
IntelliDate 

Kyle Dennis, Tyler Claitt, Dat Tran and        

Kory Marks  

Dept. of Electrical Engineering and Computer 

Science, University of Central Florida, Orlando, 

Florida, 32816-2450 

 

Abstract  —  IntelliDate is a calendar-based scheduling 

service that combines a web-based application with a low-
cost LCD monitor panel that acts as a digitally updatable 
calendar. The panel will display a monthly, weekly, or daily 

calendar view and will display a customer’s free-typed notes. 
To maintain a low production cost, the panel will not include 
touchscreen capabilities, but will instead be paired with the 

IntelliDate Web Application, where the customer can 
create/edit/delete events and notes to interact with the panel. 
Our product is a quality-of-life enhancer in the aspect of 

event organization and adaptive updatability at the changing 
of logged events. 

Index Terms  —  Microcontroller, Printed Circuit Board, 

Full-Stack Development, Refresh Rate, Serial Transmission, 

Latency, Throughput. 

 

I. INTRODUCTION 

 It is near impossible to find one thing in our life that 

does not depend on technology in some way. Technology 

has made the process of maintaining a schedule much 

more efficient and manageable, through use of software 

applications; however, very little technology exists that 

enhances the efficiency, manageability, and presence of a 

schedule like a paper/whiteboard calendar does. Having a 

wall-mounted calendar provides the constant presence of 

all upcoming events in the user’s life, but also hinders the 

capabilities of the individual or group that is managing the 

schedule. Paper/whiteboard calendars require the user to 

manually write and organize each event that is added to 

the calendar, and they must also be manually updated on a 

routine basis, as time progresses. Paper/whiteboard 

calendars also have limited physical space for multiple 

events to be written in a certain timeslot. We decided to 

solve this problem by innovating the IntelliDate display 

panel and software application, effectively combining the 

software aspect of calendar scheduling with the physical 

presence of a paper/whiteboard calendar. The IntelliDate 

display panel consists of a standard computer monitor, 

connected to a 4x6 enclosure, running an application that 

displays a calendar that constantly updates its contents 

based on the events and notes inputted by the user in the 

IntelliDate software application. Contained in the 

enclosure is a Raspberry Pi 4, running the display panel 

calendar application, and a microcontroller/printed circuit 

board that pulls the relevant information from the database 

and communicates said information to the Raspberry Pi, 

for the panel to display. To maintain a low production-

cost, communication between the user and the display 

panel was implemented with a web-based application, 

rather than incorporating a display panel with touchscreen 

capabilities. The display panel will always show the user’s 

free-typed notes, along with the option of displaying their 

events in a monthly, weekly, daily, or agenda calendar 

view.  

II. SYSTEM COMPONENTS 

A. ATSAMD21G18 Microcontroller 

The ATSAMD21G18 microcontroller was chosen for 

this project, because the group has background knowledge 

of this device and has familiarity with the embedded 

software programming language. Additionally, analyzing 

the hardware specifications of the device showed promise 

for providing the resources required by the project, in both 

size and power. The size is desirable because the product 

needs to be thin enough to attach to the back of the 

monitor and be mounted on the wall. The power 

consumption is the going to be consistent because power 

will be supplied from a wall outlet for this microcontroller 

and the monitor. The product does not need much RAM 

because the there is only one primary application executed 

by the system. The number of pins needed in our project is 

limited, so pin-count was a non-issue as well. 

B. ESP-WROOM-02D WIFI Chip    

The ESP-WROOM-02D Wi-Fi Chip was used in this 

project because it is an affordable component that is 

compatible with the Arduino M0. The affordability added 

to goal of making this project low-cost, and the project 

only requires a connection to Wi-Fi from the 

microcontroller to make requests from the database server. 

This was decided to be the best method compared to 

Bluetooth. This allows high speed internet access and 

allows the user to update the panel’s contents from further 

distances. 

C. Power Supply 

The power supply for our project was 3.3V. We have 

initially built two different circuits for our power supply, 

which were 3.3V and 5V; however, the ATSAM21G18 

microcontroller and the Wi-Fi chip both require 3.3V. 



During development, it was found that an additional 5V 

power source was unnecessary. The PCB still contains the 

5V power circuit, but it is not directly connected to the 

3.3V rail in any way. 

