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Abstract— This project implements navigational capabilities 
in a remote-controlled vehicle using various onboard sensors such 
as radar, ultrasonic, and an onboard 3D camera connected to a 
Graphics Processing Unit (GPU) and a Central Processing Unit 
(CPU). The various sensors feed their data to a central computing 
unit which will make the necessary decisions to either adjust the 
steering, adjust speed performances to accelerate or decelerate, 
avoid collisions or avoid obstacles and stop the vehicle.  
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I. INTRODUCTION 
The outcome of this project was to have a vehicle that can 

autonomously traverse a course that could feature turns of 
various angles, twists, hazards, obstacles, uneven surfaces and 
even dead ends. The vehicle would be capable to navigate 
through the course as quickly as possible without colliding and 
avoiding obstacles all while adhering to the safety and road 
standards. Additional features of the course could include 
reconfigurability of the track, where the walls and obstacles 
could be translated to create a new track, and the vehicle would 
still be able to navigate through it accurately.  

The project is featured on a 1/10 scale model Remote 
Control Car (RC). Safety, cost, and time constraints restricted 
the project to be done on a smaller scale. Translating the 
algorithm, hardware, and technology into a “real-world” 
problem looks as simple as having a processor that responds in 
real time to different flags and interrupts in a system while still 
operating efficiently and correctly. This work could easily be 
applied to existing technologies such as Roomba or other 
autonomous vehicles that are already in production. 

II. DESIGN OVERVIEW 

A. Initial Design 
The initial design for our autonomous vehicle comprised a 

series of distinct sensors which fed distance and proximity data. 
The basic operational summary of the system is as follows. The 
3-D stereo camera, being the primary sensor, will utilize its 
stereoscopic vision system to detect and determine depth of 
images in order to measure distance from detected objects at 
longer ranges and to facilitate course navigation. The radar 
module will send proximity target data to the Arduino Atmega 
2560 in order to detect mid-range distance objects that are in the 

path of the autonomous vehicle. Ultrasonic proximity sensors 
will send data to the Arduino Atmega 2560 in order to facilitate 
minimal range object detection. This data will be fed to the 
Arduino Atmega 2560 in order to determine whether a motor or 
steering signal is required each cycle.   

B. Current Design 
Due to the COVID-19 pandemic, our current design is very 

similar to our original design. Our V1.0 PCB’s were functional, 
so the urgent need for and inability to acquire a V2.0 PCB was 
mitigated, and the team was able to produce a partially 
functional system. However, some changes were able to be 
implemented from our initial design to our current design and 
are highlighted below.  

One change implemented was that it was determined that the 
radar that we had initially selected and purchased was unable to 
provide the data that we needed in order to facilitate proximity 
readings. The API provided by the company simply was not 
enough for us to install and implement the device into our 
project, and so we instead opted to utilize a radar that generated 
an interrupt signal when an object was detected within a certain 
hardware-defined threshold. This interrupt was utilized to 
initiate the audible safety board, which would then play an 
installed .wav file through the system’s speakers. 

A rotary encoder was also initially going to be utilized to 
provide speed data to the Arduino Atmega 2560. It was 
determined that this component was unneeded as the system was 
not necessarily in need of speed data. While future revisions of 
the project may necessitate the use of speed data, this revision 
simply did not.  

Another implemented change was the utilization of a 
lithium-polymer battery with a larger voltage. This change was 
made to power the Jetson Tx2’s carrier board and accompanying 
peripheral devices. The power system PCB was initially 
designed for input voltages from 4.6 to 12VDC, so no 
modifications were required for the power system PCB to 
accommodate the larger input voltage. 

III. GOALS AND OBJECTIVES 
The goals and objectives for this project are: 

• To produce an autonomous vehicle with the capability to 
navigate a reconfigurable course without striking the 
course walls or another vehicle. 

