
Continuous Chemical Reagent
Mixing Automation

Amanda Gilliam, Anish Umashankar, Ernel
Reina, and Jason Scislaw

Dept. of Electrical Engineering and Computer
Science, University of Central Florida, Orlando,

Florida, 32816-2450

Abstract — In Chemistry, continuous mixing can react

reagents more efficiently than batch mixing. In partnership
with Helicon Chemical Company, we developed a system to
convert their operations from batch mixing to continuous.
Helicon built the system, and we developed an automation
upgrade to their system. The upgrade interprets user inputs
to operate the mixing pumps, route the chemicals via closed
loop servomotor control, and log process statistics.

Index Terms — Manufacturing automation, Control
engineering, Centralized control, Closed loop systems,
servosystems, microcontroller

I. INTRODUCTION

We approached Helicon with the idea to automate their
system for our project because it was challenging, it was
closely connected to the industry projects we would see in
our careers, and it was a system that could be adopted in a
company’s critical operations. Helicon was motivated to
work with us because we offered a cheap solution to
address short term needs, and they were under no
obligation to implement our system if it didn’t meet their
specifications.

The automated solution consists of a centralized
controller that receives input from the user on several
control parameters. The controller uses these parameters
to operate two peristaltic pumps by varying the pump
speed and runtime. Before and after the mixing process,
the controller operates servomotors mounted to
mechanical ball valves to change the system routing
between 1) the two reagent lines, and 2) inert gas and
vacuum lines. During the process, the system continuously
monitors for errors via built in sensors and enacts an
emergency shutdown procedure if conditions are
suboptimal.

The primary objective for this project was to design and
build a functioning system that automates Helicon’s
process, with Helicon’s adoption of this system a
secondary goal. In order to still provide value to Helicon
in case this secondary goal wasn’t met, the system was
designed with modularity in mind so that Helicon could

easily tweak the system to meet their needs. Other
objectives were to maintain secrecy of Helicon’s
proprietary information and maintain compliance with
industry and government regulations that Helicon are
obligated to.

II. SYSTEM COMPONENTS

In order to meet the requirements as well as overcome
design hurdles we first had to choose proper components
for each. These components were chosen with three
primary concepts in mind: functionality, cost, and ease of
use.

A. Pumps

The pumps we had to interface with were already
chosen by helicon prior to the project. So the design
hurdles behind the pumps was simply interfacing with
them and getting them to work with our microcontroller
and having the pumps sync with the rest of our system
through it.

First we need to understand how the pumps work
mechanically. Two peristaltic pumps are used to control
the flow of the reagents. A peristaltic pump has a rotor
with rollers attached to the ends, shown in Figure 1, and
tubing is threaded through a channel along most of the
rotor’s circumference. As the rotor rotates, the rollers
pinch the tubing, driving material through in the direction
of rotation. The material’s flow rate is directly
proportional to the angular velocity of the rotor. From the
perspective of process control theory, the pumps in
Helicon’s system are the control elements in a control
loop driving the flow rate variable of the pump system.

Now that we understand how it works we know what
our microcontroller should try to accomplish. Next is how
to interface with the Pump. The peristaltic pumps

currently implemented in Helicon’s system have their own
independent controllers. These controllers rely on human
input however and must be modified or bypassed in order
to control the pumps as part of our project. The pumps
come equipped with DB25 female connectors with pins
dedicated to third party control signals. These pins read an
analog voltage from 0-20mV, or with an adjustment, 0-
10V, and internal hardware translates that voltage to a
flow rate. Our controller will be working with digital
signals, so our system will need to implement digital to
analog conversion. These D-A converters use pulse width
modulation (PWM).

So using 8 pins for each pump with PWM capabilities
from our microcontroller we were able to get a clean
reading of the output and control the pump’s speed.

B. Valves and Motors

The valves for this project were also chosen prior to the
project and are instead an object to design around. Testing
showed that the valves would need about 0.435 ft-lb of
torque to move. Due to their structure and the requirement
placed by helicon for ease of removal, our method to
move these valves had to be one that used pressure or
latched on to them rather than replacing the valves or
welding on instruments. For this reason we chose to use
couplers with pressure screws.

