

Gaming Wizard
A Smart Table for Tabletop Gaming

Senior Design 2

Spring 2020

Gabriel Holguin

Daniel Kalley

Erica Lindbeck

Logan Taylor

Computer Engineering

Computer Engineering

Electrical Engineering

Electrical Engineering

Group 30

i

Table of Contents
1.0 Executive Summary .. 1

2.0 Problem Overview .. 2

3.0 Project Requirements .. 5

3.1 Marketing Requirements ... 5

3.2 Engineering Requirements .. 5

3.3 Standards ... 7

3.3.1 Hardware Standards ... 8

3.3.1.2 Bluetooth Standards .. 8

3.3.2 Standards for Software Development .. 9

3.3.3 App Accessibility Standards .. 13

3.4 Realistic Design Constraints ... 15

3.4.1 Economic and Time Constraints .. 16

3.4.2 Environmental, Social, and Political Constraints .. 18

3.4.3 Ethical, Health, and Safety Constraints ... 19

3.4.4 Manufacturability and Sustainability Constraints .. 21

4.0 Previous Projects ... 23

4.1 Multi-Touch Poker Table .. 23

4.2 Smart Table ... 25

4.3 Magic Frame: Turn Everything into a Touch Area .. 25

4.4 Similar Mobile Apps ... 26

5.0 Hardware Design .. 28

5.1 Multi-Touch Surface ... 28

5.1.1 Available Touch Detection Techniques ... 28

5.1.2 Touch Detection Scheme Selection ... 31

5.1.3 Touch and Display Surface Materials .. 32

5.1.4 Illumination .. 33

5.1.5 Infrared Camera ... 34

5.1.6 Display Method .. 36

5.1.7 Touch Surface Prototyping .. 38

5.2 Table ... 39

5.3 Microcontroller ... 43

5.3.1 ATmega328.. 44

5.3.2 MSP430FR6989 ... 44

ii

5.3.3 ATmega2560.. 45

5.3.4 Microcontroller Comparison .. 45

5.3.5 Uploading Bootloader to MCU .. 45

5.3.6 Communicating with the MCU .. 46

5.3.7 Standalone MCU Schematic .. 46

5.4 Cooling System ... 47

5.4.1 Temperature-Based Control System .. 48

5.4.2 Prototype of Temperature Control Subsystem ... 49

5.5 Timer ... 50

5.6 Brightness Adjustment .. 52

5.7 Special Effect Lighting ... 53

5.7.1 TLC5940 .. 53

5.7.2 WS2812B ... 54

5.7.3 Led Effects Hardware and Software Design .. 54

5.7.4 Prototype of LED Effects System .. 55

5.7.5 LED Effects System Final Design ... 56

5.8 Sound Design .. 57

5.9 Power Supply .. 58

5.9.1 Voltage Regulator .. 58

5.9.2 Voltage Regulator Design .. 59

5.10 PCB Design ... 60

5.11 Serial Communication Protocols .. 62

5.11.1 UART ... 63

5.11.2 I2C .. 64

5.11.3 SPI .. 65

5.11.4 Summary .. 66

5.12 Wireless Communication Protocols .. 67

5.12.1 Bluetooth 5.0 .. 67

5.12.2 Wi-Fi IEEE 802.11ac ... 68

5.12.3 Wireless Technology Comparison ... 69

6.0 Software Design .. 71

6.1 Software Overview ... 71

6.2 Object and Touch Detection ... 71

6.2.1 Framework Discussion... 72

iii

6.2.2 TUIO .. 74

6.2.3 Object Detector Class .. 75

6.3 Mobile App ... 78

6.3.1 Android OS Overview ... 82

6.3.2 Apple iOS Overview .. 83

6.3.3 Financial Costs ... 84

6.3.4 Developmental Tool Differences ... 84

6.3.5 OS Selection... 85

6.3.6 App User Interface Framework ... 86

6.3.7 App User Interface Design ... 87

6.4 Game Software.. 89

6.4.1 Game Software Endpoints ... 89

6.4.2 Game Software Class Descriptions .. 90

6.4.3 Programming Language Selection ... 105

6.4.4 Multithreading.. 107

6.5 Windows API .. 108

6.5.1 Application with our Project .. 111

6.6 GitHub... 113

7.0 Test Plan.. 114

7.1 Hardware Testing .. 114

7.1.1 IR Camera .. 114

7.1.2 IR Illumination ... 114

7.1.3 Surface Material ... 114

7.1.4 Power Supply ... 114

7.1.5 Light Sensor ... 115

7.1.6 Timer .. 115

7.1.7 Speakers ... 115

7.1.8 Accent Lights ... 115

7.1.9 Temperature Sensor and Fans .. 116

7.1.10 Wireless Communications ... 116

7.1.11 Table .. 116

7.2 Software Testing ... 116

7.2.1 Mobile App Testing ... 116

7.2.3 Communication of App to Game Software Testing .. 117

iv

7.2.4 Object Detection Testing ... 117

7.2.5 Save and Load Game Data Testing .. 118

7.2.6 Display Testing .. 118

7.3 System Testing .. 119

7.3.1 Game Options .. 119

7.3.2 Player Character Options ... 119

7.3.3 Map Options... 119

7.3.4 Game Master Options .. 119

7.3.5 Game Simulation ... 120

8.0 User’s Guide ... 121

8.1 Desktop Application User’s Guide ... 121

8.2 Android Application User’s Guide ... 124

9.0 Budget ... 128

10.0 Milestones ... 129

Appendices ... i

Appendix A: Copyright Permissions ... i

Game Logo and Backgrounds .. i

Figure 20 .. i

Figure 21 .. i

Figure 22 ... ii

Figure 23 ... ii

Figure 24 ... ii

Figure 31 .. iii

Figure 32 .. iii

Figure 33 .. iv

Works Cited .. v

1

1.0 Executive Summary
Tabletop gaming has experienced a surge in popularity thanks to the rise of several popular web

series featuring gameplay and more widespread references in traditional media. With this increase

in popularity there is a corresponding increase in demand for new materials to game with, both in

terms of game content such as new options for player characters, and gaming accessories such as

dice and figurines. We have met this demand with an adaptable system that enhances or simplifies

existing game mechanics and provides a variety of new features that can be used to improve

immersion in a wide variety of roleplaying games.

The system begins with a 38” x 30” x 36” table on which games can be played. The table itself

displays the game in simulation of traditional mediums of gameplay, and the surface of the table

facilitates interaction with the imaginary world of the game through touch inputs. This

functionality is implemented using a rear diffused illumination touch screen made of clear acrylic,

embedded in the top of the table, with a diffusive material attached. In comparison to many

previously developed smart tables, this method allows users to generate touch inputs using objects

such as figures of characters, in addition to their fingers. The touch screen is illuminated from

below in the visual spectrum by a projector, allowing any necessary game maps and features to be

displayed. Additionally, the surface is illuminated by infrared illuminators to generate a heat map

of touch inputs which is translated into coordinates by blob-detecting software and game software

subsystems.

Additionally, several bookkeeping elements of gameplay, such as rolling dice and calculating

distances on maps, are taken care of automatically by the game software hosted by a player’s pc,

and a smart phone app which turns players’ phones into character controllers using a Bluetooth

connection. Thus, time spent on the entertaining aspects of the game rather than performing tedious

calculations can be maximized. To simplify performing these calculations across many games, the

player app tracks relevant information related to each player’s character such as current location,

health, movement speed, and abilities, and saves them between sessions. Similar apps can already

be used to track many of these features, but our app is able to track additional pieces of information

and integrate them more seamlessly into gameplay.

To enhance immersion in roleplaying tabletop games, we added special effect functionality.

Speakers embedded in the table play sound effects for specific actions, and LED lighting around

the edges of the table light to denote the use of magic or other special abilities. When a character’s

choice of action causes changes in their environment, the map displayed on the table shows the

affected area.

This report details the process of designing the Gaming Wizard system, accounting for budgetary

and time restrictions as the project was funded solely by group members and most systems were

assembled in under 5 months. Special consideration was given to guaranteeing that the system is

compatible with a wide variety of current and future games, as well as incorporating standards to

interface with the smart phones and computers that must be used to run the Gaming Wizard

software. During the design stage we ensured that no components would be forced outside their

specified operating ranges during intended operations, checked our power supply for compatibility

and added fans to keep the interior of the table cool. During the assembly and testing stages, we

ensured that all electrical components were safely handled and securely attached to the table.

2

2.0 Problem Overview
In an open-ended tabletop role-playing game, each player controls at least one character and

cooperates with other players in their party to complete a series of adventures known as a

campaign. Traditionally, the physical representation of game settings consists of a gridded board

and figures representing the landscape and characters, respectively. Paper character sheets are used

to keep track of character abilities, and dice are used to determine the outcomes of events in the

game. During gameplay, keeping track of the locations of characters and monsters on the board

with respect to each other is vital to various mechanics such as combat, using magic, and

interacting with the environment. However, problems arise such as remembering character

locations between game sessions or when a piece falls over. Further, counting grid squares to

determine distances each turn often causes delays in gameplay and can be a matter of contention

when paths do not lie along grid lines.

Another issue that arises with tabletop gaming is the large amount of information that needs to be

tracked. This includes things like character attributes, skills, equipment, and the amount and type

of dice needed to be rolled for an interaction. These values evolve over the course of the game

which normally requires a large amount of erasing and rewriting. Given that an average game

involves four players and a game master, this information is tedious to track and slows down

gameplay.

Our project seeks to solve these issues by using a “smart” game board that can recognize multiple

character locations, represented by physical figures on the game board, track that information, and

display the relevant information both on the board and in a phone application. Ideally when a

character is moved on the board, the application software recognizes this and asks for a

confirmation. The application saves and remembers character locations even after being closed,

which greatly reduces the time it takes to reset a board between meetings.

Additionally, the application tracks character information such as attributes and combat statistics.

This creates a paperless game that removes the need for constant erasing and rewriting. Combining

this with the location information also greatly reduces the time it takes to perform combat

interactions, as the board can automatically display the range of an ability or spell once it is selected

by the user. Dice rolls can also be simulated in the software, removing the problems of needing a

large surface to roll dice on and losing dice.

The proposed smart table hosts the game from a user’s laptop and communicates with players’

phones using Bluetooth connections. From their phones, players and game masters (GMs) use a

menu system to create characters, view and modify their stats, and trigger events on the table’s

surface corresponding to character movements and abilities. Further, a character’s statistics are

saved on the corresponding player’s phone, to reuse the character on different maps that may be

loaded onto the board for different scenarios. All character and digital token locations on the board

are saved to the GM’s phone or computer when the table is shut down, allowing the group to

recreate the game board quickly for subsequent game sessions. The GM has access to additional

options such as map selection and enemy creation that are not accessible to players. The current

map, along with additional relevant graphical information are projected onto the table’s surface

from the interior of the table. The structure of this phone application/computer program/table

system is given in Figure 1.

3

Figure 1: General Software Block Diagram

In order to track characters, figures on the table’s touch surface are located through use of Rear

Diffused Illumination (Rear DI). In Rear DI, in addition to the image being displayed, infrared

light illuminates the table’s surface from below and is diffused for even coverage of the surface.

The translucent material of the surface allows some light to be transmitted through the surface

while some is reflected downwards. When an object is placed on or hovers closely above the

table’s surface, the transmitted infrared light is reflected downwards by the object and creates a

region of higher intensity infrared light, which can be detected by a camera under the surface. The

generated heat map is used to determine object and touch locations. This method was selected

based on location accuracy requirements, cost efficiency, and the need for object detection in

addition to detection of fingers and specially designed styluses. Touch input is also used to select

locations for ability usage (e.g. the center of a spells areas of effect) and movement of digital

tokens representing enemies or allied non-player characters.

The table relies on a standard electrical outlet for power in order to remain turned on for lengthy

game sessions. An automatic cooling system triggers when the inside of the table, which contains

most of the electrical components, exceeds safe operating temperatures. This system consists of

two fans and an associated temperature sensor. To ensure visibility, manual controls are available

to set the baseline brightness of the table’s image, but maximum brightness is recommended in

virtually all situations.

To improve the quality of gameplay, there are several additional features to the table. Indicator

lights on the table are used to denote player turn and ability damage types. Speakers inside the

table allow the game master to play ambient music or special effects through the use of a third-

party audio player. Finally, a programmable timer was included for timed skill challenges and

limiting decision-making time in combat. The incorporation of the many proposed features of the

table is detailed in Figure 2.

4

Figure 2: Hardware Block Diagram

5

3.0 Project Requirements
3.1 Marketing Requirements
As we designed a smart table for tabletop gaming, we had to consider what the most desirable

characteristics of such a table would be, given a typical game. As a game usually includes several

players and is run by a single game master (GM), support for several simultaneous users was

necessary. During an encounter or while exploring a specific location, the players use a map

consisting of a top-down view of the environment, divided into squares which represent a 5’ square

in the environment with a 1” square on the map. This map must be sufficiently large to show a

reasonable portion of the environment and contain all of the relevant characters. Setting up the

map, placing characters, and looking up character details should be quick processes to avoid delays

in gameplay. As each player’s character is represented using a miniature figurine of the character

with a 1” diameter base, the figure must be accurately located on the map to determine which

objects, enemies, and allies are within range of the character’s abilities (such as magic spells and

weapons), as well as which locations (i.e. grid squares) the character can move to on their turn. A

player should be able to easily tell where objects are on the map and distinguish features of the

environment such as doors, levers, and walls in order to make decisions about which actions to

take on their turn. Finally, the table must be affordable for a dedicated table group and so that the

benefits it confers are worth the price. These desirable features are organized in Table 1 as they

are the general characteristics which the table must have.

Table 1: Marketing Requirements

Desired Features Reasoning

Supports Normal Game Groups

Most games are balanced to be played by 4 players with a

game master. A larger or smaller group is possible, but the

table should be able to support groups of typical size.

Easy to Use

If the table is significantly more complicated than traditional

paper/dry erase maps and figurines, there is little to be gained

by using it. Setting up a map and placing characters should be

comparably quick, and interfaces should allow easy access to

desired character and ability information.

Supports Full Length Games

A typical game session is 3-6 hours, though it may last longer.

A map is usually not required for the entire session, so the

table may not be necessary for the whole session but should be

available for the entire duration, just ot be on the safe side.

Map Details Are Easily Distinguished

Map features such as landscape, locations of digital tokens, and

areas of effect for character abilities should be easily

distinguishable for effective gameplay

Character Locations and Touch Inputs Are Accurate

Locations of characters and choice of target when triggering an

ability such as a spell should be accurate to the constraints of

the game, which is played on a grid.

Low Cost

The table should be low enough cost that the benefits it brings

to gameplay justify the expense, and maintenance (e.g.

replacing projector bulbs) is not excessive.

3.2 Engineering Requirements
Engineering requirements of the table which will ensured that the table met marketing

requirements are given in Table 2. These requirements were chosen in compliance with the

relevant standards given in Table 3, based on our chosen implementation using a Rear DI touch

6

screen and a phone application. Some of these standards are detailed further in the following

section. We encountered more standards as we finalized our design and began its implementation,

but we created our design to either initially satisfy standards or be modifiable to meet them.

Table 2: Engineering Constraints

Aspect Constraint Reasoning

Touch Surface Dimensions 20”-36” per side

Large enough play area without causing significant

detection issues; 20” square game mats are the most

common commercially available custom

mapmaking product

Table Height 1.5’- 3.5’
Players are expected to sit around the table during

gameplay

Maneuverability
Can be safely moved by

2 people

The table will have to be moved for demonstrations

and in home without special equipment

Device Lifetime > 3 years
Desirable lifetime given expected cost of

development/replacement

Simultaneous Touches Detected > 6
Support 4 player tokens + 2 touch points for user

input

Simultaneous Mobile Controllers > 5 Support at least 4 players and a game master

Mobile Controller Range > 10’ Avoid disconnecting walking around a room

Mobile Controller Input Delay < 1 s
Acceptable delay considering inherent wireless

communication delays over a stable connection

Touch Input Delay < 0.2 s
Acceptable delay for touch input detection to

interact with the table in near-real time

Operating Temperature Inside Table < 32oC
Safe operating temperature for most electronic

devices/components

Time to Cool from Startup

(assuming ambient temperature is

within operating range, internal

temperature at most 10oC higher

than allowable)

15 minutes

Acceptable delay assuming ambient room

temperature is within operating range, long enough

for fans to significantly cool the interior of the table

Average Projector Bulb Change

Time
< 6 minutes

Ease of replacement is necessary as projector bulb is

an expected point of failure in the long term

Continuous Operation Time > 6 hours Enough for most game sessions

Display Resolution
> 720 x 720

> 1080 x 1080 ideal

Possible with available projectors and provides

reasonable image quality at expected display

dimensions

Object Size for Detection > 0.5” diameter Must detect fingers and 1” diameter figure bases

Object Location Accuracy < 0.5” from true location
Must be able to accurately place track

objects/touches to 1” grid squares

Object Removal/Placement Detection > 95%
Must reliably detect when a figure is moved for

character tracking

Locations Tracked and Saved on Exit > 20

Able to store location data for the next game session

for 4 player characters and a reasonable number of

virtual allies/enemies

Average Time to Set Up New Map < 2 minutes
Acceptable set up time based on average time

needed using a traditional map and figures

7

Table 3: Considered Standards for Engineering Requirements

Standard Application

IPC-2221B Generic Standard on Printed Board Design

NASA-STD-8739.3 Soldered Electrical Connections

Bluetooth Special Interest Group Standards
Bluetooth devices must demonstrate and declare compliance with the

standards set by the Bluetooth SIG

IEEE 3007.3-2012
IEEE Recommended Practice for Electrical Safety in Industrial and

Commercial Power Systems

CUI Power Supply Safety Standards Standard for power supplies

Android Design Guidelines Regulates Android applications

Google Java Style Guide Non-mandatory standard for program formatting

IEEE 29119 Software testing

The relationships between a selected subset of engineering requirements and the marketing

requirements are detailed in the House of Quality in Figure 3.

Figure 3: House of Quality for Selected Engineering Constraints

3.3 Standards
Standards define the characteristics of a product, process, or service. They simplify product

development, reduce unnecessary duplication, lower costs, increase productivity, promote safety,

and permit interchangeability, compatibility, and interoperability. Standard development

8

organizations such as IEEs facilitate the development and maintenance of official standards but

some companies such as NASA choose to also follow their own standards.

3.3.1 Hardware Standards
Various standards were used as a guide for designing and testing the hardware of the device.

Standards were selected based on relevance to design decisions such as safety, wireless

technology, and soldering techniques. To reduce costs for the project most of the standards chosen

are freely available.

3.3.1.1 CUI Power Supply Safety Standards

Devices used within the smart table must be powered with various voltages which presents a level

of danger especially when dealing with the alternating current coming from the mains. Standards

can be used to protect against fire and electric shock. The CUI power supply safety standards [1]

aim to identify the major standards that relate to power supply safety including: IEC 60950-1

(safety of information technology equipment), IEC 62368-1 (audio/video, information and

communication technology equipment), IEC 60601-1 (safety of medical electrical equipment), and

IEC 61010-1 (safety of measurement, control and laboratory equipment).

Within the document three classes of equipment are defined based on how their power supplies

are isolated from dangerous ac mains voltages. Class I devices achieve electric shock protection

through basic insulation and protective earth grounding and have conductive parts with a

hazardous voltage connected to a protective earth conductor in case of insulation failure. Class II

devices use double or reinforced insulation and do no require a ground. Class III devices operate

from a safety extra low voltage supply circuit where extra low voltage is defined as a voltage in a

secondary circuit not exceeding 42.4Vac or 60Vdc which are the levels when a voltage is

considered hazardous. The power supply, although connected from the wall outlet, only provides

12Vdc so this device is considered class III. The only hazardous voltage is coming from the wall

but is protected through the use of insulation around the wires so this does not pose a problem.

3.3.1.2 Bluetooth Standards
IEEE used to have a standard for Bluetooth mandated as IEEE 802.15.1, but is no longer regulated

under that number. Currently so long as a device meets the criteria set forth by the Bluetooth

Special Interest Group, the device will have met the standards necessary. The criteria must be met

by the Bluetooth adapter or microcontroller used, which they have.

3.3.1.3 NASA-STD-8739.3 Soldered Electrical Connections

It should first be stated that on October 17, 2011 NASA-STD 8739.3 [2] was replaced by J-STD-

001E requirements for soldered electrical and electronic assemblies which is a joint industry

standard. However, J-STD-001E is not free to access and the old NASA standard is adequate for

the scope of this project. There is no requirement to follow a specific standard for soldering, and

it is simply used to gain a better understanding of actual soldering techniques used in industry.

For this project a large number of RGB LEDs will need to be soldered to conductive wires and

surface mount parts will need to be soldered to the PCB. Understanding the appearance of an

adequate solder connection will be important to ensure strong connections so devices work as

intended. Figures in the document show minimum and maximum acceptable amounts of solder for

various connections as well as improper wire stripping and how solder connections look when

insufficient or excessive heat is used. There is also a list of definitions that are useful when trying

to understand the different terms used in soldering.

9

It is stated multiple times throughout the document to not use pressurized air to cool solder joints.

The solder should be left to cool naturally at room temperature. Cooling the joint too quickly can

cause it to become fragile or reduce the integrity of the connection. It is also stated that there should

be no motion between conductors when solder is applied. This means that when soldering wire to

LEDs they should be fixed in place. When it comes to the geometry of a solder joint the fillet

should be smooth and concave. About using the correct amount of heat, it is stated that a cold

connection will exhibit poor wetting and have a grayish and porous appearance. An overheated

connection will have a rough surface and will be dull, chalky, grainy, porous, or pitted. These

descriptions will be useful when inspecting the appearance of our solder joints.

3.3.2 Standards for Software Development
Though not as strictly adhered to as hardware standards where the misuse of a standard can cost

the functionality of the project, there are some standards for the development of mobile

applications that make readability and peer reviewing easier. Android OS has a few developmental

standards for mobile app development and C++ has a few of its own syntax and style standards.

3.3.2.1 Android Mobile Application Standards

The two general purpose standards that Android OS developers have to deal with relate to UI

design and quality of app. In the case of UI design, it is mostly up to the user’s preference, but

there are a few guidelines to follow that will help with human interactivity with the app. Style,

layout, usability, components, and animations are the five main UI designing basics. For style,

color must indicate which elements are interactive and the most important elements should stand

out. All text must be legible on the selected background and a general color theme should be

followed. For layout, the UI must be predictable in a way that humans can use with consistency.

The UI must give some kind of feedback when an input action is performed by the user. In the

case of usability, the developer must have a specific target audience in mind but also be user

friendly enough with a developer-defined minimum level of technological understanding.

Components deal with the layout of the UI in order for the app to be ergonomic on a smart phone

and having related navigation bars is equally important. The bottom navigation is also a staple of

any good Android OS application. Animations must show spatial and hierarchical relationships

between elements and must keep focus on what’s important. Animations should not bombard the

user with stimulus that will confuse them.

Mobile application quality standards are more important than UI standards when it comes to

publishing your app and Table 4 below shows us some of the most important standards apps should

follow.

10

Table 4: Android Application Quality Standards

Area Description

Standard design The app must not redefine pre-built internal functions such as

the back button

Navigation Pressing the Home button at any point while the app is running

must return the user to the Home screen

Permissions The app should not request higher access to the user’s personal

data than the absolute minimum needed to run the app

Installation If the app is larger than 10MB, it should support installation on

a SD card and function the same as if it were installed on

phone memory

Audio While the screen is off or another app is running, audio must

not be playing unless that is a feature of the app such as for a

music player

App states While the app is in the background, any service such as

Bluetooth or Wi-Fi must halt unless it is understood as a core

feature of the app

When the user opens the app while the app is in the

background, it should restore the user to the same point that it

was left at before

Stability No freezing, crashing, or interruptions of the same magnitude

should occur when using the app

Performance If more than two seconds have gone by while loading, some

kind of feedback must be indicated to determine the status of

still loading

Data All data that is private must be stored on the app’s internal

storage and be inaccessible to the developer

Networking SSL is used for all network traffic and the app must declare a

network security configuration beforehand

Cryptography No custom algorithms are allowed and platform-provided

cryptography should be used instead

Content Policy The app must adhere to Google Play Developer Content Policy

[3] when dealing with copyright and other intellectual

properties

App Details Page High quality image must be used and the image must not

contain any explicit graphics or resemble an advertisement

Testing Follow Core Suite [4] testing methods for additional testing

methods

Since we currently do not have any plans to commercialize our app, we didn’t need to strictly

adhere to these standards, but it is a good idea to use best practices any time for development.

These standards were our guidelines when developing our app so we could have the option of

marketing our app in the future.

11

3.3.2.2 C++ Language Standards

Since similar to Android app development there are no ISO developed standards for C++, we

looked at what are considered standards and best practices by engineers. We took our standards

and styles from the Google C++ Style Guide [5]. This gave us a guide as to best practices for

implementations into larger projects that we can pull from. Google uses C++ as their main

programming language for open-source projects and as such has developed a style for cooperation

between multiple engineers.

The reasons these standards exist in the first place is to succeed in a few goals laid out by Google.

Firstly, all of the style rules should be enough of a significant net benefit when comparing the style

with and without the rule. They must be useful enough to make thousands of engineers adhere to

it without being too much of a hassle. Since many people after the initial writer of the code will

work on, build on, or just reference the work, all code must be optimized for the reader instead of

convenient for the writer. Because of this, it is important to be consistent when writing code and

not change styles or syntax midway as the reader can get confused. Consistency is also important

for trying to adhere to some general use syntax that the C++ community uses for problems that are

common or some idioms.

Since C++ can be complex as a programming language, it is important to avoid dangerous

constructs that can risk compromising program correctness. The average C++ programmer would

find some of these tricky constructs hard to maintain since the initial programmer might not be

there to explain what is going on. All of these rules are mostly in place for cooperation as no one

person can do all the work in the world. This also applies to our group as we had multiple

programmers working on the same project, so it was important to keep consistent syntax between

members. Some of the style and syntax choices are specified in their document are shown in

Table 5 and Table 6 below.

12

Table 5: C++ Coding Standards

Category Standard

Header Files Every .cc file should also have and associated .h file, with the

exception of very small files that only have a main

Headers should be self-contained meaning they should be able to

compile on their own.

To prevent multiple inclusions, all header files should have

#define guards and should be able to guarantee uniqueness by

basing the guard on the full path name

#include any headers you may need instead of using forward

declarations

For ordering headers the order is related header -> C system

headers -> C++ standard library headers -> other libraries'

headers -> your project's headers. Each has a blank line in

between the categories

Scoping Initialize all variables in the declaration and only place variables

in the narrowest scope possible

Using static or global variables should be avoided if possible

Classes Specify if the class is copyable, move-only, or neither

Use classes for everything except for passive objects that carry

data; then use structs.

When using inheritance, make the class public

Make constants public and all other classes’ data members private

Declarations should be in order of access level. public ->

protected -> private.

Functions The output of a function must have a return value or be provided

through output parameters

Functions should have a small focus to do only a few tasks per

function call

If a parameter is passed by Ivalue then it must be labeled with a

const before its name

Function overloading is only used if the reader will be able to

figure out the function’s happenings without having to question

which overload is occurring

Exceptions make the flow of programs difficult to evaluate so it’s

best not to use them

13

Table 6: C++ Code Formatting Standards

Category Standard

Formatting The line length of code should not exceed 80 characters. 80

characters is roughly the right size to have the editor open on one

side of the screen and have something else on the other

Tabs should produce 2 spaces since tabs are arbitrary and can be

different per computer

Brackets should be consistently used either next to functions and

such or on the line after them, not both types

Naming Conventions Give variables names that have clear meanings to help future

readers

File names should be all lowercase with no spaces; underscores

are fine

Type names start with a capital letter

Variable names are all lowercase with no spaces

Constants should start with a “k” and every word in them should

start with an uppercase letter

Function names have a capital letter for each name

Comments The code should be written in such a way with naming

convention that comments should be sparse throughout the code

Keep consistency and only use // or /* */ throughout code. It’s

better not to use both

It is better to not literally describe what code does unless the code

is nonobvious

Always have file comments at the beginning of a file that

describes its contents and licensing

Even if some of these standards were not followed in favor of an individual developer’s preferred

alternative, consistency was key when writing good readable code.

3.3.3 App Accessibility Standards
The Web Accessibility Initiative (WAI) has produced guidelines for ensuring that web content and

mobile applications are accessible to individuals with disabilities such as visual impairment,

dyslexia, and epilepsy. These are the Web Content Accessibility Guidelines (WCAG) [6]. Some

of these guidelines could not be reasonably accommodated by our mobile application, but those

which were relevant were taken into consideration. The guidelines are either A, AA, or AAA

quality, with A being the minimum requirements and AAA the strictest. As this app is intended

for casual games and not an essential interface for any other services, and we do not have plans to

commercialize our product, we were able to disregard the stricter AA and AAA requirements

without significant concern, although in a few cases when their features would in general be

beneficial to our users they were still considered. In some cases, we disregarded the A level

requirements as well for convenience, as this is effectively a prototype design with a niche intended

user base, and the A level requirements could not be easily accommodated in our time frame. For

example, many guidelines specify that some aspect of a page can be programmatically determined,

that is, that other programs can extract that information from our app (e.g. that the app is in

14

English). However, we do not expect a user to need to extract this information as it typically is

only useful to individuals who are so visually impaired that the entire gaming table would be

useless to them, and thus they would not be in our user base. In other cases, this information is

extractable by default when using any standard development environment. Either way, we are not

able to make a complete conformance claim for our end product, but we should be able to

reasonably accommodate most of our expected users.

3.3.3.1 Perceivability

There are several relevant guidelines regarding the perceivability of information in our application,

detailed in Table 7.

Table 7: Perceivability Guidelines

Aspect Requirement Accommodation

Colors Color should not be the only visual

means of conveying a piece of

information

All information will be conveyed

through explicit wording, although

color-coding may also be used

Contrast Text should have a contrast ratio of at

least 4.5:1 for small and medium sized

text, and at least 3:1 for large text

All text shall be black and all

backgrounds sufficiently light

Images of

Text

Images of text should not be used in

place of text unless the text is part of a

logo of brand name

The only image of text will be in the

logo on the splash screen or in user

uploaded images beyond our control

Other perceivability guidelines ensure that sound is not disruptive to users and that any images or

sounds which contain essential information have corresponding transcriptions to allow those with

audio or visual processing difficulties to have an alternative in a medium they can understand.

However, any map images which will be used in the game will be uploaded by users, and we may

reasonably assume that a user will not upload an image that they cannot distinguish.

3.3.3.2 Operability

There are several relevant guidelines regarding the operability of our application, detailed in Table

8.

Table 8: Navigation Guidelines

Aspect Requirement Accommodation

Titles Each screen has a title describing its

topic or purpose

All menus will have a top bar

labeling the current menu

Link

Purpose

The purpose of any link or button can

be determined from the label text

alone, except where the purpose is

ambiguous or general

All buttons should have

straightforward labels (max 5 words)

which are understandable by

experienced tabletop players

Focus

Visible

Any keyboard interface has a mode of

operation where the keyboard focus

indicator is visible.

Any keyboard interface will either

expand to fill the screen or highlight

the typing area

15

Other operability guidelines are related to keyboard usage and reducing the risk of inducing

seizures with flashing lights. However, we will not be developing our own keyboard, so the

keyboard interface will be determined by the user’s phone’s settings and thus we will not have any

control that would allow us to meet these guidelines. Further, we will have no flashing lights or

images in our app, and any changes in display will be prompted by the user’s touch input, so there

should be no concern about the timing of flashes. The only exception would be the user changing

menus too quickly, but we rely on the assumption that if a user knows they are prone to seizures it

is reasonable that they would not cause flashing by tapping quickly anyway.

3.3.3.3 Understandability

There are several relevant guidelines which ensure information in our application and its functions

are understandable to users, detailed in Table 9.

Table 9: Understandability Guidelines

Aspect Requirement Accommodation

Abbreviations A mechanism is available for

identifying the expanded form or

meaning of abbreviations is available

The expansion of any abbreviation

used in a label/button will be

provided when the label/button is

pressed

Labels /

Instructions

Labels or instructions are provided

when content requires user input

Any input will be labelled in

accordance with the standard labels

of tabletop games when available,

and instructions provided for table-

specific inputs

Error

Identification

If an input error is automatically

detected, the item that is in error is

identified and the error is described to

the user in text.