D. Monitor 

Members of the group had unused monitors that could 

be utilized as the working IntelliDate display. After 

considering size, brightness, and display quality, the group 

decided to use a Dell Monitor, owned by Kyle Dennis. It 

has a strong brightness and thin bezel, which results in the 

IntelliDate Panel application aesthetically pleasing.  

E. Micro USB Port 

Installing a USB port connection felt essential to the 

hardware design, as this would become an alternative way 

to get power for the design and allow for another method 

of communication with external devices.  

F. Raspberry Pi 

Regarding display connection and interface, the initial 

plan was to utilize a VGA connection, to maintain our low 

production-cost; however, the display required a high 

amount of pixels for a clear image, which the VGA would 

not be able to achieve. The Raspberry Pi 4 was chosen as 

the device that will run the IntelliDate Panel application, 

as it has HDMI ports for high quality image output. The 

Raspberry Pi 4 was decided to be connected to the main 

MCU and to read information and display on the monitor, 

according to the user input. 

III. SYSTEM CONCEPT 

A. Hardware Block diagram 

The figure below shows the hardware diagram for the 

project. The main component of the system is the PCB, as 

it connects all of the other components together. The 

project also cannot be complete without the software 

applications for the user to access and update events, 

wirelessly. 

 
Fig. 1. Project Block Diagram, displaying the various pieces that 
construct the project 

IV. SYSTEM DESIGN 

B. Hardware Design 

The main controller for the project is the printed circuit 

board (PCB). The PCB consists of multiple attachments, 

such as the microcontroller, USB port, power supply,  

Wi-Fi chip, and the SD card reader. The microcontroller 

used in the PCB design was the ATSAMD21G18. This 

chip was used, because the Arduino M0 was used in the 

protype phase, which has the same chip. Unnecessary 

components on the microcontroller were taken out of the 

schematic to simplify the PCB. The hardware design for 

this system consists of 3 external systems, which were the 

two power circuits and the Wi-Fi chip. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. ATSAMD21G18 MCU Circuit Schematic 

 

The two power circuits were two of the three external 

systems that were on this PCB design. The following 

schematic screenshots were the 3.3V and the 5V power 

circuits.  

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. 3.3V and 5V Power Circuit Schematics 

 

  The 3.3V circuit is the main supply voltage for the PCB. 

A green LED will turn on if the correct voltage is received 

by the power supply. A few more schematics, including 

the USB port and Micro SD card reader, were also 

implemented on this design. All of the external systems 

circuit schematics were captured and are displayed below:  

 

 



 

 

 

 

 

 

 
Fig. 4. USB Circuit Schematic 

 

 

 

[Insert Microcontroller Picture] 

 

 

 

 

 

 

 

 

Fig. 5. SD Card Reader Circuit Schematic 

 

  Once all the of schematics were designed and 

simplified into one file on EAGLE, we were prepared to 

design the PCB payout. Since there are a lot of 

components and systems on the PCB, a two-layer board 

was used in our design, for the simplicity of grounding the 

connection between different components. There were two 

planes created: one for the ground and one for Vcc (either 

3.3V or 5V).  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. PCB Layout 

 

An enclosure was designed to fit the Raspberry Pi and 

PCB in a sturdy, low-profile case that could be attached to 

the IntelliDate display panel. Currently, one of the most 

common materials used for enclosures is PVC material. 

After discussing among members, a clear PVC case was 

used with the dimension of 5 1/16’’L x 4’’W x 1 ½’’ H.   

 

   

 

    
 

 

 

 

 

 

 

Fig. 6. PVC Covering Case – The flexibility of PVC allows us 

to also install the cooling fan for the who system. 

V. SOFTWARE DEVELOPMENT 

Though there are several programs executing in the 

entire IntelliDate project, there are two visible applications 

that  can be described as: the “Web Application” and the 

“Panel Application”. Along with the two visual 

applications listed, there are many other “background 

programs”, running behind the scenes, responsible for 

operations including: establishing and maintaining the 

panel’s Wi-Fi connection, retrieving pertinent database 

information for the Panel Application to display, 

transmitting database information from the 

microcontrollers/printed circuit board to the Raspberry Pi, 

writing the contents of the retrieved information into a text 

file for the Panel Application to evaluate, and executing 

command line scripts when the Raspberry Pi powers on. 