In addition to this the valves had to be able to operate in
three different positions. To solve this we came up with
tow solutions both of them being motors of different
types. Stepper motors and Servo motors. A stepper motor
works much like a servo motor in that it has the ability to
move discrete steps and accurately position itself. These
steps are outlined on the product description in the form of
degrees per step. However A stepper motor has a much
larger amount of poles as a servo (50-100 versus 4-12).
Each pole is a north or south magnetically generated pole
and is what allows motors to spin. Stepper motors don’t
need encoders to determine their current position thanks to
the large amount of poles they have. Stepper motors
instead move 1 step at a time whenever they get pulse. A
stepper motor on the other hand only requires 1
input/output pin to operate and gives up precision for
power. Since we really only needed the valves to be in one
of 3 positions precision was not a large concern. The
steppers we found and even tested were not strong enough
to move the valves and would have required extra gears
and tinkering to get working. So instead we decided on the
servo motors. They met the torque requirement and we
chose servo motors with 270 degree of motion which was
enough to meet the 3 position requirement.

C. Controller

The ARM AMD series of processors that are designed
for low-power high efficiency projects such as ours. Some
of the advantages they provide is they are very cheap
compared to other processors. This paired with the fact
that, compared to TI MSP430x series microcontrollers,
they have less I/O pins allows us the flexibility of
purchasing two ARM AMD series processors for around
the price of one MSP430x series microcontrollers. The
inclusion of two ARM AMD series processors allows us
to create a master-slave relationship between the two
processors, which provides ease of programming to one
microcontroller while controlling two. This effectively
negates the downside of not having enough pins as we can
take the I/O pin counts of both microcontrollers and add
them together.

The two ARM AMD series processors that we have
taken into consideration are the ATSAMD21G18A-MU
and the ATSAMD11D14. Our choice for these two
processors stems from the fact that these two processors
provide all the needed specifications such as adequate
memory, I/O ports, frequency, power, communication
type, and cost. In addition, these two processors are the
same two processors that are used in the Arduino MKR
family boards, ZERO and motor carrier. In terms of
function, these two boards provide exactly what we are
looking to do in Helicon Chemical Company’s existing
pump system, which is to automate motors, log data, and
control sensors. These two boards are made to work
together and for this reason they will serve as a good
starting point in terms of design and prototype testing.
Also they are programmable using Arduino’s IDE and
exist within the Arduino development community which
is filled with information, libraries, tutorials, and open-
source code all found online for us to use or reference
if/when we need it.

The amount of I/O pins actually was not enough with
these two alone so we decided to include a port expander,
the MCP23017ML, which connected to our
microcontroller via I2C and was enough to meet all our
I/O needs and have a few left over for expandability
purposes.

D. Enclosure

 The enclosure that will house all our delicate
equipment has to be able to possibly withstand dust,
lightly splashes of liquids, and possibly corrosive material.
To this end we had the options of getting metallic or
nonmetallic structures. These can be stainless steel,
Polycarbonate, fiberglass and a few others. Of these,
fiberglass enclosures and polycarbonate enclosures

comply with NEMA standards for being resistant to
corrosion or non-corrosive respectively. The cheaper
option is the polycarbonate one and seemed like the best
choice for our project. It can even have a see through
cover so technicians can better assess if something is
going wrong internally.

With this in mind we used a 10x12x6 fiberglass
enclosure box standardized with Nema 4x so it can resist
splashes of water or other liquids and is also non corrosive
in case of an accidental spill of hazardous material. This
enclosure will have to be adjusted to allow us to mount all
the different components placed upon it, such as the push
buttons, dials, and LCD.

Internally it will have to house DIN rails to mount our
circuit breaker, power supply and Terminal blocks. Also
inside our PCB board and buzzer for the alarm system can
be found.

III. IMPLEMENTATION STRATEGY

In order to maintain our non-invasive goal for helicon
we want a system that works with all the components
already at hand. Below, Figure 2 shows our project design
overlaid with the current Helicon system. As noted in the
legend, Helicon’s system is in blue, our system is in black.
The main components/parts of our project are represented
in ‘block’ form to show the flow of hardware and software
feedback loops that our project will contain The blue
section, showing Helicon’s system, shows the some major
components already talked about with the other two being
the reagent tanks which store the chemicals for the
reaction and the argon tank/vacuum pump. Helicon’s
reagents are air sensitive. As air will be introduced after
each reaction during cleaning, the system will need to be
purged with inert gas to remove reactive elements. The
Argon tank and vacuum pump will perform this function.
Our system as it’s currently proposed will not interact
directly with these components.

