
Divide and Conquer 2.0: Trash-E

Group Information
Group: 26

Senior Design 1 EEL 4914-0001

Due: October 1st, 2021

Members
Thomas Greco: Computer Engineering

Christian Mayo: Computer Engineering

Alex Rizk: Computer Engineering

Chrizzell Jay Sanchez: Electrical Engineering

Overview
In this paper, we discuss our design for a robot that detects trash and picks it up. It is
meant to help automate the process of cleaning up a venue such as a ballroom,
sporting event field, or even a backyard. The purpose of the project is to create an
autonomous robot that can reduce the manpower required to do a tedious task such as
cleaning up after an event.

Motivation

Litter is an increasingly difficult problem to address as the world progresses. Large
amounts of money is spent to pay individuals to pick up leftover objects after many
different events such as tailgates, and parties. Due to the chaotic nature of those
situations, it is extremely difficult to govern and manage each individual and ensure
every piece of litter is brought to a place to be disposed of. Therefore, venues choose to
clean up after the event rather than take preventative measures. This leads to another
problem that once litter reaches a certain size, it is too large to pick up multiple at one
time. One must bend down, grab the litter, then put it in a receptacle for storage until
they may properly dispose of it.

A general consumer’s options for a device that completes this task autonomously is
very limited. Based on our research, there is only a Roomba® style device that can be
purchased. One problem with this style of robot is the size of objects it can pick up.
Roomba®’s are designed with the intention of replacing vacuum cleaners that
companies such as Dyson® and Bissell® manufacture. This means their goal is to pick
up very small objects like crumbs, dirt, dust, and other similar things that can be
collected without the use of the vacuum wand.

Another problem with the Roomba® is the capacity of the container it stores litter in.
Even if a venue only had litter that was capable of being picked up by it, the container
would get full too quickly and would require a person to empty it too often.

Customers, Sponsors, Contributors
For this project there are no customers or sponsors. The decision to do this project was
unanimously voted by everyone in the group. Each member of the group will be
individually contributing to the expenses of the project.

Budget
Split between four group members we’ve decided that $400 should give us enough
wiggle room to complete the project. Some parts already owned by team members may
be provided to further reduce costs.

Description
Trash-E needs to be fully autonomous which will require computer vision along with
AI/Machine Learning for litter identification and object avoidance. This will utilize a
camera and some type of mini-computer that will do the image processing and object
detection. It also needs to have a way to move around either with treads or wheels
which will also need some form of motor to move them. A container will be fixed to the
top with enough space to allow multiple pieces of litter. A sensor will be used to
determine the fullness of the container. Some options we have considered is a weight
sensor that will be put under the container, or an ultrasonic or infrared sensor that will
be used to tell the distance of the object on the top of the pile. The ultrasonic/infrared is
a more comprehensive approach due to the weight of objects being different after
expanding our scope of litter. The bin will be filled to 85-90% capacity to ensure the litter
stays inside the container. An arm will be made to move the litter from the ground into
the receptacle that’s placed on the robot. This arm might be straight with a rotating
“wrist”, or a 2-segment piece that more resembles a human arm with a bend being in
the “elbow”. A claw to pick up the litter will be mounted on the end of the arm. The exact
shape of the claw will be determined after analyzing more about the shape of our
definition of litter. To move the arm and claw, motors will need to be utilized. To control
all the motors, a microcontroller is needed. This will allow us to communicate with the
separate motors to move the wheels and arms. A way to communicate between the
mini-computer and microcontroller will need to be developed as well otherwise the robot
won’t be able to move and interact with the litter. Trash-E will be powered by a
rechargeable battery. The final robot should be easily portable, relatively lightweight,
and able to be transported from location to location.

