GAMING WIZARD A SMART TABLETOP GAMING SYSTEM

Group 30

Gabriel Holguin Daniel Kalley Erica Lindbeck Logan Taylor

- Gabriel Holguin Computer Engineering
 - Computer Engineering
 - Electrical Engineering
 - Electrical Engineering

MOTIVATION

- Time is wasted in setup, information lookup, and calculations
- Keeping track of abilities can be complex and confusing

PROPOSED SOLUTION

ENGINEERING REQUIREMENTS

Requirement	Value
Screen Size	20"-36" per side
Table Height	≤ 3'6"
Display Resolution	≥ 720 px / side
Object Size for Detection	≥ 0.5"
Operating Temperature Inside Table	≤ 32 °C
Time to Cool on Start	\leq 15 minutes
Continuous Operation	≥ 6 hours
Device Lifetime	≥ 3 years
People Required to Move Table	≤ 2

Requirement	Value
Simultaneous Touch Inputs	≥ 6
Touch Input Delay	≤ 200 ms
Simultaneous Mobile Controllers	≥ 5
Mobile Controller Input Delay	≤ 1000 ms
Mobile Controller Range	≥ 10'
Object Location Accuracy	± 0.5"
Locations Saved on Exit	≥ 20
Average Time to Set Up Map	≤ 2 minutes
Characters Saved in App	≥ 4

OTHER CONSTRAINTS

Ethical Concerns

 No data is being stored in online servers, since all game and app data is stored locally on a PC and Android device respectively

Social Considerations

- Viability of potential users, since product is currently costly and only supports Android OS
- Need to make sure not to infringe on copyright, especially on game material

Electronic Safety

- Soldering should be done with a clear head and proper safety equipment on hand.
- Electronics should be in an enclosed environment so users can't injure themselves with wires and circuit boards
- Projector should always be off when in movement
- Volume and light limits for what players deal with

PROPOSED SOLUTION – HARDWARE

HARDWARE - TOUCHSCREEN

TOUCHSCREEN - METHODS

Requirements

- Distinguish locations on I" square grid
- Detect objects as well as users' fingers
- <u>≥</u> 24" per side

Rear Diffused Illumination (Rear DI)

- Advantages: No limit on simultaneous touches, inaccuracy due to camera resolution is small, difficult to illuminate evenly, IR illuminators restrict space for other components
- Disadvantages: Closed box and projector required, difficult to scale

TOUCHSCREEN - COMPONENTS

Projector – Used BenQ MX810ST

- I024 x 768 Native Resolution (4:3 Aspect Ratio)
- 0.6 Throw Ratio
 (20" throw distance required for 24" x 32" display)
- 2500 ANSI Lumens
- 4600:1 Contrast Ratio
- 3500 5000 hour lamp life (> 1500 remaining)
- Remote and USB control options
- Auto and Manual Vertical Keystoning up to ±30°

TOUCHSCREEN - COMPONENTS

Camera – PlayStation Eye + Floppy Disk

- 640 x 480
- 60 fps
- USB 2.0 connection
- PC driver available for \$3
- Explicitly supported by existing open-source touch detection software
- Removable infrared-blocking filter
- Floppy disk material can be used as cheap visible lightblocking filter

(a) Infrared Source Before Filtering

(b) Infrared Source After Filtering

(c) Incandescent Light Before Filtering

(d) Incandescent Light After Filtering

TOUCHSCREEN - COMPONENTS

Screen Materials

- Cast Acrylic
 - 24" X 32" X 0.25"
 - (25.5" × 33.375" × 0.25" after completion of table)
 - Chosen for strength and rigidity
- Drafting Film
 - 0.003" and 0.005" in testing
 - Chosen for cost, ease of modification, and durability
 - Trade-off between blob contrast and image visibility

Illumination

- Tendelux 80 ft IR Illuminator
 - 850 nm wavelength
 - Intended for use with night vision security cameras
 - Comes with power supply and mounting mechanism
 - Designed to eliminate hot spots

HARDWARE - TABLE

TABLE DESIGN

TABLE DESIGN

38"

TABLE AND TOUCH SCREEN PROGRESS

HARDWARE - MICROCONTROLLER

MCU – MCU SELECTION

Requirements

- Enough I/O lines for timer, LED drivers, temperature sensor and communication.
- Enough memory for bootloader and software.

