
Gaming Wizard: A Smart Table

for Tabletop Gaming

Gabriel Holguin, Daniel Kalley, Erica Lindbeck,

Logan Taylor

Dept. of Electrical Engineering and Computer

Science, University of Central Florida, Orlando,

Florida, 32816-2450

Abstract — Our project seeks to address the needs of the

modern-day tabletop gamer. The Gaming Wizard provides a
digital system in the form of an optical touchscreen table and
an Android app, which emulate the traditional gaming

elements of a battle map and sheets of character information.
This system enables users to efficiently set up and play games
as part of a standard gaming group and improves gameplay

beyond the traditional mediums of play with features such as
sound and lighting effects. This project incorporates
significant phone application, computer software, and

microcontroller programming elements, in addition to
numerous core and peripheral hardware systems.

Index Terms — Bluetooth, image processing, infrared

imaging, microcontrollers, multithreading.

I. INTRODUCTION

In a tabletop role-playing game, each player controls at

least one character and cooperates with other players in

their party to complete a series of adventures known as a

campaign. Traditionally, the physical representation of

game settings consists of a gridded map and figures

representing the landscape and characters, respectively.

Paper character sheets are used to keep track of character

abilities, and dice are used to determine the outcomes of

events in the game. During gameplay, keeping track of the

locations of characters and monsters on the board with

respect to each other is vital to various mechanics such as

combat, using magic, and interacting with the

environment. However, problems arise such as

remembering character locations between game sessions

or when a piece falls over. Further, counting grid squares

to determine distances each turn often causes delays in

gameplay and can be a matter of contention when paths do

not lie along grid lines.

Another issue that arises with tabletop gaming is the

large amount of information that needs to be tracked. This

includes things like character attributes, skills, equipment,

and the amount and type of dice needed to be rolled for an

interaction. These values evolve over the course of the

game which normally requires a large amount of erasing

and rewriting. Given that an average game involves four

players and a game master, this information is tedious to

track and slows down gameplay.

Our project seeks to solve these issues by using a

“smart” game board that can recognize multiple character

locations, represented by physical figures on the game

board, track that information, and display the relevant

information both on the board and in a phone application.

Ideally when a character is moved on the board, the

application software recognizes this and asks for a

confirmation. The application saves and remembers

character locations even after being closed, which greatly

reduces the time it takes to reset a board between

meetings.

Additionally, the application tracks character

information such as attributes and combat statistics. This

creates a paperless game that removes the need for

constant erasing and rewriting. Combining this with the

location information also greatly reduces the time it takes

to perform combat interactions, as the board can

automatically display the range of an ability or spell once

it is selected by the user. Dice rolls can also be simulated

in the software, removing the problems of needing a large

surface to roll dice on and losing dice.

The proposed smart table hosts the game from a user’s

laptop and communicates with players’ phones using

Bluetooth connections. From their phones, players and

game masters (GMs) use a menu system to create

characters, view and modify their stats, and trigger events

on the table’s surface corresponding to character

movements and abilities. Further, a character’s statistics

are saved on the corresponding player’s phone, to reuse

the character on different maps that may be loaded onto

the board for different scenarios. All character and digital

token locations on the board are saved to the GM’s phone

or computer when the table is shut down, allowing the

group to recreate the game board quickly in subsequent

game sessions. The GM has access to additional options

such as map selection and enemy creation that are not

accessible to players. The current map, along with

additional relevant graphical information are projected

onto the table’s surface from the interior of the table.

II. HARDWARE

A. Multi-Touch Surface Scheme

The top of the smart table consists of a multi-touch

surface which tracks multiple (primarily stationary) game

pieces, in addition to processing touch inputs by users. To

achieve this functionality, we implemented an optical

scheme in the form of rear diffused illumination (rear DI).

The general methods of this scheme are detailed in Fig. 1

below.

Fig. 1. Generalized rear diffused illumination setup

The surface itself consists of a sheet of clear glass or

acrylic, with a diffusive material layered either above or

below for image projection and light diffusion. The visual

display is generated by a projector underneath the surface

(not pictured). Additionally, infrared light is projected

upwards and is partially transmitted through the surface.