A. Power

The table below lists our projected maximum power
consumption.
Model description qty Volatg

e
(VDC)

Amp
(A)

Pow
er
(W)

DS3225M
G

Servo Motor
25kg-cm 270
degree

4 5 2.5 50

TC1602A-
01T

LCD screen
for arduino

1 5 0.15 0.75

ABX00012 MKZero
Microcontroll
er

1 5 0.02 0.1

ASX00003 Motor
Carrier
board

1 5 0.05 0.25

 LED 5 5 0.02 0.5
 Buzzer 1 5 0.5 2.5
Total 5 10.82 54.1

We decided to try and operate everything under the
same voltage so we could use just 1 power source and not
have to complicate our design trying to get different
voltages out of said power source. Now the power Helicon
would have available is typical house-hold power of
120VAC and would have to be converted. To this end we
implemented a typical power chord to enter our enclosure,
from here it enters some terminal blocks before being
passed through a circuit breaker and finally reaching our
power supply. This power supply transforms our AC
power to a 5VDC, 10Amp source. The above mentioned
54 Watts is with the idea that all four motors are operating
simultaneously and at full power which is not realistic so
this source was enough to power all our devices.

IV.RELATED STANDARDS

The following are standards related to our project which
had an impact on how we carried our project along
including testing and implementation.

First is the IEEE 829 - Software Test Documentation.
As the name of this IEEE standard implies, this standard
focuses on the meticulous documentation of any and all
experimental activities regarding software testing. This
standard specifies a set of documents (divided into 8-10
defined steps/stages) that each have their own set of
documentation. In order for this standard to be used for
any type of software or system testing environment, it
specifies each document does not have to be produced and
that there is no grading rubric regarding the information
inside of the documents; the judgment of these falls upon
the person or group following this standard. The following

are the steps that we as a group followed/documented and
our justification for its importance:

Master Test Plan (MTP): This stage is necessary as it
provided a generalized testing plan for our entire project
and will have basic level documentation on all stages of
testing, we pursue.

Level Test Plan and Design (LTPD): This is a
combination of two levels documentation listed in IEEE
829, but we believe combining these levels will streamline
our testing and overall documentation process. This level
documents everything that is happening in our testing
process. This includes, but is not limited to overall
approach, all resources being used, components to be
tested, and a general schedule of all the aforementioned
tasks and when they are being done. In addition, this
documentation will include a list of all the specific test
cases along with their respective criterion, procedure, and
ONLY our expected results (observed results will be in
the Level Test Log documentation).

Level Test Log (LTL): This set of documentation is
very straightforward, and will include most, if not all, of
the data we gathered during testing. This documentation
will also have a section specifying what problems we have
in our data.

Master Test Report (MTP): This documentation serves
as the conclusion of our set of documents and being so,
summarizes all of the previous test documents and
highlights all of the key information listed. The MTP
should also serve as a ‘resume’ of sorts that we could
show as a final document of our entire testing process.

The impact of IEEE 829 towards our project design is
minimal. The IEEE 829 standard only specifies having
thorough testing documentation and because of this, it has
very minimal impact towards our actual design. The only
possible impact that this could have had to our design is in
the hypothetical situation in which we have a working
design in place and due to our thorough testing and
documentation listed by this standard, we discover a fault
in our design and from all the testing documentation we
can go back into our design phase and correct the error(s).
This standard serves as only a set of documentation
guidelines towards our software, it does not present
guidelines to actually create a working design.

Next is the Nema standards for our enclosure. The
National Electrical Manufacturere’s Association standards
for electronic enclosures are meant to clarify concepts like
waterproof, sealed, and dust free. These standards should
be consulted for our enclosure. NEMA also rates motors
these are for rating its frame size, efficiency, testing, and
operations. This is relevant for stepper motors which were
a strong candidate in our design.

The main impact of these standards is for us to decide
whether we need our enclosure that houses delicate
electronics to be resistant to things like hose directed
water, or corrosion. The enclosure is physically close to
chemical processes which could result in a fire taken out
by a sprinkler system or in a spill of a corrosive chemical
onto the enclosure itself. Since the likelihood of these
situations is somewhat possible we seriously considered
using an enclosure that was capable of withstanding such
accidents so that helicon would not lose the control system
as well. For our enclosure the most prevalent
standard/enclosure choice was one rated for Nema 4x
which provides protection against windblown dust and
particles, splashing water, and corrosion, all of which
prove useful for our design.