• To provide designs and techniques that can be utilized by 
our sponsor in his research of autonomous vehicles 

• To race our design in a competition 

IV. REQUIREMENTS 
The project’s requirements and specifications are presented in 
Table 1. 
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TABLE 1 
PROJECT REQUIREMENTS AND SPECIFICATIONS 

Max Height 1 Foot 
Max Weight 15 Pounds 
Object Size Detection 6x12 Inch 
Object Detection Range 1 Meter 
Autonomy [1] 4/3 SAE Level  
Object Detection Response 
Time 

1 Second 

Object Detection Response 
Time 

1 second 

Stopping Distance from 
5mph 

2 ft 

Object Response Distance 3 ft 
Minimum Distance from 
Obstacle 

6 in 

Max speed 10 mph 
Acceleration time from Full 
Stop 

10 seconds 

Stop Time from Max Speed 5 seconds 
Source Voltage 11.1 V 
Source Capacity 5000 mAh 
Down Converted Voltages 1.8, 3.3, 5 V 
Battery Type Rechargeable -- 
User Adjustment to 
Autonomy Level 

0/1 SAE Level  

 

V. RESEARCH AND THEORY 
Autonomous Vehicles are a thriving emerging technology 

that already has had great impact, which may revolutionize 
transportation, while substantially enhancing traffic safety and 
efficiency. Market interest for autonomous vehicles currently is 
for the purpose of delivering goods or ride sharing with a long-
term goal of reaching Level 4 or Level 5 [1] autonomy within 
10 years. Since its inception, the idea to create autonomous 
vehicles is ongoing, avid, and ambitious. Remote controlled car 
competitions are popular projects that dwell on this idea of full 
automation, which allows to develop, work and create new 
technology. 

A. GPU Image Processing 
The Graphics Processing Unit (GPU) is not only a powerful 

graphics engine but also a highly parallel programmable 
processor featuring peak arithmetic and memory bandwidth 
that substantially exceeds a dedicated Central Processing Unit 
(CPU). Graphics Processing Units can be utilized to apply 
texturing and pixel engines that were originally designed for 3-
dimensional modeling and rendering, to many classic image-
processing problems to provide speed increases over CPU-only 
implementations, without comprising image quality.  

Compute Unified Device Architecture (CUDA) is a general 
architecture for parallel computing introduced by NVIDIA in 
November 2007. It includes a new programming model, 
architecture and instruction set oriented towards parallel 
computing. This allows pixels to be treated in parallel. In the 

CUDA programming framework, the GPU is viewed as a 
compute device that is a coprocessor to the CPU.  

The GPU has its own DRAM, referred to as device memory, 
and executes a very high number of threads in parallel. More 
precisely, data-parallel portions of an application are executed 
on the device as kernels which run in parallel on many threads. 
In order to organize threads running in parallel on the GPU, 
CUDA organizes them into logical blocks. Each block is 
mapped onto a multiprocessor in the GPU. All the threads in 
one block can be synchronized together and communicate with 
each other. Because there is a limited number of threads that a 
block can contain, these blocks are further organized into grids 
allowing for a larger number of threads to run concurrently. 
CUDA also supports the use of memory pointers, which enables 
random memory-read and write-access ability. In addition, the 
CUDA framework provides a controllable memory hierarchy 
which allows the program to access the cache (shared memory) 
between GPU processing cores and GPU global memory. 

B. Stereo Vision Systems 
Human beings acquire information about the location and 

other properties of objects within an environment thanks to a 
powerful and sophisticated vision system. The perception of a 
third dimension (depth) occurs due to the difference between 
images formed in the retinas of the left and right eyes. In the 
process of image formation, the catches of each eye are not 
equal because they present a slight variation in the position of 
the observed objects, attributed to the separation between the 
eyes. Artificial stereo vision systems are generally inspired by 
the biological process to extract three-dimensional information 
from digital images, which can be used to perform 3D 
reconstructions, tracking, and detection of objects. 

There are several devices that provide three-dimensional 
information, depending on the operating technology they can 
be classified into stereo vision sensors, structured light devices 
or sensors based on the principle of Time of Flight (ToF). These 
devices are used in several areas with multiple purposes, in 
Robotics they are employed as essential tools in navigation 
applications, three-dimensional parts review, among others. 

However, depth data provided by stereo devices have errors 
attributed to several aspects related to cameras hardware and 
computational processes that are performed to obtain these 
values. It is possible to enumerate some sources of errors as 
hardware system error, camera calibration error, feature 
extraction and stereo matching errors. These inherent errors that 
such data present should be considered in the applications 
where depth data generated by 3D vision sensors are used, such 
an example is the Robotic Vision. In real applications, such as 
autonomous robotics, it is important to consider and treat those 
visual errors in order to achieve correct decision-making 
process during a navigation task, for example.  