While the languages used for the Web Application and 

Panel Application consist of JavaScript, HTML, and CSS, 

the other background programs were coded in the Arduino 

programming language (based on C dialect), Python, and 

command line commands. 

A. Web Application 

The Web Application is the website where users can: 

create a user account, attach a panel to their account (via 

inputting a unique serial number), remove a panel from 

their account, lock and unlock their panel, 

create/edit/delete calendar events, edit their notes, and 

change the calendar view that will be displayed on the 

panel. The panel is capable of displaying a monthly view, 

where each day of the selected month is shown as a block, 

containing events that take place on the respective day(s). 

The panel is also capable of showing a weekly view, 

where the seven days in a selected week are shown, and 

events contained on each day are displayed in a time-grid 

format. The day view is very similar to the week view, but 

the only time-grid shown is that of the selected day. 

https://intellidate.web.app/


Within the Web Application, the user has the capability to 

navigate through the dates and views of the calendar click 

a button to update the panel to reflect the current view 

settings shown on the Web Application. The Web 

Application is a single-page application (SPA), developed 

with the MERN stack (MongoDB, React.js, Express.js, 

Node.js). A single-page application is a web site that 

consists of only one web page where various components 

(buttons, textboxes, etc.) are loaded and unloaded from the 

page, dynamically. The GUI frontend was programmed 

with React.js, a JavaScript UI library/framework. The 

middleware/backend of the Web Application, 

implemented as a REST API (representational state 

transfer application programming interface), was 

programmed with Node.js, a cross-platform JavaScript 

runtime environment for servers and applications, which 

allows for the use of JavaScript as a server-side 

programming language. Along with Node.js, Express.js (a 

Node.js framework that funnels request through 

middleware functions) was used in the design and 

implementation of the REST API. Finally, MongoDB (a 

NoSQL Database Engine), was used to store pertinent 

information from the Web Application (user accounts, 

events, notes, panels, and panel-view settings). The 

frontend of the Web Application was deployed using 

Firebase, and the backend was deployed using Heroku. 

The Web Application proved to be the most effective 

method of developing the interactive IntelliDate software 

application, as the application can be utilized on any 

platform or operating system, given that the operating 

device has a browser that supports JavaScript execution. 

The nature of the application’s client-server architecture 

also proved to be the most effective for the retrieval of 

user data to reflect on the Panel Application. When the 

user creates their account, they can attach a panel to their 

account via inputting a unique serial number ID, 

corresponding to their specific panel. The Web 

Application checks the database for a pre-existing panel 

with the same serial number before successfully attaching 

the panel to the user’s account. Once a panel is attached, 

the user then has the option of locking/unlocking the 

panel, removing the panel from their account, and 

updating the panel view (monthly, weekly, daily, etc.). 

The user does not need to attach a panel to their account in 

order to utilize the notes and calendar-based scheduling 

feature, though, without a panel attached, these events and 

notes can only be accessed within the Web Application. It 

is through attaching a panel to their account and 

creating/modifying the events and notes that the user 

utilizes the Web Application to communicate with the 

panel. 

B. Panel Application 

The Panel Application is a native desktop application 

that runs on the Raspberry Pi and is responsible for 

reflecting the calendar, notes, and calendar-view settings 

on the panel. Though the JavaScript programming 

language typically executes within the web browser, 

Electron, an open-source JavaScript framework, made it 

possible to build a native desktop application with the 

JavaScript, HTML, and CSS programming languages. The 

Panel Application shows the same calendar and notes as 

the Web Application (resized via CSS to fill the screen-

space), but does not provide any sort of user interface, as 

its sole purpose is to serve as a non-interactive reflection 

of the Web Application’s contents. As our project does not 

utilize the Raspberry Pi’s network capabilities, the Panel 

Application does not request data (events, notes, calendar-

view settings, panel lock status) from the database. Rather, 

the Panel Application reads a string from a local text file, 

converts the text into a JSON document, and parses the 

JSON document to convert its contents into a JavaScript 

object, for the Panel Application to evaluate and render 

accordingly. The text document that the Panel Application 

reads from is continuously updated through use of the 

“background programs” that execute on the 

microcontrollers/printed circuit board. The Panel 

Application reads this text document and re-renders its 

components on a time interval of one second. Though the 

Panel Application uses the same calendar and notes 

components as the Web Application (with slight resizing 

modifications and the removal of button components, 

including: “UPDATE NOTES”, “UPDATE PANEL 

VIEW”, and the calendar navigation buttons), there are 

also a few components that were added to the Panel 

Application that are not included in the Web Application: 

