

Real-Time Translator with ASL Interpretation
(RTAI)

University of Central Florida
Department of Electrical and Computer Engineering

Final Report
Senior Design I
Dr. Samuel Richie
Group 14

Members
Gustavo Camero Computer Engineering gcamero@knights.ucf.edu
Luis Hurtado Electrical Engineering luis.hurtado@knights.ucf.edu
Michael Loyd Electrical Engineering michael.loyd@knights.ucf.edu
Jared Spinks Computer Engineering spinks.jared@knights.ucf.edu

Client/Advisor
Dr. Chung Yong Chan chungyong.chan@ucf.edu

Page i
 Group 14 Final Report

Table of Contents
1. Executive Summary  ··· 1	
2. Project Description  ·· 2	
2.1	Project	Background 	···	2	
2.2	Motivation 	···	2	
2.2.2	GPU	based	RTAI 	··	3	
2.2.3	GPU-FPGA	based	RTAI  	··	3	

2.3	Goals	and	Objectives	··	3	
2.4	Requirement	Specification	··	4	

2.5	Marketing	Requirements.	··	4	
3. Research Related to the Project ··· 6	
3.1.	Existing	Projects	and	Products 	··	6	
3.1.1.	Google	Translate 	···	6	
3.1.2.	Amazon	Translate 	···	7	
3.1.3.	Stratus	Video 	··	7	

3.2	Relevant	Technologies	···	7	
3.2.1.	American	Sign	Language	Typography	··	7	
3.2.1.1.	SignWriting	··	8	
3.2.1.2	Si5s	···	9	
3.2.1.3	SignFont	··	9	
3.2.1.4	Stokoe	Notation	··	10	
3.2.1.5	Gloss	Notation	··	10	
3.2.1.6	Extended	Linear	Stokoe	(ELS)	Notation	···	12	

3.2.2	Machine	Learning	···	18	
3.2.2.1.	Speech	to	Text	···	18	
3.2.2.2	Text	to	Text	Translation	··	23	
3.2.2.3	Text-to-Speech	···	32	

3.2.3	Processor	Technologies	···	35	
3.2.3.1.	CPU	···	35	
3.2.3.2.	MCU	··	36	
3.2.3.3.	FPGA	···	37	
3.2.3.4.	GPU	···	37	
3.2.3.5	GPU	versus	FPGA	··	39	

3.2.4	3D	Graphics	API	Technologies	···	40	
3.2.4.1	OpenGL	··	40	
3.2.4.2	Direct3D	12	··	41	
3.2.4.3	Metal	···	42	
3.2.4.4	Vulkan	···	42	

3.2.5	Internet	Connectivity	··	42	
3.2.6	Voltage	Regulation	··	43	
3.2.6.1	Linear	Voltage	Regulator	··	44	
3.2.6.2	Switching	Voltage	Regulator	···	44	
3.2.6.3	Considerations	for	Voltage	Regulators	···	45	

3.2.7.	3D	Rendering	Software	Platforms	···	47	
3.2.7.1.	Unreal	Engine	4	···	47	
3.2.7.2.	Unity	···	48	
3.2.7.3.	MikuMikuDance	···	48	
3.2.7.3.	Blender	···	49	

Page ii
 Group 14 Final Report

3.2.7.4	Godot	···	49	
3.3.	Components	and	Part	Selections	···	51	
3.3.1	Sound	System	Selection	···	51	
3.3.1.1	Amplifier	··	51	
3.3.1.2	Speaker	··	52	
3.3.1.3	Microphone	··	53	

3.3.2.	FPGA	Selection	···	55	
3.3.2.1	Altera	Cyclone	IV	–	EP4CE22E22xxx	··	56	
3.3.2.2	Spartan	3E	-	XC3S500E-xPGx208C	··	57	
3.3.2.3	Artix	7	–	XC7A35T-1CPG236C	···	57	

3.3.3	Computer-on-Module	(COM)	Selection	···	58	
3.3.3.1	Nvidia	Jetson	Nano	Developer	Board	···	58	
3.3.3.2	Nvidia	Jetson	TX2	Developer	Board	···	59	
3.3.3.3	ASUS	Tinker	Board	···	59	
3.3.3.4	Raspberry	Pi	4	Model	B	··	60	

3.3.4	Display	Selection	···	61	
3.3.4.1	10.1"	Display	&	Audio	IPS	Panel	··	61	
3.3.4.2	Sceptre	E205W-16003S	LED	Monitor	··	62	
3.3.4.3.	UPERFECT	12.3”	Touch	Monitor	···	62	

3.3.5	Controller	Selection	··	62	
3.3.5.1	IR	Remote	··	62	
3.3.5.2	RF	Remote	···	63	
3.3.5.3	Push	Button	···	63	

3.3.6	Wi-Fi	Module	Selection	··	64	
3.3.6.1	Intel	Dual	Band	Wireless-AC	8265	···	64	
3.3.6.2	Ultra	USB	Wi-Fi	Adapter	···	64	

3.3.7	Voltage	Regulator	Selection	···	65	
3.3.7.1	LP5900	··	65	
3.3.7.2	LP38500-ADJ	···	66	
3.3.7.3	LM7805	···	66	

3.3.8	Summary	of	Selected	Parts	··	66	
3.3.8.1	Speaker	··	66	
3.3.8.2	Microphone	··	67	
3.3.8.3	FPGA	··	67	
3.3.8.4	COM	···	67	
3.3.8.5	Display	···	68	
3.3.8.6	Controller	··	68	

4. Related Standards and Design Constraints ··· 69	
4.1	Related	Standards	···	69	
4.1.1	Wireless	Communication	Standards	··	69	
4.1.1.1.	Wi-Fi	Standards	···	69	
4.1.1.2.	Consumer	Infrared	Standards	··	70	
4.1.1.3	Bluetooth	Standard	··	71	
4.1.1.4	Zigbee	··	71	

4.1.2.	Unicode	5.0	Standard	···	72	
4.1.2.1.	American	Standard	Code	for	Information	Interchange	(ASCII)	·································	73	

4.1.3	Python	Programming	Language	Standards	···	73	
4.1.4	Compute	Unified	Device	Architecture	(CUDA)	··	73	
4.1.5	Hardware	Description	Language	-	Verilog	Standards	··	74	
4.1.5.1	HDL	···	74	
4.1.5.2	Verilog	···	74	
4.1.5.3	System	Verilog	···	75	

4.1.6	Machine	Translation	Benchmarking	Models	···	75	

Page iii
 Group 14 Final Report

4.1.6.1.	Bi-Lingual	Evaluation	Study	(BLEU)	Score	··	76	
4.1.6.2.	Prediction	Performance	(PRED)	Score	··	76	
4.1.6.3.	Recall-Oriented	Understudy	for	Gisting	Evaluation	(ROUGE)	Score	··························	78	

4.1.7	Privacy	and	Data	Storage	Standards	···	78	
4.1.7.1	Health	Insurance	Portability	and	Accountability	Act	(HIPAA)	···································	79	

4.1.8	Serial	Communication	Standards	···	79	
4.1.8.1	Inter-Integrated	Circuit	(I2C)	Standard	···	80	
4.1.8.2	Serial	Peripheral	Interface	(SPI)	··	81	
4.1.8.3	Universal	Asynchronous	Receiver/Transmitter	(UART)	Standard	····························	82	
4.1.8.4	Inter-Integrated	Circuit	Sound	(I2S)	Standard	···	83	
4.1.8.5	Universal	Serial	Bus	(USB)	Standards	··	84	

4.1.9	Audio/Video	Connection	Protocols	··	85	
4.1.9.1	High	Definition	Multimedia	Interface	(HDMI)	··	85	
4.1.9.2	Digital	Video	Interface	(DVI)	···	85	
4.1.9.3	Video	Graphics	Array	(VGA)	··	85	

4.2	Design	Constraints	··	86	
4.2.1	Economic	and	Time	Constraints	··	86	
4.2.2	Manufacturability	and	Sustainability	Constraints	···	87	
4.2.3	Moral	and	Ethical	Constraints	··	88	
4.2.3.1	Automation	Displacing	Human	Labor	··	88	

4.2.4	Environmental,	Health	and	Safety	Constraints	··	89	
4.2.5	Social	and	Political	Constraints	··	90	

5. Project Hardware Design Details ·· 91	
5.1	Initial	Project	Design	and	Component	Diagrams	····································	91	
5.2	Power	Supply	Design	··	93	

5.3	Hybrid	COM	with	FPGA	···	96	
5.3.1	I/O	Board	Description	···	96	
5.3.1.1	Mode	Selection	Module	···	97	
5.3.1.2	Voice	Recording	Module	···	98	
5.3.1.3	Status	Module	··	99	

5.3.2	General	Layout	of	the	I/O	Board	··	99	
5.3.3	Communication	for	Hybrid	System	··	99	
5.3.3.1	Audio	Transmission	··	99	
5.3.3.2	Status	Transmission	···	100	

5.4	LCD	Interface	···	100	

5.5	Overall	Hardware	Design	···	101	
5.5.1		Final	Hardware	Block	Diagram	···	101	
5.5.2	Hardware	Schematics	··	102	
5.5.2.1	FPGA	Diagram	··	102	

5.6	Overview	of	Hardware	Design	&	Bill	of	Materials	(BOM)	·····················	105	
6. Project Software Design Details ·· 106	
6.1	Overall	Software	Functionality	··	106	
6.1.1	User	Options	···	107	
6.1.1.1	Option	A:	Speech-to-Speech	Translation	Mode	···	107	
6.1.1.2	Option	B:	Speech-to-Sign	Mode	···	107	

6.1.2	Software	Procedure	··	107	
6.1.2.1	Step	1:	Speech	Capture	···	107	
6.1.2.2	Step	2:	Speech-To-Text	Conversion	···	108	
6.1.2.3	Step	3:	Neural	Machine	Text-to-Text	Translation	···	108	

Page iv
 Group 14 Final Report

6.1.2.4	Step	4:	Mapping	ASL-Gloss	to	Custom	ELS	Notation	···	108	
6.1.2.5	Step	5:	Rendering	ASL	Gestures	in	3D	Graphics	Platform	·······································	109	

7. Project Testing and Prototyping ·· 111	
7.1	OpenNMT	Model	Testing	··	111	

8. Administrative Content ·· 120	
8.1	Budget	and	Finance	···	120	

8.2	Project	Milestones	···	121	
8.2.1	Important	Deadlines	···	122	

Appendix A: Copyright Permissions ··· 123	
Appendix B: NMT Training Corpora ··· 124	
Appendix C: Acknowledgements ··· 128	
Appendix D: Works Cited ·· 129	

Page v
 Group 14 Final Report

List of Figures.
Figure 1. House of Quality of RTAI. ·· 5	
Figure 2. Examples of Different ASL Notation Styles. ·· 8	
Figure 3. Example of a SignWriting Sign Box]. ·· 8	
Figure 4. Example of a Sentence in ASL-Gloss. ·· 11	
Figure 5. Comparison of Original Stokoe Notation (left) and ELS Notation (right) ················· 13	
Figure 6. Example of a Sentence in ELS. Note that this sentence is the same as the ASL-Gloss
sentence in Figure 4. ·· 13	
Figure 7. Break-Down Diagram of a Single-Handed ELS Gesture. ··· 17	
Figure 8. Break-Down Diagram of a Bimanual ELS Gesture. ··· 18	
Figure 9. Example of a basic speech recognition system. ·· 19	
Figure 10. Example of the statistical model (a) Hidden Markov Model with (b) state sequence
and (c) symbol sequence. ·· 19	
Figure 11. Example of Dynamic Time Warping for (A) Two Sequence Representation of a
Person Spelling out “Pen” in Sign Language, (B) with the Dynamic Time Warping Finding
the Proper Alignment. ·· 20	
Figure 12. Wav2letter++ Architecture using Convolutional Layers. ·· 21	
Figure 13. Deepspeech2 Model using the Deep Neural Network Approach which includes
Convolutional Layers during Training. ·· 22	
Figure 14. Example of hybrid rule-based machine translation architecture. ····························· 24	
Figure 15. Example of basic statistical machine translation. ·· 25	
Figure 16. Example of the Neural network used in Neural Machine Translation. ···················· 26	
Figure 17. Diagram depicting Moses’s factored translation model approach ···························· 27	
Figure 18. Neural network algorithm representative of the OpenNMT model. ·························· 28	
Figure 19. The pipeline architecture of the OpenLogos system. ··· 29	
Figure 20. Diagram depicting how Google’s AutoML Translation performs the custom
training for the user. ·· 30	
Figure 21. General Representation of a Text-to-Speech system. ··· 33	
Figure 22. Diagram of Causal Convolutional Layers. ··· 34	
Figure 23. Example of NVIDIA GPU Architecture. ·· 38	
Figure 24. Basic flow of Machine Learning on a GPU ··· 39	
Figure 25. An example of the architecture of OpenGL. ··· 41	
Figure 26. Examples of Three Terminal Linear Voltage Regulator. ·· 44	
Figure 27. Example of basic Switching Voltage Regulator with the pulse width modulator. ···· 45	
Figure 28. Simple schematic of the A) Buck (Step-Down) and B) Boost (Step-Up) switching
regulators ·· 46	
Figure 29. A simplified schematic of the LP5900 ··· 65	
Figure 30. A simplified schematic of the LP38500-ADJ ·· 66	
Figure 31. Organization of the OSI Model. ·· 70	
Figure 32. Zigbee Stack Architecture ··· 72	
Figure 33. Standard Testing Environment for System Verilog. ·· 75	
Figure 34. Calculation of the Regression Factor. ·· 77	
Figure 35. Calculation of the Adjusted Regression Factor. ··· 77	
Figure 36. Calculation of the Normalized Root-Means-Squared Error. ····································· 77	
Figure 37. Calculation of the Matthews Correlation Coefficient. ··· 77	
Figure 38A. The I2C Bus. ··· 81	
Figure 38B. Master-Slave I2C Communication. ·· 81	
Figure 39. SPI Communication Setup. ··· 82	
Figure 40. SPI Modes of Operations. ·· 82	
Figure 41. UART Communication Scheme ·· 83	
Figure 42. Different Configurations for the I2S Protocol. ·· 84	

Page vi
 Group 14 Final Report

Figure 43. Hardware Block Diagram of the Second Initial Project Design. ······························ 92	
Figure 44. Power Supply Circuit Schematic. ·· 95	
Figure 45. Block Diagram of I/O Board. ·· 97	
Figure 46. State Machine for Mode Selection. ··· 98	
Figure 47. State Machine for Voice Recording. ··· 98	
Figure 48. General Board Layout. ·· 99	
Figure 49. Block Diagram of I2S Controller IP. ·· 100	
Figure 50. Final Hardware Block Diagram. ·· 101	
Figure 51. FPGA Schematic. ·· 103	
Figure 52. Breakdown of Conversion of ELS Notation into 3D Graphics Rendering. ············ 109	
Figure 53. Overall Software Flow Chart. ··· 110	
Figure 54. Test English and Gloss Corpora used in Attempt 1. ··· 112	
Figure 55. Validation English and Gloss Corpora for Attempt 1. ··· 112	
Figure 56. Example Results of Attempt 1 Post-Training. ·· 113	
Figure 57. Test English and Gloss Corpora used in Attempt 2. ··· 114	
Figure 58. Validation English and Gloss Corpora for Attempt 2. ··· 115	
Figure 59. Example Results of Attempt 1 Post-Training, Part 1. ·· 115	
Figure 60. Example Results of Attempt 1 Post-Training, Part 2. ·· 115	
Figure 61. Sample of Test English and Gloss Corpora used in Attempt 3. ······························· 117	
Figure 62. Sample of Validation English and Gloss Corpora for Attempt 3. ···························· 117	
Figure 63. Example Results of Attempt 3 Post-Training, Part 1. ·· 118	
Figure 64. Example Results of Attempt 3 Post-Training, Part 2. ·· 118	
Figure 65. Example Results of Attempt 3 Post-Training, Part 3. ·· 118	
Figure 66. Example Results of Attempt 4 Post-Training, Part 1. ·· 118	
Figure 67. Example Results of Attempt 4 Post-Training, Part 2. ·· 118	
Figure 68. Sample of Test English and Gloss Corpora used in Attempt 5. ······························· 119	
Figure 69. Example Results of Attempt 5 Post-Training. ·· 119	

Page vii
 Group 14 Final Report

List of Tables.
Table 1. Orientations used in ELS Notation. ·· 13	
Table 2. Movements used in ELS Notation. ·· 14	
Table 3. Hand Shapes used in ELS Notation. ·· 15	
Table 4. Locations used in ELS Notation. ·· 16	
Table 5. Other Modifier Characters used in ELS Notation. ·· 16	
Table 6. Comparison of Ratings for CPU, MCU, FPGA, and GPU. ··· 40	
Table 7. Comparison of Hardware/Licensing between 3D Graphic-Rendering Platforms. ······· 50	
Table 8. Comparison of Significant Parameters of Amplifiers. ··· 52	
Table 9. Comparison of Significant Parameters of Speakers. ··· 53	
Table 10. Comparison of Significant Parameters of Microphones. ·· 55	
Table 11. FPGA Comparison. ··· 57	
Table 12. COM Comparison. ··· 61	
Table 13. Summary of Parts and Total Cost. ·· 68	
Table 14. Summary of the Various I2C Standard Data Transfer Speeds. ··································· 80	
Table 15. Summary of Major USB Revisions. ·· 84	
Table 16. Overall Power Requirements. ·· 94	
Table 17: Power Supply BOM ··· 96	
Table 18. I/O Board BOM. ·· 104	
Table 19. Overall BOM. ··· 106	
Table 17. Budget Approximations for each Component. ··· 120	
Table 18. Senior Design I – Milestones ·· 121	
Table 19. Senior Design II – Milestones ··· 122	

Page 1
 Group 14 Final Report

1. Executive Summary 

Translation provides the channel for maintaining a meaningful conversation between two
individuals who speak different languages. Human based translations have been widely
applied in many aspects of society including the financial, medical, legal, and travel
industries. The process of translating through human interpreters, however, proves to be
erratic, difficult to arrange, and expensive. In a hospital setting between a doctor and the
patient, a human interpreter listens to the patient speak for several minutes and then
provides a summary of the dialogue to the doctors. This abridged response that the
interpreter provides the doctor may omit important information of symptoms, medical
history, and other details that are critical. Therefore, this lack of information may “lead to
misdiagnosis and improper or delayed medical treatment”. Additionally, there have been
multiple cases that patients do not get a satisfactory service provided by the Hospital’s
interpreter. This is most evident with deaf people as hospitals have moved to online
interpreting services, requiring continuous Internet connectivity and high upkeep. Since
2011, there have been multiple court cases regarding interpreting services for deaf hospital
patients in which some cases have settled in the sum of $70,000. Thus, the need for a more
accurate, low-cost translation system is required for such applications.  