How do we define litter?
Litter is a broad term, and to create a robot that can pick up all litter would not fit within
the scope of the project. For this project, we must refine what litter is. To start off, we
plan to use 16 ounce Red SOLO cups. These cups are 3 x 3 x 5 inches in size. We plan
to use these cups because they are very popular at large events and often are
discarded on the ground at events such as college parties. The cups are also a distinct
red color and have a distinct shape, which will aid in easing the process of identifying
the cups. Once we are able to distinguish the Red Solo Cups, we plan on moving onto
12 ounce aluminum soda cans. The reasons being similar to the Red Solo Cups, except
the aluminum cans have more variety of color and design. If we are able, we may
expand our scope of litter later on.

How do we define an obstacle?
In our use case, an obstacle is anything that can impede the pathing of the robot.
Anything greater than the size of a Red Solo Cup, 3 x 3 x 5 inches, will be classified as
an obstacle to avoid. We plan to use wheels big enough to roll over anything smaller
than the size of a Red Solo Cup if necessary. As we run testing for obstacle avoidance,
we may need to refine our algorithm for what counts as an obstacle.

Other obstacles we may need to consider are obstacles that are too big for the camera
to see. Something like a wall may throw off the obstacle detection, and thus need to be
considered when programming.

Chassis
The chassis of our robot is currently still up to debate. We are in the process of
researching possible prebuilt options, or even 3D Printing our own custom platform. The
advantages for 3D Printing our own chassis and platform is that it will be much cheaper
to manufacture than to order one from a prebuilt site. However, a major disadvantage is
that creating our own chassis will add in more mechanical work for the team to do,
which adds more variables that can go wrong, as we are not mechanical engineers,
there may be oversights that we may make. Another disadvantage is that the 3D
printing filament that we use may not be strong enough to support the trash and bin and
may crack during use.

The chassis of the robot must be big enough to hold a 2 gallon trash bin, and sturdy
enough to carry all the trash, but small enough to be easily portable. The overall design
can be found in Figure 1 below.

Context
Our robot may be useful in any event with a large gathering of people such as a
concert, football game, or party. In these events the last thing on attendee’s minds is
their trash and it is not uncommon for the venues to be filled with garbage after the
event ends. These events have teams of workers who are dedicated to cleaning up all
the trash that is left over. With larger venues, cleaning up may require upwards of 100
people. We aim to reduce the manpower necessary with this robot.

Maneuverability
One thing that we have to keep in mind as we build our robot is the terrain that the robot
may encounter. If used inside, or on turf of a professional football field, the robot may
not encounter much resistance when roaming around. However, the robot may
encounter trouble when it is placed somewhere without an ideal flat surface. A beach is
an example, as it is composed of different types of sand that is already hard for many
vehicles to travel through. Another example would be a random park, as they are often
not kept in the best conditions. These scenarios would be classified under Hard Terrain,
and will be considered. One solution could be implementing treads similar to tanks, also
known as continuous tracks, or using larger and fatter wheels, similar to fat tire bikes.
Fat tire bikes are bikes that are designed for all terrain by having tires that are wider
than normal bikes which provide more surface area.

Features
The features table is split up between initial, primary, secondary, and stretch goals. The
initial and primary goals are what we want to make sure the robot does. The secondary
are goals that we hope to accomplish, and the stretch goals are goals that are
unnecessary but may be added if we have the time and budget. This table is subject to
editing at any point, as we may find new constraints that may limit or even make a goal
easier to achieve.

Table 1. Features

Description Feature Type

Identify Red Solo Cup Initial Feature

Move Around Freely Initial Feature

Able To Pick Up Litter Primary Feature

Move Arm To Litter And Bin Properly Primary Feature

Identify Aluminum Can Primary Feature

Identify And Avoid Obstacles Primary Feature

Store Litter In Bin Primary Feature

Solar Panels Secondary Feature

IR Remote Control Secondary Feature

Sense When Bin Is Full Secondary Feature

Function For 1 Hour Secondary Feature

Return Home When Bin Is Full Stretch Goal

Maneuver Through Hard Terrain Stretch Goal

Visual And Audio Cue When An Object Is
Picked Up

Stretch Goal

Empty Bin Into Large Trash Bag Stretch Goal

Figure 1. Project Illustration by Alex Rizk

Design Constraints

Economic
As mentioned above, the budget for this project is currently $400. Due to this price we
may have to do more research into building things ourselves like the chassis rather than
buying pre-built kits online. This can also limit the power of our hardware we choose,
like opting for parts that we already own and are slower rather than buying a new, faster
part.

