
Senior Design Project: Group 16
Pill3

1

Design Goal

Our Team

Jordan Schneider Oriana Alcala Fernando A. OriundoLiam Kenney

“Create a device to aid people who forget to take their medicine”

● Simple to set up and use
● Have IOT connectivity
● An affordable option

2

Project Motivation

Prescription non-adherence, both intentional
and unintentional, is one of the biggest issues
within the American medical community.

● Contributes thousands of tons to
medical waste

● Results in additional spending on
medication or procedures

● May lead to otherwise avoidable
life-threatening illness and injury

The issue of non-adherence has affected the
daily lives of all of our group members in
different ways.

3

Initial Overall Design

The original Pill3 dispenser design consisted of three main
subsystems.

● First Subsystem: Pill storage chambers
○ Pill tracking
○ Pill distribution
○ Size sorting

● Second Subsystem: Device status sensors
○ Temperature
○ Clock

● Third Subsystem: User notifications
○ Audio
○ Visual
○ Smartphone App

4

IR Sensors

Simple infrared emitter and receiver sensor packages were used to measure object
movement. Through this, we were able to track when pills passed a certain point on the
distribution line and subtract them from the total stored amount. Using this method, one
sensor would be able to detect pills of any size using the same metric.

5

Temperature Sensor

A LMT85LP temperature sensor was used to ensure
that the device is operating at safe temperature
levels. The overall temperature of the device was
almost measured to ensure that the medicine was
stored at an appropriate level.

This sensor acts as a variable resistor through which
changes in voltage can be linked to changes in
temperature. From there the information can be
applied to either maintain the temperature or alert
the user to a potential issue.

6

Pressure Sensor
The Flexiforce pressure sensor was used to determine if
there is a container positioned below the dispenser for the
medicine to be deposited into. This helps to prevent the
device from dispensing too many pills or spilling the
dispensed pills onto a random surface.

The sensor is adjustable to work with any common
household dish or cup, although it does come with a
specified receptacle.

Due to the small contact area of the
Flexiforce sensor and it’s low
sensitivity, we decided to instead
use the SEN-09376, which offered a
larger sensing area and the
precision necessary to detect cups
weighing as low as 15 grams.

7

Stepper Motors

For what we wanted to achieve, a stepper motor was
the most sensible choice as it had a full range of
rotation and could start and stop more accurately than
DC motors of the same power requirements. This
specific adafruit stepper motor was chosen as it
combines the right amount of precision and strength
needed to control the pill distribution device.

Adafruit NEMA-17 stepper motor specifications
● 0.2 Nm of torque
● 360 degrees of rotation
● 1.8 degrees of accuracy

8

Speaker

The speaker used was simple to implement and
customize, and allowed for the user to have
auditory alerts that can be heard from several
rooms away. We decided to forego an audio
driver in favor of driving the speaker with a pulse
width modulator voltage. Changes in voltage and
duty cycle translate to changes in pitch and
volume of the tone produced

9

Display
The tertiary user alert system implemented into the
Pill3 was a 0.91” OLED screen. It can both indicate
that a prescription is ready and display information
about the system at a glance without needing to
communicate with the smartphone application. It
will typically display general system and
environmental information like the time and
temperature.

It cycles between an idle screen displaying a
minimalistic Pill3 logo and the current time and
temperature of the device. It also instructs the user
to place a cup onto the weight sensor to being
dispensing the pills.

10

Microcontroller
The Pill3 contains an Arduino Nano Iot 33. This MCU has a
total of 30 pins and is able to connect to the established app
through wifi. Due to this, the user is able to send information
of their pill schedule as well as the quantity of pills to be
stored in the Pill3 through Firestore to the MCU.

Once the instruction has been sent, the motors will active and
the MCU will be waiting for the IR sensor to detect if the pill
left the container. If the pill successfully left the container, the
user will be notified that the pill is in the cup. The MCU is able
to do all this as long as the cup has been placed in the
corresponding area.

11

Power SUPPLY
When comparing different types of power sources we can see that
AC power from a wall outlet…

- Long lifecycle
- Great energy storage
- Low cost
- Versatility
- Does not need replacement
- Is more reliable than solar energy
- Provides constant power
- Provides more interior room in the design of the device

However…
For our device to function, we need to have an outlet available.
Cords can also cause unneeded messes to occur

12

Power Distribution

Hardware Voltage Requirement Current Requirement

Arduino Iot 33 7 V - 21 V 7 mA per I/O pin

Adafruit NEMA-17 Motor 12 V 0.35 A

Obstacle avoidance IR
Sensor

3.3 V - 5 V 20 mA

Pressure Sensor 5 V 1 mA

MakerFocus Display 3.3 V - 5 V 430 uA

LMT85LP Temp. Sensor 3.3 V - 5 V 8.1 uA

Controller 1V - 36V 2A

13

Our Design

14

PCB design

15

During the overall design of the Pill3 certain components were incorporated in the PCB board
that will be used for the project. Throughout the development of the board certain decisions
were made:

● Software
● Components
● Vendors
● MCU
● Voltage Regulators

○ Efficiency vs Functionality

PCB design Challenges

16

Originally for the PCB design we had various ideas on how to incorporate certain components,
however, in the process of making the PCB we encounter certain issues that lead us to
incorporate more components that were not predicted at the early stages of the design. Some of
these challenges faced during the design were:

● Component Shortage
● Multiplexer/Demultiplexer
● Quadruple H-Bridge
● AC/DC Voltage

17

PCB Schematic
5V Voltage Regulator

18

PCB board

Old New

Why a Mobile Application?
For a platform, it needs to be as accessible as possible. Using a mobile device allows easy
notifications and on-the-go management of the system.