Neural machine translation (NMT) provides the next generation of real time translation
with minimal errors. NMTs have proven to be useful for its flexible deployment and its
ease of use. While they require large data sets to function properly, there are open-source
NMTs that can be used for product commercialization. However, these NMTs only
perform the translations for spoken languages and don’t consider sign languages such as
the American Sign Language (ASL). People who are congenitally deaf or have never
developed an understanding of spoken language use ASL as their primary language. They
don’t develop the same understanding of the language as an individual who is able to listen
and speak the language. Thus, an any-to-text translation is not enough for people that have
the disability. This is where the NMT algorithms’ primary ability to translate any-to-text
falls short of providing the service to ASL users. In this document, we are proposing a real
time translator with virtual ASL interpretation. This device will be designed to require
minimal overhead, low budget, and be accurate on speech acquisition and translation
delivery. In addition, the device will deliver real time translations such that conversations
between both users are continuous with no wait on the translation. The functionality of the
translator is to provide two translation modes: Speech-to-ASL Translation (SAT) mode,
and Speech-to-Speech Translation (SST) mode. The SAT mode will focus on translating
spoken language to ASL, while the SST mode will focus on conventional translation.  

Our proposed real time translator with ASL interpretation will bridge the gap between
universal machine translation and physical human translation. This is critical in modern
society where the greater population, including those with disabilities, rely on advanced
artificial intelligence to enrich their daily lives. The goal of our RTAI is to provide a user-
friendly experience, effective sign language rendering and a high-level of accuracy.
Ultimately, RTAI aims to provide patients with hearing disabilities the capability to have
effortless and natural communication with medical professionals.  

Page 2
 Group 14 Final Report

2. Project Description 

2.1 Project Background 

The product will consist of a built-in speaker and microphone, an LCD, and peripheral
LEDs. For the SAT mode, the built-in microphone will record the user’s speech and the
speech will be translated into text and then back into speech that will output on the built-
in speakers. The SAT mode will also display the original and translated text on the LCD
monitor. For the SST mode, the product will utilize the LCD monitor to display the sign
language output using a 3D modeling software. The SST mode will also include
functionality from the SAT such as displaying the original and translated text. For
powering the product, we have several approaches. Our first approach would consist of a
portable battery supply. This internal battery would supply power to the display, the GPU,
etc. We are considering the use of a lithium-ion battery that will be able to power the
console for at least three to four hours on a single, full charge. The battery will be
rechargeable from a standard US AC wall outlet (120V at 60 Hz). Our other approach
would to have the unit be plugged into the wall; that is, the power supply to the system
would be from an external source, which would be a standard US AC wall outlet. This is
possible since the unit could be used in a medical setting, such as in hospitals, but also in
schools. Most machines and stations inside of hospitals are installed into rolling carts; and
when needed, they are rolled into the patient's room and plugged into the wall. Many
devices used in schools also utilize a similar portability and maneuverability. Our product
will utilize Wi-Fi to connect to online NMT service provided by companies such as Google,
Amazon, or Windows. These services include speech recognition, real time translation, and
speech to text. We decided that utilizing APIs for the text to text translation will allow us
to focus more on the speech to sign language translation. It will also extend the
functionality of the product to encompass several languages with the pretrained models
available from these online services. It will ensure that the translated text is as accurate as
possible. We intend to utilize several online/cloud translation algorithms in parallel; this
way, we can combine common segments between the translations to produce a more
accurate speech output. With the speech-to-speech translation processing offloaded to
cloud services, we would have more data storage and processing power available for the
speech-to-ASL translation. 
 
2.2 Motivation 

The motivation of the product spurred from one of our members, Michael. He works in a
hospital where medical professionals see patients regularly who cannot speak English. In
the beginning, the project was proposed as a standalone machine translation, since in this
way hospitals can save money from buying in-person translators. With enough research,
we figured out that no machine translator has been able to translate from one language to
sign language. Furthermore, there have been court cases since 2011 where there were
multiple deaf hospital patient complaints that the hospital interpreting services for ASL

Page 3
 Group 14 Final Report

were poor. Most of the cases reached a settlement of $70,000 due to the poor services that
the hospitals were offering to their deaf patients. Hence, the proposed device can do both
speech-to-text and speech-to-sign translations. Finally, working in a group setting can be
very challenging as communication is the most important aspect which can serve as a very
valuable tool before graduating as we head to graduate school or industry jobs.  

2.2.2 GPU based RTAI 

To design a device that generates machine translations using NMTs with the GPU as the
main system to handle every component on the device. 

● It will manage and control the touchscreen LCD, the microphone, and the
speaker 

● It will store the model generated by the NMT in its memory for machine
translations. 

● It will also generate the sign language translation by applying image generation
techniques from the output file created by the machine translation model.  

● It will send the image generated translation to the touchscreen LCD. 
 
2.2.3 GPU-FPGA based RTAI  

To design a device that generates machine translation using NMTs with an GPU-FPGA
architecture to handle every component on the device. The reason behind this design is
because the performance of the device may be greatly affected with the GPU as the sole
controller of the system.  

● The GPU will manage and control the touchscreen LCD, the microphone and
the speaker, basically a CPU. 

● The GPU will also store the machine translation model inside the main memory
and send the output of the translation as an input to the GPU. 

● The FPGA will then proceed to create the pertaining sign language translation
using imagine generation techniques.  

● The GPU will then send the file to the FPGA so that it will get displayed on
touchscreen LCD.  
 

2.3 Goals and Objectives

The design being chosen at the moment is the GPU-FPGA based RTAI. The reason is
because the GPU, if left alone, can have performance issues in handling the image
generation, the LCD, running the model and connecting to the cloud services. Overall,
this can lead to latency issues and since the project is being designed to meet specific
timing constraint, the FPGA can handle all the I/O operations which allows the GPU to
concentrate in translations and image generations for ASL translations.

Upon completion of our project, our device will be able to:

• Translate English speech into American Sign Language.
• Connect wirelessly to access cloud-based services.

Page 4
 Group 14 Final Report

• Perform speech-to-text, speech-to-speech, and speech-to-ASL language
translations.

• Indicate the current status of processors and peripherals via LED status lights.
• Capture audio at frequencies around natural human pitches that can be translated

into text via speech-to-text algorithms.
• Be supplied power to its processors and peripheries via a power supply network.

o Prevent current leakage.
• Stand upright in a custom-designed housing.

o Accommodate the COM, FPGA, memory, display, Wi-Fi module,
speakers, and microphone.

• Display real-time rendering of an avatar making sign language gestures.
o Display animations that are not excessively buffered and display images

that are not excessively blurry.
• Have enough storage to contain the rendering software, avatar animations, and

other peripheral programs.
• Receive input from the user regarding mode switching and intent to record voice.

 
2.4 Requirement Specification

Given our goals and objectives listed above, our engineering requirement specifications
that must be fulfilled in order to achieve these goals are the following:

• The microphone will be able to produce at least a 100-mV peak-to-peak signal
when a voice at arm’s length is spoken into it.

• The microphone will have at least a -3-dB frequency response gain around 80 Hz
- 260 Hz. 

• The speaker will be able to produce at least a sound that registers as 50 dB from 1
meter away.

• The memory module will possess at least 32 GB.
• The total cost of the device will not exceed $1000.

2.5 Marketing Requirements.

We are marketing the RTAI as an accurate, energy-efficient and cost-effective device that
can potentially replace human interpreters in Hospital settings. Based on customer
complaints on accuracy, the device will focus on delivering and displaying accurate
translations that can support speech-to-speech, speech-to-text and speech-to-sign language
translations. We will perform one to one translation so that no word or context is lost
between translations. To ensure continuous exchange of information between the doctor
and patient, we will access cloud-based services to deliver real time translations through
Wi-Fi connectivity. In addition, we will offer quality service to the deaf patients by
providing real time sign language translations using 2D generated ASL models. Moreover,
our advisor, Dr. Chung-Yong Chan, gave us the following requirements for the device:

● Real Time Translations
● Usage of GPU
● Multi-Language Support

Page 5
 Group 14 Final Report

● Accuracy of Translation
● Cost-effective
● Display ASL Models on an LCD
● Speaker Clarity
● Screen Clarity

All of the aforementioned requirements can be found in Figure 1. In addition, Figure 1 also
possesses the engineering requirements that we tasked ourselves with. It can be noted that
we decided to go for a power supply system that can support both battery and electrical
outlets in case of a power outage so that the device can still be operational. Every
requirement has a pertaining level of polarity (for positive or negative impact on the device)
and correlations (how one requirement can benefit or hinder another requirement).

Figure 1. House of Quality of RTAI.

Page 6
 Group 14 Final Report

3. Research Related to the Project

In this section, we will discuss research regarding the project. The researched found below
will range in a wide range of topics ranging from existing projects to different part
selections. We will start by first researching the different projects that exists on the market
that are similar to our project. It can be noted however that our device is the first attempt
of commercialization of Speech-to-Sign Language translation by using NMTs in a hospital
setting. Afterwards, we will discuss possible parts for the overall device and explain in
depth the specific selection of certain parts over other parts. We will consider peripherals
such as microphones and speakers that interface nicely with the GPU. Finally, we conclude
the section by giving a summary of the parts pick that will be used in the device.

3.1. Existing Projects and Products 

3.1.1. Google Translate 

Google Translate is a multilingual machine translator created in 2006 using statistical
machine translation (SMT). This is a free service that started by translating any source text
to a designated target text as requested by the user with a support of 105 languages. In its
early stages, however, it would translate first into English then to the target language. This
service was novel at translating from source word-by-word while also providing
disambiguation between the original word and the translated word by providing possible
alternate translations. When translating phrases or sentences, Google’s SMT would
translate erroneously and would often have grammatical errors. In 2016, Google
redeveloped Google Translate using neural machine translation (NMT) instead of the
previous SMT used. Called “Google Neural Machine Translation (GNMT)”, the new,
updated Google Translate uses deep learning techniques to translate phrases or sentences
and provides accurate context of the sentence. The free service provides many free
functionalities that are embedded with Google products in which the service translates
more than 100 billion words a day. This GNMT can translate text, speech, images and
videos. Some of its functionality is used in translation of websites, documents, mobile
applications, and handwriting. Moreover, the service provides a technique called “zero-
shot translation” in which the service can translate between two given languages that have
not been trained previously by the NMT.  

In addition, software developers can integrate their service into their products for a paid
fee. Google Translate can be requested through Google Cloud services at the range of
prices from $20 to $80 for every 1 million characters, depending on the features desired by
the software developer. However, even with the implementation of the GNMT, the service
still suffers greatly from trying to disambiguate homonyms and translate free of
grammatical errors. There have been instances that these services have been used to replace
a human translator, such as in court hearings.  

Page 7
 Group 14 Final Report

3.1.2. Amazon Translate 

Amazon Translate is a cloud service provided by Amazon Web Services (AWS) that uses
an NMT to deliver fast, high quality, and affordable language translation. It uses deep
learning techniques similar to Google to provide accurate and contextual-rich translations.
The service is not open to the public since it is catered towards software integrations in
application development due to its simplified API calls. This enables straightforward
localization of applications and enables the program to process multilingual data for the
ease of workflow data in workspaces.

Their NMT also uses a continual-learning model that improves its translation constantly
by learning new datasets to deliver the highest level of accuracy and fluency for various
cases. Unlike support of 105 languages in Google Translate, Amazon Translate supports
137 languages ranging from Arabic to Vietnamese, encompassing about 125 language
pairs. However, there are some exceptions that Amazon are still trying to fix such as
Korean to Hebrew, Chinese (Simplified) to Chinese (Traditional). 

Amazon Translate supports the following extra features: secure machine translations for
secure communications between web pages and applications using SSL encryption,
automated language identification, named entity translation customization, etc. Amazon
Translate offers a free tier of 2 million characters per month for 12 months. Afterwards,
the user must choose a premium tier which costs $15 per million characters. The advantage
of Amazon Translate over Google Cloud is the easy integration that offers through AWS.
Companies such as One Hour Translation, that benchmark NMTs, have praised Amazon
Translate for its overall best performance, pricing and easy integration. 

3.1.3. Stratus Video 

Stratus Video is a language-translation service company that gives clinics and hospitals
access to on-demand language translation for a variety of languages. In their Video Remote
Interpretation (VRI) service, the clinic is lent hospital-grade metal stands and iPads with
which they can use the VRI. After subscribing to their services, medical staff can use the
iPad to reach certified medical interpreters for over 35 different languages. The Stratus
company also offers alternative translation solutions including audio translation, text
translation, and in-person translation. With all of their translation services, however, there
is always the implementation of human language translation; that is, there is no use of
machine translation in their services.  

3.2 Relevant Technologies

3.2.1. American Sign Language Typography

American Sign Language (ASL) is a mode of communication based solely on visual
gestures; that is, a statement or concept is transferred between speaker and listener through
a specific movement of the hand(s) and face. Generally, the head, torso, and legs remain

Page 8
 Group 14 Final Report

stationary while signing. The translation from English to sign language, however, poses
several problems. The use of an NMT requires that both languages have some form of
typography. Since ASL is entirely gesture based, there have been several attempts at
transcribing ASL from gesture-based to text-based while maintaining the meaning of the
original ASL.

Each ASL typographical system makes use of several radicals that, when written in one
block, form one morpheme; this is similar to the structure of pictographic languages such
as Korean and Chinese. The variety between the different notation styles is the uniqueness
of the character registry of each system and the placement of each character to represent
the face, hands, and motions.

A few examples of typographical ASL are displayed below in Figure 2; some of these
notation styles are discussed below. Note that with most of these notation systems, single-
hand gestures are assumed to be for the right hand.

Figure 2. Examples of Different ASL Notation Styles.

3.2.1.1. SignWriting

SignWriting is an iconic typography where each symbol represents the shape, direction,
and orientation of the hands, face, and body. Each gesture is arranged within a “sign box”,
and these sign boxes are arranged from left to right. The order and the location of each
symbol within each sign box begins with the facial expression at the top, followed by the
relative orientation of each hand. Within each sign box, the starting gesture is located at
the top and the final gesture at the bottom, with the middle gesture(s) signifying important
intermediary gestures. Motion radicals are added to the hands and face to signify the major
movements of the respective body part. SignWriting originated as a handwritten ASL
notation style, as shown in Figure 2, but a digitized version of SignWriting is available as
shown in Figure 3.

Figure 3. Example of a SignWriting Sign Box.

Page 9
 Group 14 Final Report

A major drawback of SignWriting is the requirement of specialized characters that are not
available in the ASCII library. Also, the arrangement of sign boxes requires a specialized
program to create and share sentences.

As each gesture requires one sign box consisting of several symbols, and each sign box
often represents only one or two words in the English equivalent, SignWriting requires a
lot of space; likewise, each sign box would require a high data requirement for each word,
making this typographical system ineffective in our project.

We considered representing the various aspects of the symbols in SignWriting using ASCII
characters: the face would be the first encoded, then the left hand and right hand, then the
motion. This encoding style would be similar to taking each radical of a Chinese character
and using current ASCII characters in a certain order to represent the position of each
radical in the Chinese character.

However, due to the complicatedness of this process, and the availability of other notation
styles that already employ such linearization, we decided that this approach would be too
time-consuming.

3.2.1.2 Si5s

Si5s is a simplified version of SignWriting; the simplification of SignWriting to si5s is
similar to the transition between Traditional Chinese and Simplified Chinese, where the
overall meaning of the word is preserved, but the simplified version is not as detailed as
the traditional version. The radicals in this system give the same meaning as a SignWriting
gesture but uses a simpler radical.

For example, the face is reduced only to its significant expressions; the movements are
reduced to short lines or diacritics. Since this system is relatively simpler, more gestures
can fit on one page; however, since this system still employs symbols not used in the
extended ASCII library, this typographical system would be difficult to transcribe for use
in the NMT.

Similar to the potential circumvention for SignWriting, we could derive an encoding
method that represents the SignWriting symbols using ASCII characters; however, because
of the complicatedness of the free-form placement of the symbols, even the use of ASCII
characters would render using this notation style difficult. An example of Si5s is shown in
Figure 2.

3.2.1.3 SignFont

SignFont is a linearized transcription of ASL; whereas SignWriting and Si5s utilize blocks
for gestures, SignFont writes gestures in the following order: handshape contact point for
the right hand, handshape and contact point of the left hand, right hand location, left hand
location, and movements. Other symbols are used as superscripts; that is, these act as

Page 10
 Group 14 Final Report

diacritic modifiers for the superscript character. An example of a SignFont glyph is shown
in Figure 2.

The major drawback for SignFont is the lack of support and information regarding this
system: the explanation of the writing system and its grammar is not available. Another
drawback, like the aforementioned systems, is the complicatedness of the symbols; very
few of the characters are available in the ASCII library.

3.2.1.4 Stokoe Notation

Stokoe notation is a more linearized transcription of ASL, similar to SignFont. The most
significant differentiation between Stokoe and SignFont notation is the use of Unicode
characters in the notation. In this writing system, the order of the symbols are as follows:
the location of the gesture, the shape of the left hand, the shape of the right hand, and the
motion(s) as a superscript.

Motions done simultaneously are stacked, while motions done successively are placed
adjacently. Subscripts are added to the handshapes to signify their orientation. Symbols are
added between the two hand positions to signify their relative positions. An example of a
handwritten form of Stokoe notation is shown in Figure 2.

The major drawback for Stokoe notation is its use for mapping single words only. Another
drawback is the lack of non-manual transcriptions; only the hand gestures are mapped. This
would pose a problem during the 3D model rendering, since there would be no information
encoding for facial expression. Also, the use of superscripts and subscripts also poses a
problem, since standard text files do not support the use of such; that is, the characters must
progress on one line.

However, a method could be made in which the superscripts and subscripts are indicated
using special characters while keeping the entire string on one line. A further drawback is
the use of diacritics that would not be applicable to standard ASCII characters.

3.2.1.5 Gloss Notation

Gloss is a universal form of writing a certain language in another language known by the
user. For example, someone learning German would write the direct translation of a
sentence into English but using the grammar, syntax, and special rules of German. In this
same way, ASL can be “glossed” using English words. The word order of ASL-Gloss
matches the same order of ASL itself; however, the successive gestures are notated by their
written-English equivalent.

Special modifications to the ASL word are written around the English word, such as
classifiers, repetition, or the indication to spell the word letter-by-letter. Non-manual
expressions, i.e. the use of facial expressions, are notated above specific words to indicate
when or which non-manual expressions are to be used. ASL-Gloss is more of a

Page 11
 Group 14 Final Report

transcriptive notation rather than a gesture-descriptive notation like the aforementioned
notations. An example of ASL-Gloss is shown in Figure 4.

The limitation of ASL-Gloss is the requirement of several lines of ASCII characters to
describe a single gesture. This poses complications during the use of the NMT. We
considered applying the top and bottom lines of each gloss into one line, such that the NMT
can recognize an entire ASL-Gloss sentence in one line.

Figure 4. Example of a Sentence in ASL-Gloss.

