IoT Smart Doggy Door Group 15 - Dr. Chan Jordan Carraway - EE Hunter Herrold - EE Alexis Quintana - CpE/EE Logan Waln - CpE ## Goals and Objectives - Create a doggy door that is rich with features, easy to use and capable of implementing new ideas - Enable remote user control with a mobile application - Have long lasting, affordable, and easy to replace collars - Make the door as compact as possible - Supply the door with two power sources - Allow offline operation - Create a responsive system - Add an auditory cue for the dog to learn from ## Requirement Specifications - Door dimensions (flap and overall size) - Strength of flap - Detection/reading distance - System processing time - Door flap locking distance - Buzzer noise level - Duration of external battery life | Description | Parameter | Specification | |----------------------------------|---|------------------------| | Door flap dimensions | Dimensions of the door flap | W: 0.25" L: 12" H: 19" | | Door frame dimensions | Dimensions of the whole door setup | W: 8", L: 12", H: 22" | | Durability of flap | How much force the door flap can withstand | 63 N/mm ² | | Tag/collar reading distance | How far the tag should be read from the door | 0.5 m - 1 m | | Infrared detection distance | How far the infrared sensor detects movement | 0.5 m - 1.5 m | | Tag process and door unlock time | The duration at which
the tag should be read,
processed, and the door
unlocked | < 4.5 seconds | | Door flap locking distance | How far the locks should
be placed from the door
flaps resting position | < 4" | | Sound pressure level of buzzer | How loud the buzzer should be | 70 dB - 90 dB | | External battery life | Duration of the battery life | 1 hour - 1.5 hour | ## House of Quality - Strived for ease of use and reliability - Willing to compromise on aesthetics and cost to create a better product overall | Correlations | | | |-----------------|---|--| | Positive | + | | | Negative | - | | | No Correlations | | | | Relationships | | | |-----------------|----------|--| | Strong Positive | A | | | Positive | Δ | | | Neutral | 0 | | | Negative | ∇ | | | Strong Negative | ▼ | | - Compartmentalize the system into individual parts - Mechanical - Precise measurements - Electrical - PCB - Software - Raspberry Pi - Database - Mobile Application ## Hardware Diagram Switching module for Primary Roles Logan Alexis Hunter Jordan Transmitter/Receiver Logan Alexis Hunter Jordan Secondary Roles external battery and wall adapter Each assigned primaries and secondaries - Software setup using database and mobile app for IoT integration - Workload split between front end and back end tasks ## Raspberry Pi Pinout 5V Gnd ## Significant PCB Design - PSU AC/DC converter topologies - Tradeoffs between efficiency and simplicity - LLC controllers introduced many luxuries, but the complexity was unnecessary - PFC controllers' disadvantages outweighed the simplicity - Flyback was an acceptable compromise between what we were looking for | Topology | Advantages | Disadvantages | | | |------------------------|---|--|--|--| | Flyback
Controllers | Mutually coupled inductors isolate the input from the output (no need for additional circuitry) Capable of providing multiple different output voltages, each separated from input Simplistic design (very few components required) | Unable to produce too
high of an output
current/power The transformer gap
results in more EMI Greater ripple current | | | | LLC controllers | Reduced EMI, ZVS, ZCS High efficiency Large range of output power and output current Lower BOM cost in regards to output inductors | Complex/sophisticated design, requiring extensive research for design and control Difficult frequency tuning | | | | (PFC)
Controllers | Simplistic design Financially affordable due to a lack of complicated hardware components | Small range of input
voltages Large and bulky, also
quite heavy | | | ## Significant PCB Design Cont'd - System power requirements - Two voltage rails: 12 VDC and 5 VDC - AC/DC converter posed more interesting of a PCB - DC/DC converter module therefore bought instead - All current values are maximum ratings ## Battery Bank and Switching Module - Battery bank in case of power outage - o Rechargeable 12V 3000mAh Lithium ion Battery Pack - 12V/3A barrel jack output - 5V/2A USB output - Switching module for battery bank and wall adapter - Outputs input 1 by default, unless input 1 drops below a certain voltage, then switches to input 2 ## Doggy Door Materials and Construction - The doggy door is constructed using wooden planks 8" wide and 34" thick - Space on each side of the door to house the locking mechanism and solenoids - Flap is made of a polycarbonate sheet to increase durability ## Doggy Door Locking Mechanism 3 pieces locking mechanism consisting of the locking pins, knobs, and shaft (Pin) - The design of the pins allows for the flap to work unidirectionally at any given time. - Solenoids will be used to push the pins up to allow for the door to be opened. (Shaft) (Knob) ## Doggy Door Locking Mechanism Comparisons | Locking