As said, humans can have a three-dimensional perception of 
the world through the eyes due to the difference observed in the 
images formed in left and right retinas. In the imaging process, 
the images sent to the brain from each eye are not the same, 
with a slight difference in the position of the objects due to the 
separation between the eyes, which form a triangle with the 
scene points. Thanks to this difference, by triangulation the 



brain can determine the distance (depth) that the objects are in 
relation to the observer position. The implementation of stereo 
vision in computers uses this basic principle to recreate a 3D 
scene representation based on the two images of it taken from 
different viewing points. This is known as stereo 
reconstruction. In order to do stereo reconstruction, a series of 
steps are necessary, as calibration, rectification, and further 
depth determination. 

The calibration process estimates intrinsic and extrinsic 
parameters of the cameras. Intrinsic values include the focal 
length, principal point coordinates, radial and tangential 
distortion factors. They are commonly used to obtain images 
without distortions, caused by the lenses and camera 
construction process, and to obtain three-dimensional 
representations of a scene. On the other hand, extrinsic 
parameters relate the real-world reference systems and the 
camera, describing position and orientation of the device in the 
real-world coordinate system (i.e. rotation matrix and 
translation vector). In addition to the calibration (for each 
camera), may be developed a stereo calibration, this process 
allows obtaining information that relates the positions of the 
two cameras in space. 

Stereo rectification is the process in which a pair of stereo 
images are corrected, so that, it appears that they had been taken 
by two cameras with row-aligned image planes as shown in 
Figure 2. With such process the principal rays of the cameras 
are parallel, that is, they intersect at infinity. This step facilitates 
the stereo disparity estimation, a fundamental process prior to 
the estimation of the depth map. 

The stereo camera computes depth information using 
triangulation (re-projection) from the geometric model of non-
distorted rectified cameras. Assuming the two cameras are co-
planar with parallel optical axes and same focal length, the 
depth of each point is calculated. In this calculation, depth 
varies inversely proportional to the disparity between baseline 
distance and image distance. 

C. Radar Sensors 
One of the leading technologies that is being used in the 
automobile industry is the radar-based safety system. Radar is 
being used for blind spot detection, automatic emergency 
braking, pedestrian automatic emergency braking and forward 
collision. Cameras and radar are now being used in the 
Advanced Driver Assistance Systems (ADAS) to provide lane-
departure warnings and adaptive cruise control that allows the 
vehicle to follow the vehicle in front. As more ADAS systems 
become more advanced, they are expected to become 
government-mandated in the future following the recent 
introduction of legislation such as rearview video systems in 
vehicles and advanced emergency brake assist (AEB) for 
commercial vehicles. 

Many automotive radar systems use a pulse-Doppler 
approach, where the transmitter operates for a short period, 
known as the pulse repetition interval, then the system switches 
to receive mode until the next transmit pulse. As the radar 
returns, the reflections are processed coherently to extract range 
and relative motion of detected objects. 

D. Ultrasonic Proximity Sensing 
Ultrasonic proximity sensors are a common type of 

proximity sensor that works by emitting sound frequencies 
higher than the audible range of human hearing. The basic 
principle behind this type of sensor is that the sensor emits an 
ultrasonic pulse and receives it back. The time difference 
between transmission and reception is used to determine the 
distance traveled. Since the ultrasonic pulse will bounce off of 
an object, the distance travelled will indicate the distance to the 
object. Since ultrasonic proximity sensors utilize sound instead 
of light, they can be used where photoelectric sensors have 
difficulty, such as in strong sunlight. This type of sensor is also 
immune to common contaminants such as dust and moisture. 
This type of sensor would be susceptible to noise interference 
from any similar devices emitting pulses with the same sound 
frequency and potentially provide false readings to the 
microcontroller. This may be detrimental during a competition 
where multiple vehicles may be operating with similar sensors 
and their frequencies emissions may interact unfavorably. 

E. Servo Motors 
Servo motors have been around for a long time and are 

utilized in many applications. They are small in size but pack a 
big punch and are very energy efficient. These features allow 
them to be used to operate remote-controlled or radio-
controlled toy cars, robots and airplanes. Servo motors are also 
used in industrial applications, robotics, in-line manufacturing, 
pharmaceutics and food services. 

To fully understand how the servo works, you need to take a 
look under the hood. Inside there is a pretty simple set-up: a 
small DC motor, potentiometer, and a control circuit. The 
motor is attached by gears to the control wheel. As the motor 
rotates, the potentiometer's resistance changes, so the control 
circuit can precisely regulate how much movement there is and 
in which direction. When the shaft of the motor is at the desired 
position, power supplied to the motor is stopped. If not, the 
motor is turned in the appropriate direction. The desired 
position is sent via electrical pulses through the signal wire. The 
motor's speed is proportional to the difference between its 
actual position and desired position. So, if the motor is near the 
desired position, it will turn slowly, otherwise it will turn fast. 
This is called proportional control. This means the motor will 
only run as hard as necessary to accomplish the task at hand. 

