#### Portable Fluorescence Sensor Sponsor: for Lyme Disease Antibody Detection

Everix

Group 6:

Cristian Pearson - PSE Christian Spurgeon - PSE Aaron Jevitt - CpE Gean Morales - EE





# Motivation

- Create Demonstration of Everix thin filter technology
- Create a portable fluorescence sensing device that can be used outside the laboratory environment
- Problems with traditional fluorescent sensing devices
  - Low Portability
  - High Cost





# Goals & Objectives

- Create a device which accurately and precisely excites fluorophores of particular interest that are attached Lyme disease antibodies
  - Select an ailment and Fluorescent marker to detect
  - Determine the excitation and emission wavelength of the fluorescent marker
  - Find an illumination source with a peak emission wavelength equal to the excitation wavelength of the chosen fluorophore
- Create a device which accurately and precisely measures the concentration of fluorescent emission from the fluorophores
  - Photodetector chosen with a high sensitivity within the fluorescence emission wavelength range
  - Optical filter chosen to isolate the fluorescent emission wavelength, cutting off the excitation light
- Compact design with reduced weight and bulk compared to other fluorescent sensing devices
  - Compact optical design through use of angled illumination reflection and detection
  - Compact circuit design
- Portable design for use in the field outside of the lab
  - Portable power supply/long battery life
  - Re-chargeable battery
- Visual display of sample concentration of fluorophores representing a particular ailment detected through florescence
  - Display with a high enough pixel count to display the decimal quantities with units of molar concentration





# Specifications & Requirements

- The long pass optical filter shall be curved such that fluorescent light emission and light excitation light reflected off the sample will enter the filter at a normal angle of incidence
- The LED shall emit a spectrum of light with the highest intensity peak centered within the desired excitation wavelength range (~460nm for fluorescein sodium salt)
- The long pass optical filter shall only allow light of the fluorescent emission wavelength of around 515nm to pass through and cut off wavelengths of light emitted from the illumination source of around 465 nm
- The optical system will have a spacing between optics that allows for a compact design of the optical system
- The optical system shall have a limit of detection (LOD) <5 picomolar (pM) for fluorescence emission detection







