly enter and leave the gripper, take it out. Taking two strips of about 
20 inches of curling ribbon wrap it around up one of the appendages counter 
clockwise with the first strip, and with the second strip wrap it clockwise up the 
same appendage ensuring they overlap on the top and cross on the bottom. When 
done wrapping that appendage, tie up the ends and remove the excess ribbon; 
repeat the process for the other side. When the wrapping is done, take the end of 
the tubing that connects to the gripper, cover it with a layer of Ecoflex keeping it 
away from the hole, and reinsert it back into the hole previously made to let it cure. 
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Once finished curing, we inflate the gripper to test how the curling ribbon interacts 
and ensure that a pinching motion occurs, if not, then testing with different ribbon 
configurations is needed until the desired result is reached. Now, curling ribbons 
tend to slip around when force is applied, so a friction layer is needed on the end 
picking up objects. Taking out the mold for the small layer, fill it with a thin layer of 
Ecoflex and place the end picking up object in it to cover the curling ribbons. After 
waiting for it to cure for another 4 hours, the robotic gripper is done and finally able 
to be used. 

  
Overall, this is a low cost and effective way to make an entry level soft robotics 
gripper. Despite the several hours this takes to develop, it saves a considerable 
amount of time compared to designing a new gripper and waiting hours for it to 
print. 

6.2.2.4 Unique Materials and Gripper Design 4 

The fourth gripper design, and open-source project by Marc Schömann [22], is a 
hybrid between designs three and one. It takes the advantages of both designs 
and combines them into one gripper. From design one it pulls the ease of 
manufacturing because it can be 3D printed, and from two it somewhat takes the 
flexibility of a entierly soft robotics gripper. It is composed of two parts: the solid 
layer which controls the contractions of the limbs and the flexible layer that allows 
the limbs to return to their original position. As a result, two different plastic 
filaments need to be used to realize the design; the flexible one being either TPE 
or TPU and the solid one being PETG or nylon (Talked about under the materials 
sections).  
 
As can be seen in Figure 32, the three-prong design is flat when the servo is not 
actuated. However, in Figure 33, the gripper bends and can easily grip the object. 
We believe that a design like this can help solve our issue of needing to pick up 
more than just red solo cups and picking up things at different angles. 
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Figure 32: Flexible gripper at rest (Courtesy Layershift) 

 
Figure 33: Flexible Gripper Actuating (Courtesy Layershift) 

To continue, TPE (thermoplastic elastomer) filament, which stands for 
thermoplastic elastomer filament, is hard plastic blended with rubber. Its elasticity 
can vary greatly depending on its specific composition, different versions of TPE 
serve different purposes. For example, one variation of TPE may have a hardness 
suitable for high impact and friction while the other may have more of a stretchy 
characteristic like rubber products. Furthermore, its rubbery like nature also makes 
it great for a gripper limb, allowing for a better grip on objects. Rigidity (ability to 
return to its original shape) of TPE isn’t the best, TPU is better in this category, but 
depending on the type used it still has some presence. Due to its very flexible 
nature TPE happens to be difficult to print. It needs temperatures of around 230ºC 
for the extruder head, a print bed temperature of 110ºC (very hot for print bed 
temps) and must be printed very slowly making hard to prototype with. Luckily, the 
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Prusa i3 MK3S+ 3D printer we will be using has a direct drive extruder which can 
handle TPE well enough to print without jams.  
 
TPU (thermoplastic polyurethane) filament is a category of TPE that has several 
major differences to standard TPE. TPU tends to be harder than TPE, meaning it 
can resist surface deformities better than TPE. Its shore hardness classifies it as 
being a medium hard rubber and hard runner which is like a tire head or shopping 
wheel care respectively. Despite its hardness it still manages to be very elastic 
which gives it a wider range of applications. Mentioned before, TPU has a greater 
rigidity compared TPE allowing to recover from deformations better, for the soft 
robotics gripper this can come in handy when we need to retract the limbs. Though, 
TPU tends to have a smoother texture which would lead to possible troubles when 
it comes to gripping objects. TPU also has a higher durability compared to similar 
TPEs because it shrinks at a slower rate. Due to its stiffness, TPU is much easier 
to print, but not as easy as non-flexible plastic filaments. Printing properties are 
like TPE, but slightly more manageable with lower temperatures. It still needs to 
be printed slowly to ensure print quality is up to snuff.  
 
The hybrid gripper would work with either thermoplastic, so other factors must be 
taken into consideration to figure out which plastic would fit better into the scope 
of this project. A comparison of TPE and TPU prices shows that, in general, a roll 
of TPE is 10 to 20 dollars cheaper than most rolls TPU. The effort of printing is 
very similar so in this way it does not matter. Durability of the soft part of the gripper 
is not a concern, so the main advantages of TPU don’t seem that appealing, while 
the rubber like grip of TPE would benefit us more. Overall, TPE would seem to be 
ideal filament to use in the soft part of the gripper shown below in Figure 34 along 
with its dimensions in Figure 35. 
 

 
Figure 34: 3D Model of the Soft Portion of the Gripper 
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Figure 35: 3D Model Dimensions of the Soft Portion of the Gripper 

 

6.2.2.5 Chassis Considerations for all Designs 

Two different designs were taken into consideration for the chassis of Trash-E. 
The first design consists of two wheels towards the back of the chassis while one 
swivel wheel is positioned in the front forming a triangular shape. In this case, there 
would be a servo on each rear wheel for movement left, right, and forward. The 
second design has more of a car shape with four wheels and a compartment below 
the operating plate to store the electronics. Placement of the driving servos can be 
placed in two ways with this design: one servo driving the left rear wheel and the 
other driving the right front wheel, or vice versa (this allows for a swivel movement 
like the triangular design). 

  
Weight is a big consideration for the design of the chassis, as it would cut down on 
power consumption by reducing the watts needed for the motors providing 
movement. Without having to create a separate compartment for the electronics 
we can place everything on the front plate; this gives us easy access to the 
components and makes sufficient airflow to the Nvidia Jetson easy to achieve. 
Furthermore, it saves on plastic, money, and time since we would need to take the 
time to figure out a compartment system and use up more plastic trying to print it. 
On the other hand, its greatest disadvantage is its stability. Leaving the front part 
of the chassis reliant on a swivel wheel may introduce some wiggle to the 
movement of the robot. Having this unnecessary movement could lead to further 
power consumption due to making corrections during navigation. Calibration of the 
servos may be difficult since the triangular wheel orientation may introduce 
unpredictable movements.  
 
On the other hand, the four-wheel design, though using a bit more power, comes 
with its own advantages. The first advantage of this design would be its clean 
design which would protect the components in its specially made compartment. As 
mentioned before, there would only be a design issue having to figure out how to 
achieve enough airflow for the jetson to not overheat during operation. This could 
be remedied by adding some holes near the jetson for intake as well as some for 
the expulsion of hot air. Unlike the triangular design that is unstable, the four-wheel 
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design, shown in figure 27 below, can maintain a relatively stable movement during 
its operation. Due to having a wheel on each side, each opposing wheel acts as a 
sort of counterbalance when rotating. Whereas, with the triangular design it may 
wiggle. In turn, the more stable design would make it easier to calibrate the motors, 
as we don’t have to worry about unpredictable movements during operation.  
 
As a side note, the bucket design, although simple, needs some attention to ensure 
it’s able to contain what we are picking up. To formulate a proper design, we need 
to take into consideration the largest item we plan on picking up, a red solo cup 
(though this may change later down the line). A red solo cups dimension is irregular 
since the rim of the cup is larger in diameter than the base, height is also a big 
concern. The dimension of the rim is 3 5/8”, height is 4 5/8”, and the base is 2 1/4”, 
to determine the length and width of the bucket we need to specify how many cups 
need to be picked up. For the scope of this project, we’re not going to be picking 
up hundreds of cups, more of a proof of concept, we should account for around 12 
cups taking the height and rim to simplify measurements. The cups will not be 
stacked since they’ll essentially be dropped into the bucket, so we can get a rough 
estimate of the dimension of the bucket. Schematics for the bucket have been 
drawn to give guidance for 3D modeling it shown in figures 36 and 37. 
 

 
Figure 36: Top-down view schematic for trash bucket 
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Figure 37: Side view schematic for bucket 

6.2.2.6 Final Arm Design 

The biggest flaw in previous arm designs mentioned before is that they don’t allow 
for tweaking of the shape and length of the arm. Rather than having to print several 
versions of the arm we can just create a fully modular one. Like Legos the pieces 
of the arm shown in figure 38 will interlock. As a result, it forms a tight seal that 
resists vertical forces while somewhat resisting horizontal ones. More specifically, 
the three forces we need to account for when designing these joints: Friction, 
Tension, and Shear. Furthermore, using PETG for the choice of plastic for each of 
these blocks will ensure a durable design.   
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Figure 38: Illustration of modular arm pieces 

Length of the arm can be increased or decreased based on the number of pieces 

interlocked shown in figure 39. Attaching each piece can easily be done with one 

bolt, two washers to distribute force evenly, and one hex nut to tighten it all. In 

the center, the screw holes open several configuration and reinforcement 

possibilities that can also be seen in the figure. For the arm to operate 

successfully the gripper has to be hovering over the bucket to ensure that the 

litter can be dropped without issue. The arm will need various tweaks to be in the 

proper position. Testing that follows would be to start with a base arm size, check 

if it’s above the trash bucket, and if it is no adjustment is needed, otherwise 

adjust arm length and orientation.  

Price wise, this arm is inexpensive since PETG is relatively cheap and easy to 

work with. The greatest issue would be the time it would take to print each 

individual piece one by one, or in batches. Dimensions being 1.5 x 1 x .65 

inches, the estimated print time on each piece should be around 15 minutes. If 

each piece takes 15 minutes and we need to print 20 pieces, it will take around 5 

hours (granted there are no issues printing within those 5 hours). Although it will 

take 5 hours it will be worth it since the design is modular and it would save time 

compared to other designs.  
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Figure 39: Illustration of modular arm as one piece 

When the final length and configuration is determined adhesives can be used to 

further solidify the connections between the pieces. Ideally, plastic bonding glue 

would be used to ensure that the plastic is permanently bonded at a molecular 

level. Other glues will work such as super glue, polyurethane, hot glue, and 

epoxies. Overall, this design saves time and money in the case changes occur in 

other components. For this to be achievable, attention to print settings is 

paramount since each piece must ensure a snug fit, otherwise the design may 

fall apart. .Several configurations for the Prusa i3 MK3S+ are available online to 

prevent the hassle of tweaking the settings related to this. 