Lastly, Helicon Chemical Company resides within a
UCF affiliated business incubation space, therefore our
design must also take into consideration UCF Health and
Safety Standards. There are many standards within UCF’s
code of standards such as radiation, laser, workplace
safety. Fortunately for us, the type of work that Helicon
Chemical Company is involved in does not involve
radiation and lasers, therefore these health and safety
concerns can be ignored. In addition, due to the fact that
we will not be operating the automated pump device that
we have been tasked to create and the fact that we are not
employed by Helicon Chemical Company, there is only so
much we can do on our end to ensure that workplace
safety is met. This involves specific development of our
PCB enclosure as it houses all of the potentially dangerous
electronics.

Unlike UCF workplace safety, UCF fire safety concerns

must be acknowledged and taken into consideration when
designing our final product. Despite the fact that the
environment that our pump automation cart will reside in
is already properly situated for any fire or workplace
issue, we must also attempt to mitigate all possibility of
fire hazards within our product. The specifics of UCF’s
fire safety policy involves many facets, most of which do
not apply to Helicon Chemical Company or our device.
These include fire safety regarding forest fire and other
outdoor fire safety precautions. In our case, the only two
precautions to note are emergency protocol regarding fire
safety (this is already in practice at Helicon Chemical
Company in their emergency fire safety protocol) and
NFPA accordance. The NFPA is the National Fire
Protection Association and so long as our electronics are
thoroughly tested and operate within their given operating
conditions (found in electronic specific datasheets) then
we will have been in accordance. To avoid any
complications and potential hazards in design, we will be

prototyping our design from the Arduino MKR motor
carrier and MKR zero boards which have been thoroughly
tested and vetted by Arduino, as they are consumer
available and ready products. Just in case, we tested the
products even more as a precaution.

The main impacts of these standards are enclosure and
testing related. In terms of enclosure, to avoid any
electronic hazards from directly interfering with the
chemicals that are involved in our system and the operator
of the system, we must design an enclosure that houses all
our open electronics. In addition, this design must be
electrically and thermally stable so that in the event that
our electronics were to overheat, spark, or break the
enclosure will prevent any further damage to our system
by blocking off direct contact to the chemicals and the
user.

V.SOFTWARE DESIGN

The controller is the brains in the control loop. The
controller needs to calculate the instantaneous error, the
accumulated error, and the rate of change of error at any
given moment. With this information, the controller
decides a corrective action to take and generate a signal to
communicate that action to the control element. For the
control loop subsystem, the controller module will overlap
with the CCU subsystem and it’s software and hardware
will be part of the processor module.

One of the benefits to our choice of microcontroller is
that we can utilize the Arduino IDE. This makes it easy to
program the chip via USB since the IDE has a built in
upload button. Of course, the IDE also provides a
compiler for the code.

The Arduino IDE uses its own Arduino language which
is based on C/C++ with more object oriented class
structures. This made it easy for our team to use since we
are all familiar with C. The Arduino language is composed
of three main components, which are functions, variables,
and structure. The structure component is also both
familiar and not familiar to our team, as it contains the
familiar logic statements like ‘if’ but also two required
functions to make a ‘sketch’ work. These two functions
are loop(), which takes the place of a main, and setup().
Loop() is repeatedly run without any necessary code on
the programmers part. This is where the bulk of our code
went. We put all of our startup code that will be run once
on boot, such as pin initialization, within the other
required function setup().

Another added benefit of using this language is that
there are already many libraries that come included with
the IDE as well as community contributed libraries
available in public repositories like github. This made it

very easy to interact with the peripheral systems we are
using, such as the SD card and LCD screen, which saved
time during development.

A. Pump Control

The pump for starters will need the following Inputs:
Remote Start/Stop (Digital), 0-10V Speed Control Input
(Analog) and wont use the following inputs: Remote
CW/CCW, Remote Prime, Aux in. The peristaltic pump
inputs work with current sinking outputs, through NPN
transistors with open collectors, or with contract closures
to earth ground. To start and run the pumps, a continuous
low signal is sent to the Remote Start/Stop input. The
pump flow rate is controlled via analog input signals.
There are two options: 4-20 mA analog signal, with 4 mA
being Stop and 20 mA Full Speed, or a 0-10 V analog
signal, with 0 V being Stop and 10 V Full Speed. Both
options offer 10 bit resolution. For this project we used the
voltage inputs and outputs. Although our current design
does not plan to use all inputs, it’s important to understand
them in case they are required in the future. For example,
if Helicon determines their system requires the pumps to
run in both directions, this can be done with the Remote
CW/CCW (Clockwise/Counter Clockwise) input. This
input can be pulled to active low to run the pumps
counterclockwise. The pump will slow to a controlled stop
before changing direction. Secondly, Helicon has talked
about needing to prime their system by running each
pump individually until the two reagents are right on the
edge of the mixer. This can be done with the Remote
Prime input by sending a continuous active low signal.