Not using a mobile application requires the user to have to be around either a computer or the
actual device. This is not optimal and we would have to use a text message to notify the user or
not notify them at all.

Platform Requires
Internet

Requires
Backend

Notifications Support Modularity

Native Screen No No Around device 2/5 Not very modular

Web Application Yes Yes Around PC 5/5 Very modular

Desktop
Application

Yes Yes Around PC 3/5 Somewhat modular

Mobile
Application

Yes Yes Everywhere 4/5 Very modular

19

What Platform on Mobile?
Frontend
Framework/
Language

Android iOS Hot-reloading Ease of Use Support

Java/Kotlin Yes No No 3/5 3/5

Swift No Yes No 4/5 3/5

React Native Yes Yes Yes 5/5 5/5

Flutter Yes Yes Yes 5/5 3/5

Our software lead has used React Native and React in multiple projects so it made the most
sense to use React. Javascript is also an industry-standard compared to Dart- which Flutter
uses.

Native to Android
or iOS

Up to preference

20

Google Firebase Cloud Database

Data Offers NoSQL Free tier Infrastructure
Complication

Google Firebase Yes Yes 2/5

Amazon Web Services Yes Yes 5/5

Microsoft Azure Yes Yes 4/5

Heroku Yes Yes; but at a much
lower scale

2/5

Our software lead has used Firebase and AWS before so it made sense to use either.
AWS in general is more complicated and not really used as much for smaller projects
due to its complexity.

Another big factor is due to Firebase’s NoSQL database, which stores data as
JSON-like data in documents and collections. This is easier to manage for accounts
and also offers basic security features such as encryption and authorization.

21

We are using Node.js as it is one of the easiest-to-use, most industry-wide, and
has very little competition when it comes to asynchronous I/O in most applications.
It is an event-driven architecture and makes communication from requests to data
straightforward.

Node.js Backend Service

22

Backend Design

23

Original UI/UX Design

24

NoSQL Database Design
● Firebase uses a NoSQL database storage method which stores data as JSON objects.

● Device’s serial number
● User’s email
● User’s name
● Pill dispensing

○ What pill
○ What slot to dispense from
○ Dosage
○ When to dispense

■ What days to dispense
■ What times to dispense on each day

Firestore allows for collections, documents, and fields.
Collections contain documents.
Documents contain either collections (subsets) or fields.
Fields are composed of some data type

25

NoSQL Database Design (cont.)

26

Testing - Why Manual?

Testing Framework Ease of Use Support Applicable Readability

Jest 3/5 5/5 Yes 2/5

Detox 3/5 1/5 Yes 3/5

Manual 5/5 N/A Yes 5/5

Testing is wonderful; however, it can get complicated very fast. This begs the question if using a
testing framework is even worth it.

The choice of not including a testing framework is mainly due to time- as it is unnecessary to test
something on such a small scale. If time permits, we can then decide on the best framework.

27

Budget

28

Quantity Part Manufacture Manufacture Code Price

1 Arduino nano IoT 33 Arduino ABX00032 $25.55

3 IR Sensor Esooho EK1254x5 $8.28

5 PCB Jlcpcb - $22.63

3 Stepper Motor Adafruit XYU42STH34-0354A $56.01

1 Speaker Arduino TPX00080 $7.99

1 Display MakerFocus SSD1306 $7.99

1 Temperature Sensor Texas Instrument LMT85LP $1.60

1 Pressure Sensor SparkFun SEN-09376 $18.34

1 AC/DC Converter ALITOVE CJ-1230 $10.64

1 Chassis Materials Various - $128.77

Total $287.80

Milestone

29

Hardware Software

Week 1 Complete PCB design and start CDR Finalize UI/UX diagram

Week 2 Get materials for chassis and finish
CDR

Create UML class diagrams

Week 3 Start assembly of chassis

Week 4 Test electrical components and
continuation of chassis built

Set up programming environment

Week 5 Breadboard and PCB testing Set up Firebase cloud environment ro
connect to backend controller

Week 6 Solder all components to the PCB
Board

Get backend controller working with
writing to database

Milestone (CONT.)

30

Hardware Software

Week 7 Finish soldering Get backend controller working with
reading from database

Week 8 Finish built of chassis Create basic frontend components
components to connect to backend
functions

Week 9 Test runs and polish device Login authentication and login UI/UX

Week 10 Beautify interior and exterior Create primary dashboard

Week 11 Beautify interior and exterior Beautify & bug fixes

Week 12 Final test run and adding finishing
touches

Beautify & bug fixes

Questions?

31