Of these four ASL transcriptions, we believe that the Stokoe notation is the optimal
transcription method due to its flexibility in notation and the availability of the characters
in the ASCII library. There are also several resources regarding the structure and rules
regarding writing Stokoe notation. Despite Stokoe notation being limited to single words,
there is no deficit when expanding the notation to phrases or sentences. Also, since we are
using an ASL notation as a translation medium, we require some way for the computer to
recognize the characters in each language.

While we could encode SignWriting, Si5s, or SignFont notations, these typographies are
not well-documented and require a free-form style of notating; that is, the symbols used in
these notation styles are not readily available in the Unicode library, and the placement of
the symbols are not linear.

The notations that use a linear style of Unicode characters are Stokoe and ASL-Gloss
notation. Since the use of an NMT requires the comparison of sentences line-by-line, both
of these notation styles could not be used in the NMT as-is, as explained earlier. However,
in attempting to linearize these two notation styles, we realized that linearizing the Stokoe
notation is simpler than that for ASL-Gloss.

This is due to ASL-Gloss having the top and bottom lines applied to several words at once.
One facial expression may be shown throughout several words, so a dashed line is used to
indicate its duration.

While we could represent this dashed line, for example, throughout the sentence, this may
become complicated as we include compound expressions and the use of modifiers. For
Stokoe notation, however, since each diacritic modifier is applied only to a single character,
we can represent these by placing the respective character after the character.

Because of the readily available Unicode library used by the Stokoe notation, the ease of
linearizing its notation for use in the NMT, and the ease of including modifiers to each
character, we decided that Stokoe notation would be preferred over ASL-Gloss notation.
Although Stokoe notation omits the use of non-manual expressions, due to the flexibility
of the notation we may be able to include non-manual expressions by appending its
corresponding information to the end of each gesture.

Page 12
 Group 14 Final Report

Despite the removal of subscripts, superscripts, and diacritics, the potential drawbacks of
using the Stokoe notation in its original form would be the ambiguity of the various
symbols used in Stokoe. For example, the character “∅” refers to the empty space in front
of the signer, but there is no differentiation between signs being done in front of the chest
or in front of the face.

Likewise, there is no differentiation between how the hands are positioned: for example,
the original Stokoe notation would suggest a handshape/orientation of “S^”, which implies
the handshape “S” pointed upwards; however, there is no indication whether this upward
orientation refers to the fingers or palms. Also, with the removal of subscripts and
superscripts, there is a requirement to distinguish between symbols that are orientations
(originally in the subscript), movements (originally in the superscript), or hand positions.

3.2.1.6 Extended Linear Stokoe (ELS) Notation

ELS is our proposed continuation of the Stokoe notation: the overall form of the notation
is preserved. However, many new symbols are included to disambiguate between different
hand orientations, spaces, and motions. The list of proposed alterations to the Stokoe
notation can be found in Table 1 below. This notation would also linearize the original
notation while maintaining the significance between subscript and superscript characters.

Symbols between two periods (e.g. “.⊥!.”) signifies the hand position for the handshape
indicated before it (called a period-pair), while those between two commas (e.g. “,^>,”)
signifies the hand motion for that handshape (called a comma-pair). The motion can be
indicated for both hands by the use of the vertical bar character ‘|’ placed before the second
handshape.

Another alteration of the Stokoe notation implemented in ELS is the disambiguation of the
various spaces utilized in ASL. As aforementioned, the empty set character ‘∅’ is not
sufficiently explanatory. In ELS, this character is placed before a location to signify using
the space around that location; e.g. ∅} would signify the space around the ear. There are
six regions which correspond to either the lateral or middle space of the face (upper), chest
(middle), or abdomen (lower).

Disambiguation of the hand orientations is also achieved by the combination of identifying
the palm and finger orientations. Within each period-pair are two symbols: the symbols
correspond to the palm orientation then the finger orientation, respectively. (For simplicity,
the finger orientation refers to the direction the fingers point when extended fully.)

The complete list of orientations, movements, hand shapes, and locations used in ELS
notation are shown in Tables 1, 2, 3, and 4, respectively. Symbols not found in the original
Stokoe notation or those whose original meaning were altered from the original Stokoe
notation are highlighted in yellow. Supination and pronation orientations from the original
Stokoe notation were abandoned with its replacement with palm and finger orientations
only. These antiquated symbol usages are grayed out in Table 1.

Page 13
 Group 14 Final Report

A comparison between the original Stokoe notation and ELS is shown in Figure 5. Note
that in the original Stokoe notation, the chin space (‘U’) is notated, then a supinated hand
in a ‘B’ shape with a prominent forearm (‘√’, ‘B’, and ‘ɑ’, respectively), then a
“downward” movement. This description of the first gesture alone is not descriptive
enough: for example, the fingers can either be pointing up or to the side and have the same
notation. This is disambiguated with the palm position towards the user (‘T’) and the
fingers upward (‘!’) in ELS.

Likewise, the general downward movement should be a motion toward the chin of the user;
this is disambiguated with a symbol for contacting the chin (“x[U]”). (Here, the character
“U” is used instead of “∪” for simplicity of typing.) Note the complete linearization of the
ELS notation versus the superscript and subscript characters in the original Stokoe.

Also note the lack of spaces for a single gesture in ELS versus the use of separation of the
different components in the original Stokoe. The removal of spaces is crucial for the
computer to recognize and distinguish individual gestures (e.g. the “split” function in C).
An example of a sentence in ELS is shown in Figure 6.

Figure 5. Comparison of Original Stokoe Notation (left) and ELS Notation (right)

Figure 6. Example of a Sentence in ELS. Note that this sentence is the same as the ASL-

Gloss sentence in Figure 4.

Table 1. Orientations used in ELS Notation.

Symbol Type Char. Description Char. Description Char. Descripti
on

ORIENTATION

a Sup. wrist T F/P toward user v P down

ɒ Pro. wrist ⊥ F/P away from
user

^ P up

< P left > P right ! F up

→ F right ← F left ¡ F down
Abbr. in Table 1: “F” → “fingers”, “P” → “palm” for orientations.

Page 14
 Group 14 Final Report

Table 2. Movements used in ELS Notation.

Symbol Type Char. Description Char. Description Char. Description

MOVEMENT

^ Upwards N Side-side e Wiggling fingers

v Downwards > Rightward ☐ Opening of hand

< Leftward Z Up-down t Crossing of
hands

T Towards self ⊥ Away from self ♊ Linking of hands

I Back-forth a Wrist
supination

÷ Divergence of
hands

ɒ Wrist pronation ω Alt. sup/pro of
wrist; “twist”

Closing of hand

% L. tilt of wrist $ R. tilt of wrist)(Convergence of
hands

ώ Elbow
extension

Ώ Elbow flexion x Contact of hands

ὦ Elbow pro. @ Lateral
circulation

¤ One hand inside
another

ϋ Elbow sup. ¿ Sagittal circ. ‘’ Alt. hand signs

η Wrist ext.* & Coronal circ.

ή Wrist flexion ə Hand waving

Abbr. in Table 2: “sup.” → “supination”, “pro.” → “pronation”, “circ.” → “circulation”,
“ext.” → “extension”, “alt.” → “alternation”.

Page 15
 Group 14 Final Report

Table 3. Hand Shapes used in ELS Notation.

Symbol Type
Char. Description Char. Description Char. Description

HANDSHAPE

B Flat hand,
fingers together

A Fist, thumb at
side of palm

L Fist, thumb and
index at right
angle

S “A” with thumb
on fingers

1 “G” with thumb
on fingers

K “V” with thumb
touching index
and middle

G Fist, extend
thumb and
index in same
direction

C Curved hand R Cross index and
middle

5 All fingers
spread apart

4 “5” but thumb
on palm

3 Spread index,
thumb, and
middle

V Fist, extend
index and
middle

O Curved fingers
touching thumb

ε “E” but fingers
are looser

D “O” with index
extended

F Touch index
and thumb,
extend other
fingers

Y Pinky and thumb
extended

8 “F” but ring to
thumb

7 “F” but middle
to thumb

I Fist, extend
pinky

X Fist, index
extended but
bent

H Index and
middle extended
and together,
thumb touches
both

W Thumb holds
pinky, other
digits spread out

E Fingers and
thumb folded in

Page 16
 Group 14 Final Report

Table 4. Locations used in ELS Notation.

Symbol Type Char. Description Char. Description Char. Description

LOCATION

∅∩ Middle upper
space

∅} Lateral upper
space

ω Breasts

∅ Center space* ∅= Lateral mid.
space

N Flanks (side of
abdomen)

∅ε- Middle lower
space

∅N Lateral lower
space

ɒ Pronated wrist

❍ Eye ∆ Nose √ Elbow/Forearm

} Ear] Temple or
Eyebrow

ε Abdomen

) Cheek U Chin a Supinated wrist

∏ Neck = Shoulders \ Upper arm

* When ‘∅’ is used as a primary location, defined as center space in front of the user. When
used as a destination, i.e. x[∅], indicates touching the chest (sternal area).

Table 5. Other Modifier Characters used in ELS Notation.

Symbol Type Char. Description Char. Description Char. Description

Relative Hand
Positions

- Left hand under
right

+ Right hand
under left

| Parallel position
and movement of
both hands

‡ One hand
behind another

† Crossed hands ~ One hand lags
behind another

Indicator .___. For orientation ,___, For motion

Hand Shapes ; Thumb next to
palm

''' Curled fingers * Ext. thumb

Motions + Simultaneous * Repeated

Fingerspelling = “___” Spell letters
within quotes

Page 17
 Group 14 Final Report

Our proposed method of an ELS gesture follows the following format, which is also
illustrated in Figures 7 and 8. One to two characters comprise the space in which the gesture
is performed. Afterwards, one handshape character represents one hand shape; this
character can be followed by another modifier character to denote an alteration of the
original hand shape.

For single-hand gestures, this character denotes the right-hand shape, as shown in Figure
7; for bimanual gestures, this character denotes the left-hand shape only, as shown in Figure
8. A period-pair follows the handshape character containing two characters. The first
character denotes the direction in which the palm is pointing, while the second character
denotes the direction of the fingers on that hand.

For simplicity, the finger orientation describes the direction pointed by the fingers when
the fingers are fully extended. There must be only two characters within each period-pair.
If two hands are used in a particular gesture, the right handshape character is given next. If
there is a relationship between the two hands, another modifier character is placed before
the second handshape.

Like the first handshape character, another handshape modifier character can be placed
after this second handshape. Another period-pair after the second handshape denotes its
orientation. At the end of each gesture string, a comma-pair denotes the motion of the
hands. There can be any number of motions denoted between this comma pair; in Figure
7, this example shows two different, consecutive motions. The modifier before the second
handshape character explains whether both hands move or only the right hand.

Figure 7. Break-Down Diagram of a Single-Handed ELS Gesture.

Page 18
 Group 14 Final Report

Figure 8. Break-Down Diagram of a Bimanual ELS Gesture.

3.2.2 Machine Learning

This section of the report focuses on the utilization of machine learning techniques for the
entire process once the user speaks into the microphone. The process begins when the
system recognizes the input voice as its digital and discrete version, then uses machine
learning to perform speech to text processing. Once the speech is processed into text, the
machine translation algorithm is employed to translate the input source text into the target
text. The output target text is in the language of choice, and this process is referred to as
text-to-text translation. Finally, the translated text will then have to be processed again to
turn the text back into speech using the final machine learning technique, called speech-to-
text. These three steps, when done in succession, define the methodology for the machine
translation process. For each of these techniques, there are various approaches and
algorithms that can be utilized depending on the application. There are open-source toolkits
and APIs that can be applied to perform the various machine learning techniques;
alternatively, there are proprietary APIs that are offered by certain companies and offer
their services through a paid subscription. In the following subsections a closer look is
given at the various options in terms of approach and various programs, both open-source
and proprietary, that have been developed as solutions for each step in the machine
translation process.

3.2.2.1. Speech to Text

Speech-to-text, or speech recognition, is vital in obtaining the most accurate representation
of the voice input as text. The basic component to the speech recognition systems are
statistical models with the representation of the distinct sounds pertaining to the language,
or phonemes, that need to be recognized. There are two models associated with speech
recognition, an acoustic model and language model. Furthermore, there is not a universal
method in obtaining the best speech recognition, as the models are tweaked for any given
language or application. The specialization of these models for any language is what allows
speech recognition to become accurate for converting the spoken words into text. The
errors that arise from speech recognition are attributed to the speaker, style of speech, and
the environment therein. Therefore, it is critical to select the most suitable model available
for use in speech recognition to ensure that the user receives the most accurate intended
translation. The following are the more popular and most used models for speech

Page 19
 Group 14 Final Report

recognition, each model delivers and lack certain features. Figure 9 demonstrates a basic
block diagram of a speech recognition system. This diagram depicts the process starting
from the preprocessing stage after the signal is retrieved and ends with the language
modeling.

Figure 9. Example of a basic speech recognition system.

3.2.2.1.1. Hidden Markov Models (HMMs)

HMMs are based on statistical models that assign symbols or quantities for the output as
shown in the Figure 10. HMMs administer a much simpler groundwork for the modeling
of time-varying spectral vector sequences; as a result, most continuous speech-recognition
systems are based on HMMs. Moreover, the popularity of HMMs for speech recognition
stems from the statistical framework, availability of training algorithms, flexibility of fine-
tuning parameters specific to words, and ease of application. Some of the issues that affect
the usability of HMMs involve the intensive memory and computation consumption, the
large training data, the time to execute the training, difficulty in choosing the correct seed
sequence.

Figure 10. Example of the statistical model (a) Hidden Markov Model with (b) state

sequence and (c) symbol sequence.

Page 20
 Group 14 Final Report

3.2.2.1.2. Dynamic Time Warping (DTW)

Based on HMMs and neural networks (NNs), DTW can be utilized for its facile
implementation with embedded systems; this is due to its simple hardware integration and
training speed. DTW is based on the mechanism of template matching, in which classic
DTW utilizes one template for each word recognized. In this process the DTW compares
the parameters of an unknown word with the template; with this, increasing the templates
for that particular word would result in improved recognition of that word in speech
recognition. However, increasing the number of available templates leads to a longer
computation time and memory usage. In Figure 11, an example of the DTW matching the
alignment of two sequences is shown.

Figure 11. Example of Dynamic Time Warping for (A) Two Sequence Representation of a

Person Spelling out “Pen” in Sign Language, (B) with the Dynamic Time Warping
Finding the Proper Alignment.

3.2.2.1.3. Deep Neural Networks (DNNs)

A much newer approach to speech-to-speech recognition is the use of artificial neural
networks. In comparison to HMMs, neural networks allow for discriminative training to
be more efficient and can be utilized to provide preprocessing for continuous speech
signals. Neural networks have demonstrated better results in terms of speech recognition.
An example is the MAVIS system developed by Microsoft which yielded a reduction in
error by 30%. For speech recognition, neural network algorithms are trained similarly to
other applications. During the training of the neural networks the system finds features by
adjusting the weights of its hidden layers, and the system uses the features extracted as
inputs to the next layer.

3.2.2.1.4 End-to-End Automatic

This approach also uses deep neural networks; however, it provides a simplified model,
joint training, direct output which presents a contrast to HMMs that utilize direct deep
neural networks (DNNs). This approach detects an input sequence as a corresponding label
sequence, and the audio is mapped to characters or words. Since this process relies entirely
on DNNs, it does not require expertise in domains to construct a large training database,
thus allowing for training to be much easier.

Page 21
 Group 14 Final Report

3.2.2.1.5 Open-Source Speech-to-Text Algorithms

CMU Sphinx is an example of an open-source platform for utilizing the HMM approach.
This program can be used on low-resource platforms, has flexible design for practical
development, a large language support database (English, UK English, Mandarin, German,
Dutch, Russian), a BSD license which allows for commercial distribution, and an active
development and release schedule.

Julius is another example of an open-source platform for utilizing the HMM N-gram
approach. The N-gram approach refers to the number of words used as a single entity when
passed through the machine translation algorithm, as explained in Section 4.1.7. Julius
offers a real-time, high-speed, accurate recognition through its use of a two-pass strategy.
This program utilizes less than 32MB for its workspace, supports rule-based grammar,
isolated word recognition, and is highly configurable with various search parameters and
alternate decoding algorithms.

Kaldi is an example of an open-source platform for utilizing the DNN approach. This
program provides code-level integration with Finite State Transducers (FSTs), extensive
linear algebra support, extensible design, and its intended use is for researchers, as the
source code for Kaldi is written in C++.

Project DeepSpeech is an open-source speech-to-text engine which uses end-to-end deep
learning and Google’s TensorFlow software library to simplify its implementation. This
program currently only supports 16-bit, 16-kHz, mono-channel WAV audio files. The
model needs to be trained for its target language; however, a pre-trained English model is
available on GitHub.

Wav2letter++ is an open-source speech processing toolkit for end-to-end speech
recognition developed by the Natural Language and Speech research team at Facebook AI
Research. The source code is C++-based and utilizes the ArrayFire tensor software library,
and flashlight machine learning library. This toolkit also must be trained by the developer.
The design is intended to operate effectively when trained with thousands of hours of voice.
Facebook states that Wav2letter++ is the first fully convolutional speech recognition
speech, utilizing convolutional layers for the learning aspect of the architecture. The
architecture for the Wav2letter++ is demonstrated in Figure 12.

Figure 12. Wav2letter++ Architecture using Convolutional Layers.

DeepSpeech2 is another open-source speech recognition model that is based on Baidu. The
model takes the input waveform, preprocesses it, converts it into a log-spectrogram, which

Page 22
 Group 14 Final Report

is then applied with the convolutional layers for training and verification. The model
utilizes a Word Error Rate (WER) as its main evaluation metric, and the model is trained
with a stochastic gradient descent. The architecture for the DeepSpeech2 is demonstrated
in Figure 13.

Figure 13. Deepspeech2 Model using the Deep Neural Network Approach which includes

Convolutional Layers during Training.

3.2.2.1.6 Proprietary Speech-to-Text Algorithms

Hidden Markov Model (HTK) is a free-to-use platform which utilizes the HMM approach.
HTK is primarily used for speech recognition; however, it has been used in other
applications such as speech synthesis research, character recognition and DNA sequencing.
The software provides proper speech analysis, HMM training, testing, results, and it
supports the HMMs using both continuous density mixture Gaussians and discrete
distributions.

RWTH ASR is another free-to-use platform for speech recognition decoding with the tools
necessary for acoustic models. This software consists of several libraries written in C++
and has a decoder for a large vocabulary, feature extractions, acoustic modeling, speaker
adaptation, lattice processing, language modeling, and input/output formats. The newer
versions of this software also feature neural networks.

Dialog Flow is a speech-to-text software that utilizes Google's machine learning algorithms
and Google Cloud. This program is intended to be used as a browser extension, allowing
its use on multiple platforms such as Facebook, Skype, Twitter, and other text-centered
websites. Dialog Flow supports more than 20 languages.

Dragon Dictation is another speech-to-text software that utilizes a DNN speech engine to
detect voice accurately while filtering background noise, accent, and voice distortion
through extreme (soft/loud) volumes. This program is used primarily for dictating, editing
and formatting text on several word-processing applications such as Microsoft Office.