6.2.2.7 Material Considerations 

There is a plethora of plastics available on the market and can be easily found on 
several websites for a reasonable price. Here is a list of the most used plastics 
available: ABS, PLA, ASA, PET, PETG, Polycarbonate (PC), high performance 
materials (PEEK, PEKK, ULTEM, etc.), PP, Nylon, composite material, hybrid 
material, Alumide, and resins. Research was done for each of these plastics to see 
which one fit the best into the scope of the project. As a side note, no person on 
the team has experience with materials or mechanical engineering so careful 
consideration into each of these materials had to be made. 

  
To start, acrylonitrile butadiene styrene, or ABS for short, is one of the most used 
plastics used in 3D printing. Its usages can be seen in appliances, mobile phone 
cases, and car bodywork. Being a thermoplastic, it is resistant to drops/shocks and 
is not brittle making it bendable, in turn, reducing the chances of cracking and 
breakage. In terms of recyclability ABS is easily reusable when run through a 
shredder and filament extruder, and it can also be welded together with other 
pieces of ABS with chemicals like alcohol and acetone. This plastic can even 
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withstand temperatures between -20ºC (-4ºF) to 80ºC (176ºF).  Though, this 
plastic is not biodegradable and shrinks while in contact with open air causing 
warping during printing. This can be prevented by taking the following precautions: 
having a chamber with hot ambient air temperatures, complete restriction of airflow 
to the outside, a heated build platform, and a nozzle temperature of 230ºC (446ºF) 
and 260ºC (500ºF). for printing. It’s also important to keep in mind that ABS while 
heated/printing has one of the heavier particle emissions of microplastics out of all 
plastics, so an enclosed printing space is essential. Even though ABS is durable 
and checks all the requirements for the components of Trash-E it just requires too 
much to manufacture. To add, equipment for safe and easy ABS printing is not 
available to us, we would have to risk printing on a standard open air 3D printer. 

  
Polylactic acid or PLA’s greatest strength is its environmentally friendly properties 
and printability, but it stops there. Unlike ABS, PLA is biodegradable as well as 
easily recyclable, it is more ethical to print with. Moreover, it is one of the easiest 
plastics to print with as it doesn’t require a heated build plate or as many 
restrictions as ABS. It prints at much lower temperatures between 190ºC (374ºF) 
to 230ºC (446ºF), which is virtually possible on all 3D printers. In terms of 
manipulation, PLA is very difficult to meld due to cooling and solidifying very 
quickly, but in our case, this is not an issue. When in contact with water it 
deteriorates very slowly over time, and in the case of Florida weathers year-round 
humidity would not see long term use. More of a decorative plastic, PLA comes in 
many colors, but is on the lower end of durability when it comes to 3D printable 
plastics. 

  
Acrylonitrile styrene acrylate (ASA) is extremely similar to ABS in its properties 
with the benefit of UV resistance. This plastic would be great for use outdoors with 
the durability and heat resistance of ABS. Despite having all these benefits, its 
production cost is even higher than ABS due to a component added to grant its UV 
resistance. Styrene and microplastics are emitted during printing which can cause 
symptoms of styrene poisoning if one neglects to print it in an enclosed space. This 
plastic would be a great choice if we had planned Trash-E to operate outdoors, but 
the proper equipment to work with ASA is not available to us. 

  
Polyethylene terephthalate (PET) like PLA is easy to work with but lacks the 
biodegradability. PET is somewhat rigid making it good for pieces that are not 
exposed to constant movement or collisions. It has great resistance to various 
chemicals making it good for contact with food, it can be seen in use with water 
bottles, synthetic fibers, and similar products. Unlike ABS it releases a minuscule 
amount of plastic during printing, as well as being odorless it is very safe to print 
in any 3D printer. Its biggest downside is its overall brittleness and fragility, it 
cannot handle high temperatures or impacts. Based off the previous statement, 
Trash-E being an autonomous robot, may encounter collisions during testing, so 
PET would not be the best choice since we want something durable and reusable. 
Luckily, its cousin glycolized polyester (PETG) is able to make up for its weakness 
while still retaining the same safety. It combines the durability of ABS and the 
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simplicity of PLA. The glycol added improves the ductility, chemical resistance, 
transparency, hardness, and impact resistance. Though it does require a heated 
build plate along with extrusion temperatures of 220ºC (428ºF) to 260ºC (500ºF), 
it's nothing most standard 3D printers can’t accomplish. PETG is one of the easiest 
and durable 3D printable plastics and it will most likely be used for the entirety of 
the chassis as it is durable, easily printable, and affordable. 

  
Polycarbonate (PC) would be one of the greatest plastics to use for our application, 
but it has many pitfalls if not managed properly. This plastic is extremely durable, 
lightweight, as well as being able to withstand temperatures of 150ºC (302ºF). It's 
so durable that it’s used in the production of bulletproof glass and other glass 
products. Although the durability is great, production and safety are just too taxing. 
It releases bisphenol A (BPA) particles which can have several negative side 
effects. It is sensitive to humidity and UV rays making it practically unusable 
outdoors. Troubles during printing include trouble sticking to the build plate 
resulting in print failures, warping (peeling) from the build plate, and pretty much 
all the difficulties of printing ABS. High temperatures are needed not only for the 
nozzle, 260ºC (500ºF) to 310ºC (590º), but also for the build plate that would have 
to reach temps of 80ºC (176ºF) to 120ºC (248ºF). On top of this, a sealed chamber 
is required if you want the optimal and safe printing results. Overall, this plastic is 
very far out of reach to work with and would be extremely overdeveloped if we 
were to implement this plastic for Trash-E. 

  
Several high-performance polymers like polyaryletherketones (PAEK) and 
polyetherimides (PEI) are great choices as it is one of most durable and 
multipurpose plastics out there. In terms of physical and temperature resistance it 
can be higher than PC, and in most cases it is. Mostly found in the medical, 
aerospace, automotive, and military sectors it’s almost the end all be all industrial 
plastics. Despite the plastic being an amazing all rounder it is just not meant to be 
used by the average person as expensive equipment is needed to work with it. To 
print PEI/PAEK nozzle temperatures need to reach temperatures over 350°C 
(660°F) along with build plate temperatures needing to reach 230°C (450°F). Even 
more, an enclosed chamber is needed to properly balance the temperature within, 
needing very capable cooling systems. Being one of the best plastics out there the 
price is also high (for good reason) with prices of PEEK reaching 195 dollars per 
250 grams, which is possibly one of the most expensive options. Over time the 
barrier of entry for these kinds of plastics have lowered, but it is not at the point 
where a group of students can afford the cost or facilities to work with this plastic 
unless sponsored and given access to the proper equipment. Hence, high-
performance polymers are completely infeasible for use with Trash-E. 

  
An alternative to PETG, Polypropylene (PP) has similar properties, but it has great 
interlayer adhesion allowing for it to stretch before breaking. Its overall cohesion 
allows it to be a better version of PETG with the ability to resist abrasions and 
shocks while still maintaining good rigidity. Much of the time it's used in the 
automotive industry but is used in much of our everyday objects since it's non-toxic 
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and poses no risk from using it. Printing with it is easier than with PETG with print 
temperatures of 220°C (428°F) to 240°C (464°F) and can even be printed without 
a heat bed (it helps though). It’s hard to find any downsides to this plastic as it’s 
easily accessible and printable through normal means, this is a great contender 
instead of PETG. Given that price is a known constraint, a spool of PP (40$) is 
almost double the price of a spool of PETG(20$). Despite the great properties, 
PETG is still the number one choice for the chassis. 

  
Nylon finds a good middle ground between user friendly and durable, as it has a 
crystalline structure consisting of carbon. Alternatively, it is much easier to work 
with than PC, it removes the hassle of having to deal with the absurdly high 
temperatures and safety risks during printing while still maintaining a durability that 
rivals PP. Because nylon is composed of carbon it has amazing temperature 
resistant properties being better than PC at 180°C (356°F). It’s also 
environmentally friendly since it’s bio sourced from castor oil. Overall, it’s a highly 
stable material with one weakness, and that would be its high propensity to absorb 
humidity from the surrounding air and a heated chamber of at least 40°C is needed 
for a successful print. This one downside removes it from outdoor applications, but 
for a lot of companies nylon is the go to plastic for high end prototyping. The extra 
hassle from having to store nylon in a dry box and having a heated chamber isn’t 
worth it, PETG seems to still be the best option so far. Although, it may be 
considered for the internal structure of the hybrid soft robotics gripper in figure 40 
since it’s very flexible when printed thinly. 
 

 
Figure 40: 3D model of the solid component of hybrid gripper 
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Figure 41: Dimensions of hybrid gripper 

Composite material consists of various plastics like PLA, ABS, or nylon that are 
mixed with short fibers of (in most cases) carbon fiber or various other materials to 
achieve certain unique properties. This category is just too expansive to delve into, 
there are just too many combinations that could be made with composite materials. 
There may be one material out there that has the properties we need, but the 
majority of composite materials are priced a bit heavier than their non composite 
counterparts. Besides, carbon fibers mixed into any of the aforementioned plastics 
can deteriorate the nozzle of a 3D printer, starching it as its extruded. Taking into 
consideration money and time it’s not worth considering as we just need a material 
that is relatively durable while still being able to easily work with and print. 

  
Delving into hybrid materials, they suffer from the same issue as composite 
materials. Many hybrid filaments, or might I say the most popular, are typically 
composed of PLA mixed with various materials to achieve a certain look or 
mechanical property. For example, PLA can be mix with several wood products 
like wood dust, oak, mahogany, etc. to achieve a look that is like wood but retains 
the properties of PLA. Metal like copper or brass can also be mixed in to make a 
print have conductive properties or make it look like either metal. Hybrid filaments 
can also cause damage to nozzles, so special reinforced nozzles are needed to 
print this material. Like before, adding extra material to filament incurs extra costs 
and requirements to print, so to remove unnecessary complexity from the project 
we will avoid hybrid materials. 