When an invalid input is given, such

as an alphabetic character in a

context where only numeric input is

reasonable, an informative error box

will be displayed

Help Context-sensitive help is available When possible, an informative pop-

up corresponding to the currently

considered action will be displayed

Other understandability guidelines are related to ensuring the layout of the app does not change

significantly in an unpredictable fashion that would disorient the users. As any menu will either

expand or replace the screen only when the labeled button to access the menu is pressed, and a

button to return to the previous menu will be available, there should be no such issues.

3.4 Realistic Design Constraints
There are multiple different realistic design constraints which we had to be aware of and take into

account during each stage of our project. These design constraints are different from the standards

that we have described previously. This project is considered a prototype for our design, so if we

did not include all standards for the implementation, then we would could still make a functioning

project. Those standards are meant for cooperation between different engineering teams and for

implementation, which meant easier compatibility with hardware components. While the hardware

component standards would be a pain to ignore as compatibility would be up to our team to get

16

working correctly, we could still manage. Software standards on the other hand could be mostly

worked around if necessary since we do not plan to make this product commercially available.

Standards make cooperation easier between other groups, but constraints are absolutes. Constraints

must be taken into account and while there could be some wiggle room in some cases, failing to

take these into account would have meant the failure of a project. While failing to use these realistic

design constraints would mean failure, the understanding of these constraints helped with the

design criteria, quality of the project, and decision making. Classifying certain criteria helped us

to understand which constraints apply to each level of the engineering requirements. These

constraints can be broken down into a few general topics that will be covered in the following

sections such as:

• Economic

• Time Management

• Environmental

• Social

• Political

• Ethical

• Health

• Safety

• Manufacturability

• Sustainability

Generally, design constraints are issued by the customer, by a development organization, or are

external regulations such as laws. They are mostly created to meet certain criteria or to make sure

the product meets specific requirements that will allow it to go commercial. Since we were making

our own project, we had to act the part of the customer when thinking of realistic design

constraints. There are the constraints that do not change, such as safety or ethical, whether a

solution is home-built or company developed. Constraints limit the solution for a problem,

therefore before making allowances and changing a solution to fit a constraint, it is imperative to

make sure that the constraint needs are followed during the design process. The addition of even

one more constraint can drastically change a solution and require many more hours of creative and

difficult engineering to adhere to. Thus it was important to classify the design constraints into the

categories mentioned above to make sure that they were necessary and applicable to our current

project.

3.4.1 Economic and Time Constraints
With no financial sponsorship for our project, all financial costs and burdens fell upon our team of

four people. When we discussed what our project budget should be, we decided that it should

ideally cost under $600, and absolutely not cost more than $1000 for designing, testing, and final

implementation. Since we were making this project ourselves, we decided that the designing phase

should not constitute more than $100 of our budget. This included having to cut specific materials

such as the acrylic or other unforeseen manipulations of materials that required specific tools that

we did not have access to. Testing was allotted $200 where we would test a variety specific parts

to see if they would work with our project. We could also purchase some redundant inexpensive

parts since shipping would cost more if a part were to break or malfunction and need replacing.

The shipping cost for most technologies used constituted a significant portion of our budget. We

17

projected that the final project, if commercially made available, could be made with the budget of

around $450 with the acquisition of cheaper parts. Mass production companies can acquire cheaper

parts, compared to what we have to work with, because they purchase items in bulk. Since they

can acquire items through bulk purchase, much of the shipping costs that we can to pay would be

cut down significantly.

Since we have no sponsor, we needed to try and get cheaper products either through deals or

accepting slightly worse quality products to use in our project. The projector was definitely our

biggest single expenditure, thus we had to try to minimize the expense while not compromising

on the performance of the projector. We secured a projector by looking at deals during Black

Friday and Cyber Monday, as well as options for used projectors. By comparing projectors that

met required specifications for our project we were able to diminish the economic burden placed

on us. There were many different projectors that we looked at, as stated in this document, but since

this was the most expensive overall part of the project, if the projector failed to meet specifications

and performance results, the expenditure would significantly increase as another projector would

need to be acquired.

Subsequently, since customers do not have to cover the financial cost of designing and testing, we

assume a final product would be cheaper to mass produce. Our expenditure for designing the

project was based around materials and tools that we realistically did not have cheap access to. For

example, the acrylic had to be cut with a specific tool to accurately and safely change the

dimensions in a way that the acrylic will not be damaged. Acrylic is not delicate but can crack

easily if an amateur attempted to cut a piece thus we must expend some funds for professionals to

cut the pieces to a high degree of accuracy. While this seems like an unnecessary expenditure, the

cost for cracking an acrylic glass can severely negatively impact our financial situation. A

company that might mass produce these tables would already have pre-made acrylic glass to fit

each table or have a cheaper way to cut the glass through a company contract.

The financial cost of testing would also not be pushed onto the customers as testing should be a

large expense at the development phase and then less burdensome when trying to update a product.

Most of our testing budget must go into testing to see if certain products work with the overall

design we are envisioning. Items like LEDs, speakers, IR Cameras, microcontrollers, and cooling

fans all fall into this category. While we did do extensive research on products to ensure

performance and cost analysis, compatibility may be a problem as we cannot always foresee how

each product will interact with each other in a real world test. While these products do have

recommended compatibility charts, even then problems could occur when trying to connect to the

software.

The time given to our group to design, build, test, and finalize this project was two contiguous

semesters of college. For us, the time schedule began around late August 2019 and was completed

by April 2020. The project must be fully functional and meet engineering specifications described

at that time. The table must be able to track individual character pieces through object detection,

and the screen must be a touch display and be able to accurately display the game data within

certain specification described in this document. The timeline of goals and milestones has been

created to help us follow through with the time constraint given and be able to deliver a working

product.

While it does seem as though we have 8 months from August 2019 through April 2020 to get the

product meeting engineering specifications, the time we have to work on it was not so easily

18

defined. A company that would be working on a project such as this would likely dedicate

personnel to focus on development of their one project and nothing else, but we do not have the

time to do so. Each of us in our Senior Design group has other obligations that we must attend to

apart from working on this project. From work, to other classes, or other responsibilities, we all

have duties that take up time from working solely on our project. Furthermore, complications arose

from restrictions imposed on shipping, travel, and use of University facilities as a result of the

COVID-19 crisis.

3.4.2 Environmental, Social, and Political Constraints
Apart from the financial and time constraints placed on us during this project, there were many

factors such as environmental, social, and political constraints that we had to contend with. Since

our smart gaming table is planned to be used by people who normally play board games inside, we

designed and prototyped our table to be safely used indoors. As we were building this prototype

in Florida, the conditions outside are less than favorable for electronics. The humidity is high and

can damage electronics that are not specifically designed to resist such extreme conditions. The

heat is also a problem as we do not want our electronics running too hot since they could potentially

be damaged. Since we use this product indoors, with air-conditioning, we can expect the ambient

temperature to reach no higher than 85° Fahrenheit (29° Celsius), and the humidity can be expected

to be no higher than 20%. Florida sometimes reaches outside temperatures upwards of 95° F

(35°C) and humidity levels around 74%. Although the prototype could be modified later to protect

against the harsh Florida climate, it would also require more resources to produce.

Our smart gaming table’s electronics are not weather protected since we would have had to design

those parts to work outside by ourselves, and this would impose extra constraints that would have

severely increased our expenses and necessary structural integrity. The printed circuit board

especially is at risk from the humidity and high temperatures of Florida. It is inside the table, but

gaps for fans an access to the interior mean that connections and microcontroller are sometimes

exposed to the open air. As described in this document, we have a cooling system with fans inside

of the table that will keep components at a safe temperature. While the fans will help minimize the

risk of overheating, the humidity levels can make it so that water accrues inside the fan and may

be blown or drip onto sensitive components and connections. Our speakers’ output could become

muddled due to the humidity and the blob detection might become compromised due to

condensation on the acrylic sheet. While being in an air-conditioned building does remove some

of the constraints of prototyping in Florida, if the climate outside is severely harsh then indoor

conditions may also be affected.

Social constraints for our current project mainly deal with consumer wants and copyright laws. As

social constraints can be based on cultural preferences, whether a product will actually be used by

anyone must be taken into consideration. Even if a new and innovative product solves a problem

better, if no one takes an interest in it then it will become a failure. For our project, we had to look

at certain problems that people who play tabletop games face and if they would be willing to spend

around $500 on our product. One of the main problems that new players and sometimes veterans

face is trying to keep track of all the information that goes into the game, from their own character

stats, abilities, and items to visualization of the game world. The information of individual players

and their attributes is easily tracked and managed thanks to our companion app, severely lessening

the load of mentally tracking such data. The app can also help lower the learning curve for newer

players for a more welcoming experience. We believe the price is something a group of players

19

can split to lessen individual expense since the table would presumably be used every week for a

gaming session.

Since we designed our own circuit board layout and are not claiming the electrical components to

be manufactured by us, we safely do not violate any copyright laws on that end. Our object

detection software has been labeled to be open source and can be used with individual projects.

With the exception of free use UI libraries, all software was written by our group. The main

constraint for copyright comes from specific game companies, who own the rights to particular

terms and game mechanics associated with their games.

As we were not designing anything that is used or potentially going to be used by the military or

government, the political constraints for our smart gaming table are minimal. We do not predict

that our table will have any impact on any foreign government either. The only use for this smart

gaming table should be entertainment and thus there should be no political constraints associated

with the project.

3.4.3 Ethical, Health, and Safety Constraints
Our prototype must adhere to ethical, health, and safety constraints that could be problems when

dealing with a prototype. Since our prototype is our initial design and it was some of our group

members’ first time working with soldering electronics, we had to be careful when dealing with

these components. For this project, the main constraints in this section are dealing with the storing

and collection of player data, the ignorance of electrical safety, and the dangers of exposed

circuitry being meddled with by people other than our group, as a consumer might not know the

safe way to use any open electrical equipment.

Since we made our game capable of being saved and picked up again at a later time, for a game

that is played in for multiple play sessions, we must ensure that we cannot see any personal user

data. Since there are many ways for personal data to be stolen or even misused by the creators of

an application, it is important to keep to the highest levels of ethical standards when dealing with

personal data. A database created by developers should not have access to high-risk personal

information such as credit card numbers or passwords. All sensitive data should be encrypted and

sent over secure network lines so people cannot steal the information while in transit. If a developer

is using a database, sensitive data must also be stored as encrypted on the database so anyone with

access to the database cannot see the sensitive data.

Our group uses Bluetooth to form connections to our mobile application which does not require

the use of a web database. All storage of the game, assets, and player information is done directly

on the user’s personal computer. The game executable creates folders for individual player

information that can be reused next game session. Using this method means that we do not need

for players to create accounts as they will be able to select their in-game character from a list stored

on the main computer. Since no sensitive personal data is being sent through Bluetooth, there is

no need to encrypt data access from our mobile application to the host computer.

Our principal health constraint for consumer use in this project is how we deal with our ignorance

when dealing with new electrical components that we have never worked with before. The

equipment that we are using is not high voltage or high current as we will be using an already

made wall adapter to supply our power. The wall adapter helps us circumvent the dangerous

engineering requirement of working with potentially deadly levels of electricity. By using a

preexisting wall adapter, we also make sure that any users of our product do not seriously harm

20

themselves, which may be a concern if we were to make an adapter. Any electronics are also be

protected or concealed enough to the point that people cannot accidentally bump their legs

underneath the table on an exposed wire.

Constraints on substance safety must also be followed to try and minimize the risk to ourselves.

While the exposure of wires and electrical equipment is a safety hazard for consumers, we also

had to protect ourselves when dealing with the equipment necessary for our project. As a step for

compliance with safety constraints we had to use materials that were in compliance with RoHS

standards. RoHS stands for Restriction of Hazardous Substances, and there are plenty of

electronics bound by them. The RoHS bans the excessive use of certain materials that can cause

serious harm towards humans. The main elements that the RoHS considers dangerous substances

that might have been used in our project and their maximum levels are described in Table 10 below

where ppm is parts per million.

Table 10: RoHS Restricted Substances

Element Maximum levels

Cadmium (Cd) < 100 ppm

Lead (Pb) < 1000 ppm

Mercury (Hg) < 1000 ppm

Hexavalent Chromium (Cr (VI)) < 1000 ppm

Polybrominated Biphenyls (PBB) < 1000 ppm

Polybrominated Diphenyl Ethers (PBDE) < 1000 ppm

Bis(2-Ethylhexyl) phthalate (DEHP) < 1000 ppm

Benzyl butyl phthalate (BBP) < 1000 ppm

Dibutyl phthalate (DBP) < 1000 ppm

Diisobutyl phthalate (DIBP) < 1000 ppm

While we may not have been exposed to relatively large quantities of these substances, the smaller

amounts could still be harmful if misused. Cadmium is mainly exposed to manufacturing and

construction workers, but can also be encountered by people who recycle electronics. While we

did not handle damaged electronics parts, we had to throw away old or failed parts in appropriate

recycling containers to ensure cadmium is not grouped with regular trash which would endanger

workers. Electrical engineers often use lead to solder electrical equipment and must be careful with

skin contact and contact with open sores. Lead poisoning can lead to anemia and kidney damage

if in high enough dosage and can lead to dizziness and weakness for lower exposure levels.

Soldering can already be dangerous without the mentally addling effects of lead that we must look

out for. Low levels of mercury can be found in equipment we are using such as switches or

batteries. Similar to cadmium, Cr (VI) is usually exposed to people during welding but can show

up when electronics get to unsafe hot temperatures. PBB and PBDE are common in electrical

products that need to be flame-retardant. The last four elements, DEHP, BBP, DBP, and DIBP,

are all used as insulation plasticizers that make polymers more flexible and increase

thermoplasticity.

Apart from elements and substances that could be harmful when developing our prototype we had

to consider the harm that the electrical components could bring. Speakers can play music and

sound effects chosen by the lead player of a game, but we had to put safe limits on sound output

or make sure that the speakers cannot produce high decibel (dB) levels that cause permanent

21

hearing loss. The safe noise level to minimize hearing loss over 8 hours is 85dB; 85 dB is roughly

equivalent to the sound of a boiler room. Hearing loss significantly increases as sound levels go

upwards of 85dB, so to be safe we had to constrain our sound level output to never go above 80dB.

The electronics should not be able to run to high enough temperatures as the components and

people can come to harm, thus we use cooling fans to reduce the temperature. Cooling fans for

electrical components run at around 4000 rpm (rotations per minute). Considering the plastic fan

material and the speed, the possibility of permanent injury with this type of fan is low, but safety

precautions still had to be taken into account. Hair and other electrical components such as wires

could get caught in a fan, which could jam the device or simply break it outright, while potentially

causing minor to moderate harm to the user. Our table is made out of wood, but temperatures of

our electronics should be nowhere near enough to burn or blacken the wood as most wood start

burning at around 300° C, so handling of the table will be safe as long as we keep in mind the

weight and size when transporting it.

While working with light sources and infrared technology, it was important to consider the effect

that these technologies have on the human body. Most projectors give out a light with a power

output of around 6kW (kilowatts), which can easily damage the eyes of someone looking at the

projector. Looking directly at the device was not a major concern, but accidently pointing the

projector at someone else could cause serious harm. While working on our table, we were also

careful when looking from top to bottom if we removed the diffusive layer for whatever reason.

After researching IR light, we found that since IR light produces lower energy photons than visible

light, it is not harmful to humans to view the the IR Illuminators we are using directly.

3.4.4 Manufacturability and Sustainability Constraints
Manufacturability deals with designing a product in such a way that parts can easily be made or

acquired and assembled into the final product. Manufacturability constraints are mainly adhered

to in the case of a product that is mass-produced, but they are also important when trying to

reproduce other people’s work and for simplicity of design. For constraints for our group,

manufacturability meant that we had to think about our part acquisition and assembly of our table.

The processes that manufacturing consists of after designing is finished are:

• Parts Receiving and Processing

• Subassembly

• Final Assembly

• Inspections and Testing

• Packaging and Shipping

A company must buy or make all of the required parts which are then cataloged and made ready

for initial assemblies. To make this process easier, we tried to minimize the number of parts

required for our project, which helped reduce this step. The reduction of parts also helped lower

prices as fewer parts means that manufacturers could reduce shipping costs of bulk purchases. The

next step was subassembly wherein the initial parts were assembled into smaller completed parts

such as a microcontroller connecting to a cooling fan. This assembly is not the final product, but

it is also easier to test some functions at this step before final assembly. During final assembly, all

the smaller assembled pieces were fitted and connected to form the final product. The final

assembly in a production line is like that of our own final prototype, so making our final prototype

easy to assemble was preferred.

22

Comprehensively testing the functions of the product was the next step, which involved checking

for any issues resulting from mis-assembly or defective parts. Inspections made sure the product

adhered to health, safety, and other constraints previously mentioned. Packaging and shipping

must also be taken into consideration when building any device nowadays. Most products bought

by consumers are shipped to homes all over the world, so the product must be robust enough to

survive the trip. This means utilizing parts that are sturdy enough to survive some jostling or

encasing the more delicate components into protective cases that shield them through shipping and

can be left on during normal use. A table would have problems during shipping as the joints of any

structure composed mostly of empty space are easily in danger of being damaged, so packaging

must fill the shipping box with soft material and handle with care. To make shipping easier, we

must make sure all our components will not fall off or out of the table, unless intended to be

assembled by the user in their home.

Sustainability constraints address the need to use components that meet the needs of the device but

can still be easily found currently and in the future. If the resources are extremely scarce, or if parts

of the product being damaged mean the entire device must be replaced, then the product does not

have good sustainability. Some of the parts that we used, such as our IR camera, butchered from a

PlayStation Eye, may not be found in the future. Even though these exact parts may not be found,

our smart gaming table’s design should still work if another IR camera is used. The cost of older

electrical devices is always decreasing as technology advances, so finding an IR camera in the

future will likely be easier than it is now. Companies can also manufacture their own projector, or

since the table does not use all the functions of a regular projector, they can make a device that

meets the specific needs of our table.

Our smart table has entirely replaceable electronic components that can be more or less easily

interchanged if a part malfunctions. The LEDs, fans, projector, and speakers are all easily acquired,

although some parts are not inexpensive. The only product that will be difficult for the consumer

to acquire in the future will be our own printed circuit board, but since the documentation of the

circuit board is included with our document, the board can be printed again. Since these parts are

easy to acquire for students like us then companies would have an easier time obtaining these

products with a bulk purchase of replacement parts.

23

4.0 Previous Projects
There are a few similar smart gaming tables that have been built previously that we were able to

learn techniques and mistakes from. While their games are not the same, much of the technology,

or at least their concept, is similar enough to what we have available to use in our project. There

has been enough advancement in technology since the time these products were built that we had

an easier time acquiring better technology for better prices than what these smart tables used. The

technologies that have most advanced in recent years for this type of smart table project are the

projector and the app development environment for phones. The cost of projectors has significantly

been reduced ever since mini-projectors and home projectors have become more popular and

affordable to the general public. Apps are also easier than ever to develop with tutorials and

extended libraries from community users and from the standard libraries themselves.

We didn’t want to focus too much on smart tables from companies with much more resources than

we could possibly come up with for this project, so our research for similar products are built by

small groups only. Two of these similar smart gaming projects, Multi-Touch Poker Table and

Smart Table, are from UCF students that were in Senior Design in years past, like our group is

now. We thought that we had the most to learn from fellow students in similar situations to us.

They may have had more personal funding or prior knowledge, so it wasn’t be a perfect

comparison to what we were trying to make. The final project is from a DIY enthusiast that had

some prior experience with hardware and software, called Magic Frame: Turn Everything into a

Touch Area.

4.1 Multi-Touch Poker Table
When researching techniques for multi-touch sensing we came across the Multi-Touch Poker

Table [7] by UCF Alumni Christopher Herod, Nathaniel Boucher, and Raeginald Timones done

for Senior Design of Fall 2009. Their objective was to create a low-cost smart gaming table capable

of playing Texas Hold’em Poker with a companion app to go along with it. Although not exactly

what we are trying to design and create, since our project will have object detection for character

figures, we figured it was worth examining their design and implementation for a smart table. Like

their project, we are planning to have a touch screen display, but we are also trying to create object

detection for ours with open source software for blob detection. While the idea of only having

digital tokens for our game characters did come up for discussion, we believed that with more

modern technology that we could make it work. For our smart table, we made an Android OS

companion app similar to their iOS app for individual players. Table 11 compares what the Multi-

Touch Poker Table team used for their design in comparison to the technology we used in our own

smart table. While just comparing parts is not ideal, we can get a sense of the starting point of each

smart gaming table and their designs.

24

Table 11: Smart Table Feature Comparison

Feature Multi-Touch Poker Table Smart Gaming Table (ours)

Multi-Touch Display

Allows for multiple finger

touches at once and dragging

digital tokens on screen

Will also allow these same

features with the addition of

object detection and tracking of

character game figures on top of

the screen

Projector

Minimum screen resolution

of 800x600 with adaptive

light output depending on

ambience in room

Minimum resolution of

720x720 since our game boards

will be square. Light sensor to

automatically adjust the

brightness of the screen or of

the projector’s output

IR Camera

Minimum resolution of

640x480 with a frame rate of

at least 30FPS

Same resolution but minimum

FPS of 60

Computer

Their project has a dedicated

PC built inside of their table

that runs everything for the

game

Our plan is to have one of our

home PCs separate from the

table since the object detection

will most likely take more

processing power than we can

afford for dedicated hardware

with our budget

Table

Cooling system and phone

charging station with USB

2.0 inside

Ours will also have dedicated

fans for the microprocessor and

components for the table. It will

also include speakers, LEDs,

timers, and buttons for

interactions and in-game

immersion.

Wireless Device

Communication

IEEE 802.11g standard Wi-

Fi to connect to iPhones and

have input and output data

from them

Bluetooth communication with

Android OS device for

communication with the game

While our idea for having a smart gaming table which uses a touch screen is nothing novel, as seen

in this previous project, the idea of having physical object interactions combined with the touch

screen will pose a new challenge. Even with open-source software for the object detection, we

were still the ones setting up the hardware and trying to make sense of what the detected objects

mean for our game. While we could have tried to acquire a projector with much better resolution,

since in comparison to the resolution of the Multi-Touch Poker Table there is not much of a

difference, there were expenses and over-engineering issues to consider. The cost of projectors

jumps up significantly with each significant increase in image resolution. We decided that since

our game is less reliant on image quality and 720 x 720 is already sufficiently high quality, we

could save money by getting a cheaper product than what was available 10 years ago.

25

There was no need for a better IR camera for this project since it already does the job it’s meant to

for a cheap price and getting a better one will not necessarily have any noticeable effect on the

final product. The Multi-Touch Poker Table group also decided to have a dedicated PC built into

their table which made it seem much more elegant but increased component cost for prototyping.

If we were to find out that the PC our group member provided had a problem running the software,

we could easily try one of our other group members’ PCs instead of swapping components in the

table. If this were a product to be mass produced or even produced on demand then having PC

components be part of the table would be required, but since the smart table we built is our

prototype, we decided that a separate laptop computer would be easier to test with.

4.2 Smart Table
The Smart Table [8] was another smart gaming table designed for Senior Design by UCF Alumni

Chris Rodrigue, Phillip Murphy, Jonathan Lundstrom, and Ryan Mulvaney in Spring 2017. This

project demonstrated some of the functional aspects of the software that we want to have available

in our gaming table. This project was more of a utility or smart feature add-on to an already existing

product. These type of products for general use can be compared to fridges with touch screens or

Wi-Fi thermometers. They took an existing product that has little to no interaction with other

electronics around it and gave it options for interactivity and smart interactions between devices.

While their main focus was not building up the smart gaming table with one game in mind, the

techniques used helped us understand our own project better. Key interactions that we could learn

from them were how they got sensors and LEDs to work with and affect the output display image.

The Smart Table group’s project had several features including timekeeping, environmental

sensing, current weather status, and some simpler games like Snake. They used Bluetooth for their

communication option for input and selection of what to display on screen. Their project worked

similarly to a 16x2 LED display that people often use with DIY projects. The screen of their table

was composed of a grid type pattern of square blocks that has a RGB LED backboard to it to

display the image. While the LED technique might be different to the projector idea we had for

our project, we also needed to create individual squares for our game. Similarly, each of our

squares represents an area for the game matrix to function on. These blocks of ours have more

functionality than display like in the Smart Table project as they also determine the characters’

options at that block.

4.3 Magic Frame: Turn Everything into a Touch Area
This DIY project to turn any flat surface into a touch screen was created by user Jean Perardel at

hackaday.io. [9] While not entirely reliable, it is a way of touch screen that we could get to work

with object detection in a grid as well. The surface that he used was a flat screen TV that would

have been easier to use and develop for than a projector and creating our own touch screen with

acrylic. The technology used for this DIY project is based on having IR LEDs on one side of the

table emit light and having light triangulation with IR receptors on the other side of the table. The

IR receptors check for the light from the LEDs and if it cannot see any light then an object is

blocking the path. With enough of these IR LEDs and receptors you can triangulate the location

of an object.

The problem and the ultimate reason that we decided to seek alternative solutions to this is the lack

of accuracy in this method of object detection. In tabletop games multiple characters are on the

screen at the same time, so detection of specific characters is an issue with this method. There can

be multiple characters physically on the screen that could block the position of another character

26

if they are close by. Similarly, for our grid game, each character needs to stay in their individual

grid block, so we need to keep a record of which character is in each block. This would be difficult

to program as the squares are quite small and the light triangulation method might result in

ambiguous locations leading to incorrect game data.

4.4 Similar Mobile Apps
The market for tabletop companion mobile applications is widespread and was influential for the

design and implementation of our own application. These companion applications are usually only

for storing your personal character information or to help lighten the load for remembering people

and places in the game. The Game Master can store his planned fights or attributes of the monsters

for the fight in some of these apps or create their own with specialized monster creators. On iOS

and Android OS some basic apps to help keep track of such information are available, such as

Fight Club 5th Edition and Fifth Edition Character Sheet respectively. There are plenty of other

examples since tabletop games are becoming increasingly popular, but these emphasize what most

of the companion apps are capable of. Table 12 provides a comparison of these apps’ features with

our intended app’s functionality.

Table 12: Mobile App Feature Comparison

 Features of Current

Companion Apps

Features Our Mobile App

Will Have

Character Sheet

All Companion apps have a

dedicated page or two that details

a player’s information such as

attributes, skills, and abilities

We will also have a tab solely

for this character sheet as it is

the information players most

often use in game

Attacks

More advanced companion

applications bring in data of

weapons and skills from

reference books

We will have a template for

attacks where players specify

range, attribute, die roll, and

radius if applicable

Inventory

Basic applications just have a tab

with an expanding list as to what

is in a player’s inventory

Our mobile app will have

predefined places to put a few

items such as money and then a

template to write down other

inventory items.

Enemy Characters

Some apps have a compendium

to look up certain monsters

created by others

We can create templates for

monsters so we can have more

customizable gameplay

Game Master Settings

The applications are mostly made

for players and as such Game

Master UI settings are limited to

compendiums and note taking

We will have a different UI for

the Game Master so they can

control the flow of the game

and select whose turn it is

Because of the plethora of abilities, weapons, creatures, and character features available in tabletop

games, as well as the continual expansions of many games, we believe it is better to have a template

for users to input data rather than forming a hard-coded database from existing sources. We also

have these templates because we must make certain structured data available to the smart gaming

table for tracking game characters. Having a template allows more flexibility in what people want

27

the game to be like. The Game Master is given a different user interface than players so they can

control multiple monsters on the smart gaming table at once. Most apps that are available are

commonly informational, but we wanted to develop a true companion app that enhances and

simplifies the experience.

28

5.0 Hardware Design
5.1 Multi-Touch Surface
An essential component of the table is a multi-touch surface capable of accurately detecting and

tracking simultaneous touch inputs provided by fingertips and small objects. The inputs resulting

from objects will be used to monitor the positions of characters in the game, while the fingertip

inputs will direct the character’s actions. Although a resistive touchscreen might have been able to

meet the detection requirements, and a capacitive touchscreen could detect objects if specialized

contact surfaces were created to adhere to the bases of the objects, both methods would leave the

sensing apparatus more vulnerable to excessive impacts and require more advanced manufacturing

techniques than an infrared light and projection-based touchscreen. Therefore, we have chosen to

focus on light-based techniques for our design.

5.1.1 Available Touch Detection Techniques
Upon review of available multi-touch technology, only three methods supported object detection

in addition to fingertip detection, and thus were considered for use in the table. Rear Diffused

Illumination (Rear DI), Diffused Surface Illumination (DSI), and Light Triangulation (LT) are

detailed in the subsequent sections.

5.1.1.1 Rear Diffused Illumination (Rear DI)

Rear Diffused Illumination (Rear DI) [10] uses a clear material (glass or acrylic) with a diffusive

material adhered to either the top or bottom as the touch surface. The surface is embedded as the

top of a closed box, and infrared illuminators, in the form of LEDs or similar emitters, project light

onto the surface from below, illuminating the surface as evenly as possible. The diffusive material

allows partial transmission of the IR light, while the rest is reflected downwards. The touch of a

user’s finger, or an object placed on the surface, reflects the otherwise transmitted light downwards

as well, creating a bright spot known as a “blob” of infrared light, which can be seen up by an IR

camera at the bottom of the box. Tracking software can then process the blob-filled image to create

a map of touch input locations for use by the rest of the game software. This process is illustrated

from a side view in Figure 4.

29

Figure 4: Rear Diffused Illumination Technique

Rear DI’s main advantages lie in the low price and availability of the required materials, and the

simplicity of the illumination method. Additionally, there is well-tested open-source software

available for blob detection and tracking that would simplify the development of the touch/object

tracking functionality. Disadvantages lie in the need for a closed-box projection system,

difficulties in achieving even illumination and thus equal detection rates across the surface, the

possibility of hot spots (false inputs), and the constant low-level reflection decreasing the contrast

of blobs, making detection difficult.

Although a related process in the form of Front DI, in which illuminators are placed above the

screen and inputs are detected by the shadows cast under the touchscreen by an object’s presence,

is also capable of multi-touch object detection, the inherent misdetections and dead zones caused

by hands reaching across the table to move objects or touch specific locations render it impractical

for our purposes.

5.1.1.2 Diffused Surface Illumination (DSI)

In Diffused Surface Illumination (DSI) [11], similarly to Rear DI, a specialized acrylic surface

with a diffusive material adhered to either the top or bottom as the touch surface. This special

acrylic is embedded with minute reflective particles. Then, when the acrylic is illuminated from

an edge by IR LEDs, IR light is internally reflected by the particles and interfaces of the acrylic

with air, diffusing evenly through the material out to a distance determined by the quality of the

acrylic used (at most about 1.5 feet from an illuminated edge). When a finger or object is place on

the top of the surface, IR light is deflected downwards. As in Rear DI, this creates a visual blob

which can be detected by an IR camera below the screen. This process is illustrated from a side

view in Figure 5.

30

Figure 5: Diffused Surface Illumination Technique

DSI’s main advantage is the uniform illumination of the surface, which makes tuning the detection

software simpler and more reliable. Further, the same open-source software available for blob

detection for Rear DI can also be used for DSI. Disadvantages lie in a similar need for a closed-

box projection system, the low level of deflected light resulting in low-contrast blobs, the limited

size based on diffusion distance of the acrylic, and the high expense of the specialized acrylic.

Depending on the diffusion distance required, and thus the quality of the acrylic, the cost can be

between 5 and 40 times that of a glass or clear acrylic sheet of the same size, which can easily

increase the cost of the surface by hundreds of dollars given the 4 – 9 square feet required.

5.1.1.3 Light Triangulation (LT)

In contrast to the previous two techniques, light triangulation [9] has no requirements for the

material of the touch surface, as all hardware other than the visual display is necessarily placed

above the screen. A strip of IR LEDs is placed just above the edge of the active area of the surface

and shine across to a strip of sensors on the opposite side of the table. Each LED is lit briefly in

sequence, and the sensors which can detect each LED are recorded. Any object or finger on the

table will block the light between only a few combinations of LEDs and sensors and knowing

those combinations we can extrapolate a region in which the blocking object must lie based on the

geometry of the array. With high enough numbers of LEDs and sensors, high resolutions can be

achieved. This process is illustrated from a top-down view in Figure 6.

