

# IoT Smart Doggy Door

Group 15 - Dr. Chan

Jordan Carraway - EE Hunter Herrold - EE Alexis Quintana - CpE/EE Logan Waln - CpE



## Goals and Objectives

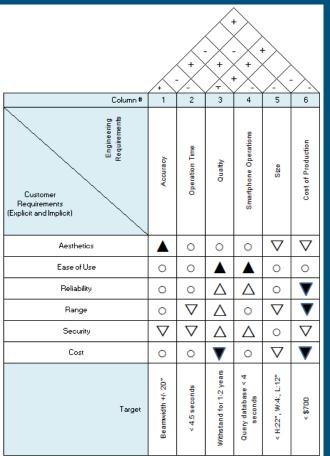
- Create a doggy door that is rich with features, easy to use and capable of implementing new ideas
- Enable remote user control with a mobile application
- Have long lasting, affordable, and easy to replace collars
- Make the door as compact as possible
- Supply the door with two power sources
- Allow offline operation
- Create a responsive system
- Add an auditory cue for the dog to learn from



## Requirement Specifications

- Door dimensions (flap and overall size)
- Strength of flap
- Detection/reading distance
- System processing time
- Door flap locking distance
- Buzzer noise level
- Duration of external battery life




| Description                      | Parameter                                                                               | Specification          |
|----------------------------------|-----------------------------------------------------------------------------------------|------------------------|
| Door flap dimensions             | Dimensions of the door flap                                                             | W: 0.25" L: 12" H: 19" |
| Door frame dimensions            | Dimensions of the whole door setup                                                      | W: 8", L: 12", H: 22"  |
| Durability of flap               | How much force the door flap can withstand                                              | 63 N/mm <sup>2</sup>   |
| Tag/collar reading distance      | How far the tag should be read from the door                                            | 0.5 m - 1 m            |
| Infrared detection distance      | How far the infrared sensor detects movement                                            | 0.5 m - 1.5 m          |
| Tag process and door unlock time | The duration at which<br>the tag should be read,<br>processed, and the door<br>unlocked | < 4.5 seconds          |
| Door flap locking distance       | How far the locks should<br>be placed from the door<br>flaps resting position           | < 4"                   |
| Sound pressure level of buzzer   | How loud the buzzer should be                                                           | 70 dB - 90 dB          |
| External battery life            | Duration of the battery life                                                            | 1 hour - 1.5 hour      |

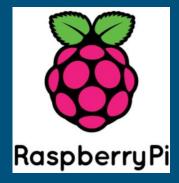
## House of Quality

- Strived for ease of use and reliability
- Willing to compromise on aesthetics and cost to create a better product overall

| Correlations    |   |  |
|-----------------|---|--|
| Positive        | + |  |
| Negative        | - |  |
| No Correlations |   |  |

| Relationships   |          |  |
|-----------------|----------|--|
| Strong Positive | <b>A</b> |  |
| Positive        | Δ        |  |
| Neutral         | 0        |  |
| Negative        | $\nabla$ |  |
| Strong Negative | ▼        |  |










- Compartmentalize the system into individual parts
  - Mechanical
    - Precise measurements
  - Electrical
    - PCB
  - Software
    - Raspberry Pi
    - Database
    - Mobile Application