Time
For this project we have two semesters to design, build, test, and present. This greatly
impacts the sophistication of our robot as we have to make sure we can implement our
idea in about 3 months. This can also affect the amount of primary and secondary
features we get to. If something goes wrong or takes longer than expected, we will have
to re-evaluate what we can get done in the remaining time.

Safety
If this robot is to autonomously operate in areas where human traffic is taking place
there must be multiple failsafes in order to prevent harm to bypassers. This issue can
be dealt with in several ways: rigorously training the machine learning model to
differentiate between humans and litter, having ultrasonic sensors for collision detection,
allowing for manual shutdown, operating at slow speeds, and having a small and
lightweight design. Another option would be to only have the robot operate at times
where human activity is minimal to remove any chance of harm. Further down the

development timeline we plan to adhere to safety standards for autonomous
robots.Overall, Trash-E would not have the capabilities to cause any sort of destruction
to any environment.

Manufacturing
Currently we are limited to the following methods for making parts for our robot:

1. 3D Printing: Using the 3D printer in the Innovation Lab, or using the 3D printer
that a group member owns.

2. Purchasing wood: Going to a home improvement store and getting the required
wood to build into what we need. We also need access to a workshop that is
provided by UCF.

3. Purchasing metal: This approach would be potentially most expensive and
difficult due to not having the correct tools.

Standards and Protocols
Standards and protocols are typically used to explain and document the guidelines for
manufacturers, business owners, engineers, and anything of a similar manner to follow
when developing a product that is intended for public or private use. There are a myriad
of protocols to look out for when in the developmental stages of a product. Furthermore,
these protocols should be followed to maximize the accountability of a project in order to
reduce the potential blame for not taking into consideration standards later in a project's
lifetime. In the case of our autonomous litter cleaner robot various standards have been
created by organizations like IEEE Robotics & Automation Society and IFR
(International Federation of Robotics).

Serial Communication Protocols/Standards Considered
Here are our potential options of serial communication protocols that are being
considered for use across the project for sensors, motors, peripherals,and
communication between the microcontroller and mini-computer (Nvidia Jetson or
Raspberry Pi)

1. USB
The USB standard is vast and multi-layered with protocols that have been
developed and improved by several major companies; to date, there are six
different versions of USB. These versions are USB 1.0, 1.1, 2.0, 3.0, 3.1, 3.2,
and 4. Within each of these versions are the connector types such as Type A, B,
C, Mini A, B, Micro A, B, and Micro AB. For the scope of this project USB 2.0 or
3.0 with a Type A connector should be necessary in order to connect the camera
peripheral to the Nvida Jetson or Raspberry Pi. Shown in Figure 3 is the
difference in the pin connections we may encounter when choosing our USB
peripherals, both of which are compatible with any USB 2.0 or 3.0 port due to the
shared pins. USB allows us to easily implement a camera for computer vision to
our design since it handles the configuration of DMA (direct memory access),
interrupts, formatting, and selecting input and output addresses.

Figure 2. Type A USB 2.0 & 3.0

2. I2C
Can be used for communication between multiple masters and slave devices all
through two wires that transmit a clock signal and data shown in Figure 4 below.
Depending on whether a device is sending or receiving data an open drain allows
for bidirectional communication through the data line. This can be useful in the
instance where we want to control several motors through the use of two pins
rather than occupying several pins on our microcontroller. On the other hand, I2C
can be relatively slow compared to other serial communication protocols such as
SPI since it’s handling of multiple devices using only two wires causes overhead.
The overhead is more specifically due to the fact that you have to send a start
condition, then address the slave, send the data, and send a stop condition
though depending on clock speeds you can increase the speed of this process.

