

The NI-hicle (Navigation Independence)

James Beckett, Alexander Jenkel, Juan
Velasquez

Group 20 – The Knights of NI

Dept. of Electrical and Computer Engineering
University of Central Florida
Orlando, Florida 32816-2450

Abstract— This project implements navigational capabilities
in a remote-controlled vehicle using various onboard sensors such
as radar, ultrasonic, and an onboard 3D camera connected to a
Graphics Processing Unit (GPU) and a Central Processing Unit
(CPU). The various sensors feed their data to a central computing
unit which will make the necessary decisions to either adjust the
steering, adjust speed performances to accelerate or decelerate,
avoid collisions or avoid obstacles and stop the vehicle.

Keywords—autonomous vehicle, autonomy, GPU, 3-D camera,
ultrasonic, radar

I. INTRODUCTION
The outcome of this project was to have a vehicle that can

autonomously traverse a course that could feature turns of
various angles, twists, hazards, obstacles, uneven surfaces and
even dead ends. The vehicle would be capable to navigate
through the course as quickly as possible without colliding and
avoiding obstacles all while adhering to the safety and road
standards. Additional features of the course could include
reconfigurability of the track, where the walls and obstacles
could be translated to create a new track, and the vehicle would
still be able to navigate through it accurately.

The project is featured on a 1/10 scale model Remote
Control Car (RC). Safety, cost, and time constraints restricted
the project to be done on a smaller scale. Translating the
algorithm, hardware, and technology into a “real-world”
problem looks as simple as having a processor that responds in
real time to different flags and interrupts in a system while still
operating efficiently and correctly. This work could easily be
applied to existing technologies such as Roomba or other
autonomous vehicles that are already in production.

II. DESIGN OVERVIEW

A. Initial Design
The initial design for our autonomous vehicle comprised a

series of distinct sensors which fed distance and proximity data.
The basic operational summary of the system is as follows. The
3-D stereo camera, being the primary sensor, will utilize its
stereoscopic vision system to detect and determine depth of
images in order to measure distance from detected objects at
longer ranges and to facilitate course navigation. The radar
module will send proximity target data to the Arduino Atmega
2560 in order to detect mid-range distance objects that are in the

path of the autonomous vehicle. Ultrasonic proximity sensors
will send data to the Arduino Atmega 2560 in order to facilitate
minimal range object detection. This data will be fed to the
Arduino Atmega 2560 in order to determine whether a motor or
steering signal is required each cycle.

B. Current Design
Due to the COVID-19 pandemic, our current design is very

similar to our original design. Our V1.0 PCB’s were functional,
so the urgent need for and inability to acquire a V2.0 PCB was
mitigated, and the team was able to produce a partially
functional system. However, some changes were able to be
implemented from our initial design to our current design and
are highlighted below.

One change implemented was that it was determined that the
radar that we had initially selected and purchased was unable to
provide the data that we needed in order to facilitate proximity
readings. The API provided by the company simply was not
enough for us to install and implement the device into our
project, and so we instead opted to utilize a radar that generated
an interrupt signal when an object was detected within a certain
hardware-defined threshold. This interrupt was utilized to
initiate the audible safety board, which would then play an
installed .wav file through the system’s speakers.

A rotary encoder was also initially going to be utilized to
provide speed data to the Arduino Atmega 2560. It was
determined that this component was unneeded as the system was
not necessarily in need of speed data. While future revisions of
the project may necessitate the use of speed data, this revision
simply did not.

Another implemented change was the utilization of a
lithium-polymer battery with a larger voltage. This change was
made to power the Jetson Tx2’s carrier board and accompanying
peripheral devices. The power system PCB was initially
designed for input voltages from 4.6 to 12VDC, so no
modifications were required for the power system PCB to
accommodate the larger input voltage.

III. GOALS AND OBJECTIVES
The goals and objectives for this project are:

• To produce an autonomous vehicle with the capability to
navigate a reconfigurable course without striking the
course walls or another vehicle.