## Hardware Diagram

Switching module for

Primary Roles

Logan

Alexis

Hunter

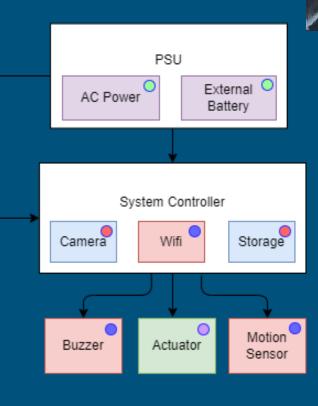
Jordan

Transmitter/Receiver

Logan

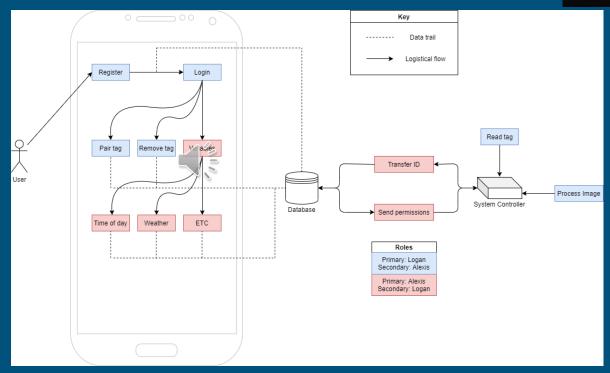
Alexis

Hunter


Jordan

Secondary Roles

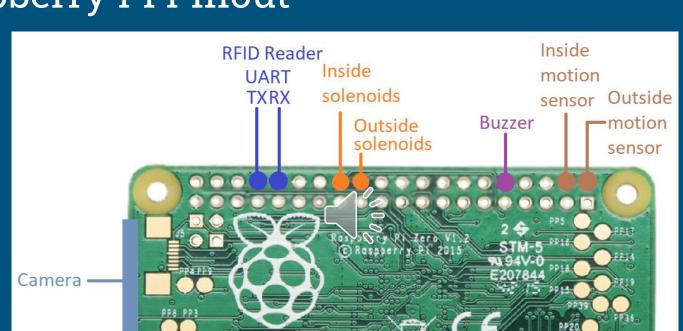
external battery and wall adapter


Each assigned primaries

and secondaries






- Software setup
   using database and
   mobile app for IoT
   integration
- Workload split between front end and back end tasks



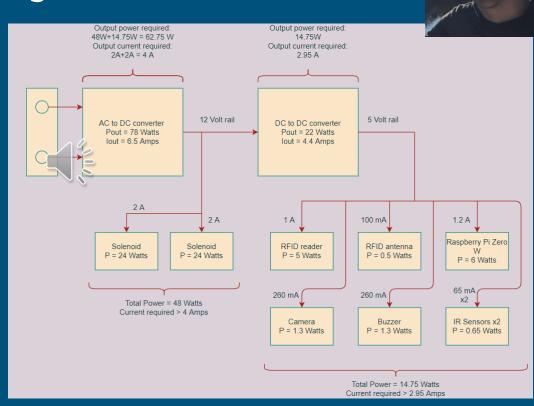
## Raspberry Pi Pinout

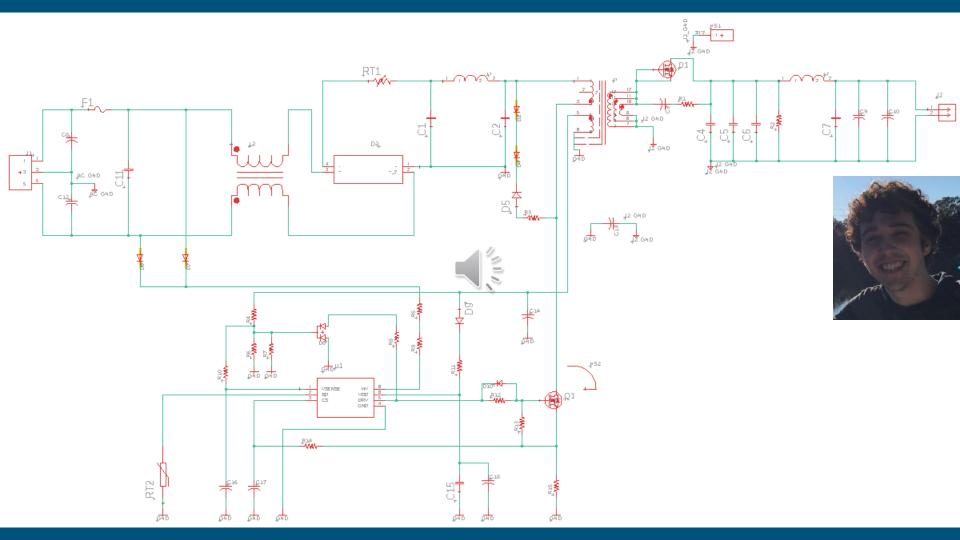
5V

Gnd



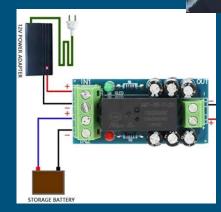



## Significant PCB Design


- PSU AC/DC converter topologies
- Tradeoffs between efficiency and simplicity
- LLC controllers introduced many luxuries, but the complexity was unnecessary
- PFC controllers' disadvantages outweighed the simplicity
- Flyback was an acceptable compromise between what we were looking for