#### House of Quality



|                          |          |        | Column #                                               | 1                              | 2                           | 3                               | 4                                  | 5                                     | 6                                               | 7                    | 8                                          | 9                                             | 10         | 11        | 12       |                                |                                                                     |                                                                 |          |   |              |       |               |    |      |
|--------------------------|----------|--------|--------------------------------------------------------|--------------------------------|-----------------------------|---------------------------------|------------------------------------|---------------------------------------|-------------------------------------------------|----------------------|--------------------------------------------|-----------------------------------------------|------------|-----------|----------|--------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------|----------|---|--------------|-------|---------------|----|------|
| Direction of Improvement |          |        |                                                        |                                | ▼                           |                                 | $\diamond$                         |                                       | $\diamond$                                      | $\diamond$           |                                            |                                               | ▼          | ▼         | ▼        | Customer Competitive Assesment |                                                                     |                                                                 |          |   |              |       |               |    |      |
|                          | Category | Weight | Customer<br>Requirements<br>(Explicit and<br>Implicit) | Florescence detection accuracy | Optical System focal length | Fluorophore Excitation accuracy | Effective Optical Filter Switching | Accurate Display of Fluorescence Data | Effective user input to parameter<br>adjustment | Simple GUI Operation | Accurate fluorescence calculation software | Accurate Fluorescence calibration<br>software | Dimensions | Power use | Cost     | Our Product                    | Portable Fluorescent Sensor for on-<br>site detection of microalgae | Low-Cost, Portable Smart<br>Instrument for Detecting Colorectal | Fluobeam | 0 | 1 2          | 3     | 4             | 5  | Row# |
|                          | Safety   | 2      | Blue LED light emission within safe<br>intensity       | 0                              | $\nabla$                    | •                               |                                    | $\nabla$                              | 0                                               |                      |                                            | $\bigtriangledown$                            |            | •         | 0        | 1                              | 1                                                                   | 4                                                               | 3        |   | *            | X     | $\overline{}$ |    | 1    |
|                          |          | 8      | Compact size                                           | 0                              | $\nabla$                    | $\nabla$                        | •                                  | $\bigtriangledown$                    | $\bigtriangledown$                              |                      |                                            | $\bigtriangledown$                            | •          | •         | •        | 5                              | 4                                                                   | 3                                                               | 2        |   |              | Ľ     | X             | ⊁  | 2    |
| E                        | Everix   | 4      | Portability                                            | $\bigtriangledown$             | $\bigtriangledown$          | $\bigtriangledown$              | 0                                  | $\bigtriangledown$                    | 0                                               | 0                    | $\bigtriangledown$                         | $\triangleleft$                               | •          | •         | 0        | 4                              | 4                                                                   | 4                                                               | 1        |   | $\times$     |       | *             |    | 3    |
|                          |          | 4      | Low cost                                               |                                | 0                           | 0                               | •                                  | 0                                     | 0                                               |                      | $\nabla$                                   |                                               | •          | •         | •        | 3                              | 3                                                                   | 5                                                               | 2        |   | Our Produc   | Jat 🗶 |               | ٦٩ | 4    |
|                          |          | 8      | Accurate fluorescence detection                        | •                              | $\nabla$                    | •                               | 0                                  | $\nabla$                              | $\nabla$                                        |                      |                                            |                                               | 0          | $\nabla$  | $\nabla$ | 4                              | 4                                                                   | 5                                                               | 5        |   |              | #1    | ×             | *  | 5    |
|                          |          | 4      | Battery Life                                           |                                |                             |                                 | •                                  |                                       |                                                 |                      |                                            |                                               |            | •         | •        | 5                              | 4                                                                   |                                                                 |          |   | - Competitor | #3    | *             | ¥  | 6    |

**UCF** 



### House of Quality

| Target                                  | Florescence detection<br>accuracy | Optical System focal<br>length | F luorophore Excitation<br>accuracy | Effective Optical Filter<br>Switching | Accurate Display of<br>Fluorescence Data | Effective user input to<br>parameter adjustment | Simple GUI Operation | Accurate fluorescence<br>calculation software | Accurate Fluorescence<br>calibration software | Dimensions | Power use | Cost  |  |
|-----------------------------------------|-----------------------------------|--------------------------------|-------------------------------------|---------------------------------------|------------------------------------------|-------------------------------------------------|----------------------|-----------------------------------------------|-----------------------------------------------|------------|-----------|-------|--|
| Max Relationship                        | 9                                 | 3                              | 9                                   | 9                                     | 3                                        | 3                                               | 3                    | 1                                             | 1                                             | 9          | 9         | 9     |  |
| Technical Importance Rating             | 10600                             | 3400                           | 11400                               | 18000                                 | 3400                                     | 4600                                            | 1200                 | 800                                           | 1400                                          | 16800      | 20600     | 17000 |  |
| Relative Weight                         | 10%                               | 3%                             | 10%                                 | 16%                                   | 3%                                       | 4%                                              | 1%                   | 1%                                            | 1%                                            | 15%        | 19%       | 16%   |  |
| Weight Chart                            | ≡                                 | _                              | ≣                                   |                                       | _                                        | =                                               |                      |                                               |                                               |            |           |       |  |
| Our Product                             | 4                                 | 3                              | 4                                   | 3                                     | 4                                        | 4                                               | 4                    | 4                                             | 3                                             | 5          | 3         | 4     |  |
| Portable Fluorescent Sensor for on-site | 4                                 | 1                              | 4                                   | 0                                     | 3                                        | 0                                               | 0                    | 0                                             | 0                                             | 4          | 3         | 4     |  |
| Low-Cost, Portable Smart Instrument     | 5                                 | 1                              | 1                                   | 0                                     | 4                                        | 2                                               | 2                    | 3                                             | 0                                             | 3          | 4         | 5     |  |
| Fluobeam                                | 5                                 | 3                              | 4                                   | 0                                     | 3                                        | 5                                               | 3                    | 3                                             | 3                                             | 2          | 2         | 1     |  |
| 0<br>1<br>3<br>4<br>5<br>5              | *                                 | ¥                              | *                                   | $\checkmark$                          |                                          |                                                 | *                    | *                                             | $\checkmark$                                  | **         | ×         | ×     |  |