Figure 3. Example I2C Bus

3. SPI
Serial peripheral interface acts similar to I2C where you have a master that can
individually select several devices that are connected through three plus the
number of devices and the amount of pins. The three essential pins are SCLK
(serial clock), MOSI (master out slave in), MISO (master in slave out) while the
number of SS (slave select) or CS (chip select) depends on the number of
devices you want to connect shown in Figure 5. The largest disadvantage is that
as the number of peripheral devices increases the complexity increases, needing
more SS pins. Despite the negative previously mentioned, SPI is one of the
fastest protocols among the many other choices due to its simplicity and no need
for overhead processing.

Figure 4. Example I2C Bus

Requirements
Formulated from our initial planning phase, we decided our initial project requirements that may
be subject to change down the line due. Due to limitations with price and time we kept
performance requirements and specifications relatively low as can be seen on Table 2.
Furthermore, taking into consideration the environmental, manufacturing, cost, and time may
positively affect our design forcing us to be efficient with our resources.

Table 2. Requirements

Description Requirement

Maximum objects simultaneously grabbed 1

Maximum weight of object to be picked up 2 lbs

Maximum size of object to be picked up 3in x 3in x 5in

Time to retrieve object (Detection to bin) 30 s

Length of charge. 1 hr

Robot speed 5 Mph maximum

Robot size Determined by size of garbage can

Success detection Read from ultrasonic bin sensor

Amount of items in the can 85% bin capacity

Size of holding bin 2 gallons

Microprocessor 5V 2.5Amps

Microcontroller Power 5V 1A

Milestones
For the fall semester we have established milestones for the project. This semester will
mainly be focused on research, documentation, and design as shown in table 3.

Fall 2021
Table 3. Fall Milestones

Week Date Milestone

1 8/23 - 8/29 Group Formation

2 8/30 - 9/5 Brainstorm Projects
Choose Project
Senior Design
Bootcamp

3 9/6 - 9/12 Determine Project
Requirements
Discuss Project
Budget
Divide Project Block
Diagram

4 9/13 - 9/19 Divide and Conquer
1.0

5 9/20 - 9/26 Decide Primary and
Secondary Features
Revise Project

6 9/27 - 10/3 Divide and Conquer
2.0

7-12 10/4 - 11/14

60 Page Draft
Research and order
Microcontrollers and
other parts
Research Software
Begin PCB Design
Decide Pre-built or
Custom Chassis

13 11/15 - 11/21 100 Page Draft

14-16 11/22 - 12/12 Final Submission

Spring 2022
As the spring semester approaches and more design specifics are fleshed out, the time frame
will be determined. Table 4 below shows a general outline for milestones of the semester.

Table 4. Spring Milestones

Week Date Milestone

TBD

Understand component
Implementation

Construct Hardware

Create Software

Project Testing

Project Website

Final Presentation

Final Report

Block Diagram
The block diagram in Figure 5 demonstrates the general components we will use, who

is responsible for acquiring and researching them, as well as the state of the
acquisitions.

Figure 5. Project Block Diagram

Computer Vision

Why do we need computer vision?
Trash-E should be able to maneuver and spot trash and pick it up on its own. Trash-E
will be roaming on its own until it finds a piece of trash. We identified earlier what trash
items Trash-E will be identifying. Trash-E must be able to recognize these trash items
and maneuver its way towards each object. However, spotting and identifying the
correct trash objects is only the first step. Trash-E will have an arm with pincers that it
will use to pick up the trash. It will need to be able to decide how it will approach the
pickup of the item. It should be able to precisely grab the item and put it into its trash
bin. To do this, we are looking to use computer vision with our robot Trash-E. Computer
vision is a field of AI that can allow our robot to see. Meaning that it will be able to derive
meaningful information just from digital images or video. With that information, Trash-E
can identify trash objects and figure out how it will be grabbed.