| Topology               | Advantages                                                                                                                                                                                                                                                                | Disadvantages                                                                                                                                                          |  |  |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Flyback<br>Controllers | <ul> <li>Mutually coupled inductors isolate the input from the output (no need for additional circuitry)</li> <li>Capable of providing multiple different output voltages, each separated from input</li> <li>Simplistic design (very few components required)</li> </ul> | <ul> <li>Unable to produce too<br/>high of an output<br/>current/power</li> <li>The transformer gap<br/>results in more EMI</li> <li>Greater ripple current</li> </ul> |  |  |
| LLC controllers        | <ul> <li>Reduced EMI, ZVS, ZCS</li> <li>High efficiency</li> <li>Large range of output power and output current</li> <li>Lower BOM cost in regards to output inductors</li> </ul>                                                                                         | <ul> <li>Complex/sophisticated design, requiring extensive research for design and control</li> <li>Difficult frequency tuning</li> </ul>                              |  |  |
| (PFC)<br>Controllers   | Simplistic design     Financially affordable due to a lack of complicated hardware components                                                                                                                                                                             | <ul> <li>Small range of input<br/>voltages</li> <li>Large and bulky, also<br/>quite heavy</li> </ul>                                                                   |  |  |

## Significant PCB Design Cont'd


- System power requirements
  - Two voltage rails: 12 VDC and 5 VDC
- AC/DC converter posed more interesting of a PCB
- DC/DC converter module therefore bought instead
- All current values are maximum ratings





## Battery Bank and Switching Module

- Battery bank in case of power outage
  - o Rechargeable 12V 3000mAh Lithium ion Battery Pack
  - 12V/3A barrel jack output
  - 5V/2A USB output
- Switching module for battery bank and wall adapter
  - Outputs input 1 by default, unless input 1 drops below a certain voltage, then switches to input 2



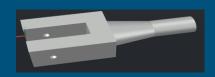


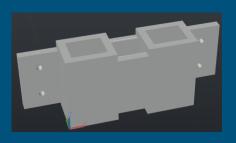


## Doggy Door Materials and Construction

- The doggy door is constructed using wooden planks 8" wide and 34" thick
- Space on each side of the door to house the locking mechanism and solenoids
- Flap is made of a polycarbonate sheet to increase durability







## Doggy Door Locking Mechanism

3 pieces locking mechanism consisting of the locking pins, knobs, and shaft

(Pin)

- The design of the pins allows for the flap to work unidirectionally at any given time.
- Solenoids will be used to push the pins up to allow for the door to be opened.





(Shaft)



(Knob)



## Doggy Door Locking Mechanism Comparisons

| Locking<br>Mechanism | Operating<br>Voltage | Current<br>Draw | Force  | Operating<br>Speed | Price   | Size                    |
|----------------------|----------------------|-----------------|--------|--------------------|---------|-------------------------|
| Solenoids            | 12V DC               | 1A              | 20N    | Instant            | \$11.59 | 2.2"x1"                 |
| Linear Actuator      | 12V DC               | 2.3 A           | 490 (N | 4.5mm/s            | \$59.95 | Extended Length: 44.3"  |
| 3D Printed Pin       | None                 | None            | N/A    | N/A                | \$21.00 | 0.75"x0.5"x2"           |
| 3D Printed Shaft     | None                 | None            | N/A    | N/A                | Free    | 1.3"x3.375"x0.812<br>5" |
| 3D Printed Knob      | None                 | None            | N/A    | N/A                | Free    | 0.75"x0.5"x1.5"         |
| Electromagnet        | 12V DC               | 80mA            | 6N     | Instant            | \$29.24 | 0.75"x0.75"x0.62"       |

Table 11: Comparisons of the Different Locking Mechanisms

# System Controller

|                                    | Microcontroller                                                                            | Microprocessor                                                      |  |
|------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--|
| Clock speeds                       | Usually well below 1<br>GHz, especially for the<br>small scale board we are<br>looking for | 1 GHz for the Raspberry<br>Pi Zero W                                |  |
| Memory (RAM)                       | Usually in the KB range                                                                    | 512 MB for the Pi Zero                                              |  |
| GPIO pins                          | Usually less than 20 for smaller sized boards                                              | 40 for the Pi Zero                                                  |  |
| Operating system                   | None                                                                                       | Linux-based Raspbian software                                       |  |
| Programming<br>Languages supported | Usually lower level languages                                                              | All sorts of languages up<br>to high level languages<br>like Python |  |