When an object (or user’s finger) is placed on the surface,

all the infrared light that would be otherwise transmitted

through the area covered area is reflected downwards.

This creates a bright spot known as a “blob” in the video

feed of an infrared-sensitive camera pointed at the surface.

Tracking software can then process the blob-filled image

to create a map of touch input and object locations.

B. Surface Materials

For our system, we used a clear cast acrylic and a sheet

of 0.003” drafting film to make the table surface. The

clear cast acrylic provided a stronger structure than glass

while remaining lightweight and completely transparent.

Drafting film was selected based on effective use in

similar hobby projects, and after testing with multiple

thicknesses the 0.003” sheet was selected to provide

sufficiently high contrast for blob detection.

C. Illumination

To illuminate the screen, we first tested several LEDs

within the 850-940 nm spectrum, in several

configurations. These configurations were evaluated to

determine which arrangement would provide the most

even illumination, reducing the chances of hot spots

causing false inputs. Upon installing the rest of the

multitouch hardware, however, a large array was deemed

impractical. Thus, we decided to install infrared

illuminators designed for use with night-vision security

cameras on opposite ends of the table’s interior, with

smaller sheets of diffusive material placed across them to

improve the evenness of the resulting illumination. These

illuminators were selected for their small footprint,

included power supplies, and relatively even baseline

illumination.

D. Infrared Camera

To record the blobs and thus detect touch inputs to the

table, a camera which viewed only the infrared spectrum

was required. The PlayStation Eye camera was selected

based on price and because its use in previous projects

meant there was ample reference material for conversion

from a visible light camera to an infrared camera, as well

as a reliable driver for Windows PCs for and additional

$3. Further, the camera can record at a resolution of 640 x

480 at a rate of 60 frames per second by default, and the

Windows driver we acquired allows us to select the

desired frame rate, so it met our specifications nicely. The

infrared-light-blocking filter was removed and then

replaced by visible-light-blocking material. Floppy disk

material was chosen as the visible-light-blocking filter as

we had some donated freely to the project and it worked

well in testing.

E. Projector

To display images onto the touchscreen for the game,

using the rear DI method, a projector of some description

was necessary. As the table is restricted in height, either a

short throw projector or a regular projector combined with

a mirror to increase the throw distance was required.

Despite the increased cost, a short throw projector was

preferred as the implementation would be simpler and

more reliable than the mirror method, as well as providing

more flexibility in the dimensions of the table. Any

cosmetic damage to the projector was irrelevant as the

projector would be enclosed in the box of the table and not

visible, so a used projector was acquired.

A used BenQ MX810ST projector was selected, with a

native resolution of 1024 x 768 pixels, a throw ratio of

0.6, and both auto and manual keystoning options up to

30o. This projector also came equipped with an HDMI

adapter and a remote, allowing us to easily make

adjustments and send an image signal once the projector

had been mounted inside the table.

F. Table

The physical structure supporting the rest of the

hardware had provide enough space for all components

and a reasonable throw distance for the projector, without

becoming too tall or bulky for users to sit around during

gameplay. The unique needs of the project left three main

options for the table: commission a custom table, purchase

a standard pre-built table and modify it, or build a table

from scratch. Commissioning a table would guarantee the

best results, as none of the group members have

significant experience with woodworking. However, this

option is also the most expensive, and thus was discarded

early on. Few likely candidates for modification could be

identified, so eventually a from-scratch design was

developed. Due to the lack of experience among the

group, this design is simplistic but functional.

This design consists of a 30” x 38” x 36” wooden box,

with a 24” x 32” touch surface resting in grooves at the

top of the table. In each corner of the table a 2” x 2” leg

supports the structure and provides attachment points for

the plywood sides. During construction, additional 1” x 4”

bracing was placed between the legs at the bottom and top

of the table, to provide support and prevent the structure

from skewing and collapsing. One 38” side remains open

to allow easy access to the interior for component

installation and adjustment. The opening was initially

intended to be covered by a hinged plywood door.