Google Cloud Speech-to-Text is paid-subscription API developed by Google for voice
recognition. This software utilizes neural network models, recognizes 120 languages, and

Page 23
 Group 14 Final Report

can process real-time or pre-recorded audio. The user can customize the speech recognition
to specify common words used in a designated application. The API supports automatic
language detection and automatic punctuation.

Microsoft Azure Speech-to-Text is another paid-subscription API developed by Microsoft
for voice recognition. This software utilizes the same voice recognition technology that is
used for Cortana, but with a more limited library of available languages (compared to
Google). The interface allows for user-training of acoustic, language, and pronunciation
models for a unique environment and distinct vocabulary. Voice input can be transcribed
directly from a microphone or from stored audio files.

Amazon Transcribe is another paid-subscription API developed by Amazon for voice
recognition. This API is capable of transcribing stored audio files or live audio stream in
real time. The service transcribes WAV and MP3 files, with the transcriptions having an
added time stamp to make locating dialogue simpler. The algorithm utilizes neural network
models to include punctuation and formatting to the transcribed text. The program also
allows for a user to include a custom vocabulary; that is, to add commonly used words for
each user. The voice recognition algorithm is capable of differentiating a change in speaker
and will transcribe accordingly.

3.2.2.2 Text to Text Translation

The text generated from the processed speech input (with the output being the text from
the input speech-to-text algorithm) is directly translated into the equivalent representation
in another language such as Spanish, Chinese, ASL, etc. For proper execution of the
translation, the system must be able to recognize the context of the sentence or paragraphs.
For example, translation word-by-word would not be sufficient to produce an accurate
translation. Thus, we decided that machine learning will be required to perform the
complex task of text-to-text translation.

The use of machine learning-based software to compute the translation of source text to
target text is termed “machine translation”. Machine translation brings together linguistics,
computer science, artificial intelligence, translation theory, and statistics to provide
translation between two different languages [V]. Within machine translation, there are
several different approaches with each approach providing a different algorithm for
achieving the translation. The most common approaches are rule-based, statistical, and
neural machine translation. Each machine learning method aims to translate the
source sentence into a target sentence while accounting for the necessary context of the
original sentence to produce an accurate translation. In other words, the meaning of the
input text in one must be fully realized in the output text in another language [W]. The
following approaches were compared to determine which approach would best suit the
needs for the project.

Page 24
 Group 14 Final Report

3.2.2.2.1. Rule-Based Machine Translation (RBMT)

The rule-based machine translation (RBMT) is a system composed of a large database of
linguistic rules and millions of dictionary entries in multiple languages. Therefore, it is a
database that produces these rules and provides the linguistic resources between the two
languages of focus. While RBMT allows for users to follow the linguistic rules used in the
translator, this processing is deemed to be very time-consuming during implementation
and debugging. Since these translations are also provided by user-defined rules, the text
may be translated completely but may lack fluency. An example of a hybrid rule-based
machine translation architecture is shown in Figure 14, which is a hybrid RBMT utilizing
Moses.

Figure 14. Example of hybrid rule-based machine translation architecture.

The process of producing fluent translations requires the use of post-processing techniques
to refine the translated text. Attempts to mitigate these issues is the use of different hybrids
between RBMT- and SMT-based translation systems. In a paper by Dove et al., they used
the RBMT output as the standard translation and subsequently refined the translated text
by comparing it to a translated model developed through SMT techniques. Overall, to
maximize the use of RBMTs for newly discovered languages or for developing new
language translation pairs, the quality of the RBMT method will need to be improved. For
the use of RBMT in text to ASL text translation, a massive database with the rules and

Page 25
 Group 14 Final Report

resources will need to be created. However, even with the necessary extensive database,
an RBMT can run successfully on ideal hardware.

3.2.2.2.2. Statistical Machine Translation

The statistical machine translation (SMT) system utilizes statistical models with the
framework based on the analytical observation of bilingual text corpora. While the process
of RBMT is word-based, SMT processes phrases for its translation as well as overlapping
phrases during its training. An extensive database is required for SMT with a minimum of
2 million words required for successful translation for a specific language domain and even
more for creating a general language translation. SMT requires extensive CPU usage even
for simple translations. An example of a statistical machine translation representation is
demonstrated in Figure 15.

Figure 15. Example of basic statistical machine translation.

3.2.2.2.3. Neural Machine Translation (NMT)

Compared with the recently mentioned approaches, RBMT and SMT, a more modern
approach to machine translation is neural machine translation (NMT). This approach has
driven machine translation to exceptional improvements, considerably in human
assessment. In comparison to SMT, the NMT approach produces a single neural network
that is tuned through the training process, which differs from how SMT works with various
models. NMT handles its interaction with input sentences through the use of vectors; that
is, input sentences are defined by their magnitude and direction. This approach ultimately
leads to a more streamlined algorithm. Moreover, NMT utilizes a bidirectional recurrent
neural network (encoder) that processes the sentence into the vector, and then utilizes
another recurrent neural network (decoder) to develop the word prediction.

Page 26
 Group 14 Final Report

NMT was based on the development of sequence-to-sequence models and then combined
with the advancement in attention-based variants. Similar to the previously aforementioned
approaches to machine translation, NMT requires a large training set to produce accurate
predictions. These datasets are more straightforward to compose since the only contents in
these dataset corpora are the source text in one language and the target text in the other
language. The NMT will then tweak its weights to predict the word that was used in the
translation. As a result, much of the language-translation industry, including Google, has
moved towards the usage of NMT for their online translators. A representative example of
the neural network used in NMTs is demonstrated in Figure 16.

Figure 16. Example of the Neural network used in Neural Machine Translation.

3.2.2.3.1 Open-Source Text-to-Text Translation Algorithms

Apertium is an open-source platform for utilizing the rule-based machine translation
approach. This program is being applied extensively to machine translation systems for
various language pairs.

Moses is another open-source toolkit which utilizes the SMT approach and supports
linguistically motivated factors, confusion network decoding, and efficient data formats for
translation and language models. It allows for the user to automatically train the system
with various translation models for the desired language pairs. The algorithm then finds
the translation with the highest probability utilizing a search system. Moses offers phrase-
based, and tree-based for the translation models. It also features a factored translation
model that allows the integration linguistic at the word level. Furthermore, it allows for the
decoding of confusion networks and word lattices, this enables speech recognizers or
morphological analyzers. Figure 17 shows the diagram of Moses’s factored translation
model.

Page 27
 Group 14 Final Report

Figure 17. Diagram depicting Moses’s factored translation model approach

Apache Joshua Home is a Java-based, open-source toolkit that utilizes the SMT approach,
allowing for phrase-based, hierarchical, and syntax-based machine translation.

Great is an open-source toolkit which utilizes the SMT approach, is based on the bilingual
language modeling approach, and offers phrase-based translation while utilizing a reduced
amount of model parameters and decreased response time in comparison to Moses.

OpenNMT is an open-source toolkit which utilizes the NMT approach. This toolkit
emphasizes efficiency, modularity, and extensibility. OpenNMT utilizes neural machine
translation as the basis model to deliver the most optimum translation through its training
from large datasets. When first realized, OpenNMT was utilized for standard sequence to
sequence modeling applied to machine translation; however, it has now been developed to
employ additional models and features. These features include image to text, language
modeling, sequence classification, sequence tagging, sequence to sequence, speech to text,
and summarization. The models included with OpenNMT are convs2s, deepspeech2, gpt-
2, im2text, listen attend and spell, RNN with attention, transformer. Depending on which
OpenNMT implementation used, either with PyTorch or with tensor flow, certain features
will be available. Furthermore, the toolkits mentioned (PyTorch, TensorFlow) provide
various configurable models and features that include other types of generation such as
summarization, speech to text, and image to text. The OpenNMT also includes
CTranslate2, which is a custom inference engine that explores model quantization, it also
includes Tokenizer that allows for a fast and customizable tokenization library. According
to the developers, OpenNMT is able to reach high translation quality and speech that
matches with the other translation competitors and they provide full support. Figure 18
demonstrates a simplified diagram of how the neural network of OpenNMT functions.

Page 28
 Group 14 Final Report

Figure 18. Neural network algorithm representative of the OpenNMT model.

To train the OpenNMT model, the user needs to utilize the source file and the target file.
These files contain sentences per line with each word of the sentence separated by a space.
It is recommended to find these files online that are open source and have built on to include
more than millions of sentences. When training the OpenNMT with these datasets, it is
recommended to use a GPU to process the algorithm; otherwise, a CPU will not be able to
quickly process it and therefore greatly prolong the process.

NiuTrans is an open source translation system that utilizes the statistical machine
translation approach. This translation system is fully developed using C++ language, and
it’s advertised to run fast and use less memory. NiuTrans currently supports phrase-based,
hierarchical phrase-based and syntax-based models that is used for research-based
purposes. Other features that it provides include multi-thread support, APIs, compact n-
gram language models, multiple SMT models.

OpenLogo is an open source machine translation system that is based on the rule-driven
machine translation system, as well as the syntactic-semantic taxonomy SAL. The
architecture of the system is that of a pipeline, that allows for the modularized, and
incremental approach to the source language analysis and the synthesis of the target
language.

The input to the system for OpenLogo, with the stream and rules, are based on SAL and
therefore the interactions throughout the pipeline are in terms of the SAL pattern. This
allows for the more efficient surmounting of the issue that occurs with the large rule-based
dataset. The languages that are included with OpenLogo includes English, German, French,
Spanish, Italian, and Portuguese. The pipeline architecture of the OpenLogo system is
demonstrated in Figure 19.

Page 29
 Group 14 Final Report

Figure 19. The pipeline architecture of the OpenLogos system.

3.2.2.3.2 Proprietary Algorithms

IBM Watson language translator is IBM’s proprietary machine translation that is available
through APIs. This translator identifies the language of the input text and completely
translates it through the use of the available translation models. It also provides the user
the ability to create custom models that are helpful when using the translation for specific
languages or applications. It is based on neural machine translation, allowing the
translation to be much faster with improved accuracy. Allows the user to translate entire
documents while preserving the formatting and type of file. The custom models that it
allows users to manipulate are done through the use of forced glossary or parallel corpus.

Google Translate is Google’s proprietary machine translation that is available through
APIs. Google states that the translator dynamically translates between thousands of

Page 30
 Group 14 Final Report

available language pairs. The system utilizes Google’s pre-trained and allows user to create
custom learning models. This customization is made at a level that is facile for developers,
translators, and localization experts with limited expertise to quickly develop production-
ready models. This is accomplished through uploading translated language pairs, and the
AutoML Translation then trains the custom model that allows the user flexibility when in
specific domains. The diagram depicting the AutoML functionality of Google Translate is
shown in Figure 20.

Google Translate also offers an advanced API that provides much faster and dynamic
results in contrast with the Basic API, and it also provides additional features that support
further customization. The Basic version of the API allows for the instant translation and
uses the neural machine translation that google pre-trains.

Figure 20. Diagram depicting how Google’s AutoML Translation performs the custom

training for the user.

Microsoft Translator Text API is Microsoft’s proprietary machine translation system, a
cloud-based service that features more than 60 languages. It is branded as a proven,
customizable, and scalable technology for the use of machine translation in translating text.
This is the same translation model that Microsoft utilizes for its other software such as
Microsoft Office, Edge, SharePoint, Yammer, etc. The API also comes with additional
features such as transliteration and bilingual dictionary that aid the functionality of
multilingual apps and workflows.

Some of its other main API features include natively neural, translating multiple languages
at once, and translation detection. Natively neural means that the system is based on neural
machine translation (what most modern systems use) and this allows it to provide higher
quality translation. The transliteration feature converts words and sentences from a specific
script to another, and the bilingual dictionary provides alternative translations from or to
English.

Amazon Translate is Amazon’s proprietary machine translation API that utilizes neural
machine translation to deliver the fast, and high-quality language translation. It utilizes

Page 31
 Group 14 Final Report

deep learning models to provide a more accurate translation and translation that is more
natural in contrast to rule-based and statistical algorithms. A of the features that Amazon
Translate includes is the easy integration of the system into applications, that allows users
to use the system to perform the real time translation within their application by simply
calling the API.

Another feature is the customization of the terminology for specific domain texts, and it
also has a scalable feature that allows for large volumes of text. Additional usage of this
system is for enabling multilingual sentiment analysis of social media content, providing
on demand translation of user generated content, and added real time translation for
communications applications.

Yandex Translate is a proprietary machine translation system that utilizes statistical
machine translation. Therefore, the system compares thousands of texts in order to learn
the language and develops the system so that it is able to identify parallel texts by their web
address. Because this is based on statistical machine translation, the system is much less
accurate and efficient than those based on neural machine translation. Nonetheless, this
system requires hundreds of millions of phrases in different languages to obtain quality
translation standards.

The three key components of this machine translation system are the translation model,
language model and the decoder. Within the language model is the list of all the words and
phrases that are known to the system for one of the languages, these are also linked to the
possible translations and there is a probability assigned to each. The decoder of the
translation system then performs the actual translation through the selection of the
translation options, combination of phrases, and sorting thereafter.

SYSTRAN is a proprietary machine translation system that allows the user to translate
bother structured and unstructured multilingual content. These contents include user
generated content, social media, web content, and others. It is branded as being scalable
and reliable, providing the best-of-breed language processing technologies to apps and
websites. This system utilizes SYSTRAN machine translation, with natural language
processing. The natural language processing includes language identification, named entity
recognition, segmentation and tokenization, transcription, morphological analysis, and part
of speech tagging.

The named entity recognition is a neat feature that recognizes and displays the person’s
name, locations, numbers, dates organization names, etc. The translation system also
provides resource management that includes dictionary management, dictionary lookup,
corpus management, and corpus match. Furthermore, the system includes multimodal text
extraction that includes text extraction, speech recognition, and optical character
recognition.

GramsTrans is a proprietary machine translation system that allows for high quality and
domain-independent machine translation for the Scandinavian languages. The product set
that is offered with GramsTrans are the free version, personal, commercial lite, commercial

Page 32
 Group 14 Final Report

standard, and schools. The free version allows for translation with the limitation of 70
words maximum, 10 translations, and not for commercial use. The personal version
includes a user subscription that allows for the translation of unlimited amounts of text.

The main approach that GramsTrans utilizes is rule-based for the translation. The core
linguistic features that are included are robust source language analysis, morphological and
semantic disambiguation, large linguist-made grammars and lexica, high degree of
domain-independence, name recognition and separation, dependency formalism for deep
syntactic analysis, context-sensitive selection of translation equivalents, insertion, deletion,
and splitting of words, word and phrase reordering, and terminology customization. Some
of the acceptable data types include plain text, formatted documents, web pages, movie
subtitles, arbitrary XML structures, SMS, WAP (mobile protocols) and remote API access.

Promt is a proprietary machine translation system that is based on advanced neural machine
translation approach. This translation system also includes confidential translation, more
than 25 languages, high-speed translation, customization, and integration. The features of
this machine translation product include the translation of documents (preserves the
formatting and allows for various file types), allows for immediate translation through
word selection, user tools that allow for the customization of the system for domain specific
texts, and integrated reference resources.

Babylon is a proprietary machine translation system that is free software, it allows for the
automatic translation of single words, full texts, phrases, and other features. It features over
77 languages, over 1,700 dictionaries, glossaries, thesauri, encyclopedias, and lexicons that
cover a wide range of subjects. Furthermore, it has the capability to translate single words,
and sentences.

IdiomaX is a proprietary machine translation system that provides several features and
tools for businesses but has a limited amount of languages. This software works closely
with word processing applications in order to translate the document immediately before
emailing. It also has the ability to translate webpages.

3.2.2.3 Text-to-Speech

The final technique in the translation process is text-to-speech, also known as speech
synthesis, shown in Figure 21. This technique converts the translated text into human
speech, allowing the user to listen to the resulting translation. The process of human created
speech can be modeled using the source-filter model and then applied in more complex
models. Therefore, the synthesis of speech can be accomplished digitally through the linear
prediction model and concatenative speech synthesis.

The linear prediction model is currently the most utilized when it comes to digitally
synthesized speech. The modeling of time series for the speech signal allows for the
approximation of short-time speech spectra. Therefore, the poles are considered to be
related to the speech spectral representation and it has led to extensive studies for modeling

Page 33
 Group 14 Final Report

speech. Ultimately, the speech signal is approximated through the linear combination of
the previous samples with a predicted error.

Figure 21. General Representation of a Text-to-Speech system.

The concatenative speech synthesis accomplishes the generation of speech from text by
associating pronunciation models to text through analysis and does this through the
segmentation of real speech into units. The synthesis parameters from the units are taken
and concatenated according to the pronunciation specific to each text. This approach,
however, depends on the use of pre-recorded speech material to be available. The following
are other approach synthesizes that need to be considered when deciding open source or
proprietary speech-to-text toolkits.

The Formant synthesis is a source-filter based model where the source is modeled after the
glottal pulse train and the filter is modeled after the formant resonances of the vocal tract.
The formant model also utilizes the linear prediction model mentioned to estimate the
parameters but could also use the short-time spectrum for the estimation. Therefore, it is
typically used in cascade or parallel second order filter sections, and the model is mostly
used by rule-based text to speech systems.

The Articulatory synthesis provides an alternative approach that provides the direct
simulation of speech production principles. In contrast to the formant synthesizer, the
articulatory approach produces the characteristics of the vocal tract filter through the
implementation of a vocal tract geometry and manage potential sound sources throughout
the geometry. This approach has huge potential; however, it is difficult to understand and
to implement.

The HMM approach is a statistical time series model used for speech-to-text has also been
recently applied to text-to-speech. The model is a finite state machine that creates
sequences at discrete time, with each time altering according to a state transition probability
and then generates the observed data. This is applied to the speech generation by
statistically modeling the spectrum, fundamental frequency, and phoneme duration which
are the speech parameters, the HMM’s maximum likelihood criterion then generates these
models. Therefore, for this approach a sequence of HMM parameters are used to model the
transitions of sound, and it results in a smoother output in comparison with concatenative
synthesis. Utilizing a large collection of data sets that contain speech, the HMM can more
easily estimate these parameters.

Page 34
 Group 14 Final Report

The sinewave synthesis approach models the speech signal with three or four time-varying
sinusoids. The goal of utilizing the sinusoids is to clone the estimated frequency and
amplitude pattern associated with the resonance peaks in order to create the synthetic
acoustic. While there are current numerical methods used to compute the frequency and
amplitude values, there are estimate errors that need correction for the actual synthesis
parameters.

In contrast to the previously mentioned approaches to speech synthesis, the DNNs utilize
the use of large recorded data training sets to adjust weights and provide high accuracy
output. There have been challenges in using DNNs for speech synthesis, however, there
have been many successful implementations as demonstrated below.

WaveNet is based on the DNN approach, the model is probabilistic based and
autoregressive with the prediction depending on the previous audio sample condition.
Therefore, WaveNet is made with stacks of convolutional layers that outputs a waveform
as shown in Figure 22 below.

Figure 22. Diagram of Causal Convolutional Layers.