Servos are controlled by sending an electrical pulse of 
variable width, or pulse width modulation (PWM), through the 
control wire. There is a minimum pulse, a maximum pulse, and 
a repetition rate. A servo motor can usually only turn 90° in 
either direction for a total of 180° movement. The motor's 
neutral position is defined as the position where the servo has 
the same amount of potential rotation in both the clockwise or 
counter-clockwise direction. The PWM sent to the motor 
determines position of the shaft and based on the duration of 
the pulse sent via the control wire; the rotor will turn to the 
desired position. The servo motor expects to see a pulse every 
20 milliseconds (ms) and the length of the pulse will determine 
how far the motor turns. For example, a 1.5ms pulse will make 
the motor turn to the 90° position. Shorter than 1.5ms moves it 



in the counterclockwise direction toward the 0° position, and 
any longer than 1.5ms will turn the servo in a clockwise 
direction toward the 180° position. The PWM signal effect on 
a servo motor is depicted in Figure 8. 

When these servos are commanded to move, they will move 
to the position and hold that position. If an external force pushes 
against the servo while the servo is holding a position, the servo 
will resist from moving out of that position. The maximum 
amount of force the servo can exert is called the torque rating 
of the servo. Servos will not hold their position forever though; 
the position pulse must be repeated to instruct the servo to stay 
in position. 

VI. HARDWARE DESIGN 
Strategic component and parts selection were conducted in 

order to fulfill engineering specifications, requirements and 
standards. Selected components are broken down into three 
subsections: platform, payload and peripherals. The platform 
consists of the vehicle chassis and the components required to 
power, propel and steer the vehicle. The payload consists of the 
electronic components required to process all peripheral data 
and provide motor and steering control signals to the platform. 
The peripherals consist of all secondary sensors utilized to 
facilitate course navigation and collision avoidance. 

A. System Overview 
The basic operational overview of the system is as follows. 

The 3-D stereo camera, being the primary sensor, utilizes its 
stereoscopic vision system to detect and determine depth of 
images in order to measure distance from detected objects at 
longer ranges and to facilitate course navigation. The radar 
module sends proximity target data to the Arduino Atmega 
2560 in order to detect mid-range distance objects that are in 
the path of the autonomous vehicle. Ultrasonic proximity 
sensors send data to the Arduino Atmega 2560 in order to 
facilitate minimal range object detection. This data is fed to the 
Arduino Atmega 2560 in order to determine whether a motor or 
steering signal is required each cycle. 

A system block diagram is included to summarize and 
provide a functional overview of the project. This diagram is 
presented below in Figure 1.  

 

 
Fig. 1 – System Block Diagram 

Input power will be supplied by a rechargeable Lithium 
Polymer battery supplying 11.1VDC at 5000mAh. This voltage 
and current will be routed to the power systems PCB where the 
11.1V will be directed to three linear voltage regulator circuits 
that will convert the 11.1V input to 1.8V, 3.3V and 5V 
respectively. The 11.1V will also be routed through the power 
system PCB as an unregulated input that will be directed to the 
motor controller to provide voltage and current to the drive 
motor and to the image processor. The power system PCB will 
output 1.8V, 3.3V and 5V to the main payload PCB which 
contains the Arduino Atmega 2560 and safety circuits. The 
Arduino Atmega 2560 will utilize the 3.3V to power itself. The 
1.8V, 3.3V and 5V voltages will also pass through the main 
payload PCB to be directed to the peripherals sub-systems.1.8V 
will be routed to the radar module. 5V will be directed to and 
utilized by the ultrasonic proximity sensors and 3-D stereo 
camera. System wide power flow is illustrated below in Figure 
2. 

 
Fig. 2 – Voltage Diagram 

Raw image data will be transferred from the 3-D stereo 
camera to the image processor. Rectified image data will then 
be passed to the Arduino Atmega 2560. The MUC will also 
accept proximity data from the ultrasonic proximity sensors and 
the radar module to facilitate object detection. The MUC will 
then determine motor and steering output signals to facilitate 
collision avoidance. Signal flow throughout the system is 
depicted below in Figure 3. 