Desired

- Large amount of documentation
- Familiar
- Affordable

	ATmega328P	MSP430FR6989	ATmega2560
CPU type	8-bit AVR	16-bit ULP	8-bit AVR
Performance	20 MIPS at 20 MHz	16 MIPS at 16	I 6 MIPS at 20
		MHz	MHz
Flash memory	32 KB	128 KB	256 KB
SRAM	2 KB	2 KB	8 KB
EEPROM	I KB	0 KB	4 KB
Pin count	28	100	100
Maximum	20 MHz	I6 MHz	20 MHz
operating			
frequency			
Maximum I/O	23	83	86
pins			
Cost	\$2	\$8	\$12

MCU – SCHEMATIC

MCU – ATmega2560

- Two communication headers, one with auto-reset.
- Header for burning bootloader and programming the MCU.
- I2 I/O lines for controlling a 7-segment display. 4 lines for button inputs.
- 6 lines for controlling the LED drivers.
- A reset button and power indicator LED.
- A MOSFET and voltage divider for controlling the cooling system.
- I6 MHz oscillator.

MCU – SERIAL COMMUNICATION

Communicating with the PC

- Signals must be sent from the user's PC to the MCU for controlling LED effects.
- Arduino requires using a second MCU for USB to serial communication.
- This complicates PCB design and requires a second ICSP for programming.

MCU – SERIAL COMMUNICATION

USB to Serial Adapter – FT232RL

- Allows communication with MCU from host PC.
- Allows programming of MCU via USB.
- Simplifies PCB design

PCB DESIGN – MCU BOARD

HARDWARE – COOLING SYSTEM

COOLING SYSTEM – FAN CONTROL

fritzing

Prototype of fan control

HARDWARE – EFFECT LIGHTING

EFFECT LIGHTNING – LED DRIVER SELECTION

TLC5940 16-channel LED driver

- Advantages: Uses standard SPI interface (can be daisy chained), Larger PWM depth (12 bits vs 8 bits).
- Disadvantages: More complicated to implement. Requires six output lines from MCU.

WS2812b "Neopixel"

- Advantages: Only requires a single data line, Easy to control large amount.
- Disadvantages: Communication protocol not standard and is handled via software "bit banging".

TLC5940

Ws2812b neopixel

PCB DESIGN – LED LIGHTING BOARD

HARDWARE – ADDITIONAL FEATURES

ADDITIONAL FEATURES

- Limit time per turn
- Set time-sensitive challenges for players
- Quad 7-Segment LED Display
 - Multiplexing for each digit
 - I6 pins
 - Low power usage (40 mW/segment)
- Start/Stop, +Minute, and +Second Buttons
- 4 States of Operation: Off, On, Running, Complete

Automatic Brightness Adjustment

- Improve visibility in bright conditions and protect eyes in dim conditions by varying the display brightness automatically
- Estimate brightness using photoresistor
- Compare to current display brightness
- Adjust display brightness based on difference

Sound Effects

Donated PC speakers placed inside table

HARDWARE – POWER SYSTEM

POWER SYSTEM - DIAGRAM

POWER SYSTEM – REGULATOR SCHEMATIC

Voltage Regulator – TPS565201

- I2V input and 5V output.
- 5A maximum output current.
- DC barrel jack for 12V input.
- Solder points for power switch.
- Pin headers for easy access to 12V and 5V

GND

PCB DESIGN – POWER SYSTEM BOARD

PROPOSED SOLUTION – SOFTWARE

GENERAL SOFTWARE FUNCTIONALITY

General Flow of the Program

- Windows Application is the starting point of the software
- Spawns a thread to begin Game initiation
- Game instantiates Bluetooth, Display, Player(s), and Detector objects
- Game maintains game flow until power off event

MAIN MENU

Gaming Wizard

Play Game

Options

Quit

GAME

Game Class Purpose:

- Maintain logical control of the game
 - Keep track of turns
 - Maintain mapping of player to mobile device and player piece
 - Update display
- Handle inputs from all software subsystems

Game

- display: Display
- detector: ObjectDetector
- bluetooth: Bluetooth
- players: Player[*]
- npcs: Player[*]
- + gameplay(void): void
- + validateMove(void): void
- + createGame(void): void
- + loadGame(string): void
- + saveGame(void): void
- + updateStats(void): void

