
Autonomous Solar Lawn 

Cutter (eGOAT) 

Steven Cheney, Jordan Germinal, Eduardo 

Guevara, Davis Rollman, Jonathan Smith 

 

University of Central Florida School of 

Electrical Engineering and Computer 

Science, 

Orlando, FL 

    Abstract — A sponsored project by Orlando Utility 

Commission and Duke Energy, the eGOAT (electronically 

Guided Omni-Applicable Trimmer) is an autonomous lawn 

mower that effectively reduces expenditures and carbon 

footprints on the planet. It features technology such as Lidar 

and ROS. The eGOAT is really efficient in terms of power, 

as efficiency was our highest priority in terms of 

functionality. As this project is very large and required many 

different challenging aspects to be adhered to, numerous 

fields of engineering teamed up together, including: 

Electrical-Computer, Mechanical and Computer Science. 

The project requirements stated by the sponsors have a 

number of constraints that the engineers had to work with. 

While we did manage to achieve the majority of the restraints 

given by the sponsors, we were unfortunately impacted by 

the corona virus.  This forced limited to no meeting times 

post March 9th, 2020. This made it difficult to test out the last 

couple constraints and integrate the project.  

 

 INTRODUCTION 

      Solar panels “harvest” energy from the sun using 

photovoltaic panels by allowing photons, or particles of light, 

to detach electrons from atoms.  This in turn generates a flow 

of electricity. These solar panels are usually installed and set 

into an array on a large grassy field in order to produce more 

energy, avoiding obstruction from large objects such as 

buildings, trees, etc. in order to have the highest yield of 

renewable energy. Although this source of energy becomes 

a “free” source of energy over time, they are still severely 

expensive due to upkeep costs.  For example, most of these 

farms are built over grass, as the grass neither absorbs nor 

reflects heat as severely as a flat concrete pad.  However, as 

all grass does in the world, it grows every day.   

    The maintenance on such fields can be a major expense to 

the companies supplying the services and impacts the cost of 

energy users in the end. Our solution is the “e-GOAT”: an 

AI-assisted autonomous solar powered rover-based robot 

that can cut the grass and reduce the cost of maintenance of 

the solar farm. The “e-GOAT” robot will be a high-

functioning autonomous lawn mower that will move through 

terrain in order to cut the grass. The “e-GOAT” will be able 

to autonomously identify areas of grass that need attention, 

avoid obstacles, and provide motion and navigation to the 

land mower bot.  

    The low-cost bot will also be friendlier to the environment 

than traditional lawn service equipment; the bot will be 

electrically powered, unlike most regular conventional 

mowers, which in turn will allow it to reduce the carbon 

footprint to almost, if not completely, zero.  As an added 

benefit, it will be able to operate at day or night, alleviating 

the need for extra lighting around the plant. 

 

 SYSTEM COMPONENTS 

    The eGOAT can be sectioned into ten key components 

with individual purposes used to assist in the completion of 

this project. These ten sections were divided up into the 

groups as described in this section. 

A. Microcontroller 

    The microcontroller chosen for our project is the 

Atmega2560. This microcontroller was chosen because it 

operates on the lower spectrum of computational computing 

power.  This microcontroller creates PWM signals for motor 

controllers, interfaces with digital and analog signal input 

and output, and supports serial communication between the 

Single Board Computer through serial communication. The 

Atmega2560 also provides a simple environment through the 

use of the Arduino IDE to program the chip and allow for 

faster implementation of software. Through the use of the 

simplistic Arduino IDE, we will be able to develop the 

solution we need through the plethora of C/C++ libraries 

available to us through the community. The microcontroller 

is also capable of several communication protocols, such as 

I2C, UART, and SPI on various physical ports.  

 

B. RPLIDAR A2 Lidar  

    The Slamtech RPLIDAR A2 Lidar is being used for 

navigation. It enables the eGOAT to easily get around and 

detect obstacles. It is a very expensive and top of the line 

lidar with very good resolution and customization. Lidar is 

very simple in concept. The head of the lidar will rotate at a 

certain cycle, and one of the lidars ports will transmit a laser.  