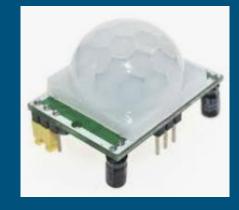
|                                    | Raspberry Pi<br>Zero W                                         | Raspberry Pi<br>Pico            | Raspberry Pi 4 B                                             |
|------------------------------------|----------------------------------------------------------------|---------------------------------|--------------------------------------------------------------|
| Description                        | The iconic, cheap,<br>small Pi Zero with<br>wifi and bluetooth | Raspberry Pi<br>microcontroller | Fourth edition of<br>the mainline<br>Raspberry Pi<br>devices |
| Price                              | \$10                                                           | \$4                             | \$35                                                         |
| Dimensions<br>(HxWxD) in<br>inches | 1.18 x 2.55 x<br>0.197                                         | 0.83 x 2 x 0.154                | 2.22 x 3.37 x<br>0.433                                       |
| Weight in grams                    | 9                                                              | 3                               | 46                                                           |
| Number of cores                    | 1                                                              | 2                               | 4                                                            |
| Clock speed                        | 1 GHz                                                          | 133 MHz                         | 1.5 GHz                                                      |
| RAM                                | 512 MB                                                         | 264 KB                          | 1, 2, 4, or 8 GB                                             |
| Ethernet                           | No                                                             | No                              | Yes                                                          |
| GPIO pins                          | 40                                                             | 26                              | 40                                                           |
| Storage/Operatin<br>g System       | Yes,<br>microSD/Raspbia<br>n                                   | No                              | Yes,<br>microSD/Raspbia<br>n                                 |
| Wi-Fi                              | 802.11n (only<br>2.4GHz)                                       | No                              | 802.11 b/g/n/ac<br>(2.4 and 5 GHz)                           |
| Bluetooth                          | 4.1 BLE                                                        | No                              | 5.0                                                          |



### Databases

- Foundation for IoT integration
- Accessible by the mobile application anywhere, at any time
- Decision to go with Firebase

| Name                          | Couchbase                                      | Firebase                                                                                         | MongoDB                                                                                              |
|-------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Short<br>Description          | JSON-based<br>database derived<br>from CouchDB | Cloud-hosted realtime database. All clients share one realtime instance and auto receive updates | Database that<br>works both as a<br>cloud service or a<br>deployed<br>self-managed<br>infrastructure |
| Cloud-based only?             | No                                             | Yes                                                                                              | No                                                                                                   |
| Offline mode?                 | No                                             | Yes                                                                                              | No                                                                                                   |
| Performance                   | Exceptional                                    | Good                                                                                             | Great                                                                                                |
| Server Operating<br>System    | Linux, OS X,<br>Windows                        | Hosted                                                                                           | Linux, OS X,<br>Solaris, Windows                                                                     |
| Overall Security              | Good                                           | Great                                                                                            | Exceptional                                                                                          |
| APIs and other access methods | CRUD, Query,<br>Search, Analytics<br>API       | Android, iOS,<br>Javascript API,<br>RESTful HTTP<br>API                                          | Proprietary<br>protocol using<br>JSON                                                                |
| Triggers                      | Not immediate                                  | Immediate                                                                                        | Not immediate                                                                                        |
| MapReduce                     | Yes                                            | No                                                                                               | Yes                                                                                                  |
| Server-side scripts           | Javascript                                     | Potentially limiting<br>Google 'rules'                                                           | Javascript                                                                                           |




### Passive Infrared Sensor

- Used to detect any living presence at the door using infrared technology
- Works in conjunction with camera and reader
- Second sensor on inside
- Decision to go with HC-SR501



|               | HC-SR501                              | LEDENET    | LPIR-8A |
|---------------|---------------------------------------|------------|---------|
| Price         | Varies, usually around \$4 per sensor | \$10       | \$8     |
| Size (mm)     | 32 x 24                               | 86 x 51    | 89 x 60 |
| Field of View | <120 degrees                          | 60 degrees |         |
| Range (ft)    | 21                                    | 16-26      | 15      |