a “ConnectHelp” page and a “LockScreen” page. If the 

local text file consists of an empty string, rather than the 

up-to-date database information, this would indicate that 

the ESP8266 is not connected to a Wi-Fi network, and is 

instead waiting in a constant loop for the user to manually 

establish a connection. In this case, a Boolean variable 

within the Panel Application, “isConnected”, is set to 

False, and rather than displaying the “Home” page 

(calendar and notes), the “ConnectHelp” page is 

displayed, notifying the user that their panel is not 

connected to Wi-Fi and instructing them on how to rectify 

the issue. Once the ESP8266 is successfully connected to 

Wi-Fi, it will begin sending the database information, and 

the Panel Application will notice this and set 

“isConnected” equal to True, effectively unloading the 

“ConnectHelp” page and rendering the “Home” page. 

Similarly, the “LockScreen” page, consisting of a blank 



screen with a message conveying that the “panel is 

currently locked”, is loaded in place of the “Home” page 

based on a Boolean variable referred to as “isLocked”. In 

the Web Application, when the user locks or unlocks their 

panel, a Boolean variable, “isLocked”, is set to True or 

False, respectively, within the user’s corresponding 

database panel object. When the Panel Application reads 

the pertinent database information from its local text file, 

it evaluates the value of “isLocked”, and loads the 

“LockScreen” or “Home” page accordingly.  

C. Background Program #1: ESP8266 

Coded in the Arduino (C-based) programming 

language, the first background program (“ESP_main.ino”) 

executes on a Wemos D1 ESP8266 microcontroller. This 

microcontroller is responsible for establishing a Wi-Fi 

connection and requesting data from the database and 

transmitting it to another microcontroller where it will 

eventually be stored into a text file on the Raspberry Pi. 

When the ESP8266 turns on, it first searches for a 

recognized active network, possibly contained in its stored 

Wi-Fi settings. If it finds such a network, the ESP8266 

will establish a connection and begin pulling data from the 

database. If it cannot find such a network, the ESP8266 

will send an empty string to the Raspberry Pi, which the 

Panel Application reads and renders as if the panel is not 

connected to Wi-Fi. If the ESP8266 is not connected to 

Wi-Fi, it will begin to broadcast its own network 

(“IntelliDateWiFi”). Rather than displaying the calendar, 

the Panel Application will display a page that instructs the 

user to: connect a device to IntelliDateWiFi, navigate to 

“192.168.4.1” in their web browser, and utilize the 

returned user interface to select and connect to an active 

recognized network. Once a user does this, the ESP8266 

will be connected to the selected network, and it will 

begin sending an HTTP GET request to the database 

server, supplying a hardcoded panel-serial-number and 

expecting the owner’s userID in return. If there is not a 

panel in the database with the hardcoded serial number, 

the returned userID value will be “-1”, telling the 

ESP8266 code to continue sending the initial GET 

request, until a user attaches the panel to their account and 

populates the database. If a user has already attached a 

panel to their account with a serial number that matches 

the hardcoded value, the ESP8266 code will receive a 

proper userID, and will then send another HTTP GET 

request to the database server, supplying the userID, and 

receiving a string of pertinent information, containing the 

user’s events, notes, panel lock-status, and calendar view 

settings. Whether the ESP8266 is connected to a network 

or not, it is constantly transmitting data to another 

microcontroller via serial TX/RX pin communication (in 

the form of empty strings, when not connected to Wi-Fi, 

or a string containing pertinent information from the 

database, when connected to Wi-Fi). Due to the Arduino 

Serial port buffers only being capable of holding up to 64 

bytes (64 characters), this caused an issue when initially 

attempting to transmit the full database information string 

from the ESP8266 to the Arduino M0, as the transmitted 

string (can be 1k+ characters in length) would be 

truncated after the first 64 characters. To work around this 

constraint, the ESP8266 code was modified to transmit the 

database information string to the Arduino M0 in a while-

loop, where the full database information string is split 

into substrings, 63 characters in length (through use of a 

nested for-loop) and transmitted to the M0 in each while-

loop iteration, followed by a 100-millisecond delay. The 

while-loop is controlled by a counter (also used as the 

character-index of the full database information string) 