Mechanism | Operating
Voltage | Current
Draw | Force | Operating
Speed | Price | Size | |----------------------|----------------------|-----------------|--------|--------------------|---------|-------------------------| | Solenoids | 12V DC | 1A | 20N | Instant | \$11.59 | 2.2"x1" | | Linear Actuator | 12V DC | 2.3 A | 490 (N | 4.5mm/s | \$59.95 | Extended Length: 44.3" | | 3D Printed Pin | None | None | N/A | N/A | \$21.00 | 0.75"x0.5"x2" | | 3D Printed Shaft | None | None | N/A | N/A | Free | 1.3"x3.375"x0.812
5" | | 3D Printed Knob | None | None | N/A | N/A | Free | 0.75"x0.5"x1.5" | | Electromagnet | 12V DC | 80mA | 6N | Instant | \$29.24 | 0.75"x0.75"x0.62" | Table 11: Comparisons of the Different Locking Mechanisms # System Controller | | Microcontroller | Microprocessor | | |------------------------------------|--|---|--| | Clock speeds | Usually well below 1
GHz, especially for the
small scale board we are
looking for | 1 GHz for the Raspberry
Pi Zero W | | | Memory (RAM) | Usually in the KB range | 512 MB for the Pi Zero | | | GPIO pins | Usually less than 20 for smaller sized boards | 40 for the Pi Zero | | | Operating system | None | Linux-based Raspbian software | | | Programming
Languages supported | Usually lower level languages | All sorts of languages up
to high level languages
like Python | | | | Raspberry Pi
Zero W | Raspberry Pi
Pico | Raspberry Pi 4 B | |------------------------------------|--|---------------------------------|--| | Description | The iconic, cheap,
small Pi Zero with
wifi and bluetooth | Raspberry Pi
microcontroller | Fourth edition of
the mainline
Raspberry Pi
devices | | Price | \$10 | \$4 | \$35 | | Dimensions
(HxWxD) in
inches | 1.18 x 2.55 x
0.197 | 0.83 x 2 x 0.154 | 2.22 x 3.37 x
0.433 | | Weight in grams | 9 | 3 | 46 | | Number of cores | 1 | 2 | 4 | | Clock speed | 1 GHz | 133 MHz | 1.5 GHz | | RAM | 512 MB | 264 KB | 1, 2, 4, or 8 GB | | Ethernet | No | No | Yes | | GPIO pins | 40 | 26 | 40 | | Storage/Operatin
g System | Yes,
microSD/Raspbia
n | No | Yes,
microSD/Raspbia
n | | Wi-Fi | 802.11n (only
2.4GHz) | No | 802.11 b/g/n/ac
(2.4 and 5 GHz) | | Bluetooth | 4.1 BLE | No | 5.0 | ### Databases - Foundation for IoT integration - Accessible by the mobile application anywhere, at any time - Decision to go with Firebase | Name | Couchbase | Firebase | MongoDB | |-------------------------------|--|--|--| | Short
Description | JSON-based
database derived
from CouchDB | Cloud-hosted realtime database. All clients share one realtime instance and auto receive updates | Database that
works both as a
cloud service or a
deployed
self-managed
infrastructure | | Cloud-based only? | No | Yes | No | | Offline mode? | No | Yes | No | | Performance | Exceptional | Good | Great | | Server Operating
System | Linux, OS X,
Windows | Hosted | Linux, OS X,
Solaris, Windows | | Overall Security | Good | Great | Exceptional | | APIs and other access methods | CRUD, Query,
Search, Analytics
API | Android, iOS,
Javascript API,
RESTful HTTP
API | Proprietary
protocol using
JSON | | Triggers | Not immediate | Immediate | Not immediate | | MapReduce | Yes | No | Yes | | Server-side scripts | Javascript | Potentially limiting
Google 'rules' | Javascript | ### Passive Infrared Sensor - Used to detect any living presence at the door using infrared technology - Works in conjunction with camera and reader - Second sensor on inside - Decision to go with HC-SR501 | | HC-SR501 | LEDENET | LPIR-8A | |---------------|---------------------------------------|------------|---------| | Price | Varies, usually around \$4 per sensor | \$10 | \$8 | | Size (mm) | 32 x 24 | 86 x 51 | 89 x 60 | | Field of View | <120 degrees | 60 degrees | | | Range (ft) | 21 | 16-26 | 15 | ### Camera Used for capturing images of anything that might be in front of the door Decision to go with the Arducam | | Arducam
OV5647 | Raspberry Pi
Camera Mod 1 | Raspberry Pi
Camera Mod 2 | |--------------------------------|-------------------------------|-------------------------------|-------------------------------| | | 0 7 3047 | Callicia Mod 1 | Camera Mod 2 | | Price | \$14 | \$25 | \$25 | | Size | 25 x 24 mm | 25 x 24 x 9 mm | | | Weight | | 3g | 3g | | Still Resolution | 5 MP | 5 MP | 8 MP | | Video Modes | 1080p30, 720p60,