  
Alumide would be a decent alternative to almost everything on this list as it shares 
the properties of aluminum. Its temperature resistant and is great for use on small 
models that require a lot of detail, great for use in creating replacement parts. 
Though, unlike every other material in this section it is not printable through normal 
means. A selective laser sintering (SLS) machine is needed to even work with it. 
On top of this, it’s not purchasable through Amazon and seems to be only available 
to the manufacturing industry. Basically, this material is inaccessible to average 
students and not to even mention the expensive equipment needed. Alumide is 
unusable for Trash-E. 

  
The last considered material is resins, the best way to describe this would be to 
say it has the same properties as ABS with half the benefits. It can only be used in 
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special printers that utilize UV light to harden the resin into whatever shape 
needed. The greatest advantage is the amount of detail achievable by resin, the 
results are comparable to injection molding. Resin printers are cheap, cheaper 
than some extruder printers, but working with them is a hassle. There are several 
kinds of resins that can be used for many kinds of applications such as dentistry 
and various hobbies, but there really isn’t a use case for this project. 
 

In summation, after running through the available 3D printable plastics such as 
ABS, PLA, ASA, PET, PETG, PC, high performance materials, PP, Nylon, 
composite material, hybrid material, Alumide, and resins I now have a greater 
understanding of 3D printing. Considering the various pros and cons of all the 
mentioned materials PETG offers the best middle ground in terms of price, 
strength, accessibility, and printability. PETG will be the final decision for the plastic 
used in the prototyping, build, and testing sections. It came close between PP and 
Nylon because they we’re the best affordable options when it came to what we 
were looking for, but the main deciding factors among these options was price. In 
this case, PETG is 20 dollars, PP is 40 dollars, and nylon is 30 dollars; when we 
only have 400, minimizing our expenses is paramount. 

6.2.2.8 Overall Design 

In the end, the four-wheel design the prototype four-wheel design shown in figure 
27 will most likely be the final design for Trash-E. Not shown in the figure is the 
canopy holding the Lidar sensor positioned above the box shaped trash bucket, 
this feature may be implemented during the development phase of the robot (low 
priority). The gripper will be the hybrid design option since it offers the greatest 
amount of flexibility when it comes to picking up various items. Last, the gripper 
arm will be a modular and adjustable in the case that modification need to be made 
to improve the functionality of Trash-E. Furthermore, the final model of the gripper 
in figure 43 will cover all bases. Considerations for weight distribution of 
components will also be considered to have adequate maneuverability.   
 

 
Figure 42: Four Wheel Design for Trash-E 
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Figure 43: Full design of the hybrid gripper 

6.2.3 Motors 

6.2.3.1 Stepper Motors 

Stepper motors are very useful for moving in precise increments while also having 
high torque at low power. It can achieve these precise movements because each 
stepper motor has a specific step angle which it turns every time the motor moves 
one step. The Twotrees Nema 17 motor has a step angle of 1.8°. Using the 
formula  

𝑆𝑡𝑒𝑝𝑠 𝑝𝑒𝑟 𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =
360

𝑆𝑡𝑒𝑝 𝑎𝑛𝑔𝑙𝑒
 

we can rotate the motor 200 times until it has completed one full revolution. For 
the tradeoff of torque, we can increase the number of total steps by dividing the 
step angle even further. The movement will be more precise, but the max weight 
we can lift will be reduced. To calculate the microstep we use the following formula: 

𝑀𝑖𝑐𝑟𝑜𝑠𝑡𝑒𝑝 =
𝑆𝑡𝑒𝑝 𝐴𝑛𝑔𝑙𝑒

𝑆𝑡𝑒𝑝 𝐷𝑖𝑣𝑖𝑠𝑜𝑟
 

If we wanted to divide the current step angle by a step divisor of 16, we would have 
a new step angle of 0.1125° and achieve 3,200 total steps instead of the original 
200. These motors best fit the application of moving the arm vertically when it has 
picked up a cup and then when it needs to return to rest. We will know how many 
steps it has moved since being at rest so it can be returned exactly to the same 
place. 

6.2.3.2 Servo Motors 

Two types of servos will be utilized in Trash-E: positional and continuous. 
Positional servos allow the user to control the position of the servo using a 
potentiometer driven by a pulse-width modulation (PWM). Based on how long 
PWM is high, the motor can be all the way to the left, right, or somewhere in-
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between. This type of servo will be used for the gripper at the end of the arm to 
grab the cup and release it.  
 

Continuous servos allow the control of speed and direction but lose the positioning 
information. Altering the PWM signal will change the speed and direction of the 
servo rotation. This will be utilized in the movement of Trash-E to move it forward, 
backward, and/or turn. 

6.2.4 Motor Driver 

The output power of the microcontroller is too small to activate the stepper motors. 
This requires the use of a motor driver. Motor drivers allow a signal to still be sent 
from a microcontroller on how it should move, but the motor will be powered by an 
external source. Figure 44 depicts the typical wiring for the A4988 stepper motor 
driver we will be using. The motor power supply will be powered by the onboard 
battery. 

 
Figure 44: Wiring Diagram for A4988 Motor Driver (Courtesy Polulu) 

6.2.5 Ultrasonic Sensor 

Determining how far away the cup is from the grabber is necessary for picking it 
up. If the cup isn’t close enough or is too far away, the gripper won’t be in the 
correct position leading to the cup not being picked up. The computer vision will 
guide the robot left and right to go straight into the cup. Once the ultrasonic sensor 
starts getting input from the distance to the cup, the microcontroller will take over 
the forward movement. Once the ultrasonic sensor determines the cup is a set 
distance away, Trash-E will stop and proceed to pick up the cup. 

6.2.6 3D Printing 

After looking online for a pre-made chassis we could utilize for the base of this 
project, we could only find options out of our budget that met the size requirements. 
We will be utilizing 3D printing for the chassis and the bucket that sits on the back. 
Printing of the arm and gripper will also be performed. 
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6.2.7 Power Supply 

6.2.7.1 Battery Options 

Table 12: Battery Options 

Part #  Manufacturer Availability Price/Unit 
($) 

Capacity 

(mAh) 

Discharge 
Max 

Current (A) 

35E 18650 Samsung ☑ $7.99 3500 8 

ICR18650-
2600-F 

PKCELL ☑ $6.00000 2600 3.9 

LION-1865-
26 

Dantona 
Industries 

☑ $4.99000 2600 ? 

ICR18650-
2200-F 

PKCELL ☑ $5.00000 2200 3.3 

ICR14430-
650-F 

PKCELL ☑ $3.00000 650 ? 

PRT-12895 SparkFun 
Electronics 

☑ $5.95000 2600 3.9 

ASR00050 TinyCircuits ☑ $5.95000 2500 ? 

LI18650JL 
PROTECTED 

Jauch Quartz  

☑ 

 

$13.05000 

 

3250 

 

4.875 

MJ1 18650 LG ☑ $6.99 3500 10 

NCR 18650B 

Protected 

 

Panasonic 

 

☑ 

 

$9.99 

 

3400 

 

4.9? 

Epoch 18650 
Protected 

 

Epoch 

 

☑ 

 

$9.99 

 

3500 

 

8 

35E 18650 -
Protected 

Button Top 
Battery 

 

Samsung  
 

🅇 

 

$6.99 

 

3500mAh 

 

8 

Table 12 showcases several batteries that we are considering using. The 
highlighted batteries are batteries that have battery management systems built into 
them. For our use case, we believe that 18650 batteries are the best bang for our 
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buck. They can have high maximum discharge current, and can be used to create 
a battery pack with our desired voltage output. The batteries with capacities over 
3000 mAh are the most expensive from the ones put in our table. The batteries 
that have a question mark under the Discharge Max Current column are ones that 
we had trouble finding the datasheet for. The specs they have are shown on the 
product page, but for some reason or another the datasheets were unavailable 
and the specs page did not show the discharge current. 

We will most likely use batteries that are above 3000 mAh. The batteries in the 
2000 mAh or less range were considered because they are cheaper, but to get the 
same output, we would end up using more batteries, which would cost more. For 
example, to get 7000 mAh using the ICR18650-2200-F, with the same max 
discharge that we calculated in Section 3.4, we would need 15 batteries. The total 
cost would be 75$, while with the Samsung  35E unprotected, the price is 42$.  

Another decision we have to make is whether or not to use batteries with built in 
Battery Management System (BMS), buy separate BMS circuits that we can 
implement, or create our own that we can use. The benefits of having built in BMS 
in our batteries is that we will not have to worry as much about incorrectly 
recharging the batteries. We also will not need to worry about designing our own 
BMS or finding a third party BMS. However, the price is much steeper when the 
batteries have built-in BMS. Comparing the Samsung 35E and the Epoch 
Protected battery, the price is 2$ more. If we are buying 6 batteries, the price will 
end up being 12$ more. We may be able to find a third party BMS that costs less 
than 12$, or even design our own for less. 

Ideally, we would want to use the Samsung 35E 18650 3500mAh 8A - Protected 
Button Top Battery because it is cheap, with a large capacity, and is protected. 
However, due to supply chain issues, this battery will not be in stock for the 
foreseeable future. Therefore, we have to assume we will not be able to get these 
batteries at all. If we decide to use batteries that have BMS built in, we will likely 
use the Epoch 18650 Protected batteries. The NCR 18650B Protected batteries 
have good specs, but no datasheet was able to be found for them, so it might be 
hard to work with the batteries in the future. The LI18650JL PROTECTED batteries 
are usable, but they are very expensive. For batteries that do not have BMS built 
in, the Samsung 35E 18650 3500mAh is the best battery that we could find. As 
stated above, the other non protected circuits do not meet the requirements that 
we need for our use case.  
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6.2.7.2 Battery Management System (BMS) 

Table 13: BMS Board Options 

Part Name Price 

2Pcs 3S 11.1V 12.6V 25A W/Balance 18650 Li ion Lithium Battery PCB 
Protection Board 

 

$9.99 

5S 20A 18V 21V Li-Ion Lithium Battery Pack Battery Charger Protection 
Board Circuit  

 

$8.88 

Anmbest Balancer 4S 16.8V 30A 18650 Charger PCB BMS Protection 
Board 

 

$9.49 

For the 3 possible BMS boards found in Table 13, we are not confident in using 
any of them. This is because many of the reviews found for these boards said that 
the boards were not able to handle the rated currents, and some got obscenely hot 
even at low current. Furthermore, there was little to no information on the technical 
specifications of the boards. No datasheets could be found for these boards.  