The second port acts a receiver and catches all of the 

reflected light. With the combination of knowing its rpm, 



when the light was sent, and when it was received, the 

ODROID can begin to build a 2D map of the robot’s 

surroundings. This is very useful for things like obstacle 

avoidance, and navigation. We will use the lidar in addition 

with the camera to be able to more accurately know where 

the robot is and be able to better adjust our position to avoid 

obstacles.   

C. ODROID XU4 main Computer 

    The ODROID-XU4 is powerful Single Board Computer 

and an energy efficient piece of hardware. It is one of the 

fastest of the three Single Board computers that is on the 

market. The ODROID-XU4 supports open source, which 

allows us to run various versions of Linux, including Ubuntu 

16.4, Android 4.4, KitKat, and 5.0 Lollipop. The ODROID-

XU4 has extremely amazing data transfer speed that 

complements its already powerful processing power of eight 

ARM CPU cores. This is a very important aspect for this 

project, as it allows a lot of computing and data transfer for 

the navigation and wireless communications.  

    The ODROID-XU4 comes out on top when comparing it 

with the other eight core Single Board Computers out on the 

market.  It is one of the mature Single Board Computers, and 

the ODROID-XU4 is able to run the mainline Linux kernel. 

Documentations and supports are widely available for the 

ODROID-XU4, as it has a really big community of people 

that are willing to help and get beginners started on their 

project.  

    We had very minor difficulties with the ODROID XU4, 

due to a small yet vital issue. This issue is further explained 

in the next section, which also includes the reasoning on why 

we ended up having to utilize the Raspberry Pi 4 instead. 

D. Raspberry Pi 4 

    The Raspberry Pi 4 runs at 1.4 GHz with 4GB of memory. 

The cost of a Raspberry Pi is relatively inexpensive at a price 

of only $35. It has the capability to support the camera as an 

input, as well as enough inputs and outputs to support the 

different sensors that are required for this complex project. 

The Raspberry Pi 4 also operates at 5V and contains 4 USB 

2.0 ports.  

    The Raspberry Pi 4 supports Wi-Fi and BLE protocols. 

The Raspberry Pi 4 has a Quad Core Broadcom BCM2837 

64-bit ARMv8 processor. It also has an integrated GP-Video 

Core IV that runs at 400 MHz. These product specifications 

are really good processing speeds that meet the high video 

requirement constraints that this robot demands for computer 

vision architecture in order to make important navigational 

decisions. The power consumption is relatively good as it 

does not consume too much power for the task that it would 

handle. 

    As you would expect from a Single Board Computer, it 

can be programmed in numerous different programming 

languages, including C and C++. It comes with its own 

operating system called Raspbian OS. 

    We ended up switching to the Raspberry PI 4 from the 

ODROID-XU4, because we were having issue with the 

ODROID we had ordered. This issue was that the ODROID-

XU4 was unable to start the services required to start all of 

the ROS components and our program. When we tried the 

same process for the Raspberry PI 4, we were able to get all 

of the required services and nodes to launch. 

E. IMU 

    The IMU module for this project is the FXOS8700 6-Axis 

sensor Accelerometer & Magnetometer and the 

FXAS21002C 3-Axis Digital Angular Rate Gyroscope. The 

IMU sensor consists of three distinct chip modules that can 

be interfaced using the IC2 standard. When working with the 

sensors, it is important to correctly wire the devices in order 

to enable proper communication through IC2 to the 

microcontroller. The FXOS8700 sensor package is a small, 

low power three-axis accelerometer and Magnetometer that 

is combined to be a small CBD package. The package is 

supplied with voltages between 1.62 and 3.6v with a low 

current draw of 240μA while only one sensor is active, and a 

current draw of 80μA when both sensors are active. The 

FXAS21002C sensor package is a small yaw, pitch and roll 

rate gyroscope that is packaged as a CBD surface mount 

component with good accuracy.  

F. Motor Controller 

    H-bridge design is used to control motor movement Series 

of On-Off pulses (PWM).  This controls the amount of power 

delivered without wasting power.  Pulse bits are used to 

control the direction of the wheelsclockwise versus anti-

clockwise. This enables us to control the speed and direction 

of the motors. 