## Overall Block Diagram









# Explain Design Approach

- Reflection based fluorescence detection
  - Higher signal detection from fluorescent light emission
  - Compact optical system due to angled illumination
  - Flexibility in size/shape of the sample container compared to transmission design







## Optical Lens Considerations

- Edmund Optics' Uncoated, Plano-Convex Lens 6.0mm Dia. x 6.0mm FL
  - Plano-convex lens type for effective collimation
  - Lens diameter equal to 6 mm diameter photodiode window
  - Focal length of 6 mm for a compact optical system size
  - Small F/# = 1 to collect as much light as possible
  - Everix curved optical filter
    - No need for the light to be collimated
    - Condensed optical system without lens





# Optical Filter considerations

#### Optical Filter

- Longpass filter
- Cut-off light wavelengths below 500 nm
- Unwanted LED illumination leakage at non-normal angles
- Everix Thin filter decreasing size of optic system
- Filter curved for normal incidence at all angles of incident light
  - Concave
  - Convex





# Overall Optical Component Decision

- LED excitation source
  - Peak LED emission wavelength 474nm near fluorophore excitation

#### Photodiode detector

- Linear signal response
- High responsivity
- Large active area

#### Lack of lens

- Decrease optical system size
- Collimation of reflected and fluorescent light not needed due to use of a curved optical filter
- Optical filter
  - Curved to decrease reflected LED light leakage
  - 500nm wavelength cut off chosen to isolate fluorescent light signal





## Electrical Design Overview

- The electrical design will be composed of a 3.3V and 5V Regulators, ESP32, Analog to Digital converter, Op-Amp for photodiode, rechargeable battery, battery charge charger IC and battery protection IC
- Powered by 5V USB Type C connector
- Considerations:
  - Size
  - Battery Life
  - Photodiode Measurement Precision





#### Electrical Design Schematic







#### Microcontroller Considerations

- Considerations
  - WiFi Communication
  - I2C Bus
  - SPI Bus
  - Non-Volatile Flash M mory
- We chose the ESP32 because it has a Wifi Transceiver, the required communication buses, and a built in Flash Memory Chip.





## Photodiode Amplifier Considerations

- Considerations
  - Small photocurrent
  - Minimize dark current to reduce error
  - Create voltage signal that can be fed to analog to digital converter
- We chose the LTC1050 op-amp configured as a transimpedance amplifier because of its low drift, offset voltage of <5 µV, and availability.





#### Electrical System PCB Layout



Dimensions: 37mm x 88 mm





#### Electrical Design Standards

This project uses the following standards:

- WiFi
- SPI
- □ I2C







#### Device Software Design Overview

- Necessary Functionality
  - WiFi client and access point
  - Web Server
  - ADC interfacing via I2C
  - Display interfacing via SPI
- The ESP32 will be programmed using Arduino IDE due to library availability for major components like WiFi, Display, I2C, and SPI





### Web GUI Design Overview

- Necessary Functionality
  - Menu for configuring device
  - Home Page for initiating sampling, and viewing most recent sample
  - Viewer for sample database
- The Web GUI will be programmed in HTML using Javascript to facilitate the transfer of data to and from the device





## Outstanding Software Design

- Sampling routine is still yet to be determined
  - Through testing, the team will determine the number of measurements that will be required to average and ensure a consistent reading.
- Web Client Interface
  - Data protocol still yet to be decided
    - Web Socket, simple http requests