PLAYER

- Object to create distinct players for the game
- Maintains player stats and location information
- Parent class to NPC's and human players
 - NPCs: Image path
 - Human Players: Device ID

Player
- location: Int
- name: String
- stats: Int[*]
+ updateStats(Int[*]): void
+ determineDistance(void): Int

DISPLAY

Display Class Purpose:

- Image processing in the background
 - Take user provided image, add gridlines, and create map to be displayed
 - Spawn NPC images in desired locations
 - Create special effects for movement and attack phases
- OpenCV framework
- Displaying of the image handled by the windows application methods

Display		
- PPI: Int		
+ openImage(String): void		
+ createGrid(void): void		
+ displayEffect(Int,Int,String): void		
+ displayNPC(String,Int,Int): void		
+ removeNPC(Int,Int): Void		
+ removeDistance(Int,Int): void		
+ addImages(Mat,Mat): void		

DISPLAY

OBJECT DETECTION

Community Core Vision (CCV)

- Blob tracking software with computer vision
 - Used to track player pieces and finger touches
- Supports FTIR, DI, DSI, and LLP
- Open Source
- Uses TUIO API to store and transmit information

Minimum System Requirements		
CPU	Pentium 4	
Ram	512 MB	
GPU (Optional)	Modern GPU	
Operating System	Windows, Mac, Linux	
Peripherals	Camera	

OBJECT DETECTION

Tuio objects

- API provides data structures for Blobs and Cursors
- API provides protocols to transmit information between programs
 - TCP/UDP sockets
- Normalized values based on resolution of peripheral camera

Parameter Name	Parameter Meaning
S	Session ID (temporary object ID)
x, y, z	Position
a, b, c	Angle
w, h, d	Dimension
f, v	Area, Volume

OBJECT DETECTION

ObjectDetector Class Purpose:

- Open, maintain, and handle TUIO connection with CCV
- Receive and decode blob information
 - Translate location to a grid location
- Package and store in shared memory
- Requires its own thread
 - Needs to poll CCV to not miss an event

ObjectDetector

- client: TuioClient
- listener: TuioListener
- encodedLocations: TuioBlob[*]
- locations: Locations[*]
- + getLocations(void): Locations[*]
- + decodeLocations(): void

SYSTEM REQUIREMENTS

Recommended Specifications:

- CPU: Pentium 4 or better
- RAM: 512 MB
- GPU: Any Modern Card (Optional)
- Disk Space: TBD
- OS: Windows 10
- Bluetooth capability

Testing System Specifications:

- CPU: Intel Core i5-4210H
- RAM: 8 GB
- GPU: NVIDIA GeForce GTX 965M
- Disk Space: 500 GB Free
- OS: Windows 10 Pro v1909, 64-Bit
- Bluetooth capability

MOBILE APP CONNECTION

- Connection made with a Bluetooth connection
- PC and mobile device must have Bluetooth enabled
- Windows API required to create connection with other devices

Bluetooth Class Purpose:

- Setup and maintain connection to each mobile device
- Handle data transfer and storage

Bluetooth	
- connections: BLUETOOTH_DEVICE_INFO[*]	
+ scanDevices(void): void	
+ pairDevices(void): void	
+ connectDevices(void): void	
+ disconnectDevices(void): void	

BLUETOOTH

Scanning

Pair Your Devices		
Device List	Refresh	
Scanning for nearby devices		
	Ready	

Devices Found

APP SETUP

Initial Structure

- First Person to connect will be maintained as the Game Master (GM)
 - Create game will allow GM to set number of players and name the campaign
 - Load game will grab information from local PC
- Players will then join game and create new characters or select their characters from the saved game
 - When starting an encounter, player will place their pieces on the board for object detection to recognize their characters

AppUI

widgets: Widgets[*]

- gm: GM

- player: Player

+ start_up(void): void

- + main_menu(void): void
- + update_stats(void): void

+ create_game(void): void

+ load_game(void): void

+ connect(void): void

+ edit_stats(void): void

PLAYER OPTIONS

Not on turn

- Manage actions such as attacks or spells
- Change attribute points for character sheet, character name, and level
- Roll a dice from a list, which will generate a random number appropriate for that dice

On turn

 Select move, attack, or any management option from before

GAME MASTER OPTIONS

GM Controlled Characters

- Same logic as players
- GM has a list of monsters and characters that they control during an encounter.