6.2.7.3 Battery Test Plan 

In the end, we believe that it would be best to buy the batteries with BMS 
protection. Buying a third party board to connect will add unnecessary bulk to the 
interior of our robot. Furthermore, out of the ones that we found, the reviews 
seemed to indicate that the boards had heat problems, which would cause a large 
problem within our robot. Creating our own circuit may add more complexion to 
our robot, because we will need to have an esp32 and create more code to help 
keep track of the voltage and current. 

6.2.7.3.1 Procedure 

We can run tests by fully discharging and fully charging the batteries to make sure 
the capacities and max discharge currents are correct. We can further look at the 
discharge curve to make sure that the batteries are discharging at a steady rate.  

1. Connect battery pack to voltage recording device such as an 34970A Data 
Acquisition / Data Logger Switch Unit 

2. Connect battery to power supply and set power supply to 4.2V 

3. Allow battery to reach Nominal Voltage at 4.2V 

1. If we decide to get batteries without BMS, we need to keep careful watch 
of the batteries when they are charging and discharging because they 
can very easily catch fire. The batteries with BMS will still need to be 
monitored regardless. 

4. Record time taken to reach maximum charge 

5. Connect battery to load (Such as DC Electronic Load) and set discharge 
rate to expected current draw 
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6. Record periodic voltages and current with Agilent until battery is depleted 
(3.0 V) 

7. Graph output voltage of the battery over time to make sure battery 
discharge is sufficient 

8. Current should be constant and voltage drop should be constant 

6.2.8 Voltage Regulator 

For our use, we will be using 12V input from the power supply that we make. We 
will then use voltage regulators to step down the 12V input down to 5V, and 3.3V. 
The different output voltages will be used to power the different components on 
the robot such as the webcam, servos, sensors, and microcontrollers. Below are 
possible configurations using the TPS52903RPJ regulator from Texas Instruments 

 

Figure 45: 12V to 5V Buck TPS52903RPJ Voltage Regulator 

 

Figure 46: 12V to 3.3V TPS52903RPJ Voltage Regulator 

One of the parts that we are considering to use for the Voltage Regulator is the 
TPS62903RPJR from Texas Instruments as shown in Figure 29. We believe that 
this is a good part because it is low cost and has high efficiency at our load of 5V. 
Furthermore, as seen in Figure 45 and 46, the circuits between the 12V to 5V and 
the 12V to 3V are almost identical. By changing the resistance of Rset, we can 
easily change the output voltage. This is beneficial because we can reduce the 
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variety of different parts that we order. We can also save money by buying the 
same components aside from Rset. 

While we want to use the part TPS62903RPJR for a voltage regulator, due to the 
supply chain limitations from COVID, this part is currently out of stock on all known 
websites, including TI’s, the original manufacturer. For the moment, we will 
proceed as if this part will always be out of stock. However, if this part comes back 
into stock, we will consider ordering it along with different regulators to test the 
efficiency, in case this part ends up working better than the new parts.  

After further investigation, most, if not all of the voltage regulators from Texas 
Instruments that we planned to use are out of stock for the foreseeable future. 
Therefore, we have to look at other manufacturers. Table 1 shows a compilation 
of voltage regulators that we plan to use if they come into stock. This stock is based 
off the stock available on Digikey. We aim to have at least 5 different voltage 
regulators in case the stock suddenly changes, so we can have multiple layers of 
backup. We want to minimize the cost of the unit, while being within the specs of 
the robot. We know that the max current draw of the whole unit will be 10 A, but 
the robot should never be running anywhere close to that maximum. Realistically, 
it will be more likely that the max current will be at 5A, while the typical current 
draw should be less than 3A. The regulator AP62150Z6-7 is the cheapest 
price/unit regulator that we have on the table, but it has a current output of 1.5A. It 
may be sufficient most of the time, but it is cutting close to the maximum expected 
current.  

Table 14: Possible Voltage Regulators 

Part # Manufacturer Availability Price/Unit Current 
(A) 

TPS62903RPJR Texas Instruments 
(TI) 

 

🅇 

 

$2.04000 

 

3 

TPS566238RQFR TI 🅇 $2.330 6 

TPS564208DDC
R 

TI 🅇 $0.788 4 

BD86120EFJ-E2 Rohm 
Semiconductor (RS) 

 

☑ 

 

$2.19000 

 

5 

NR111E Sanken ☑ $1.69000 4 

LM22673MR TI ☑ $6.04000 3 

AP62150Z6-7 Diodes Incorporated 
(DI) 

☑  

$0.54000 

 

1.5 
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LMR14030SSQD
DAQ1 

TI ☑ $3.94000 3.5 

SC4524FSETRT Semtech 
Corporation 

☑ $1.56000 2  

From Table 14, we decided that the voltage regulators NR111E or 
SC4524FSETRT are the best cost performing price/unit for our case. NR111E has 
much more room for error with a higher maximum current output. The voltage 
regulator LM22673MR is very expensive compared to the other units, and 
expensive in general for our budget, because if we order 10 for testing, it will be 
60$, which is a large portion of our budget. The voltage regulator 
LMR14030SSQDDAQ1 is a possible regulator, but is more on the expensive side. 
We will keep this one in mind, but prefer not to use this or the previously discussed 
one. TPS566238RQFR is a good regulator because it has a high current ceiling of 
6A. It is in the middle in terms of pricing for all of the prices in our table. However, 
it is out of stock for the foreseeable future. TPS564208DDCR is cheap, and has 
good room for error in regards to current, but it is also out of stock. The regulator 
BD86120EFJ-E2 is a possible candidate, as it has high current output, but begins 
to encroach on the expensive territory. The top 3 candidates are: NR111E, 
SC4524FSETRT, BD86120EFJ-E2. 

 

 

Figure 47: 12V to 5V Buck SC4524F Voltage Regulator Circuit 

Using the voltage regulator SC4524F, Figure 47 shows a possible circuit that we 
can use to drop the 12V input from the battery down to the 5V output to power the 
different devices such as the Jetson Nano. Furthermore, after dropping the voltage 
down to 5V, we can add another SC4524F voltage regulator circuit after, to drop 
the 5V even further down to 3.3V for the other components that require it. This 
circuit can be found in Figure 48. 
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Figure 48: 5V to 3.3V Buck SC4524F Voltage Regulator Circuit 

For the NR110E voltage regulator circuit, Figure 49 showcases the configuration 
for 5V output. According to the table, Vo is controlled by changing the R5 resistor. 

 

Figure 49: 12V to 5V Buck NR110E Voltage Regulator Circuit 

From the figures above, it is likely that we will be using the SC4524F voltage 
regulator made by the Semtech Corporation. While we may be using the SC4524F 
regulator, it may be a good idea to still get the top 3 candidates, and run testing on 
them and compare the results. 

Once we have gathered the required components for the Buck Circuit in Figure 45, 
we can test the circuit using a breadboard, before physically making the circuit on 
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a PCB. During testing, we want to test to make sure the output voltage is 5V, and 
that the maximum current is 2A. This can be done by measuring with a DMM, and 
using a DC Electronic Load to vary the current. We also want to make sure the 
regulator does not have bad efficiency and thus does not heat up too much. 

Table 15: Components Needed for Regulator Circuits 

Component Value Quantity (for 1 board) 

 

 

 

 

Capacitor 

2.2µF 1 

0.33µF 2 

10nF 2 

10pF 2 

1nF 1 

22µF 2 

4.7µF 1 

0.68nF 1 

 

 

 

 

Resistor 

102k 1 

25.5k 1 

15.8k 2 

30.1k 1 

17.8k 1 

14.3k 1 

33.2k 1 

 

Inductor 
6.8µH 1 

2.2µH 1 

Diode 1N4148 2 
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Zener Diode 20BQ030 2 

SC4524F N/A 2 

The above table shows the materials needed to implement the circuits from 
Figures 31 and 31 onto a PCB. The table shows the minimum number of 
components to make just one board, so if we wanted to create several boards to 
test, more components would be required. 

 

Figure 50: Voltage Regulator PCB 

The PCB above is the voltage regulator design for Trash-E. The PCB includes both 
the buck converters for the 12V-5V step down and the 5V-3.3V step down 
converters. The 12V input from the battery is VCC+ on the left. The 5V output is 
on the right and the 3.3V output is top left. This PCB should be able to handle all 
the voltage regulation that we need done on the robot. If we need more output 
ports, we can add more headers later after testing. 
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6.2.9 Solar Panels 

Table 16: Possible Solar Panels 

Part # Manufacturer Voltage @ 
mpp (V) 

PV Cell Type Price/Unit ($) 

SM500K12TF ANYSOLAR 
Ltd 

6.7 Monocrystalline $6.26000 

SP3-37 PowerFilm 
Inc. 

3  ? $2.99000 

10Pcs 5V 
60mA Epoxy 
Solar Panel 

         

     SUNYIMA  

5  

Polycrystalline 

$15.99/10 

2 Pieces 2.5W 
5V/500mAh 
Solar Panel 

 

ALLPOWERS  
 

5 

 

Polycrystalline 

 

$12.99/2 

Table 16 shows the solar panels that we found that are not too expensive. Since 
the panels are not 12V, we can have 2 or 3 panels, depending on the Voltage at 
mpp, in series to create a 12V output. The SM500K12TF panels are 
monocrystalline, and claim to be highly efficient.  We can test this following the 
Solar Panel Test Plan outlined in the next section. The SP3-37 panels are cheap 
per unit. We considered these cells because the spec sheet on the listing showed 
promising specs. However, the datasheet of these cells do not contain much useful 
information, and we believe that it would be best to stay away from the cells. The 
solar cells made by SUNYIMA are a possible candidate, because they come in a 
large quantity for a fair price. The only problem is that they can only supply up to 
60mA at maximum output. This can be solved by adding more cells in parallel, but 
that may conflict with how much room we have on Trash-E to add cells. The solar 
cells made by ALLPOWERS are a good candidate because they can supply up to 
half an amp at maximum output.  