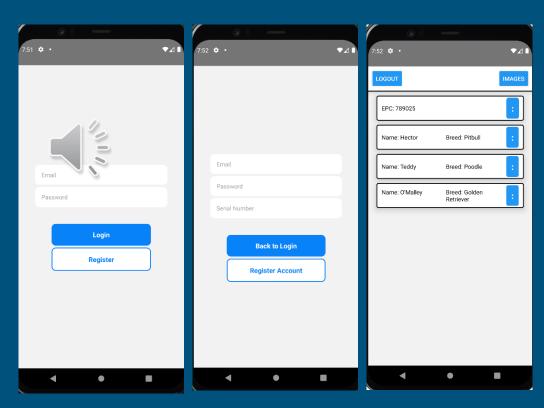


### Camera



 Used for capturing images of anything that might be in front of the door

Decision to go with the Arducam




|                                | Arducam<br>OV5647             | Raspberry Pi<br>Camera Mod 1  | Raspberry Pi<br>Camera Mod 2  |
|--------------------------------|-------------------------------|-------------------------------|-------------------------------|
|                                | 0 7 3047                      | Callicia Mod 1                | Camera Mod 2                  |
| Price                          | \$14                          | \$25                          | \$25                          |
| Size                           | 25 x 24 mm                    | 25 x 24 x 9 mm                |                               |
| Weight                         |                               | 3g                            | 3g                            |
| Still Resolution               | 5 MP                          | 5 MP                          | 8 MP                          |
| Video Modes                    | 1080p30, 720p60,<br>480p60/90 | 1080p30, 720p60,<br>480p60/90 | 1080p30, 720p60,<br>480p60/90 |
| Sensor<br>Resolution           | 2592 x 1944<br>Pixels         | 2592 x 1944<br>Pixels         | 3280 x 2464<br>Pixels         |
| Optical Size                   | 1/4"                          | 1/4"                          | 1/4"                          |
| Full-frame SLR lens equivalent | 35 mm                         | 35 mm                         |                               |
| Angle of view                  | 64 x 48 °                     | 53.5 x 41.4 °                 | 62.2 x 48.8 °                 |



## Mobile Application

- Software
  - React Native CLI
  - Android Studio
- Functionality
  - Registration
  - Edit and delete animals
  - o Change animal permissions
  - View photos taken by camera







#### Frequency ranges:

- LF: 125 134 kHz, 1 10 cm
- Low susceptibility to EM disturbance, but slow data processing speeds
   HF: Typically 13.56 MHz (NFC), 1 100 cm
   Faster transmission and relatively low EM disturbances, but too short of a read range
- UHF: 865 960 MHz, reaching over 🔊 📆
  - Higher read range, but higher interference from certain materials

#### Active versus passive tags:

- Active tags
  - Initiator: requires battery, introducing a lifetime
  - More expensive
  - Longer read distances
- Passive tags:
  - Waits for incoming signals: no internal source of power (no battery)
  - Relatively cheap in comparison
  - Shorter read distances





Tag classes: ISO 18000-6C protocol standard

- Class 0: A read-only, passive UHF protocol
  - Need to write at least once
- Class 1: A write-once, read-many UHF or HF protocol
  - Perfect for our application
- Class 2: Indefinite read-write operational passive RFID tag
  - Unnecessary writing times
- Class 3: Provides read-write operations for various sensors (temperature, pressure, acceleration, etc)
  - Unnecessary sensor implementations
- Class 4: An integrated transmitter allowing for active tags to communicate with other tags and readers
  - Unnecessary and not applicable to our design
- Class 5: Active tags capable of delivering power to other tags as well as communicating to devices other than readers
  - Unnecessary and not applicable to our design