that is incremented by a value of 63 on each while-loop 

iteration and compared to the length of the full database 

information string. Once the counter is greater than or 

equal to the length of the full database information string, 

the while-loop terminates, the ESP8266 program yields 

for a duration of two seconds, and a new database 

information string is retrieved from the database, repeating 

the entire substring transmission process. A substring 

length of 63 was chosen (as opposed to the maximum of 

64), because a newline character is concatenated to the 

end of the final substring, opening the possibility of 

exceeding the 64-byte transfer limit if a final substring 

were to ever be exactly 64 characters in length (before 

concatenating the newline character).  

D. Background Program #2: Arduino M0 

Also coded in the Arduino (C-based) programming 

language, the next background program (“M0_main.ino”) 

executes on the Arduino M0 microcontroller. This 

microcontroller acts as a middleware device, simply 

receiving the database information string from the 

ESP8266 (through serial TX/RX pin communication) and 

transmitting it to the Raspberry Pi (through serial 

communication via a direct USB connection).  

E. Background Programs #3-5: Raspberry Pi – Startup 

The final four background programs execute on the 

Raspberry Pi. These programs consist of: one Python 

script, responsible for writing data received from the ESP 

into a local text file for the Panel Application to read 

(“fetchinfo.py”), and a combination of two command line 

scripts and one Python script, responsible for 

automatically beginning the execution of the Panel 

Application and “fetchinfo.py” upon startup of the 

Raspberry Pi (“intellidate.desktop”, “startupscript.py”, and 



“superscript”). The first script, “intellidate.desktop”, is a  

desktop file that is located in the directory: 

“/home/pi/.config/autostart”. This script executes when 

the Raspberry Pi boots, but not until after the desktop has 

been loaded. This script is responsible for opening a 

terminal instance and executing the next script, 

“startupscript.py”, via executing the command: “xterm  

-hold -e ‘/usr/bin/python3 /home/pi/startupscript.py’” The 

next script, “startupscript.py” utilizes the Python 

subprocess module (allowing for the execution of 

command line commands in a Python script) to execute 

“/etc/superscript”, effectively executing a bash script, 

titled “superscript”, located in the “/etc” directory.  

The bash script, “superscript”, called via 

“startupscript.py”, executes three command line 

commands. The first command, “xterm -hold -e 

/usr/bin/python3 /home/pi/Documents/fetchinfo.py &”  

opens a new terminal instance, begins executing 

“fetchinfo.py”, and remains open and executing 

indefinitely. The ending ampersand (“&”) instructs the 

preceding command to run in a background process and 

return to the execution of  “superscript”, where the last 

two of its three commands can execute. As “fetchinfo.py” 

will execute indefinitely, the following ampersand is 

necessary for “superscript” to continue executing, rather 

than waiting for “fetchinfo.py” to finish its execution. The 

last two command line commands in “superscript” are 

responsible for navigating to the Panel Application’s 

directory and running the NPM (Node Package Manager) 

script that launches the Panel Application. It is in this way 

that both “fetchinfo.py” and the Panel Application can 

automatically begin execution, in separate terminal 

instances, upon the Raspberry Pi booting up. Rather than 

simply running the bash “superscript” from the start, the 

complex process of executing a desktop script to execute a 

Python script to execute a bash script was necessary for 

multiple reasons. Firstly, a desktop script was needed to 

ensure that the execution of “fetchinfo.py” and the Panel 

Application would not begin until the desktop was loaded 

(something a bash script, alone, cannot ensure). Secondly, 

a desktop script was found to only be able to execute a 

single command, and it does not have the administrative 

permissions to run a bash script in the “/etc” directory. 

Therefore, the desktop script was used to execute the 

Python script that then executed the bash script (in the 

“/etc” directory). This method also ensured that both the 

“fetchinfo.py” script and the Panel Application would 

execute, indefinitely, in separate terminal instances.  