• To provide designs and techniques that can be utilized by
our sponsor in his research of autonomous vehicles

• To race our design in a competition

IV. REQUIREMENTS
The project’s requirements and specifications are presented in
Table 1.

This project is sponsored by Dr. Guo, CECS, University of Central Florida

TABLE 1
PROJECT REQUIREMENTS AND SPECIFICATIONS

Max Height 1 Foot
Max Weight 15 Pounds
Object Size Detection 6x12 Inch
Object Detection Range 1 Meter
Autonomy [1] 4/3 SAE Level
Object Detection Response
Time

1 Second

Object Detection Response
Time

1 second

Stopping Distance from
5mph

2 ft

Object Response Distance 3 ft
Minimum Distance from
Obstacle

6 in

Max speed 10 mph
Acceleration time from Full
Stop

10 seconds

Stop Time from Max Speed 5 seconds
Source Voltage 11.1 V
Source Capacity 5000 mAh
Down Converted Voltages 1.8, 3.3, 5 V
Battery Type Rechargeable --
User Adjustment to
Autonomy Level

0/1 SAE Level

V. RESEARCH AND THEORY
Autonomous Vehicles are a thriving emerging technology

that already has had great impact, which may revolutionize
transportation, while substantially enhancing traffic safety and
efficiency. Market interest for autonomous vehicles currently is
for the purpose of delivering goods or ride sharing with a long-
term goal of reaching Level 4 or Level 5 [1] autonomy within
10 years. Since its inception, the idea to create autonomous
vehicles is ongoing, avid, and ambitious. Remote controlled car
competitions are popular projects that dwell on this idea of full
automation, which allows to develop, work and create new
technology.

A. GPU Image Processing
The Graphics Processing Unit (GPU) is not only a powerful

graphics engine but also a highly parallel programmable
processor featuring peak arithmetic and memory bandwidth
that substantially exceeds a dedicated Central Processing Unit
(CPU). Graphics Processing Units can be utilized to apply
texturing and pixel engines that were originally designed for 3-
dimensional modeling and rendering, to many classic image-
processing problems to provide speed increases over CPU-only
implementations, without comprising image quality.

Compute Unified Device Architecture (CUDA) is a general
architecture for parallel computing introduced by NVIDIA in
November 2007. It includes a new programming model,
architecture and instruction set oriented towards parallel
computing. This allows pixels to be treated in parallel. In the

CUDA programming framework, the GPU is viewed as a
compute device that is a coprocessor to the CPU.

The GPU has its own DRAM, referred to as device memory,
and executes a very high number of threads in parallel. More
precisely, data-parallel portions of an application are executed
on the device as kernels which run in parallel on many threads.
In order to organize threads running in parallel on the GPU,
CUDA organizes them into logical blocks. Each block is
mapped onto a multiprocessor in the GPU. All the threads in
one block can be synchronized together and communicate with
each other. Because there is a limited number of threads that a
block can contain, these blocks are further organized into grids
allowing for a larger number of threads to run concurrently.
CUDA also supports the use of memory pointers, which enables
random memory-read and write-access ability. In addition, the
CUDA framework provides a controllable memory hierarchy
which allows the program to access the cache (shared memory)
between GPU processing cores and GPU global memory.

B. Stereo Vision Systems
Human beings acquire information about the location and

other properties of objects within an environment thanks to a
powerful and sophisticated vision system. The perception of a
third dimension (depth) occurs due to the difference between
images formed in the retinas of the left and right eyes. In the
process of image formation, the catches of each eye are not
equal because they present a slight variation in the position of
the observed objects, attributed to the separation between the
eyes. Artificial stereo vision systems are generally inspired by
the biological process to extract three-dimensional information
from digital images, which can be used to perform 3D
reconstructions, tracking, and detection of objects.

There are several devices that provide three-dimensional
information, depending on the operating technology they can
be classified into stereo vision sensors, structured light devices
or sensors based on the principle of Time of Flight (ToF). These
devices are used in several areas with multiple purposes, in
Robotics they are employed as essential tools in navigation
applications, three-dimensional parts review, among others.

However, depth data provided by stereo devices have errors
attributed to several aspects related to cameras hardware and
computational processes that are performed to obtain these
values. It is possible to enumerate some sources of errors as
hardware system error, camera calibration error, feature
extraction and stereo matching errors. These inherent errors that
such data present should be considered in the applications
where depth data generated by 3D vision sensors are used, such
an example is the Robotic Vision. In real applications, such as
autonomous robotics, it is important to consider and treat those
visual errors in order to achieve correct decision-making
process during a navigation task, for example.