31

Figure 6: Light Triangulation Technique

LT’s main advantage lies in the lack of limitations of visual display options, which would allow

the use of a cheap television a projector, and no closed box requirement. However, there are many

disadvantages to the technique. Locations near the edge of the screen may not have high detection

accuracy, or be complete dead zones, unless the LED and sensor arrays are extended beyond the

limits of the active touch-surface area and/or modified to unusual geometries. Objects which lie

close together in groups may become indistinguishable as they block the same LED-sensor pairs.

Additionally, the standard game figures which are intended to be used with the table typically have

short, flat bases, and unusual shapes, as they represent humanoids, animals, and other creatures,

so that they may not properly block all LED-sensor pairs that would be required for accurate

detection. The sensor array would be more complicated and expensive when compared to a single

IR camera as used in Rear DI and DSI. Further, the technique is not widespread and although some

pre-existing documentation and software from previous projects using the technique exist, there is

very little compared to the plethora of information on Rear DI and DSI. Finally, the large polygons

of the generated detection areas are guaranteed to provide a high level of inaccuracy compared to

the diffused illumination techniques, in which the blobs typically line up closely with the edges of

the contacting object/fingertip.

5.1.2 Touch Detection Scheme Selection
To determine which multi-touch detection scheme would best suit our needs, a weighted decision

matrix was used, seen in Table 13. The matrix ranked the possible methods in several categories

and weighed these rankings by a chosen importance level of the category. Rear DI had the lowest

score, as well as the most first-place and fewest third-place rankings and was thus selected as our

multi-touch detection scheme.

32

Table 13: Multi-Touch Technique Decision Matrix

Category Importance Rear DI DSI LT
Detection Accuracy 3 2 1 3

Display Surface Options 1 2 3 1

Cost 3 1 3 2

Ease of Implementation

/ Available Resources

2 1 2 3

Total 15 19 22

5.1.3 Touch and Display Surface Materials
Once Rear DI had been selected, it was necessary to choose materials for the touch and display

surface. For our clear material, we could choose between glass and clear acrylic. The clear acrylics

we could acquire were lighter and stronger than glass, at roughly a 50% increase in price, as shown

in Table 14. The improvements in structural integrity were judged to be worth the price, especially

considering the lack of experience we have with table manufacturing, and a clear acrylic surface

was selected. OPTIX Acrylic was initially selected for its reputation and minimal thickness, as we

intend to place the diffusive material under the acrylic to protect it, and a thick layer means an

increased distance between the touched surface and the diffusive surface, which may lead to

increased blurring or distortion of touch and object placement inputs. However, the OPTIX acrylic

was so thin than it would warp over the wide surface area of the table, and a thicker acrylic had to

be special ordered. For this purpose, we switched to the distributor Professional Plastics, as the

company could cut to our exact specifications to extremely fine tolerance and had an excellent

reputation, along with comparable material cost after shipping.

Table 14: Touch and Display Surface Material Options

Material Cost Source Status

Gardner Glass

Products 30-in x 36-

in Clear Glass

$18.48 Lowe’s

30”. x 36” x .094”

Clear Glass

$17.58 Home Depot

OPTIX 36” x 30” x

0.093” Acrylic Sheet

$32.78 Home Depot

OPTIX 30” x 36” x

0.08” Clear Acrylic

Sheet

$26.49 Lowe’s Tested

0.250” Thick Clear

Cast Acrylic Paper-

Masked Sheet

$51.99 + $31.95

shipping

Professional Plastics Selected

For a diffusive surface, some purpose-made rear-projection materials were considered, as well as

drafting paper, which has been shown to be effective in previous projects by hobbyists and senior

design groups. Considered options are detailed in Table 15.

33

Table 15: Diffusive Material Options

Material Cost Source Status

30” x 42” x 0.003”

Drafting Film

Matte, 2-Sided

$8.16 BlikArt Selected

24” x 36” x 0.005”

Drafting Film

Matte, 2-Sided

$6.78 BlikArt Tested

Grey Rosco RP

Screen with

Finishing

$29.50/ft2 Full Compass

36” x 36” Digiline

Contrast Projection

Film

$52.36 IFOHA

Carls Gray Rear

Projection Film

$64.95 Amazon – Carls

Place

Purpose-fabricated rear-projection materials were found to be exceedingly expensive, too large for

our purposes and not easily trimmed, or both. Concerns about possible tears or wrinkles in drafting

film were mitigated by the ability to fortify the material with clear silicone, which was cheaply

available. Comparatively, drafting film was a negligible expense and if after testing/assembly

drafting film proved insufficient for our rear projection needs, it would not be significantly more

expensive to order a professional material later than if we had started development with such a

material. Thus, drafting film was selected as our initial diffusive material, and was found to be

sufficient in testing.

5.1.4 Illumination
To provide the necessary infrared illumination for the Rear DI technique, several pre-built IR

illuminators and IR LEDs were considered. The most promising options are detailed in Table 16.

34

Table 16: IR Illumination Options

IR Source Cost Source Status

EMITTER IR

850NM 100MA

RADIAL

$0.39 - $0.50 Digi-Key Tested

EMITTER IR

940NM 65MA 0805

$0.1575 - $0.49 Digi-Key Tested

EMITTER IR

850NM 65MA 0603

$0.522 - $0.67 Digi-Key Tested

JC Infrared

Illuminator Silver

$11.99

Amazon - JCHENG

SECURITY

Tendelux 80ft IR

Illuminator

$19.98 Amazon - Tendelux Selected

850nm 6 LEDs 90

Degree Wide Angle

IR Illuminator

$21.99 Univivi

Pre-built illuminators were generally intended for use with night-vision security cameras and had

power supply interfaces that would be difficult to integrate into our design, but the Tendelux

illuminator came with an adapter for standard wall outlets. Pre-built illuminators were liable to

produce issues in the form of hot spots on the screen’s surface, resulting in false touch events, but

this could be corrected for to some degree with careful placement and adjustments to angles of

vision. IR LEDs and emitters on the other hand provided reduced illumination per unit, but greater

flexibility in placement, which could reduce the chance of hot spots. However, given the number

of other components that required specific placements when installed in the table, and the risk of

crushing LEDs when adjusting components if an array was placed on the bottom of the table, this

was a riskier design. Eventually several LEDs and emitters were selected for testing based on cost,

illumination angle, and brightness, and preliminary testing was carried out with our IR camera,

and the 940 nm emitter was judged to be the best suited to our needs, but in full-scale assembly

within the table, the placement of other components rendered the use of individual LEDs

impractical, so we switched to the Tendelux illuminator instead for the low footprint.

5.1.5 Infrared Camera
To record the blobs and thus detect touch inputs to the table, a camera which viewed only the

infrared spectrum was required. Cameras built for infrared imaging were prohibitively expensive,

so we considered standard web cameras in which there was no IR-blocking filter or the IR-blocking

filter could be removed, and a visible light filter could be added. There was no purpose-made filter

for most cameras, but a large filter for another camera could potentially be modified to fit, or a

trimmed piece of exposed film negative or floppy disk could be used.

To ensure the accuracy of blob detection, we had to determine a sufficient image resolution. Since

we expect the objects and fingertips which we detect to be at least 1/4 inch in diameter and located

on a surface that is at most 36 inches on a side, for detection within 1/2 inch we need at least 144

pixels in a dimension. For reliability, we triple that number for a minimum of 432 pixels x 432

35

pixels. Given standard resolutions, we considered webcams that provide resolutions of at least 640

x 480.

To minimize touch detection times, we wish to maximize the frame rate of the camera at thus the

detection rate. Further, if the frame rate is too small, not only will there be noticeable delays in

inputs at a single location, certain functions which rely on moving finger inputs to determine the

direction of characters’ actions may become impossible to implement. As these gestures may take

as little as 1/4 of a second, and we wish to track at least 7 frames for gesture inputs, a minimum of

28 frames per second is required. Given standard frame rates, we considered webcams that

provided at least 30 frames per second.

Since we planned to use a user’s PC to assist in running the game, a USB interface and PC-

compatible driver were the best options for the webcam. To minimize touch detection times, we

required that the interface be USB 2.0 or newer. Cameras meeting these requirements are given in

Table 17.

Table 17: Camera Options

IR Source Cost Source Status

SainSmart 5MP

1080P Webcam

Camera NoIR

$19.99 Amazon - SainSmart

PlayStation Eye $8.70 Amazon - PlayStation Selected

Makerfocus

Raspberry Pi Night

Vision Webcam

$23.99 Amazon -

MakerFocus

Cimkiz USB

Webcam

$9.99 Amazon - CimKiz

Kodak 35mm Color

Negative Film

$3.49 B & H

3-1/2" Diskettes x 10 $18.90 $0.00 Amazon – Imation

Already Owned

Selected

ZoMei 55MM IR

760 Glass Infrared

Filter

$23.99 Amazon - ZoMei

The PlayStation Eye camera was selected based on price and because its use in previous projects

means there is ample reference material for conversion from a visible light camera to an infrared

camera, as well as a reliable driver for Windows PCs for and additional $3. Further, the camera

can record at a resolution of 640 x 480 at a rate of 60 frames per second by default, and the

Windows driver we acquired allows us to select the desired frame rate, so it met our specifications

nicely. Once the camera was acquired, it was discovered that the infrared spectrum was not

strongly filtered out by the hardware, as shown in Figure 7(a), so for initial testing a visible light

filter could be added externally rather than risking damage by opening the camera and attempting

to replace the existing weak filter. When facing a bright light in the form of an incandescent lamp,

sunlight, or LED flashlight, the camera still picks up some object outlines, as shown in Figure 7(d).

As these sources are known to produce some levels of infrared radiation, it is unclear to what

36

degree this is the result of infrared radiation produced by the light sources as opposed to imperfect

filtering, as some bright lights can be seen through the filter by eye. The infrared-light blocking

filter was then removed and then replaced by visible-light blocking material. Floppy disk material

was chosen as the visible light-blocking filter based on price and filter testing.

Figure 7: Infrared Camera Images

5.1.6 Display Method
To display images onto the touchscreen for the game, using the rear DI method, a projector of

some description was necessary. As the table is restricted in height, either a short throw projector

or a regular projector combined with a mirror to increase the throw distance was required. New

short throw projectors are several hundred or over a thousand dollars more expensive than regular

projectors, so the mirror technique was chosen if a new projector was to be acquired. Because the

mirror method involves projecting the image at an angle, significant keystone correction was be

necessary for undistorted image reproduction. Originally, a high resolution of 1080p was desired

to ensure the details of the game could be distinguished. After some examination of available

standard projectors, some 720p options were also considered as the image would remain

acceptably clear at 1/3 the cost, which could mean hundreds of dollars of savings and a 25% or

more reduction in our overall budget as the projector was expected to be the most expensive

component.

37

Despite the increased cost, short throw projectors were considered as the implementation would

be simpler and more reliable than the mirror method, as well as providing more flexibility in the

dimensions of the table. Any cosmetic damage to the projector was irrelevant as the projector

would be enclosed in the box of the table and not visible. Minor discoloration in the image could

be tolerated and guarantees on remaining lamp lifetime were enough for our purposes. These were

the only expected reductions in product quality relevant to our requirements. Some reputable

vendors of refurbished projectors were identified, and candidate refurbished projectors selected

which had comparable prices to a new standard projector.

In addition to image quality and throw ratio considerations, control methods were also taken into

account, as we wished to be able to easily turn the projector on and off and adjust the display

brightness once the projector had been installed in the table. Every projector considered came with

an infrared remote which we could modify or use to design a control system. Our top options are

detailed in Table 18. The final selection was made in November in the hopes of acquiring an

exceptional projector cheaply during Black Friday/Cyber Monday sales, as there was little concern

about the compatibility of the projector with the rest of the design, and it was not particularly

necessary to test other components at the early stages.

Table 18: Projector Options

Projector Resolution Throw Ratio Keystone Cost Source

VANKYO

Performance

V600

1920 x 1080 1.5 + 15o $249.99
Amazon -

Vankyo

YABER Native

1080P LED

Projector

1920 x 1080 1.3 + 50o $239.99
Amazon -

YABER

Crenova Native

1080p LED

Projector

1920 x 1080 1.0 + 15o $249.99
Amazon -

Crenova

BenQ MP780ST

DLP Short-

Throw Projector

1280 x 800 0.5 + 40o $189.56
eBay -

voltarea

BenQ MX810ST

MX713ST DLP

Short-Throw

Projector

1024 x 768 0.6 + 30o $178.76
eBay -

voltarea

Plain Square

Mirror by

ArtMinds

 $6.49 Michaels

As no particularly strong contenders went on sale in November, we decided to go with a used

short-throw projector. The used projectors were cheaper than comparable new projectors and

organizing the hardware inside the table is simpler when using a short throw projector, as the

mirror method poses challenges in terms of placing items out of the path of the projected light.

Additionally, most projectors in our price range have only auto-keystoning options which may

struggle to adjust the display accurately when facing an angled mirror. After narrowing down the

38

field to used short-throw projectors and identifying a couple of reputable dealers, two BenQ

projectors emerged as the top contenders, the BenQ MP780ST and the BenQ MX810ST. The

prices of both are comparable, so the choice comes down purely to projector specifications. The

projectors are similarly sized and have the same brightness rating. They also both have some serial

control ports that we may be able to use to adjust the projector brightness and other settings from

the outside of the table. The MP780ST has a slightly higher resolution, greater keystoning range,

and a shorter throw ratio. In contrast, the MX810ST supports smaller minimum image dimensions,

has a longer lamp life, and a greater contrast ratio. The minimum image dimensions for the

MP780ST are slightly larger than we need, so that displaying the image in the projector-supported

size range would require scaling our table so large it could not easily be sat around or maneuvered,

while adjusting to a smaller size may result in an unfocused image. The keystoning and throw ratio

of both projectors are enough for our intended design, so overall the BenQ MX810ST DLP Short-

Throw Projector was a better choice and therefore selected. The dealer we ordered from guaranteed

that the projector lamp had at most 1190 hours of use, so at least 2310 usable hours remain. We

estimate that the table will be used on average 4.5 hours per game, and at most 3 games per week.

With 52 weeks in a year, the used projector lamp should then last 2310/(4.5*3*52) = 3.29 years,

which is sufficient for our intended minimum device lifetime of 3 years. Table 19 provides the

detailed specifications of the MX810ST projector.

Table 19: Projector Specifications

Projector

Brightness 2500 ANSI Lumens Keystone Auto/Manual, + 30o

Native Resolution 1024 x 768 Aspect Ratio 4:3

Contrast Ratio 4600:1 Dimensions 11.4” x 5.03” x 9.9”

Display DLP Power Supply 100 to 240 VAC, 50/60 Hz

Lamp Life 3500 hours Throw Ratio 0.6

5.1.7 Touch Surface Prototyping
Hardware prototyping began with the touch detection scheme. The infrared camera was the first

element of the multi-touch scheme to be developed in order to determine its sensitivity to IR light

and to have a method of validating the IR illumination scheme. The array of IR LEDs for

illumination of the touch surface was then designed to try to achieve as uniform an illumination as

possible and thus make the job of the touch-detection software as easy as possible. The table

surface was then assembled, with the diffusive surface attached to the clear acrylic sheet and then

placed temporarily in a closed box to begin testing. At this point adjustments to the LED array and

diffusive material could be adjusted to optimize both the display clarity and touch input detection

accuracy.

Several configurations of the LED array were tested to determine which provided the best

illumination of the touch surface. The configurations chosen for testing were the square, offset

square, ring, and cross configurations detailed in Figure 8, in addition to a configuration consisting

of two lines along the length of the table. The illumination of the touch surface by each

configuration was recorded using the infrared camera and the results compared. During final

assembly, some modifications may be made to the configuration as some area of the table will be

occupied by other components, especially the projector and camera. As a result of the testing, and

39

after a comparison of the impact on illumination caused by the removal of a section of LEDs, the

offset square configuration was selected.

Figure 8: Infrared LED Configurations

(a) Square (b) Offset Square (c) Ring (d) Cross

However, as mentioned previously, with other components installed in the table, the IR LED array

could not be adequately arranged without causing significant difficulty in accessing other

components, and we switched to the pre-built infrared illuminator. Eventually we ordered two

illuminators to even out the illumination of the surface, with one on each side of the interior.

5.2 Table
The physical structure supporting the rest of the hardware had to be chosen to provide enough

space for all components and a reasonable throw distance for the projector, without becoming too

tall or bulky for users to sit around during gameplay. The unique needs of the project left three

main options for the table: commission a custom table, purchase a standard pre-built table and

modify it, or build a table from scratch. Commissioning a table would guarantee the best results,

as none of the group members have significant experience with woodworking. However, this

option is also the most expensive, and thus was discarded early on.

When searching for pre-built structures to modify, we looked for as many characteristics matching

those we desire as possible. Glass-top tables, cabinets, and wheeled tables are especially desirable.

Glass-top tables may need no replacement of the top surface, or at the very least be easy to replace

with an appropriate acrylic. Cabinets fulfill the requirement of an accessible closed box without

modification, come in appropriate sizes, and are easily ordered to custom specifications, although

40

custom ordering is quite expensive. Wheeled tables provided maneuverability while remaining

stable. In all cases the material and structure of the table were required to be such that modifications

can be safely made, such as wood or particleboard, in the areas requiring modification. After

searching half a dozen retailers and online marketplaces, no glass-top tables, cabinets, or wheeled

tables were found which would provide significant benefits over building from scratch. However,

a shelving unit already in the possession of one of the group members was found to be a good base

for a modified design.

The shelving unit consists of a metal frame perforated with holes along the length of each strut.

These perforations provide connection points for shelving support structures. Each original shelf

is composed of particle board, easily removed and replaced with more appropriate materials. The

surface area of each shelf is 2 feet by 4 feet, and the total height of the shelving unit is 3 feet. Each

shelf is held in place by a supporting metal framework underneath its edges, which can be left in

place at the top of the unit to hold our touch surface and surrounding table top, as well as at the

bottom of the unit to support a ground-level shelf which will hold most of the table’s electrical

hardware.

The framework for each shelf’s support is 3/8 inch deep, and thus we can use an acrylic sheet up

to 3/8 inch thick while maintaining a closed box structure for the touch surface. As our intended

less than 1/10 inch thick, this depth is sufficient. As the projector produces an image with a 4:3

aspect ratio, a 24 inches tall image will be 32 inches wide. After trimming the acrylic to this size,

16 inches of top surface remains uncovered. We address this deficiency by adding two 8 inch by

24 inch wood panels, one on either die of the acrylic, to create a small table area on which users

may place cups, snacks, dice, and other small items. Any slight gaps left between the surface of

the table and the frame will be filled with foam to prevent the acrylic and wood panels from sliding

and sustaining damage. The boundaries between surface materials and the frame will be covered

by thin wooden trim for aesthetic purposes and to ensure a light-proof seal. A hinged door will be

added to one side to allow easy access to the interior of the table.

However, the shelf-based design has several issues. Attaching wheels would be difficult as they

could not be bolted to or through the metal frame, and would therefore have to be attached closer

to the center of the table, resulting in reduced stability and greater strain on the joints between the

frame and the bottom shelf holding the electrical hardware, and a failure at this joints would cause

potentially irreparable damage to the wiring of the table. Additionally, the dimensions of the shelf

are not ideal, and the shortest dimension is slightly shorter than we would like and limits the touch

surface area, while the longer dimension is much longer than we would like and forces us to

purchase extra material and may cause issues when illuminating the surface from the interior.

Overall, a table built from scratch was preferred.

Due to the lack of experience among the group, and the need for an enclosed space for rear DI, the

initial from-scratch table design is simplistic but functional and can be seen in Figure 9.

41

Figure 9: Initial From-Scratch Table Design: Colorized (left) and Significant Components

Highlighted (right)

In the initial design, each side panel of the table (solid yellow) is made of plywood to provide a

stable structure for embedding fans, buttons, etc. and to support the top of the table. The bottom

of the table (not pictured at the angle shown) is made of the same plywood as the side panels and

bears most of the weight of the electronic hardware such as the projector and microcontroller. The

legs of the table (dotted blue) are used to provide a stable structure and enough depth to securely

fasten the other components together. A door (checkered green) of thin plywood is placed on one

side of the table to allow easy access to internal electronic hardware for the purposes of installation,

troubleshooting, and maintenance. The door is attached on one side by hinges and held closed by

a Velcro closure when not in use. Craft foam placed around the edges of the door prevents impact

damage when the door swings shut and blocks light from leaking into the box when the door is

closed. A frame (striped red) at the top of the table is added for both aesthetic and structural

reasons, covering the tops of the legs to create a rectangular touch surface. The frame provide

support for the acrylic which rests in a groove at the top of the table. Modifications in the form of

handles on the sides and wheels on the bottom were considered to be added after construction if

the smooth box design proved difficult to maneuver safely. The exact dimensions of the table were

not determined until after the acquisition of the projector, to ensure the visual display would

completely cover the touch surface and the necessary throw distance could be guaranteed. Once

this was done, the design of Figure 9 was scaled and constructed. During construction, a few other

adjustments to the design were made. Mainly these consisted of the removal of exterior protrusions

of the legs as the table’s interior provided three feet of height already, the placement of the top

portion of the table inside the walls rather than resting on top, and the addition of some additional

1-inch thick framework for greater structural stability. Major assistance in assembly and advice

resulting in the changes for stability was provided by Graeme Lindbeck, father of one of the group

members with previous woodworking experience. The major dimensions are given in Figure 10.

It is worth noting that the actual dimensions of the table prototype vary slightly from the listed

dimensions due to inaccuracies in woodworking.

42

Figure 10: Major Table Dimensions

From the projector’s specifications, we knew the native image resolution has a 4:3 aspect ratio. 24

inches for the smaller dimension was selected to meet minimum display size requirements and to

make sure the table could fit through most standard doors. A 24 inch by 32 inch image will have

a 40 inch diagonal. From the projector’s user manual, we determine that a throw distance of 494

mm, or just under 19.5 inches is required for a 40 inch diagonal image. Further, the projector is

9.9 inches long. Allowing 6 inches to plug cables into at the rear of the projector without damage,

the closed box portion of the table must be at least 35.4 inches tall, which we round up to 36 inches

for simplicity. As we initially expected to add a few inches to the table’s height by attaching wheels

beneath the table, we definitively did not want to lengthen the legs past the bottom of the enclosed

chamber. This further simplified construction and prevents the table from becoming too tall to

reasonably sit around. The legs were chosen to be 2 inches square, on recommendation from

hardware store professionals with woodworking experience. On similar advice, 1/4-inch-thick

plywood was chosen for the sides, of the table, as well as the door for ease of ordering. 1/2-inch

43

thick plywood was used for the bottom to prevent warping when the table was lifted, which might

have caused problems with image detection as the camera moved. The frame of the surface was

then chosen to be 3 inches wide and 1 inch thick to provide a stable base for the acrylic, as well as

an attachment point to reinforce the siding. Three inches are left on each side of the door for strong

hinges and a fastener to hold the door closed. One inch of overlap is left between the door and the

table siding to block light and leave room for foam padding as necessary. However, once the table

was assembled and other systems were installed, the idea of a door swinging around in a three-

foot radius was found to be rather impractical. Thus we replaced the wooden door with a light-

blocking curtain on a curtain rod installed just inside the door. To ease the process of maneuvering

the table, chest handles were installed on opposite ends of the table. The table was assembled using

a combination of screws, nails, dowels and wood glue. A summary of the materials and tools used

in construction is given in Table 20. Tools for construction such as drills, screwdrivers, and clamps

were already owned or borrowed by team members.

Table 20: Table Materials

Part Unit Cost Number Total Cost Source

Sandeply 1/4" x

4’ x 8’ Plywood

$22.92 3 $68.76 Home Depot

2” x 4” x 12’

Lumber

$6.92 1 $6.92 Lowe’s

Wood glue $5.98 1 $5.98 Lowe’s

Screws $1.08 1 $1.08 Lowe’s

Hinges (2 pk) $3.49 1 $3.49 Ace Hardware

Caster Wheels

(x2)

$4.99 2 $9.98 Ace Hardware

Handles $3.59 2 $7.18 Ace Hardware

Paint $10.28 1 $10.28 Lowe’s

Total $113.67

The plywood chosen was selected for its low cost and its smooth surface, which has already been

prepared for painting. The ease of painting is an important consideration as we have no experience

staining wood, and thus to improve the appearance of the table, wooden surfaces of the table could

be either painted or shrouded in decorative fabric. However, the appearance of the table was not

paramount and no such decorative measures were taken in the end.

5.3 Microcontroller
A microcontroller unit (MCU) is a small computer contained within an integrated circuit chip.

These chips generally contain a central processing unit (CPU), memory, and programmable

input/output peripherals. When many people think of a microcontroller, they think of something

like an Arduino board. These do contain microcontrollers, specifically the ATmega328 for the

Arduino Uno, but also contain pin headers and other accessories for easy powering and

programming. These are known as development boards and are primarily used for prototyping

This project uses a custom printed circuit board (PCB) containing an MCU. The MCU is used for

reading a temperature sensor, controlling fans, prompting LED effects, running a timer, and

potentially playing sound effects on a speaker. The main advantage of using the MCU for these

44

things is speed. It is also useful to keep these simpler functions separate while the single board

computer is used for more complicated things like object detection and controlling what is

displayed on the projector. The following sections detail the process of selecting an MCU for this

project.

Various microcontroller units were considered based on factors such as number of inputs/outputs,

functionality, and cost. Other factors such as familiarity and online resources such as tutorials and

example code were also considered. The goal was to find an MCU with good enough performance,

memory, and enough I/O lines for the planned features while keeping costs down.

5.3.1 ATmega328
The ATmega328 is a single-chip microcontroller created by Atmel (currently owned by Microchip

Technology). It has an 8-bit reduced instruction set computer (RISC) architecture and achieves

one million instructions per second per megahertz. Some features of the ATmega328 include

32KB ISP flash memory with read-while-write capabilities, 1KB EEPROM, 2KB SRAM, 23

general purpose I/O lines, 32 general purpose working registers, three flexible timer/counters with

compare modes, internal and external interrupts, serial programmable USART, a byte-oriented 2-

wire serial interface, SPI serial port, 6-channel 10-bit A/D converter (8-channels in TQFP and

QFN/MLF packages), programmable watchdog timer with internal oscillator, and five software

selectable power saving modes. The device operates between 1.8 and 5.5 volts.

This microcontroller was a good potential candidate for this project. One potential benefit of using

this microcontroller is there are a large amount of resources and tutorials available due to this

device being used in the Arduino Uno development board. 32KB of flash memory is also plenty

considering the simple operations the microcontroller will be performing. A 16MHz crystal would

need to be used as an external clock due to the internal RC oscillator being unreliable but this is a

very cheap device and not a problem. A potential problem using this microcontroller is the number

of I/O lines. The device will have multiple outputs operating at the same time including a display

for a timer that will take a large number of lines to control various segments.

5.3.2 MSP430FR6989
The MSP430FR6989 is an ultra-low-power (ULP) device with a Ferroelectric Random-Access

Memory (FRAM) platform that combines embedded FRAM and holistic ULP system architecture

to increase performance and consume less power than other MCUs. Features of this device include

a wide supply voltage range (3.6 to 1.8V), optimized ULP modes, ULP FRAM, intelligent digital

peripherals, high-performance analog, multifunction input/output ports, code security and

encryption, enhanced serial communication, and a flexible clock system.

The main benefit of using this device is familiarity due to using it in UCF’s Embedded Systems

course. In that course multiple features of the device were tested including adjusting the clock

settings, timing interrupts, using UART, I2C, and SPI, using analog-to-digital conversion, and

using an LCD pixel display. All of this was programed at the register level in Code Composer

Studio and implemented using the MSP430FR6989 Launchpad Development Kit. The

development kit is similar to Arduino in that it combines the MCU with multiple peripherals and

pin headers that allow for quick prototyping. Even though there are less online resources for this

MCU compared to the chips used in the Arduino boards it is still a strong candidate for this project

due to the large pin count and familiarity.

45

5.3.3 ATmega2560
The ATmega2560 is a high-performance, low-power Microchip 8-bit AVR RISC-based

microcontroller that combines 256KB ISP flash memory, 8KB SRAM, 4KB EEPROM, 86 general

purpose I/O lines, 32 general purpose working registers, real time counter, six flexible

timer/counters with compare modes, PWM, 4 USARTs, byte oriented 2-wire serial interface, 16-

channel 10-bit A/D converter, and a JTAG interface for on-chip debugging. The device achieves

a throughput of 16 MIPS at 16 MHz and operates between 4.5-5.5 volts.

This MCU is similar to the ATmega328 but has an increased number of I/O ports and more

memory. Like the ATmega328 this device has a large number of helpful tutorials and resources

due to it being used in the Arduino Mega development board. Another benefit is the ability to use

the Arduino board to protype and test various peripherals before committing to a PCB. The

increased number of I/O lines remedies the problems faced when using the ATmega328 so this

was the best candidate out of the three MCUs considered.

5.3.4 Microcontroller Comparison
A comparative summary of the MCU parameters is given in Table 20 below.

Table 20: Microcontroller Comparison

ATmega328P MSP430FR6989 ATmega2560

CPU type 8-bit AVR 16-bit ULP 8-bit AVR

Performance 20 MIPS at 20 MHz 16 MIPS at 16 MHz 16 MIPS at 20 MHz

Flash memory 32 KB 128 KB 256 KB

SRAM 2 KB 2 KB 8 KB

EEPROM 1 KB 0 KB 4 KB

Pin count 28 100 100

Maximum operating

frequency

20 MHz 16 MHz 20 MHz

Maximum I/O pins 23 83 86

External interrupts 2 11

Cost $2 $8 $12

5.3.5 Uploading Bootloader to MCU
When a chip is received from the manufacturer it is blank and is unable to run programs. To solve

this problem a bootloader is required. This is the first program that runs when an MCU is reset and

allows the MCU to receive new programs through some means of communication. To simplify

programming the MCU on the PCB the bootloader from the Arduino Mega will be used. This

allows us to reuse the same programs that were used when prototyping on the development board.

A guide was found that shows how to use SPI to burn the Arduino Mega bootloader from an

Arduino Uno to the target chip. The pins in a given row are connected. The VCC and GND pins

must also be connected. To implement this a 6-pin header will be created to be used as an In-

Circuit Serial Programming Interface (ICSP).

46

5.3.6 Communicating with the MCU
Once the bootloader had been burned there needed to be a way to upload software that will be run

by the MCU. For the Arduino Mega a second MCU called the ATmega16U2 is used specifically

for USB-to-serial conversion. If it wasn’t for this chip the ATMega2560 would not be able to

recognize the USB input. Implementing this in our design would require many more parts, increase

complexity, and increase the cost of manufacturing the PCB. Instead an already built USB-to-

serial chip module will be used. The chip will allow the MCU to interface with a pc through UART.

A module based on FTDIs FT232RL chip was chosen. The module contains all of the required

pins discussed in the next section and LEDs that indicate when data is being transmitted.

The two most common protocols for serial communication with MCUs are transistor-transistor

logic (TTL), also known as UART, which uses +5V and 0V for its voltage levels, and RS-232

which uses ±12V for its voltage levels and is primarily used for long distance communication. It

was previously decided that UART would be used to communicate with the MCU. The

ATMega2560 has UART built in so this was easy to implement. Multiple connections will be

required including: receive (RX), transmit (TX), and Data Terminal Ready (DTR) along with the

5V and GND connections. The DTR pin is connected to reset of the MCU and when connecting

the USB-to-serial chip will set the DTR pin to low. A capacitor is placed in series with the reset

line so the reset pin will return to 5V. The receive pin of the USB-to-serial module is connected to

the transmit pin of the MCU and the transmit pin of the module is connected to the receive pin of

the MCU.