Outputs used: 0-10V Speed Feedback Output (Analog),
General Alarm Output (Digital)

Outputs unused: COM (Motor Running), Tach Output,
Local Remote Indicator.

The peristaltic pump uses built in feedback mechanisms
to measure the flow rate and converts this to an analog
output signal. Similar to the input signal, the pump outputs
both a current and a voltage in the same ranges with 10 bit
resolution. For the purposes of this project this satisfies
the feedback section of the flow rate control loop. Along
with the speed feedback, we will use the general alarm
output signal, which will communicate when the internal
pump circuit detects any errors. This way our system will
be in tune with the pumps and our controller can respond
to any alarms by notifying the Helicon team via our alert
system, or by initiation emergency shutdown.

It’s important to note that the Alarm Output uses an
open NPN collector. This output gives a “low impedance”
state at earth ground and is essentially floating when in
“high impedance” state. What this means is that extra care
must be taken in wiring this output to avoid damage to

external equipment. It is recommended that we use a
current limiting resistor to avoid current surges at the low
impedance state.

As with the inputs, our current design does not plan to
use all the pump outputs. Still, it’s important to understand
them in case they are required in the future. The COM
output shows whether or not the motor is running, which
can add redundancy to our feedback system. The
Tachometer output shows the RPM of the pumps, which
Helicon could find useful for data collection. The Local
Remote Indicator output gives a visual indication that the
pumps are being configured/operated remotely. This could
potentially be useful in the future if Helicon implements a
procedure where the pumps are controlled both manually
and remotely.

With the inputs and outputs outlined, it's also important
to note that the MKRZero uses 5V logic, which will be
incompatible with the 0-10V Pump motor speed
input/output signals without modifications. Since both
sides use 10bit conversion, the resulting circuitry is
simplified. When the speed control signal runs from
MKRZero ------> Pump, the 0-5V signal was amplified by
two to access the full range of speeds offered by the pump
use.

B. Ball valve automated control.

For the four loops governing flow direction. The control
elements are manually controlled ball

valves that switch flow direction between two inputs to
a single output. The ball valve will be modified so that a
servo can be attached.

The motor needed relatively high torque, and needed to
work every time. We purchased an adapter to couple the
servo and the rectangular knob of the ball valve. Also the
servo was securely mounted over the valve to ensure
efficient and consistent force transfer. This mounting
solution is semi-permanent, and the servo is removable so
as to follow our requirements.. If our system fails at any
time, Helicon must be able to convert their process back to
manual operation.

To this end we had selected a NEMA 17 stepper motor
with a 27:1 planetary gearbox allowing for up to 300
Newton Meter torque. However we quickly found this to
be insufficient to turn the valves. After further testing we
would need at least 0.435 ft-lb in order to move the
valves. And so we switch to a servo motor capable of
1.8ft-lb.

The motor shaft and valve was secured in place through
pressure by tightening the prisoner screws on the
coupling. There were two concerns with this design idea.
The least troubling was whether or not we could apply
enough pressure with these to make sure the two pieces it

adjoined did not slip. If luckily we did not have to look to
soldering. The other concern was the opposite problem
which was whether too much pressure was applied to the
valve side and ruins the threading which helicon currently
uses. This ended up not being an issue either at least this
far. Instead the issues which actually came up was that
Helicon had their valves hooked up with tight wraps and
our system needed secure installation onto the cart to
make sure the motor was turning the valve and not the
other way around. To this end we found metal fittings to
secure the valves and then mounted the motors with a
flexible fitting so that it would at first follow the non-
stable valves before moving them.

We are using the MKR motor carrier to prototype and
its design as a base for our project, which allows us to use
the Arduino library specific to this board, the
MKRMotorCarrier library. It includes functions for setting
the angle of servos as well as the duty cycle for motors.
The software will have hard coded values for the valve
positions since these are something that cannot change
without serious design changes. Each motor will be given
a different value that signifies whether the valve will be
turned to allow reagent to flow, inert gas to flow, or
nothing to flow. These values will be saved in a separate
header file with sufficient warnings to deter accidental
manipulation.