Out of the above options, we believe that it is a good idea to get the SM500K12TF 
and the panels made by ALLPOWERS. These panels seem to have the best 
output for our case, and we can compare the two panels once we physically have 
them. 
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6.2.9.1 Solar Panel Test Plan 

The test plan for the solar panels is to test the solar panels when they are receiving 
the maximum amount of sun they can receive, and when the panels are getting 
partial coverage. 

1. Create a text fixture so the solar panel can get maximum coverage from the 
sun on a sunny day. 

2. Connect solar panels to a DC electronic load, and have a voltage recording 
device such as a 34970A Data Acquisition / Data Logger Switch Unit. 

3. When the sun is at its peak, and when there are no clouds, record the 
voltage and current from the solar panels over an hour, as that is how long 
we aim to have Trash-E running. 

4. When the sun is not at its peak, or when there are partial clouds or 
obstructions between the sun and the panels, repeat step 3. 

5. Take the readings from the Data Acquisition Unit and plot a current and 
voltage curve. With this, we can determine which panels are the best fit for 
us, and if they follow the datasheet that are provided. 

6.2.10 PCB Design 

Due to the package of our microcontroller (LQFP), we must make a printed circuit 
board (PCB) to use it. The plan for the PCB is to make a breakout-style board that 
has headers connected to the desired pins we want to use. An issue we ran into 
while selecting the pins was that a pin can have multiple functionalities, and the 
specified use is configured in software. This means that while the microcontroller 
can have a specified maximum amount of capabilities, that’s not always the case 
depending on the amount of a specific feature the design requires. While 
optimizing the PCB for space and shortest traces, we tried to use pins 13 and 14 
which are not only PWM signal generators, but are also UART pins as shown 
below in Table 17 and were the ones we are already using to communicate with 
the Jetson Nano.  
 

Table 17: Conflicting Pin Functionalities 

Pin 
Number 

Pin Name Description 

13 PC7 
U3Tx 
WT1CCP1 

GPIO port C bit 7. 
UART module 3 transmit. 
32/64-BIt Wide Timer 1 
Capture/Compare/PWM1. 
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14 PC6 
U3Rx 
WT1CCP0 

GPIO port C bit 6. 
UART module 3 receive. 
32/64-BIt Wide Timer 1 
Capture/Compare/PW0. 

 

 

Before designing the PCB we made a schematic with all the necessary parts and 
connections using Autodesk Fusion 360 as seen below in Figure 51. The selected 
components are shown in Table 18. We decided on the 1206 package for the 
slightly larger size and availability of components. Having the 1206 will make it a 
bit easier for us to solder the components by hand due to the larger pad sizes when 
compared to other packages like the 0805. Many basic components such as the 
capacitors and resistors are relatively cheap across different packages so price 
did not play a large role in this selection process. 
 

 
Figure 51: Microcontroller PCB Schematic 

 
Table 18: Microcontroller Schematic Components 

Schematic Part Value Part Number Type 

C1,C3,C5,C7 4.7uF UMJ316BC7475KLHTE Multilayer 
Ceramic 

C2,C4,C6,C8,C12,C13 100nF C1206C104K5RAC7867 Multilayer 
Ceramic 
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C9 0.01uF C1206C103J3GECTU Multilayer 
Ceramic 

C10 1uF C1206F105M5RACAUTO7210 Multilayer 
Ceramic 

C11 4.0uF C1206C395K3PACTU Multilayer 
Ceramic 

U1 -  TM4C1232H6PMI7 Microcontroller 

J1 - - JTAG 
connector 

J2 - - Header 4x2-
pin Female 

J3 - - Header 4-pin 
Female 

J4 - - Header 2-pin 
Female 

J5 - - Header 2-pin 
Female 

J6 - - Header 4-pin 
Female 

 
The datasheet indicated that decoupling capacitors are required to filter out high 
frequencies as well as stabilizing the supply voltage to the microcontroller when 
voltage dips occur due to changing load requirements. We opted for a design that 
minimizes space and maximizes routability. To do this we chose the pins we knew 
we would need to implement the basic peripherals as well as a few extra so we 
can further expand upon our design in the future with stretch goals. We have two 
pins dedicated to UART transmission between the microcontroller and Jetson 
Nano, as well as eight pins that can be used for GPIO or PWM purposes to allow 
for motor control or ultrasonic sensor trigger and feedback signals. Ground pins 
are available for each PWM pin for the connections to motors. 
 

There are two PCB designs that can be sent to a manufacturing house. Design 1 
as shown in Figure 36 is the initial design that is focused on minimizing the amount 
of layers as well as cost. Design 2 as shown in Figure 53 is focused on minimizing 
space and traces to keep the board compact. The major difference between these 
designs is that Design 2 has two copper ground pours, and the capacitors placed 
on the bottom. The copper pour increases the cost of the overall board since there 
are now two layers of copper, but it also reduces the amount of traces needed and 
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the routing is much simpler. As seen in Figure 52, the amount and length of traces 
is drastically longer, as well as the number of vias drilled into the board. Design 2, 
however, is much simpler and keeps the traces, especially between the capacitors 
and microcontroller, nice and concise. It is also worthy to note that Design 2 has 
the capacitors placed on the back to reduce the amount of vias needed for routing, 
as well as ground vias placed throughout the board to ensure every component is 
properly grounded to the copper pours. The microcontroller is placed in the middle 
of both designs since it has the most connections. This reduces the complexity of 
the board by keeping traces direct and not having to go roundabout ways to 
connect to their destination. Finally, four mounting holes are added to the corners 
to allow for easy attachment to the Trash-E’s chassis. With there only being one 
voltage supplied to the board, this makes it easier to design as there’s no worries 
about noise between nets. We considered adding the voltage regulators to this 
board as well but decided against it. It would be more beneficial to have the voltage 
regulators on their own boards so we can test their functionality easier by probing 
the inputs and outputs of the regulators themselves. This also provides easier 
placement of the voltage regulators on the chassis since different components 
need to be powered by the different voltages and they won’t be near the 
microcontroller PCB. 
 

 
Figure 52: Design 1 PCB Layout 
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Figure 53: Design 2 PCB Layout 

 

Table 19: PCB Manufacturing Costs 

Manufacturing House Design Number of Boards Price 

JLCPCB Breakout 2 5 $9.37 

OSH Park Breakout 2 3 $11.50 

PCB Way Breakout 2 5 $14.93 

 

We uploaded the Gerber files for our PCB design to different PCB manufacturers’ 
websites to get quotes on how much it would cost for our PCB to be made. After 
an online search to find a few reputable manufacturing houses, we decided on 
these three as candidates: JLCPCB, OSHPark, and PCBWay. JLCPCB and 
PCBWay are based in China, whereas OSHPark is based in the United States. 
Being based in the US is nice for us because it can help save on shipping since 
the boards don’t need to be shipped across the sea. For the base material of our 
board we will be choosing FR-4. Aluminum has better heat dissipation and thermal 
transfer than FR-4, but it is also more expensive and won’t be necessary for our 
PCB with the few components we are putting on the board. Choosing aluminum 
also restricts other decisions for our board, like the minimum thickness of the board 
or the amount of layers to be one layer maximum. We know our board needs two 
layers so aluminum is not an option based on that requirement. The delivery format 
will be a single PCB where they only manufacture the design how it is and don’t 
add components onto it. We want this option since we will be soldering the 
components on ourselves. Doing the soldering ourselves will decrease the cost 
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and also increase our skills with dealing with electrical components and PCBs. The 
outer copper weight will remain at 1oz since it will be sufficient for our ground 
planes, as well as the 2oz option being much more expensive to have 
manufactured. The default, also the cheapest, options will be chosen for color, 
silkscreen, thickness, gold fingers, probe testing, and castellated holes. 
 

Manufacturing houses have different requirements for the minimum amount of 
boards that can be printed in a single order. Since we are not mass producing 
these and don’t want to spend all of our budget on just the boards, being able to 
order small batches is necessary. We want multiple boards to prototype, and also 
to ensure we have extras in case one gets damaged while we are soldering. 
JLCPCB allows a minimum of five boards to be printed. PCBWay also has the 
same minimum requirement. OSHPark, however, has a minimum requirement of 
three boards. Being able to have three boards is enticing to help keep costs down 
since more materials won’t be used to manufacture more boards, specifically the 
copper. 
 

Speed of the manufacturing and delivery of our PCBs is also crucial for Trash-E. 
Houses from China will obviously introduce longer shipping times and cost more 
for the same time period shipping than a US based house. JLCPCB offers 12-20 
business day shipping as their cheapest and slowest option and PCBWay offers 
6-16 business day shipping for theirs. OSHPark has free, five business day 
shipping since the company is in the US. We will be utilizing OSHPark for our PCB 
manufacturing needs. We might be receiving less boards and the price per board 
is higher than JLCPCB, but the turnaround time of the manufacturing and shipping 
as well as the higher quality, lead-free boards make it worth the extra money for 
the detail-oriented craftsmanship. 