5.3.7 Standalone MCU Schematic
Once it had been determined how the MCU would be programmed and how the PC would

communicate with the MCU a standalone MCU schematic could be created. This schematic shown

in Figure 11 includes:

• The ATMega2560 MCU

• A 16 MHz crystal oscillator

• A 6-pin header for burning the bootloader

• A reset button and auto reset circuit

• Two 5-pin headers for UART communication

• Decoupling capacitors

• A 14-pin header for a 7-segment display

• A 4-pin header for timer control

• An 8-pin header for connecting to the LED driver

• A power indicator LED

These subsystems are labeled in the schematic and arranged so that they are in close proximity to

relevant pins. The 16 MHz crystal is needed because the internal oscillator of the ATMega2560 is

not reliable and only runs at 8 MHz. The pin header for the boot loader allows for an easy

temporary connection. Two headers are used for communication. The first one is dedicated to

uploading programs and the second one is used for receiving UART commands during gameplay.

Decoupling capacitors are required to reduce noise from the chip and traces. The digital pin header

is used for the 7-segment LED timer and the analog pin header is used for any ADC that may be

required. Finally, an LED is connected from VCC to GND and acts as a power indicator. The

47

initial design was used as a foundation and was updated to its final form based on which pins were

necessary for the peripherals being used.

Figure 11: Microcontroller Schematic

5.4 Cooling System
A serious concern for this project is the heat generated by the various devices, especially the

projector. This problem is magnified by the fact the components will be enclosed within the table.

To reduce this heat two fans are be used, one for intake and one for outtake. The fans are attached

to opposite sides of the table so air will flow through the table and cool the enclosure. It was

decided that a 12V fan would be used instead of a 5V fan to make sure enough air is flowing to

reduce the temperature. Many of the lower voltage fans are used for computer cases which have

less air volume so these fans will likely make little difference in a large enclosure. The chosen fan

has a current draw of 0.25A and runs at a speed of 1600 rpm. It has an estimated air flow of 73CFM

which is acceptable for this size of enclosure. The size of each fan is 120x120x25mm

(4.72x4.72x4.13in) which easily fits within the side of the table. If the cooling was not sufficient

another set of fans could be added, though it was not determined to be necessary. The fans only

cost $6 so extras could be purchased just in case.

48

5.4.1 Temperature-Based Control System
Controlling the fans so they only run while the enclosure is above a certain temperature gets rid of

unnecessary power usage. In order to do this, there needs to be a way to detect the temperature of

the environment. This is where the thermistor comes into play. Thermistors are temperature

dependent variable resistors and are a cheap way of detecting changes in temperature. The most

common type of thermistor is the Negative Temperature Coefficient (NTC) thermistor. For an

NTC thermistor, increasing the temperature decreases resistance, and decreasing the temperature

increases resistance. A chart can be used to determine which temperature corresponds to each

resistance value. These charts are given in the data sheet for the thermistor. There is also a

tolerance, usually 1-10%, that corresponds to the possible range of measured resistances for a

specific temperature.

In order to control the fans using the thermistor the devices need to interface with the MCU in

some way. Two problems arise from this: the MCU detects changes in voltage, not resistance, and

the MCU cannot supply enough current to run the fans. The solution to the first problem is to use

a voltage divider containing the thermistor and another known resistor value. The voltage divider

is then connected to the MCU as an analog input. As the temperature increases, the thermistor’s

resistance decreases, and the voltage at the input will increase. The ATmega2560 uses 10-bit

analog to digital conversion. This means the input value will be somewhere between 0 and 1023

where 0 represents 0 volts and 1023 represents 5 volts.

The value of the ADC changes linearly with the input voltage so by using the voltage divider

equation and the resistance of the thermistor given in the datasheet we can determine what voltage

turns on the fan. For example, it is determined from the datasheet that the resistance of the

thermistor at 30 degrees Celsius is 8k. If a 10k resistor is used in the voltage divider for the second

resistor, and 5V is used for voltage source, the voltage of the divider at this temperature will be

about 2.78V. Dividing this by 5 volts and multiplying it by 1024 gives the ADC value

corresponding to that voltage which in this case is 569.

The solution to the second problem, the lack of current supplied by the MCU, is the use of a

MOSFET. A MOSFET has three terminals, gate, drain, and source, and by supplying a high

enough voltage to the gate, current is able to flow through the device. Using these properties, the

gate can be connected to a digital output on the MCU and once the voltage at the analog input

reaches the desired level specified in the firmware, the output will become high which turns on the

MOSFET. By connecting the 12V power source, the fan, and the MOSFET drain and source in

series the fan will run when the MOSFET turns on.

Using the MCU to control the MOSFET also allows the use of Pulse Width Modulation (PWM).

This allows us to send repeated pulses instead of a constant current to the gate of the MOSFET

which affects the speed of the fan because it is being run intermittently based on the duty cycle.

The higher the duty cycle the faster the fan will run up to a max of 100% which corresponds to the

output being always on. Therefore, the MCU can be programmed to have the fan run at different

speeds based on temperature by controlling a PWM output. PWM on the ATmega2560 is based

on an 8-bit value that ranges from 0 to 255. An example of different duty cycles and their

corresponding PWM values is shown in Figure 12.

49

Figure 12: Example of 8-bit PWM

Reproduced in accordance with the Creative Commons Attribution-Share Alike 3.0 Unported

license

5.4.2 Prototype of Temperature Control Subsystem
A prototype of the temperature control subsystem was created on a breadboard. The prototype uses

the Arduino Mega development board which contains the ATmega2560 chip that will be used in

the final design. The transistor used is the F12N10L which is a logic level N-Channel MOSFET

with a gate threshold voltage of 1 - 2V and a maximum drain current of 12A. The fan is powered

by a 12V AC adapter directly connected to the breadboard. The Arduino Mega requires 5V and is

powered through USB. The fan was connected between the 12V rail and the drain of the MOSFET.

The gate of the MOSFET was connected to a PWM port on the Arduino and the source connected

to ground. By applying a high output to the gate, current can flow through the MOSFET and the

fan turns on. A 10kΩ thermistor was connected between the 5V output and a voltage divider

created using a 10k resistor. The voltage divider was connected to an analog port on the Arduino.

The Arduino Mega’s 10-bit ADC, as explained in the previous section, can be utilized through the

analog read function in the IDE. The ambient temperature was measured to be 77 degrees

Fahrenheit which coincidentally is the temperature when the thermistor has a resistance of 10k.

Before connecting the fan, the ADC from the voltage divider was tested and read 510 on the serial

communications monitor. This is very close to the expected value of 512. The bit controlling the

digital pin going to the gate of the MOSFET was then configured so that it would be set high if the

value of the analog read function became greater than or equal to 570. To test this the thermistor

50

was touched to increase the temperature. The serial monitor read 1 which corresponds to high

when the ADC value reached 570 as expected. Finally, the fan was connected as mentioned above

and the entire circuit was tested. The fan only ran while the ADC value was greater than 570.

Therefore, the prototype was a success.

It was decided that the MOSFET for the temperature control circuit would be part of the PCB. In

order to do this a surface mount logic level MOSFET that could handle at least 0.5A of current

was required. It was determined that the FDN359 N-channel logic level MOSFET would be used.

This MOSFET has a maximum drain current of 2.7A and a gate threshold voltage of 1 – 3V which

are well within acceptable ranges. It also comes in a surface mount package so it takes up less

room than the F12N10L. Once a MOSFET was decided on, a schematic of the temperature control

circuit could be constructed. The schematic shown in Figure 13 contains the MOSFET, a 2-pin

header for connecting the fan, solder points for connecting the thermistor and a voltage divider.

The reason the thermistor will be soldered instead of making it part of the PCB is so the device

can be placed in the optimal position to detect the temperature of the enclosure.

Figure 13: Temperature Control Circuit Schematic

5.5 Timer
A timer was added to the table for use in timed skill challenges and limiting turn durations. To

display the time separately from the touch screen and phone apps, some sort of display unit is

required. This display unit need not be very large, so we considered both LCD displays and LED

displays. Since the table may need to operate in dim lighting, if we used an LCD display unit we

must have chosen one with a backlight for visibility. Among LED displays, we considered 7-

segment displays and dot matrix displays. Among the three categories, an LCD display provides\d

the most flexibility as it could be used to display any black and white design that fits in the display

window. If we decided later in development to generate some additional output, such as a welcome

51

message as the table is turned on, or an error message when some problem is detected, this would

provide another method of communication with the user. A dot matrix LED display could also be

used for a wide variety of designs, but they would have to be less cohesive and smaller than a

design for an LCD display. A seven-segment LED display would be the most restrictive, able to

display only a small set of alphanumeric characters in a few fixed positions. However, the more

restrictive the display unit, the simpler the implementation, as a seven-segment LED display can

be connected to the microcontroller by a relatively small number of binary I/O pins, whereas a dot

matrix LED display or an LCD display typically requires serial digital communications to transmit

the complicated design. Further, seven-segment displays are the cheapest option out of the three.

Since we should be able to display complicated outputs on the table’s surface, in apps, and on the

host PC, a complex output for the timer should not be necessary. Thus, we chose a seven-segment

display for our timer.

The timer shows 2 digits of minutes and 2 digits of seconds, as the longest time challenges are

expected to be 30 minutes or less. To indicate that the timer has finished counting down, the display

flashes 00:00 until stopped. A four-digit seven-segment LED display is used to show the full

duration and simplified the timer construction. The four-digit seven-segment LED display has 8

input pins for the seven segments plus decimal point, and common anodes for each digit in addition

to the colon between minutes and seconds. Multiplexing is used to set each digit and the display

must be constantly refreshed at a high rate to avoid flickering. As decimal points are not needed,

12 pins are used. The timer interface relies on 4 buttons attached to the table. The explicit functions

of the buttons are: power on/off, start/pause time, increment minutes, increment seconds. Powering

the timer off and on again resets the timer to 00:00. The timer’s logic and timing were intended to

be provided by the microcontroller, with 16 I/O ports required in total, but eventually a Raspberry

Pi 3 was used after damage and delays in late stage testing as we were not able to replace the

microcontroller or its associated PCB in time after a burnout.

The timer relies on a single “time” counter, which is set by the user via incrementation, and which

decrements each second as the timer is run. The timer has 4 states corresponding to different stages

of operation. Each state may accept only a certain subset of possible of inputs, based on expected

changes during the state’s operation. These states are detailed in Table 21.

52

Table 21: Timer Operating States

Timer States

State 1 - Off

Input Function

Button pressed: Power on/off Enter state 2, set time = 00:00, update display

State 2 – On, Setting Time

Input Function

Button pressed: Power on/off Turn off display, enter state 1

Button pressed: Increment minutes Add 60 seconds to time, update display

Button pressed: Increment seconds Add a second to time, update display

Button pressed: Start/pause time Enter state 3

State 2 – On, Counting Down

Input Function

Clock tick (1/second) If time = 0, enter state 4

Else, decrement time by 1, update display

Button pressed: Power on/off Turn off display, enter state 1

Button pressed: Increment minutes Add 60 seconds to time, update display

Button pressed: Increment seconds Add a second to time, update display

Button pressed: Start/pause time Enter state 2

State 4 – On, Timing Complete

Input Function

Clock tick (2/second) Flash 00:00 to indicate time is complete

Button pressed: Power on/off Turn off display, enter state 1

Button pressed: Start/pause time Enter state 2, update display

A prototype timer was created using a breadboard to connect components and used an already-

acquired Raspberry Pi as the controller. The individual components of the timer were first tested

in this setting. Once the microcontroller was acquired, the code was to be adapted and programmed

into the microcontroller. However, the COVID-19 crisis introduced some severe delays in

assembling peripherals to our system, so the Raspberry Pi system was used in the final prototype.

5.6 Brightness Adjustment
To maintain visibility of the game screen, the brightness of the displayed image can be adjusted.

Manual adjustments can be made using two buttons on a remote, one to increase brightness and

one to decrease brightness. Initially we planned for an ambient light sensor to detect changes in

the room’s lighting and automatically adjust the brightness of the image when a significant change

occurs, if the maximum/minimum brightness has not been achieved. This was to be accomplished

by sampling the ambient brightness once per second and comparing the sample at time t to a coarse

array of brightness levels, assigning it to the brightness level L(t). If the current level differed from

the previous level, the image brightness would be increased or decreased proportional to the

number of levels of difference, i.e. L(t) – L(t-1). The manual adjustment would be treated as an

offset to the levels, e.g. one manual increase would result in brightness levels previously assigned

to L(t) being assigned to L(t)+1. Some of the considered light sensors are given in Table 22.

53

Table 22: Light Sensor Options

Light Sensor Cost Source Status

APDS-9005-020 $0.51712 Digi-Key –

Broadcom Limited

APDS-9306-065 $0.52601 Digi-Key –

Broadcom Limited

Ordered

VEML7700TR-ND $0.6996 Digi-Key – Vishay

Semiconductor

APDS-9300-020 $0.7272 Digi-Key –

Broadcom Limited

OPT3002DNPR $0.792 Digi-Key – Texas

Instruments

OPT3006YMFR $0.885 Digi-Key – Texas

Instruments

The levels were to be chosen once the projector has been acquired and are selected based on testing

in development. However, at this point it was determined that the projector should remain at

maximum brightness because that level wasn’t blinding even in a dim room, while it was necessary

in a bright room. The automatic brightness adjustment feature was therefore discarded for being

relatively useless.

5.7 Special Effect Lighting
Lighting effects are used for player actions such as attacking and casting spells. RGB LEDs line

the edges of the table and are controlled by the MCU. When an action is done on the player’s

phone a signal is first sent through Bluetooth to the single board computer. The computer then

sends a signal to the MCU that selects which function the MCU will perform and a preprogrammed

LED effect will occur.

LEDs are current driven devices. This means the illumination is determined by the amount of

current flowing through it. LED drivers regulate this current at the desired level to make sure the

current stays constant. In total 20 RGB LEDs will be controlled. If we tried to control these directly

from the MCU it would take a very large number of pins which is impractical. LED drivers can be

combined with SPI and PWM to reduce the number of output lines needed from the MCU. Two

potential LED driver devices were looked at: the TLC5940 and WS2812B.

5.7.1 TLC5940
The TLC5940 is a 16-channel, constant-current sink LED driver that is capable of driving 120 mA

per channel. It is a PWM unit with 12-bit duty control and 6-bit current limit control. The IC also

contains integrated dot correction circuitry to compensate for variations in LED brightness. This

is useful when there is a display containing an array of pixels that need to have uniform brightness

but is not very important for this project. The device is controlled using Serial Peripheral Interface

(SPI) and can be daisy chained together to increase the number of LEDs that are being controlled.

Each IC has the ability to control 5 RGB LEDs since each LED requires 3 channels. The device

has the ability to control the brightness and color of each individual LED which is important when

trying to create effects such as simulating light moving around the table. There are many tutorials

online about how to use this IC and overall it was a strong contender for this project

54

5.7.2 WS2812B

The WS2812B is an intelligent control LED light source where the control circuit and RGB chip

are integrated into a package of 5050 components. It includes an intelligent digital port data latch

and signal reshaping amplification circuit. It also includes a precision internal oscillator and a 12V

voltage programmable constant current control circuit.

The device only requires a single data line and can be connected in series to form chains of LEDs.

There is a delay as the signal propagates through the chain but this is not noticeable when using a

small amount. Unfortunately, the communication protocol this device uses is not standard and is

not supported by most microcontrollers. This means data transmission must be implemented by

the software in a process known as bit banging. This can be challenging with low clock rates due

to the high data rate of the protocol (800kbps). Therefore, although this device would be easier to

wire than the TLC5940 discussed in the previous section the difficulties of using a custom protocol

outweigh the benefits and this device will not be used for this project.

5.7.3 Led Effects Hardware and Software Design
It was decided the TLC5940 LED driver would be used to control the LED effects. The reason for

using this IC is to reduce the number of outputs needed from the MCU by utilizing channels on

the chip instead of directly connecting LEDs to the MCU. It also allows the ability to daisy chain

multiple ICs together to control more LEDs if necessary. A tutorial was found that discussed how

the chip could be controlled with an Arduino Uno and this was used as the basis for the design

[12]. The next few paragraphs will give a more detailed explanation about how the chip works and

how to set it up in the firmware.

The TLC5940 has 16 channels each with its own 12-bit PWM value (an example of PWM can be

seen in Figure 12. The PWM value ranges from 0 to 4095 and the higher the value is the brighter

the LED connected to that channel will be. By connecting the red green and blue leads of the RGB

LED to three different channels the color of the LED can be precisely controlled (common anode

LEDs must be used). There are a massive 236 color combinations in total (4096x4096x4096). Each

channel is also given a 6-bit (0 to 63) value for dot correction. Dot correction is used to compensate

for the fact that the brightness for a given current will vary for each LED. It automatically adjusts

the brightness variations between LED channels and other drivers in the SPI chain. The correction

data is stored in a table on EEPROM that is integrated into the chip.

The device is controlled by a clock signal going from the MCU to the GSCLK pin. The frequency

of this signal is 16 MHz for the ATmega2560 (an external 16 MHz crystal oscillator must be used)

but this can be divided to generate lower frequencies. This clock continuously counts up from 0 to

4095 and is reset by pulsing the blank pin on the TLC5940. After every cycle, which takes 256µs,

the PWM value for each channel can be updated. This means the brightness and colors of the LEDs

are changing about 3900 times per second. This is much faster than what would be possible using

the pins on the MCU.

Now that the inner workings of the TLC5940 have been established the steps needed for proper

setup in the firmware are presented. The steps are as follows:

• Establish ports on the MCU for the XLAT, GSCLK, VPRG, MOSI, and SCLK pins.

• Determine the bit order, data mode, and clock divider for the SPI

55

• Create a subroutine for dot correction. VPRG must be set to high while dot correction

values are transmitted and XLAT must be toggled on and off to write the data to the dot

correction register.

• Set up two timers for updating PWM values. The first timer is connected to GSCLK and

counts from 0 to 4095. The other timer is much slower and will control the interrupt that

transmits data via SPI every cycle and toggles the Blank and XLAT pins.

Care must be taken when populating bytes to be transmitted with SPI because the dot correction

and PWM values are 6 and 12 bits respectively whereas a byte is 8 bits. A timing diagram can be

found in the datasheet for two cascaded devices that shows how the XLAT and Blank pins are

used to clock in data [13]. The diagram was not included in this report due to copywrite protection.

Another important feature of the TLC5940 is the ability to control the maximum current for each

channel. The maximum current is determined by the Iref pin and is given by an equation found in

the datasheet: Imax = 43.4 / R. The R in the equation represents a resistor going from the Iref pin

to ground. For this design a 2.2k resistor will be used which gives a max current of about 20mA.

Therefore, if 20 RGB LEDs are used, and each has 3 channels, the maximum current draw would

be 1.2A. However, due to PWM this would not be a constant current and the LEDs are only in use

periodically.

5.7.4 Prototype of LED Effects System
The TLC5940 IC has a 28-pin PDIP package that allows for testing on a breadboard. A prototype

shown in

Figure 14 was constructed using an Arduino mega with 5 RGB LEDs to be controlled by the LED

driver. The system was powered by an AC adapter connected through a barrel jack and a 5V linear

regulator. The goal of this prototype was to gain a better understanding of the timing diagram

found in the datasheet of the IC and to test different possible effects for the game. Basic effects

such as setting all of the LEDs to one color were first tested. Then effects that could potentially be

used in the game were tested. A list of the tests performed is given in Table 24. Certain pins on the

Arduino must be used for access to specific timers or for SPI functions. This is why the ports used

in the figure below appear to be nonsensical. Table 23 shows which digital pins on the Arduino

were used, the corresponding pin number on the ATmega2560, and the pin on the TLC5940 that

they are connected to.

Table 23: Pin Connections for LED Effect Prototyping

Arduino Mega Pin Port & Bit ATmega2560 Pin TLC5940 Pin

Digital Pin 22 PA0 Pin 78 XLAT

Digital Pin 9 PH6 Pin 18 GSCLK

Digital Pin 23 PA1 Pin 77 VPRG

Digital Pin 51 PB2 Pin 21 MOSI

Digital Pin 52 PB1 Pin 20 SPI CLK

Digital Pin 4 PG5 Pin 1 Blank

56

Table 24: LED Effects Tested Using Prototype

Test LED Effect

1 All red

2 All green

3 All blue

4 LEDs flash white twice

5 Green light moves through

row of LEDs

6 LEDs glow blue with

increasing intensity and then

dim

7 Random behavior

Figure 14: Prototype of LED effects system

5.7.5 LED Effects System Final Design
After using an Arduino to become familiar with the TLC5940 a schematic shown in Figure 15 was

built in Eagle. It was designed so each driver would be placed on an individual board. Each board

had a header for both input and output. This allowed the LED drivers to be easily daisy chained.

57

The schematic also included the resistors for the reference current and a 100nF decoupling

capacitor. Solder points for all 16 channels of the LED driver were also included: 15 for RGB

LEDs and one for a single-color LED for the player indicator.

Figure 15: Effect Lighting Schematic

5.8 Sound Design

Sound effects are used to complement character actions such as combat and using magic. These

sound effects accompany the LED effects. However, they are controlled using software on the PC

as opposed to being controlled using the MCU. This is mostly due to memory limitations with the

MCU because sound files take up large amounts of memory. Free use sound effects are used and

if music is needed then royalty free music is used. To play the sound effects speakers are connected

directly to the PC using a 3.5mm jack. Pressing an action on the user’s phone will play the

corresponding sound effect. A list of sound effects and their associated damage types is given in

Table 25.

58

Table 25: List of Possible Sound Effects

Action Sound Effect

Bludgeoning, Slashing Swords Clashing

Piercing Bow Drawn

Necrotic Generic Cast

Thunder, Lightning Electricity Crackling

Fire, Radiant Fireball Sound

Cold Icy Sound

Force, Psychic Magic Missiles

Acid, Poison Bubbling Acid

5.9 Power Supply
As we plan to use a commercial projector and laptop as components of our system, and we do not

wish to put forth excessive effort designing a custom power source, running the risk of permanent

damage to our most expensive components, the table will use a standard wall outlet for power. In

order to convert power coming from the wall outlet to DC power an AC adapter is needed. For

safety purposes instead of creating our own design an adapter will be purchased. To determine

which adapter to buy the output voltage was compared to the highest voltage required by an

individual component in the design. These components include the microcontroller, the LED

drivers, the fans, and the 7-segment display. The projector is be connected directly to a power strip

and was not considered. Out of the previously mentioned devices the highest voltage requirement

was 12V for the fans. Therefore, the AC adapter needs to supply 12 volts. A 12V power supply

with a maximum current of 2A was selected. The device connects to a power strip along with the

projector and is used with a series of voltage regulators to provide the required voltages for all

peripherals.

5.9.1 Voltage Regulator
The 12 volts coming from the AC adapter is too high to be used for the MCU and other peripherals.

A step-down converter, also called a buck converter, was needed to step down the 12 volts to 5

volts while also regulating this voltage. The Texas Instruments Webench® Power Designer gives

recommendations for designing voltage regulators based on desired specifications such as input

voltage, output voltage, and max current. Using the Power Designer multiple possible regulator

configurations were compared to determine which one would best fit our design. Three step-down

voltage regulator ICs, the LM2576, TPS562208, and TPS565201, were considered and are

discussed below.

The LM2576 is a monolithic integrated circuit that provides the active functions for a step-down

switching regulator and is capable of driving a 3A load. A switching regulator is different from a

linear voltage regulator in that it uses a switching element, such as a MOSFET, to transform the

incoming power supply into a pulsed voltage [14]. They can regulate the output more efficiently

than linear regulators and generate less heat. Out of the three ICs considered the LM2576 required

the lowest part count making it the simplest choice. There is also familiarity with this IC due to

using it in coursework.

The TPS562208 is a simple, easy-to-use, 2A synchronous step-down converter. It operates in force

continuous conduction mode where the switching frequency is maintained at an almost constant

59

level over the entire load range and is optimized to achieve low standby current. A synchronous

buck converter is a modified version of the basic buck converter circuit topology where the diode

is replaced by a switch. This is more expensive but improves efficiency. Overall the TPS562208

was a good option that balances cost, efficiency, and complexity.

The TPS565201 is another synchronous step-down converter. It has a higher maximum load at 5A

and has higher efficiency than both of the other options with an estimated efficiency of 96.4%. It

is optimized to operate with minimum external component counts and a low standby current. This

device employs D-CAP2 control which provides fast transient response and requires no external

compensation components. It also allows the use of low-equivalent series resistance specialty

polymer capacitors and ceramic output capacitors. Like the TPS562208 it operates in pulse skip

mode to maintain high efficiency even when operating with a light load.

Table 26 below shows a comparison of the three ICs that were considered. The LM2576 has the

lowest BOM count, which is appealing, but lacks in efficiency. A low efficiency means the device

would run hot and this is undesirable especially since the table will be in use for potentially hours

at a time. The TPS562208 has a much better efficiency and has the lowest cost of the three devices.

The number of external components required to use the device increases but the IC is smaller so

the total area used actually goes down by quite a bit. Finally, the TPS565201 has the highest

efficiency, has a higher max output current, and is only 74 cents more than the TPS562208. The

high efficiency means the device will be able to run for long periods of time without generating

too much heat and the higher max current gives us room to add more power consuming devices

such as LEDs. Therefore, this is the IC that we chose as our step-down voltage regulator.

Table 26: Comparison of Voltage Regulators

IC BOM Area

(mm2)

BOM

Count

Cost

($)

Efficiency

(%)

Vin Range

(V)

Vout range

(V)

Iout Max

(A)

LM2576-5.0 679 5 2.67 83.9 5.4 - 40 5 3

TPS562208 188 9 1.16 92.2 4.5 - 17 0.77 - 7 2

TPS565201 186 9 1.9 96.4 4.5 - 17 0.77 - 7 5

5.9.2 Voltage Regulator Design
Along with the TPS565201 IC external components such as resistors and capacitors must be used

to give the desired output voltage. Using the recommended configuration from the Texas

Instruments Power Designer a schematic was built in Eagle and is shown in Figure 16 A barrel

jack is used to accommodate a 2.1 x 5.5mm plug. This will receive a regulated 12V from the AC

adapter. The output voltage of the barrel jack leads to a toggle switch which is used as an on/off

switch for the MCU. When the switch is in the on state the 12V is connected to the input of the

voltage regulator. Two parallel decoupling capacitors are used for the input and output of the

regulator as recommended. The purpose of decoupling capacitors is to suppress high frequency

noise. An inductor is also placed at the output of the regulator. The main purpose of inductors in

switching regulators is to maintain current flow during the off state. They can also be used to create

a higher output voltage than input voltage but that is not relevant to this design. The output voltage

is determined by Equation 1, found in the datasheet for the TPS565201:

60

Equation 1: Output Voltage Equation

𝑉𝑜𝑢𝑡 = 0.760 ∗ (1 +
𝑅1

𝑅2
)

The datasheet explicitly states to use a 54.9k resistor for R1 and a 10k resistor for R2 to get an

output voltage of 5V. Using the equation above, the output voltage with the recommended resistors

is about 4.93V. This is suitable for the desired applications. Two 4-pin headers are also included.

These serve as ports for peripherals such as the fans. This allows us to easily remove and reconnect

these devices by providing solderless connections as optimal positioning is determined.

Figure 16: Schematic of Step-Down Voltage Regulator

5.10 PCB Design
Three different PCBs were designed for the MCU, the LED drivers, and the voltage regulator. The

PCBs consisted of a top and bottom layer and used trace thickness of between 12 and 20 mils. All

of the traces were manually routed. The design check in Eagle was used to make sure the boards

could be manufactured, and no errors appeared. PCB layouts for the MCU, LED driver, and

voltage regulator boards are shown in Figure 17, Figure 18, and Figure 19.

JLCPCB was selected to manufacture the boards due to its cheap pricing and quick turnarounds.

Parts were selected based on their inventory and there were no issues getting the desired parts.

There was some concern about order completion as their facilities were shut down for a few weeks

as part of the COVID-19 crisis, but we were able to order the boards and parts, just without the

assembly services which we originally intended due to unavailability.

61

Figure 17: MCU PCB

62

Figure 18: LED Driver PCB

Figure 19: Voltage Regulator PCB

5.11 Serial Communication Protocols
Serial communications are a way for electronic devices to communicate with each other by

streaming data one bit at a time using a hardwired connection. The main benefits of using serial

63

communications over parallel communications, which transfers multiple bits at the same time, is

that it requires fewer input/output (I/O) lines and is easier to implement. There are two types of

serial communications: asynchronous and synchronous. In asynchronous communications the data

is transferred without support from an external clock signal which means the rising and falling

edges are not guaranteed to coincide. For synchronous communications all devices share a

common clock by always pairing data lines with a clock signal. This is more straightforward and

faster than asynchronous communications but requires at least one extra wire between

communicating devices. Three types of serial communication protocols are explored below:

UART, I2C, and SPI. The advantages and disadvantages of each protocol are then compared in

Table 28.

5.11.1 UART
Universal Asynchronous Receiver and Transmitter (UART) is a simple asynchronous

communication protocol commonly found inside microcontrollers. There are three ways it can

operate between devices: simplex, half duplex, and full duplex. In simplex mode data is only

transmitted in one direction using one wire. In half duplex mode data is transmitted in either

direction but still uses one wire so the devices must take turns transmitting and receiving. Finally,

in full duplex mode two wires are used so data is transmitted in both directions simultaneously.

Figure 20 shows a transmission pattern for 0X1F using UART. The scheme works like this: the

line is idle at high, the line drops to low for one bit duration to signal the start bit, the data is

transmitted one bit at a time, and finally, a stop bit with a value of high is transmitted to signal the

end of the transmission. The bit duration is defined by the transmitter’s clock rate and is known as

the baud rate. The most commonly used baud rate is 9600 which means a bit lasts 1/9600 seconds.

Table 27 shows a list of parameters for UART and the most popular configuration for those

parameters.

Figure 20: UART Operation

Reproduced in accordance with the Creative Commons Attribution-Share Alike 3.0 Unported

license

64

Table 27: UART Parameters

Parameter Meaning Popular Configuration

Baud rate Transmission speed 9600

Data size Number of bits 8-bit

First bit Significant bit LSB

Parity Bits to detect errors None

Stop bit Signals end of

transmission

1-bit

Flow control Mechanism to pace

transmission

None

5.11.2 I2C
Inter-Integrated Circuit (I2C) communication is a synchronous serial communications protocol

similar to UART mainly used with modules and sensors. It is based on a bus topology and has two

wires: Serial Data (SDA) and Serial Clock (SCL). The clock line is used for synchronizing

transmission and the data line is the line through which bits of data are sent or received.

In the bus topology all devices plug into the same set of wires as shown in Figure 21. This topology

is useful because it allows multiple devices to be connected to the bus. Each device is assigned a

7-bit address so they can be distinguished from each other. One device is designated as the master

and the other devices are designated as slaves. The master initiates all transmissions, reads from

or writes from the other devices, and is responsible from driving the clock signal.

The SDA and SCL lines are pulled up via pull-up resistors and read high if no action is done. To

start and end transmissions the master uses start and stop signals. These are unique signals that

can’t occur during the data bits. To begin transmission the master transmits the start signal and

then sends each slave the 7-bit address of the slave and a read/write bit to the slave it wants to

communicate with. The slave compares the address with its own and if there is a match the slave

returns an ACK bit which switches the SDA line to low for one bit. If there is not a match the SDA

line remains high. The master then sends or receives the 8-bit data frame. After each data frame

has been transferred the receiving device returns another ACK bit to acknowledge successful

transmission. To end transmission the master sends a stop signal by switching SCL high before

switching SDA high.

65

Figure 21: I2C Configuration

Reproduced in accordance with the Creative Commons Attribution-Share Alike 3.0 Unported

license

5.11.3 SPI
Serial Peripheral Interface (SPI) is another synchronous serial communications protocol similar to

I2C that is specifically designed for microcontrollers. It operates at full duplex where data is sent

and received simultaneously using two data wires. A fourth line known as the chip select is used

to choose which device is being communicated with. The devices that are not selected place high-

impedance on their data out lines to not interfere. Therefore, the SPI interface uses four wires:

Serial Data Out, Serial Data In, Serial Clock, and Chip Select. When the master interfaces with

only one device the device’s chip select signal can be connected to low to save a pin at the master

in what is known as 3-pin SPI. SPI is not an official standard so the names of each wire may be

different. For example, the data lines are sometimes called Master Out/Slave In (MOSI) and Slave

In/Master Out (SIMO). Figure 22 shows an example of three devices using SPI in a daisy chain

configuration (output of one device is wired to input of another device).