GM Only Options

- Select map from list of created maps from local PC
- Set turn order
- Add NPCs to board

GM	
- npcs: Player[*]	
+ select_map(void): void	
+ create_npc(void): void	
+ show_npc_stats(void): void	
+ save_game(void): void	
+ show_npc_stats(void): void	

DIVISION OF LABOR

Category	Logan	Erica
Cooling System	Primary	Secondary
Display	Secondary	Primary
Extra Features	Secondary	Primary
PCB Design	Primary	Secondary
Microcontroller	Primary	Secondary
Power System	Primary	Secondary
Effect Lighting	Primary	Secondary
Table	Secondary	Primary
Touch Detection	Secondary	Primary

Software Team

Category	Gabe	Daniel
Game	Secondary	Primary
Touch and Object Detection	Secondary	Primary
Bluetooth	Secondary	Primary
App Development	Primary	Secondary
Special Effects	Primary	Secondary

BUDGET

Factors

- No financial sponsor for our project, so all financial burden is placed on the group
- Set budget to be \$700, and current cost of materials and equipment purchased is around \$540, with only PCB and a few minor electrical components remaining
- Tried to minimize cost of items through deals and use of already owned materials
 - Laptops, breadboards, speakers, etc.

ltem	Source	Cost		Number	Tax		Shippir	ng	Total	
Projector – BenQ MX810ST	ebay - voltarea	\$ 1	178.76	1	\$	_	\$	_	\$	178.76
PS Eye Camera	Amazon	\$	8.70	1	\$	-	\$	-	\$	8.70
Camera Driver	Code Lab	\$	3.00	1	\$	-	\$	-	\$	3.00
Drafting Paper ()	Blick Art	\$	14.94	1	\$	1.82	\$	9.95	\$	26.71
IR LED I	Digi-Key	\$	0.50	2	2 \$	-	\$	-	\$	1.00
IR LED 2	Digi-Key	\$	0.49	2	\$	0.29	\$	4.99	\$	6.26
IR LED 3	Digi-Key	\$	1.20	2	2 \$	-	\$	-	\$	2.40
IR Illuminator	Amazon	\$	19.98	1	\$	-	\$	-	\$	19.98
TLC5940 DIP	nooelec	\$	12.95	1	\$	-	\$	-	\$	12.95
RGB LEDs	EDGELEC	\$	8.99	1	\$	-	\$	-	\$	8.99
12V Fans (2 pack)	Pano-Mounts	\$	12.99	1	\$	-	\$	-	\$	12.99
Arduino Mega	Elegoo	\$	14.99	1	\$	-	\$	-	\$	14.99
RFP12N10LMOSFETS	Riddle Electronics	\$	6.95	1	\$	-	\$	_	\$	6.95
12V 3A AC Adapter	IBERLS	\$	11.89	1	\$	-	\$	-	\$	11.89
TABLE										
I/4" x 48" x 96" ply	Home Depot	\$	22.92	2	\$	2.98	\$	-	\$	48.82
1/2" x 48" x 48" ply	Home Depot	\$	16.08	1	\$	1.05	\$	_	\$	17.13
2x2 (leg)	Lowe's	\$	6.30	4	\$	1.64	\$	-	\$	26.84
1x4 (inner brace)	Lowe's	\$	7.86	2	\$	1.02	\$	-	\$	16.74
Ix3 (top frame)	Lowe's	\$	6.76	2	\$	0.88	\$	-	\$	14.40
Screws	Lowe's	\$	2.58	3	\$	0.50	\$	-	\$	8.24
Nails	Ace Hardware	\$	2.75	1	\$	0.18	\$	-	\$	2.93
Acrylic	Professional Plastics	\$	51.99	1	\$	5.46	\$	31.95	\$	89.40
Grand Total									\$ 54	0.07

PROGRESS

■ Software ■ Hardware

CURRENT ISSUES

- Moving the table
- Door vs curtains

- Problems getting Bluetooth to connect (though it does pair)
- Communicating with projector
- Feasibility/usefulness of brightness adjustment

QUESTIONS?