## Design Constraints

- Budget
- Safety
- Fluorophore (fluorescent marker)
- Size
- Battery-Powered





# Standards related to our project

#### Safety

- Low blue light radiance value
- Safe battery storage
- Fluorescence spectroscopy standards
  - Qualitative measurement
  - Quantitative measurement
- Electrical housing standards
  - Protect electrical hardware from outer environment







#### Successes & Difficulties

#### Difficulties

- Complex ray trace due to angled detection & illumination system
- Difficulty ordering photodiode
- Complex design of curved optical filter

#### Success

Senior design 1 optical demo







# Budget & Financing – Deliverable

|   | Costs for Fluorescence Sensor |            |            |                |             |  |  |  |  |  |  |  |
|---|-------------------------------|------------|------------|----------------|-------------|--|--|--|--|--|--|--|
|   | Item                          | Quantity   | Price/Unit | Projected Cost | Actual Cost |  |  |  |  |  |  |  |
| 1 | LED                           | 1          | \$4.992    | \$4.992        | \$4.992     |  |  |  |  |  |  |  |
| 2 | Photodiode                    | 1          | \$48.71    | \$48.71        | \$48.71     |  |  |  |  |  |  |  |
| 3 | Optical Filter                | 1          | \$400.00   | \$400          | FREE        |  |  |  |  |  |  |  |
| 4 | Fluorescein                   | 100g       | \$30.5     | \$30.5         | \$30.5      |  |  |  |  |  |  |  |
| 5 | Microcontroller               | 1          | \$4        | \$ 4           | FREE        |  |  |  |  |  |  |  |
| 6 | PCB                           | 1          | \$2.04     | \$10.02        | \$10.02     |  |  |  |  |  |  |  |
| 7 | Display                       | 1 12       | \$3.00     | \$3.00         | \$3.00      |  |  |  |  |  |  |  |
| 8 | Custom Enclosure              | 4          | \$20.00    | \$20.00        | \$20.00     |  |  |  |  |  |  |  |
| 9 | Circuit Components            | 1          | \$ 75      | \$ 75          |             |  |  |  |  |  |  |  |
|   | ·                             |            |            |                |             |  |  |  |  |  |  |  |
|   |                               |            |            |                |             |  |  |  |  |  |  |  |
|   |                               |            |            |                |             |  |  |  |  |  |  |  |
|   |                               |            |            |                |             |  |  |  |  |  |  |  |
|   |                               |            |            |                |             |  |  |  |  |  |  |  |
|   |                               |            |            | \$596.222      | \$196.222   |  |  |  |  |  |  |  |
|   | Team Budget                   | \$200.00   |            |                |             |  |  |  |  |  |  |  |
|   | Sponsorship                   | \$1,000.00 |            |                |             |  |  |  |  |  |  |  |





## Current Progress







# Final Steps

|                               | 11-Feb | 18-Feb | 25-Feb | 4-Mar | 11-Mar | 18-Mar | 25-Mar | 1-Apr | 8-Apr | 15-Apr | 22-Apr |
|-------------------------------|--------|--------|--------|-------|--------|--------|--------|-------|-------|--------|--------|
| PCB Testing                   |        |        |        |       |        |        |        |       |       |        |        |
| <b>Optical System Testing</b> |        |        |        |       |        |        |        |       |       |        |        |
| Develop Software              |        |        |        |       |        |        |        |       |       |        |        |
| Assemble/Test PCBs            |        |        |        |       |        |        |        |       |       |        |        |
| Order Revised PCB             |        |        |        |       |        |        |        |       |       |        |        |
| Fabricate Enclosure           |        |        |        |       |        |        |        |       |       |        |        |
| Integrated Testing/           |        |        |        |       |        |        |        |       |       |        |        |
| Calibration                   |        |        |        |       |        |        |        |       |       |        |        |
| Final Assembly                |        |        |        |       |        |        |        |       |       |        |        |
| Final Device Testing          |        |        |        |       |        |        |        |       |       |        |        |









#### <u>https://www.everixopticalfilters.com/</u>





# Questions about our project?