As said, humans can have a three-dimensional perception of
the world through the eyes due to the difference observed in the
images formed in left and right retinas. In the imaging process,
the images sent to the brain from each eye are not the same,
with a slight difference in the position of the objects due to the
separation between the eyes, which form a triangle with the
scene points. Thanks to this difference, by triangulation the

brain can determine the distance (depth) that the objects are in
relation to the observer position. The implementation of stereo
vision in computers uses this basic principle to recreate a 3D
scene representation based on the two images of it taken from
different viewing points. This is known as stereo
reconstruction. In order to do stereo reconstruction, a series of
steps are necessary, as calibration, rectification, and further
depth determination.

The calibration process estimates intrinsic and extrinsic
parameters of the cameras. Intrinsic values include the focal
length, principal point coordinates, radial and tangential
distortion factors. They are commonly used to obtain images
without distortions, caused by the lenses and camera
construction process, and to obtain three-dimensional
representations of a scene. On the other hand, extrinsic
parameters relate the real-world reference systems and the
camera, describing position and orientation of the device in the
real-world coordinate system (i.e. rotation matrix and
translation vector). In addition to the calibration (for each
camera), may be developed a stereo calibration, this process
allows obtaining information that relates the positions of the
two cameras in space.

Stereo rectification is the process in which a pair of stereo
images are corrected, so that, it appears that they had been taken
by two cameras with row-aligned image planes as shown in
Figure 2. With such process the principal rays of the cameras
are parallel, that is, they intersect at infinity. This step facilitates
the stereo disparity estimation, a fundamental process prior to
the estimation of the depth map.

The stereo camera computes depth information using
triangulation (re-projection) from the geometric model of non-
distorted rectified cameras. Assuming the two cameras are co-
planar with parallel optical axes and same focal length, the
depth of each point is calculated. In this calculation, depth
varies inversely proportional to the disparity between baseline
distance and image distance.

C. Radar Sensors
One of the leading technologies that is being used in the
automobile industry is the radar-based safety system. Radar is
being used for blind spot detection, automatic emergency
braking, pedestrian automatic emergency braking and forward
collision. Cameras and radar are now being used in the
Advanced Driver Assistance Systems (ADAS) to provide lane-
departure warnings and adaptive cruise control that allows the
vehicle to follow the vehicle in front. As more ADAS systems
become more advanced, they are expected to become
government-mandated in the future following the recent
introduction of legislation such as rearview video systems in
vehicles and advanced emergency brake assist (AEB) for
commercial vehicles.

Many automotive radar systems use a pulse-Doppler
approach, where the transmitter operates for a short period,
known as the pulse repetition interval, then the system switches
to receive mode until the next transmit pulse. As the radar
returns, the reflections are processed coherently to extract range
and relative motion of detected objects.

D. Ultrasonic Proximity Sensing
Ultrasonic proximity sensors are a common type of

proximity sensor that works by emitting sound frequencies
higher than the audible range of human hearing. The basic
principle behind this type of sensor is that the sensor emits an
ultrasonic pulse and receives it back. The time difference
between transmission and reception is used to determine the
distance traveled. Since the ultrasonic pulse will bounce off of
an object, the distance travelled will indicate the distance to the
object. Since ultrasonic proximity sensors utilize sound instead
of light, they can be used where photoelectric sensors have
difficulty, such as in strong sunlight. This type of sensor is also
immune to common contaminants such as dust and moisture.
This type of sensor would be susceptible to noise interference
from any similar devices emitting pulses with the same sound
frequency and potentially provide false readings to the
microcontroller. This may be detrimental during a competition
where multiple vehicles may be operating with similar sensors
and their frequencies emissions may interact unfavorably.

E. Servo Motors
Servo motors have been around for a long time and are

utilized in many applications. They are small in size but pack a
big punch and are very energy efficient. These features allow
them to be used to operate remote-controlled or radio-
controlled toy cars, robots and airplanes. Servo motors are also
used in industrial applications, robotics, in-line manufacturing,
pharmaceutics and food services.

To fully understand how the servo works, you need to take a
look under the hood. Inside there is a pretty simple set-up: a
small DC motor, potentiometer, and a control circuit. The
motor is attached by gears to the control wheel. As the motor
rotates, the potentiometer's resistance changes, so the control
circuit can precisely regulate how much movement there is and
in which direction. When the shaft of the motor is at the desired
position, power supplied to the motor is stopped. If not, the
motor is turned in the appropriate direction. The desired
position is sent via electrical pulses through the signal wire. The
motor's speed is proportional to the difference between its
actual position and desired position. So, if the motor is near the
desired position, it will turn slowly, otherwise it will turn fast.
This is called proportional control. This means the motor will
only run as hard as necessary to accomplish the task at hand.