E. Background Program #6: Raspberry Pi 

The last background program, “fetchinfo.py”, utilizes 

“pyserial” (a Python library that provides a Python serial 

port extension for Linux) to initially establish a serial port 

connection between the Raspberry Pi and an external 

device and read data being transmitted to that port, from 

the external device. In this case, “fetchinfo.py” was 

responsible for establishing an initial serial port 

connection between the Arduino M0 and the Raspberry Pi 

and indefinitely reading the database information received 

from the Arduino M0. Once the incoming data has been 

read, “fetchinfo.py” overwrites the contents of a local text 

file, “msg.txt”, with the newly received data. The 

incoming data represents the up-to-date JSON document, 

retrieved from the database by the ESP8266, that is then 

parsed and evaluated by the Panel Application on an 

interval of one second.  

VI. DATA REFRESH MODIFICATIONS 

In order to minimize the time taken for up-to-date 

database information to refresh on the display panel while 

maintaining the transfer of accurate data, delay values in 

various parts of the project were tweaked for maximum 

efficiency. In the ESP8266 code (“ESP_main.ino”), when 

the database information string is broken into 63-character 

substrings, transmitted one at a time, there is a 100-

millisecond delay between substring transmissions. 

Removing this delay causes inaccurate data to be 

transmitted to the Arduino M0, due to the buffer’s 

contents of one substring being overwritten by the 

contents  of the next substring before the first substring 

can be fully transferred to the Arduino M0. This delay was 

initially set to two seconds and was iteratively decreased 

to the now 100-milliseconds. Decreasing this delay greatly 

improved the data refresh rate of the Panel Application, as 

this delay increases the refresh rate by the delay time 

multiplied by the number of 63-character substrings 

required to fully construct the original database 

information string. Rather than cutting this time to be even 

less than 100 milliseconds, but greater than zero 

milliseconds, it was our decision that to ensure the transfer 

of accurate data, we would potentially suffer an 

infinitesimal amount of transfer time. Following the full 

transfer of the database information string, the ESP8266 

then yields for two seconds, before making another 

request to the database. Though the database could 

potentially handle a greater quantity of requests per unit of 

time, we decided to take scalability precautions, in the 

case that many users are running IntelliDate systems, all 

of which will be making constant requests to the database.  

The last delay value to be tweaked was the refresh rate of 

the Panel Application, executing on the Raspberry Pi. This 

delay value has been set to one second. This is to say that 

every second, while the Panel Application is executing, 



the contents of the transmitted database information 

(located on the local text file) are evaluated, and the Panel 

Application is refreshed to reflect any possible changes.  

VII. DATA REFRESH ANALYSIS 

In order to measure the current data refresh-rate, the 

“fetchdata.py” script was modified to print the current 

time to the console, every time up-to-date database 

information is transferred to the Raspberry Pi and written 

to the local text file. In the span of roughly one minute, the 

consecutive times of data-refresh were documented and 

analyzed for two users with varying database contents. 

The data refresh rate of one user (User #1) with numerous 

events (database-information-string-length of 1703 

characters) was compared with that of another user  

(User #2) with one single event (database-information-

string-length of 380 characters). The resulting data is 

listed in the following tables: 

 

TABLE I 

RAW DATA POINTS FOR REFRESH RATES (USERS #1 & #2) 

8 Events - 1703 chars 1 Event - 380 Chars 

Time of 
Refresh 

Time Since 
Last Refresh 

Time of 
Refresh 

Time Since 
Last Refresh 

2.648 0 1.669 0 

7.632 4.984 4.47 2.801 

12.577 4.945 7.626 3.156 

17.565 4.988 10.065 2.439 

22.491 4.926 12.867 2.802 

27.463 4.972 15.662 2.795 

32.386 4.923 18.46 2.798 

37.314 4.928 21.267 2.807 

42.297 4.983 24.062 2.795 

47.257 4.96 26.858 2.796 

52.225 4.968 29.658 2.8 

57.176 4.951 32.451 2.793 
  35.255 2.804 
  38.056 2.801 
  40.87 2.814 
  43.666 2.796 
  46.472 2.806 
  49.272 2.8 
  52.074 2.802 
  54.878 2.804 
  57.671 2.793 

 

 

 

 

 

 

TABLE II 

DATA REFRESH RATES ANALYSIS (USERS #1 & #2) 