However, in practice a door of this size was unwieldly and

inconvenient and was therefore replaced by a light-

blocking curtain on a rod placed just inside the opening.

Although cosmetic measures such as painting or otherwise

decorating the table were considered, they were eventually

discarded due to time constraints.

G. Microcontroller

This project uses a custom printed circuit board (PCB)

containing an ATmega2560. The ATmega2560 is used for

reading a temperature sensor, controlling fans, and

prompting LED effects. The main advantage of using the

MCU for these things is speed. It is also useful to keep

these simpler functions separate while the single board

computer is used for more complicated things like object

detection and controlling what is displayed on the

projector. The ATmega2560 was selected for achieving 16

MIPS at 20 MHz, holding 256 KB in flash memory,

providing 86 I/O pins, and allowing us to test programs

using the Arduino Mega development board. In the final

system, a module based on FTDIs FT232RL chip was

used to implement USB-to-serial conversion, in order to

communicate with the microcontroller once the bootloader

had been burned.

Once it had been determined how the MCU would be

programmed and how the PC would communicate with

the MCU a standalone MCU schematic could be created.

This schematic includes:

• The ATMega2560 MCU

• A 16 MHz crystal oscillator

• A 6-pin header for burning the bootloader

• A reset button pulled up to VCC

• Two 5-pin headers for UART communication

• Decoupling capacitors

• A 20-pin female header for digital pins

• A 5-pin female header for analog pins

• A power indicator LED

The 16 MHz crystal is needed because the internal

oscillator of the ATMega2560 is not reliable and only runs

at 8 MHz. The pin header for the boot loader allows for an

easy temporary connection. Two headers are used for

communication. The first one is dedicated to uploading

programs and the second one is used for receiving UART

commands during gameplay. Decoupling capacitors are

required to reduce noise from the chip and traces. The

digital pin header was originally intended for the 7-

segment LED timer and the analog pin header is used for

any ADC that may be required. Finally, an LED is

connected from VCC to GND and acts as a power

indicator.

H. Cooling System

A serious concern for this project is the heat generated

by the various devices, especially the projector. This

problem is magnified by the fact the components are

enclosed within the table. To reduce this heat two fans are

be used, one for intake and one for outtake. The fans are

attached to opposite sides of the table so air will flow

through the table and cool the enclosure. The chosen fans

operate at 12 V with a current draw of 0.25A and run at a

speed of 1600 rpm. Each has an estimated air flow of

73CFM which is acceptable for this size of enclosure. The

size of each fan is 120x120x25mm (4.72x4.72x4.13in)

which easily fits within the side of the table.

Controlling the fans so they only run while the

enclosure is above a certain temperature gets rid of

unnecessary power usage. A thermistor is used to estimate

the temperature inside the table using a voltage divider

circuit as an analog input to the MCU. The ATmega2560

uses 10-bit analog to digital conversion. This means the

input value will be somewhere between 0 and 1023 where

0 represents 0 volts and 1023 represents 5 volts. From the

thermistor datasheet we know that the resistance of the

thermistor at 30 degrees Celsius is 8k. A 10k resistor is

used in the voltage divider for the second resistor, and 5V

is used for voltage source, so the voltage of the divider at

this temperature will be about 2.78V. Dividing this by 5

volts and multiplying it by 1024 gives the ADC value

corresponding to that voltage, 569. As a MOSFET was

used to supply current to the fans, the bit controlling the

digital pin going to the gate of the MOSFET was

configured so that it would be set high if the value of the

analog read function became greater than or equal to 570.

I. Timer

A timer was added to the table for use in timed skill

challenges and limiting turn durations. A quad seven-

segment display is used to display the time, and four

buttons provide necessary inputs to increment the time by

minutes and second, start and stop the time, and turn the

timer on and off. The timer relies on a single “time”

counter, which is set by the user via incrementation, and

which decrements each second as the timer is run. The

timer has 4 states corresponding to different stages of

operation: Off; On, Setting Time; On, Counting Down;

and On, Timing Complete. A prototype timer was created

using a breadboard to connect components and used an

already-acquired Raspberry Pi as the controller. The

individual components of the timer were first tested in this

setting. Once the microcontroller was acquired, the code

was to be adapted and programmed into the

microcontroller. However, the COVID-19 crisis

introduced some severe delays in assembling peripherals

to our system, so the Raspberry Pi system was used in the

final prototype.