Servos are controlled by sending an electrical pulse of
variable width, or pulse width modulation (PWM), through the
control wire. There is a minimum pulse, a maximum pulse, and
a repetition rate. A servo motor can usually only turn 90° in
either direction for a total of 180° movement. The motor's
neutral position is defined as the position where the servo has
the same amount of potential rotation in both the clockwise or
counter-clockwise direction. The PWM sent to the motor
determines position of the shaft and based on the duration of
the pulse sent via the control wire; the rotor will turn to the
desired position. The servo motor expects to see a pulse every
20 milliseconds (ms) and the length of the pulse will determine
how far the motor turns. For example, a 1.5ms pulse will make
the motor turn to the 90° position. Shorter than 1.5ms moves it

in the counterclockwise direction toward the 0° position, and
any longer than 1.5ms will turn the servo in a clockwise
direction toward the 180° position. The PWM signal effect on
a servo motor is depicted in Figure 8.

When these servos are commanded to move, they will move
to the position and hold that position. If an external force pushes
against the servo while the servo is holding a position, the servo
will resist from moving out of that position. The maximum
amount of force the servo can exert is called the torque rating
of the servo. Servos will not hold their position forever though;
the position pulse must be repeated to instruct the servo to stay
in position.

VI. HARDWARE DESIGN
Strategic component and parts selection were conducted in

order to fulfill engineering specifications, requirements and
standards. Selected components are broken down into three
subsections: platform, payload and peripherals. The platform
consists of the vehicle chassis and the components required to
power, propel and steer the vehicle. The payload consists of the
electronic components required to process all peripheral data
and provide motor and steering control signals to the platform.
The peripherals consist of all secondary sensors utilized to
facilitate course navigation and collision avoidance.

A. System Overview
The basic operational overview of the system is as follows.

The 3-D stereo camera, being the primary sensor, utilizes its
stereoscopic vision system to detect and determine depth of
images in order to measure distance from detected objects at
longer ranges and to facilitate course navigation. The radar
module sends proximity target data to the Arduino Atmega
2560 in order to detect mid-range distance objects that are in
the path of the autonomous vehicle. Ultrasonic proximity
sensors send data to the Arduino Atmega 2560 in order to
facilitate minimal range object detection. This data is fed to the
Arduino Atmega 2560 in order to determine whether a motor or
steering signal is required each cycle.

A system block diagram is included to summarize and
provide a functional overview of the project. This diagram is
presented below in Figure 1.

Fig. 1 – System Block Diagram

Input power will be supplied by a rechargeable Lithium
Polymer battery supplying 11.1VDC at 5000mAh. This voltage
and current will be routed to the power systems PCB where the
11.1V will be directed to three linear voltage regulator circuits
that will convert the 11.1V input to 1.8V, 3.3V and 5V
respectively. The 11.1V will also be routed through the power
system PCB as an unregulated input that will be directed to the
motor controller to provide voltage and current to the drive
motor and to the image processor. The power system PCB will
output 1.8V, 3.3V and 5V to the main payload PCB which
contains the Arduino Atmega 2560 and safety circuits. The
Arduino Atmega 2560 will utilize the 3.3V to power itself. The
1.8V, 3.3V and 5V voltages will also pass through the main
payload PCB to be directed to the peripherals sub-systems.1.8V
will be routed to the radar module. 5V will be directed to and
utilized by the ultrasonic proximity sensors and 3-D stereo
camera. System wide power flow is illustrated below in Figure
2.

Fig. 2 – Voltage Diagram

Raw image data will be transferred from the 3-D stereo
camera to the image processor. Rectified image data will then
be passed to the Arduino Atmega 2560. The MUC will also
accept proximity data from the ultrasonic proximity sensors and
the radar module to facilitate object detection. The MUC will
then determine motor and steering output signals to facilitate
collision avoidance. Signal flow throughout the system is
depicted below in Figure 3.

Fig. 3 – Signal Flow Diagram

B. Platform
The sponsor-provided vehicle chassis is the Traxxas Ford

Fiesta® ST Rally Radio Controlled 1/10th scale car. This
specific vehicle chassis would meet our intended goals for
autonomous vehicle as well as confirm our research into vehicle
platforms. The hybrid of on-road and off-road capability as well
as four-wheel drivetrain allows the autonomous vehicle to
function over a broader range of terrains.