Data Refresh Rate Analysis 

User Calendar Events 8 1 

String Length (chars) 1703 380 

Recorded Data Refreshes 12 21 

Recording Duration 54.528 56.002 

Refreshes per Minute 13.204 22.499 

Min Refresh Time (s) 4.923 2.439 

Max Refresh Time (s) 4.988 3.156 

Average Refresh Time (s) 4.957 2.800 

Average Refresh Rate (chars/s) 343.548 135.709 

 

 Viewing the analysis results, it is clear that User #2 has 

a much faster Average Refresh Time and has almost 

double the number of Refreshes per Minute than that of 

User #1. These results were expected, as the number of 

characters in the database information string of User #2 is 

22% of the number of characters in that of User #1, and it 

is clear that transmitting more substrings introduces 

greater delay. However, the Average Refresh Rate results 

are much more interesting and surprising: User #1, with an 

Average Refresh Time of 4.957 seconds and a string 

length of 1703 characters, is shown to have an Average 

Refresh Rate of 343.548 characters per second, while User 

#2, with an Average Refresh Time of 2.800 seconds and a 

string length of 380 characters, is shown to have an 

Average Refresh Rate of 135.709 characters per second. 

This is to say that even though User #2 has a much smaller 

load to transfer, and transfers said load at almost double 

the speed of User #1, the number of characters that User 

#1 is transferring is more than double that of User #2. This 

seems to outline a case where when there is less data to 

transfer, latency is significantly decreased, but the 

throughput is decreased as well, whereas when this is a 

much greater amount of data to transfer, latency may 

increase,  but the throughput, or ability to transfer a certain 

number of characters per second, increases dramatically. 

This may be due to the fact that in the ESP8266 code, 

there are two seconds in between data transmissions, but 

only 100 milliseconds in between substring transmissions. 

The user with the larger transfer load spends more time 

transmitting characters (of the recording period of 57 

seconds), while the user with the smaller load spends more 

time waiting for the next transmission cycle. This data 

suggests that as a user adds more events, the time it takes 

to refresh the data will certainly increase, but the amount 

of data transferred per second grows larger. 



VIII. CONCLUSION 

Creating the IntelliDate product has been an incredibly 

rewarding learning experience. Developing both a 

functional web application and desktop application in the 

aims of creating a marketable product has provided a 

plethora of experience with software development and 

design in many sectors, including but not limited to: web 

development, graphical user interface development, 

server-side management, software development 

techniques, research and self-teaching strategies, 

debugging and testing skills, and confidence to enter the 

professional workplace as a Computer Engineer. The same 

can be said for the grand amount of embedded software 

programming, that was required to program serial  

communication between the microcontrollers, and Linux 

familiarity which was required to configure the Raspberry 

Pi. Designing, developing, and constructing a custom 

printed circuit board, that combines the technologies of 

various microcontrollers was also a great challenge that 

also provided a wonderful learning experience. Though 

this project has been a challenging journey for our group, 

we are proud to have accomplished such a feat, and are 

grateful for the opportunity to do so.   

ACKNOWLEDGEMENT 

The authors wish to acknowledge the assistance and 

support of Dr. Lei Wei, Dr. Zhishan Guo, Dr. Linwood 

Jones, and Dr. Qifeng Li.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BIOGRAPHY 

Kyle Dennis is a graduating 

Computer Engineering student 

who is planning to continue his 

career with Lockheed Martin by 

transitioning his internship to a 

full-time position in Software 

Engineering. Software 

application development is his 

passion, and he plans to do 

contracting work, building web- 

                                        based applications in his free  

                                        time.  

 

Dat Tran is currently enrolled in 

the Electrical Engineering 

program at UCF and after 

graduating in May of 2021 with a 

bachelor's degree in Electrical 

Engineering, he plans to look for 

a career and then go back to 

school for his masters in the  

future after working in the field  

                                       for some years. 

 

Kory Marks is currently 

enrolled in the Electrical 

Engineering program at UCF, 

with plans to graduate in May 

2021 with a bachelor's degree in 

Electrical Engineering. His 

ambitions are to work with 

NASA and contribute to the 

world's exploration of space. He  

                                        then plans to return to school for  

                                        his master's degree in business  

                                        and administration. 

 

Tyler Claitt is 25-year-old 

Computer Engineering student. 

Tyler is seeking to pursue career 

specializing in software 

development and embedded 

solutions. Tyler is very 

interested in aviation and hopes 

to integrate this passion with his 

potential career.  

 