 
Fig. 3 – Signal Flow Diagram 

B. Platform 
The sponsor-provided vehicle chassis is the Traxxas Ford 

Fiesta® ST Rally Radio Controlled 1/10th scale car. This 
specific vehicle chassis would meet our intended goals for 
autonomous vehicle as well as confirm our research into vehicle 
platforms. The hybrid of on-road and off-road capability as well 
as four-wheel drivetrain allows the autonomous vehicle to 
function over a broader range of terrains.  

The vehicle chassis was modified to carry the sensors and 
payload. A dual-level plexiglass mounting service was 
fabricated to mount the PCB’s, Sound board and Jetson Carrier 
board. We utilized a dual-level design to enable the system’s 
custom wiring harnesses to be routed between the layers to 
prevent accidental unplugging of the harnesses in case the 
vehicle got too close to an object. 

The power management PCB provides regulated DC power 
to all subsystems. The power system’s input is a rechargeable 
lithium-polymer (LiPo) battery pack operating between 4.6 and 
12 VDC, providing current between 3500 and 7500 mAh. The 
power management PCB regulates the input voltage via DC-
DC buck voltage regulators which provides the required 
voltages for the various components of our system at 1.8V, 
3.3V and 5V. Each regulated voltage is provided by its own 
voltage regulator circuit to enable quick corrective measures 
without replacing the entire PCB. 

The drive motor that was supplied with the vehicle was the 
Traxxas Titan 12T 550. The group opted to replace the provided 
brushed motor in favor of a brushless motor for racing 
applications. When switching to a brushless motor, the system 
also required changing the provided electronic speed controller 
to one which could provide the required signals to the new 
motor. The electronic speed controller that the group utilized 
was the Traxxas VXL-3S. The steering servos provided with 
the vehicle were considered acceptable for our application and 
were unchanged. 

C. Payload 
The Arduino Atmega 2560 is the brain of the design and it 

takes the inputs from the sensors, interprets the data and 
provides output commands to the vehicle to navigate and avoid 
collisions. The Arduino Atmega 2560 is constantly taking in 

data that the GPU feeds it and adjusts the motor, speed 
controller, and steering servos accordingly. Additionally, the 
Arduino Atmega 2560 monitors any wireless communications 
and awaits a manual override signal—which will be supplied 
by the user (if necessary) as a failsafe technique—and then 
“listens” to the user’s instructions in lieu of making its own. 
The Arduino Atmega 2560 chosen for our design was the 
Arduino ATMEGA2560-16AU. This processor was chosen due 
to its number of I/O pins, communications protocols, UART 
channels and the wealth of Arduino libraries available. 

The image processor we chose is the Jetson TX2, which 
takes raw data from the 3-D camera and provides data to be 
processed by the Arduino Atmega 2560 to avoid collisions. The 
ZED Stereo Camera has an impressively large amount of data 
that it supplies in every frame, but for our intents and purposes 
all we will use is the distance measurement features. The ZED 
Stereo Camera passes a 1280 x 720 point cloud to the Jetson 
Tx2 where every single point in the grid contains the 
measurement for that pixel in the image that the camera 
captures. While we may not necessarily need the whole point 
cloud to make our project, this will be more than sufficient for 
navigational capabilities. 

Due to the minimal sound generated by an electric motor 
and small vehicle platform, an audible safety device was 
selected in order to alert nearby pedestrians of the presence of 
the autonomous vehicle. The Adafruit Audio FX Mini Sound 
Board is an efficient, cost effective means to alert nearby 
pedestrians of the presence of the autonomous vehicle and is 
configurable with up to 2MB of storage for various audible 
alerts recorded in compressed or uncompressed MP3 or WAV 
format. Our team decided to implement movie sound bites from 
the motion picture “Monty Python and the Holy Grail”. 

An electronic failsafe was to be designed to mitigate 
liability associated with the operation of an autonomous 
vehicle. Unfortunately, due to the COVID-19 pandemic and 
required social distancing, the failsafe was unable to be fully 
developed. We had the pinout available on the Arduino Atmega 
2560 to receive a level-change interrupt, but without being able 
to test the receiver with an oscilloscope it was really impossible 
to properly test and develop the interrupt signal. The failsafe 
would have functioned in two separate ways. The first operation 
would have been to act as a user-controlled override of the 
steering and speed functions of the vehicle. The existing 
remote-control functions provided with the initial vehicle 
would have been integrated into our design, thus allowing an 
operator to seamlessly take control of the vehicle to avoid injury 
to individuals or damage to property. This option brings the 
autonomy level from a 4 down to a level 0 ([1]). The second 
operation of the failsafe would have been as an electronic “kill 
switch” that immediately disconnects power to the motor, 
thereby disabling any powered vehicle movement, but still 
allowing the vehicle to process and steer away from obstacles. 
This operation would have been important in case the vehicle 
travelled outside the range of the existing remote-control 
functionality present in the original vehicle. This option would 
alter the autonomy level from a 4 to a level 3). 