The vehicle chassis was modified to carry the sensors and
payload. A dual-level plexiglass mounting service was
fabricated to mount the PCB’s, Sound board and Jetson Carrier
board. We utilized a dual-level design to enable the system’s
custom wiring harnesses to be routed between the layers to
prevent accidental unplugging of the harnesses in case the
vehicle got too close to an object.

The power management PCB provides regulated DC power
to all subsystems. The power system’s input is a rechargeable
lithium-polymer (LiPo) battery pack operating between 4.6 and
12 VDC, providing current between 3500 and 7500 mAh. The
power management PCB regulates the input voltage via DC-
DC buck voltage regulators which provides the required
voltages for the various components of our system at 1.8V,
3.3V and 5V. Each regulated voltage is provided by its own
voltage regulator circuit to enable quick corrective measures
without replacing the entire PCB.

The drive motor that was supplied with the vehicle was the
Traxxas Titan 12T 550. The group opted to replace the provided
brushed motor in favor of a brushless motor for racing
applications. When switching to a brushless motor, the system
also required changing the provided electronic speed controller
to one which could provide the required signals to the new
motor. The electronic speed controller that the group utilized
was the Traxxas VXL-3S. The steering servos provided with
the vehicle were considered acceptable for our application and
were unchanged.

C. Payload
The Arduino Atmega 2560 is the brain of the design and it

takes the inputs from the sensors, interprets the data and
provides output commands to the vehicle to navigate and avoid
collisions. The Arduino Atmega 2560 is constantly taking in

data that the GPU feeds it and adjusts the motor, speed
controller, and steering servos accordingly. Additionally, the
Arduino Atmega 2560 monitors any wireless communications
and awaits a manual override signal—which will be supplied
by the user (if necessary) as a failsafe technique—and then
“listens” to the user’s instructions in lieu of making its own.
The Arduino Atmega 2560 chosen for our design was the
Arduino ATMEGA2560-16AU. This processor was chosen due
to its number of I/O pins, communications protocols, UART
channels and the wealth of Arduino libraries available.

The image processor we chose is the Jetson TX2, which
takes raw data from the 3-D camera and provides data to be
processed by the Arduino Atmega 2560 to avoid collisions. The
ZED Stereo Camera has an impressively large amount of data
that it supplies in every frame, but for our intents and purposes
all we will use is the distance measurement features. The ZED
Stereo Camera passes a 1280 x 720 point cloud to the Jetson
Tx2 where every single point in the grid contains the
measurement for that pixel in the image that the camera
captures. While we may not necessarily need the whole point
cloud to make our project, this will be more than sufficient for
navigational capabilities.

Due to the minimal sound generated by an electric motor
and small vehicle platform, an audible safety device was
selected in order to alert nearby pedestrians of the presence of
the autonomous vehicle. The Adafruit Audio FX Mini Sound
Board is an efficient, cost effective means to alert nearby
pedestrians of the presence of the autonomous vehicle and is
configurable with up to 2MB of storage for various audible
alerts recorded in compressed or uncompressed MP3 or WAV
format. Our team decided to implement movie sound bites from
the motion picture “Monty Python and the Holy Grail”.

An electronic failsafe was to be designed to mitigate
liability associated with the operation of an autonomous
vehicle. Unfortunately, due to the COVID-19 pandemic and
required social distancing, the failsafe was unable to be fully
developed. We had the pinout available on the Arduino Atmega
2560 to receive a level-change interrupt, but without being able
to test the receiver with an oscilloscope it was really impossible
to properly test and develop the interrupt signal. The failsafe
would have functioned in two separate ways. The first operation
would have been to act as a user-controlled override of the
steering and speed functions of the vehicle. The existing
remote-control functions provided with the initial vehicle
would have been integrated into our design, thus allowing an
operator to seamlessly take control of the vehicle to avoid injury
to individuals or damage to property. This option brings the
autonomy level from a 4 down to a level 0 ([1]). The second
operation of the failsafe would have been as an electronic “kill
switch” that immediately disconnects power to the motor,
thereby disabling any powered vehicle movement, but still
allowing the vehicle to process and steer away from obstacles.
This operation would have been important in case the vehicle
travelled outside the range of the existing remote-control
functionality present in the original vehicle. This option would
alter the autonomy level from a 4 to a level 3).