The model was also conditioned by WaveNet team, providing it with vocoder parameters
that allowed the resulting speech to be natural and high quality. However, this method of
utilizing convolutional layers led to extensive computation and it was reported that to
generate one second of audio it would take four minutes of computation.

3.2.2.3.1 Open Source Text-to-Speech Algorithms

The MARY Text-to-Speech System (MaryTTS) is an open-source platform capable of
producing multiple languages and is written in Java. The structure of the MaryTTS relies
on the preprocessing, natural language processing, the calculation of acoustic parameters,
and the synthesis when the parameters are converted to audio.

eSpeak Text-to Speech System is another open-source platform that utilizes the formant
synthesis that was mentioned previously. The developers of this program claim to provide
many languages in a smaller size, and the output speech is clearer but lacks the natural

Page 35
 Group 14 Final Report

aspect of human speech. Features include difference voices, production WAV files, file
compression, conversion of text to phonemes, and developmental tools available for tuning
phoneme data. This program is written in C language.

The Festival Speech Synthesis System is another open-source platform that offers text-to-
speech in English and Spanish, is written in C++, and utilizes the Edinburgh Speech Tools
library for the low-level architecture with a scheme-based command interpreter.

3.2.2.3.2 Proprietary Text-to-Speech Algorithms

Google Text-to-Speech is Google’s prime API for text-to-speech system that utilizes
WaveNet voices and Google’s neural networks. It allows for human-like speech in 180
voices, with 30 languages available. The development of this program into an API allows
for its use in devices that can deliver a REST or gRPC request, including IOT devices.
Furthermore, the API allows users to customize the speech with SSML tags, tune the
speaking rate, tune the pitch/inflection of the voice, adjust the volume, and customize audio
profiles.

Microsoft Azure Text-to-Speech is Microsoft’s API system that utilizes neural text-to-
speech to produce highly natural speech. This API allows the user to produce the audio in
real time and allows the option to save the audio files. Neural and standard versions are
available. The standard text-to-speech provides 75 voices and 45 languages.

Amazon Polly is Amazon’s API for text-to-speech that also utilizes neural text-to-speech
to deliver more natural voices. It provides a dozen voices and eight languages.

3.2.3 Processor Technologies

When starting this project, we are deciding what we would use as the brain of our unit. We
need a piece of technology that would allow the device to perform many different tasks
and that would do these tasks in a real-time, spoken conversation setting. Since we had
chosen to offload much of the spoken language translation to cloud processing, we would
need something that would allow us to interface with a Wi-Fi module. Furthermore, we
needed the technology to allow us to run a custom NMT for translating to a written form
of sign language. Finally, we needed a technology that had enough processing power and
storage space to be able to hold models and render graphics onto an interactive screen.
Once we had these requirements, we were able to look at the current technology on the
market and choose the best fit for our product.

3.2.3.1. CPU

Current central processing units (CPUs) are extremely powerful pieces of technology that
allow us to simulate most things very easily. This means that CPUs can perform several
different processes seamlessly. However, due to the high flexibility of CPUs the
performance of simulations that we run will suffer. We would receive longer run-times on

Page 36
 Group 14 Final Report

the translations and graphical processing that we need to do, which in a real-time setting is
not something we can afford.

Furthermore, CPUs are a single part of a computer system. They are designed to be
installed into motherboards, which would have to be included in the design of our system.
While this is a feasible option, we would also have to include all other parts of the computer
system, including RAM, Storage, and other I/O devices increasing both monetary and
dimensional cost. These setbacks along with CPUs having slower processing speeds make
it an unattractive option for “the brain” of the product.

While it is possible to perform machine learning on a CPU it is extremely slow and
inefficient. The CPU architecture was not built to handle these sorts of tasks as they are
designed with speed and flexibility in mind. They have fewer cores than other technologies,
however these cores are highly complex and designed for speed. Therefore, they excel in
most modern applications, but they cannot efficiently perform tasks that require an
extremely high and parallelized throughput such as graphic processing and machine
learning.

3.2.3.2. MCU

Microcontroller units (MCUs) are very similar in concept to a computer system, but all of
the necessary components are all contained in the chip. This allows for MCUs to be created
with very small profiles which would allow use a much smaller housing for our project.
Furthermore, MCUs are designed to be used in embedded and mobile, battery powered
applications. For this purpose, MCUs have extremely low power consumption. However,
because MCUs have such small form factor and use so little energy, they suffer from
extremely slow processing speeds. They are designed to be used in applications that do not
require heavy computational work.

Unfortunately, these downsides are something that we cannot afford in our product, as in
a real-time conversational setting, we need to ensure that speech strings are processed,
translated, and outputted as fast as possible. We also do not have a huge concern for battery
life, as our product will stay plugged into the wall. We chose this design feature, because
we plan to use the product in a hospital setting which are connected to grids of generators
to ensure that they will never lose power.

With the current technology used inside of MCUs, it is not feasible to use an MCU for
machine learning applications. To begin, they do not have the memory required to hold
data sets nor training sets and parameters. They also do not have the processing power to
complete an algorithm such as those used in machine learning. Other technologies bring a
larger number of simpler cores or a very complex and powerful cores to the table while
MCUs have neither. MCUs definitely have their place in the market of computing, but it is
not in the realm of machine learning.

Page 37
 Group 14 Final Report

3.2.3.3. FPGA

Field-programmable gate arrays (FPGAs), as they have started to make their way into the
market, have shown that they are a very competitive and powerful product that allows for
the user to tailor fit the chip to their needs. Customizing the chip allows the user to eliminate
a lot of the overhead associated with other technologies. This makes the FPGA chip an
extremely inviting technology to implement into our product. Furthermore, FPGA chips
are highly parallelizable as they can be programmed to have multiple blocks that perform
tasks completely independent of each other, allowing for the space on the chip to be used
efficiently and for higher data throughput to be achieved. The simulation of digital circuits
that FPGAs achieve using LUTs makes the technology useful in a variety of applications.

In terms of flexibility, FPGAs also have a useful feature for embedded programming that
allows them to connect to any I/O device needed. This would allow us to use many of the
modules that we need in our product without needing any additional hardware.

FPGAs are also highly reprogrammable because of their architecture. Typically, even after
they have been deployed, FPGAs can be reprogrammed to make better use of their logic
blocks or to avoid using damaged sections of the board. This would be beneficial to have
in our product as it would allow us to update the board layout after it has been deployed if
it were somehow damaged. When looking at various technologies used in hospitals, we
noticed that hospital equipment is designed to be as rugged as possible; they are constantly
being moved around by hospital staff and must be able to maintain dings and falls. If the
board were to sustain damage, it would be possible for us to reroute the board to avoid the
damaged parts and continue working.

As promising as FPGA technology is, it is still an extremely costly technology to
implement into a product with higher-end chips running for thousands of dollars. This
detracts from the attractiveness of the technology, as we are on a limited budget and must
try to create a low-cost system.

FPGAs also do not use conventional C or python languages to program. FPGA chips are
programmed using Verilog of VHDL, which changes the way the programmer must think.
These languages are hardware description languages which are used to model electronic
circuits. It is a register-level programming language that allows the programmer to describe
electronic systems. This presents an obstacle that must be overcome to use the technology
efficiently. Programmers must think in parallel, instead of sequentially as used in standard
programming languages such as C and Python. While this makes modeling digital circuits
simpler, this presents problems for accomplishing tasks that would normally be simple in
general purpose programming languages.

3.2.3.4. GPU

GPUs were originally created to be paired with a CPU as the graphics processing loads
became heavier and increased into 3D space. Recently, there has been a trend of using
GPUs in applications such as machine learning, bitcoin mining, and other processing tasks.

Page 38
 Group 14 Final Report

There have been several different APIs and programs developed to facilitate the use of
GPUs in these tasks. Programmers have been learning to program with GPUs to perform
tasks that would take CPUs a much longer time to complete. GPUs are able to perform
these tasks so efficiently because of their data path architecture. They are a Single
Instruction, Multiple Thread (SIMT) technology that allows large sets of data to be
processed in parallel. When using a GPU to train NMT models, memory is one of the
biggest concerns. Modern GPUs do not have the memory size of other technologies such
as CPUs and must be handled efficiently. Users often must choose between memory
allocation space and speed. This is due to the special data paths that GPUs have. While this
data path allows for increased efficiency in parallel computing, some tasks and data sets
are not the perfect matches for parallel computing and creates bottlenecks in the GPU.

As training begins, the CPU loads as the GPU with learning parameters so that the GPU
has the necessary information to begin the process. The CPU then starts the training loop,
where it gathers groups of data to send to the GPU. These groups reduce the amount of
transfers that need to be initiated between the two technologies which is integral in
reducing the overall transfer costs. The GPU will then take this data and perform the
computationally heavy algorithm that typically involve large scale matrix multiplication
between data and weights. These operations are easy to perform on the GPU as it has a
parallelized data path that is designed for these types of operations. As shown in Figure 23,
here is a basic GPU architecture from NVIDIA which shows the hardware components of
the device along with its interaction of a CPU. When using a GPU for machine learning,
unless the architecture is set up to be an embedded system to work with machine learning,
the GPU is connected to a CPU system. These two components then communicate to each
other with the data path from CPU to GPU being much larger than the opposite direction.
The CPU sends the data, parameters and other necessary information to the GPU so that it
can be processed off the CPU. The GPU then sends regular updates back to tell the system
how far it has gotten and pass along other necessary information. The interface flow
between the CPU and the GPU is explained in Figure 24.

Figure 23. Example of NVIDIA GPU Architecture.

Page 39
 Group 14 Final Report

Figure 24. Basic flow of Machine Learning on a GPU

3.2.3.5 GPU versus FPGA

In machine learning, GPUs are advertised as being the best on the market for these tasks,
but FPGAs are also making their way into the spotlight. FPGAs are much more energy
efficient than GPUs, making FPGAs a great way to increase the life of battery powered
machines. While we do not have to worry about the battery life of our product as it will be
plugged into the wall, we would still like to reduce the amount of energy that is being used.
Furthermore, the flexibility of the FPGA makes it extremely attractive for machine learning

Page 40
 Group 14 Final Report

applications. The structure of modern GPUs is a multitude of single instruction pipelines
that work in parallel with each other. This highly parallelized structure is both a positive
and a negative for GPUs: it allows the GPU to execute the instructions extremely fast; but
in the case of machine learning, it can only map a certain amount of the workload
efficiently. On the other hand, FPGAs allow programmers to create a customized platform
around the workload that they have. This removes the restrictions that a lot of GPUs face
around parallelization and fixed data paths. FPGAs have been shown to actually perform
better than GPUs in some applications. Table 6 shows a comparison of the all previously
discussed technologies in multiple different categories. Scores are given between 1 to 4,
with 1 being the best performing in that category.

Table 6. Comparison of Ratings for CPU, MCU, FPGA, and GPU.

 CPU MCU FPGA GPU
Power Efficiency 2 1 3 4

Flexibility 1 3 2 4
Cost 2 1 4 3

Speed 3 4 1 2
Processing Power 3 4 2 1

3.2.4 3D Graphics API Technologies

Although we are using a 3D rendering engine software to create our sign language models,
we also require 3D graphics APIs that allows us to fully manipulate the GPU to generate
smooth models. Since we are using a COM as the main processor of our device, we will
need to use 3D graphics API that do not require a lot of area overhead and that can
efficiently communicate with the hardware level GPU such that the performance of the
COM is not affected. The purpose of these graphic APIs are not for the overall display and
animation of a model but rather the implementation of such displays and animations; that
is, these APIs function independently of the rendering engine software and simply process
polygons. The following APIs are the most popular used in the market for use in low-level,
low-overhead hardware-accelerated 3D graphics and computer interface.

3.2.4.1 OpenGL

This graphics API comes in all major operating system platforms including Linux, macOS,
and Windows. The Jetson Nano comes with a Linux based operating system; therefore, the
focus is with Linux’s interaction with OpenGL. The OpenGL is implemented on the Linux
strictly through the X windows system. Therefore, in order to use OpenGL on Linux, a
GLX extension is needed to the X Server. Linux comes with a standard Application Binary
Interface that is already defined for OpenGL; this allows for compatibility of OpenGL in a
range of drivers. Furthermore, the Direct Rendering Infrastructure is the driver framework
that allows the drives to overwritten and operated in order to allow for hardware
acceleration. This DRI that is included in XFree86 4.0 and also needs a specific driver
configuration after installation. Before using OpenGL, it must be initialized, and there are
two phases to the initialization. The first phase of the initialization is creation of an OpenGL
Context. The second phase of the initialization is the loading of all necessary functions to

Page 41
 Group 14 Final Report

use OpenGL. During the use of OpenGL does not remember the information regarding an
object. Therefore, it is recommended that with OpenGL the user draws everything that
needs to be drawn first. The next step is to show the image with a platform-dependent
buffer swapping command. Figure 25 demonstrates an example of the architecture of the
OpenGL system.

Figure 25. An example of the architecture of OpenGL.

3.2.4.2 Direct3D 12

This is a graphics API by Microsoft, a platform that allows for apps to fully take advantage
of the graphics and computing capabilities of the PC. This new version of the API is much
more efficient and faster than the predecessor. In order to improve this efficiency, the
platform no longer supports an immediate context associated with a device. This platform
now has the apps record and then submit the command lists. This command lists then
contain the drawing and resource management calls. The command lists are submitted by
a multitude of threads corresponding to one or more command queues. These command
queues manage the execution of the commands. This change in the platform increases the
single-threaded efficiency by allowing apps take advantage of pre-computing the rendered
works and also takes advantage of the multi-core systems. In order to program the Direct3D
12 there are a few components that are needed. The first component is a hardware platform
with a GPU that is compatible with Direct3D 12. The second component are the display
drivers that have the necessary support for the Windows Display Drive Model (WDDM)
2.0. The set-up of Direct3D 12 is complete after the installation of Windows 10 SDK
software and Visual Studio 2015. The only supported language of Direct3D 12 is C++. The

Page 42
 Group 14 Final Report

platform must also be initialized by setting up the global variables and classes. There is
also an initialize function that prepares the pipeline and assets.

3.2.4.3 Metal

This is a graphics API by Apple, that provides very close access to the GPU that is being
used to run the platform. Apple claims this allows the user to maximize the graphics and
computation potential of the IOS apps. The platform utilizes a low overhead architecture
that has a precompiled GPU shaders, fine grained control, and multithreading support. The
platform also provides support for GPU driven command creation and this simplifies
working with arrays. Some other features of the Metal include GPU-driven compute
encoding, improved ray tracing acceleration, metal for pro apps, simpler GPU families,
metal memory debugger, and metal-enabled iOS simulator.

3.2.4.4 Vulkan

This is a graphics API is the new generation of graphics by KHRONOS group, that
provides high-efficiency, cross-platform access to modern GPUs. The API focuses on
providing portability so that the features of Vulkan can be utilized at native performance
across all major platforms. In order to accomplish this Vulkan provides the development
specifications, open-source libraries and tools altogether with the introduction of
conformance tests that allows the universal performance.

3.2.5 Internet Connectivity

For proper functionality of our device, we require some form of connection to the internet.
Internet connectivity is crucial for use of online API services such as the speech-to-text
and text-to-speech.

There are both wired and wireless options available for the Jetson Nano. There is an
Ethernet port on the device for wired connections. While using an Ethernet cable for
internet connection would produce the most reliable and fastest internet connection, the
significant drawbacks to feasibility and portability render this option ineffective. In terms
of feasibility, there are not a wide availability of Ethernet ports, especially in school and
medical settings. In a school setting, classrooms are often limited to one Ethernet wall
socket for the teacher’s computer. In a medical setting, there is usually not an Ethernet wall
socket in patient rooms. In terms of portability, the connection into the wall would
immobilize our device, since internet connectivity must be established at all times during
operation.

There are two available methods for introducing wireless connectivity to the Jetson Nano.
The first method is via a USB port. The other method is via the PCIe slot located under the
heat sink. While both methods are available on the Jetson Nano, each approach has its
advantages and disadvantages.

Page 43
 Group 14 Final Report

The advantage of using a USB port is the simplicity of installing the hardware. Another
advantage is the convenience of pre-installed antennae on these adapters; other designs
allow for attachable aftermarket antennae to be attached to the adapter. One disadvantage
refers to the use of a USB port; since we will need the use of several USB peripherals, the
use of a USB Wi-Fi adapter would take up valuable real estate. Another advantage of using
this USB-type device is a perk from using USB devices in general; a USB extension cord
can be used to have the antennae placed at a distance from the Jetson Nano itself; this not
only frees up more room around the crowded USB 3.0 ports on the Jetson Nano, but this
also means that the antenna can physically be placed anywhere on our final device,
allowing the antenna to be placed at an advantageous location for optimal internet
connectivity and reception. Another perk granted through the use of USB-enabled devices
is the use of USB port hubs; while this brings up the risk of excessive power drain to the
Jetson Nano, the use of USB port hubs for low-power devices (such as a mouse-and-
keyboard setup, a common application for USB port hubs), this power drain risk is usually
nominal.

The advantage of using the PCIe slot for the Wi-Fi adapter is the added flexibility; since
this port is intended solely for installation of Wi-Fi adapters, using a PCIe Wi-Fi adapter
would free up one USB port on the Jetson Nano while still granting internet access to the
device. One disadvantage is the high cost of these parts; since USB Wi-Fi adapters are
geared for convenience, the USB version is in higher demand and thus less
expensive. Another disadvantage is the complication of installing antennae on these
devices; the only method for antenna installation is by soldering the antennae directly to
the module. There is a general risk of destroying the Wi-Fi module with the introduction
of soldering, including overheating the component.

Since this socket is located under the heat sink, there is also a size limitation for the Wi-Fi
adapter. While the adapter module itself is generally the same size and can fit underneath
the heat sink easily, the attachment of an antenna (especially for installing multiple
antennae) to these components is limited to what can fit in the available space there. Also,
taking up space beneath the heat sink also reduces the effectiveness of the heat sink, leading
to higher risk of overheating; however, this risk would be minimal and could also be
mitigated through the use of an external fan.

3.2.6 Voltage Regulation

Voltage regulation is the process of producing and maintaining a constant output AC or
DC voltage from a power source to any electronic device with various load currents. Linear
and switching are the two types of voltage regulators. The switching regulators are based
on a varying duty cycle of a pulse, and linear voltage regulators work at a constant
operation point.

Page 44
 Group 14 Final Report

3.2.6.1 Linear Voltage Regulator

The linear voltage regulator utilizes the change in the differential voltage of the operational
amplifier (op-amp) and compares the output voltage to a reference voltage. Furthermore,
the output voltage will be adjusted automatically to match the reference voltage. For the
linear regulator, the input must be greater than the output voltage. The dropout voltage,
which is the minimum difference between the input and the output, is around 2 V. The
dropout voltage may be decreased to around 100 mV by using low dropout regulators;
however, a lower dropout results in a decreased ability to reduce noise and ripple on input
supply. The linear regulator usually consists of an input, output and ground pins with
external capacitors used for filtering noise and achieving a better transient response.