6.2.11 Manufactured PCBs 

Figures 54 and 55 show the PCBs of the Trash-E Breakout Board. They were 

ordered from OSHPark and took a turnaround time of two weeks from the initial 

placement of the order to the boards being shipped to the final address. Overall, 

the boards are good quality and do not bend. There is complete separation 

between pads and the contacts are properly grounded. 
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Figure 54: Top Side of Trash-E MCU Breakout 

 

Figure 55: Bottom Side of Trash-E MCU Breakout 

 

 

6.2.12 Determining When the Bin is Full 

Trash-E will continuously run until its power shuts off or its trash bin is full. 
Therefore, we need a way of determining that the trash bin on Trash-E is full and 
we can end the execution of the program.  
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We will use an ultrasonic sensor to determine whether the bin is full or not. This 
sensor will be placed near the top the of the inside of the trash bin on one of its 
sides. The sensor will be constantly reading the value of the distance from itself to 
the other side of the bin. Every time that Trash-E picks up trash to throw into its 
bin, the sensor will wait a few seconds so that it does not falsely detect a full bin 
when the object passes it as it falls into the bin. Once those few seconds have 
passed, the sensor will sample the reading and determine whether its distance is 
within the threshold of the other side. In other words, if the distance from the sensor 
and the other side of the bin has not changed significantly, then that means that 
the bin is not full. Once the bin has been filled to a certain capacity, the reading 
that the sensor samples will no longer be within the threshold set for the distance 
between the sensor and the other side of the bin. It will be less and that means 
that there is an object in between and that the bin has reached a capacity that we 
determine as full. Once the sensor has determined that the bin is full, then Trash-
E should stop searching for trash and adding trash to its bin. This essentially will 
stop Trash-E’s program execution until it is started up again with a bin that is no 
longer full. 

6.3 Bill of Materials (BOM) 

Table 20: Bill of Materials 

Type Part Name Description QTY Unit 
Cost 

Total 
Cost* 

Wheels Pololu Wheel for 
Standard Servo  

Wheel for robot to move. 2.00 $4.75 $9.50 

Motor Driver A4988 Stepper Motor 
Driver Carrier 

Drive stepper motors. 5.00 $5.47 $27.35 

Stepper 
Motor 

Twotrees Nema 17  Move the arm (Design 1) 1.00 $9.99 $9.99 

Servos 154 Move the wheels  2.00 $11.95 $23.90 

Micro Servo SER0006 Servo to open and close 
gripper on arm. 

1.00 $3.62 $3.62 

Ultrasonic 
Sensor 

SainSmart HC-SR04  Sensor to detect cup 
distance from gripper. 

1.00 $4.45 $4.45 

MCU TM4C1232H6PMI7 Microcontroller for 
peripherals 

1.00 $7.14 $7.14 

Jetson Nano 2GB Mini-Computer For Computer Vision 1.00 $59.00 $59.00 

Camera Logitech C270 For CV 1.00 $25.00 $25.00 

Lidar 
Rangefinder 

MakerFocus 
YDLIDAR X2L 

For SLAM 1.00 $69.99 69.99 
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Chassis/ 
Bucket 

3D Printed Robot Chassis 1.00 3D 
Printed 

3D 
Printed 

Arm 3D Printed Arm to pick up cups 1.00 3D 
Printed 

3D 
Printed 

Gripper 3D Printed To grip cups 1.00 3D 
Printed 

3D 
Printed 

 

  



115 
 

7.0 Prototyping, Build, Test, Evaluation Plans 

7.1 Prototyping 

7.1.1 Block Diagram Explanation 

The hardware composition of Trash-E is visualized on the block diagram below in 
Figure 56. The block diagram contains the overall grasp of the project. This gives 
a development path as well as a visual representation of how each part connects 
to each other.  
 

 
Figure 56: Trash-E Hardware Block Diagram 
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7.1.1.1 Electrical Components  

Starting from the bottom of Figure 38, the power supply designed with constraints 
and standards in mind should be grounded and have no exposed circuitry. It 
should also be able to satisfy all power needs of one stepper, two continuous 
servos, one regular servo,a microcontroller, an Nvidia Jetson 2GB, as well as all 
the corrisponding peripheral components. To ensure everything receives the 
specified voltage and wattage to perform optimally a voltage regulator for two 
separate blocks of the project as they will have separate voltage requirements. 

7.2 Computer Vision Testing 

One of the most important aspects of Trash-E is the object detection component. 
Our robot would not do anything at all if our object detection software is not working 
or working optimally. For our computer vision object detection software we want to 
test a few aspects before even proceeding to the microcontroller software. Our 
object detection software should be able to accurately detect the trash objects that 
we train it to detect and should ignore any other object. It should be able to detect 
objects regardless of orientation and the surrounding environmental factors such 
as lighting and background noise. The software should be able to select the closest 
object of interest by the size of its bounding box. The software should be able to 
correctly track where the closest object is on the image and use the coordinates 
from its bounding box to calculate the correct result to send over to the 
microcontroller. The performance of the object detection should be fast enough 
that we can accurately detect objects while moving. 

7.2.1 Testing Object Detection 

The first step to successful object detection is being able to detect the object. For 
each class item of trash that we train our model to detect, we want to test for 
accurate detection meaning no false positives or negatives as well as accurate 
detection in different orientations, lighting, and backgrounds. The object should be 
detected from orientations horizontally and vertically. For example, we should 
detect a cup that is standing upright, sideways, flipped, or even rotated. We expect 
that we cannot detect objects in darkness but should function normally in natural 
and artificial light. Different color backgrounds and noisy backgrounds should not 
affect detection. We will be testing object detection before on the desktop instead 
of on the Jetson Nano. The reason is that it will be a lot more convenient and 
efficient to test on a desktop using a camera connected to it rather than the Jetson 
Nano and the model will perform exactly the same on the Jetson Nano. Successful 
detection of these objects means that we can move forward to sorting these 
detections and moving on in our object detection process. 
 

Procedure: 
1. Run the object detection model while using the camera feed as the image 

input. 
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2. Check that the video feed is live in the window. 
3. Check that the frame rate performance of the model is more than 10 

frames per second. 
4. Check that no objects are being currently detected. 
5. Place an unknown object in camera view and check that it is not detected. 
6. For each trash object we have trained to detect, repeat steps 3 to 5. 
7. In  artificial light, place the object in view of the camera and do steps 7 to 

10. 
8. In natural light, place the object in view of the camera and do steps 7 to 

10. 
9. Check that the object is correctly identified and has been labeled correctly. 
10. Check that the object is correctly identified in multiple orientations 

(rotations by 45 degrees, flipped, sideways). 
11. Check that the object is correctly detected with a solid background as well 

as a noisy background. 
12.  Ensure there are no ghost objects or false positives being detected. 

7.2.2 Testing Object Selection 

Upon successful detection of trash, our algorithm should sort the detections and 
their respective bounding box coordinates. These detections should be sorted by 
decreasing area. This aspect is essential to Trash-E being able to decide which 
object it should head towards out of all objects in the camera view. During this 
testing we will use a plastic cup as our object. 
 

Procedure: 
1. Run the model and use the camera as the input. 
2. Check that the program window is showing a live camera feed. 
3. Check that the object detection is working by placing a plastic cup in the 

view. 
4. Grab at least four plastic cups and place them in view at different 

distances away from the camera view. 
5. Check that the program window has placed a circle outline on the closest 

object. 
6. Repeat steps 4 - 6 as many times as needed. 

7.2.3 Testing Object Tracking 

Once the object detection model has successfully detected and selected the object 
that is closest, the algorithm should correctly calculate the position of this object 
relative to the image center and determine the direction that the robot should turn 
in order to make it face straight at the object. In this testing, we will only be checking 
for correct results prior to serial communication over UART. This test will only focus 
on the computer vision aspect of the software. During this testing we will use a 
plastic cup as our object. 
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Procedure: 
1. Run the model and use the camera as the input. 
2. Check that the program window is showing a live camera feed. 
3. Check that the object detection is working by placing a plastic cup in the 

view. 
4. With no objects in view of the camera, check that the displacement 

calculation is a null value and the value to be sent via UART is 0. 
5. Use valid objects for the following steps. 
6. Place one cup on the image center.  
7. Check that the displacement calculation is zero and the value to be sent 

via UART is 1. 
8. Place one cup to the left of the image center.  
9. Check that the displacement calculation is negative and the value to be 

sent via UART is 2. 
10.  Place one cup to the right of the image center.  
11.  Check that the displacement calculation is positive and the value to be 

sent via UART is 3. 
 

7.2.4 SLAM Test 

The objective of this test is to ensure the SLAM algorithm can generate an accurate 
map of an unknown environment. 

Procedure: 

1. Connect the lidar sensor to the Jetson Nano GPIO pins. 

2. Connect the 5V power supply to the lidar sensor. 

3. Place various obstacles around the room. Ensure there are obstacles on 

every side of the lidar sensor to test the 360° rotation of the sensor. 

4. Draw a map of the current environment, labeling walls and drawing the 

shapes of obstacles the algorithm will detect. 

5. Transfer the SLAM algorithm onto the Jetson Nano, provide a power source 

and turn it on. 

6. Wait for the algorithm to generate a map of the area. 

7. Compare the generated map to the map that was drawn by the tester and 

ensure they are identical. 

7.3 Hardware Testing Plans 

Before we can build Trash-E, we need to test the individual aspects our design will 
achieve to ensure it will work overall. Testing will be done at the Senior Design lab 
in Engineering 1 on UCF campus or at a group member’s residence. Location will 
be determined by each specific test and the equipment required by said test. Each 
test will have procedural steps so that the test can be replicated by anyone given 
they have the required equipment. 
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Equipment: 
The following equipment will be required to complete all tests below: 

• Multimeter 
• DC Power Supply 
• Oscilloscope or Discovery Kit 
• 12V battery configuration 
• Voltage Regulator PCB 
• TM4C1232H6PMI7 Design 2 PCB 
• Power Rail Breakout Board 

7.3.1 Voltage Regulator Testing 

The objective of this test is to ensure the batteries can power the components at 
the correct voltages using the voltage regulator PCB we had manufactured. This 
also checks to make sure the soldering is done correctly. 
 

Procedure: 
1. Check all solder connections through a microscope to ensure all 

components are secured and connected to the board, and that there is no 
solder bridging between pins. 