J. Special Effect Lighting and Sounds

Lighting effects are used for player actions such as

attacking and casting spells. 20 RGB LEDs line the edges

of the table and are controlled by the MCU. When an

action is done on the player’s phone a signal is first sent

through Bluetooth to the single board computer. The

computer then sends a signal to the MCU that selects

which function the MCU will perform and a

preprogrammed LED effect will occur. A TLC 5940 LED

driver is used to control the effects. This IC reduces the

number of outputs needed from the MCU by utilizing

channels on the chip instead of directly connecting LEDs

to the MCU. It also allows the ability to daisy chain

multiple ICs together to control more LEDs if necessary.

Sound effects complement the LED effects, but speakers

are controlled by software on a PC rather than the MCU

due to memory limitations. These speakers are connected

to the PC’s 3.5mm jack.

K. Power Supply

Many elements of the table are powered by a standard

surge protector, as they came with their own power supply

and are very expensive, such as the projector and a host

PC. However, the microcontroller, LED drivers, and fans

require separate power supplies. For safety purposes, an

AC adapter was purchased to match the highest DC

requirement of these components, 12 V. A power supply

with a maximum current draw of 2 A was selected based

on usage estimates for our individual components. A

TPS565201 IC was used to construct a step-down

regulator was added to provide 5 V for the components

requiring a lower input voltage.

III. SOFTWARE

The tabletop game software is comprised of three

different subsystems. These subsystems are the object

detection, game software, and the android app. The game

and object detection subsystems are both located on the

computer system. The different subsystems run on

different threads to allow for simultaneous execution.

Specifically, this enables the object detection subsystem to

generate locations while the game software handles

requests from the mobile app subsystem. The game

subsystem receives player piece location data from the

object detection subsystem, and it receives explicit user

commands through the connection with the app. The game

software must be able to maintain the location of each

player, maintain the location of all digital non-player

controlled (NPC) entities, maintain a connection to all

players, send the correct images to be displayed by the

projector, and manage all request from users. The object

detection software uses a video stream provided by a

camera and converts that stream into location data that is

sent to the game software. The video stream faces the

bottom of the display and looks for blobs that contrast

with background illumination to distinguish objects. The

user app is the endpoint where users can directly

communicate with the software. The app acts as a

replacement for the character sheet which is traditionally a

physical piece of paper storing all the character

information. Communication between the app and

computer systems is carried out using the Bluetooth

protocol.

A. Object and Touch Detection

Fig. 2 displays the use case for the object detection

subsystem. The key feature for this subsystem is the

ability to track user pieces on a display. This can be

accomplished by using third-party open source object

detection framework. The framework can track cursors

and blobs. For each tracking object the framework must be

able to transmit the data readings. The input to this

subsystem is a camera feed and the output is the object

detector class. This class is created to handle data transfer

and manipulation for the project’s software. The third-

party framework must accommodate the rear DI tracking

scheme as that is the scheme used to track objects in this

project.

Fig. 2. Object detection use case diagram

The CCV (Community Core Vision) [1] framework was

developed by a group called The Natural User Interface

Group. The current version was released in November of

2014. Ideally, the software locates white blobs on a black

background in a video input stream with no background

noise. This type of video stream can be closely matched

with our rear DI scheme.

CCV provides a graphical user interface that displays

the video input and the tracked object output, which is

useful for testing the hardware setup for the display. There

is also a method that allows object locations to be output

as raw coordinates. Those raw coordinates are translated

to more useful values in the project’s software. The

software tracks the size of each blob that is detected and

output those values as well. These sizes can be used to

identify what an object is; however, for this project the

sizes are used to better determine the location on the game

map.