Figure 1: Diagram of H-Bridge 



G. GPS Module 

    The MTK3339 GPS module is a SMD GPS chipset with a 

high sensitivity level and low power consumption for precise 

GPS signal processing to get precise location in sub-optimal 

conditions. The module comes with pin input for external 

antenna I/O and comes with an automatic antenna switching 

function with short circuit protection. The GPS module is 

capable of a high update rate of up to 10Hz with proprietary 

self-generated orbit prediction for instant positioning fixing. 

The modules have a cold startup time of 34 seconds. This 

GPS utilizes the NMAE 0183 communication standard help 

by the National Marine Electronics Association.  

    The module has been developed with the Adafruit 

Ultimate GPS Breakout V3 board. The board has been useful 

for testing and implementation purposes. The breakout board 

contains an external antenna support with a uFL connector. 

This has been converted to an SMA attachable antenna using 

an SMA to uFL adapter. The development board comes with 

9-pin out connections, two digital I/O for serial 

communication, and two VIN pins for redundancy. This has 

been used for communication with the microcontroller to 

gain positional coordinates 

H. Trimmer Motors 

    The Mechanical team has concluded with the proper 

trimmer head to be equipped with the rover. The MaxPower 

Pivot Trim is a universal trimmer head that is powerful 

enough to accept both 0.080” and 0.095” line thickness for 

the trimmer string. There are three pivoting lines to prevent 

breakage and is easily able to use. 

I. Drive Motors 

    For the wheel motors, we as a group are less interested in 

speed, and more interested in torque, because the mower is 

only going 2-4mph in order to achieve the cleanest cut, a 

restraint given by the sponsor, yet still has to pull around 

30lbs. The wheel motors will be attached to the frame of the 

mower and will be driven by the motor driver which will in 

turn be driven by the microcontroller. 

J. Perimeter Wire / Tank Circuit 

    Boundary wire offers a simple solution to creating an 

invisible barrier around a perimeter of land. It is used in 

almost all commercially available autonomous lawn mowers 

today. It is also used for other applications such as invisible 

fences for pets and other commercial guidance cases. 

Boundary wires use two different subsystems that comprise 

of the larger solution: a perimeter wire with a function 

generator attached in a circuit, and a receiver with an 

electromagnetic field (EMF) sensor. 

 SYSTEM CONCEPT 

    The main goal behind the eGOAT is to cut the costs and 

potential risks involved with human ground maintenance. 

The AI-guided task planning software of the eGOAT will be 

able to detect obstacles in the environment, identify locations 

and objects in need of trimming, and construct a sequence of 

tasks to accomplish mission objectives and avoids any 

potential damage to important infrastructure. The system will 

be using a variety of components such as ODROID 

XU4(Switched to Raspberry PI 4), RPLIDAR, camera, and 

voltage step down modules in order to aid the eGOAT to 

operate autonomously.   

A. System Hardware Concept 

    The first figure below shows how the hardware will be 

connected via power and data lines. All the components have 

either power or data connected to the printed circuit board 

for the eGOAT. 

    The second figure below shows a high-level mock-up of 

the rover with the system components within the autonomous 

robot. This is an additional piece of information to display 

the communication system between components and to show 

the different protocols each one uses.  

Figure 2: Block diagram presenting major 

system components 

Figure 3: eGOAT Hardware Placement Diagram 



 HARDWARE DETAIL 

A. Function Generator Design 

    For the first part of the perimeter, we needed to create a 

function generator to produce a 36.2Khz frequency signal 

over 150ft of 20-gauge copper wire. Using the parts selected 

for the function generator, an initial prototyping sketch was 

gained from the NE555 manual to understand the 

connections for the NE555 Timer Circuit.  