2. Connect a jumper cable to the 5V output header “5V OUT” pin. 
3. Connect a jumper cable to the 5V output header “GND” pin. 
4. Attach the positive multimeter probe to the “5V OUT” jumper cable. 
5. Attach the negative multimeter probe to the “GND” jumper cable. 
6. Connect a jumper cable to the input header “VCC” pin. 
7. Connect a jumper cable to the input header “GND” pin. 
8. Attach the positive DC power supply alligator clip to the “VCC” jumper cable. 
9. Attach the negative DC power supply alligator clip to the “GND” jumper 

cable. 
10. Sample the voltages for ten seconds at each input voltage: 8V, 9V, 10V, 

11V, 12V. 
11. Ensure the multimeter is reading 5V +/- 0.2V at 10V and higher. 
12. Turn off the power supply. 
13. Connect a jumper cable to the 3V3 output header “3V3 OUT” pin. 
14. Connect a jumper cable to the 3V3 output header “GND” pin. 
15. Attach the positive multimeter probe to the “3V3 OUT” jumper cable. 
16. Attach the negative multimeter probe to the “GND” jumper cable. 
17. Sample the voltages for ten seconds at each input voltage: 8V, 9V, 10V, 

11V, 12V. 
18. Ensure the multimeter is reading 3.3V +/- 0.2V at 10V and higher. 
19. Repeat steps 2-18 except change the DC power supply for the battery 

configuration that will be used with the robot. 
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7.3.2 Powering of the Microcontroller 

The objective of this test is to verify that the microcontroller is receiving power and 
all soldering has been done correctly. 
 

Procedure: 
1. Check all solder connections through a microscope to ensure all 

components are secured and connected to the board, and that there is no 
solder bridging between pins. 

2. Connect the DAOKI ST-Link V2 to the JTAG connector on the board using 
the datasheet and Figure 35 in this document. 

3. Flash the program “Hello.c” onto the microcontroller. 
4. Connect a jumper cable to the input header “VCC” pin. 
5. Connect a jumper cable to the input header “GND” pin. 
6. Connect a jumper cable to the “WT4CCP1” pin. 
7. Connect a  jumper cable to a nearby “GND” pin. 
8. Connect the probe of an oscilloscope to the “WT4CCP1” pin. 
9. Connect the corresponding ground probe to the nearby “GND” pin. 
10. Connect a DC power supply to the input header “VCC” and “GND” pin. 
11. Turn on the DC power supply and set the voltage to 3.3V. 
12. Verify the oscilloscope shows a square signal with a 50% duty cycle. 

7.3.3 Powering a Servo Motor 

The objective of this test is to ensure we can generate a PWM and power any 
servo motor that will be hooked up.  
 

Procedure: 
1. Check all solder connections through a microscope to ensure all 

components are secured and connected to the board, and that there is no 
solder bridging between pins. 

2. Connect the DAOKI ST-Link V2 to the JTAG connector on the board using 
the datasheet and Figure 35 in this document. 

3. Flash the program “Hello.c” onto the microcontroller. 
4. Connect jumper cables to both the 5V and 3.3V and their respective ground 

pins on the voltage regulator board. 
5. Connect the 3.3V output of the voltage regulator to the input header “VCC” 

pin on the microcontroller PCB. 
6. Connect the 3.3V ground cable of the voltage regulator to the input header 

“GND” pin on the microcontroller PCB. 
7. Connect a jumper cable to the “WT4CCP1” pin. 
8. Connect a  jumper cable to a nearby “GND” pin. 
9. Connect the 5V output of the voltage regulator to the positive power rail on 

the breakout board. 
10. Connect the 5V ground pin of the voltage regulator to the negative power 

rail on the breakout board. 
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11. Connect the power connection of the servo motor to the 5V power rail. 
12. Connect the signal connection of the servo motor to the “WT4CCP1” pin. 
13. Connect the ground connection of the servo motor to the ground power rail. 
14. Connect the DC power supply to the “VCC” and “GND” pins of the voltage 

regulator. 
15. Turn on the DC power supply to 12V. 
16. Observe that the servo motor is alternating between spinning one way 180° 

and the other way 180°. 

7.3.4 Powering a Stepper Motor 

The objective of this test is to ensure we can generate a PWM for the stepper 
motor and control it with the motor driver and microcontroller. 
 

Procedure: 
1. Check all solder connections through a microscope to ensure all 

components are secured and connected to the board, and that there is no 
solder bridging between pins. 

2. Connect the DAOKI ST-Link V2 to the JTAG connector on the board using 
the datasheet and Figure 35 in this document. 

3. Flash the program “HelloStepper.c” onto the microcontroller. 
4. Connect jumper cables to both the 5V and 3.3V output and their respective 

ground pins on the voltage regulator board. 
5. Connect the 3.3V output of the voltage regulator to the 3.3V power rail on 

the power rail breakout board then to the input header “VCC” pin on the 
microcontroller PCB. 

6. Connect the 3.3V ground cable of the voltage regulator to the ground power 
rail on the power rail breakout board then to the input header “GND” pin on 
the microcontroller PCB. 

7. Connect a jumper cable to the “WT4CCP1” pin. 
8. Connect a  jumper cable to a nearby “GND” pin. 
9. Connect a jumper cable to the “WT4CCP0” pin. 
10. Connect a  jumper cable to a nearby “GND” pin. 
11. Connect the positive terminal of the DC power supply to one of the positive 

terminals of the power rail breakout board and the negative terminal to the 
ground rail. 

12. From the positive terminal on the power rail breakout board, make one 
connection with a jumper cable to the “VCC” input on the voltage regulator 
and another to the “VMOT” pin on the motor driver as well as their 
corresponding ground connections to the power rail breakout board. 

13. Connect the “WT4CCP0” and “WT4CCP1” pins to “STEP” and “DIR” on the 
motor driver, respectively. 

14. Connect the 3.3V and ground pin from the power rail breakout board to 
“VDD” and the ground power rail to “GND” on the breakout board, 
respectively. 

15. Turn on the power supply and set the voltage to 12V. 
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16. Observe that the stepper motor is alternating between spinning one way 
180° and the other way 180°. 

7.3.5 Ultrasonic Sensor Testing 

The objective of this test is to ensure we can get a reading from the ultrasonic 
sensor with different distances. 
 

Procedure: 
1. Check all solder connections through a microscope to ensure all 

components are secured and connected to the board, and that there is no 
solder bridging between pins. 

2. Connect the DAOKI ST-Link V2 to the JTAG connector on the board using 
the datasheet and Figure 35 in this document. 

3. Flash the program “HelloUltrasonic.c” onto the microcontroller. 
4. Connect jumper cables to both the 5V and 3.3V output and their respective 

ground pins on the voltage regulator board. 
5. Connect the 3.3V output of the voltage regulator to the 3.3V power rail on 

the power rail breakout board then to the input header “VCC” pin on the 
microcontroller PCB. 

6. Connect the 3.3V ground cable of the voltage regulator to the ground power 
rail on the power rail breakout board then to the input header “GND” pin on 
the microcontroller PCB. 

7. Connect the 5V output of the voltage regulator to the 5V power rail on the 
power rail breakout board then to the input header “VCC” pin on the 
ultrasonic sensor. 

8. Connect the 5V ground cable of the voltage regulator to the ground power 
rail on the power rail breakout board then to the input header “GND” pin on 
the ultrasonic sensor. 

9. Connect the “WT4CCP0” and “WT4CCP1” pins to “Trigger” and “Echo” on 
the motor driver, respectively. 

10. Add an LED in series with the “Echo” pin. 
11. Connect the DC power supply to the input header “VCC” and “GND” pin on 

the voltage regulator. 
12. Turn on the power supply and set the voltage to 12V. 
13. Move things closer and further away from the sensor and view the LED 

staying illuminated for longer intervals when the object is further away. 

7.4 Evaluation 

After component testing, building, and software has been completed, the following 
tests will be run to evaluate Trash-E and confirm it works as intended. 
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7.4.1 Robot Movement Testing 

The objective of this test is to ensure the robot can accomplish all types of required 
movement: forward, backward, turn left, turn right, and spin. Before starting, 
ensure the electrical components are hooked up correctly according to Figure 57. 
 

Procedure: 
1. Connect the DAOKI ST-Link V2 to the JTAG connector on the board using 

the datasheet and Figure 56 in this document. 
2. Flash the program “TestMovement.c” onto the microcontroller. 
3. Connect the positive jumper cable of the battery to the “VCC” pin on the 

voltage regulator, and their corresponding ground pins. 
4. Observe the robot perform the movements in this order:  

1. Move forward. 
2. Move backward. 
3. Turn left. 
4. Recenter. 
5. Turn right. 
6. Recenter. 
7. Spin 360°. 

7.4.2 Collecting Trash Testing 

The objective of this test is to ensure the robot can pick up trash in multiple different 
orientations. Five different trash orientations will be tested. Before starting, ensure 
the electrical components are hooked up correctly according to Figure 57. 
 

Procedure: 
1. Connect the DAOKI ST-Link V2 to the JTAG connector on the board using 

the datasheet and Figure 56 in this document. 
2. Flash the program “TestGrabbing.c” onto the microcontroller. 
3. Connect the positive jumper cable of the battery to the “VCC” pin on the 

voltage regulator, and their corresponding ground pins. 
4. Place a cup one inch away from the base of the gripper with the mouth of 

the cup facing up. 
5. Observe the robot pick up the cup, raise it to the bucket on its back, drop it 

in, and move the arm back to starting position. 
6. Repeat steps 4 and 5 with the following cup configurations: 

1. Mouth of the cup facing down. 
2. Cup on its side, mouth facing left. 
3. Cup on its side, mouth facing the robot. 
4. Cup on its side, mouth facing 45° (in between facing left and facing the 

robot). 
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7.4.3 Idle State Testing 

The objective of this test is to ensure the robot will follow the path-planning 
algorithm until a cup is detected. Before starting, ensure the electrical components 
are hooked up correctly according to Figure 57. 
 

Procedure: 
1. Connect the DAOKI ST-Link V2 to the JTAG connector on the board using 

the datasheet and Figure 56 in this document. 
2. Flash the program “TestIdle.c” onto the microcontroller. 
3. Connect the positive jumper cable of the battery to the “VCC” pin on the 

voltage regulator, and their corresponding ground pins. 
4. Put a cup in an arbitrary place on the ground in any configuration. 
5. Observe the robot detect the cup once it is in frame and collect it into the 

bin. 

7.4.4 Multiple Cup Testing 

The objective of this test is to ensure the robot can handle scenarios where there 
is more than one cup present. Before starting, ensure the electrical components 
are hooked up correctly according to Figure 57. 
 

