

<u>GROUP 27</u>

KYLE DENNIS DAT TRAN

TYLER CLAITT KORY MARKS

Project Responsibilities

Kyle Dennis (CpE):

- Team Lead
- Web Application
- Panel [Desktop] Application
- System Communication

Tyler Claitt (CpE):

- PCB Component Soldering
- Identified System Components

Dat Tran (EE):

- PCB Design
- System Enclosure Design

Kory Marks (EE):

- PCB Design
- Part Procurement/Treasury

Administrative Introduction

Consumer product

Digitally updateable calendar

Increases efficiency and feasibility of organizing and maintaining a physical calendar

Problem

Utilizing a dry-erase/paper calendar keeps a user's schedule present in their everyday life

• Maintaining the calendar is a manual chore that can lead to confusion and mistakes

Software applications (Google Calendar, Outlook, Apple Calendar, etc.) have made scheduling events much more efficient, sharable, and organized

 No affordable product exists that combines the efficiency offered by scheduling software with the physical presence offered by dry-erase/paper calendars

Solution

IntelliDate combines a display panel with a scheduling application to produce a low-cost product that offers the software benefits of event-scheduling with the physical presence of a dry-erase/paper calendar.

One product of this nature currently exists (DAKboard), but the product costs \$399.95 and requires a monthly service fee, starting at \$5/month.

• The IntelliDate display panel required a production cost of \$155 and provides the customer with a software application with no service fee.

Target Audience & Possible Applications

Goals and Objectives

Develop IntelliDate software application to communicate with IntelliDate display, allowing users to:

- Create/edit/delete events and notes
- Add a display panel to the user's account (via unique serial ID)
- Change calendar view of display (monthly, weekly, daily)
- Lock/unlock visibility of IntelliDate display contents

Modify traditional computer monitor to act as IntelliDate display, allowing the monitor to:

- Display a monthly, weekly, and daily calendar view
- Reflect calendar contents and user settings, from software application, automatically

Other Selling Points

- IntelliDate provides an organized, efficient, and precise method of maintaining and displaying a calendar display that is more affordable than any other existing products
- The contents of the calendar can be updated from any location, so long as the user has a device capable of accessing the website with an active internet connection
- The IntelliDate display can also be locked/unlocked, from the website, introducing a novel layer of privacy to their calendar display, previously unattainable with dry-erase/paper calendars

Engineering Requirements

Component	Parameter	Design Specification
Display	HDMI	Up to 1080p
Communication between Panel and Web Application	Range	20 ft
Web Application/Database HTML Requests	Update Time	No longer than 5 seconds
Panel Application	Refresh Time	No longer than 30 seconds
Cost	Production Cost	Less than \$300
Physical Design	Mounting Capabilities	Monitor can be mounted on wall or stand on flat surface

Overall Block Diagram

Software

Web Application

Enables communication between user and Panel from any location

Can be accessed on any device with a web browser and active internet connection

Developed with the MERN Stack (MongoDB, Express.js, React.js, Node.js)

Frontend was deployed with Firebase; Backend was deployed with Heroku

Even without an attached Panel, can be used as a scheduling software

Web Application Features

Create IntelliDate user account

Add/remove IntelliDate Panel to/from account

Configure lock/unlock status of Panel

Configure calendarview of Panel (monthly, weekly, daily, agenda) Create, edit, and delete calendar events and notes that are reflected on the IntelliDate Panel

ATE

Web Application Use Case Diagram

Panel Application

Desktop application, developed with Electron.js

Executes on Raspberry Pi

Reads string from a local text file as JSON document and converts to JavaScript object

Text file includes: Notes, Events, Lock Status, Selected Date, and Calendar View

Reads text file and updates contents accordingly once per second

{"isLocked":"false","notes":"- Wash the car\n- Take out trash\n- Sweep
garage\n","view":"month","currentDate":"Tue Apr 06 2021 19:09:02 GMT+0000
(Coordinated Universal Time)","events":[{"_id":"60655636aa1f4e0015787f0e",
"title":"Physics Lecture","start":"2021-04-02T15:00",
"end":"2021-04-02T16:15","creator":"60652bc0aa1f4e0015787f05","__v":0,
"id":"60655636aa1f4e0015787f0e"},{"_id":"606c9a8490c5970015cf0cd2",
"title":"Board Meeting","start":"2021-04-02T10:00","end":"2021-04-02T11:00",
"creator":"60652bc0aa1f4e0015787f05","__v":0,
"id":"606c9a8490c5970015cf0cd2"},{"_id":"606c9aa190c5970015cf0cd3",
"title":"Gym Workout","start":"2021-04-02T17:00","end":"2021-04-02T18:00",
"creator":"60652bc0aa1f4e0015787f05","__v":0,
"id":"606c9aa190c5970015cf0cd3"},{"_id":"606c9ad190c5970015cf0cd4",
"title":"Camping Trip","start":"2021-04-03T10:30","end":"2021-04-04T18:30",
"creator":"60652bc0aa1f4e0015787f05","__v":0,
"id":"606c9ad190c5970015cf0cd4"}]}

Example of local text file contents

Panel Application Features

System Communication

ESP

M0

RbPi

- Requests information from database
- Sends information to M0
 - Receives information from ESP
- Sends information to Raspberry Pi
 - Receives information from M0
- Writes information to local text file

ESP8266 Program Structure (Not Connected to WI-Fi)

ESP8266 Program Structure (Connected to W-Fi)

Arduino MD Program Structure

Raspberry Pi Python Script Structure

Raspberry Pi Panel Application Structure

Hardware Components

Arduino MD Microcontroller

ESP8266-01 WI-Fi Module

Connects system to Wi-Fi network

Requests information from database for Panel Application to read

Raspberry Pi 4

Specification	 Broadcom BCM2711, Quad core: 64-bits 1.5Ghz 1GB SDRAM 2x USB 3.0 ports 2x USB 2.0 ports 2x Micro HDMI ports 5V DC (USB and pin headers) Wi-Fi/Ethernet Capabilities 5V, 2.5A USB-C Power supply 	<image/>	Choice of RAM 2GB 4GB 8GB

Printed Circuit Board Schematic

Mcrocontroller ATSAMD21G18

- This Microcontroller will be placed on top of the PCB
- Found on the Arduino M0

ESP8266-01 WI-Fi Module

Power Supply Schematic (3.3V)

Printed Circuit Board Layout

Printed Circuit Board - Challenges

Printed Circuit Board - Challenges

Printed Circuit Board – Soldering Components

SystemEnclosure

Raspberry Pi to Monitor

Receive and store data into text file

Panel application reads text file and updates values accordingly

Refreshes displayed contents on monitor

Constraints and Restrictions

- Self-funded (restricted budget)
- Shipping delay for online purchases
- Physically meeting with group members (geographical distance)
- System communication buffer size limit (64 bytes)
- Needed monitor with HDMI port

Budget

ltem	Quantity	Price
Monitor	1	-
Printed Circuit Board	1	\$20.00
Raspberry Pi 4	1	\$40.00
PCB Components	82	\$60.00
Arduino M0	1	\$10.00
ESP8266	1	\$10.00
System Enclosure	1	\$15.00
Total Price		\$155.00

Broader Impacts of IntelliDate

IntelliDate could serve as an extremely helpful tool for the elderly and disabled, as it can keep users' lives organized and visually present on a large screen with large readable font, and its contents can be updated with a keyboard, rather than having to write.

 The feature of updating the calendar's contents from any location (via the website) allows for a caretaker to add/edit events and notes for someone else, in a separate physical location, to read.