To set the duty cycle and frequency of the square wave, we 

use the following equation: 

 𝑓 =
1.44

(𝑅𝑎 + 2 ∗ 𝑅𝑏) ∗ 𝐶
 

Where f is the frequency desired, Ra is the resistor in series 

with Rb and C. We would like a frequency between 32KHz 

and 44KHz. As experienced in other projects, these 

frequencies should not interfere with our GPS, Wi-Fi, or 

other modules onboard the rover. We also use a 

potentiometer to change the frequency to match the 

resonance frequency of the receiver circuit. The 

potentiometer has a resistance of 12Kohms with an 

additional choice of + 4.7Kohms. Using equation (1) we 

calculate our upper bound and lower bound frequency fL and 

fU using the max and min resistance of the potentiometer: 

 

𝑓𝐿 =
1.44

(3.3 + 2 ∗ (12 + 4.7)) ∗ 1.2𝑒10^(−9)
 ≈ 32.698𝐾𝐻𝑧 

𝑓𝑈 =
1.44

(3.3 + 2 ∗ (12 + 0)) ∗ 1.2𝑒10^(−9)
 ≈ 43.956𝐾𝐻𝑧 

 

When we increase resistance of Rb, we reduce the frequency 

of the timer while keeping the gain constant. When we 

decrease the resistance of Rb, we increase the frequency of 

the timer while also keeping the gain constant. 

B. EMF Sensor 

    To detect our square wave produced by the function 

generator in the previous section, we needed a circuit that 

picks out the created frequency and determine if we have 

tripped the wire or not. This way, it can act as an electrical 

resonator to store the energy of the frequency being emitted 

and we can measure this as an analog signal into the 

microcontroller. This kind of filter needed would be an LC 

filter or so called a resonant filter. A resonant filter consists 

of an inductor and a capacitor in parallel or series that 

through Faraday’s Law and the drop of magnetic field, the 

capacitor is charged up at the resonance frequency of the 

circuit. 

    Calculating the resonance frequency based on the 

frequency outputted by the function generator for parallel LC 

circuit, we get: 

𝑓0 =
1

2 ∗ 𝜋 ∗ √𝐿 ∗ 𝐶
 

where 𝐿 is the inductance value of the coil in Henry (H) and 

𝐶 is the capacitance value measured in Farads (F). Fixing the 

capacitance for a small capacitor at 22nF, we get an 

inductance value of L = 1mH at the resonance frequency of 

33.932KHz. The voltage amplitude of the capacitor is fairly 

small due to the change in the magnetic field. With such a 

small change, the microcontroller chosen is not capable to 

detect a small voltage amplitude.  

Figure 5: EMF Sensor 

Figure 6: EMF Sensor Design 

Figure 4: Function Generator Design 



In order to increase the amplitude, we also use an Op-Amp 

to increase the signal that can be read to the microcontroller. 

The chosen Op-Amp, the LM324, contains four Op-Amps 

but we only make use of two. To achieve a non-inverting 

gain of 100, we connect two resistors in series with the Op-

Amp to specify the desired gain. Using the data sheet 

provided we chose 𝑅1 = 10𝐾𝑂ℎ𝑚𝑠 and 𝑅2 = 1𝑀𝑂ℎ𝑚𝑠 to 

achieve a resonance frequency around 34Khz. The gain 

achieved is then able to be read from the analog inputs in the 

Atmega2560 Analog inputs via PF0 and PF1 pins. The 

reading will then allow to determine if the rover has crossed 

over the wire connected to the function generator and 

determine what navigation action to take.  

 

C. GPS Module 

    The GPS module chosen for this is the MTK3339 GPS 

module. This module needed its own serial communication 

pins connected to the microcontroller board in order to use 

the NMAE packet communication protocol. The GPS 

module utilizes one of the several serial protocol ports 

available on the Atmega2560. These pins are PD3 for TX 

and PD2 for RX. We also needed a Vin of 3.3v regulated 

from either the microcontroller itself or an external regulated 

power supply (for example from the on board LiPo batteries 

regulated through another device) to increase the signal 

coverage that the GPS module can receive. The module is 

also extended with a large antenna. The antenna is mounted 

on the back of the rover outside of the main body to reduce 

interference within the electronic chamber and reduces 

interference from the shielding of the rover.  