How will Trash-E use computer vision?
Trash-E will have a camera connected to its main computer. A camera will be used to
capture images of what is in front of Trash-E. The camera will be capturing many
images. The computer on Trash-E will be powerful enough to process the images so
that Trash-E can scan and identify trash objects in its view in real time. Once a trash
object is detected it will move towards that object and pick up the trash. Trash-E should
be able to figure out where the object is in real space and should move its arm
accordingly to be able to pick up the object and move it into its trash bin.

How does computer vision work?
For computer vision to work, a lot needs to get done before it is used for cases like
Trash-E identifying trash in real time. Computer vision requires a lot of data and would
need to use machine learning techniques to accomplish it. It needs to analyze a lot of
data and learn from it until it can make certain distinctions in images and ultimately
recognize what it needs to find in an image or video. Figure 6 is an example of what a
computer sees after identifying objects via computer vision.

Figure 6. Object Detection Using Computer Vision

To accomplish computer vision, we need certain algorithms that can learn from given
inputs and produce an outcome on its own in a way that the human brain would. The
best way to accomplish this is to use deep learning. Deep learning is a subset of
machine learning that uses neural networks to learn large amounts of data through lots
of training. The most tried and true deep learning algorithm for computer vision is a
convolutional neural network. A convolutional neural network should be the best
algorithm to implement for Trash-E to detect trash objects using image recognition.
Convolutional Neural Networks (CNN) are deep learning algorithms that can take an
input image and then learn various patterns and features about that image and make
decisions about the image. Figure 7 is a diagram of a convolutional neural network
showing its general architecture.

Figure 7. Convolutional Neural Network Architecture

An image is fed into a CNN in the form of a matrix with pixel values. In the convolution
layer a kernel/filter, which is a square matrix, is typically used to hover over the original
image in a certain number of shifts and strides. Each time the filter is over a new section
of the image matrix, a matrix multiplication is performed and produces a new value for
the image matrix. Depending on the kernel/filter values, different types of high-level
features can be extracted from the input image. Following convolutions, the pooling
layer follows which is responsible for further extracting dominant features and reducing
the spatial size of the convolved feature. After the convolution and pooling layers, we
have enabled the model to understand the features in the input image. Now, the output
is flattened and fed into a normal neural network for classification. This layer is referred
to as the fully connected layer and is where the network learns the many features we
have extracted from the image. The output is then flattened and fed to a feed-forward
neural network. After a certain number of epochs, the model can distinguish between
features of the input image and classify them using the SoftMax activation function. This
function will decide based on multiple probabilities what the image likely contains and
outputs the best result(s).

Convolutional Neural Network Architectures
There are many CNN architectures out there. Some of the notable ones are: LeNet,
AlexNet, VGGNet, GoogLeNet, ResNet, and ZFNet. Each are different takes and
variations on the general CNN architecture shown earlier. For Trash-E, we have many
options available to choose for the CNN architecture and would likely involve more
experimentation and fine tuning down the line to decide which architecture would return
the best results. We could also opt for designing our own CNN architecture for Trash-E
if none of the available architectures give us satisfactory results.

Programming Languages, Libraires, and Technologies
We have many options for the programming language we could use for writing
Trash-E’s software. Several programming languages are used for AI and machine
learning nowadays. Some of the popular ones are Python, C/C++, and Java. The most
popular of these languages for AI and Machine Learning is by far Python. For computer
vision and robotics, the most popular languages to use are C/C++ and Python.

Python
Python is one of the most supported machine learning languages out there. It is a
relatively simple language in comparison to C/C++ and Java. Python has an extensive
number of tools and libraries for machine learning such as TensorFlow, scikit-learn,
PyTorch, and Keras to name a few. These libraries support computer vision and deep
learning allowing the ability to easily create convolutional neural networks and train
them.

C/C++
These languages are very much used in embedded and robotics programming. The
areas they’re used most for in AI are gaming and robot locomotion. They’re not as
simple as python when it comes to building new machine learning applications and
getting what you want quickly. However, they are favored when control, high
performance and efficiency is needed. C/C++ have some libraries for machine learning
and computer vision such as MLPACK, SHARK, and OpenCV.