Overall, the linear regulator takes advantage of the transistor and op-amp feedback loop by
acting as an automatic variable resistor. The advantages of using a linear voltage regulator
are that they are cheaper, and simple while maintaining a constant voltage output. The
switching regulator maintains the constant voltage much more efficiently in contrast to the
linear regulator, and thus the heat dissipated by the linear regulator is much greater and
needs to be taken into account. Figure 26 shows an example of a linear voltage regulator
circuit with the corresponding components that are used alongside the 7805 or 7812
regulators.

Figure 26. Examples of Three Terminal Linear Voltage Regulator.

3.2.6.2 Switching Voltage Regulator

The switching voltage regulator is based on configuring the duty cycle of the pulse to
manage a constant voltage. By using such a pulse width modulator (PWM), the average
voltage can be varied directly depending on the width/amplitude parameter of the circuit.
The pulse width modulator then controls the gate of the MOSFET, and the output voltage

Page 45
 Group 14 Final Report

is delivered back to the PWM. The increase of the output voltage causes the pulse width
modulator to decrease its width and therefore increase the off time of the MOSFET. The
energy storage of the inductor allows for the current to continue flowing even when the
MOSFET is off. Some of the topologies of the switching voltage regulator circuit include
the “buck” (step-down) switching regulators and the “boost” (step-up) switching
regulators. The buck converter steps down the higher input voltage to the lower output
voltage. Since this converter is more efficient than the linear voltage regulator, this type of
regulator is suitable for applications where the input voltage is much higher than the output.
A boost converter does the opposite of a buck converter and instead takes a lower input
voltage and boosts it to a higher output voltage. When used in combination, these two
converters are useful for battery-powered circuits since the battery will decrease over
time. Figure 27 shows an example of a common circuit diagram for a switching voltage
regulator, while the two figures in Figure 28 show the differences between a buck and a
boost converter.

Figure 27. Example of basic Switching Voltage Regulator with the pulse width
modulator.

3.2.6.3 Considerations for Voltage Regulators

Determining the linear or switching voltage regulator to be used depends on whether the
output voltage will need to be fixed or adjusted. If the output voltage is fixed, then the
regulator is selected to match the desired output voltage. For an adjustable output voltage,
then a two-resistor voltage divider circuit is used, and the added costs of these components
must be taken into account. The regulator selected will also have a minimum and maximum
input voltage that will need to be considered when choosing the regulator. Another
consideration is the current output, and this is usually limited by the current carrying
capabilities of the MOSFET or any other transistor used.

If the circuit is sensitive to input noise, then the output ripple must be taken into
consideration. The power supply rejection ratio (PSRR) for a linear regulator determines
how well the regulator can reject any ripple at the input, and a higher PSRR is optimal. For
the switching regulator, the ripple is based on the switching aspect of the circuit. This ripple
is attenuated through filtering. A beneficial circuit design technique is first to step down
the input voltage using a switching regulator, then using a linear regulator to remove the

Page 46
 Group 14 Final Report

ripples. For high-PSRR linear regulators, an extra pin may be available that can be used to
place a 10-nF capacitor which may help filter out some of the noise and ripple.

Another significant specification is the load regulation, which determines how well the
regulator can maintain the constant voltage when there are changes to the current load. This
is often shown in the specifications as “output voltage versus load current”. In the case of
a step-change in the output load current, then the specification of load transient is used to
determine how well the regulator would react to such a change. Taking into account
changes to the input voltage and its effect on the output voltage, the line regulation
measures the variation that change in input voltage results in output voltage. Similar to the
load transient, the line transient measures the output response to a sudden step change in
the input voltage. It is also important to note that the regulators with a high PSRR usually
have better transient performance.

As mentioned previously, the voltage drop-out identifies how much higher the input
voltage has to be compared to the output voltage for the regulator to properly function. For
cases where the input and output voltage difference must be much smaller, it is best to use
low drop-out regulators. The efficiency is also very important to keep in consideration
when deciding on the voltage regulator. The efficiency is calculated by dividing the output
power by the input power. It is typical of the linear voltage regulators to have a much lower
efficiency than the switching voltage regulators. The output capacitor that goes with the
linear and switching regulators is a very important consideration that requires careful
consideration of the recommendation given by the data sheet. Ceramic capacitors are most
commonly used since they have very low parasitic capacitance that improves the transient
response.

Figure 28. Simple schematic of the A) Buck (Step-Down) and B) Boost (Step-Up)

switching regulators

Page 47
 Group 14 Final Report

3.2.7. 3D Rendering Software Platforms

After the process of performing speech recognition and English-to-ASL text translation,
we intend to use 3D graphics rendering as our output for the ASL gestures. Although each
rendering software has different approaches to graphics rendering, the outcome is very
similar. In a virtual environment, the user can design the layout of the surroundings and
the objects within it. The quality and actions of each object is determined by the user
depending on its importance within the environment. In each of the platforms, the entities
are allowed to interact; that is, objects can interact with the environment or other objects.
The concepts of physics such as collision, temperature, friction, etc. are implied in each
platform, but the degree of realism can be modified to suit the user’s intent.

In each of the software platforms, the user has the option either to use pre-designed models
or create a new one. For premade models, therein lie copyrights for each model, either
expressed outright or implied through the Berne Convention. Most models are created to
be open-source and may be readily used, modified, and redistributed. In this case, mere
acknowledgement of the creator is sufficient. Some models may be limited use; for these
models, the model itself may be readily available, but its use, modification, and
redistribution can only be performed with permission from the creator. For some models,
the creator has reserved all rights to the model; in this case, such models cannot be used,
modified, or redistributed without official licensing from the original producer. Note that
in all cases, these copyrights relate to the model itself; the creation of fan-art replications
of the design are considered legal.

3.2.7.1. Unreal Engine 4

Unreal Engine is a 3D game development software by Epic Games. The original
environment was developed for the first-person shooter game Unreal in May 1998. The
Unreal Engine was released afterwards as a platform to develop other types of games. Later
editions of Unreal Engine were released for higher-resolution graphics rendering and
developer capabilities. Unreal Engine 4 was released in 2014, which included the C++
source code and the availability for Python script embedding.

Like the other platforms, the Unreal Engine IDE can be manipulated without the need for
prior coding experience. Unlike the other platforms, however, the entire C++ source code
is available to the user through GitHub, allowing for full customization of the platform
itself. Unreal Engine also has the option to port content to mobile devices. The Unreal
Engine IDE can be used on most popular OSes, including Linux, Windows, and macOS,
although the application can be made playable on many devices, including VR headsets
and gaming consoles. Both development and consumer-end gameplay require at least 8GB
RAM for proper functionality of the environment, although a more powerful RAM is
recommended.

Use of Unreal Engine 4 for commercial applications is permitted by Epic Games. Royalties
are paid at 5% gross income after the first $3,000 earned from the application; that is, there
are no royalties collected for applications earning less than $3,000.

Page 48
 Group 14 Final Report

3.2.7.2. Unity

Unity is a game-development platform created in 2004 with the mindset of readily
available, easy-to-use, royalty free game development. Unity has remained an independent
company despite potential buyers from larger companies, as Unity insists on their
contribution of “democratise[d] game development”.

The Unity Editor was developed more for developer-end simplicity. Included in the editor
are premade physics engines and AI capabilities for non-player characters (NPCs). Unlike
the other platforms, Unity has an option for 2D application development. The Unity Editor
IDE is available for use on Linux, Windows, and macOS, although the application can be
modified to be played on over 25 different platforms, including PlayStation, Nintendo
Switch, and VR platforms. Although there is no minimum hardware requirement to run the
Unity Editor or Unity applications, Unity recommends that the device running the
application has minimal graphics processing capabilities. The hardware requirement is
usually specified by the application producer, which depends on the overall graphics
intensity of the application.

Unity advertises that applications developed through their platform do not require revenue
sharing; that is, there are no royalties for Unity-based applications. However, there is a tier-
based system which disallows developers to use certain tiers based on their income. The
maximum gross income for Unity Personal users is $100,000 and $199,000 for Unity Plus;
there is no gross income ceiling for developers using Unity Pro. Content created by the
developer through the Unity platform, however, is owned completely by the developer,
with their ability to copyright their application.

3.2.7.3. MikuMikuDance

MikuMikuDance (MMD) is a 3D animation platform created in February 2008 by Yu
Higuchi under the online alias HiguchiM. The MMD platform was popularized by the
creation and sharing of vocaloid music videos rendered with MMD on YouTube. Although
HiguchiM has retired from developing MMD in 2011, graphic designer Reggie Dentmore
has continued development, with the most recent release, MMD 9.31, being released in
December 2017. Although models come preset with the MMD IDE, users have the option
of using the PMX/PMD editor software for model creation/edition. (Models are saved
as .pmx or .pmd files.) Like Unity, there is no minimal graphics card requirement, but other
users have recommended a 1GB cache and 512MB RAM due to the graphics intensity of
the program. MMD is advertised as a freeware 3D graphics application. As a freeware, the
development software can be edited and shared without much regulation. Ancillary
software such as the PMX/PMD editor software are not made by the developers of the
original MMD editor software. As such, there are no entities who can claim ownership of
the MMD software, and no royalties are collected from MMD-based application content.

Page 49
 Group 14 Final Report

3.2.7.3. Blender

Blender is an open-source, 3D graphics rendering software. There is a Python API
integration within Blender that allows developers to create game-like script elements in
their projects. The Blender IDE is available to run on Linux, Windows, and macOS. In
terms of hardware requirements, the most recent, stable release of Blender (Blender 2.80)
requires a minimum of a 32-bit, dual core, 2GHz CPU, 4GB RAM, and a 1GB cache.
Further releases will not support a 32-bit CPU.

Blender further recommends a more robust CPU setup to run Blender programs such as a
64-bit quad-core CPU, 16GB RAM, and 4GB of cache; or an optimal setup of a 64-bit
eight-core CPU, 32GB RAM, and >12GB of cache. Blender advertises that content created
through their software platform is completely royalty-free and does not require any paid
subscription. In terms of licensing, the funding for our project is intended to be less than
$1,000. Even if we were to produce our device commercially, we intend to maintain a local
presence. As such, our project can be used well with the $3,000 royalty-free ceiling for
Unreal, as well as the $100,000 ceiling for Unity. MikuMikuDance and Blender do not
have a gross income ceiling for royalty collection. All of the platforms discussed here
provide free downloads of their software, but for higher project budgets Unity requires
subscription to paid licenses. As we do not intend to exceed $100,000 for our budget, we
should qualify for the Unity Personal license, which does not require a paid subscription.

In terms of hardware compatibility, the requirements extend to its implementation on our
GPU/CPU setup, since our final project must be able to run programs based on the 3D
rendering platform. A full comparison of the hardware and licensing requirements are
discussed in Table 7 below. At this point, we are planning to use the Jetson Nano as our
ARM processor. As the Jetson Nano runs at 1.43GHz, running Blender 2.80 will not be
possible. Also, since the Jetson Nano runs Ubuntu, which is a Linux-based OS,
MikuMikuDance, which only runs on Windows, cannot run on the Jetson Nano without
compatibility compensatory programs such as WineBottler.

In terms of applicable platforms, Unity and Unreal Engine are two possibilities; however,
in terms of the recommended hardware requirements, Unity seems to require a less-robust
hardware setup. This is optimal for the Jetson Nano, which is advertised as a lower-power
GPU. As aforementioned, we are intending to use these 3D rendering platforms as the
output of our sign language translation; as such, we require some way of programming
when certain gestures will be performed. As MikuMikuDance is geared towards video
playback and not video game development, this platform has no support for dynamic
ability. Blender, Unreal Engine, and Unity all have Python API integration, which is
suitable for game development (or gesture management in our case).

3.2.7.4 Godot

Godot is an open source 2D and 3D rendering platform developed by MIT for game
development. Although the software is supported by C# and C++, the software can also be

Page 50
 Group 14 Final Report

supported by community contributions of Python, Nim, and D, among other programming
languages. There is also support for scripting via GDScript, which is a unique programming
language similar to Python. Like the other rendering platforms, there is an online asset
library with purchasable and free-to-use models and APIs. Compared with the other
platforms, Godot has the smallest file size for its editor software, comparable with that of
MikuMikuDance. Another upside of this platform is its advertisement of royalty-free
development, like that of Blender and MikuMikuDance. Although, as aforementioned, that
our group would not be developing a device that would receive more than $3,000 without
further commercial marketing and development, the lack of collected royalties from the
software provider provides a better peace of mind for the possibility of such an
advancement. Similar to other software like Unity, there is a recommended hardware setup
to run games made with their software without major buffering or overheating but using a
setup with minimum hardware capabilities would be sufficient for running small, low-
profile games.

A summary of the hardware and royalty specifications are shown in Table 7. It is significant
to note that although each platform has published their respective minimum hardware
requirements to run their editor software and/or published games using that software, the
minimum requirements to run a specific game depends on the complexity of the published
game itself. For example, a simple linear game without any environmentally interactive
elements would require a less robust hardware setup than a game with a detailed
environment with fully interactive, physics-enabled elements. This is crucial for the
application of these “games” into our device, since our COM used in our device, the Jetson
Nano, has minimal hardware capabilities suitable for portability and cost-effectiveness.

Table 7. Comparison of Hardware/Licensing between 3D Graphic-Rendering Platforms.

Total RAM GPU Cache Royalties Notes

Unreal Engine 4 8GB rec.
64GB optimal

Minimal 5% after first $3000
earned

CPU >2.5 GHz
recommended

Unity 2019.2.10 Minimal Minimal <$100k for Personal
<$199k for Plus
N/A for Pro

MikuMikuDance
9.31

512MB rec. Minimal N/A Windows OS
only

Blender 2.80 4GB minimum
16GB rec.
32GB optimal

1GB min.
4GB rec.
>12GB opt.

N/A CPU >2GHz

Godot 3.0 4GB recommended Minimal N/A

Page 51
 Group 14 Final Report

3.3. Components and Part Selections

3.3.1 Sound System Selection

This section addresses the amplifiers, speakers, and microphone. Although we have
decided to use a display monitor with built-in speakers, we have included our initial
debate on speakers and amplifiers that we considered had we used a video-only display.

3.3.1.1 Amplifier

Amplifiers are an essential component of a sound system since they are required to increase
the amplitude of the signal that is sent into it. In terms of a speaker, an amplifier is essential
for the speaker to produce a sound that is audible to the user. In terms of a microphone, an
amplifier is essential to amplify the microvolt signals obtained from a voice into millivolt
or volt-level signals that are distinguishable and meaningful to the receiving-end processor.

With amplification of the signal we also must ensure that the integrity of the signal is
maintained as it changes without distortion or other data loss. Our product requires an
amplifier to produce meaningful signals from both the speaker and the microphone. Some
microphones and speakers come pre-installed with an amplifier, but our selection of
amplifiers here are discussed for speakers we will discuss that do not include embedded
amplifiers. When we were selecting the amplifier to use in our project, we looked at
wattage, impedance, gain, communication protocol and the number of channels.

3.3.1.1.1 Max98306 Amplifier

The Max98306 is a small and powerful class D amplifier. It is able to deliver 3.7 W to 2
channels into 3Ω impedance speakers. It can run from 2.7 to 5.5 VDC and comes with
thermal and over-current protection. Inputs are fully differential with 1.0 µF capacitors and
output is a 360KHz square wave PWM.

Gain is adjustable between 6 and 18 dB. This amplifier would be a great choice for our
project as can produce a powerful signal while still being inexpensive and maintaining a
small footprint. It also would allow us to add an additional speaker if we choose to do so
as well as adjust the gain to ensure that users of the system could easily hear the outputted
speech from the machine and adjust the volume of the speakers accordingly. The
parameters of the Max98306 amplifier are summarized in Table 8.

3.3.1.1.2 Max98357A Amplifier

This miniature amplifier is perfect for smaller projects as the Max98357A is advertised for
its sufficient functionality despite its small size. It is a combination between an I2S DAC
and an amplifier. It takes in I2S digital audio and amplifies it directly into the audio output
connected to it. It is capable of delivering 3.2W into a single 4Ω impedance speaker. It is
a class D amplifier and runs at 2.7V to 5.5V DC. Input from I2S can use either 3.3V or 5V
logic data and are bridge connected.

Page 52
 Group 14 Final Report

Output is a 300KHz square wave PWM and gain can be adjusted from 3 to 15 dB. This
amplifier would be perfect for our needs in the project, as we are wanting to send audio out
from the I2S pins on the GPU/CPU/COM board that we will have chosen. This amplifier
can only support one speaker, but for the purpose of our project the use of one speaker
should be sufficient. The parameters of the Max98357A amplifier are summarized in Table
8.

3.3.1.1.3 Max9744 Amplifier

The Max9744 is a powerful amplifier that can also produce a large sound despite its small
size. It is capable of driving two channels with 20W into four 8Ω impedance speakers. It
is powered by a 5 – 12 V DC source that can be inserted into its on-board DC power jack.
This breakout board also has a 3.5-mm audio jack preinstalled for audio input. However,
it can take digital signals as well from I2C communication protocol pins. This amplifier
would be an amazing choice for our project because of how flexible it is in terms of inputs,
gain, and channels. The parameters of the Max9744 amplifier are summarized in Table 8.

Table 8. Comparison of Significant Parameters of Amplifiers.
Feature Max 98306 Max 98357A MAX9744
Wattage 3.7 W 3.2 W 20 W
Ohms 3 Ω 4 Ω 4 – 8 Ω
Channels 2 1 2
Gain 6 – 18 dB 3 – 15 dB Up to 29.5 dB
Class D D D

3.3.1.2 Speaker

Speakers are also an essential part of every sound system as these devices are required to
convert electrical signals into sound waves that are audible and meaningful to the user.
Speakers achieve this by vibrating a cone at high speeds, which results in the cones
producing sound waves. We will be using speakers for playing the text-to-speech sound
bites that are obtained post-cloud processing of text received from translating in the
translated speech mode. When looking at potential speakers for our project we looked at
price, wattage, impedance, and size.

3.3.1.2.1 Stereo-Enclosed Speaker Set

This class of speakers which consists of a dual set of speakers would be great for our project
and come in a pair to allow for stereo audio. The pair of speakers is enclosed for better
sound quality and come with speaker wire preinstalled in them with a single four-port
connector. These speakers are low-priced at $7.50, are powered at 3W, and have an
impedance of 4Ω. The parameters of this part are summarized in Table 9.

Page 53
 Group 14 Final Report

3.3.1.2.2 3" Diameter Speaker

This single speaker would also be a reasonable yet frugal choice to add sound to our project
as it is priced at $1.95. This speaker, however, does not come with wires or connectors
preinstalled. The speaker is powered at 3 W and has an impedance of 4Ω. This would pair
perfectly with the Max98306 or Max9744 as we could connect one of these to the amplifier
for a robust sound system. It is also 3” in diameter with mounting tabs 60mm apart which
we could install easily into the case of our device. The parameters of this part are
summarized in Table 9.