D. IMU Module 

The IMU modules will communicate via the IC2 standard 

through both the FMX015700 and the FXAS21002C. Both 

modules contain a unique 8-bit address that will be used to 

address the modules from the controlling master unit. There 

are several slave addresses that can be assigned to the 

modules through the SA1, SA0, GA1, or GA0 ports assigned 

on the modules by raising them high or low. 

    In order to obtain the most accurate measure of direction 

and orientation, the IMU is calibrated using open source 

software developed that calculates the soft and hard iron 

error in the magnetometer. Once the components on the rover 

have been installed onto the rover and the rover is in its 

environment of operation, the rover is calibrated by rotating 

the body in several directions for a time of three minutes. 

This way, the correct soft and hard iron error can be 

calculated. This is then taken and placed inside the firmware 

of the microcontroller.  

 SOFTWARE DETAILS 

    Part of having an autonomous lawn mower means that it 

must be “autonomous.”  This means that the robot being 

constructed must be able to move, or navigate, around by 

itself, without the aid of any remote control, or human 

interaction.  In order to achieve this feat, we are planning to 

use a sensor that will be able to detect objects around it.  

Although several sensors were looked at in comparison with 

the Lidar sensor, we found that there was ultimately no better 

sensor out there on the public consumer market that could 

compete, especially at the same price point we were able to 

acquire this Lidar sensor at.  The following section will delve 

deeper into the reasoning behind why we chose the Lidar 

sensor. 

A. Lidar 

    The Lidar is the primary range-finding sensor that the 

eGOAT will use to construct its occupancy map. It allows 

for highly accurate range-finding capabilities in all directions 

around eGOAT with a resolution measured in centimeters. 

However, the Lidar is only capable of collecting range data 

Figure 7: IMU Wire Diagram 
Figure 9: Lidar Scanning its Environment 

Figure 8: Soft and Hard Iron compensation Values Calculated 

Used for Sensory Fusion Algorithms 



in a 2D plane around the eGOAT, meaning that it will need 

help from other sensors to detect difficult terrain or obstacles 

that sit on the ground below the Lidar’s vertical range. 

 

B. Simultaneous Localization and Mapping (SLAM) 

SLAM, or Simultaneous Localization and Mapping, is a 

field of algorithms for generating a map of the world based 

on sensor input over time. Two of the most common 

algorithms are LIDAR based or camera-based SLAM. We 

are using a LIDAR based solution, as provided by the open 

source software OpenVSLAM. OpenVSLAM is one of the 

main commonly used SLAM libraries and has been used on 

similar low powered hardware by others. OpenVSLAM also 

has a ROS package available, which will be handy because 

we decided to use ROS to fuse all parts of this project 

togehter. While we may be restricted in the processing of the 

LIDAR input, our LIDAR sensor is not a particularly 

advanced sensor anyway.  In conjunction with the Lidar 

sensor, we can build an estimate of the world with a point 

cloud. 

    One of the techniques of map building that we are 

implementing is the Simultaneous Localization and Mapping 

(SLAM). This technique can be used in partnership with a 

camera. SLAM is available to us using the ROS Navigation 

stack. It would enable us to use the lidar to create a map of 

the environment and be able to use that map to localize itself 

on the map and know where it has navigated or not.  3D 

reconstruction is the ability to create a 3D map of the 

environment. A camera that have that feature can help the 

robot understand and interact with the world.3D 

reconstruction is very important when it comes to collision 

avoidance, motion planning, and realistic integration of the 

real and virtual world as seen in the figure below. 

 

C. Computational Hardware 

After we had carefully evaluated the different Single 

Board that we were considering and that would fit our 

project, we were going to go with the ODROID-XU4. At the 

time of consideration, the ODROID was a clear favorite, as 

it had all the required specifications. Despite it being a 

slightly higher price than the Raspberry Pi 4, it had all the 

features we needed and has better processing power while 

keeping its power consumption as low as the Raspberry Pi. 

Overall, the ODROID-XU4 was originally the clear winner 

in our preliminary decision round.  

    The ODROID-XU4 was overall the best option at the time. 