The TUIO (Tangible User Interface Objects) [2]

protocol is an open source framework, free under the

minimally restrictive L-GPL license. The CCV software

utilizes this framework to package and transmit

information about detected objects. This format provides

dimensional values that describe an ellipse that is created

within the bounding box of the blob. The bounding box

allows the software to enclose the blob detected into a

range of pixels. The box will have a width and height

equal to the maximum dimensions of the blob. The center

point of the box is the center point of the blob and

provided with respect to the top left corner of the image.

After the bounding box is created, an ellipse is inscribed,

and the area of this ellipse approximates the area of the

blob. The bounding box is oriented based on the direction

that the object is placed on the display. An angle is

associated with this bounding box. The (x,y) coordinates

for the center point of the blob as well as the ellipse

dimensions are normalized and returned as floating-point

values. The (x, y) coordinates are used to determine what

grid space the center of the blob is located inThe high-

level flow of communication can be seen in Figure 3. The

transfer of blobs begins with the video stream input and

ends with the GetLocation() function implemented in the

ObjectDetector class.

Fig. 3. CCV and ObjectDetector Communication

B. Mobile App

The mobile app software is the input endpoint point for

a player’s gameplay decisions. The decisions are collected

through a series of menus that are displayed depending on

the current state of the game. While at the main menu, a

device only has an instance of the basic app user interface.

The methods and fields can be split into three different

classes. The parent class is the overall app user interface

with two subclasses for the GM and the player. Regardless

of the type, namely being a player or GM, each user can

interact with the main menu. Only after the game has been

started do the menus differ. At that point, the different

subclasses are instantiated. The differences in the menus is

accompanied with difference in functionality. The Game

master has all the menus that the normal player has as well

as additional menus to help with the logistics of the game.

The Game Master requires the ability to initiate the save

game protocol and change map as well as create and place

NPCs.

The app is designed to provide easy, logical access to

character information for both players and game masters,

as well as additional controls for game setup and turn

assignment for game masters. Some functions are

available offline (i.e. when not connected to the table) to

allow users to prepare for games at any time and from any

location. Each function may expand a sub-menu or series

of sub-menus as required by the complexity of the

information being accessed. The app is styled to be

reminiscent of the paper and pencil format of the original

game.

We decided to develop our mobile app for Android OS

for several reasons. Emulation in Android Studio allowed

for extensive unit testing during development. Further,

Android OS sales currently outpace iOS. Finally, the lack

of a MAC and the high annual developer fee for Apple

iOS would have made iOS development costly.

Because the app was built in C++, a third-party open

source library was required for the interface. Although the

project only developed an android app, some third-party

libraries do enable the ability to run the same code on

different platforms. This allows the same look to be ported

to different platforms such as an iOS environment or even

a desktop environment. QT was selected as it is free to use

and provides cross platform support.

C. Game Software Overview

The game software can be broken up into different

classes that encapsulate the different aspects of the

program. Those classes are the player class, game class,

Bluetooth class, and display class.

D. Player Class

The Player class oversees managing player actions.

These player actions come with values associated with

either hit points or range of action. When performing an

attack action, the attack range is based on player stats and

so is the hit point damage applied during that attack.

Similarly, when performing a move action, the player has

a set range based on their player stats to move. Players

have the option to perform both actions on any given turn

assuming NPCs are present on the board. If the game state

is not currently in combat, then the attack action is not an

option. Players also have the choice of just performing a

single action. Since there are a few options, the player

needs to select what action they would like to perform

through the mobile app. The Game class must then to ask

for the distance in order to display the range and continue

gameplay. NPCs are controlled by the GM through the

mobile app. For all purposes they act as a normal Player.

A subclass is not required as no different functionality is

required.

E. Game Class

The Game class is the starting point for the program.

When the program is launched, an instance of the Game

class is instantiated, and the game setup begins. The key

steps to setup are to connect users to the game, display the

map, and either restore player locations or begin tracking

player locations. The constructor for this class is used for

setup. The class is also in charge of validating player

actions on the display and processing any input from a

player’s mobile app. Since the game class maintains the

major functionality of the game, there are private field

elements for each of the objects required for player and

display interactions. The players and NPCs are also

maintained in this class. A vector for each is the data

structure to hold the values. Both are maintained as

instances of the Player class.