The use of PWM signals to the motors controlling the
valves will be done during strategic times within the
program. The valves, which are three way valves, will be
signaled to turn to a position that lets inert gas clear the
lines first. After a set period of time, the valves will then
be signaled to turn to allow reagents to flow. During an
emergency shutdown or after a process has been
completed, the valves will be signaled to turn to a neutral
position that does not allow any material to pass through
them.

C.LCD Display Menu

The LCD screen serves as the visual means of
communication between the user and the hardware. It
informs the user of current processes underway, display
pertinent sensor data and any less critical warnings. As
such, the screen needs to be large enough to display all the
necessary text, though it does not have to display
everything at the same time. In fact, it would be a better
idea to keep the display as simple and uncluttered as
possible to make the system more user-friendly. The
display works in conjunction with a number of push
buttons to allow the user to make choices which are then
translated to the hardware.

The menu system needed to start at a place that gives
the user the ability to start the current program, a quick

start approach that will save time if the user is not
changing between products after every batch. While a
chemical process is being run, the display will show an
estimated time to completion. This screen will be
overwritten if there is a warning to display and the
warning will not disappear until a user has acknowledged
it via a push button. Warning that are displayed are not for
issues that could be critical concerns, but for issues that
can be addressed after the current process has finished.
There are no options to stop a process while it is running
at this time because there is a dedicated emergency
shutdown system in place that would do much the same
thing. The following Image shows the flow for the User
interface.

Figure 3 User interface flow chart.

VI. CONCLUSION

Although not perfect, our project was able to meet all
the requirements we set out to achieve. This includes a
PCB designed by our team, valves moving as instructed
by the microcontroller, pumps interfaced by the

microcontroller, and a UI to tie everything together and
allow the worker at helicon to control the system. Some
improvements could have been made to the system and
our approach to the problem but unforeseen circumstances
also led to feasibility issues especially that of stretch
goals.

ACKNOWLEDGEMENT

The authors wish to acknowledge the assistance and
support of Carlos Reina who helped guide the team to
solutions involving the enclosure and components, Ian
McClure who was the head engineer building the system
Helicon had and explained how exactly their current
system operates and provided technical material, and
David Reid, the Helicon CEO who authorized the project.

BIOGRAPHY

Amanda Gilliam is a senior

Computer Engineering student at
the University of Central Florida.
Upon graduation she will join
Northrop Grumman as a Software
Engineer. Her interests include
embedded development and
software design.

Anish Umashankar is a Senior

at UCF pursuing a bachelor's
degree in Electrical
Engineering. The choice to
pursue Electrical Engineering as

a major comes from being a child growing up in the
digital age, which resulted in affinity towards electronics
and circuit design. Personal hobbies include building
computers for commission and making music. In the near
future he aims to work in a job which he has appropriate
creative freedom in PCB design.

Jason earned a business

degree from the University of
Florida and joined the Peace
Corps before realizing that
engineering was his true
calling. He then came to UCF
to study electrical
engineering, with the ultimate
goal of helping humanity

colonize other planets. In his free time he enjoys learning,
teaching, and traveling. The ultimate combination of his
goals and interests is to one day travel to Mars.

Ernel is a senior Electrical

Engineering student at the
University of Central Florida.
Electricity is the family trade
and Ernel grew to enjoy
automation after helping his
father automate an Ice plant. He
aims to secure a job in Siemens
or FPL doing automation work.

REFERENCES
[1] “IEEE Standard for Software Test Documentation," in IEEE

Std 829-1983 , vol., no., pp.1-48, 18 Feb. 1983.
[2] “NEMA Enclosure Types” in NEMA Enclosure Types

vol., no., pp.1-9, Nov. 2005.

	Continuous Chemical Reagent Mixing Automation
	Dept. of Electrical Engineering and Computer Science, University of Central Florida, Orlando, Florida, 32816-2450
	Abstract — In Chemistry, continuous mixing can react reagents more efficiently than batch mixing. In partnership with Helicon Chemical Company, we developed a system to convert their operations from batch mixing to continuous. Helicon built the syst...
	Index Terms — Manufacturing automation, Control engineering, Centralized control, Closed loop systems, servosystems, microcontroller
	I. Introduction
	II. System Components
	III. Implementation Strategy
	IV.Related Standards
	V.Software Design
	Acknowledgement
	Biography
	References