We rated the comparisons of all the boards previously 

mentioned on a scale of 1 to 5, with 1 being the lowest and 5 

being the highest.  These scores were then multiplied by a 

factor of 3 in order to give us a closer comparison on the 

effectiveness of each potential product.  The ODROID has 

the ability to handle the required load that we need for this 

particular project. With this rating scale, we went ahead and 

ordered the ODROID and began testing.  However, 

unfortunately, it did not quite pan out to being the option that 

worked with our program when implementing with ROS.  

Because of this, we ended up having to change the board we 

chose.  The next best choice on our list was the Raspberry Pi 

4, and so we placed an order on this board.  

    As discussed in Section II, Subsection D, we chose the 

Raspberry Pi 4 as our board, as it had better integration with 

the components we had chosen and purchased, as well as 

booted up completely with the program we wrote.  

    Using the simultaneous localization and mapping (SLAM) 

algorithm, as well as the algorithms to handle navigation; 

sensor filtering and synthesizing; and short-term and long-

term task planning just to name a few. The relatively large 

processing power and multitasking required by these 

algorithms will require a reasonably powerful computer with 

an operating system and graphics processing unit in order to 

coordinate the various functionalities and subsystems of the 

eGOAT as well as interpret the data feed from the sensor 

suite and servos in the amount of time available.  

 

D. Software Middleware 

In order to communicate with multiple peripheral devices 

such as sensors and controllers, a communication form or 

protocol must be used in order to handle various streams of 

data. To do this, we use the software middleware ROS to 

create channels of information that receive information and 

give commands. Sensors and control hardware are set as 

topics that can be accessed to receive information. Through 

use of a specific library called ROS-Serial library, we are 

able to create topics to sensors and equipment controlled 

Figure 10:  Visualization Diagram of ROS Topics 



through the microcontroller by feeding information through 

serial communication to the high level single board 

computer, in this case, the Raspberry Pi 4. Serial 

communication is passed though USB from the Raspberry PI 

to the microcontroller. Topics can either publish information 

or subscribe to other publishing topics.  

    As depicted in the visualization, all sensory and control 

I/O such as the IMU, GPS, EMF, PWM, and Lidar sensors 

are associated with a topic to publish information or 

subscribe to information streams. ROS topics are created 

with ROS-Serial Arduino library using C++ library and 

compiled and uploaded with the Arduino CMake toolchain.  

  

E. PWM Control in Firmware 

    To control the H-Bridge drivers from the microcontroller, 

two dedicated PWM ports and timing registers are used to 

create variable duty cycles depending on commanded input. 

This command input is given through the “cmd_vel” ROS 

topic as a linear velocity in m/s and an angular velocity in 

rad/s. The subscriber on the microcontroller receives the 

command from the Raspberry PI via the serial 

communication port. When the message is received, an 

interrupt is raised to convert the high-level command into a 

PWM duty cycle and directional output. Timer3 on the 

Atmega2560 is used to set variable duty cycles. With the help 

from the PJRC Timer Three Library, it is easy to set a PWM 

signal through Atmega microcontrollers. Using telemetry 

calculations of the rover body and wheel diameter, we are 

able to roughly approximate the PWM duty cycle needed to 

achieve the speed. 

 

F. Reduction of Problem 

    We reduced the problem of finding a shortest path with the 

max coverage we can do, where we define coverage as the 

total area the robot moves through. The robot is not just 

moving in a line but takes up additional area (the grass that 

the blades will cut if the robot is standing still). There are 

numerous papers available to solve this common problem. 

One interesting paper uses a modified A-star algorithm to 

solve this problem. We transformed our input into a useable 

occupancy grid map, we implemented this algorithm as is to 

solve our path planning issue.  

    The output of the algorithm is a list of waypoints for the 

robot to follow. It is still necessary, however, to have a good 

localization method, so we can know where we are in relation 

to each waypoint. The motion planning then becomes trivial 

robot motion from waypoint to waypoint. The following 

image is from the paper, illustrating a potential map and 

solution as in Figure 11. This could work very well with a 

higher-level design using RTK-GPS, or any method with an 

accurate Localization technique. Some other motion 

planning techniques we’ve discussed would not work well 

with this, such as a pure computer vision approach, avoiding 

obstacles with something like a camera, combined with 

Object Detection or Edge Detection and obstacle avoidance, 

because we would not have a full map of the world along 

with a precise position of where we are in that world at the 

current time.  