3.3.1.2.3 XS-GTF1027 Speaker

This speaker is much more powerful than the other aforementioned speakers, being
powered off 20 W of power with 4Ω impedance. This speaker has a wide decibel range
and also has a frequency range of 60 Hz to 24 KHz. However, with these speakers being
priced at $14.50, and with its extreme level of volume production, we believe that this
speaker is not the optimal choice to be implemented into our project. The parameters of
this part are summarized in Table 9.

Table 9. Comparison of Significant Parameters of Speakers.

Feature Stereo Speaker Set 3" Diameter
Speaker

XS-GTF1027

Wattage 3 W 3 W 20 W
Ohms 4 Ω 4 Ω 4 Ω
Speakers 2 1 1

The HDMI protocol includes both audio and video output. With this, some of the LCDs
discussed in section 3.3.4 include displays with embedded speakers. Because of the HDMI
standard, there would be no further manipulation of the speakers in order to have the
speaker and the display work together correctly. Additionally, many of these
display/speaker combinations provide a more cost-effective solution for A/V output. It is
because of this simplicity and effectiveness that we decided to use one of these
LCD/speaker combinations using an HDMI-HDMI cable which will run from the Jetson
Nano to this display (and thus the speaker).

3.3.1.3 Microphone

The use of a microphone is an essential piece of equipment for audio input, which would
be voice capture in the case of our project. In terms of microphones applicable to our
overall project design, we require either a handheld microphone that can transmit signals
from 5 to 10 feet away or a microphone located on the device itself that is able to pick up
voice signals from 5 to 10 feet away.

The advantage of having a microphone integrated into the stand is minimizing peripherals
that the user would need to handle, but the disadvantage is the requirement of a more
powerful (thus larger and more expensive) microphone. The advantage of having a

Page 54
 Group 14 Final Report

handheld microphone is the flexibility of using either a wireless microphone (utilizing
Bluetooth or other wireless protocols) or a wired microphone connected directly to the
device itself. Another advantage is the ability to choose less powerful microphones, since
the user will be less than 1 foot away from the microphone if it is handheld. The
disadvantage of a handheld microphone is the implication of several interfaces for the user;
that is, holding the microphone would be required in addition to manipulating the display
via buttons, touch screen, remote, etc.

In terms of the use of an I2C microphone versus a USB microphone, both types of serial
communication are applicable in our project. The benefit of an I2C microphone would be
the flexibility of choosing how the signal will be sent to the main processors on our device
(FPGA, COM, etc.); that is, we can choose to take the DC/AC outputs from these
microphones and send them through an operation amplifier, filter, and so on.

Another benefit of using I2C microphones is the availability of schematic-level
descriptions of each microphone; most USB microphones are marketed for ease of use, so
schematics and audio capture methods are not usually included with USB microphones.
The drawback of using I2C microphones would be the requirement of soldering the mount
header pins onto the board; with soldering in general, there is a risk of burning pins and
losing functionality of the board. Another drawback is the reliability of the connections
made, since these connections will need to be created by ourselves.

The benefit of a USB microphone is the simplicity of connecting the microphone to the
processors via a USB port. A major drawback is the occasional requirement of
downloading driver software for proper functionality of the microphone and compatibility
between the microphone and the processor.

3.3.1.3.1 Adafruit Mini USB Microphone

This low-profile microphone would be an example of a microphone that would be attached
to the device itself. The microphone is about the size of a flash drive and would be able to
plug directly into a USB port installed on our device (on the FPGA or the COM, for
example). Due to the flexibility of USB-enabled devices, the microphone can be attached
to the end of a USB-USB extension cord. The full characteristics of this board are shown
in Table 10.

Out of all the other microphones discussed here, this microphone is the least expensive in
terms of USB microphones at $5.95 USD. The major downside is the lack of
documentation and specifications on this product. There is a lack of specifications on the
frequency range and accuracy of sound capture.

3.3.1.3.2 Adafruit MEMS Microphone (SPH0645LM4H and SPW2430)

This MEMS microphone from Adafruit is very low-profile due to the utilization of MEMS
technology. There are a variety of different boards available that provide a small yet
powerful microphone such as the SPH0645LM4H and SPW2430 boards. The major

Page 55
 Group 14 Final Report

differences are the detectable frequency range of the microphone, and the power supply
requirement. The full characteristics of this board are shown in Table 10.

In terms of price, these boards are inexpensive at $6.95 USD and $4.95 USD for the
SPH0645LM4H and SPW2430 boards, respectively. Despite the difference in cost, there
is not a significant difference in the potential of these two microphones.

3.3.1.3.3 SparkFun MEMS Microphone (INMP401/ADMP401)

This microphone breakout board from SparkFun utilizes the ADMP401 (now INMP401)
MEMS microphone from Analog Devices. Unlike the boards from Adafruit, which feature
digital output, this ADMP401 board has an analog output. The full characteristics of this
board are shown in Table 10.

This board could be a viable option since an analog output would provide more flexibility
on the processing of the sound signal than the already-digitized signals produced by the
Adafruit microphones. However, due to the lack of analog input on the Jetson Nano, we
would require the inclusion of an analog-to-digital converter (ADC) before transmitting
the signal to any processor on our device. This would include our PCB for the FPGA,
where we would also require either a peripheral ADC board or an embedded ADC on the
FPGA PCB.

Table 10. Comparison of Significant Parameters of Microphones.

Feature SPH0645LM4H SPW2430 INMP401/ADMP401
Frequency Range 50 Hz - 15 kHz 100 Hz - 10 kHz 100 Hz - 15 kHz
Power Supply 1.62-3.6 V @ 60 uA 1.5-3.6 V @ 70 uA 1.5-3.3 V @ < 250 uA
SNR 65 dB 59 dB 62 dB
Price $ 6.95 $ 4.95 $ 10.95

In terms of the different parameters of the three microphones discussed in Table 10, there
is not a significant difference in the capabilities of each microphone. Although the
SPW2430 has a lack of detection in higher frequencies, the range of human voice is roughly
between 80 Hz and 260 Hz. Also, the power supply ranges would be achievable via the 3.3
V power pin commonly found on processor boards. (The Jetson Nano has both 5 V and 3.3
V power pins in addition to having powered USB ports.)

3.3.2. FPGA Selection

Our project will be using an FPGA chip to process and communicate with all I/O devices
necessary, except for the monitor visuals, which will be handled via our COM device. We
will be creating a PCB onto which the chip will be surface-mounted and then to which the
other I/O devices such as the speakers and buttons will be connected. Having a separate
board and chip to handle all the I/O allows the COM to focus solely on processing speech
and text required for proper execution of our device. We chose to use an FPGA chip to

Page 56
 Group 14 Final Report

perform this task because it allows us to connect a wide variety of devices and choose how
to use the I/O pins as needed.

When it comes to FPGA chip selection, one key element we sought was the low overall
cost of the chip. We have not yet partnered with a financial sponsor and therefore must be
frugal with our budget. Another key element we looked at was I/O pin count, since we need
to ensure that we could communicate with all the components necessary for this project.
Next was the number of gates on the FPGA board. We wanted to ensure that we would
have enough blocks for our program to fit on the board but not so many that we are wasting
time and space on the chip; optimizing the gate number of the FPGA board will also
maximize the efficiency of our funds.

Next, we looked at the package type of the chip in question. We wanted to ensure that the
chip that we chose was a QFP-style package, as this style of package allows for easier
prototyping. Furthermore, a QFP-style package reduces the number of layers required in
the PCB design as this style results in a less complex package type.

We also looked at the operating frequency of potential chips, as we would prefer the
smallest latency times achievable. The frequency, however, is not as significant as the other
elements as there are no timing-critical systems in our project. This allows us to use a
slower-frequency board without much loss in quality while reducing the cost of the final
product. Finally, we looked at the vendor of the FPGA chip in question as this would
determine the software and interfaces that we could use to program the chip. We are used
to interfacing with Xilinx chips and using the Vivado software suite, so having a suitable
vendor would be easier to begin interfacing with the chip. Furthermore, the UCF
laboratories have Basys 3 boards available for student use. These boards run the Vivado
software, and access to this software allows us to develop and test our programs more
efficiently regarding cost and time.

3.3.2.1 Altera Cyclone IV – EP4CE22E22xxx

The Cyclone IV EP4CE22E22xxx family of FPGA chips is a great choice for our device
as it meets all of the specifications required. It has a total of 22,320 logical elements on the
board and 594 Kb of embedded memory. For I/O, this family of chips has 79 user I/O pins
and 17 LVDS pins. The chip is affordable as well, depending on the speed of the chip
selected, it can range from $35 USD to $53 USD. This family of chips comes in 2 different
core voltages of 1.0 V and 1.2 V. We will not choosing a low-voltage device and therefore,
will have a core voltage of 1.2 V to power the chip itself. This would allow us to power the
device easily through a USB connection to the COM board that we choose. A downside of
this board is that it is an Altera chip, which means that we must use Altera software to
interface with the chip, which is not what we have experience with. The full characteristics
of this board are explained in Table 11.

Page 57
 Group 14 Final Report

3.3.2.2 Spartan 3E - XC3S500E-xPGx208C

The Spartan 3E XC3S500E-xPGx208C family of FPGA chips is also a great choice for our
project we are aiming to create as this family of chips also meet all the specifications
required. These chips have a total of 10,476 logic cells, 73K distributed RAM bits, and
360K Block RAM bits. For I/O, this family of chips has 158 user I/O pins and 65
differential pins. The chip fits into our budget as well, costing between $37 and $52 USD,
depending on speed grade and lead-free packaging. The Spartan 3E has a supply voltage
of 1.2 V. This would allow us to power the FPGA chip from a USB connection to the COM
board that we choose to use. On the downside of the board, this is an older chip from Xilinx
and therefore is not supported by Vivado. While we have used Xilinx ISE before, we have
more experience in Vivado and would have to learn the software to interface with the chip.
The full characteristics of this board are explained in Table 11.

3.3.2.3 Artix 7 – XC7A35T-1CPG236C

The Artix 7 – XC7A35T-1CPG236C FPGA chip is a great choice for being the brains of
the I/O board in our project. It contains 33,280 logical elements and 1,800 Kb of embedded
memory. For I/O, this family of chips has 250 user pins. It is an affordable chip as it only
costs $42.97 USD. It operates at 1.0 V, allowing for the chip to be powered from a USB
connection to the COM. Furthermore, the Artix 7 is programmable with Xilinx Vivado,
which we have experience using. This chip also comes installed in the Basys 3 boards that
are in student accessible labs on campus. This would allow for us to program and test the
chip quicker and cheaper than other options. Unfortunately, this family of chips only comes
in a BGA package type and therefore, would be more difficult to implement onto a PCB
board. Table 11 shows a comparison between all of the different FPGA chips that will be
discussed in the following sections.

Table 11. FPGA Comparison.

FEATURE CYCLONE IV SPARTAN 3E ARTIX 7
PART NUMBER EP4CE22E22xxx XC3S500E-

xPGx208C
XC7A35T-
1CPG236C

COST $35.52 – 53.28 $37.58 – 52.21 $40.03
VENDOR Altera Xilinx Xilinx

I/O COUNT 79 User I/O; 17
LVDS

158 User I/O; 65
Diff

250 User

LOGICAL
ELEMENTS

22,320 10,476 33,280

EMBEDDED
MEMORY

594 Kb 360 Kb 1,800 Kb

SPEEDS 6, 7, 8 Standard, High 1

Page 58
 Group 14 Final Report

3.3.3 Computer-on-Module (COM) Selection

In our project, we will be using the Computer-On-Module (COM) for running the screen
of the terminal and for processing and rendering the sign language graphics. We believe
that this will be rather resource-intensive, which will require the COM to contain a GPU
unit capable of handling the graphics demand. Furthermore, we will be using the COM to
run an OS that will allow us to run the tasks and programs that we need, such as the 3D
rendering software (such as Unity) and interfacing with the FPGA.

The first element we looked at when selecting a COM was the cost of the unit, which is the
most important element for our team as we lack a financial sponsor for our project and
must be frugal in the usage of our limited funds. Another element is the number of
computation cores that the GPU unit has. Next, we looked at the number of I/O pins on the
device as this is extremely important for connecting our peripherals necessary for proper
implementation of our final project.

3.3.3.1 Nvidia Jetson Nano Developer Board

The Jetson Nano Developer Kit is of greatest interest for our project due to its relatively
low cost in relation to its performance capability. At only around $100, it is both low-cost
and high-performance. The board contains a quad-core ARM A57 which has a clock
frequency at 1.43 GHz. Furthermore, the board contains 128 Maxwell computation cores
that allow for robust performance in parallel computing, such as with our neural machine
translation (NMT) models. It comes with 4 GB of high-speed internal memory.

For storage, the Jetson Nano uses microSD cards for its memory modules. Nvidia sets the
minimum size as 16 GB for the microSD card, but with the size of OS images and other
necessary files, a 32 GB or larger microSD card is recommended. The board is powered
through a 5V power supply, which can be delivered through the micro-USB port or the
2.1mm barrel port depending on the available power supplies. Higher power usage is
directly correlated to excess heat production, but the Jetson Nano is prepared for the heat
since it comes preinstalled with a large heat sink. This heat sink also has 4 mounting holes
for mounting a single 140mm fan that can be plugged into the 3-pin PWM fan header on
the board.

When it comes to I/O connections, it has 40 pins and includes support for I2C, SPI, and
UART communication protocols which will allow us to communicate with any the FPGA
board and any other peripherals that we choose to use. There also comes a Gigabit ethernet
port that comes pre-installed on the board. This is favorable for our application as we will
need to have our board connected to the Internet to send out our audio snippet files and
have them converted from speech to text and receive this text snippets back. If we choose
to not use the ethernet port, it also offers a M.2 E key slot for Bluetooth and Wi-Fi Module
extensibility.

Furthermore, the Jetson Nano has four USB 3.0 ports, which allow us readily to connect
our peripheral components such as a microphone, speakers, etc. as needed. Finally, the

Page 59
 Group 14 Final Report

board features two display connectors, one being display port and one being HDMI. This
will allow us to output to our chosen display which is essential for our application. These
ports allow for simultaneous use, so we can drive 2 displays from the board natively. In the
chance of further extensibility of our product, the board also features a CSI video camera
connection that will allow us to possibly implement sign language detection functionality.
A full description of the Nvidia Jetson Nano developer board and its comparison to the
Jetson TX2 development board are summarized in Table 12.

3.3.3.2 Nvidia Jetson TX2 Developer Board

The Jetson TX2 is the bigger brother of the Jetson Nano and brings a lot more power to the
table. It costs a significant amount more at $449, but it also comes with a quad-core ARM
Cortex A57 processor clocked at 2GHz as well as a dual-core NVIDIA Denver2 processor
clocked at 2 GHz. Its graphics processing unit has a 256-core PASCAL GPU built in.
Furthermore, the TX2 has 8GB of high-speed DDR4 internal memory. For storage, the
Jetson TX2 Development Board has 32 GB of eMMC flash storage. For power delivery,
the TX2 is powered off of a single 19V AC adapter that is plugged into the board with a
2.1 mm barrel jack. The TX2 comes preinstalled with a large heatsink and fan to ensure
that the unit does not overheat when operating at or near maximum operating conditions.

When it comes to I/O connectivity, the Jetson TX2 has 40 pins and includes support for
I2C, SPI, and UART communication protocols. The board also comes preinstalled with a
Gigabit ethernet port and has Wi-Fi and Bluetooth modules pre-installed. This would allow
us to connect to the Internet either way that we choose without any additional part
installation as well as have the option to Bluetooth microphones or remotes for our final
product. Furthermore, the TX2 has a single USB 3.0 Type A port and a single USB 2.0
Micro AB port.

While this isn’t much in terms of the number of USB ports, there is also a PCI-e expansion
slot to add more USB slots, or we could use a simple USB hub. There is a single HDMI
port for a single display terminal. Next there is a microSD reader built into the board for
memory expansion and am M.2 E key slot. Finally, there is a 5-Megapixel fixed focus CSI
camera which comes pre-installed on the board, which would allow us to expand our
project in the future to allow for sign language detection. A full description of the Nvidia
Jetson TX2 developer board and its comparison to the Jetson Nano development board are
summarized in Table 12.

3.3.3.3 ASUS Tinker Board

The Tinker Board by ASUS is another option as a single-board computer. At $65, this
COM would be the most economical choice. This board comes standard with a Rockchip
Quad-Core RK3288 SOC and an ARM Cortex Mali-T764 GPU with 4 pipelines clocked
to 600 MHz. This board has 2 GB of DDR3 RAM and microSD card slot for system
storage.

Page 60
 Group 14 Final Report

Much like the very popular Raspberry Pi SBCs, the Tinker board has 4 USB 2.0 connectors
and Gigabit Ethernet port. Furthermore, the board has a MIPI camera, a MIPI display
connector, and an HDMI 1.4 connector, capable of 4K at 30 frames per second. It has a 3.5
mm Stereo audio jack capable of good quality audio that uses the extra sleeve for
microphone input. The Tinker Board itself is powered by a micro-USB port at 5V and 2/2.5
A. For I/O, the tinker board has a 40-pin color coded GPIO header, which would allow for
quite a bit of connectivity for our project. Finally, the Tinker Board does come packaged
with a heatsink that can be installed onto the board to ensure the board does not bottleneck
due to heat issues or damage itself. The ASUS Tinker board does have an enhanced version
(ASUS Tinker Board S) available for purchase that includes 16 GB of eMMC storage
preinstalled, out of box Bluetooth capabilities, and various other small upgrades. However,
this upgraded version does not improve upon the SOC, GPU, or RAM that comes with the
board. Therefore, it is not attractive enough for our use to warrant the price jump from $65
USD for the standard Tinker Board to $90 USD for the S version.

3.3.3.4 Raspberry Pi 4 Model B

The Raspberry Pi 4 Model B is the newest edition to the line of extremely popular
Raspberry Pi single board computers. This COM is an affordable option for a COM to use
in the project as it has a variety of features and comes with a ton of software, drivers, and
other features created by the huge community of followers that this board has accumulated.
It costs only $55 US dollars for the model with the most pre-installed RAM.

The Pi 4 Model B comes with a quad-core Cortex – A72 processor clocked at 1.5 GHz.
Furthermore, the Model B comes with 4 GB of DDR4 RAM. It has 2 USB 3.0 ports, 2
USB 2.0 ports, and 40 GPIO header pins allowing for a wide variety of connectivity to
different peripherals. The board also has 2 micro-HDMI ports, a MIPI DSI display port
and a MIPI CSI camera port, as well as stereo audio and composite video ports. The COM
can be powered with 5V DC with a minimum of 3A via a USB-C connector or by the GPIO
headers.

It comes installed with a 2.4 and 5.0 GHz wireless adapter, a Bluetooth module, and a
Gigabit Ethernet port. While this COM unit seems to be an extremely attractive option for
our project, it has a rather large downside since it lacks a dedicated graphic processing unit.
This unit comes with an integrated graphics chip on the processor which limits the amount
of graphical work that can be done on the unit.

