

Signal Operated Lock And Security (SOLAS) system Group 16

Matthew Guevara EE

Keanu Zeng CpE

Devon Anselmo CpE

Introduction

- An electronic door lock system consisting of
 - o RFID bracelet worn by the user
 - RFID reader in the door lock subsystem
 - Motion sensor to power on the system
 - Gesture controller-based password
 - Camera to document lock usage
 - A website the user can login to view activity at the door
- Motivation came from making grocery trips easier
- Inspiration from automatic proximity car door locks

Goals and Objectives

- The main goal for the SOLAS project is to make home entry easier for authorized users
 - The RFID subsystem eliminates the need to use physical keys, the gesture password is optional
- The system will also increase security
 - o An RFID "key" as well as gesture password are used to gain entry
 - Camera documents all activity at the door, including highlighting when incorrect passwords are entered
 - Gesture password is more difficult to guess than number-based pins
- A web application that allows the user to monitor activity outside the door

Specifications

- Battery should last at least 1 year
- Infrared motion sensor should have a range of around 4 feet
- RFID subsystem should have a range of ~2 inches
- The lock should fit onto standard door designs
- Bracelet that comes in various sizes
- Camera to capture clear images of movement which the user can review and identify later
- Web application to modify lock settings and view photos taken by the camera
- After 10 seconds of inactivity in any powered on state, the system will return to a power saving mode

Constraints

- 3 Team members
- Cost: Budget funded by project members
- Time: Strict schedule to follow to complete SOLAS on time limits potential design choices
- Team meetings: Distance and other current conditions limit the amount of physical team meetings
- Size: The SOLAS system must fit in a reasonably sized enclosure
 - The system must be able to fit on a standard door

Standards

- RFID wave propagation distance/frequency
 - o ISO/IEC 15693-2:2019
- Gesture controller "language"
 - o ISO/IEC 30113-5:2019
- Camera resolution measurement
 - o ISO 12233:2017

Hardware/components

- Components that have been tested
 - ESP32 Microcontroller
 - ESP32-CAM Camera Module
 - o ID-20LA RFID module
 - ULN2003 Motor Driver
 - o RGB LED
 - BL412 PIR Motion Sensor

- Components that have not been tested yet
 - o APDS-9960 Gesture Controller
 - 3.3V and 5V Regulators

Full schematic from eagle

Current PCB Layouts

PCB for inside section

PCB for outside section

ESP-32S Development Board

- Uses ESP32-D0WD Chip
 - Integrated Wi-Fi and Bluetooth
 - Low Power and Low Cost
 - o 34 GPIO pins
 - Various power/sleep modes
 - o ROM: 448 KB, SRAM: 520 KB
 - o 240MHz clock frequency

ULN2003 Motor Driver

- Used to operate Motor
 - Used to unlock SOLAS Deadbolt
 - GM2215FD-0001 DC Motor

RGB LED & BL412 PIR Motion Sensor

- Used to indicate:
 - When system is on
 - If door is unlocked
 - If RFID tag rejected

- Used to turn on system
- Long range (5-6 m)

Voltage Regulators

- 5-Volt regulator
 - o ESP32-CAM
 - Motor Driver

- 3.3-Volt regulator
 - Microcontroller
 - o RFID module
 - PIR sensor

ESP32-CAM Camera Module

- Capture image when motion is detected
- OV2640 2MP Image Sensor
- 1600 x 1200 Resolution
- WiFi enabled
- SD card slot

APDS-9960 Gesture Controller

- Used as secondary password
- Four photodiodes used to detect reflected IR energy generated from an integrated IR LED to convert physical motion to digital information.

ID-20LA RFID Module

- The RFID subsystem is responsible for regulating who is able to enter the door
- It was chosen due to it's small size and passive technology
- RFID reader module comes with integrated antenna
- 18 25 cm Range
- 125 kHz frequency between the reader and tag

Software State Diagram

- State diagram used to help model desired behavior
- Use of interrupts from sensors to switch between states
- Implement design using Arduino IDE in the C language

Microcontroller Software Design Approach

- AutoConnect used to connect the microcontroller to wifi
 - Allows auto-reconnection to same wifi anywhere without hard-coding credentials
 - Removes the necessity for user to use app, as well as developers to make an app for sole purpose of wifi connection
- Images uploaded over this wifi connection to the website
 - o Images uploaded with red flag in the case of incorrect password

Microcontroller Software Design Approach

- RFID system calibrated by reading in ID sent by RFID tag
 - All further communication compares received ID to the stored ID
- Gesture controller uses the 4 photodiodes to sense direction
 - Four basic directions are already programmed into the sensor
 - o Gesture inputs are reduced to a integer, 0 4

Website Use Case Diagram

Web Application

- Constructed using MEVN(mongoDB, Express.js, Vue.js, and Node.js) stack with Nuxt framework, deployed to heroku
- Simple login and register forms, with a home screen to display pictures taken
- User registers with the camera's serial number, used to pair user accounts to cameras
- Will have settings page to change gesture password
- Forgot password feature utilizing user's email

Settings Delete All		Logout
	Welcome David Brown	

Difficulties

- Website
 - User authentication and cookies
 - o Deployment to Heroku
- Microcontroller software
 - Uploading images taken to user website
- Hardware
 - o RFID pin size
 - o PIR motion sensor range

What went well

- Website
 - o Database is intuitive, easy-to-use
- Microcontroller software
 - Taking pictures and saving to SD card
 - Connection to local Wifi
 - Connection to website over wifi connection
- Hardware
 - Motor is given enough power to turn the deadbolt
 - RFID module reads RFID tag from a sufficient distance

Group member contributions

Matthew Guevara	Devon Anselmo	Keanu Zeng
 Circuit/PCB Design Microcontroller Connections RFID operation Motor Operation Motion Sensor Connections 	 Website construction Database setup Wifi connection RFID communication Budget and expenses tracking 	 Website construction Integrating Gesture Controller Microcontroller Camera programming

Budget and Expenses

- Expenses incurred so far:
 - Bracelets, Door lock, Camera module, microcontroller \$71.25
 - Rfid tag and reader \$46
 - Sd card for camera \$14.15
 - Resistors and Capacitors \$12.73
 - Proximity/motion sensor \$7.08
 - Gesture controller \$14.22
 - Total: \$165.43
- Further expected expenses by vendor:
 - Heroku \$28
 - PCB manufacturing \$70
 - Door handle, Enclosure \$40
- Total estimated project budget: \$303.43, \$3.43 over original desired budget

SOLAS progress

Immediate tasks

- Begin programming and testing Gesture controller
- Work on having esp32-cam show images from database on front-end
- Implementing PIR motion sensor into SOLAS hardware
- Testing power usage of SOLAS system
- Obtaining Voltage Regulators

Thank You