    In order to deliver a working prototype as fast as possible 

(which itself is a large improvement from all of last year's 

groups, which functionally did not do any autonomous grass 

cutting, even though they planned it), we have come up with 

a simple method for cutting. The method will be expanded 

after we have it working. This method is very similar to how 

an indoor iRobot Roomba works and does not have any 

special planning or mapping. We used three main sensory 

Figure 12: Illustration of Robot Motion Path 

Figure 13: Navigation Stack 

Figure 11: C++ Publisher and Subscriber 

Declarations 



components for this method; boundary wire, lidar, and the 

camera. 

 With these three components, we adequately created a 

minimal prototype that fulfills all the project requirements. 

The system will work on a random turn when it runs into an 

obstacle, just like a Roomba. The boundary wire detection 

and Lidar obstacle detection components will be the two 

signals for the robot to back up and rotate, before proceeding 

ahead.  

The robot could be controlled by a mobile app, created 

using React Native technologies. The app communicates to 

an integrated web server on the rover, over the Wi-Fi access 

point on the board. The app allows basic manual directional 

control, as well as retrieving GPS coordinates of the rover. 

However, due to restrictions, we could not get this integrated 

in time. Instead, the rover’s manual control uses a wireless 

game controller, which was simple and easy to configure 

with ROS. 

 

G. TensorFlow API For Object Detection  

    The camera will be used exclusively for person detection 

in order to meet the requirement of shutting down the 

trimmer motors when a person is detected in front. We used 

a pre-trained neural network and very common such as the 

TensorFlow API and conjunction with OpenCV to perform 

object recognition. Because we are not using an NVIDIA 

Jetson, and our chosen Raspberry board is weaker, it is able 

to run at a few frames per second. Early testing has 

confirmed this to be true, as it is very. This is perfectly 

acceptable to us. 

    The model has been trained on the MS COCO dataset 

(Common Objects in Context). It was trained on a dataset of 

300k images of 90 most found commonly objects, which 

includes dogs, cats, Laptops, Teddy bear, chair, phones, and 

others. 

    Our choices for object detection are quite sophisticated 

and will be able to accurately detect people and make the 

right decision on almost any object it sees. 

 

 THE ENGINEERS 

Steven Cheney is one of the three Computer 

Engineers on this EGOAT team.  He is a jack of 

all trades, having experience ranging from 

hardware assembly and design, to having 

programming experience.  

Jordan Germinal is one of the three Computer 

Engineers working on this project.  He is 

primarily working on the autonomous lawn 

mower’s robot vision with the Computer 

Science major on this team, Davis Rollman. 

Eduardo Guevara is one of the three 

Computer Engineers within the project that 

will be helping with several subsystems 

towards the final solution. He focused in 

working on the Navigation and Localization 

subsystems closely related to several parts of 

the hardware stack. He will be taking on a position at 

L3Harris as a digital design engineer. 

Davis Rollman is the only computer science 

major on the team, but not the only coder. He 

worked with Jordan Germinal on Computer 

Vision aspects of the project. We will be using 

the LIDAR sensor to gather data about the 

world around the robot. 

Jonathan Smith is the only electrical 

engineer on the team, his main focus was to 

be on power and PCBs. This project needed 

quite a few PCBs including the 

microcontroller, motor drivers, voltage 

regulators, remote relays, and emf sensor. 

 ACKNOWLEDGEMENT 

The authors wish to acknowledge the assistance and 

support of Dr. Samuel Richie, Solar lawn cutter Green Team: 

Mechanical and Computer Science Teams and the University 

of Central Florida. 

 

Figure 14: Application UI 


	Steven Cheney, Jordan Germinal, Eduardo Guevara, Davis Rollman, Jonathan Smith