SPI is implemented using two shift registers: one at the master and one at the device.

Communication works by exchanging the contents of the two shift registers. Bits coming out of

the master’s shift register goes into the device’s shift register and vice versa. Transmitting a byte

consists of latch/shift actions repeated eight times. There are four modes of operation based on

combinations of the clock polarity and what triggers the latch and communicate actions (clock

phase). The two types of polarity are clock idle at low and clock idle at high. The two types of

clock phase are latch at trailing edge/communicate at leading edge and latch at leading

edge/communicate at trailing edge.

66

Figure 22: SPI Configuration

Reproduced in accordance with the Creative Commons Attribution-Share Alike 3.0 Unported

license

5.11.4 Summary
The advantages and disadvantages of the three serial communication protocols discussed are

summarized in Table 28. Understanding these protocols was useful for this project because there

are many different electronic devices being used, each with different protocol compatibilities.

Being able to communicate between these devices to create a coherent product was essential.

67

Table 28: Serial Communications Summary

Protocol Advantages Disadvantages

UART Simple to operate Size of data from is limited to 9 bits

Well documented Cannot use multiple master systems

and slaves

No clock needed baud rates of each UART must be

within 10% of each other to prevent

data loss

Parity bit allows for error checking Low speed

I2C Simple to operate Limited speed

Low pin/signal count even with

numerous devices

Requires space on PCB for resistors

Supports multi master and multi

slave communication

Becomes complex when many

slaves are implemented

Adapts to needs of various slave

devices

SPI Faster than asynchronous serial More pins needed than other

protocols

Receiving device can be as simple

as a shift register

No acknowledgment mechanism

Supports multiple slaves No form of error check

Data is transmitted continuously (no

start and stop bits)

Only one master allowed. Slaves

cannot communicate with each

other. Data can be transmitted and

received simultaneously

5.12 Wireless Communication Protocols
The smart table requires the ability to have multiple smart phones connected wirelessly and

simultaneously. Information such as player actions and character statistics need to be sent from

the phones to the table with as short of a delay as possible. Two possible wireless technologies,

Bluetooth 5.0 and IEEE 802.11ac (Wi-Fi 5), were compared and a decision was made on which

technology would be incorporated into our design. These technologies were selected because they

are both used by most modern mobile devices.

5.12.1 Bluetooth 5.0
Bluetooth is a wireless technology that uses ultra high frequency radio waves to connect fixed and

mobile devices over short distances. It operates in the 2.4 to 2.485 GHz ISM band and uses

frequency hopping, which is a technique where the signal moves from one frequency to the next

at regular intervals. The data is split into portions called packets and is transmitted across 79 bands

that are 1 MHz in size. This technique allows transmissions to avoid interference from other signals

using the same frequency band such as Wi-Fi. The hopping occurs at 1600 times per second and

hops over all of the available frequencies using a pre-determined pseudo-random hop sequence

based on the address of the master node in the network.

Bluetooth uses a master-slave structure where one master may communicate with up to seven

slaves in something called a piconet. Packet exchange is based on the master’s clock which all the

devices share. Multiple piconets can be connected to form a scatternet where devices can

simultaneously be a master for one network and a slave for another. This network configuration is

shown in Figure 23. Bluetooth pairing is a scheme that allows devices to connect easily and

68

quickly. Pairing is usually initiated manually by a device user and a link is made visible to other

devices.

Bluetooth standardization was previously defined by IEEE 802.15.1 but is now managed by the

Bluetooth Special Interest Group and to market something as a Bluetooth device a manufacturer

must meet the Bluetooth SIG standards. Bluetooth 5.0 was first presented by the Bluetooth SIG in

June 2016. It mainly focused on improving technology for Internet of Things (IoT) and boasted

four times the range, two times the speed, and eight times the broadcasting message capacity of

older versions of Bluetooth.

Figure 23: Bluetooth Scatternet Configuration

Reproduced in accordance with the Creative Commons Attribution-Share Alike 2.5 Spain license

5.12.2 Wi-Fi IEEE 802.11ac

Wi-Fi is a radio frequency technology based on the IEEE 802.11 [15] family of standards. It most

commonly uses the 2.4 and 5 GHz super high frequency ISM bands. It is a major form of

communication used within most homes for connecting to the internet. Wi-Fi uses an access point

that acts as the base that communicates with Wi-Fi enabled devices. The data is then routed onto

a local area network normally via ethernet. Home Wi-Fi systems often use an Ethernet router that

provides the Wi-Fi access point and links to the internet via a firewall. Many routers now provide

dual band Wi-Fi connectivity and automatically select the optimal channel and frequency (2.4 or

5 GHz).

There are two basic Wi-Fi network types: local area network (LAN) and ad hoc network. In a LAN

based network an access point is linked onto a local area network to provide wireless as well as

wired connectivity. In many cases only wireless connections are used in what is known as a

Wireless Local Area Network (WLAN). An Ad hoc network allows devices to connect directly

without the use of a server. In this case users communicate with each other and not with a larger

wired network. One of the peripherals takes the role of master and the others act as slaves. Ad-hoc

mode is also known as Peer-to-peer mode. Another standard called Wi-Fi Direct builds on ad-hoc

69

mode and makes it easier to discover and connect to nearby devices. Wi-Fi Direct allows two

devices to establish a direct Wi-Fi connection without requiring a wireless router. This is a single

hop communication as opposed to the multihop used by ad hoc networks. This mode is the most

similar to Bluetooth.

802.11ac is a variant contained within the 802.11-2016 standard that was released in 2013. The

organization Wi-Fi alliance labeled this standard Wi-Fi 5. 802.11ac improves upon 802.11n (Wi-

Fi 4) in the following ways:

• More channel bonding, increased from 40 MHz to 160 MHz.

• Denser modulation, using 256 Quadrature Amplitude Modulation (QAM), up from

64QAM.

• More Multiple Input Multiple Output (MIMO), using eight spacial streams, up from four.

Wireless speed is the product of three factors: channel bandwidth, constellation density, and the

number of spacial streams. 802.11 ac increased the boundaries of these parameters to allow for

much greater speeds (1300 Mbps up from 450 Mbps). However, this protocol only works in the 5

GHz band which lowers the range.

Figure 24: LAN Network

Reproduced in accordance with the Creative Commons Attribution-Share Alike 4.0 International

license

5.12.3 Wireless Technology Comparison
Bluetooth and Wi-Fi technologies were compared to determine which one would best support our

use case. In our case the cost can be neglected because the computer used supports both Bluetooth

and Wi-Fi, and the smartphones are guaranteed to have both these technologies. Power

consumption could also be ignored for the purposes of comparison because the table is connected

to a wall outlet. The ranges for both protocols are plenty sufficient for the purpose of this project.

A benefit of Wi-Fi is that it boasts less latency and a higher data rate compared to Bluetooth. This

is important because there should be as little of a delay as possible when performing actions.

However, during implementation, the Wi-Fi Direct protocol proved impossible to incorporate into

our software, so we decided to switch to Bluetooth. A summary of the comparisons between Wi-

Fi and Bluetooth are shown in Table 29.

70

Table 29: Wireless Communication Protocol Comparison

Specification Bluetooth 5.0 Wi-Fi IEEE 802.11ac

Frequency 2.4 GHz 5 GHz

Cost Low High

Channel Bandwidth 1 MHz 22 MHz

Range 5-30 meters 20m indoors

Power consumption Low Medium

Latency 200ms 150ms

Bit-rate 2.1Mbps 600 Mbps

71

6.0 Software Design
6.1 Software Overview
The tabletop game software is comprised of three different subsystems. As seen in the detailed

software block diagram in Figure 25, the subsystems are the object detection, game software, and

the android app. The game and object detection subsystems will both be located on the computer

system. The different subsystems run on different threads to allows for simultaneous execution.

Specifically, this enables the object detection subsystem to generate locations while the game

software handles requests from the mobile app subsystem. The game subsystem receives player

piece location data from the object detection subsystem, and it receives explicit user commands

through the connection with the app. The game software must be able to maintain the location of

each player, maintain the location of all digital non-player controlled (NPC) entities, maintain a

connection to all players, send the correct images to be displayed by the projector, and manage all

request from users. The object detection software uses a video stream provided by a camera and

converts that stream into location data that is sent to the game software. The video stream faces

the bottom of the display and looks for blobs that contrast with background illumination to

distinguish objects. The user app is the endpoint where users are able to directly communicate with

the software. The app acts as a replacement to the character sheet which is traditionally a physical

piece of paper. The character sheet stores all the character information. The app contains

functionality to turn what would normally be spoken word in the game to digital actions on the

display. Communications between the app and computer systems is carried out using the Bluetooth

protocol.

Figure 25: Detailed Software Block Diagram

6.2 Object and Touch Detection
Figure 26 displays the use case for the object detection subsystem. The key feature for this

subsystem is the ability to track user pieces on a display. This can be accomplished by using third-

party open source object detection framework. The framework is able to track cursors and blobs.

For each tracking object the framework must be able to transmit the data readings. The input to

this subsystem is a camera feed and the output is the object detector class. This class is created to

72

handle data transfer and manipulation for the project’s software. The third-party framework must

accommodate the rear DI tracking scheme as that is the scheme used to track objects in this project.

Figure 26: Object Detection Use Case Diagram

6.2.1 Framework Discussion

6.2.1.1 CCV

The CCV (Community Core Vision) [16] framework was developed by a group called The Natural

User Interface Group. The current version was released in November of 2014. They are a

community dedicated to open source software related to research into human computer

interactions. CCV provides a solution to tracking objects. After some configurations in the

operating environment, the software ideally spots white blobs through a video input stream where

there is no background noise. This applies directly to the rear DI scheme because the video input

is the touchscreen where only touches or objects on the screen reflect enough light to become a

blob.

The software requires a Pentium 4 processor of better, 512 MB of ram, a camera, and windows

QuickTime. There is a list of supported cameras for the software. They do also include a more

option implying that any camera can work with the correct configurations. The software does

support GPU acceleration to improve latency and capacity of tracking objects. The recommended

GPU is listed as a modern GPU which can be assumed to be a GPU made any time after the

software was created. The software does offer cross platform support to for Windows, Mac, or

Linux systems. The original development platform was Windows and Windows also has the most

amount of stable releases.

The software provides a graphical user interface that displays the video input and the tracked object

output. However, for this project only the raw data is required as tracking of objects is done within

the software. The interface is useful for testing the hardware setup for the display. There is a

method that allows object locations to be outputted as raw coordinates. Those raw coordinates will

be translated to more useful values in the project’s software. The software also tracks the size of

each blob that is detected and output those values as well. The sizes can be used to identify what

an object is; however, for this project the sizes are used to better determine the location on the

game map.

73

6.2.1.2 Scene

Scene [17] is an open source free to use software that tracks objects. It comes with a graphical user

interface as a way to show the manipulations that the software has done to the input frames. Similar

to CCV, the interface was used for testing purposes rather than directly implemented into the

software. The interface design was actually provided to Scene by CCV.

The software is developed to take any video stream input and process those frames through

different techniques to determine the difference between the foreground and the background. After

the foreground and background objects are sorted, the background is eliminated. Blobs are then

formed using only the foreground elements of the video stream. The blobs are packaged and

transferred through the TUIO framework. The video source that the software receives in this

project is an already black background with only the blobs in the foreground.

The techniques used to determine and eliminate the background elements of the video stream are

simple gaussian, fuzzy gaussian, or mixture gaussian techniques to remove background objects.

They are referred to as subtraction background methods. These methods use statistical analysis of

image matrices to determine what pixels belong to the background and foreground. Of the three

methods, fuzzy gaussian is the only method that does not eventually incorporate stationary objects

into the background. However, simple and mixture gaussian are able to pick up on and track

moving objects with accuracy. There are also two self-organizing background subtraction

algorithms options; adaptive and fuzzy adaptive. These options use neural networks to determine

what pixels should be considered foreground and background.

6.2.1.3 TouchLib

TouchLib [18] is a free to use library to implement a multitouch interactive display. The website

for TouchLib explicitly says that the library works for FTIR and DI configurations. This library is

provided by The Natural User Interface Group who also created CCV. The last published version

of the library was in February of 2016. This option does not come with a graphical user interface.

The library provides a configuration application to properly set up hardware for accurate touch

readings. Demos are provided as examples on how to create different applications with the

framework. The benefit of using a library is the flexibility to create an application that only

functions for a specific purpose. The solution is smaller and more efficient in terms of

computations. Testing was more difficult with the lack of a graphical interface. Instead, methods

were created in order to test functionality of the software. Development time was increased with

this option over an already built application. Similar to the other object detection software options,

transmission of blob objects is done through TUIO.

6.2.1.4 Conclusion

Scene is a robust solution for the problem that is present in our project. The images that are

processed already have the background eliminated and desired blobs brought to the foreground.

The background elimination techniques are unnecessary and to save computation are disabled.

However, by disabling them the solution becomes functionally the same as CCV. Unexpected

difficulties could have come from modifying the software to the extent that would be necessary to

eliminate the irrelevant functionality. TouchLib was a tempting choice because it provides freedom

to create apps that only include features required. Development time would increase with more

software needing to be created and tested. The last version of the library being from 2016 was

troublesome in that support may not be readily available and any complications may result in major

time loss. If time was not a constraint, this option would have been explored for the customization

74

ability that it inherently brings. A fully developed and tested software would cut down on

development time. The only time requirement was to setup the configurations for the hardware

system and test to make sure that the software is reading the input stream and providing an output

stream. CCV does just that and provides the desired functionality for DI. There was no need to

create or repurpose software because the package has everything included. The only additionally

software needed was to set up the other subsystems to allow for TUIO communication. This

software would have been developed regardless of the decision as each option uses the TUIO

protocol. CCV was chosen to cut down on software development time for design, implementation,

and testing.

6.2.2 TUIO
The TUIO (Tangible User Interface Objects) [19] protocol is an open source framework. The

framework is free under the less restrictive L-GPL license. The protocol defines two different

message classes; Set and Alive. Set details location data for current alive objects. Attributes such

as coordinate location, orientation, and directional velocities are recorded and sent in these

messages. Alive messages show the current alive objects being tracked; therefore, comparing

consecutive readings can identify the addition or removal of objects from the display. This allows

the software to not create add or remove messages to reduce the number of messages being sent.

This will avoid information loss due to packet loss through transmission. Transmission is also

defined in this protocol to be through a TCP connection.

The CCV software utilizes this framework to package and transmit object detected. This format

provides dimensional values that describe an ellipse that is created within the bounding box of the

blob. The bounding box is way for the software to enclose the blob detected into a range of pixels.

The box will have a width and height equal to the maximum dimensions of the blob. The center

point of the box is the center point of the blob and it is with respect to the top left corner of the

image. The top left corner of the image is located at (0,0). After the bounding box is created, an

ellipse is inscribed, and the area of this ellipse approximates the area of the blob. The bounding

box is oriented based on the direction that the object is placed on the display. An angle is associated

with this bounding box and dimensions are normalized after a rotation for the box.

Tuio objects need to provide a variety of information about different attributes that describe the

ellipse approximation. This project requires the ability locate objects at more than just the center

point of that object, but also all surrounding pixels that the object overlaps into. Therefore, the

(x,y) coordinates for the center point of the blob as well as the ellipse dimensions are needed. All

of these attributes are normalized and returned as floating-point values.

Tuio does not maintain the exact values for the height and width because the Tuio objects provide

the necessary values to allow the programmers to calculate it themselves. The coordinate

normalization is done using Equation 2, found on the TUIO website, taking the sensors location

and dividing it by the corresponding sensor dimension. This will produce a floating-point value

that will be between 0 and 1.

Equation 2: TUIO (x,y) Coordinate Normalization

𝑥 = 𝑠𝑒𝑛𝑠𝑜𝑟_𝑥 / 𝑠𝑒𝑛𝑠𝑜𝑟_𝑤𝑖𝑑𝑡ℎ

𝑦 = 𝑠𝑒𝑛𝑠𝑜𝑟_𝑦 / 𝑠𝑒𝑛𝑠𝑜𝑟_ℎ𝑒𝑖𝑔ℎ𝑡

75

The (x, y) coordinates provide the location of the center of the blob. This location can be used to

determine what grid space the center of the blob is located in. For the majority of cases, the center

point location will be enough to determine the grid space the player piece is meant to be in.

However, there may be times that the center point is on the grid lines or close enough to cause

issues. The solution to this problem lies in the area of the blob.

Similar to the coordinates, this area value returned is a floating-point value. The value is found

using the normalized width and height as well as the approximate area of the blob in pixels.

Equation 3, found on the TUIO website, shows how the area is achieved.

Equation 3: TUIO Area Normalization

𝐴𝑟𝑒𝑎 = 𝑃𝑖𝑥𝑒𝑙𝑠 / (𝑤𝑖𝑑𝑡ℎ ∗ ℎ𝑒𝑖𝑔ℎ𝑡)

TUIO uses inheritance to create a set of related classes for maintaining detected object states. Blobs

are maintained in a TuioBlob objects. This object inherits attributes and methods from the

TuioPoint class. Specifically, the TuioPoint class maintains fields for the object as if it were a

single point on the display. The fields track the center point of the blob. The TuioBlob class

maintains all the values need to describe the ellipse approximation.

6.2.3 Object Detector Class
CCV is the open source software used for this project. The software incorporates the TUIO API to

transmit objects. On the framework’s end, a TuioClient object is used to transmit blobs. The blobs

are sent through a TCP socket using the TuioSender object that is instantiated by the TuioClient.

To read the broadcast, an ObjectDetector class was created. The object detector class also uses the

TUIO API and generates a TuioClient that adds a TuioListener. This listener receives the blobs by

creating a TCP socket endpoint. The transmitted blobs are then placed into local fields that are

manipulated by a decoding method. The high-level flow of communication can be seen in Figure

27. The transfer of blobs begins with the video stream input and ends with the GetLocation()

function implemented in the ObjectDetector class.

76

Figure 27: CCV and ObjectDetector Communication

The TuioListener is an abstract class provided by the TUIO API. There are a few methods that

need to be implemented to allow for functionality. These methods are shown in Not all methods

were programmed to have functionality. This project’s software only requires the methods related

to Tuio cursors; therefore, methods related to other Tuio objects could be left empty.

Table 30. Not all methods were programmed to have functionality. This project’s software only

requires the methods related to Tuio cursors; therefore, methods related to other Tuio objects could

be left empty.

Table 30: TuioListener Methods

Method Method Purpose

addTuioObject(TuioObject *tobj) Handles objects becoming visible

removeTuioObject(TuioObject *tobj) Handles objects being removed

updateTuioObject(TuioObject *tobj) Handles moved objects

addTuioCursor(TuioCursor *tcur) Handles new cursors

removeTuioCursor(TuioCursor *tcur) Handles removing cursors

updateTuioCursor(TuioCursor *tcur) Handles moving cursors

addTuioBlob(TuioBlob *tblb) Handles newly detected blobs

removeTuioBlob(TuioBlob *tblb) Handles blobs being removed

updateTuioBlob(TuioBlob *tblb) Handles moving blobs

refresh(TuioTime bundleTime) Marks end of a Tuio Transmission

The constructor sets up the Tuio objects to initiate communication with the CCV software. When

blobs are received by the Tuio protocol, they are passed over a UDP socket and listened for on the

Game’s TuioClient instance. When an object is heard, the session ID, or temporary object ID, is

compared to the internal list of objects to determine if the object is new or being updated. It will

then call the appropriate method for adding, removing, or updating an object. When a new object

is detected that object must be processed by the game and therefore will be added to a shared data

queue to wait for processing. The update message for each object occurs with every refresh of the

77

CCV software. Therefore, a threshold of half a grid space in both the vertical and horizontal

direction must be passed to reprocess the point. That threshold is 16 pixels in the vertical direction

and 21 pixels in the horizontal direction. It can be assumed that objects will not being moving

frequently and any movement equal to or greater than the threshold is an intended movement of

an object. The x and y positions received by CCV are normalized and therefore must be processed

to actual screen locations. This is a simple task as it just requires the x position to be multiplied by

the output x resolution and y position to be multiplied by the output y resolution. The output

resolution will be 1280 pixels x 720 pixels. shows the methods needed by the object detector class

to translate the TUIO object into usable values for the game. The vector of locations is

encapsulated to avoid any unnecessary manipulation of the values.

Table 31 shows the methods needed by the object detector class to translate the TUIO object into

usable values for the game. The vector of locations is encapsulated to avoid any unnecessary

manipulation of the values.

Table 31: Object Detector Class Methods

Method Method Purpose

ObjectDetector(): void The constructor that boots up the TuioListener

and prepares the game to receive input from

the object detection software.

addTuioCursor(TuioCursor *tcur) Handles new cursors

removeTuioCursor(TuioCursor *tcur) Handles removing cursors

updateTuioCursor(TuioCursor *tcur) Handles moving cursors

Table 32 references the encapsulated fields that are maintained by the object detector class. These

fields are used to create the ability to communicate with CCV and store the messages. The

TuioClient creates the connection with the CCV software on the default port of 3333 using UDP.

This data is stored in the objects map. After decoding, the values are stored in the toprocess list.

Table 32: Object Detector Class Fields

Attribute Descriptions

Private TuioClient client The object used to connect to CCV.

private std::list<Location> toprocess The list of the decoded blob locations to

process.

private std::map<int, Location> objects A map of all currently tracked objects indexed

by the objects ID.

6.2.3.1 Blob Decoder

The blob decoder method takes in as an input a set of blobs that represent the current array of

objects on the display. The method returns a set of coordinate points that can be used to distinguish

a location on the display. The location coordinates within the blobs are normalized using the

sensor’s width and height. To decode these normalized points, the points are multiplied by the

output display’s width and height. These values are known constants that can be easily accessed

by the object detector class. The TuioBlob object has the location coordinates as well as blob

dimensions saved as attributes. The attributes are private members of the class that can only be

78

read using the no argument get methods provided. The blobs that are being decoded contain all the

information required to decode them.

6.3 Mobile App
The mobile app software is the input endpoint point for a player’s gameplay decisions. The

decisions are collected through a series of menus that are navigable depending if the player is the

GM or player character. For the normal player, those states are either character development or

action. During an action state the player has the decision to move or attack. A selection needs to

be made as well as confirmation of the physical action. The Game Master needs to act as non-

player characters during encounters. This implies that the Game Master has very similar menus

that the normal player has as well as additional menus to help with the logistics of the game. The

Game Master requires the ability to initiate the save game protocol as well as create and place

NPCs. The use case for this subsystem can be seen in Figure 28. All-important functionality that

was implemented is displayed.

Figure 28: Mobile App Use Case Diagram

The app launches into a visual of the app’s logo. In the background, the main menu components

are populated by a start-up procedure. Once the image is fully created, it is shown to the user. The

first menu that appears for all users contains the option to join session, pair through Bluetooth, or

use the app in offline mode. Every player selects the option to connect to the server first then

choose a role. The next set of menus depends on the state of the campaign. If the campaign is

newly created, then the players begin a character development process. If the campaign already

exists, then the players see a selection of character names that they can select from. The player’s

mobile device is then be linked to that character. During gameplay, a menu is shown that provides

different options for the player to select from. Depending on the choice, the app requests the game

79

to do a specific action through Bluetooth. Table 33 lists the major methods for the app and their

purpose.

Table 33: Mobile App Methods

Method Method Purpose

startup(void): void Creates the Bluetooth Connection screen

createGame(void): void Creates a menu to record game data. Sends

game data to server to generate game.

saveGame(Player/GM): void Starts the save game protocol for players.

joinSession(View): void Connects mobile device to server.

createCharacter(View): void Creates a screen to create a character.

attack(Player/NPC): void Sends an attack command to PC with damage

type and damage amount

move(Player/NPC): int[*] Sends a move command to PC with

speed(range of movement) and current

position

placeCharacter(Player/NPC): int[*] Sends a place command to PC to place

character anywhere on map

The fields for the app, detailed in Table 34, are used to maintain different components as well as

the specific subclass that the device is utilizing. Only after a game has begun does a player have

an instance of the GM or Player class. These classes define more menus that can be displayed. A

device can only ever have an instance of either the GM or the Player class. There will never be a

time where both exist. This allows for security that no player can hijack the game by gaining access

to the GM interface. Other fields for the player stats are maintained to create faster collection of

data when communicating with the game software.

Table 34: Mobile App Fields

Attribute Descriptions

private GM gmInstance The instance of the GM interface class.

private Player playerInstance The instance of the player interface class.

private Widget widgets[*] A list of all interface components.

private Int stats[*] A list of all stats being displayed and

maintained.

The methods and fields can be split into three different stages. The starting class is where the

Bluetooth connection is established. Regardless of the type, namely being a player or GM, each

user can interact with the main menu. Only after the game has been started do the menus differ. At

that point, the different subclasses are instantiated. The differences in the menus is accompanied

with difference in functionality. As seen in Figure 28, the GM has the ability to create, load, save,

and develop the game. This functionality must be limited to the GM of the game. The separation

of the methods and fields discussed above can be seen in the class diagram in Figure 29.

80

Figure 29: Mobile App Class Diagram

he mobile app remains looping through a set of menus. Each player only has access to turn actions

when their turn is active. The state diagram seen in Figure 30 shows the relationship between the

different menus. To move from the start menu to the idle menu the game must begin. The idle

menu is the menu that is seen while not actively doing any actions. The state only returns to the

start menu when a game has ended. On a player’s turn, the player chooses a primary turn action.

This leads the state to either an attack json sent or a move json sent. The player then has the choice

81

to end their turn or conduct a secondary action if it is their turn still. Also, the player has the option

to update their player stats at any time.

Figure 30: Mobile App State Diagram

When deciding which application environment to program our mobile app with we had two

realistic options to choose from, Apple iOS or Android OS. There are less popular mobile

operating systems, but most of them are based on Android’s Open Source Project (AOSP) or, like

Chrome OS, limit the application development to work with a browser only. As we are tried to

limit our use of Wi-Fi and instead use Bluetooth for our interactions with the mobile application,

a non-browser mobile OS is preferred. The main contributors to our decision included

accessibility, financial, and developmental tools.

Since we developed a smart table where the use of a smart phone with our application is required,

we needed to bring the app to the greatest percentage of people by choosing either iOS or Android

OS. We could extrapolate this data by checking the amount of sales of each OS device per yearly

quarter to see which OS is being used the most and check trends in purchases for the future. In

Figure 31: Smartphone Sales, 2007 - 2018, we see that Android is clearly leading in number of

sales for their OS in the recent decade. This means that there are many more users of Android OS

than Apple iOS. We also can see a steady increase in the popularity of Android OS whereas iOS

is barely changing in terms of sales per year, so we can assume that there will be even more

Android users in the future. This seemed to indicate that if we chose Android OS over iOS, more

people would likely have access to our overall game through the app.

82

Figure 31: Smartphone Sales, 2007 - 2018

Reproduced in accordance with the Creative Commons Attribution-Share Alike 3.0 Unported

license

6.3.1 Android OS Overview
Even though Android is clearly leading in terms of rising sales, there are some problems with just

assuming there are more Android OS users. A major problem that Android developers face is

software updates and obsolete units. Since Android OS is open-source, phone manufacturers have

to choose whether or not to integrate a new software update with their older models of phones.

Since Apple manufactures their own phones they have a greater incentive than Android

manufacturers to integrate older models with their newest update since the sale of those older

models is still a large enough profit for them. On the other hand, Android phone manufacturers

have less revenue coming in from older models since they have more competition each update

cycle. This leaves older generations of Android phones obsolete much faster than those of Apple,

with many still on older versions of the OS.

In Figure 32, we can see that only 10% of Android OS users are on the most recent big update that

includes more features and changes than previous updates. This creates a problem when trying to

develop an app for the platform. While we could program our app to work with the most recent

update, it is not guaranteed to work with previous versions of the OS, so we would be losing a

large number of potential people who can play our game. The solution to reaching a bigger

audience when developing for Android is to program the app on a lower version of the OS since

future updates are backwards compatible with apps in previous updates. So if we were to program

our app for Oreo 8.0 we would have a potential 40% of Android users able to play our game. Just

for one quarter in Figure 31, 40% of Android sales which totaled around 350 million are 140

million users a quarter in the more recent years.

83

Figure 32: Android OS Version Distribution

Reproduced from work created and shared by the Android Open Source Project and used

according to terms described in the Creative Commons 2.5 Attribution License

6.3.2 Apple iOS Overview
Apple iOS does have some distribution of OS versions since they usually have a major update

every year alongside the release of their new phone. Although app developers still deal with some

problems with updates and incompatibility, the problem is much less wide spread than Android

OS. This happens because Apple is closed-source, making all production and applications of

devices with the OS happen in house. This means that Apple does not have to worry about

manufacturers changing their phones to fit different AOSP derived OSs’. With this in-house

production comes an easier time when updating older models of phones to the newer update. This

makes it so that phones that released around the same window of now obsolete Android phones

are still being updated to the new OS. The Apple Devloper site [20] provides the distribution of

OSs’ for iPhones that released in the past four years. 55% of users are running iOS 13, 38% are

running iOS 12, and the remaining 7% are running earlier versions. We see that iOS users are

primarily using the two most recent updates compared to the many versions in use by Android

users.

From Figure 31, we see that the total sales for Apple iPhones is around 60 million per quarter, so

around 56 million (93%) of users are on iOS 12 or higher. Unlike Android OS, apps developed to

work for previous generations may not be automatically compatible for future generations as Apple

introduces new features and requirements with each update that an app must follow. App

developers must decide to keep supporting each iOS when a major update occurs. Even though the

sales are lower for iPhones, the adoption rate of previous devices for new updates is much higher

than Android. As long as an iOS app works with the two most recent updates, then you are likely

to reach most iPhone users.

84

6.3.3 Financial Costs
Since Android OS is open source, the developmental costs are much cheaper than the closed source

iOS. Android Studio is the free IDE required to develop an Android OS app. It is available for free

for Windows and is based on Java for coding. To publish your mobile app on the Google Play

Store, there is a one-time developer fee of $25. For iOS, you must own a MAC in order to develop

an app for iOS. On the MAC OS, Xcode is the free IDE used with the Swift programming language

to code iOS apps. App developers for iOS are charged an annual developer fee of $99 to submit

their app to the App store. Although we would only get a one-year fee requirement for our project,

if we ever wanted to update our app in the future, we would need to renew with another developer

fee.

6.3.4 Developmental Tool Differences
Android and iOS have different approaches when it comes to tools when developing apps. Since

the computer’s OS is also different there are many differences in UI and file management for

mobile app development.

6.3.4.1 Android Studio

When developing for an Android OS app, programmers must use Java to handle creating user

interfaces (UI) and interactions between the App and external communications like Wi-Fi or

Bluetooth. Android Studio has a set of software tools called Android SDK which includes their

required libraries, a debugger, an emulator, and some tutorials to help a new developer. The

Android SDK also includes a feature that allows you to choose which version update of Android

to support. The debugger has a log for error messages, a pane for seeing variables and threads, and

testing frameworks. The emulator allows you to test your program in a virtual environment before

pushing onto the Google Play store. Unfortunately, the emulator cannot simulate external

communications like Wi-Fi or Bluetooth so a developer must have a physical phone to test those

features. The Android emulator can also specify different versions of the Android OS to test for

backwards compatibility of an app. Each Android virtual device has its own storage and cache for

each instance of the virtual machine. The basic tutorial can help a new developer create an app

with features such as adapting screen size for different phones, UI, and performing background

tasks not dependent on the UI.

6.3.4.2 Xcode

Developing for iOS uses Xcode for an IDE in comparison to Android Studio. Apple apps are

programmed using Swift which Apple incorporated back in 2014 to help users create their own

iPhone apps. Swift is a good language for beginners as it has many safeguards in place to minimize

errors and allow fast execution of code through optimization. Xcode itself has many easy to use

design tools to help ease in a new mobile app developer. The declarative syntax helps distinguish

what each element of the UI should do. For designing new UI elements, Xcode has a drag and drop

feature that allows for easy creation of visual UI designs. Xcode has a simulator that can prototype

the entire created UI and app testing that will test background app functionality. Like Android

Studio, Xcode cannot simulate WI-FI or Bluetooth functionality to external sources because those

functionalities need specific hardware to run.