When the game constructor is called, it checks for any

instance of the object already existing. If the object does

not exist, it creates the object and stores it in the private

field. Setup creates an instance of the Bluetooth, Display,

Player, and ObjectDetector class. Once all of the

necessary fields are stored, the gameplay method is called

so that the game can begin. The gameplay method call

indicates the end of the constructor and finalizes the

connection of all players for the game.

The gameplay method is the main functionality of the

game. It maintains ordered player turns and processes all

user input. At this point, the game has an instance and all

players are connected. The turn order is decided by the

GM and maintained in this class. In a round, each player

takes a turn. The parts of the turn that have a digital action

are movement and attacks, which call a Display class

method to highlight spaces. The game then waits for the

user to choose a physical space or move their player piece

on the display. The location of the action is collected by

the object detector class. The location then passes through

the validate movement method. If the response of the

method is true, then the action is valid, and the turn

continues. If the method returns false, the position is

invalid, and the game requests the player to correct the

action. Depending on the game state, the player could

have multiple actions to take during one turn. If the state is

combat, then the attack action can be done by itself,

before, or after the movement action. If this is the case, the

player is asked again what action they are going to take,

and the process repeats.

The game class also handles the save and load methods.

Both methods are initiated by a request from the GM’s

mobile app. The Game class handles such requests. For a

save request, the game first checks to see if the mobile

device has a past save data file. If the file exists, it is

overwritten, otherwise it is created. The different object

fields are iterated through and their contents are recorded

into the save file. This save file is then transmitted to the

game master’s device for storage. Each of the objects is

deleted to free memory. Finally, all devices are

disconnected to setup for the next game or shut down.

When loading a game, the save file is transmitted from

the game leader’s device and is processed by the load

game method. The file is parsed and each of the object

fields is populated with the save data. After the objects are

populated, all player devices are connected to the server

and the display begins its setup. After the display setup,

the game is ready to resume.

Create game acts very similar to load game. Besides the

obvious difference of no save file, create game initiates

the start of the game, receiving the number of players

playing and the map to be displayed from the game leader.

Character sheet with all character statistics are created and

pieces are placed in a starting location. While all these

steps are occurring, the Game call receives and populates

class elements with information about each player to begin

tracking gameplay.

F. Display Class

The Display class holds the methods required to do all

image processing required for gameplay. A third-party

image processing library is used to do the image

overlaying portion of the image processing. This third-

party library is OpenCV [3]. Specifically, the methods to

read in, write out, show, and add images together are used.

These four methods provide the necessary manipulations

required to update and display images for the users. The

addWeighted() method is used to merge two images with

a different opacity. The base image has the higher opacity

while the image being overlaid on top has a lower opacity

creating a merging effect.

Privately maintained fields enable the class to manage

the different layers of images and provide the ability to

determine their locations. The map and grid line images

are maintained to avoid corrupting the original files. The

PPI is maintained so that when dynamically creating

images, the scale is correct. A list of NPC and distance

images is maintained. This is referenced when creating

images.

The map image that is projected on to the touch display

is provided by the user through the mobile app. To not

destroy the original map image, secondary images are

overlaid on top. The grid that is overlaid onto the map

image is a separate image created with all parts transparent

except for the gridlines. To accomplish proper scaling, the

PPI found above is the exact dimension in pixels needed

for the 1” by 1” grid spaces. The first and last two rows of

pixels are used to create the horizontal grid lines.

Likewise, the first and last two columns of pixels are used

to create the vertical gird lines. When overlaying smaller

images onto the map, the region that the image needs to

occupy must be a value passed to the overlaying function.

The determine location method takes in a grid space

location and creates a rectangle object that holds the pixel

locations on the display.

The actual overlaying is done by generating a new

image each time there is a change. This is done using

library methods that copy an image on to another image.

The general flow is to create an object for the new image,

store that object in local fields, and add the image to the

display. This process begins with the function call from

the Game class and the flow is depicted in Fig. 4.