D. Peripherals
A stereoscopic camera was provided by our sponsor, Dr.

Guo. The sponsor-provided camera was chosen for this project
as a proof of concept for optical image directed, obstacle
avoidance. The sponsor-provided camera is the ZED Stereo
camera and is a 3-D sensor which contains depth perception and
motion tracking functionality. The ZED device is composed of
stereo 2K cameras with dual 4MP RGB sensors. It has a field
of view of 110° and can streams uncompressed video at a rate
up to 100 FPS in WVGA format. It is an UVC-compliant USB
3.0 camera backward compatible with USB 2.0. Left and right
video frames are synchronized and streamed as a single
uncompressed video frame in the side-by-side format. Several
configurations parameters of on-board ISP (Image Signal
Processor) as resolution, brightness, contrast, saturation can be
adjusted through the SDK that is provided by ZED
development team. This camera has a compact structure and
reduced size, compared to other stereo cameras. These
characteristics make it relatively simple to incorporate into
robotic systems or drones.

To aid in the aspects of collision avoidance, radar sensors
will be implemented because of the range span that the sensors
provide. Radar can propagate at high frequencies and are able
to detect objects within millimeters of the vehicle. The
SEN0192 Motion Detector can detect movements in a room,
yard, or even on the other side of a wall. It’s a Doppler radar
sensor that operates in the X-band frequency at 10.525 GHz and
indicates movements with oscillations in its high/low output.
Sensitivity is manually adjustable with a potentiometer on the
back of the device, offering direct line of sight detection from
roughly 8 to slightly over 30 ft (~2.4 to 9+ m).

Ultrasonic proximity sensors are assumed to be the most
reliable of the secondary proximity sensors to be utilized in the
project. Their low cost, effective range and speed are suitable
for use as backup collision avoidance sensors. Ease of
programming and integrating is also a factor when selecting this
type of sensor for its intended purpose. The HC-SR04 sensor is
ranging module that provides 2cm - 400cm non-contact
measurement function, the ranging accuracy can reach to 3mm.
The modules include ultrasonic transmitters, receiver and
control circuit. The Module automatically sends eight 40 kHz
and detect whether there is a pulse signal back. If the signal
back, through high level, time of high output IO duration is the
time from sending ultrasonic to returning. Test distance = (high
level time x velocity of sound (340M/S) / 2.

VII. SOFTWARE DESIGN
The software of the autonomous vehicle will be that of an

embedded system, hence techniques such as reusability and
portability will not be considered—since the UCF1/10 team uses
a nearly identical set up. Instead the main focus of the software
will be that of correctness, reusability, reliability, and efficiency.
The project software behavior will be similar to that of a
Roomba device, where the end user will only power the device,
and then the vehicle will begin to navigate through a track,
avoiding obstacles along the way. Since the project will feature
different sensors, controllers and multiple processors, UART,
SPI and Serial communications will be used throughout the

project with as few devices on each protocol as possible. The
ultrasonic and radar sensors are analog devices, and as such
either timed pulses or level changes—i.e. interrupt triggers. It is
essential to have a high baud rate between the sensors and the
Arduino Atmega 2560 because the vehicle will be in constant
motion and will need to update its positional data as quickly as
possible, which in turn will help process the data that is being
collected by the sensors.

The GPU will interpret the data and calculate the distances
for any objects that are potentially spotted by each sensor. Once
the data is collected the Arduino Atmega 2560 will perform
calculations and it will determine if either a threshold is
triggered—signifying that evasive actions are necessary—or if
the vehicle will be able to operate normally on the same path.
The GPU will receive a point cloud from the ZED Stereo
Camera where every point in the aforementioned cloud has
distance data for the respective pixels. It is the job of the Jetson
Tx2 to take this point cloud and make it legible to the Arduino
on the Communications PCB. There was great deliberation
about the method of interpretation for the point cloud data,
where the main two selections are algorithmic approaches or
utilizing Machine Learning procedures. The latter was favored
at the start of the project, as the ZED Stereo Camera features
API specifically for machine learning algorithms that contain
datasets for detecting a multitude of everyday objects. After
much contemplation, it was deemed that machine learning was
both too robust and too powerful for what the project actually
needed. While an algorithmic approach may be too simplified,
our project does not actually need to detect the type of object
that is present, it only needs to detect the presence of an object,
which can be done by reading the point cloud data and applying
basic statistical analysis to the cloud. In our case, the basic
statistical analysis is just averaging over specific ranges and then
comparing said range-averages. While this may not yield exact
results for where objects are, or where they are not, the goal of
the ZED Camera is merely to give the Arduino Atmega 2560 an
idea of where an object could be, while the actual object
avoidance and navigation will be achieved via the onboard
sensors.