480p60/90 | 1080p30, 720p60,
480p60/90 | 1080p30, 720p60,
480p60/90 | | Sensor
Resolution | 2592 x 1944
Pixels | 2592 x 1944
Pixels | 3280 x 2464
Pixels | | Optical Size | 1/4" | 1/4" | 1/4" | | Full-frame SLR lens equivalent | 35 mm | 35 mm | | | Angle of view | 64 x 48 ° | 53.5 x 41.4 ° | 62.2 x 48.8 ° | ## Mobile Application - Software - React Native CLI - Android Studio - Functionality - Registration - Edit and delete animals - o Change animal permissions - View photos taken by camera #### Frequency ranges: - LF: 125 134 kHz, 1 10 cm - Low susceptibility to EM disturbance, but slow data processing speeds HF: Typically 13.56 MHz (NFC), 1 100 cm Faster transmission and relatively low EM disturbances, but too short of a read range - UHF: 865 960 MHz, reaching over 🔊 📆 - Higher read range, but higher interference from certain materials #### Active versus passive tags: - Active tags - Initiator: requires battery, introducing a lifetime - More expensive - Longer read distances - Passive tags: - Waits for incoming signals: no internal source of power (no battery) - Relatively cheap in comparison - Shorter read distances Tag classes: ISO 18000-6C protocol standard - Class 0: A read-only, passive UHF protocol - Need to write at least once - Class 1: A write-once, read-many UHF or HF protocol - Perfect for our application - Class 2: Indefinite read-write operational passive RFID tag - Unnecessary writing times - Class 3: Provides read-write operations for various sensors (temperature, pressure, acceleration, etc) - Unnecessary sensor implementations - Class 4: An integrated transmitter allowing for active tags to communicate with other tags and readers - Unnecessary and not applicable to our design - Class 5: Active tags capable of delivering power to other tags as well as communicating to devices other than readers - Unnecessary and not applicable to our design ### Desired parameters - Polarization: - Circular - Beamwidth: - Around 120 degrees - Read distance: - Over 1 meter (antenna can be operated at less power to lower the read distance) - Cost: - As low as possible... - Operation frequency: - UHF (865 960 MHz) | | Times-7
SlimLine
Antenna | Laird
Bistatic
PRL90209
Antenna | Laird
S9025PL
Outdoor
RFID
Antenna | Vulcan UHF
Antenna | |------------------------|--------------------------------|--|--|----------------------------| | Polarization | Circular | Circular | Circular | Circular | | Gain | 5.5 dBic | 9 dBic | 5.5 dBic | 3.4 dBi | | Beamwidth | 115 | 70 | 100 | 100 | | Read
distance | 4.3 meters | unspecified | unspecified | 3 meters | | Dimensions | 5.9 x 5.9 x
0.55 inches | 10.1 x 22.6 x
1.3 inches | 5.2 x 5.2 x
0.71 inches | 5.4 x 5.4 x
0.13 inches | | Cost | \$119.00 | \$214.00 | \$134.00 | \$64.00 | | Input Power | 6 Watts | 10 Watts | 10 Watts | unspecified | | Operation
Frequency | 902 - 928
MHz | 902 - 928
MHz | 902 - 928
MHz | 902 - 928
MHz | # Budget (Proposed/Current) | Item | Quantity | Price | |-----------------------|----------|----------------| | RFID reader | 1 | \$235 | | RFID external antenna | 1 | \$119 | | Raspberry Pi Zero W | 1 | \$10 | | microSD Card | 1 | \$8 | | UHF Tags | 3 | \$2 | | Camera | | \$14 | | Buzzer | 1-2 | \$1.50 | | Motion Sensor | 1 | \$8 | | Solenoids | 4 | \$30 | | Power Source | 1 | \$10 - \$15 | | PCB | 1 | \$20 - \$30 | | Antenna Connectors | 3 | \$12 | | Door Materials | - | \$70 | | 3D Printer Filament | 1 | \$20 | | External Battery | 1 | \$20 - 40 | | TOTAL | N/A | ~\$579 - \$614 | ### Division of Work ### Logan: - Project manager - Camera research - Storage - Mobile application - Embedded software ### Alexis: - Wifi - Buzzer - Motion sensor - Database - Embedded software #### Jordan: - Door research/design - Enclosure/door construction #### Hunter: - RFID (reader, antenna, tag) research/design - PSU (PCB and battery bank) design - PCB research and construction # Next Steps | Tasks | 2/18 | 2/25 | 3/4 | 3/11 | 3/18 | 3/25 | 4/1 | 4/8 | 4/15 | |--|------|------|------|------|------|------|-----|-----|------| | Place Hardware on Door | | | | | | | | | | | Test PCB/switching circuit | | | | | | | | | | | RPi reading from database | | | 7000 | | | | | | | | RPi integrated with camera and RFID reader | | | | | | | | | | | Finish mobile application | | | | | | | | | | | RPi communicating with mobile application through database | | | | | | | | | | | Integration and testing | | | | | | | | | | | Finishing touches and preparing for demo | | | | | | | | | |