D. Peripherals 
A stereoscopic camera was provided by our sponsor, Dr. 

Guo. The sponsor-provided camera was chosen for this project 
as a proof of concept for optical image directed, obstacle 
avoidance. The sponsor-provided camera is the ZED Stereo 
camera and is a 3-D sensor which contains depth perception and 
motion tracking functionality. The ZED device is composed of 
stereo 2K cameras with dual 4MP RGB sensors. It has a field 
of view of 110° and can streams uncompressed video at a rate 
up to 100 FPS in WVGA format. It is an UVC-compliant USB 
3.0 camera backward compatible with USB 2.0. Left and right 
video frames are synchronized and streamed as a single 
uncompressed video frame in the side-by-side format. Several 
configurations parameters of on-board ISP (Image Signal 
Processor) as resolution, brightness, contrast, saturation can be 
adjusted through the SDK that is provided by ZED 
development team. This camera has a compact structure and 
reduced size, compared to other stereo cameras. These 
characteristics make it relatively simple to incorporate into 
robotic systems or drones. 

To aid in the aspects of collision avoidance, radar sensors 
will be implemented because of the range span that the sensors 
provide. Radar can propagate at high frequencies and are able 
to detect objects within millimeters of the vehicle. The 
SEN0192 Motion Detector can detect movements in a room, 
yard, or even on the other side of a wall. It’s a Doppler radar 
sensor that operates in the X-band frequency at 10.525 GHz and 
indicates movements with oscillations in its high/low output. 
Sensitivity is manually adjustable with a potentiometer on the 
back of the device, offering direct line of sight detection from 
roughly 8 to slightly over 30 ft (~2.4 to 9+ m). 

Ultrasonic proximity sensors are assumed to be the most 
reliable of the secondary proximity sensors to be utilized in the 
project. Their low cost, effective range and speed are suitable 
for use as backup collision avoidance sensors. Ease of 
programming and integrating is also a factor when selecting this 
type of sensor for its intended purpose. The HC-SR04 sensor is 
ranging module that provides 2cm - 400cm non-contact 
measurement function, the ranging accuracy can reach to 3mm. 
The modules include ultrasonic transmitters, receiver and 
control circuit. The Module automatically sends eight 40 kHz 
and detect whether there is a pulse signal back.  If the signal 
back, through high level, time of high output IO duration is the 
time from sending ultrasonic to returning. Test distance = (high 
level time x velocity of sound (340M/S) / 2. 

VII. SOFTWARE DESIGN 
The software of the autonomous vehicle will be that of an 

embedded system, hence techniques such as reusability and 
portability will not be considered—since the UCF1/10 team uses 
a nearly identical set up. Instead the main focus of the software 
will be that of correctness, reusability, reliability, and efficiency. 
The project software behavior will be similar to that of a 
Roomba device, where the end user will only power the device, 
and then the vehicle will begin to navigate through a track, 
avoiding obstacles along the way. Since the project will feature 
different sensors, controllers and multiple processors, UART, 
SPI and Serial communications will be used throughout the 

project with as few devices on each protocol as possible. The 
ultrasonic and radar sensors are analog devices, and as such 
either timed pulses or level changes—i.e. interrupt triggers. It is 
essential to have a high baud rate between the sensors and the 
Arduino Atmega 2560 because the vehicle will be in constant 
motion and will need to update its positional data as quickly as 
possible, which in turn will help process the data that is being 
collected by the sensors.  