Serial communication will be used to communicate with the
ZED Stereo camera. This communication protocol is used
because the Jetson TX2 has an onboard USB port and it will
lessen the size of the software. The ZED Stereo Camera is also
compatible with ROS and has well-documented Python and
C++ API, which will cut down on the amount of programming
that we will have to do. The only parts of the ZED Stereo camera
that we will need to program will be the minimum required to
interface the ZED Stereo camera to the Jetson TX2.

The software will feature different Interrupt Service
Routines (ISR) to handle the different evasive maneuvers the
vehicle will exhibit. Some of the evasive maneuvers the vehicle
could make are stop, produce a warning sound, steer either left
or right to various degrees, accelerate and decelerate. Setting up
the ISRs as functions will ease debugging the software as the
various behavior-controllers will be centrally located within the
ISR. This also allows more than one person to work on or to
troubleshoot the code if need be.

Stopping the vehicle will need to happen once the vehicle
gets to within a certain threshold distance away from an
obstacle. The sensors will send the objects’ distance data to the

Arduino Atmega 2560 which will then determine which action
to take. According to the requirements from Table 1, the vehicle
will enter the ISR for stop/decelerate/accelerate actions when
the sensors detect and object that is three feet away. At three feet
the vehicle will commence deceleration while the sensors gather
additional data from the surroundings in case the vehicle will
also need to turn to avoid the obstacle. If the object does not go
below three feet, the Arduino Atmega 2560 will send a
command to the motor controller to accelerate, but if the object
goes below two feet the ISR will break the connection to the
motor controller to make the vehicle come to a complete stop.
In addition, the software will feature a failsafe ISR that is
intended to be a “kill switch” for the vehicle.

A kill switch is required for the competition and is specified
by competition standards where the user will have the ability to
stop the vehicle by flipping a switch or pressing a button. The
ISR will be triggered by an output signal from the user’s remote
control that is compatible with the OEM radio antenna. The end
user should call the kill switch when the user sees a flashing
LED mounted on the vehicle—indicating some form of onboard
error that is directly impacting the vehicle’s navigation, or in
addition the LED can also alert that a crash is imminent and
unavoidable—or if the user hears the warning sound play from
the onboard speakers. This LED will be triggered by the sensor
data when the vehicle reaches the different thresholds. At two
feet the LED will begin to flash slowly to let the user know that
the vehicle should begin to stop. At six inches the LED—or
possibly multiple LEDs—will flash rapidly to let the end user
know that the vehicle should come to a complete stop within the
required time of five seconds. If the vehicle stops then the end
user will disregard the waring LED. If the vehicle appears to
continue going, then the end user will simply pull the switch
trigger from the remote control.

To steer the vehicle in the correct speed and direction,
measurements will be taken from the steering controller unit.
Based on distance data received from the various sensors, speed
read from the rotary encoder (or possibly calculated from
changing distance data), and radius of the curve measured from
distance data, the vehicle will be able to run an algorithm that
correctly decides on which direction or speed to take. One of the
main components that will be featured in the navigational ISR is
the 3D camera. The camera has the ability to sense object
distance and can create a point cloud. One of the abilities given
by the Jetson Tx2 is the ability to pass the calculations off to the
GPUs and accelerators that are included in the architecture. This
will allow the computations to be done very quickly, which in
turn allows us to have more computations in a given session.
Software will be made to parse through the point cloud and
generate a “collection” of objects along with their distances and
size. Once both size (needed for steering direction) and distance
(needed for reaction time) are found, the Jetson will send the
data to the Arduino Atmega 2560. This will trigger the software
to enter the ISR. The auxiliary sensors will also contribute data
to have a more accurate calculation of the distances and will
effectively act as a handshake with the ZED Stereo Camera.
Once the path is determined, the Arduino Atmega 2560 will send
a command to the steering control to turn to the appropriate
angle.

As a safety feature it was decided to include an audible
device to make the vehicle stand out in the event that there are

bystanders that are unaware of the oncoming vehicle. Different
sounds will be programmed when the vehicle performs an
evasive maneuver, or to indicate different operation statuses. In
regard to evasive maneuvers, the vehicle will produce a warning
sound when approaching an obstacle, when it has come to a
complete stop, when the vehicle goes in reverse, as well as if any
sensor or car component fails. In addition, the car will play
sound bytes once the program has been initialized and had no
errors, and again once the program exits successfully. This
functionality was decided to be separate from the
stop/accelerate/decelerate function to reduce the size of the
function and ease of debugging, but the Arduino Atmega 2560
will still be able to control the speed separately from the ISR.