6.3.4.3 Feature Comparison

Both of these IDEs have similar features such as emulation or simulation, but they also have a few

differences that make them distinct. Android Studio offers a Gradle-based build system which

allows custom builds through the use of plugins created or downloaded by the user. Android Studio

85

also allows multiple APK generation and variants. Android OS has more community resources

because it is open source allowing more people to share their builds and plugins for Android

Studio. Unique to Xcode is an assistant editor and asset catalog that allows for easy creation of UI

elements. UI is one of the most difficult part of any app creation to make interact correctly with

the features and look comprehensive enough for new users. The catalog greatly helps cut down on

the time required to build a UI and instead allows developers to focus on features and interactions

between the app and input from external communication like Bluetooth.

Based on user experience, Xcode does more than Android Studio in terms of a friendly

development environment and easy to use assets. In terms of each programming language, Android

Studio’s Java based coding is more familiar to programmers trying to make their first mobile app.

Although the programming language might feel more familiar in Android Studio, Xcode more

than makes up for it using its storyboard seamless IDE integration with the simulation. However,

because of this integration, Xcode can be quite slow when compiling since it is connected to the

simulator which slows down while trying to compile simple changes in code. Swift is a very strict

language that updates to change library functions which can make a previously working apps crash

or not compile at all in different versions. The overall financial requirement is much greater for

iOS than Android OS, and was have been especially as no user had a MAC to begin with.

6.3.5 OS Selection
With both OS options researched we compiled Table 35 and compare the benefits and

disadvantages of each. With this comparison we could choose which OS to use in our project.

Table 35: iOS vs Android

 iOS Android OS

Benefits + Simpler and streamlined Xcode

helps new developers, especially

when creating visual UI

+ Simple one time developer fee

+ Brand loyalty of customers and

distribution of customers is for the

most recent two big updates

+ Updates are backwards

compatible with apps made in

previous versions

+ Simulation of code is possible

using Xcode programmed with Swift

+ Emulation of different versions is

possible with Android Studio

 + Increasing sales for OS means

more potential future users.

 + In our group, we all have

Windows, so we have free access to

Android Studio

Disadvantages - No one in our group has a MAC so

we would need to borrow one since

purchasing one is too expensive

- Fragmentation of users mean

fewer people on each update

- An annual developer fee of $99 - More difficult to make UI in

Android Studio

- Smaller percentage of people have

iOS based on number of sales per

quarter

86

The benefits and disadvantages are not equally important, and we decided to go with Android OS

for our mobile app. The lack of a MAC and the high annual developer fee for Apple iOS is what

ultimately made the decision. While we could most likely borrow a MAC from someone we know

or even UCF, there might have been a reason that we cannot one day and all progress or testing on

the app portion of our project would halt.

6.3.6 App User Interface Framework
Because the app was built in C++, a third-party open source library was required for the interface.

Although the project only developed an android app, some third-party libraries do enable the

ability to run the same code on different platforms. This allows the same look to be ported to

different platforms such as an iOS environment or even a desktop environment. This ability to

have the same look across different platforms comes from the frameworks process of drawing their

own components based on the operating system the code is running on. This also helps the

performance and ability to look like other native applications. Two open source frameworks that

were considered are QT and wxWidgets.

6.3.6.1 QT

QT [21] is a cross platform, open source user interface framework. QT is developed in C++ and

performance is just under native libraries in terms of speed of creating components. There are two

license options that QT allows developers to use, a commercial license and free license under the

L-GPL licenses. To use QT for free, source code must be visible to the users or the QT libraries

need to by dynamically linked to the source code. In other words, if the library functions need to

be modified to better work with the project, the project must be made open source. This allows

other developers to see modifications made and help the framework overall. If the libraries do not

need to be modified, then the libraries can be dynamically linked to the project which shows that

no modifications were made to the framework. The goal of QT is to provide a framework that can

easily be ported across platforms. Therefore, they provide plenty of documentation on how to use

the different library classes and their methods, how to start a project, and how to compile and build

the projects. Regarding the android app, QT provides documentation that shows how to convert a

C++ project to a build compatible with android development.

6.3.6.2 wxWidgets

The user interface framework wxWidgets [22] is also cross platform and open sourced. It is

developed and compiled through the C++ language making the speed of the code comparable with

built in user interface libraries. wxWidgets is completely free for both free and commercial

products under the L-GPL license with an exception that code does not need to be distributed to

users. In other words, the framework libraries can be modified without the need to show other

developers what changes have been made. The framework has the benefit of age being created in

1992. There are many popular programs that use this framework. It is important to note that these

programs are all for desktop platforms. Android development is not fully supported, and

documentation is not at a level that would create ease of use while developing.

6.3.6.3 Android Studio Layout Editor

The Android Studio layout editor [23] is a drag and drop user interface that aims to provide easy

to create and implement interfaces. As seen in Figure 33, programmers drag components from the

component selection tool and place them on the window in the graphical component view. Once

placed, the component view displays the component without the added graphic and an instance of

that component is added to the list in the component tree. The editor provides built-in basic

87

components for development and the ability to create subclasses from those components. This

leads to the ability to modify components to better fit the needs of the application or to create

entirely new components.

Figure 33: Android Studio Layout Editor

Reproduced from work created and shared by the Android Open Source Project and used

according to terms described in the Creative Commons 2.5 Attribution License

6.3.6.4 User Interface Framework Selection

Although this project involved developing only an Android app, iOS development is still possible

for the future and was included in the decision. Therefore, Android Studio layout editor was

initially ruled out because it constrains the user interface to only apply to android devices.

However, time constraints did play a factor in interface development, therefore, Android Studio

layout editor was used to develop the Android user interface. The other frameworks were ruled

out because they would require significantly more time to learn and implement.

6.3.7 App User Interface Design
The app is designed to provide easy, logical access to character information for both players and

game masters, as well as additional controls for game setup and turn assignment for game masters.

The logic and functions available to users through the app are detailed in Figure 34. Some functions

are available offline (i.e. when not connected to the table) to allow users to prepare for games at

any time and from any location. Each function may expand a sub-menu or series of sub-menus as

required by the complexity of the information being accessed.

88

Figure 34: App Interface Logic and Functions

The app is styled to be reminiscent of the paper and pencil format of the original game. The splash

screen and main screens for GM(middle) and players(right) are depicted in Figure 35, for a 1080

x 1920 pixel display (a standard resolution for modern mobile devices). The GM screen depicts

the turn order and the player screen depicts the stats of the player. The splash screen design and

player screens use a traditional paper aesthetic and are easily adapted to a variety of display

dimensions.

89

Figure 35: User Interface Designs

6.4 Game Software

6.4.1 Game Software Endpoints
Figure 36 shows the use case for the game software subsystem. The diagram lists major

functionality that the game subsystem handles. The actors on the left side of the system represent

the inputs to the system while the actor on the right side represents the output. Each actor is an

endpoint managed by the software. The input endpoints are the mobile app and object detector

class. The output endpoint is the display. Since the game is heavily dependent on user input, the

game handles the mobile app endpoint by being in constant contact with each user’s app. Bluetooth

protocols are in place to distinguish user devices and create communication channels. The users

communicate turn information which is then processed to properly display images. The GM

initiates protocols for creating, saving, and loading games. All players need to be able to connect

to the network. The game software maintains memory of player piece movements. Updated player

piece locations are detected through the object detection software and sent to the object detector

class to be stored through a socket. Some functionality manipulates the displayed images to create

a more coherent game experience. That functionality includes methods such as update map, display

map, and display attack or range spaces.

90

Figure 36: Game Use Case Diagram

6.4.2 Game Software Class Descriptions
The game software can be broken up into different classes that encapsulate the different aspects of

the program. By grouping the major functionality seen in Figure 36, four classes are used to

incorporate all functionality. Those classes are the player class, game class, Bluetooth class, and

display class. The basic class structure can be seen in Figure 37. The player class is used to keep a

local record of the character traits and provide methods for user actions. The game class handles

the logistics of the game logic. More specifically, the game class maintains the instances of each

of the other classes and controls logic flow to each of the classes. The Bluetooth class is an object

that creates a server network that is broadcast to the nearby Android devices. The display class

handles all display-related methods and attributes.

91

Figure 37: Game Software Class Diagram

6.4.2.1 Player Class

The player class holds the information about the user’s character and methods to manipulate that

information. The methods required for the player class can be seen in There are several public

getter and setter methods that have been omitted from the table because they do not provide the

major functionality of the class. The table instead holds the methods that are important for the

Game class. These methods include createPlayer which takes in a json object for the player’s stats

and updates the player’s local field for the first time. Similarly, the updatePlayer takes in a json

object and updates the player’s local field with the new information. This assumes that the field

has been populated before the current call. The isGM method is used to determine if the current

Player instance is the GM as the GM has different protocols compared to normal players.

Table 36. There are several public getter and setter methods that have been omitted from the table

because they do not provide the major functionality of the class. The table instead holds the

methods that are important for the Game class. These methods include createPlayer which takes

in a json object for the player’s stats and updates the player’s local field for the first time. Similarly,

the updatePlayer takes in a json object and updates the player’s local field with the new

information. This assumes that the field has been populated before the current call. The isGM

method is used to determine if the current Player instance is the GM as the GM has different

protocols compared to normal players.

92

Table 36: Player Class Methods

Method Method Purpose

Player(): Player Player constructor that will instantiate a player

object and return a reference to that object.

createPlayer(json attributes): void Method that takes in a vector of values and

updates the corresponding field elements.

updatePlayer (json attributes): void Method that calculates player state based on a

combination of a dice roll and hit points.

isGM(): bool Returns true if the player instance is the GM,

otherwise returns false.

The class fields act as a replacement for the traditionally character sheet. The character stats, if the

player is the GM, and the player ID are maintained. There are many values on the character sheet

that will not be displayed in Table 37 as they are encapsulated in the attributes field.

Table 37: Player Class Fields

Attribute Descriptions

private bool GM A Boolean that signals if the current Player

instance is the GM.

private json attributes A json object that holds all player data for the

game.

private int id A unique ID for each player

The json object for attributes is where all the character information is stored. Examples of the

player information includes basic abilities such as strength, dexterity, constitution, intelligence,

wisdom, and charisma. The id field will be used for distinguishing the different players. The player

id needs to be readable from other classes to ensure that the correct player instance is being

manipulated. The object detector class maps blobs to players and this is achieved by mapping to

the unique id value. The player id is generated based on the mobile device. The Bluetooth

connection already requires a unique id for each device and this id can be repurposed for the player

id as well.

Encapsulation is utilized in this class and public getter and setter functions are needed for each of

the field elements. Methods in the Game and Display classes rely on field data from this class.

However, they are not granted direct access to the fields to avoid any corruption in the data. The

Game class requires the ability to read the player’s id to select the correct player object to

manipulate. The player stats are also used to determine gameplay events such as attacks. Some

player stats need to be updated throughout the game. The only class that is granted permission to

modify the fields is the Player class. Each field therefore requires methods to set those values. The

player can also have different states that are dependent on the player’s health and a physical dice

roll. There is a menu to insert the dice roll on the mobile app so that the Player class can properly

handle calculations needed to update the player state.

The Player class oversees managing player actions. These player actions come with values

associated with either hit points or range of action. When performing an attack action, the attack

range is based on player stats and so is the hit point damage applied during that attack. Similarly,

93

when performing a move action, the player has a set range based on their player stats to move.

Players have the option to perform both actions on any given turn assuming NPCs are present on

the board. If the game state is not currently in combat, then the attack action is not an option.

Players also have the choice of just performing a single action. Since there are a few options, the

player needs to select what action they would like to perform through the mobile app. The Game

class must then to ask for the distance in order to display the range and continue gameplay.

NPCs are controlled by the game leader through the mobile app. For all purposes they act as a

normal Player. A subclass is not required as no different functionality is required. A problem that

was faced was in the unique id. The same procedure as was discussed above cannot be done for

NPCs. Since each NPC technically is owned by the game leader, they would all have the same

unique id which would void the uniqueness of the id. As a result, each character has a unique ID

that is part of their attributes. Therefore, each device has a unique ID to determine where messages

are going and coming from. The character ID will be used to distinguish characters for the GM.

6.4.2.2 Game Class

The game class is the starting point for the game logic and manipulation. When the program is

launched, an instance of the game class is instantiated, and the game setup begins. The key steps

to setup are to start the Bluetooth server to allow for connections to the game, display the startup

menus, and tracking blob locations to allow for touch control. The constructor for this class is used

for setup. The class is also in charge of validating player actions on the display and processing any

input from a player’s mobile app. The major methods for game functionality are shown in Table

38.

Table 38: Game Class Methods

Method Method Purpose

Game(): Game Game class constructor that instantiates a game

object, runs the setup process, and returns a

reference of that object.

gameplay(): void

Processes the gameplay requests.

createGame(): void Method to begin a game’s startup

saveGame(): void Saves all states of each class into a file and

stores the save file on the game leaders app.

loadGame(File *gameData): void Takes a save file and generates all objects

stored in the file.

messageHandler(char * message): void Method to read and handle actions dictated by

the input message.

processPoint(int x, int y, int mode): void Method to match a blob object queued to the

correct action in the software logic.

Since the game class maintains the major functionality of the game, there are private field elements

for each of the objects required for player and display interactions. The players and NPCs are also

94

maintained in this class. The Players are maintained in a vector of Player objects and the NPCs are

maintained in a json object. The fields can be seen in Table 39.

Table 39: Game Class Fields

Attribute Descriptions

private Game instance The object itself.

private Display display The object that will maintain all display

objects.

private Bluetooth bluetooth

The object that will send and receive input over

a Bluetooth server

private ObjectDetector detector The object used to detect objects on the display

private int gameState

Holds the state of the game. 0 mapping to

normal play, 1 mapping to combat.

private std::vector<Player> players A vector of user player objects

private json NPCs A json object of NPCs

6.4.2.2.1 Game Constructor

The game constructor should only be called by the main function when the system is powered on.

When the game constructor is called, the first task is to allocate memory for the object if it does

not exist. There should only ever be one instance of the game class running at any given time.

Before the memory is allocated, the constructor checks for any instance of the object already

existing. If the object does not exist, it creates the object and stores it in the private field. The

constructor then continues to setup only if the instance was just generated. Setup creates an

instance of the Bluetooth, Display, Player, and ObjectDetector class. Once all of the necessary

fields are stored, the gameplay method is called so that the game can begin. The gameplay method

call indicates the end of the constructor and finalizes the connection of all players for the game.

Figure 38 illustrates the flow of the constructor beginning with the power on event and the call

from main.

Figure 38: Game Constructor Flowchart

95

6.4.2.2.2 Gameplay

The gameplay method is the main functionality of the game. It maintains ordered player turns and

processes all user input. At this point, the game has an instance and all players are connected. The

turn order is decided by the game master and maintained in this class. In a round, each player takes

a turn. The parts of the turn that have a digital action are movement and attacks. Both of which

call a Display class method to highlight spaces. The game then waits for the user to choose a

physical space or move their player piece on the display. The location of the action is collected by

the object detector class. The location then passes through the process point method. If the state is

combat, then the attack action can be done by itself, before, or after the movement action. If this

is the case, the player is asked again what action they are going to take, and the process repeats.

6.4.2.2.3 Validate Movement Method

Since movement and attack locations are user inputted, there must be a verification method for

valid input. This is accomplished by taking the player’s original location, the distance the player

can travel or attack, and the new location found by the object detection software. Using the initial

position of the player and the distance that they can move or attack, a boundary can be formed.

Verifying that the new position is within the boundary can easily be done. Verifying location must

go beyond simply checking the location to the boundary formed. The display shows a map that the

player pieces are placed on with a grid overlay that is divided into 1” by 1” squares. Ideally, players

place their pieces perfectly within each of those squares. Realistically, players are not perfect, and

placement verification should not harm the flow of the game if it does not need to. If a piece is

slightly overlapping another square, the game won’t ask the user to fix the position. However, if

the piece is greatly overlapping another square to the point that it cannot distinguish which square

was intended, the game must request clarification from the user.

As a way to mitigate the issue of greatly overlapping squares, an algorithm will be in place to

decide on the grid space that the piece occupies the most space in. The only assumption this makes

is that the user will attempt to place the piece mostly in their desired location. This can only be

manipulated if the user intentionally places the piece mostly in the wrong grid space. At that point,

the game will just assume that they are in the other grid space and continue operating as expected.

A case to observe is when two player pieces are overlapping the same grid space. This can be seen

in the valid placement case of Figure 39. The circles represent player pieces and the shaded region

represents the grid space with the most piece area. The circles are shown in green to signify that

they are valid placements. Although the two pieces occupy the same space, one piece occupies

more area than the other and that piece is deemed the true owner of that space. Specifically, grid

space C2 in the figure has both player pieces within the space. As shown by the shading, P2 has a

majority of area within C2 making it the owner of the space. It can be generalized that if a player

piece has a majority of its area within a grid space it will be deemed the owner of that grid space.

96

Figure 39: Player Piece Placements

Cases of invalid player piece placement are shown in the invalid placements section of Figure 39.

The player pieces are the circles in the figure and are shown in red to signify invalid placement.

The placements create a problem programmatically as the area distribution is near equally

distributed across multiple grid spaces. In the first instance, the player piece occupies four grid

spaces equally. Similarly, in the second instance, the player piece occupies two spaces equally. It

is not possible to determine which square was intended by the player using only the piece area

because the distribution is even. There also cannot be a deterministic solution to this problem such

as always pick the top left most space that the player piece occupies. This assumes more than the

software should and will break the flow of the game when the deterministic nature of the solution

is wrong. Therefore, in order to maintain proper game flow, all spaces that the piece is overlapping

in are highlighted and the player is notified that they need to fix the position of their player piece.

This avoids any desync between the players and the software where the game software believes

the player piece is in a specific location and the player believes that the piece is in a different

location.

The case where two player pieces occupy exactly half of a single space can never occur because

of the algorithm already discussed. Two player turns will be done sequentially and not

simultaneously. When the first player has the option to move their piece, the piece placement is

verified. If the piece is occupying equal area in two adjacent squares, the game prompts the user

to fix their placement. They then fix the placement of the piece so that it occupies less than 50%

of the area in the square that would be shared. Since that square has space for more than 50% of

the second player’s piece, they can place that piece in the shared square without with occupying

most of the area.

6.4.2.2.4 Create, Save, and Load Game

The game class also handles the save and load methods. Both methods are initiated by a request

from the game master’s mobile app. The Game class then handles the request. Figure 40 shows

the basic process of the save game method. The game first checks to see if the mobile device has

a past save data file. If the file exists, it is overwritten, otherwise it is created. The different object

fields are iterated through and their contents are recorded into the save file. This save file is then

transmitted to the game master’s device for storage. Each of the objects is deleted to free memory.

Finally, all devices are disconnected to setup for the next game or shut down.

97

Figure 40: Save Game Flowchart

When loading a game, the save file is transmitted from the game leader’s device and is processed

by the load game method. The file is parsed and each of the object fields is populated with the save

data. After the objects are populated, all player devices are connected to the server and the display

begins its setup. After the display setup, the game is ready to resume.

Figure 41: Load Game Flowchart

Create game acts very similar to load game. Besides the obvious difference of no save file, create

game initiates the start of the game. The start of the game begins by receiving the number of

players playing and the map to be displayed from the game leader. The next step is to setup the

character sheet with all character statistics and place pieces in a starting location. While all these

steps are occurring, the Game call receives and populates class elements with information about

each player to begin tracking gameplay.

6.4.2.3 Display Class

The display class holds the methods required to do all image processing required for gameplay. A

third-party image processing library is used to do the image overlaying portion of the image

processing. This third-party library is OpenCV [24]. OpenCV is an open source computer vision

software library. CCV also uses OpenCV in their object detection protocols. The library has

support for all major platforms; Windows, Linux, and Mac OS. The framework has been released

in C++, Java, and Python. The free use of OpenCV is allowed under the condition that the

98

copyright notices listed at the top of each file is not to be removed from the files. Also, the library

can be modified as well. Any additions to the software can be made to better fit the cases required

in this project’s software. Some concerns that have been seen when researching other projects

using OpenCV is that C++ has some issues importing and using library methods. However, all

methods needed for this project’s implementation were imported without issue.

OpenCV was used to create the displayed image through their image processing methods.

Specifically, the methods to read in, write out, show, and add images together. These methods can

be seen in Table 40. These four methods are able to provide the necessary manipulations required

to update and display images for the users. The addWeighted() method is used to merge two images

with a different opacity. The base image has the higher opacity while the image being overlaid on

top has a lower opacity creating a merging effect.

Table 40: OpenCV Methods

Method Method Purpose

imread(String filename, int flags): Mat Reads in an image into a Mat type using the

filename path.

imwrite(String filename, InputArray

image, std::vector<int> params): bool

Creates an image file of the input array at the

given filename path. Params can be a list of

parameters to save the file with. On success a

True Boolean is returned.

addWeighted(InputArray src1, double

alpha, InputArray src2, double beta,

double gamma, InputArray dest, int dype):

void

Merges src1 and src2 into a dest array based on

the parameters of alpha, beta, and gamma.

The OpenCV methods were incorporated in the Display class methods to produce the desired

functionality. All methods shown in Table 41 were implemented. They represent the major

functionality of the Display class and give descriptions of the goals of the Display class. Methods

requiring a location require processing from the object detection software to provide accurate pixel

location.

99

Table 41: Display Class Methods

Method Method Purpose

Display(): Display Constructor to instantiate display object and

return a reference of that object.

displayMap(String URL): void Creates a map image object from the passed in

URL and displays the image to the display.

displayGridLines(): void

Overlays the gridline image object on top of

the map image object.

displayDistance(int x, int y, int distance,

String Color): void

Creates a set of images of the color passed in.

Overlays those images centered around the x

and y given to the distance given.

displayNPC(String URL, int x, int y): void Displays a passed NPC image from the URL at

the passed x and y location.

removeNPC(int x, int y): void Removes an NPC image at an x and y location

removeDistance(int x, int y): void

Removes the distance images surrounding the

x and y location.

Table 42 shows all privately maintained fields for the class. These fields enable the class to manage

the different layers of images and provide the ability to determine their locations. The map and

grid line images are maintained to avoid corrupting the original files. The PPI is maintained so that

when dynamically creating images, the scale is correct. A list of npc and distance images is

maintained. This is referenced when creating images.

Table 42: Display Class Fields

Attribute Descriptions

private Display instance The instance of the display object .

private Mat mapImage The map image object.

private Mat gridImage The gridline image object.

private int PPI The PPI for the current display

private std::vector<Mat> npcImages A vector of NPC image objects

private std::vector<Mat> distanceImages A vector of Distance image objects

6.4.2.3.1 Display Constructor

The display constructor creates memory for the display object. There should only be one instance

of this object to play the game. Therefore, when the constructor is called, it checks the private field

instance to determine if a display instance already exists. Otherwise it creates an instance, saves

that instance in the private field and returns a reference of that instance for the calling class.

6.4.2.3.2 Methods to Display Images

The map image that is projected on to the touch display is provided by the user through the mobile

app. To not destroy the original map image, secondary images are overlaid on top. Therefore, the

map image is the base background image. An important layer that needs to be added to make the

map playable is the 1” by 1” grid of spaces. Each space represents a valid position that a player

100

can place their figure. The 1” by 1” grid must be to scale because the physical game pieces need

to fit within them properly.

An image can simply be thought as an area of pixels. A specification required to translate an

image’s pixels into physical distances is pixels per inch (PPI). This value depends on the native

resolution of the projector as well as the length and width of the display region. To find the PPI,

let the native resolution of the projector be represented by R and the length, in inches, of the display

side be represented by L. shown below will produce the PPI for a projector with the native

resolution R projecting on to a square display with a side length of L. For this project, the native

resolution of the projector is 720p and the side length of the display is 24”. The PPI is 30 pixels

per inch and each space will require 900 pixels. It is important to note that the PPI for a projector

is not unique. This is because a projector will only output the number of pixels provided by its

native resolution. The same number of pixels will always be displayed onto any display surface.

Therefore, the display surface size is the varying factor for PPI. PPI is the same as DPI (dots per

inch); however, the display will be dealing with pixels so thinking in terms of pixels is more useful.

Equation 4 shown below will produce the PPI for a projector with the native resolution R

projecting on to a square display with a side length of L. For this project, the native resolution of

the projector is 720p and the side length of the display is 24”. The PPI is 30 pixels per inch and

each space will require 900 pixels. It is important to note that the PPI for a projector is not unique.

This is because a projector will only output the number of pixels provided by its native resolution.

The same number of pixels will always be displayed onto any display surface. Therefore, the

display surface size is the varying factor for PPI. PPI is the same as DPI (dots per inch); however,

the display will be dealing with pixels so thinking in terms of pixels is more useful.

Equation 4: PPI

𝑃𝑃𝐼 = 𝑅/𝐿

The grid that is overlaid onto the map image is a separate image created with all parts transparent

except for the gridlines. To accomplish proper scaling, the PPI found above is the exact dimension

in pixels needed for the 1” by 1” grid spaces. The first and last two rows of pixels are used to create

the horizontal grid lines. Likewise, the first and last two columns of pixels are used to create the

vertical gird lines. This produces a grid with line width equal to four pixels. To determine the width

in inches, the inverse of the PPI is taken. Each line has a width of four times the inverse of PPI,

which is 0.13”.

The ability to distinguish grid spaces is a required property that is needed to properly track

gameplay and overlay smaller images. A matrix numbering system is used to identify each space.

Specifically, each space is identified by its row and column value with the top left space being

position (0,0). The playable region will be 24” by 24” with 1” by 1” spaces creating a total of 576

spaces. The row and column indices vary from 0 to 23. Although the exact pixels are not used, it

can be easily determined what pixels are occupying a given space. The exact pixels can be

represented by four different values corresponding to each of the four corners of the space; top

left, tl, top right, tr, bottom left, bl, and bottom right, br. Given an arbitrary space (n, m), the four

points can be found using to create a rectangle object that holds the pixel locations on the display.

Equation 5.

101

When overlaying smaller images on to the map, the region that the image needs to occupy must

be a value passed to the overlaying function. The determine location method takes in a grid space

location and applies the equations shown in to create a rectangle object that holds the pixel

locations on the display.

Equation 5 to create a rectangle object that holds the pixel locations on the display.

Equation 5: Grid Space Coordinates

𝑡𝑙 = (𝑃𝑃𝐼 ∗ 𝑛, 𝑃𝑃𝐼 ∗ 𝑚) 𝑡𝑟 = (𝑃𝑃𝐼 ∗ 𝑛, 𝑃𝑃𝐼 ∗ (𝑚 + 1))

𝑏𝑙 = (𝑃𝑃𝐼 ∗ (𝑛 + 1), 𝑃𝑃𝐼 ∗ 𝑚) 𝑏𝑟 = (𝑃𝑃𝐼 ∗ (𝑛 + 1), 𝑃𝑃𝐼 ∗ (𝑚 + 1))

No padding needs to be done to the images to create a buffer along the edge of the image. The

table design takes care of the buffer needed for the display and the table. It creates a slight buffer

for all edges of the display because the display surface is resting on a lip of the table. This relieves

any issues that may have occurred had the display been flush with the table.

The actual overlaying is done by generating a new image each time there is a change. This is done

using library methods that copy an image on to another image. The general flow is to create an

object for the new image, store that object in local fields, and add the image to the display. This

process begins with the function call from the Game class and the flow is depicted in Figure 44.

Figure 42: Image Addition Flow

This process occurs in such a way that the layers are presented in the correct order. Following

Table 43, the gridlines are added on top of the map image first, followed by any distance indicator

spaces and lastly any NPCs that are currently on the board. This avoids any NPCs accidently hiding

under any other image. They are considered players and their locations should always be known

and visible. To create a more natural look, the distance indicators are not solid spaces of a single

color. Instead, the distance indicator image is blended with the map to give the map a highlighted

affect. This allows the map image to avoid being completely blocked out by the highlighting, and

still remain different enough to be noticeable. The last concern with the image formation is when

adding the NPC image and the distance indicator that it blocks the grid lines. This issue is resolved

by only placing the images inside the area that is bounded by the gridlines. Therefore, the NPC

and distance indicator images do not occupy the 900-pixel area that each space provides. Instead

they occupy a 676-pixel area because each dimension is reduced by 4 pixels to bound the area by

the grid lines.

102

Table 43: Display Image Level

Layer Level

NPC Image 4 : Top

Distance Indicator Images 3

Grid Image 2

Map Image 1 : Base

Figure 43 shows an example of the overlaying levels. The slanted red line represents the map

image. Every other layer of the image can clearly be seen on top of the red lines showing that they

are the base image. The next layer is the grid lines which are shown by the black lines. The distance

indicator shown by the green shaded region is entirely within the grid lines. There is no overlap of

the regions. The distance indicator does not have full opacity to allow the background images to

be seen as well. Finally, the NPC image is represented by the blue circle which is on top of every

layer.

Figure 43: Overlaying Example

It is important to fully generate the new image before removing the old image. This avoids any

gaps between images that would appear as a flicker. This process has smooth transitions and

instead has instantaneous changes from image to image. The majority of the image should remain

the same making the actually transition not seem as abrupt. As a way to create some effects, when

populating a list of images, periodically the image can be refreshed so that a large chunk of space

is not modified in a single refresh. For example, the distance indicator spaces are centered around

the player’s piece. If the spaces are populated in a circle motion being updated each time the radius

expands one space, then there is an effect of the distance spaces radiating from the player’s piece.

This can be ensured by creating a small delay between refreshes as well.

6.4.2.3.3 Methods to Remove Images

To make removing images more straightforward, when an image is added to the display an object

is created that holds all the details about the image and its location on the display. When removing

images, information about the image needs to be passed in. Identifying information includes the

image’s type and its location on the display. From this information, the image object is found and

freed and a new display image is generated and updated. This general process can be seen in Figure

44.

103

Figure 44: Image Removal Flow

A major concern with this process is performance time for images that require many layers to be

copied. To increase the performance of this process, checkpoints are made. Images that remain on

the display for long periods of time are saved. For example, the map with gridlines is be the base

of every updated image. If a checkpoint image is used, then the steps to generate the map with

gridlines is bypassed. The time to create checkpoints can be generalized for the gameplay. During

a turn, the distance indicators only occur when the characters attack and move. Once the position

is selected, they are removed. Therefore, the step before adding the distance indicators is to save

the current state of the displayed image and then modify it. Once a space is chosen, then the image

can revert back to the state before it showed the distances. The only unavoidable state is during an

attack when an NPC must be removed. If there are multiple NPC’s on the display, there is no way

to know which one will be attacked and removed first, and the state cannot be saved to

preemptively save time.

6.4.2.4 Bluetooth Class

The game software acts as the server for all the Bluetooth communications. All mobile devices

connect to the computer and the computer’s game software processes and responds to requests

made by the mobile devices. To more efficiently develop this functionality, an external library of

Bluetooth functions was obtained. This class runs on the Windows operating system; therefore,

the Windows SDK was used to implement the functionality of this class. The Windows SDK

provides libraries that enable the Bluetooth protocol.

Specifically, the Winsock2 library was used to create the server. The first step in creating the

Bluetooth server is to create a socket that is linked to the Bluetooth protocol. Once the socket is

created, the socket is set to the non-blocking state to avoid getting stuck in a blocking socket

functions. Blocking socket functions, such as send and receive, wait until data is sent or received

before returning. This potentially could freeze the thread. The non-blocking approach has a timeout

that returns from those functions. The socket is then bound to a port on the computer that is

reserved for Bluetooth communication. For the RFCOMM protocol, Windows has allotted 30 ports

for servers. To allow for connections, the socket is then set to listen state for a specified number

of devices. For our application the number is set to five to match the maximum number of players.

To advertise the server to nearby devices, a globally unique identifier (GUID) is generated and

linked to a service that was registered on Windows. Windows then broadcasts that service to

nearby devices. The Android app scans for devices with that the GUID to begin connection. Under

the Bluetooth standard, devices can only connect to other devices that have previously been paired

together. Therefore, a pairing process must be conducted before a connection request can be made.

104

However, this process only needs to be completed once, assuming that the user does not manually

forget the device on their computer.