### Desired parameters

- Polarization:
  - Circular
- Beamwidth:
  - Around 120 degrees
- Read distance:
  - Over 1 meter (antenna can be operated at less power to lower the read distance)
- Cost:
  - As low as possible...
- Operation frequency:
  - UHF (865 960 MHz)

|                        | Times-7<br>SlimLine<br>Antenna | Laird<br>Bistatic<br>PRL90209<br>Antenna | Laird<br>S9025PL<br>Outdoor<br>RFID<br>Antenna | Vulcan UHF<br>Antenna      |
|------------------------|--------------------------------|------------------------------------------|------------------------------------------------|----------------------------|
| Polarization           | Circular                       | Circular                                 | Circular                                       | Circular                   |
| Gain                   | 5.5 dBic                       | 9 dBic                                   | 5.5 dBic                                       | 3.4 dBi                    |
| Beamwidth              | 115                            | 70                                       | 100                                            | 100                        |
| Read<br>distance       | 4.3 meters                     | unspecified                              | unspecified                                    | 3 meters                   |
| Dimensions             | 5.9 x 5.9 x<br>0.55 inches     | 10.1 x 22.6 x<br>1.3 inches              | 5.2 x 5.2 x<br>0.71 inches                     | 5.4 x 5.4 x<br>0.13 inches |
| Cost                   | \$119.00                       | \$214.00                                 | \$134.00                                       | \$64.00                    |
| Input Power            | 6 Watts                        | 10 Watts                                 | 10 Watts                                       | unspecified                |
| Operation<br>Frequency | 902 - 928<br>MHz               | 902 - 928<br>MHz                         | 902 - 928<br>MHz                               | 902 - 928<br>MHz           |

# Budget (Proposed/Current)

| Item                  | Quantity | Price          |
|-----------------------|----------|----------------|
| RFID reader           | 1        | \$235          |
| RFID external antenna | 1        | \$119          |
| Raspberry Pi Zero W   | 1        | \$10           |
| microSD Card          | 1        | \$8            |
| UHF Tags              | 3        | \$2            |
| Camera                |          | \$14           |
| Buzzer                | 1-2      | \$1.50         |
| Motion Sensor         | 1        | \$8            |
| Solenoids             | 4        | \$30           |
| Power Source          | 1        | \$10 - \$15    |
| PCB                   | 1        | \$20 - \$30    |
| Antenna Connectors    | 3        | \$12           |
| Door Materials        | -        | \$70           |
| 3D Printer Filament   | 1        | \$20           |
| External Battery      | 1        | \$20 - 40      |
| TOTAL                 | N/A      | ~\$579 - \$614 |



### Division of Work



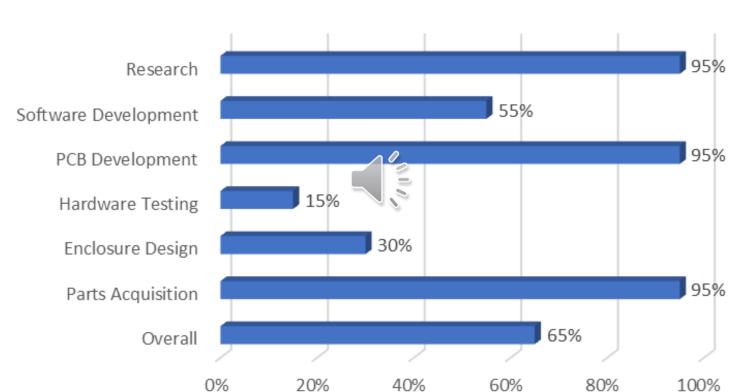
### Logan:

- Project manager
- Camera research
- Storage
- Mobile application
- Embedded software

### Alexis:

- Wifi
- Buzzer
- Motion sensor
- Database
- Embedded software

#### Jordan:


- Door research/design
- Enclosure/door construction



#### Hunter:

- RFID (reader, antenna, tag) research/design
- PSU (PCB and battery bank) design
- PCB research and construction









# Next Steps

| Tasks                                                      | 2/18 | 2/25 | 3/4  | 3/11 | 3/18 | 3/25 | 4/1 | 4/8 | 4/15 |
|------------------------------------------------------------|------|------|------|------|------|------|-----|-----|------|
| Place Hardware on Door                                     |      |      |      |      |      |      |     |     |      |
| Test PCB/switching circuit                                 |      |      |      |      |      |      |     |     |      |
| RPi reading from database                                  |      |      | 7000 |      |      |      |     |     |      |
| RPi integrated with camera and RFID reader                 |      |      |      |      |      |      |     |     |      |
| Finish mobile application                                  |      |      |      |      |      |      |     |     |      |
| RPi communicating with mobile application through database |      |      |      |      |      |      |     |     |      |
| Integration and testing                                    |      |      |      |      |      |      |     |     |      |
| Finishing touches and preparing for demo                   |      |      |      |      |      |      |     |     |      |