Procedure: 
1. Connect the DAOKI ST-Link V2 to the JTAG connector on the board using 

the datasheet and Figure 56 in this document. 
2. Flash the program “main.c” onto the microcontroller. 
3. Place two cups in the frame of the camera that are both equally close to the 

robot. 
4. Connect the positive jumper cable of the battery to the “VCC” pin on the 

voltage regulator, and their corresponding ground pins. 
5. Observe the robot pick up one of the cups, then the other. 
6. Repeat steps 3 through 5 with one cup closer than the other. 
7. Repeat steps 3 through 5 with both cups out of the frame and equally close 

to the robot. 
8. Repeat steps 3 through 5 with both cups out of the frame but with one cup 

closer than the other. 
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Figure 57: Electrical Connection Layout 
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7.5 Hardware Component Testing 

7.5.1 Voltage Regulator Prototyping 

 
Figure 58: 12-5V Voltage Regulator Breadboard 

 

 
Figure 59: 12-5V Voltage Regulator Breadboard  

Figure 58 showcases the 12-5V voltage regulator that we have designed for the 
robot. Figure 59 shows the output of the voltage regulator at 4.699V. This is 
because while we were waiting for the specific resistor and capacitor values to 
come in, we used common resistor and capacitor values that are close to the 
values we want. Once we have the parts, we should be getting 5V output. If 
necessary, we will do tuning to the circuit to get the 5V output. The circuit above 
uses the SC4524F Integrated Circuit Voltage Regulator that we chose.   
Table 21 shows the components that are to be used once the actual components 
have come in. In the meantime, the part numbers for the capacitors and resistors 
are omitted, as the current values are different. Once the new components arrive, 
the part numbers for each component will be updated.  
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Table 21: Components used in breadboard testing 

Component 
Reference  

Component Type  Component 
Value  

Part Number  

C1  
C2  
C4  
C5  
C7  
C8  

  
  

Capacitor  

0.33uF  
22uF  
2.2uF  
c5uF  
10nF  
10pF  

-  
-  
-  
-  
-  
-  

R4  
R5  
R6  
R7  

  
Resistor  

  
102kΩ  

  
15.8kΩ  
25.5kΩ  
30.1kΩ  

56-
MRS25000C1023FCT00CT-

ND  
PPC15.8KYCT-ND  

RNF14FTD25K5CT-ND  
PPC30.1KZCT-ND  

L1  Inductor  6.8uH    

D1  
D2  

Diode  -  
-  

1N4148  
20BQ030  

IC1  Integrated Circuit 
Voltage Regulator  

-  
  

SC4524FSETRT  

  
The circuit must be able to hold a constant voltage of 5V when the input varies, 
from 10V to 14V, in case the battery pack has a fluctuation that may cause it to 
change. Voltages were varied from the input with the power supply from 10V 
to 20V. The results are in Table 22. From the table, we can see that the voltage 
difference between the input voltage at 20 V and 10 V are 0.2 V. Thus, the voltage 
regulator works for our use case. In Table 23 the output voltage differs by 0.3 V.  
 

Table 22: Input and Output Voltage of 12 - 5 V Step Down Regulator 

Input Voltage  Output Voltage  

20 V  5.5 V  

18 V  5.4 V  

16 V  5.4 V  

14 V  5.3 V  

12 V  5.3 V  

10 V  5.3 V  

 
We are concerned that the current of the regulator may not be high enough for the 
autonomous robot, so we are considering using regulators with higher current 
capabilities. Further testing will be required once we have gathered all the 
components to the robot such as all the motors, sensors, and microcontrollers.   
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Table 23: Input and Output Voltage of 5 - 3.3 V Step Down Regulator 

Input Voltage  Output Voltage  

20 V  3.6 V  

18 V  3.6 V  

16 V  3.5 V  

14 V  3.5 V  

12 V  3.5 V  

10 V  3.5 V  

8 V  3.4 V  

6 V  3.3 V  

5 V  3.3 V  
 

7.5.2 Ultrasonic Sensor Testing 

This test utilizes the TI Evaluation Kit EK-TM4C123GXL since we were unable to 
complete the building of the PCB due to shipping delays from the PCB 
manufacturer. The microcontroller on the Evaluation Kit is the same microcontroller 
we will use on the PCB so it is an accurate representation of the environment the 
ultrasonic sensor will be powered by. 

To determine the distance of the object from the sensor, the following equation is 
used 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
((𝐻𝑖𝑔ℎ 𝐿𝑒𝑣𝑒𝑙 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛) ∗ 340

𝑚
𝑠

)

2
 

Based on this equation, the shorter the high pulse is from the ultrasonic sensor, 
the closer the object is to the sensor. Table X below compares the different values 
of the ultrasonic sensor output pulse width between the set distances we chose to 
test at. Since we want the ultrasonic sensor to be used to stop the robot when the 
trash is close to the arm and gripper, we chose a maximum of two feet (60 
centimeters) and a minimum distance of two inches (5 centimeters). This will give 
us a realistic use case for the ultrasonic sensor when it is attached to the arm. 

 

Figure 60: Test Setup for Ultrasonic Sensor 
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Figure 60 depicts the setup for this test. Code was written on the evaluation kit to 
continuously generate a PWM at 12kHz with a 50% duty cycle. This signal was 
sent to the trigger pin of the ultrasonic sensor which activates the ultrasonic waves 
to be emitted for distance detection. The ultrasonic sensor is also being powered 
by a DC power supply set to 5V. The output was viewed using an oscilloscope to 
check the length of the returning square wave. 

Table 24: Ultrasonic Sensor Testing Results 

Distance 
From 

Sensor (cm) 

Input Duty 
Cycle 

Frequency 
(kHz) 

Positive 
Sensor 
Output 

Duration 
(ms) 

Measured 
Distance 

(cm) 

60 50% 12 3.08 52.36 

30 50% 12 1.6 27.2 

15 50% 12 0.880 14.96 

5 50% 12 0.360 6.12 

 

 

Figure 61: 60cm Output (Left) and 30cm Output (Right) 

 

Figure 62: 15cm Output (Left) and 5cm Output (Right) 

While an object is further away, it is not as accurate as can be seen with the 
distance of 60 centimeters. The measurements get more accurate as the object 
gets closer which is good for our use case. When we read that the ultrasonic 
sensor on the base of the arm is within two inches, we will want to stop the robot 
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to allow for picking up the trash. The inaccuracy of the further distances is 
negligible for our use case since the closer distance accuracies are good. 
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8.0 Administrative Content 

8.1 Milestones 

For the fall semester we have established milestones for the project. This semester 
will mainly be focused on research, documentation, and design as shown in table 
20. 

Fall 2021 

Table 25: Fall Milestones 

Week Date Milestone 

1 8/23 - 8/29 • Group Formation 

2 8/30 - 9/5 • Brainstorm Projects 
• Choose Project 
• Senior Design Bootcamp 

3 9/6 - 9/12 • Determine Project Requirements 
• Discuss Project Budget 
• Divide Project Block Diagram 

4 9/13 - 9/19 • Divide and Conquer 1.0 

5 9/20 - 9/26 • Decide Primary and Secondary Features 
• Revise Project 

6 9/27 - 10/3 • Divide and Conquer 2.0 

 

 

 

 

7-12 

 

 

 

 

10/4 - 
11/14 

• 60 Page Draft  
• Research and order Microcontrollers and 

other parts  
• Research Software 
• Begin PCB Design 
• Decide Pre-built or  
• Custom Chassis 

13 11/15 - 
11/21 

• 100 Page Draft  

14-16 11/22 - 
12/12 

• Final Submission  
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Spring 2022 

As the spring semester approaches and more design specifics are fleshed out, 
the time frame will be determined. Table 21 below shows a general outline for 
milestones of the semester.  
 

Table 26: Spring Milestones 

Week Date Milestone 

 

 

 

 

 

TBD 

Understand component Implementation 

Construct Hardware 

Create Software 

Project Testing 

Project Website 

Final Presentation 

Final Report 

8.2 Budget and Finance 

For this project, we decided that a $450 budget is possible for the four of us to 
handle. Since there is no sponsor for this project, the funding is coming from all of 
us split at $112 per person. For robotic movement parts and sensors, we plan to 
have a maximum cost of $100. The mini-computer will be given a maximum cost 
of $80. Utilization of a group member’s 3D printer, or the 3D printer that is on UCF’s 
main campus, will be used to keep costs low for making the chassis. A budget of 
$70 will be dedicated to 3D printing. For electronic components, like the 
microcontroller and PCBS, a budget of $100 is allocated. Due to this project being 
prone to human error when assembling, we need to have overhead in case 
unforeseen issues arise and need to be fixed, or new parts need to be acquired. 
There will be $50 of overhead to cover these costs. The final $50 is allocated to 
implementing stretch goals and the possible new parts we will need to acquire. 
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9.0 Project Summary and Conclusion 

During our research and prepared development of the trash picking up robot Trash-E, our 
group has learned about many topics that can be applied when making an autonomous 
robot. By researching topics from different projects such as autonomous drones, self-
driving cars and other similar emerging technologies, we believe that we will be able to 
create Trash-E.  

From our research, we were able to create an overall conceptual design that we believe 
will be able to properly do the objectives we want to do. With the robot being on four 
wheels, we will be able to maneuver terrain easily. The gripper will allow to pick up more 
than just small particles such as dust that previous robots which have been made before 
such as the Roomba, a robot vacuum. We hope to build upon these previous iterations by 
broadening the capabilities of a robot by picking up trash instead of just being a vacuum. 
Some self-driving cars and Roombas use LiDAR, which we believe is a fantastic way to help 
our robot navigate through its surroundings. The reason we chose our specific 
components were to keep costs down while also being efficient. 

We chose to do this project because we are passionate about cleaning up the 
environment. With the popularity of social media trends such as cleaning up the beach, 
we hope to help motivate people to continuously keep the environment clean. We are 
also all interested in robotics, so we felt that this would be right up our alley. We felt that 
this robot would provide an adequate challenge to our abilities and allow us to learn a lot.  
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