The game controls communication with two different procedures, a server and client procedure.

The server procedure handles accepting Bluetooth connections and disconnecting Bluetooth

connections. The client procedure handles read, write and close actions. When the socket receives

a connection request, an accept flag is raised and the server accepts the connection. When a socket

receives data, it is placed into a buffer. It will then raise a read flag and the client procedure

processes the data that was received. Sockets also have an out-data buffer and when its filled, the

socket cannot send any more data. After the data in the buffer is sent and emptied, a write flag is

raised, and the client procedure can send data again. Therefore, upon initial connection it is

assumed that the buffer is empty and ready to be filled. A socket can receive a shutdown message

which disables the read function, the write function, or both the read and write functions. When

both are shut down, the socket is being closed and the connection should be terminated. Once the

connection is terminated, the socket should be released to free resources.

The messages sent between devices follow the JSON format. Each JSON holds an action field that

describes what the message is pertaining to and many other fields holding game data. For the save

and load functions, the entire description for each player and GM are transmitted. The user’s

computer will be the storage point for game data. When a save action is initiated, the game will

communicate with all devices requesting their player or GM data back.

Table 44 lists some of methods to create the Bluetooth server . The constructor is used to set up

essential variables and buffers used for Bluetooth. Once the constructor’s procedure is complete,

a startup function is called to begin the Bluetooth server. This function goes through socket

creation, socket binding, socket listening, and launching the server procedure. The server is an

infinite loop processing connection requests for new connections and any reconnections if needed.

When a connection is made, the server creates a thread that runs that device’s client procedure.

The client procedure is another infinite loop handling the read and write requests for that device.

The scanDevices method scans the area for nearby devices to display already paired devices.

Table 44: Bluetooth Class Methods

Method Method Purpose

Bluetooth(): Bluetooth* Constructor to instantiate Wifi object and

return a reference of that object. The

Constructor will turn on the broadcast to Wi-

Fi direct enabled devices.

scanDevices(): void A method to scan for nearby devices.

startup(): void The procedure to setup the Bluetooth server,

listen for device connection, and begin the

server procedure.

Client(): void A procedure to handle client device actions

such as receiving and sending data.

Server(): void A procedure to handle accepting connection

requests from devices.

105

The class needs to maintain all devices connected. Table 45 shows the fields that are maintained

by the class. The connections field is a variable length list that holds each of the devices. The order

of the list is based on the order of connection to the server. To pair a device with a player profile,

when a player object is being created, the ID associated with the connection is maintained. Two

lists of character arrays are used to hold the data being sent and received. Whenever there needs

to be a message sent from the game to a specific player, the ID is used to fill that players send

buffer. Likewise, whenever the game receives a message from a specific player, their receive

buffer is filled.

Table 45: Bluetooth Class Fields

Attribute Descriptions

private std::vector<SOCKET> connections The list of devices connected to the network.

private std::vector<char []> sendBuffer A list of character buffers to hold the data

being sent out.

private std::vector<char []> receiveBuffer A list of character buffers to hold the data

being received.

6.4.3 Programming Language Selection
An obvious choice for the paradigm of programming languages to be used for the project’s

software is object-oriented. The paradigm offers the ability to use the powerful tool of inheritance.

Inheritance allows for classes to be derived from other classes. This allows functionality to pass

down from parent classes to subclasses. Function overloading allows parent classes to act as

frameworks for subclasses without creating specific methods for functionality. This allows

subclasses to be customized to the extent that they are different from the parent. If inheritance or

class creation is not required for a specific functionality, the paradigm allows programmers to fall

back to an imperative style of programming. The imperative paradigm is a style where statements

are listed in sequential order and executed until completion. The C programming language is an

example of the paradigm. It is important to note that the programming team is very familiar with

the C programming language and that style of programming. The android app subsystem requires

a graphical user interface. Therefore, the language choice either needs to implement their own user

interface libraries or allow for third-party frameworks. Some popular object-oriented languages

that are common industry that were considered are Java and C++.

6.4.3.1 C++

C++ is an object-oriented programming language with good portability and community support

including libraries that help in UI development and object tracking. Besides basic syntax

variations, the addition of classes and inheritance is the major difference between the two. In C

memory management was completely controlled by the programmer and required constant checks

to verify integrity of the memory space to avoid memory leaks and crashes. C++ introduced class

constructors and destructors for created objects as a way to relieve some of the requirements put

on the programmers for memory management. These two methods work similar to the memory

allocation functions, malloc() and calloc(), and memory freeing functions, free(), in C. The

difference is that they create and destroy objects and do not required the size of memory to build.

The compiler will maintain the different object sizes and when their constructor and destructors

are called the memory associated with that object will be allocated or freed. Each class has a

constructor and destructor inherently and they can be overloaded to include additional

106

functionality. Some modern languages have custo garbage collection. C++ does not have this built-

in feature. The C++ language can be modified to become non-standard, but include additional

useful functionality. Windows has their own version of C++ to allow for the windows API to run

properly. There are some versions of C++ that implement a garbage collector. These versions will

be ignored as in depth research would be required for non-standard builds of C++. Garbage

collection algorithms could create performance issues within the software especially being a non-

standard algorithm.

C++ was developed before it became popular to include user interface libraries as standard libraries

of the language. Therefore, third-party libraries are required to create any graphical interfaces.

Some popular libraries are QT and wxWidgets. These libraries enable the ability to construct

different interface components through simply function calls. Documentation is available from

each of their respective websites. Since the interface would be for the mobile app, documentation

is available for porting C++ projects through Android Studio to build an app.

6.4.3.2 Java

Java is a popular language with plenty of documentation available from its creator, Oracle, about

built-in libraries and classes. Java runs on the Java virtual machine, the JVM, which adds a level

of virtualization to programs. This virtualization allows Java to implement their own garbage

collector that will maintain memory management for the programmer. All memory accesses run

through the JVM which allows Java to implement their own memory replacement algorithms. The

garbage collector can be troublesome in some cases where it will release memory before it should.

This potentially can cause some negative performance issues if the memory released was important

to the software.

Java was developed to have built-in interface libraries called Swing [25]. Swing aims to be a

platform independent framework to allow similar looks across different platforms. There is plenty

of documentation on methods and class information all provided on the Oracle website. Also, Java

is the native language for android app development. There would be an advantage to developing

the app in Java as no porting would be required.

6.4.3.3 Conclusion

After looking at the two languages, C++ was the chosen language. It requires memory management

to be left up to the programming team; however, there was no concern about built-in features

taking control of the program. Different options were explored when dealing with the graphical

user interface libraries, but libraries were available to create a design that could be seen across

multiple platforms. If development were to ever move or expand to a different platform, design

code would not have to be changed. Lastly, the programming team has experience with the C

programming language and the transition to C++ would not be harsh as learning a new language.

6.4.3.4 Visual Studio IDE

For our game running on Windows, we used the Visual Studio IDE to code, test, and finalize our

software written with C++. Microsoft has the proprietary rights to Visual Studio which is used to

create computer programs, websites, and mobile applications. For our purposes, we did not use

Visual Studio to create our mobile application as we had the IDE specific for Android OS, Android

Studio for that purpose. Visual Studio has many features that are convenient to a developer to

create their own Windows applications.

107

Visual Studio is integrated with a Microsoft development platform called Windows API that has

beneficial features that streamline the development process. Since the platform is so heavily

integrated with and built for Windows, it can do some things that other IDEs cannot. Most external

IDEs only have access to the base features of Windows such as file management, threads, and

processes unless given permission to do otherwise. Windows API allows Visual Studio to handle

tasks such as powering on/off the system, creating a background process called a Windows service,

and managing user accounts. A Windows service can run in the background regardless of which

user is signed-in and is helpful in trying to start our game as soon as we turn our computer instead

of loading a file. Windows API helps with built-in functions to ease the UI development process

in allowing graphics to easily be placed on displays. The UI is given functions that control the size

of a window, scrolling, and IO which helps in displaying on our screen instead of a regular monitor

or TV display. The Windows API also includes features that made feedback directed at players

such as loading and toolbars easy to develop.

Visual Studio includes a few convenient programming tools that helped us develop our game

software with higher quality and simplicity in mind. While all of our team has programmed in C

before, C++ has some additional features and upgrades that we needed to get used to while coding

our project. The native syntax highlighter and code completion assists new developers in any

supported language. While experienced programmers might consider these features as crutches,

while getting used to a new programming language these tools not only help developers fix

mistakes but also provided hints as to why certain syntax is not allowed. The IDE has native help

guides to get started on creating a new application as well. If all else fails, the community of online

programmers has probably experienced a similar issue to an error that a developer encounters.

Stack Overflow [26] is a great website that can help all levels of developers with syntax, logical,

or semantic errors.

Visual Studio offers debugging and testing tools for its developmental environment. The debugger

offered works as a source-level debugger and a machine-level debugger for any supported Visual

Studio programming language. The debugger can be run during the execution of a developer’s

code which then assists with variable and stack management. Setting breakpoints allows the

debugger to take a break during execution which can then be told to keep running after a developer

finishes analyzing the previous results. The debugger also supports step-execution that creates

breakpoints after each line of code allowing execution of one line of code at a time. Visual Studio

also has tools for easier unit-testing including a test explorer, Microsoft’s own unit test framework

for C++, and code coverage. The test explorer allows a developer to see all the unit test results

with Microsoft’s framework. After running all of the unit-tests, the code coverage feature alerts

the programmer of code that has not been tested with the current unit-tests. There are more add-

ins and plugins designed for Visual Studio that extend the range of capabilities the native IDE

supports.

6.4.4 Multithreading
Since we believed that the execution of our game would be taxing on our CPU (Central Processing

Unit), we explored the option of multithread programming. Multithreading is the ability to use

more than one core of a CPU at one time to break up the load of execution through the distribution

of threads. This leads to faster overall execution of the code, as it allows resources not would

normally be idle to be utilized. The problem that can be encountered with multithreading is when

two or more threads are trying to use the same resources at one time. For example, if two different

threads, running on separate CPUs, need the ALU (Arithmetic Logic Unit) then one thread will

108

have to wait until the other is finished before using the resource which can slow down overall

execution if the code primarily uses a single hardware unit. There are two main types of

multithreading that are worth discussing for our group and they are interleaved multithreading and

simultaneous multithreading.

Interleaved multithreading’s main purpose is to get rid of data dependencies that can clog the

execution of a program. All threads on each CPU should not wait for the output of a thread that is

outside the range of the current core. This means that a thread in core one of the CPU will not rely

on the output of threads from cores two through four. For every cycle of the CPU there is a context

switch for the code which results in no pipeline flushing. The problem with interleaved

multithreading is its performance for single threads, so if there is a long thread then the process

will actually take more time to execute than single core processing. Interleaved multithreading also

requires specific hardware to run. CPUs need to have multiple register banks and other hardware

necessities that are necessary for interleaved multithreading.

Simultaneous multithreading uses parallelisms to superscalar fetch multiple threads on each CPU

cycle. The idea for simultaneous multithreading comes from the fact that threads create unused

issue slots when normally executed which are then allowed to be used for another thread on the

same CPU. In simultaneous multithreading’s single-thread mode, the CPU is operating at full

performance for that CPU core. This leads to easier handling of pipeline bubbles and long

latencies, but simultaneous multithreading is also the most complex to establish in a program. The

CPU also has hardware requirements that need to be met in order to use simultaneous

multithreading in which the CPU needs to be able to fetch more than one thread at a time for this

type of multithreading.

Since we chose C++ as our programming language for our Windows game, we researched what it

would take to optimize our game using multithreading. The native C++ language does not have

built-in support for multithreaded programs. However, Visual Studio has an external add-in library

called MFC (Microsoft Foundation Class), which allows C++ developers to use multithreading.

Developers can create their own threads to handle background or maintenance tasks. We were able

to use multithreading in our project by giving each thread that has to deal with object detection to

one core, while the game itself could run on another. Although multithreading was useful in

speeding up execution, debugging and testing became harder the more cores utilized.

6.5 Windows API
As stated previously in this document when discussing the Visual Studio IDE, Windows API is a

Microsoft development platform open to use for personal projects. The Windows API is a

collection of other APIs (application programming interfaces) that are collectively used in the

Window’s operating system. Microsoft offers developer support for Windows API through their

software development kit named Microsoft Windows SDK. The Microsoft Windows SDK,

specifically the one we used called Windows 10 SDK, contains libraries and functions that we

could use for our project. The SDK also includes documentation for describing functions’

applications and tools to simplify common tasks and better implement our communication

protocol. Windows 10 SDK is available for free for anyone with a legitimate Windows 10 Home,

Professional, Education, or Enterprise license which all of our group have access to. Table 46

below shows the twelve basic categories that all Windows API functions fall into which are

collected into groups and their purpose for a developer.

109

The API modules that are described in Table 46 mostly work with the interactions of the

application and Windows OS. Some APIs work with networking or external devices, but Microsoft

has developed different technologies for interactions with different Windows applications. COM

(Component Object Model) is the binary-interface that allows inter-process communication object

creation. These objects can be used across machines that the object was not created in. This could

useful if we ever need to communicate our application with another computer to host a game. To

easier create better and more elegant UI elements, Microsoft has the Universal Windows Platform

(UWP). Using the UWP for app design was another option when designing an app instead of using

just Windows API.

Some functions and APIs are no longer supported, or the features they implement could be

implemented more easily through the Visual Studio IDE or external libraries. APIs such as the

User Input or Diagnostics fall into these categories. Audio and some visual functions such as show

on screen were also easier thanks to these IDEs. Sensor data collection and interpretation of that

data is done with our printed circuit board instead of Windows API. We also do not have a need

for the security API as no personal or sensitive data is being accessed, sent, or received. Some of

the categories in Table 46 do not have functions and instead are programs or other recourses such

as Windows Installer that creates the installer exe for a client.

110

Table 46: Windows API Categories

Category General Purpose

User Interface

Displays output for the user, creates prompts for

user input, and handles all other tasks that handle

interactions between an application and the user.

Windows Environment (Shell)

Controls the windows of a user application. Can

set data from windows user such as audio, images,

and time on Windows files from a developer.

User Input and Messaging

Direct Manipulation pre-declares certain

behaviors for an application such as pan and

zoom. Direct Manipulation also handles putting

touch detection on a separate thread than the UI

thread.

Data Access and Storage

Handles transferring files and data between a

client and server, disk management, and offline

file management.

Diagnostics

This API handles troubleshooting applications by

debugging, error handling, and network

monitoring.

Graphics and Multimedia

Handles the audio, video, and graphics part of the

user application through the use of Core Audio

and DirectX. Allows developers to integrate their

own audio devices such as speakers.

Devices

Sends signals through a distributed bus for

controlling peripherals such as a temperature

sensors, LEDs, or cameras.

System Services

Gives the developer access to use the recourses of

the computer such as memory and threads for

their application. It also allows power

management to not draw too much power for the

application.

Security and Identity

Allows the developer to secure their application

through the use of encryption and passwords at

logon. Authentication of users is also included in

the features in this API for a developer.

Application Installation and Servicing

Windows Installer allows a developer to create an

installer that someone can download to install

their application. The installer can be set for the

application to get updates from the internet.

System Admin and Management

This API extends and enhances the functions

given by the Application Installation and

Servicing API. The restart manager and task

scheduler are two of the tools that a developer has

access to.

Networking and Internet

Enables the communication between a network

and an application. The communication protocols

supported include Wi-Fi, Bluetooth, and Wi-Fi

direct.

111

6.5.1 Application with our Project
In this section, we describe the various functions and methods that were useful to us from the

Windows API library.

6.5.1.1 User Interface Integration

The UI elements from this API that we used were focused on UI and a few error handling message

functions as described in Table 47.

Table 47: User Interface API Functions

Function Description

CreateMenu(): HMENU Creates an empty menu

InsertMenuItemA(HMENU hmenu,

UINT item, BOOL fByPosition,

LPCMENUITEMINFOA lpmi): BOOL

Inserts a new menu item to the handle identifier

for the menu with an identifier for position and

information of the new menu item. Returns

BOOL true on succeed. Must call

DrawMenuBar when changing the window.

DrawMenuBar(HWND hWnd): BOOL
Updates the window specified, true returns if

succeed.

EndMenu(): BOOL Ends the active menu. True returns if succeed

MessageBox(HWND hWnd, LPCTSTR

lpText, LPCTSTR lpCaption, UINT

uType): int

Creates a modal dialog box that has a set of

buttons, an owner window, a title, and text to be

displayed. The int that is returned describes

which button was pressed.

The menu functions allow us to set up the initial game with a menu and to change parameters of

the current game. The message boxes inform the player of any errors that occurs within the game

or options that the game master can choose. Animations and images are difficult to make using

this API so we used the Visual Studio IDE helper to create the other UI elements.

6.5.1.2 Windows Environment (Shell) Integration

The shell elements allowed us to create handles for specific icons, unique file names, and loading

a specific Windows profile on startup as shown in Table 48.

Table 48: Shell Functions

Function Description

ExtractIconA(HINSTANCE hInst,

LPCSTR pszExeFileName, UINT

nIconIndex): HICON

Returns a handle to the icon specified with the

string.

LoadUserProfileA(HANDLE hToken,

LPPROFILEINFOA lpProfileInfo):

USERENVAPI BOOL

Takes a token for the user and a struct for the

profile info and loads the specified user profile.

True returns if successful.

PathMakeUniqueName(PWSTR

pszUniqueName, UINT cchMax,

PCWSTR pszTemplate, PCWSTR

pszLongPlate, PCWSTR pszDir): BOOL

From a template, creates a unique file path that

a developer can use for creating new files. True

returns if successful.

112

Extracting icons helps us manage our non-physical characters such as monster creatures. We load

a profile automatically when starting the computer for our game. Since we use the host’s PC for

storing files with game data, creating unique paths is important to not overwrite files.

6.5.1.3 Data Access and Storage Integration

The functions in Table 49 let us manage offline files since our game runs solely on the host’s PC

instead of a database.

Table 49: Data Access and Storage Functions

Function Description

GetDiskFreeSpaceExA(LPCSTR lpDirectoryName,

PULARGE_INTEGER lpFreeBytesAvailableToCaller,

PULARGE_INTEGER lpTotalNumberOfBytes,

PULARGE_INTEGER lpTotalNumberOfFreeBytes):

BOOL

Gets the information required to create a

new directory and files on a host

computer by accessing the space available

to the game. True returns if successful.

CreateDirectoryExA(LPCSTR lpTemplateDirectory,

LPCSTR lpNewDirectory,

LPSECURITY_ATTRIBUTES lpSecurityAttributes):

BOOL

Creates a new directory to store game

files with the specified template to create

unique directories every time. Returns

errors if directory exists already or path

not found.

SetCurrentDirectory(LPCTSTR lpPathName): BOOL Takes the path of directory in the host’s

computer and changes the current

directory for the current process. True

returns if successful.

CreateFileA(LPCSTR lpFileName, DWORD

dwDesiredAccess, DWORD dwShareMode,

LPSECURITY_ATTRIBUTES lpSecurityAttributes,

DWORD dwCreationDisposition, DWORD

dwFlagsAndAttributes, HANDLE hTemplateFile):

HANDLE

Creates a new file to write data into using

the new file name, access security, and a

file template. Returns a handle to the new

file.

We need to check if the host’s PC has enough storage to handle our game and to create offline files

so the game can be run again for a future session if needed.

6.5.1.4 System Services Integration

Alongside the functions shown in Table 50 below, we must use a thread manager in the IDE to

give priority to threads.

113

Table 50: System Services Functions

Function Description

CreateThread(LPSECURITY_ATTRIBUTES

lpThreadAttributes, SIZE_T dwStackSize,

LPTHREAD_START_ROUTINE

lpStartAddress, __drv_aliasesMem LPVOID

lpParameter, DWORD dwCreationFlags,

LPDWORD lpThreadId): HANDLE

Creates a thread using the security

attributes, initial stack size and address, a

pointer to the variable being passed, and a

thread id intensifier. Returns a handle to

the new thread if success

AttachThreadInput(DWORD idAttach,

DWORD idAttachTo, BOOL fAttach): BOOL

Takes an identifier of the thread being

attached and the identifier of which thread

to attach to. Returns non-zero value if

succeeds

GetSystemTime(LPSYSTEMTIME

lpSystemTime): void

Takes a pointer to the system time struct,

SYSTEMTIME, and puts the current time

in that pointer’s data)

The first two functions are a part of the thread management that our project must perform to make

sure events don’t overlap or happen before they are scheduled to. System time is used as part of

our interface for displaying game information such as turn order and options.

6.6 GitHub
GitHub is a free hosting service provided by Microsoft that we used for developmental software

control during our project. GitHub offers collaboration services that are great for development

teams including version control, code review, and code merging. Version control allows a

developer to see all changes from one version of the code to another. This helps not only keep

track of who is contributing to the changes but also to roll back the version to a previously working

state if there is a program breaking bug. Code review allows people to purpose changes which will

then be either approved or denied for changing the overall code. This can also help with peer

review for syntax, logical, or semantic errors. Code merging allows the use of status checks to

make sure that branches of code are protected and will work before they are pushed onto the

project.

114

7.0 Test Plan
7.1 Hardware Testing
All components of the multi-touch table were tested independently to ensure functionality before

integrating them into larger subsystems. Each subsystem was then tested before being installed in

the table and integrated into the overall system. More realistic test cases were generated for the

entire system once then table was complete, detailed in section 7.3. These tests were carried out

indoors in a group member’s home as the table is designed to be used in a consumer’s home or

similar setting, and the UCF Senior Design Lab was not accessible due to campus closures.

7.1.1 IR Camera
Prior to modifying the camera to record the infrared spectrum, the appropriate driver was installed,

and the camera was connected to the testing PC using a USB 2.0 port to verify that a video feed

can be captured with the desired image quality and frame rate. This test is passed if the video feed

accurately captures the scene and the feed maintains at least 640 x 480 pixels at 30 frames per

second. The camera was pointed at and infrared LED to ensure that IR light could be detected after

the IR filter was removed. This test was passed as the camera feed showed a lit LED while human

eyes detected no such light. After replacing the IR-blocking filter with a visible spectrum-blocking

filter, the camera was pointed again at visible scenes to ensure the visible spectrum-blocking filter

was functional. This test was passed as the video feed was a uniform color when no infrared

sources are present. Finally, the IR light detection test was repeated to ensure the visible light-

blocking filter is not also blocking the infrared light, with the same pass/fail criterion.

7.1.2 IR Illumination
The IR LEDs were powered using a 5 V source and a breadboard circuit according to their

datasheet specifications, while the pre-built illuminators were powered by a wall outlet through an

included adapter. The illuminating setups were pointed at various objects and a white wall with an

area marked out to match the touch surface dimensions. The IR camera was used to verify that the

wall and objects were illuminated. This test was passed if the change in illumination when the

illuminators were on vs when they are off was easily distinguishable on the IR camera feed.

Adjustments were made to the LED array to illuminate the area as evenly as possible. This test

was repeated on the inside of the table once construction is complete, leading to the selection of a

pair of pre-built illuminators and their final positions.

7.1.3 Surface Material
Test images were projected onto the touch surface/diffusive material in a lamp-lit room to ensure

that rear projection would produce a visible image with clarity matching the requirements

specification. This test was passed if text 1” tall could be read from 2’ from the edge of the table

at a 30o angle. The material was then illuminated with the IR LEDs, and objects and fingertips

placed on the other side. The IR camera was used to ensure blobs would appear that could be used

for touch detection. This test was passed once blobs could be distinguished by the blob-detection

software in at least 95% of the test trials.

7.1.4 Power Supply
A multimeter was used to verify that the power supply provided the desired output voltages,

current, and wattages with an appropriate test load. This test was passed as the measurements fell

within +10% of the desired values.

115

7.1.5 Light Sensor
The light sensor was to be powered using a 9 V battery and a breadboard circuit according to its

datasheet specifications and placed under a lamp of adjustable brightness in an otherwise unlit

room. The lamp’s brightness would be varied repeatedly to ensure corresponding changes in

current flowing from the sensor in accordance with its datasheet. The test would be passed if

appropriate changes in current are observed. However, with the automatic brightness adjustment

feature discarded, this test was rendered useless.

7.1.6 Timer

7.1.6.2 Timer Display

The quad seven-segment LED display was tested using a breadboard circuit by first lighting each

relevant segment individually. When all segments lit as expected, this test was passed. The display

was then connected to the Raspberry Pi for program testing. First we displayed 20 pre-generated

random numbers, to ensure the display refreshed at an appropriate rate which avoided flickering,

and that multiplexing was properly implemented. When the displayed numbers matched what had

been sent, and no discernible flashing occurred, the test was passed. This test was also used to

confirm that functions for commanding various numbers are correct in the software.

7.1.6.2 Timer Buttons

Each button of the timer was tested to ensure that they could generate interrupts for the

microcontroller. The buttons were connected to visible LEDs in a breadboard circuit and used to

turn the LEDs on and off. The test was passed when the lights turned on and off as expected in all

cases. Once the microcontroller was acquired and the timer is programmed, each button was tested

to ensure they triggered events as expected on the software side, i.e. the power button turned the

timer on and off, the time increment buttons added the appropriate value to the “time” variable,

and the clear button reset the “time” variable to 0. Each button was pressed in each of the operating

modes. The test was passed when all observed behaviors matched expected behaviors detailed in

the timer design section. Further, the rollover events triggered by incrementing by 1 minute at

99:xx, incrementing by 1 second at yy:59, and incrementing by 1 second at 99:59 were tested for

5 randomly selected choices of xx and yy, to check that the rollover behavior was well-defined

and properly implemented. The test was passed when all rollovers occurred as expected.

7.1.7 Speakers
The speakers were connected to a PC and the sound effects chosen for the game were played to

verify that the speakers were functional prior to installation in the table. This test was passed when

the sound effects were relatively undistorted compared to the laptop’s built-in speakers. Once

integrated into the overall system the same sounds effects were played again to ensure nothing was

damaged and that the sounds were not muffled and made inaudible by the table. This test was

passed when the slight muffling could be countered by increasing the volume while maintaining

little to no discernible distortion.

7.1.8 Accent Lights
The accent lights were connected to the controller and an array of color and effect commands

which were to be used in the game were sent to the lights, such as “light orange for 1 second.”

This test was passed when accurate responses to the commands were verified.

116

7.1.9 Temperature Sensor and Fans
The fans are powered in accordance with their datasheet to make sure they are not dead on arrival.

This test was passed when the fans turned on as expected when powered. The temperature sensor

was tested by comparing its readings to those of a traditional thermometer for accuracy. This test

was passed when there was less than 1% difference in actual and measured temperature within the

operating range of the table. The temperature sensor was set to trigger a fan response in

temperatures exceeding the maximum operating temperature of 32oC. The temperature sensor was

then warmed using a finger to ensure the response triggered, then allowed to cool to ensure the

fans turn off again. The test was passed when the fans turned on and off when the temperature

sensor crossed the 32oC threshold.

7.1.10 Wireless Communications
The wireless connectivity which allows communication between mobile devices and the table was

tested by first ensuring that mobile devices could locate the access point and establish a connection.

This test was passed when our Android phones could find the access point and establish a

connection.

7.1.11 Table
The physical structure of the table was tested prior to the installation of critical components at risk

of damage. First uneven forces were applied to the sides and top of the table in the form of a single

individual pushing or pulling on specific areas. The test is passed when the table displayed no

visible damage and all structural elements remained securely attached. Maneuverability was

verified by having two healthy individuals move the table, before and after adding significant

electrical systems. The test was passed when the table was moved over 10 feet in one trip, and then

through a doorway without injury or damage. After installation the security of each critical

component’s fastening was tested by light pushing or pulling as appropriate. This test was passed

when the components remained fastened and did not move significantly unless designed to be

removed by such a force.

7.2 Software Testing
The software can be divided into two distinct groups for testing; the mobile app and the computer

applications. The mobile app was be built using Android Studio and within Android Studio is the

ability emulate the app. This allowed some testing to be done locally on a test machine for the app.

The computer applications required some methods to test the results of important functionality.

7.2.1 Mobile App Testing
Mobile app testing verified the functionality of the user interface on the app. Much of the

functionality of the app requires a communication link to the game software, and that was tested

in a later section. The user interface can be tested through the emulation software within Android

Studio. Each menu was executed and traced to verify that each window is appearing when it should

and disappearing when its purpose has finished. Local variables tied to each window were checked

to verify that the state of each window is maintained. This could be done by setting constant values

for different fields on each window that requires input data. Then we cycled through different

windows before coming back to each window with inputted data and verified that data was all

showing and not lost.

117

7.2.3 Communication of App to Game Software Testing
The mobile app connects to the computer program to set up a Bluetooth connection. The

connection can be tested by looping through the process and outputting the details of the

connection when the connection is made. The connection should be maintained throughout the

length of a full game. That connection can either be held with no disconnections or with a process

to reconnect upon a random disconnection. A testing procedure was created to initiate the

Bluetooth connection and have the computer output any connection drops without a successful

reconnection during the duration of the test.

The Bluetooth connection was only half of the protocols required for communication. The socket

connection also needed to be verified. This could be done by going through the procedures of

setting up a socket and outputting values that link to that socket channel. Data could be sent through

the channel to verify that each end can send and receive data. Max datagrams for each method

were passed to verify the integrity of files of all sizes. A series of transfers were taken, and transfer

timings were recorded. These timings were used to calculate the average transfer speed of 250

milliseconds as well as view the longest transfer time. The longest transfer time was roughly 500

milliseconds and the fastest transfer time was roughly 5 milliseconds. These are important metrics

when evaluating the functionality of the communication link. The speeds measured for each

message are fast enough to show no noticeable lag of communication.

7.2.4 Object Detection Testing
According to the engineering constraints in Table 2, there are three constraints related to the object

detection software that had to be be verified.

• Objects of 0.5” diameter or larger must be able to be detected

• An object location must be within 0.5” of its true location

• Object movement must be accurately detected with 95% or higher certainty

Testing the accuracy of the software required both physical testing as well as software testing. A

testing module was written to test features independent from the game logic. The game logic

constrains the functionality of the software to allow the software to directly relate to what is

required. Excluding the game logic allows the software to detect objects across the entire display

without any methods for interfering. However, the methods which turn coordinates into grid space

translations had to remain active to test correctness of that method. The testing module read all

objects and output the results into a file that could then be checked for accuracy. Physical

movement of objects on the display was required to test the software because the data input is

dependent on physical objects.

The playable area of the display should not have any dead zones where objects are not detectable

or incorrectly detected. Detection over the entire display had to be verified. To check for any issues

with the display, testing was done by placing objects in locations across the entire display and

checking if the software could detect each object. Verification was done by running the testing

module and verifying the output data with the input object locations. Testing the edge of the

playable area confirmed that the range of the camera was correct. An issue that may arise after

moving the table is that the calibration of the software may not be accurate enough the translation

will be incorrect. If this is the case, all translation data should be off by the same margin. This will

be a sign to recalibrate the system and restart testing.

118

To verify that objects of a certain size are detected, object of the minimum diameter threshold and

smaller were placed on the display and the data was analyzed to see if all objects were detected. If

the software can detect objects at the minimum size, it is able to detect objects of larger sizes. After

the coordinates are translated to grid placements, it was verified that the object is located with the

minimum range of its true location by comparing actual placements to detected placements. The

final constraint required movement of objects on the display. This requirement was tested by

physically creating movements on the display. To accurately test this condition, at least 100

movements had to be tested and at least 95 of those movements had to be detected. These

constraints were tested in differing environmental brightnesses to confirm that there would be no

noise distortion with the setup.

Once the detection over playable area was confirmed to be functioning as intended and constraints

had been verified, then the game logic was reenabled. Methods related to invalid piece placement

checking were tested by creating a loop that constantly looks for a player piece to be moved. For

each iteration of the loop, a piece could be either placed in an invalid location or a valid location

and the behavior of the software can be observed. Invalid locations could be defined as pieces

placed nearly equal in between two or more grid spaces. Valid locations could be defined as pieces

placed within the grid space or at most 40% in another space. The results of these actions should

have been in line with the protocols defined in the software design. Invalid locations should have

created a prompt to be fixed and valid locations should have been accepted. The tests were

independent of the mobile app; therefore, prompts could be outputted to either the console or an

output file. These tests were conducted over the entire playable area. An example of a specific case

used to observe the software’s behavior was placing a piece partially out of the playable area.