Fig. 4. Image Addition Flow

This process occurs in such a way that the layers are

presented in the correct order. The gridlines are added on

top of the map image first, followed by any distance

indicator spaces and lastly any NPCs that are currently on

the board. This avoids any NPCs accidently hiding under

any other image. They are considered players and their

locations should always be known and visible. To create a

more natural look, the distance indicators are not solid

spaces of a single color. Instead, the distance indicator

image is blended with the map to give the map a

highlighted affect.

To make removing images more straightforward, when

an image is added to the display an object is created that

holds all the details about the image and its location on the

display. When removing images, information about the

image needs to be passed in. Identifying information

includes the image’s type and its location on the display.

From this information, the image object is found and freed

and a new display image is generated and updated.

G. Bluetooth Class

The Bluetooth class maintains information about all

connected devices. The connections field will be a

variable length list that holds each of the devices. The

order of the list will be based on the order of connection to

the server. To pair a device with a player profile, when a

player object is being created, the ID associated with the

connection will be maintained. Two lists of character

arrays are used to hold the data being sent and received.

Whenever there needs to be a message sent from the game

to a specific player, the ID will be used to fill that players

send buffer. Likewise, whenever the game receives a

message from a specific player, their receive buffer is

filled.

The game software acts as the server for all the

Bluetooth communications. Specifically, the Winsock2

library was used to create the server. The game controls

communication with two different procedures, a server

and client procedure. The server procedure handles

accepting Bluetooth connections and disconnecting

Bluetooth connections. The client procedure handles read,

write and close actions. The messages sent between

devices follow the JSON format.

 H. Multithreading

Since we believed that the execution of our game would

be taxing on our CPU (Central Processing Unit), we

explored the option of multithread programming.

Microsoft Visual Studio has an external add-in library

called MFC (Microsoft Foundation Class), which allows

C++ developers to use multithreading. We were able to

use multithreading in our project by giving each thread

that has to deal with object detection to one core, while the

game itself could run on another. Although multithreading

was useful in speeding up execution, debugging and

testing did become harder as more cores were utilized.

VI. CONCLUSIONS

The Gaming Wizard system provides a suite of features

which improve the tabletop gaming experience. The smart

table preserved the most beloved elements of the

traditional battle map, namely the use of user-chosen

landscapes and character figurines, while improving

efficiency by saving character locations and automatically

calculating distances. The smartphone application makes

saving and looking up character details easy and allows

the system to automatically calculate the results of any

action by simulating dice rolls with appropriate modifiers.

Additional features that would be difficult to implement

independently of such a comprehensive system increase

immersion and improve the gameplay beyond what

traditional media could accomplish.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the assistance and

support of our faculty advisor Dr. Samuel Richie in

developing the scope of our project and maintaining our

timeline. We would also like to thank Graeme Lindbeck

for his woodworking knowledge and assistance in table

construction. Finally, we thank the committee of

professors who kindly agreed to review our work on this

project.

REFERENCES

[1] "Community Core Vision 1.5," NUI Group, [Online].
Available: http://ccv.nuigroup.com/#about. [Accessed 31
October 2019].

[2] "TUIO Protocol Specification 1.1," [Online]. Available:
https://www.tuio.org/?specification. [Accessed 31 October
2019].

[3] "OpenCV," [Online]. Available: https://opencv.org.
[Accessed 11 November 2019].

BIOGRAPHY

Gabriel Holguin is a senior Computer

Engineering major graduating in

Summer 2020. He will be pursuing a

career as a software developer in the

industry after graduation.

Daniel Kalley is a senior Computer

Engineering major graduating in

Spring 2020. He will be pursuing a

master’s degree in computer

engineering.

Erica Lindbeck is a senior Electrical

Engineering and Mathematics double

major graduating in Spring 2020. She

will be pursuing a PhD in Electrical

Engineering with a focus on signal

processing at the University of Florida

starting in Fall 2020.

Logan Taylor is a senior Electrical

Engineering major graduating Spring

2020. He will be pursuing a career in

the Orlando area after graduation.