A software class diagram for the system is presented below
in Figure 4.

Fig. 4 – Software Class Diagram

The software class diagram can be broken down into three
distinct sections: User interrupt, peripheral operations, and
steering systems. The User will always have the ability to send
an interrupt through the OEM remote control, which will
disengage the motor while also allowing the car to navigate.
The Arduino Atmega 2560 will also be reading and reacting to
distance data received either from the radar, ultrasonic
sensors, or Jetson Tx2. Depending on the scenario, the
Arduino Atmega 2560 will have the decision to make with
respect to speed, navigation, and also whether or not it should
play a sound byte. Since this process needs to be fast—
especially in a racing setting—the software should be kept to a
minimal degree so that the vehicle can be as responsive as
possible. Another facet of the software class diagram that
should be considered is that there are only two interrupts in
the system: the User’s kill signal interrupt, and the radar.
Keeping the number of interrupts to a minimum guarantees
that the program will flow almost continuously.

Now that the classes have been sorted out, it follows that
the next step is to determine the nature of the software and the
order that the events should occur. This is done in Figure 5
below:

Fig. 5 - Software Flowchart

The software flowchart is essentially one big loop due to the
nature of the Arduino family, which is to initialize and then to
loop repeatedly until the programmer decides that it wants to
terminate the program. Here is no different and the flow is
sequential. The very first thing that will be done in every test
run is that the Arduino Atmega 2560 will poll the Jetson Tx2
for any available distance data. The Arduino Atmega 2560 has
a software-defined threshold value that it will test the distances
against. If there is a direction that the NI-hicle can drive in that
exists beyond the threshold, it will do so. In the case where
either the distances are beyond the threshold, or if the radar is
tripped while the car is in motion, the Arduino Atmega 2560
will begin polling the ultrasonic sensors. The Arduino Atmega
2560 will poll the sensors based on the fact that the ultrasonic
sensors are better for reading measurements that are closer,

whereas the ZED Stereo Camera has a minimum distance
accuracy of 20cm. Utilizing the ultrasonic sensors will allow
the Ni-hicle to travel in a more fine-tuned way than would be
possible with only using the ZED Stereo Camera.

The final characteristic of the software flowchart is that
before engaging the motors, the NI-hicle will check to see if the
failsafe signal had been received. If the failsafe had been
toggled, the program will wait until the user toggles the failsafe
again. This will allow the user to take control of the NI-hicle
should it make a wrong decision or go off track at any point.

VIII. CONCLUSION
Results have been promising, as we met many of our

milestones for the project. The disruption caused by the
COVID-19 epidemic has stalled progress on making the project
fully functional, but the project overall is at 90% completion.

Without the interruption presented by the pandemic, the team
feels that our project could have been fully functional and
operated precisely as designed. Challenges for future teams that
may continue our design work, which the team have identified,
include integration of the ZED camera, integration of a “kill
switch”, refining motor control capability and the lack of
technical documents due to proprietary components.

ACKNOWLEDGMENT (Heading 5)
The Knights of NI would like to thank the faculty, who have

been instrumental in guiding our progress during this project, to
include: Dr. Richie, Dr. Wei and Dr. Guo. The Knights of NI
would also like to extend our gratitude to our panel for their
attention, patience and understanding during these trying times
and their outstanding ability to provide valuable feedback on our
efforts.

REFERENCES
[1] Matthew.lynberg.ctr@dot.gov. “Automated Vehicles
for Safety.” NHTSA, 17 Sept. 2019,
www.nhtsa.gov/technology-innovation/automated-vehicles-
safety.

	I. Introduction
	II. Design Overview
	A. Initial Design
	B. Current Design

	III. Goals and Objectives
	IV. Requirements
	V. Research and Theory
	A. GPU Image Processing
	B. Stereo Vision Systems
	C. Radar Sensors
	D. Ultrasonic Proximity Sensing
	E. Servo Motors

	VI. Hardware design
	A. System Overview
	B. Platform
	C. Payload
	D. Peripherals

	VII. Software design
	VIII. Conclusion
	Acknowledgment (Heading 5)
	References