Java
This language is less popular for embedded and robotics and is used more for desktop
and enterprise applications. Java does come with a decent amount of machine learning
libraries such as TensorFlow, Deep Java Library, Kubeflow, and Java-ML.

Hardware Options for Machine Learning
Our robot will be using computer vision in real-time. To process the data and algorithms
we need for computer vision and deep learning we would need a minicomputer on our
robot capable of handling these tasks. These tasks include object detection, and
classification. There are several out on the market such as the Nvidia Jetson Nano,
Raspberry Pi 3, and Google Edge TPU. Figure 8 shows benchmark comparisons for
these products. The Nvidia Jetson Nano appears to drastically outperform the other two
boards in this comparison.

Figure 8. Minicomputer Deep Learning Benchmarks by Nvidia

Communication Between Mini-Computer and Microcontroller
With computer vision being done on the mini-computer and the microcontroller being in
charge of the motors, a way to communicate between the two is required. Both have
GPIO pins that will be utilized to send bits from the mini-computer to the microcontroller.
We will need to determine a system for decoding the information sent onto the
microcontroller. On the other hand, given a mini-computer with a large amount of
processing power, such as the 4GB Nvidia Jetson nano it would be entirely possible to
perform all embedded operations as well as autonomous functionality just from the mini
computer. Taking into consideration the capability of the GPIO pins on the Jetson, only
two pins can create a PWM signal, but with external servo and motor drivers we can
generate more than enough PWM signals to drive hundreds of motors. If we decide to
go with the single mini computer design it would reduce the complexity of electrical
components (removing the need for a microcontroller), save space, and reduce weight
on the chassis. The largest downside to having just a Jetson may be the increased
power consumption and the need to come up with a system to manage heat. Overall, I
believe that this will be an important deciding factor in the design of the robot.

House of Quality
Shown in Figure 9 is the house of quality that displays the customer requirements and its
relation to the engineering requirements. The top of the figure represents the positive/negative
correlations between requirements, whether their effects on other requirements hinder or
improve them. In the bottom part of the figure are additional target descriptions about the
engineering requirements.

Figure 9. House of Quality

Sources

● Figure 2:
○ USB 2.0 https://commons.wikimedia.org/wiki/File:USB.svg
○ USB 3.0 https://www.aggsoft.com/usb-pinout-cable/usb3.htm

● Figure 3:
https://www.ti.com/lit/an/slva704/slva704.pdf?ts=1633022682208&ref_url=https%253A%252
F%252Fwww.google.com%252F

● Figure 4: https://commons.wikimedia.org/w/index.php?curid=1476503
● Figure 6:

https://towardsdatascience.com/everything-you-ever-wanted-to-know-about-computer-visi
on-heres-a-look-why-it-s-so-awesome-e8a58dfb641e

● Figure 7:
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks
-the-eli5-way-3bd2b1164a53

● Figure 8: https://developer.nvidia.com/embedded/jetson-nano-dl-inference-benchmarks

https://commons.wikimedia.org/wiki/File:USB.svg
https://www.aggsoft.com/usb-pinout-cable/usb3.htm
https://www.ti.com/lit/an/slva704/slva704.pdf?ts=1633022682208&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/an/slva704/slva704.pdf?ts=1633022682208&ref_url=https%253A%252F%252Fwww.google.com%252F
https://commons.wikimedia.org/w/index.php?curid=1476503
https://towardsdatascience.com/everything-you-ever-wanted-to-know-about-computer-vision-heres-a-look-why-it-s-so-awesome-e8a58dfb641e
https://towardsdatascience.com/everything-you-ever-wanted-to-know-about-computer-vision-heres-a-look-why-it-s-so-awesome-e8a58dfb641e
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://developer.nvidia.com/embedded/jetson-nano-dl-inference-benchmarks