The GPU will interpret the data and calculate the distances 
for any objects that are potentially spotted by each sensor. Once 
the data is collected the Arduino Atmega 2560 will perform 
calculations and it will determine if either a threshold is 
triggered—signifying that evasive actions are necessary—or if 
the vehicle will be able to operate normally on the same path. 
The GPU will receive a point cloud from the ZED Stereo 
Camera where every point in the aforementioned cloud has 
distance data for the respective pixels. It is the job of the Jetson 
Tx2 to take this point cloud and make it legible to the Arduino 
on the Communications PCB. There was great deliberation 
about the method of interpretation for the  point cloud data, 
where the main two selections are algorithmic approaches or 
utilizing Machine Learning procedures. The latter was favored 
at the start of the project, as the ZED Stereo Camera features 
API specifically for machine learning algorithms that contain 
datasets for detecting a multitude of everyday objects. After 
much contemplation, it was deemed that machine learning was 
both too robust and too powerful for what the project actually 
needed. While an algorithmic approach may be too simplified, 
our project does not actually need to detect the type of object 
that is present, it only needs to detect the presence of an object, 
which can be done by reading the point cloud data and applying 
basic statistical analysis to the cloud. In our case, the basic 
statistical analysis is just averaging over specific ranges and then 
comparing said range-averages. While this may not yield exact 
results for where objects are, or where they are not, the goal of 
the ZED Camera is merely to give the Arduino Atmega 2560 an 
idea of where an object could be, while the actual object 
avoidance and navigation will be achieved via the onboard 
sensors. 

Serial communication will be used to communicate with the 
ZED Stereo camera. This communication protocol is used 
because the Jetson TX2 has an onboard USB port and it will 
lessen the size of the software. The ZED Stereo Camera is also 
compatible with ROS and has well-documented Python and 
C++ API, which will cut down on the amount of programming 
that we will have to do. The only parts of the ZED Stereo camera 
that we will need to program will be the minimum required to 
interface the ZED Stereo camera to the Jetson TX2. 

The software will feature different Interrupt Service 
Routines (ISR) to handle the different evasive maneuvers the 
vehicle will exhibit. Some of the evasive maneuvers the vehicle 
could make are stop, produce a warning sound, steer either left 
or right to various degrees, accelerate and decelerate.  Setting up 
the ISRs as functions will ease debugging the software as the 
various behavior-controllers will be centrally located within the 
ISR. This also allows more than one person to work on or to 
troubleshoot the code if need be.  

Stopping the vehicle will need to happen once the vehicle 
gets to within a certain threshold distance away from an 
obstacle. The sensors will send the objects’ distance data to the 



Arduino Atmega 2560 which will then determine which action 
to take. According to the requirements from Table 1, the vehicle 
will enter the ISR for stop/decelerate/accelerate actions when 
the sensors detect and object that is three feet away. At three feet 
the vehicle will commence deceleration while the sensors gather 
additional data from the surroundings in case the vehicle will 
also need to turn to avoid the obstacle. If the object does not go 
below three feet, the Arduino Atmega 2560 will send a 
command to the motor controller to accelerate, but if the object 
goes below two feet the ISR will break the connection to the 
motor controller to make the vehicle come to a complete stop. 
In addition, the software will feature a failsafe ISR that is 
intended to be a “kill switch” for the vehicle.  

A kill switch is required for the competition and is specified 
by competition standards where the user will have the ability to 
stop the vehicle by flipping a switch or pressing a button. The 
ISR will be triggered by an output signal from the user’s remote 
control that is compatible with the OEM radio antenna. The end 
user should call the kill switch when the user sees a flashing 
LED mounted on the vehicle—indicating some form of onboard 
error that is directly impacting the vehicle’s navigation, or in 
addition the LED can also alert that a crash is imminent and 
unavoidable—or if the user hears the warning sound play from 
the onboard speakers.  This LED will be triggered by the sensor 
data when the vehicle reaches the different thresholds. At two 
feet the LED will begin to flash slowly to let the user know that 
the vehicle should begin to stop. At six inches the LED—or 
possibly multiple LEDs—will flash rapidly to let the end user 
know that the vehicle should come to a complete stop within the 
required time of five seconds. If the vehicle stops then the end 
user will disregard the waring LED. If the vehicle appears to 
continue going, then the end user will simply pull the switch 
trigger from the remote control.   

To steer the vehicle in the correct speed and direction, 
measurements will be taken from the steering controller unit. 
Based on distance data received from the various sensors, speed 
read from the rotary encoder (or possibly calculated from 
changing distance data), and radius of the curve measured from 
distance data, the vehicle will be able to run an algorithm that 
correctly decides on which direction or speed to take. One of the 
main components that will be featured in the navigational ISR is 
the 3D camera. The camera has the ability to sense object 
distance and can create a point cloud. One of the abilities given 
by the Jetson Tx2 is the ability to pass the calculations off to the 
GPUs and accelerators that are included in the architecture. This 
will allow the computations to be done very quickly, which in 
turn allows us to have more computations in a given session. 
Software will be made to parse through the point cloud and 
generate a “collection” of objects along with their distances and 
size. Once both size (needed for steering direction) and distance 
(needed for reaction time) are found, the Jetson will send the 
data to the Arduino Atmega 2560. This will trigger the software 
to enter the ISR. The auxiliary sensors will also contribute data 
to have a more accurate calculation of the distances and will 
effectively act as a handshake with the ZED Stereo Camera. 
Once the path is determined, the Arduino Atmega 2560 will send 
a command to the steering control to turn to the appropriate 
angle.  