7.2.5 Save and Load Game Data Testing

There is one engineering constraint from Table 2 that relates to save and load game data.

• There must be at least 20 locations tracked and saved on exit

Since NPCs are digitally created and tracked, there is a maximum of 4 physical locations tracked.

All other locations are for the NPCs. Testing was conducted by placing the save and load game

methods within a loop. The software had access to the expected result files and be able to check

on each iteration. The goal was to verify that within the save and load game data methods there

were no bugs that caused corruption of the data or save files. By iterating many times in one set

time period, it was be observed whether there were any issues to the save files that may arise from

the code being run in frequent succession.

7.2.6 Display Testing

To test the display software, a testing script was made to manipulate the displayed image. Different

display images were generated by adding and removing overlaid images. The goal was for change

sin display images to not have a high latency and the placement of overlaid images to be in the

correct locations. To test this, the latency for creating an image with the greatest number of

components was timed. After the image was generated and displayed, the locations of each

component were recorded and compared to the test data. The latencies were also timed for adding

and removing a single component to verify that the methodology for creating the display image

was fast enough. The methods for displaying the move and attack ranges were tested by running

the methods in a loop. After each iteration, the displayed image will be checked for correctness.

119

When updating the map or starting a game, the starting locations for player pieces were

highlighted. These methods were also be tested to verify that the location given to the software

matches the location on the display.

7.3 System Testing
To test the overall systems of the table in a comprehensive fashion, several test cases representing

possible gameplay scenarios were generated. The extent of this testing was reduced from our

original intention due to constraints imposed by county lockdowns. The range of parameters

possible in the test cases are given in the following sections. 5 scenarios were generated, each by

randomly selecting a parameter value from each relevant category, as each scenario tests a wide

number of sub-cases. Unless otherwise noted, all choices are made by random selection with equal

probability from the possible options.

7.3.1 Game Options
In each game, there will be exactly one Game Master (GM) and one player (limited by available

mobile devise). There were also 1 – 2 maps set up for gameplay. The player had 1 – 3 characters

to choose from. Once the number of characters is chosen, then the specific traits of these characters

are determined. Then the number of maps is chosen, and a subset of the maps is set up.

7.3.2 Player Character Options
We assigned each player character a race and background. We considered 10 race options, some

of which have 2 or more subraces to choose from. Some races provided character features to

choose between. Each character’s race determines their maximum movement each turn. There

were also 15 backgrounds to choose from. Each background provided the character with a few

skills, items, and features. After race and background selection, the character was assigned 6 ability

modifiers in accordance with popular gaming conventions. Each modifier was determined from a

corresponding ability score. The ability scores were determined by generating a random integer

from a pseudo-normal distribution centered around 10.5 and limited to the range 3-18, then adding

race-based modifiers (for example, a tall race may have provided an increased strength score).

Once a race and background had been selected, a first class for the character was chosen, and the

character was given 1-20 levels in that class. Resulting class feature options, including equipment,

abilities, and subclass were selected. If the number of levels was great enough, some random ability

score increases may also have been applied. For each level the character gained, there was a 30%

chance of adding a random piece of equipment. Further, for each level the character gained, the

amount of currency in their inventory increased. These additions were made on the basis that a

high-leveled character has typically been part of a game long enough to have acquired greater

resources than a new, low-leveled character.

7.3.3 Map Options
Each game used between 1 and 3 maps. Each map was between 10 and 24 squares on the shorter

side, and 10 and 32 squares on the longer side. The background for the map was selected at random

from 10 images, cropped to the appropriate size given the number of squares and the projected

image resolution.

7.3.4 Game Master Options
For each map, between 1 and 5 non-player characters (NPCs) were created and controlled by the

game master. Each non-player character was selected at random from a list of 5options, with

duplicates allowed. Each of these 5 options provided the non-player character’s ability scores and

120

modifiers, a few skills, and possible actions such as attacks and spells that the character may take

on their turn. If the non-player character was a humanoid, rather than another type of creature (e.g.

a bear), they may also have been given some additional random equipment or abilities.

7.3.5 Game Simulation
All player and non-player characters were then placed randomly on the map by first selecting a

random x-coordinate and then a random y-coordinate. If the space was already occupied, by

another character, an object, or terrain obstacle (e.g. a tree, boulder, or river), the random selection

was repeated, until an unoccupied space was chosen. A turn order was randomly assigned to all

characters on the map. On their turn, each character took a random action which was available at

their current location, including potential movement to put targetable character in range of their

chosen action. This may have involved showing the character’s movement range, the range of their

chosen action/ability, and selecting the target for the action. This may have also triggered special

effects, such as sounds effects (a whoosh as a fireball spell is cast, a clang when a sword is used

to attack, etc.) and lighting effects (e.g. twinkling lights for spells, a warm glow as a fire is lit,

etc.). This process was repeated for 1-5 iterations, known hereafter as rounds, in which each player

character and non-player character takes a turn. Possible actions for each character included

picking up or dropping usable items to test the ability to modify a character’s inventory and

available actions during a game. The map was then saved, the table was powered off and on again,

and the map was reloaded. 1-3 more rounds were simulated to ensure no unexpected changes to

abilities occur during the saving/loading process. At the end of the game simulation, the map was

erased from the table, to ensure updates to character abilities and inventories were saved

independently.

121

8.0 User’s Guide
8.1 Desktop Application User’s Guide
The first menu is the Main Menu shown in Figure 45. By pressing the New Game button, the game

will begin the process of creating a new game. The Load Game button will bring up a menu that

displays a list of all previously saved games to choose from. The Quit button will close the

application.

Figure 45: Main Menu

The Pair Devices menu is shown in Figure 46. The Add New Device button will spawn a dialog

box that will allow the user to pair an unknown device to the computer. The Refresh button will

rescan for nearby known devices and display them in the list. The Ready button should be pressed

once all unknown devices have been paired and it will move on to the next menu to choose a Game

Master. The Main Menu button will return the game to the Main Menu.

Figure 46: Pair Devices

122

The choose a Game Master menu is shown in Figure 47. A Game Master can be chosen by

selecting one of the connected devices in the Connected Device List. The device chosen will be

displayed in the region titled GM Selected. Once a GM is selected, the players can press the Ready

button to move on to map selection. The refresh button will reload the list to display any newly

connected devices. The Main Menu button will return the game to the Main Menu.

Figure 47: Choose a Game Master

The Map Selection menu is shown in Figure 48. The Open Map button will pull up a Windows

open file dialog box. Any image on the host computer can be chosen as the playing map. Once a

map has been chosen, the players should select the Ready button to display the chosen map. The

Main Menu button will return the game to the Main Menu.

Figure 48: Map Selection

123

Once the map is shown, it will be the image selected in the previous menu with a grid overlay.

Some game map variations are shown in Figure 49. These variations show different NPCs

spawned. Also, the Move and Attack valid regions.

Figure 49: Map Variations

By pressing the “ESC” key on the keyboard a pause menu will appear. That menu is shown in

Figure 50. There are five different options that the players can choose from. Resume Game will

close the pause menu and continue with the game. Save Game will save the current state of the

game. Change Map will bring the game back to the map selection menu shown in Figure 50. Main

Menu will bring the game back to the main menu. Quit to Desktop will close the application.

Figure 50: Pause Menu

The Load Game Menu shown in Figure 51 is displayed by selecting Load Game on the Main

Menu. The players can select from the list of Saved Games. The red “X” will prompt the players

to delete the save file. The Next and Previous page buttons will navigate through multiple pages

of save files if they exist. Once a save is selected the Ready button can be selected to move on to

selecting the Game Master device. The Main Menu button will bring the game back to the Main

Menu.

124

Figure 51: Load Menu

8.2 Android Application User’s Guide
The first screen after the splash screen is the Bluetooth connection screen shown below in Figure

52. By pressing the Enable Bluetooth and Make Discoverable buttons, the android phone can be

initially paired with the PC. Once you click the List Paired Devices button, it will display the

devices paired to the android phone that will then be used to establish a socket connection. Click

on the name of the PC and a connection will be attempted to be created. Once the connection is

successful, The “Connection Established” message appears and the Join Session button can be

clicked to move onto the next screen. There is also an Offline Mode button that allows the player

to use the app completely without Bluetooth and will save the player’s information to the phone

instead of the PC.

Figure 52: Bluetooth Connection Screen

125

The choose role screen is where the user is taken after they join the session, which is shown below

in Figure 53. The information for the players and GM is grabbed from the PC via Bluetooth, and

if any characters are available, they will be clickable. A player can choose between GM and player

character, but the Game session should only have one GM, so multiple GMs should not be chosen.

Click on a role to move onto the next screen.

Figure 53: Choose Role Screen

The “plus” button on the choose role screen brings the user to the character creation screen

presented in Figure 54 below. The player can input their character’s name, class, race, and stats

here for their new character. They may also choose up to four skills to be proficient in. Proficiency

in a skill adds the skill’s modifier with a character’s proficiency bonus. After clicking on the Finish

Character Creation button, the user is taken back to the choose role screen where the new character

will be available.

Figure 54: Character Creation Screen

126

When choosing a character, the user is taken to a four tabbed display screen shown below in Figure

55. The left most tab displays the character’s name, class, race, level, and stats. The user can click

on any of these stats to changes them. The text is either editable or a pop up will display prompting

the user to change the stats. The Quick Roll A D20 button will automatically roll a d20 dice and

show the result on the bottom of the screen. The second tab, left middle, is the saves tab where a

player can see their proficiencies in skills and make a saving through by choosing a skill in the

“Select Skill” dropdown menu and hitting the Roll Save button. The result will display in a toast

message at the bottom of the screen and is calculated by: D20 + skill modifier + character

proficiency bonus (if proficient in skill selected).

The third tab, right middle, displays the character’s attacks and the actions they can take during

their turn. Move, Place, End Turn, and attack buttons all do nothing when it is not the character’s

turn, but will allow the player to do those actions in the PC when it is their turn. Holding the Move

button will bring up a popup box to change the character’s speed and the New Attack button will

add a new attack button to the character. The last tab, right most, is for a player to store information

about their character and to save their character to the PC with the most recent information with

the Save Character button.

Figure 55: Player Screens

When choosing the GM role, the user is taken to a four tabbed display screen shown below in

Figure 56. On the first tab, a GM can select an encounter, which will clear the PC screen of the

previous encounter and set the NPCs in that encounter in the third tab. The GM can select the New

Encounter button which will pop up the dialog to create a new encounter with NPCs from the list

in the second tab. The second tab, NPC, displays a bestiary of all the NPCs currently available in

the game session. When clicking the name of the NPC, information regarding that NPC will be

displayed under it, clicking it again will hide the information. The “plus” button will bring up a

pop up that allows the user to specify the name, stats, and attacks of a new NPC which will then

be displayed in alphabetical order under Bestiary.

127

Figure 56: GM Screens

The third tab, Turn, displays the NPCs and players in the selected encounter. The GM can change

the initiative for the characters and hit the Begin button which will order the turns by highest

initiative first and begin the encounter. The right arrow button will make it the next character’s

turn in the turn order. Clicking on an NPC, Pirate Captain in this case, will bring the GM to the

NPC control screen displayed in Figure 57 below. In the NPC control screen the GM controls the

NPC similarly to how a player controls their character. The GM can change the name, stats, and

attacks of the NPC selected and if it is this character’s turn, they can move, place, or attack in the

PC app. The last tab in Figure 56, Info, is where the GM stores information about the game session

and game world. The Save Game button will also initiate the save game protocol in the PC app

which will save the most recent information for all players and the GM.

Figure 57: NPC Control Screen

128

9.0 Budget
With our design complete, a bill of materials is given in Table 51.

Table 51: Bill of Materials

Item Source Cost Number Tax Shipping Total
BenQ MX810ST

Projector

ebay - voltarea $ 178.76 1 $ - $ - $ 178.76

PS Eye Camera Amazon $ 8.70 1 $ - $ - $ 8.70

Camera Driver Code Lab $ 3.00 1 $ - $ - $ 3.00

Floppy Disk Donated $ - 1 $ - $ - $ -

Drafting Paper Blick Art $ 14.94 1 $ 1.82 $ 9.95 $ 26.71

PCBs JLCPCB $ 10.00 1 $ - $ 17.70 $ 27.70

Assorted PCB

Components

LCSC via

JLCPCB,

Donated

 $ 17.15 1 $ - $ 19.32 $ 36.47

Tendelux IR

Illuminator

Amazon $ 19.98 2 $ - $ - $ 39.96

7-Segment LED

Display

Digi-Key $ 3.96 1 $ - $ - $ 3.96

Raspberry Pi 3 Donated $ - 1 $ - $ - $ -

TLC5940 DIP nooelec $ 12.95 1 $ - $ - $ 12.95

RGB LEDs EDGELEC $ 8.99 1 $ - $ - $ 8.99

12V Fans (2 pack) Pano-Mounts $ 12.99 1 $ - $ - $ 12.99

Arduino Mega Elegoo $ 14.99 1 $ - $ - $ 14.99

RFP12N10LMOSFETS Riddle

Electronics

 $ 6.95 1 $ - $ - $ 6.95

12V 3A AC Adapter IBERLS $ 11.89 1 $ - $ - $ 11.89

TABLE

1/4" x 48" x 96" ply Home Depot $ 22.92 2 $ 2.98 $ - $ 48.82

1/2" x 48" x 48" ply Home Depot $ 16.08 1 $ 1.05 $ - $ 17.13

2x2 (leg) Lowe's $ 6.30 4 $ 1.64 $ - $ 26.84

1x4 (inner brace) Lowe's $ 7.86 2 $ 1.02 $ - $ 16.74

1x3 (top frame) Lowe's $ 6.76 2 $ 0.88 $ - $ 14.40

Screws Lowe's $ 2.58 3 $ 0.50 $ - $ 8.24

Nails Ace Hardware $ 2.75 1 $ 0.18 $ - $ 2.93

Acrylic Professional

Plastics

 $ 51.99 1 $ 5.46 $ 31.95 $ 89.40

Styrofoam Block Michaels $ 12.99 1 $ 0.84 $ - $ 13.83

Curtain Rod Walmart $ 4.99 1 $ 0.32 $ - $ 5.31

Blackout Curtain Donated $ - 1 $ - $ - $ -

Grand Total

 $ 16.69 $ 78.92 $ 637.66

This bill of materials does not include small items such as resistors and wires, which we were able

to obtain for free or already owned. We also exclude tools which were used in construction such

as soldering irons, drills, and saws, which were already owned by group members or donated. Our

bill of materials comes to a total of just under $640, meeting our target of $700, which was updated

from $600 as we decided to improve certain components during construction.

129

10.0 Milestones
The milestones are broken into two semesters, senior design 1 and senior design 2. Research,

design, and testing milestones of the project in senior design 1 are shown in Table 52, and

integration milestones for senior design 2 are described in Table 53.

Table 52: Senior Design 1 Milestones

Number Task Member Start End Status

1 Gather Project Ideas Group 8/26/2019 9/2/2019 Done

2 Research Viability of Ideas Group 9/2/2019 9/9/2019 Done

3 Role Assignment and Idea Choice Group 9/9/2019 9/12/2019 Done

4 Divide and Conquer Group 9/12/2019 9/20/2019 Done

5 60 Page Draft Group 9/23/2019 11/1/2019 Done

6 Gather Project Requirements Erica 9/23/2019 9/30/2019 Done

7 Research Previous Projects Gabriel 9/23/2019 10/7/2019 Done

8 Research Hardware and Software

Standards

Logan/

Gabriel

9/23/2019 10/14/2019 Done

9 Research and Design Initial

Software Technologies

Daniel 9/23/2019 10/21/2019 Done

10 Research Touch Detection Erica 9/30/2019 10/14/2019 Done

11 Research Microcontrollers,

Cooling Systems, Timers, and

Communication Protocols

Logan 10/7/2019 10/28/2019 Done

12 Research Programing

Environment and Tools

Gabriel 10/14/2019 10/28/2019 Done

13 Describe Hardware Prototyping

and Testing

Erica 10/14/2019 10/28/2019 Done

14 Create Initial Software Testing

Plan

Daniel 10/21/2019 10/28/2019 Done

15 100 Page Draft Group 11/1/2019 11/15/2019 Done

16 Realistic Design Constraints Gabriel 11/1/2019 11/12/2019 Done

17 Initial Prototyping and Ordering

of Hardware Components

Erica/

Logan

11/1/2019 11/12/2019 Done

18 Expanding on Software Design

and Testing Procedures

Daniel 11/1/2019 11/12/2019 Done

19 Initial User Interface Design Erica 11/7/2019 11/12/2019 Done

20 Final Document Due Group 11/15/2019 12/4/2019 Done

21 Testing of Hardware Components Logan/

Erica

11/15/2019 11/22/2019 Done

22 PCB Design Finalization Logan 11/15/2019 11/28/2019 Done

23 External Software Library

Research

Daniel/

Gabriel

11/15/2019 11/28/2019 Done

24 Physical Table Design and

Prototype

Erica 11/15/2019 11/28/2019 Done

25 Expansion on Software Design Daniel 11/15/2019 11/28/2019 Done

130

Table 53: Senior Design 2 Milestones

Number Task Member Start End Status

1 Build and Test Hardware

Subsystems

Logan/

Erica

12/5/2019 1/10/2020 Done

2 Initial Software Writing and

Debugging for Windows and

Android App

Daniel/

Gabriel

12/5/2019 1/10/2020 Done

3 Build Physical Table Group 12/5/2019 1/10/2020 Done

4 Final Report Group 1/10/2020 4/22/2020 Done

5 Combine Subsystems Into Initial

Prototype

Group 1/10/2020 1/20/2020 Done

6 Testing and Subsequent Redesign

of Parts if Necessary

Group 1/20/2020 3/16/2020 Done

7 Finalize Prototype Group 3/16/2020 4/10/2020 Done

8 Critical Design Review Group 2/1/2020 2/11/2020 Done

9 Midterm Demo Group 3/1/2020 3/20/2020 Done

10 Conference Paper Group 4/1/2020 4/13/2020 Done

11 Final Presentation Group 4/1/2020 4/13/2020 Done

12 Final Documentation Group 4/10/2020 4/21/2020 Done

13 Website Group 4/10/2020 4/21/2020 Done

i

Appendices
Appendix A: Copyright Permissions

Game Logo and Backgrounds
Modified from https://pixabay.com/illustrations/wizard-magic-magician-mystery-1454385/ and

other pages on https://pixabay.com/ in accordance with Pixabay License.

Images and Videos on Pixabay are made available under the Pixabay License on the following terms. Under the Pixabay License

you are granted an irrevocable, worldwide, non-exclusive and royalty free right to use, download, copy, modify or adapt the

Images and Videos for commercial or non-commercial purposes. Attribution of the photographer or Pixabay is not required but is

always appreciated.

The Pixabay License does not allow:

a. sale or distribution of Images or Videos as digital stock photos or as digital wallpapers;

b. sale or distribution of Images or Videos e.g. as a posters, digital prints or physical products, without adding any

additional elements or otherwise adding value;

c. depiction of identifiable persons in an offensive, pornographic, obscene, immoral, defamatory or libelous way; or

d. any suggestion that there is an endorsement of products and services by depicted persons, brands, and organisations,

unless permission was granted.

Please be aware that while all Images and Videos on Pixabay are free to use for commercial and non-commercial purposes,

depicted items in the Images or Videos, such as identifiable people, logos, brands, etc. may be subject to additional copyrights,

property rights, privacy rights, trademarks etc. and may require the consent of a third party or the license of these rights -

particularly for commercial applications. Pixabay does not represent or warrant that such consents or licenses have been obtained,

and expressly disclaims any liability in this respect.

Figure 20
https://commons.wikimedia.org/wiki/File:UART_XBee_Data_format.jpg

This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.

You are free:

• to share – to copy, distribute and transmit the work

• to remix – to adapt the work

Under the following conditions:

• attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You

may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

• share alike – If you remix, transform, or build upon the material, you must distribute your contributions under

the same or compatible license as the original.

Figure 21
https://commons.wikimedia.org/wiki/File:I2C.svg

This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.

You are free:

• to share – to copy, distribute and transmit the work

https://pixabay.com/illustrations/wizard-magic-magician-mystery-1454385/
https://pixabay.com/
https://pixabay.com/service/license/
https://commons.wikimedia.org/wiki/File:UART_XBee_Data_format.jpg
https://en.wikipedia.org/wiki/en:Creative_Commons
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/share-your-work/licensing-considerations/compatible-licenses
https://commons.wikimedia.org/wiki/File:I2C.svg
https://en.wikipedia.org/wiki/en:Creative_Commons
https://creativecommons.org/licenses/by-sa/3.0/deed.en

ii

• to remix – to adapt the work

Under the following conditions:

• attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You

may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

• share alike – If you remix, transform, or build upon the material, you must distribute your contributions under

the same or compatible license as the original.

This licensing tag was added to this file as part of the GFDL licensing update.

Figure 22
https://commons.wikimedia.org/wiki/File:SPI_three_slaves_daisy_chained.svg

This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.

You are free:

• to share – to copy, distribute and transmit the work

• to remix – to adapt the work

Under the following conditions:

• attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You

may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

• share alike – If you remix, transform, or build upon the material, you must distribute your contributions under

the same or compatible license as the original.

This licensing tag was added to this file as part of the GFDL licensing update.

Figure 23
https://commons.wikimedia.org/wiki/File:Bluetooth_network_topology.png

This file is licensed under the Creative Commons Attribution-Share Alike 2.5 Spain license.

You are free:

• to share – to copy, distribute and transmit the work

• to remix – to adapt the work

Under the following conditions:

• attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You

may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

• share alike – If you remix, transform, or build upon the material, you must distribute your contributions under

the same or compatible license as the original.

Figure 24
https://commons.wikimedia.org/wiki/File:Wlan_www.png

This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.

https://creativecommons.org/share-your-work/licensing-considerations/compatible-licenses
https://meta.wikimedia.org/wiki/Licensing_update
https://commons.wikimedia.org/wiki/File:SPI_three_slaves_daisy_chained.svg
https://en.wikipedia.org/wiki/en:Creative_Commons
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/share-your-work/licensing-considerations/compatible-licenses
https://meta.wikimedia.org/wiki/Licensing_update
https://commons.wikimedia.org/wiki/File:Bluetooth_network_topology.png
https://en.wikipedia.org/wiki/en:Creative_Commons
https://creativecommons.org/licenses/by-sa/2.5/es/deed.en
https://creativecommons.org/share-your-work/licensing-considerations/compatible-licenses
https://commons.wikimedia.org/wiki/File:Wlan_www.png
https://en.wikipedia.org/wiki/en:Creative_Commons
https://creativecommons.org/licenses/by-sa/4.0/deed.en

iii

You are free:

• to share – to copy, distribute and transmit the work

• to remix – to adapt the work

Under the following conditions:

• attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You

may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

• share alike – If you remix, transform, or build upon the material, you must distribute your contributions under

the same or compatible license as the original.

Figure 31
https://commons.wikimedia.org/wiki/File:World_Wide_Smartphone_Sales.png

This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.

You are free:

• to share – to copy, distribute and transmit the work

• to remix – to adapt the work

Under the following conditions:

• attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You

may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

• share alike – If you remix, transform, or build upon the material, you must distribute your contributions under

the same or compatible license as the original.

Figure 32
https://developer.android.com/about/dashboards

For the purposes of licensing, the content of this web site is divided into two categories:

• Documentation content, including both static documentation and content extracted from source code modules, as well

as sample code, and

• All other site content

Unless otherwise noted, the documentation on this site, including any code shown in it, is made available to you under

the Apache 2.0 license, the preferred license for all parts of the of the Android Open Source Project.

Apache 2.0 is a commercial and open-source-friendly software license. The majority of the Android platform and documentation

is licensed under the Apache 2.0 license. While the project strives to adhere to the preferred license, there may be exceptions,

such as for documentation (code comments) extracted from a source code module that is licensed under GPLv2 or other license.

In those cases, the license covering the source code module will apply to the documentation extracted from it. Source code

modules that are used in the generation of documentation and have licenses that require attribution can be found in

the Documentation Licences section below.

Third-party components of this site such as JavaScript libraries are included in the Android Open Source Project under the

licenses specified by their authors. For information about these licenses, refer to the source files in the Android Open Source

Project.

All other content on this site, except the license documents themselves and as otherwise noted, is licensed under the Creative

Commons Attribution 2.5 license.

You may use the content of this site in any way that is consistent with the specific license that applies to the content, as described

above. For content licensed under Creative Commons Attribution 2.5, we ask that you give proper attribution.

https://creativecommons.org/share-your-work/licensing-considerations/compatible-licenses
https://commons.wikimedia.org/wiki/File:World_Wide_Smartphone_Sales.png
https://en.wikipedia.org/wiki/en:Creative_Commons
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/share-your-work/licensing-considerations/compatible-licenses
https://developer.android.com/about/dashboards
http://www.apache.org/licenses/LICENSE-2.0
https://developer.android.com/license#doclicenses
http://creativecommons.org/licenses/by/2.5/
http://creativecommons.org/licenses/by/2.5/
https://developer.android.com/license#attribution

iv

Figure 33
https://developer.android.com/studio/write/layout-editor

For the purposes of licensing, the content of this web site is divided into two categories:

• Documentation content, including both static documentation and content extracted from source code modules, as well

as sample code, and

• All other site content

Unless otherwise noted, the documentation on this site, including any code shown in it, is made available to you under

the Apache 2.0 license, the preferred license for all parts of the of the Android Open Source Project.

Apache 2.0 is a commercial and open-source-friendly software license. The majority of the Android platform and documentation

is licensed under the Apache 2.0 license. While the project strives to adhere to the preferred license, there may be exceptions,

such as for documentation (code comments) extracted from a source code module that is licensed under GPLv2 or other license.

In those cases, the license covering the source code module will apply to the documentation extracted from it. Source code

modules that are used in the generation of documentation and have licenses that require attribution can be found in

the Documentation Licences section below.

Third-party components of this site such as JavaScript libraries are included in the Android Open Source Project under the

licenses specified by their authors. For information about these licenses, refer to the source files in the Android Open Source

Project.

All other content on this site, except the license documents themselves and as otherwise noted, is licensed under the Creative

Commons Attribution 2.5 license.

You may use the content of this site in any way that is consistent with the specific license that applies to the content, as described

above. For content licensed under Creative Commons Attribution 2.5, we ask that you give proper attribution.

https://developer.android.com/studio/write/layout-editor
http://www.apache.org/licenses/LICENSE-2.0
https://developer.android.com/license#doclicenses
http://creativecommons.org/licenses/by/2.5/
http://creativecommons.org/licenses/by/2.5/
https://developer.android.com/license#attribution

v

Works Cited

[1] "Power Supply Standards, Agencies and Marks | CUI Inc," 2018. [Online]. Available:

https://www.cui.com/catalog/resource/power-supply-safety-standards-agencies-and-

marks.pdf. [Accessed 31 October 2019].

[2] "NASA Technical Standard: Soldered Electrical Connections," December 1997. [Online].

Available: https://nepp.nasa.gov/docuploads/06AA01BA-FC7E-4094-

AE829CE371A7B05D/NASA-STD-8739.3.pdf. [Accessed 31 October 2019].

[3] "Developer Policy Center," [Online]. Available: https://play.google.com/about/developer-

content-policy/. [Accessed 31 October 2019].

[4] "Core App Quality - Android Developers," Android Developers, [Online]. Available:

https://developer.android.com/docs/quality-guidelines/core-app-quality?hl=en. [Accessed

31 October 2019].

[5] "Google C++ Style Guide," [Online]. Available:

https://google.github.io/styleguide/cppguide.html. [Accessed 31 October 2019].

[6] W. A. Initiative, "Web Content Accessibility Guidelines (WCAG) Overview," 22 June

2018. [Online]. Available: https://www.w3.org/WAI/standards-guidelines/wcag/.

[Accessed 7 November 2019].

[7] C. Herod, N. Boucher and R. Timones, "UCF Senior Design Group IV: MTPT," 2009.

[Online]. Available: http://www.eecs.ucf.edu/seniordesign/su2009fa2009/g04/. [Accessed

31 October 2019].

[8] C. Rodrigue, P. Murphy, J. Lundstrom and R. Mulvaney, "Smart Table - UCF ECE Senior

Design Group 34," 2017. [Online]. Available:

http://www.eecs.ucf.edu/seniordesign/fa2016sp2017/g34/index.html. [Accessed 31

October 2019].

[9] J. Perardel, "Magic Frame : Turn Everything into a Touch Area," 5 September 2017.

[Online]. Available: https://hackaday.io/project/27155-magic-frame-turn-everything-into-

a-touch-area. [Accessed 31 October 2019].

[10] "NUI Group Community Wiki - Diffused Illumination (DI)," NUI Group, 6 December

2009. [Online]. Available: http://wiki.nuigroup.com/Diffused_Illumination. [Accessed 31

Oct 2019].

[11] "NUI Group Community Wiki - Diffused Surface Illumination," NUI Group, 5 January

2009. [Online]. Available: http://wiki.nuigroup.com/Diffused_Surface_Illumination.

[Accessed 31 October 2019].

[12] How to Control a Ton of RGB LEDs with Arduino & TLC5940 - YouTube.

vi

[13] TLC5940 16-Channel LED Driver w/EEprom DOT Correction & Grayscale PWM Control

| TI.com.

[14] Difference Between Linear Regulator and Switching Regulator | Electronics Basics |

ROHM.

[15] IEEE SA, "IEEE 802.11-2016 - IEEE Standard for Information technology--

Telecommunications and information exchange between systems Local and metropolitan

area networks--Specific requirements - Part 11: Wireless LAN Medium Access Control

(MAC) and Physical Layer (PH," 2016.

[16] "Community Core Vision 1.5," NUI Group, [Online]. Available:

http://ccv.nuigroup.com/#about. [Accessed 31 October 2019].

[17] L. Bender, "Scene 1.0 - Background subtraction and object tracking with TUIO," [Online].

Available: http://scene.sourceforge.net. [Accessed 31 October 2019].

[18] "TouchLib | A Multi-Touch Development Kit," NUI Group, [Online]. Available:

http://nuigroup.com/touchlib/. [Accessed 31 October 2019].

[19] "TUIO Protocol Specification 1.1," [Online]. Available:

https://www.tuio.org/?specification. [Accessed 31 October 2019].

[20] "App Store - Support - Apple Developer," Apple Inc., 2019. [Online]. Available:

https://developer.apple.com/support/app-store/. [Accessed 31 October 2019].

[21] The QT Company, "QT | Cross-platform software development for embedded and

desktop," The QT Company, 2019. [Online]. Available: https://www.qt.io/. [Accessed 11

October 2019].

[22] "wxWidgets: Cross-Platform GUI Library," wxWidgets, 2019. [Online]. Available:

https://www.wxwidgets.org/. [Accessed 11 October 2019].

[23] "Build a UI with Layout Editor | Android Developers," Android Developers, [Online].

Available: https://developer.android.com/studio/write/layout-editor. [Accessed 31 October

2019].

[24] "OpenCV," [Online]. Available: https://opencv.org. [Accessed 11 November 2019].

[25] "Java Swing Tutorial," JavaTpoint, 2018. [Online]. Available:

https://www.javatpoint.com/java-swing. [Accessed 31 October 2019].

[26] [Online]. Available: https://stackoverflow.com/.

[27] "Wi-Fi Direct | Wi-Fi Alliance," Wi-Fi Alliance, 2010. [Online]. Available:

https://www.wi-fi.org/wi-fi-direct. [Accessed 31 October 2019].

vii

[28] "Wi-Fi Direct | Android Open Source Project," Android Developers, [Online]. Available:

https://developer.android.com/guide/topics/connectivity/wifip2p. [Accessed 31 October

2019].

[29] "Multipeer Connectivity | Apple Developer Documentation," Apple Inc., 2019. [Online].

Available: https://developer.apple.com/documentation/multipeerconnectivity. [Accessed 31

October 2019].

[30] I. (. Wizards of the Coast, "media.wizards.com," 2000. [Online]. Available:

https://media.wizards.com/2016/downloads/DND/SRD-OGL_V5.1.pdf. [Accessed 7

November 2019].