As a safety feature it was decided to include an audible 
device to make the vehicle stand out in the event that there are 

bystanders that are unaware of the oncoming vehicle. Different 
sounds will be programmed when the vehicle performs an 
evasive maneuver, or to indicate different operation statuses. In 
regard to evasive maneuvers, the vehicle will produce a warning 
sound when approaching an obstacle, when it has come to a 
complete stop, when the vehicle goes in reverse, as well as if any 
sensor or car component fails. In addition, the car will play 
sound bytes once the program has been initialized and had no 
errors, and again once the program exits successfully. This 
functionality was decided to be separate from the 
stop/accelerate/decelerate function to reduce the size of the 
function and ease of debugging, but the Arduino Atmega 2560 
will still be able to control the speed separately from the ISR. 

A software class diagram for the system is presented below 
in Figure 4. 

 
Fig. 4 – Software Class Diagram 

The software class diagram can be broken down into three 
distinct sections: User interrupt, peripheral operations, and 
steering systems. The User will always have the ability to send 
an interrupt through the OEM remote control, which will 
disengage the motor while also allowing the car to navigate. 
The Arduino Atmega 2560 will also be reading and reacting to 
distance data received either from the radar, ultrasonic 
sensors, or Jetson Tx2. Depending on the scenario, the 
Arduino Atmega 2560 will have the decision to make with 
respect to speed, navigation, and also whether or not it should 
play a sound byte. Since this process needs to be fast—
especially in a racing setting—the software should be kept to a 
minimal degree so that the vehicle can be as responsive as 
possible. Another facet of the software class diagram that 
should be considered is that there are only two interrupts in 
the system: the User’s kill signal interrupt, and the radar. 
Keeping the number of interrupts to a minimum guarantees 
that the program will flow almost continuously. 

Now that the classes have been sorted out, it follows that 
the next step is to determine the nature of the software and the 
order that the events should occur. This is done in Figure 5 
below: 
  



 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

 

Fig. 5 - Software Flowchart 

The software flowchart is essentially one big loop due to the 
nature of the Arduino family, which is to initialize and then to 
loop repeatedly until the programmer decides that it wants to 
terminate the program. Here is no different and the flow is 
sequential. The very first thing that will be done in every test 
run is that the Arduino Atmega 2560 will poll the Jetson Tx2 
for any available distance data. The Arduino Atmega 2560 has 
a software-defined threshold value that it will test the distances 
against. If there is a direction that the NI-hicle can drive in that 
exists beyond the threshold, it will do so. In the case where 
either the distances are beyond the threshold, or if the radar is 
tripped while the car is in motion, the Arduino Atmega 2560 
will begin polling the ultrasonic sensors. The Arduino Atmega 
2560 will poll the sensors based on the fact that the ultrasonic 
sensors are better for reading measurements that are closer, 

whereas the ZED Stereo Camera has a minimum distance 
accuracy of 20cm. Utilizing the ultrasonic sensors will allow 
the Ni-hicle to travel in a more fine-tuned way than would be 
possible with only using the ZED Stereo Camera.  

The final characteristic of the software flowchart is that 
before engaging the motors, the NI-hicle will check to see if the 
failsafe signal had been received. If the failsafe had been 
toggled, the program will wait until the user toggles the failsafe 
again. This will allow the user to take control of the NI-hicle 
should it make a wrong decision or go off track at any point. 

VIII. CONCLUSION 
Results have been promising, as we met many of our 

milestones for the project. The disruption caused by the 
COVID-19 epidemic has stalled progress on making the project 
fully functional, but the project overall is at 90% completion.  

Without the interruption presented by the pandemic, the team 
feels that our project could have been fully functional and 
operated precisely as designed. Challenges for future teams that 
may continue our design work, which the team have identified, 
include integration of the ZED camera, integration of a “kill 
switch”, refining motor control capability and the lack of 
technical documents due to proprietary components. 
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