While it might be possible to modify the board to include a PCI-e slot and connect the
board to an external GPU, this would be far out of the scope of this project and would
require us to make our own drivers for the project as well as do quite a bit of fine soldering
to modify the board.

Page 61
 Group 14 Final Report

Table 12. COM Comparison.
Feature Jetson Nano Jetson TX2 ASUS

Tinker
Board

Raspberry Pi 4
Model B

Cost $99 $449 $65 $55
GPU 128-core NVIDIA

Maxwell™ GPU
256-core NVIDIA

Pascal™ GPU
ARM Cortex
Mali-T764

Integrated
Graphics

I/O Pins 40 GPIO pins 40 GPIO pins 40 GPIO pins 40 GPIO pins
Communication
Protocols

I2C, SPI, UART I2C, SPI, UART I2C, SPI,
UART

I2C, SPI, UART

Memory 4GB 64-bit
LPDDR4 Memory
1600MHz - 25.6

GB/s

8GB 128-bit LPDDR4
Memory

1866MHz - 59.7 GB/s

2GB DDR3
memory

4GB LPDDR4
memory

Power 5 – 10 W 7.5 – 15 W 10 – 12.5 W 15 W
Storage microSD card slot

for storage
32GB eMMC 5.1 microSD

card slot for
storage

microSD card
slot for storage

CPU Quad-Core
ARM® Cortex®-

A57 MPCore

Dual-Core NVIDIA
Denver 2 64-Bit CPU

and Quad-Core ARM®
Cortex®-A57 MPCore

Rockchip
Quad-Core

RK3288

Cortex – A72
processor

clocked @ 1.5
GHz

Wi-Fi Enabled No Yes Yes Yes
OS Ubuntu Ubuntu TinkerOS -

Debian
Raspbian OS,
Ubuntu, Etc.

3.3.4 Display Selection

The display is an integral component of the final product as the display will be the medium
upon which the GUI will be interfaceable. The LCD will be able to display the ASL
animation so deaf users can read the sign language as well as the input and translated text.
The display will also tell users in which mode they are currently using, when they are
recording, and what the device read as their dialogue (this last part will be included to allow
for debugging on our end and troubleshooting on the consumer end as needed). The most
integral factor is choosing a display is the price, since LCDs are expensive. We have yet to
partner with a financial sponsor and must use our limited funds in the most efficient manner
possible. The next factor is the size of the display. Users should be able to see the models
on the screen easily and be able to read text from a reasonable distance without having to
strain their eyes. Another factor we considered was touch-compatible displays to have a
device that is sleeker and more portable; that is, the device can be handheld.

3.3.4.1 10.1" Display & Audio IPS Panel

At 10.1 inches, this 1280-by-800 in-plane switching (IPS) display is one option for a
terminal in our product. It is an all-in-one option that includes the screen, HDMI driver,
and the ability to connect audio output peripherals. Furthermore, it has a button keyboard
to open a monitor menu with options such as brightness and contrast. It has inputs for video
of HDMI and VGA and a 3.5 mm audio jack for audio input. However, at $154.95, it is
rather expensive for a small screen size in comparison to other options on the market.

Page 62
 Group 14 Final Report

3.3.4.2 Sceptre E205W-16003S LED Monitor

This 20” monitor would be great for our project as its large size is still suitable for our
device design. It would make the user viewing experience much better, as the resolution
for this monitor is 1600x900. This display is also $59 which fits our budget well. The
monitor has inputs for HDMI and VGA and has built in speakers. With a refresh rate of 75
Hz, models being displayed on the screen would be able to keep up with the output of the
graphics processor of our device and would allow the user to view non-choppy animations.

3.3.4.3. UPERFECT 12.3” Touch Monitor

The UPERFECT monitor would allow the user to touch the screen directly to control the
terminal. This is an attractive option as it would increase the ease of use for users by being
more intuitive and would allow for a sleeker and more portable final design. The monitor
is 12.3” which is about the size of a tablet computer, which is an optimal size for our
project. It has a high resolution of 1600x1200 and has built-in speakers. For input options,
it has HDMI, DVI, and VGA. It uses a microUSB cable to achieve the touchscreen
capabilities and is designed to be used with a huge variety of devices including COMs. It
is priced at $149 US Dollars which is rather expensive for a 12.3” monitor but would add
touch capability to our terminal.

3.3.5 Controller Selection

When it comes to the user interaction with our device, we had several different options for
how the user could do so. The device needs to be able to perform the actions of mode
selection and voice recording with input from the user. For voice recording, we wanted the
user to press a button to begin the voice recording process and press the button again to
stop the recording process and have a sound file ready for processing. For mode selection,
the user would be able to press a button to switch between the speech-to-speech translation
mode and the speech-to-ASL mode. This would require the use of at least two buttons, one
of which would be for voice recording and the other for the mode selection.

3.3.5.1 IR Remote

One option for the user to notify the device about their input is for the device to have an IR
communication method. IR remotes are common devices seen mostly to help users interact
with devices such as TVs and DVD players. These remotes work by sending data in the
form of pulses of modulated infrared light. Each button on the remote sends a code that is
unique to that button that is then demodulated and decoded by an IR sensor in the receiver.

This implementation for indicating when to record the user’s voice would be a great choice
as it is extremely inexpensive to implement, at $6.95 USD. Furthermore, this
implementation would be easy to program as it is as simple as decoding the code that is
received from the IR sensor and telling the controller what to do when certain codes are
received. However, this implementation would be subject to interference in the form of

Page 63
 Group 14 Final Report

sunlight and other light sources, such as light bulbs. While most modern-day LED light
bulbs emit less IR light than older incandescent light bulbs, this still imposes a risk that a
signal would be impeded by other IR signal noise and the user would have to press the
button multiple times for the system to pick up the signal. Furthermore, IR sensors are very
sensitive to the position of the transmitter and they must have line-of-sight to send and
receive signals properly; that is, without the use of IR relays or amplifiers, the user must
point the remote directly to the receiver for the signal to be transmitted and received
successfully. This could lead to the same problems as interference and lead to a suboptimal
user experience.

3.3.5.2 RF Remote

Another option would be to use an RF remote and receiver. RF remotes are common
devices seen in everyday devices such as car keys, garage door openers, and radio-
controlled toys. They work by sending out radio frequency waves that represent the binary
code for the respective button that was pressed on the remote. The receiver takes in the
signal and then decodes the signal back into a usable binary code.

This implementation would be a great choice for our project as it is inexpensive to
implement, costing around $12 USD for an RF remote and receiver. It is also extremely
easy to implement as the receiver and remote that we have chosen are a pair that know how
to communicate with each other already. There are five output pins on the receiver that
correspond to an interrupt pin and four pins corresponding to four unique buttons. When
any button is pressed, the interrupt pin goes high and the respective pin for that button also
goes high. When it the button is released, all pins go low.

A benefit of this approach is that the remote is invariant to line of sight with the receiver
and typically has a much larger range than an IR approach. Furthermore, the remote
transmits at a specific frequency, 315 MHz, that is not used by many devices and is
therefore less subject to interference and will not interfere with any other devices that are
not within this range. Issues might arise from there being no error checking built into these
remotes, as the remote has no way of knowing if the signal was received correctly or at all.
Furthermore, these devices have no way of addressing the signals, and therefore, all devices
that operate at 315 MHz will receive the signals from the remote.

3.3.5.3 Push Button

By far the simplest approach for the user to interact with the console, another option would
be to install a momentary push button on the console for the user to press whenever they
want their voice to be recorded. If the button is pressed, the microphone will be activated
and recording. This implementation would be cost effective and easy to implement and it
would only require a single button to be added to the PCB board and would require no
extra programming or fiddling. It would also decrease the complexity of user interaction
by only having a couple of buttons housed in the console itself that users could easily
access. We would not have to worry about users dropping, breaking, or losing the remote.
Furthermore, we would not have to worry about a remote losing power or running into

Page 64
 Group 14 Final Report

interference as it transmits. However, this would make users have to sit right next to the
console and remain at the console to use it; otherwise, a long cable would need to extend
directly from the device to the user, which would result in a cumbersome and non-user-
friendly setup.

3.3.6 Wi-Fi Module Selection

To determine the proper Wi-Fi module suitable for our device, the adapter must be able to
provide sufficient speeds and reliability while also maintaining a small overhead and
profile. The types of connectivity available to the Jetson Nano include PCIe and USB. For
PCIe-enabled Wi-Fi modules, we have the option of soldering external antennae to the
adapter to increase its range. The USB-enabled Wi-Fi adapters are usually designed as a
single package; rarely do these USB devices give the user the option of installing one or
more antennae. Below we discuss briefly one available PCIe Wi-Fi module and one
available USB Wi-Fi module.

3.3.6.1 Intel Dual Band Wireless-AC 8265

The Intel Dual Band Wireless-AC 8265 is a PCIe-enabled Wi-Fi adapter that provides both
Bluetooth and Wi-Fi support with speeds up to 867 Mbps and offers extended battery life
in comparison to the legacy 11ac devices. The PCIe connection provides a reliable channel
for sending and receiving data. This card can also provide connectivity through 2.4 and 5
GHz channels. The module weighs around 2.6 grams and can operate in the temperature
range of 0°C to 80°C. These specifications would work with the current project design
since the design does not have portability constraints. With this module an additional
antenna may be needed to extend the range and reception of the adapter. The antenna that
is available for this card is the RP-SMA Dual Band that provides the additional
functionality needed. One disadvantage of this card is the excessive price at $140.92 USD.

3.3.6.2 Ultra USB Wi-Fi Adapter

The Ultra USB Wi-Fi Adapter provides up to 600 Mbps and has access to both the 5 GHz
and 2.4 GHz channels. It also provides an external high gain long-range 2 dBi omni-
directional antenna. The integration of the antenna in one package provides more simplicity
to the Wi-Fi connectivity aspect of the project, while also maintaining the required
specifications. The Ultra USB Wi-Fi adapter is the route of choice because of the one in
all design and the portability of the product is not a top priority.

The adapter we would be using for our design was donated by one of our team members.
However, comparable USB Wi-Fi modules with an integrated antenna range in price from
$20 to $50 USD. Although the PCIe module we listed was out of our price range, there are
other PCIe Wi-Fi modules that are also around the $20 to $50 range. Also, the wireless
connectivity is also comparable between the USB and PCIe protocols. Therefore, the
selection of the Wi-Fi module for our project merely depends on availability and feasibility;
since we already own USB-enabled Wi-Fi modules, we have chosen to proceed with this

Page 65
 Group 14 Final Report

method of internet connection. Should we need a faster or more reliable connection, we
may consider purchasing a PCIe card or upgrading to a more robust USB module.

3.3.7 Voltage Regulator Selection

For the selection of the voltage regulator, there are several considerations to consider when
choosing the component that it has the best performance while also being low-cost. Several
of these considerations include the required output voltage, input voltage, current output,
output ripple, load regulation, load transient, line regulation, line transient, voltage drop-
out, and efficiency. The purpose of the voltage regulator in our project is in the
development of our power supply unit, where the voltage supplies to the Jetson Nano and
the Altera Cyclone IV require specific voltages to be available for extended periods of time
to maintain proper functionality of both devices.

3.3.7.1 LP5900

For maintaining a constant voltage output of 2.5V, we chose a linear voltage regulator since
the input voltage would need to be 5 V. Therefore, since the difference between the input
voltage and output voltage is around 2.5V, this linear voltage regulator is the preferred
choice. The linear voltage regulator is a more energy-efficient and cost-efficient option,
since the voltage difference does not amount excessive energy loss. The input voltage range
of the LP5900 is 2.5V to 5.5V and the output voltage range is 1.5V to 4.5V which matches
the specification needs of the project with an additional margin of error for the input and
output voltages. Since it is a low-drop linear voltage regulator (80mV), a noise bypass
capacitor is not required and thus simplifies our circuit layout. The maximum output
current possible with this regulator is 150mA which is sufficient for the purposes of this
project. The general wiring diagram for the LP5900 is explained in Figure 29.

Figure 29. A simplified schematic of the LP5900

Page 66
 Group 14 Final Report

3.3.7.2 LP38500-ADJ

For maintaining a constant voltage output of 3.3V and 1.2V a linear voltage regulator was
chosen since the input voltage would only be around 5V. Therefore, the difference between
the input voltage and output voltage is around 1.7-3.8V a linear voltage regulator is the
preferred choice. As mentioned above, the linear voltage regulator is much simpler and
cheaper option, and since the voltage difference isn’t too much the amount of energy lost,
as a result of the efficiency of linear regulators, is acceptable.

The input voltage range of the LP38500-ADJ is 2.7V to 5.5V and the output voltage range
is 0.6V to 5V which matches the specification needs of the project with additional margin.
A 10uF capacitor is needed at the input and output for stability of the circuit. The maximum
output current possible with this regulator is 1.5 A which is enough for the purposes of this
project. The general wiring diagram for the LP38500-ADJ is explained in Figure 30.

Figure 30. A simplified schematic of the LP38500-ADJ

3.3.7.3 LM7805

The electrical characteristics of the LM7805 demonstrate that the output of the voltage
regulator is fixed at either 5V, 12V, and 15V options depending on the input. Therefore,
this regulator was not considered for the possibility of being used to regulate the voltage
within the circuit design. In terms of the LM7805, although the output voltage is 5V, which
we could definitely use for our design, the input voltage required for this voltage regulator
is at least 7 V up to 25 V, which is out of range for our power supply unit. This also applies
to the LM340, LM340A and LM7805 classes of voltage regulators.

3.3.8 Summary of Selected Parts

3.3.8.1 Speaker

When looking into different speaker systems for our project, we had investigated having a
separate sound system to play our audio through. After doing some research into this, we

Page 67
 Group 14 Final Report

found that we would need to have 3 parts to make up our sound system: a digital-analog
converter (DAC), an amplifier, and the speaker itself. The DAC would convert our I2S
digital sound signal to analog signals, an amplifier would increase the amplitude of the
outputted sound signal, and then the speakers would take input analog signal and output
audible sound waves. However, when looking into displays for our project, we found that
many of the displays came with a connection for audio output or built in speakers. Since
we are outputting video through an HDMI cable which carries audio with the video, it
would be easier and more cost effective to use a display that has included speakers.

3.3.8.2 Microphone

For our project, we have decided to use the I2S MEMS microphone – SPH0645LM4H. We
chose this microphone because of the many benefits of the I2S standard. Not only would
this microphone be simple to implement into our project, the output signal is also purely
digital. This eliminates the need to use an ADC in the design and would allow us to quickly
send our audio signal to the COM module and sent to the cloud transcription service.

3.3.8.3 FPGA

For the brains of the I/O board, we have selected the Altera Cyclone IV –
EP4CE22E22C8N. This FPGA has a large number of logical elements to ensure that we
can implement our design. Furthermore, the Cyclone has many I/O pins which would be
perfect for its implementation in our project. We can run all the necessary peripherals in
and out of it as needed with many more unused pins to be used as needed. The Cyclone
also comes with 594 Kb of embedded memory, which will easily allow us to implement
FIFOs for communication to the COM unit. The chip is also rather affordable, costing only
$35 USD. The only downside that we could see for this chip was that it is from Altera,
which is a vendor that we are not used to working with, meaning we will have to learn how
to use the Quartus II software to work with the chip. However, even with this downside,
the Cyclone IV – EP4CE22E22C8N was the best choice for the application that we have.

3.3.8.4 COM

For the COM unit in our design, we have selected the budget-friendly Jetson Nano from
NVIDIA. We decided to purchase the Jetson Nano as it is a powerhouse of a COM for the
price of around $100 USD. It has a quad-core ARM processor and 128 GPU computational
cores which allow this COM to deliver a lot of power despite its small form factor.
Furthermore, the Jetson has an unmatched selection of I/O possibilities that make it simple
to interface with some of the peripherals necessary for our device. It has 40 GPIO pins that
we can use to communicate with the I/O board that we plan to design, as well as having 4
USB 3.0 pins that can help interface with peripherals as needed.

Our design will also require quite a bit of storage space, for the NMT model and well as
the sign language models that we will be creating. Because of this, the expandable SD card
storage is perfect for our application as it will ensure that we have adequate storage for
everything that we need. Additionally, we can add external hard drives via the USB 3.0

Page 68
 Group 14 Final Report

ports as needed. Finally, the Jetson Nano has HDMI connectors that will allow us to
natively pass the video of the sign language models and translated text. Since HDMI
protocol includes both audio and visual data transfer, we are also able to transfer the
machine-generated text-to-speech to the speakers on our display.

Although many of the other COMs are readily available for internet connectivity, the Jetson
Nano has dual capabilities for connecting to the internet. We can attach a USB Wi-Fi
adapter via one of the USB 3.0 ports; this way, we are able to enable and disable Wi-Fi
connectivity as needed. The PCIe slot located underneath the heat sink allows for a more
permanent internet enablement. In both approaches, antenna(e) can be attached to the Wi-
Fi adapter for increased range and reception.

3.3.8.5 Display

For the display of our project, we chose the Sceptre E205W-16003S LED Monitor. We
chose this display because of the many features that it brings to the table for such a low
price. It is a 20-inch display with a resolution of 1600x900 and a refresh rate of 75 Hz,
which is perfect for our application. It will provide clear video output for users to see the
sign language models and translated text. Furthermore, this monitor has built in speakers
that will allow us to output the audio that we receive from passing our translated text
through a text to speech service. This display is perfect for our application and our budget,
costing only $59 USD.

3.3.8.6 Controller

For users to control our project, we have chosen to go with a remote style control. This will
consist of two parts: the first part is the transmitter, the Adafruit 1391. This is a two-button
RF remote that will transmit a signal at 315 MHz. The second part is the Adafruit 1097, a
four-pin toggle type receiver attached to the I/O board that will capture the signals from a
remote at 315 MHz and turn on and off the respective pins. We will have the first button
control whether the microphone is recording, and the second button will control the mode
in which the device would be currently operating. We will also have buttons on the device
itself that will allow for the device to be reset and turned on/off. Table 13 shows a full
summary of all of the parts that we have chosen for our project and their cost.

Table 13. Summary of Parts and Total Cost.

Component Part Selected Cost
COM NVIDIA Jetson Nano $ 99.00
FPGA Cyclone IV – EP4CE22E22C8N $ 35.00

Display Sceptre E205W-16003S $ 59.00
Sound System ‘’ Included with display
Microphone Adafruit SPH0645LM4H $ 6.95
Controller Adafruit 1391 and 1097 $ 11.90
Total Cost

$ 211.85

Page 69
 Group 14 Final Report

4. Related Standards and Design Constraints

In this section, we will discuss standards and design constraints that may pertain to our
project. The first part of this section will cover a wide range of standards from wireless
communication standards to serial communication standards. The second part will cover
the design constraints from aspects such as economic impact to sustainability. We will start
describing the standards that can be featured on our device for wireless connectivity,
programming languages, power supply, and serial communication protocols. Then we will
proceed to discuss the different constraints that the device will face based on the chosen
hospital setting such as environmental, economic, and health constraints.

4.1 Related Standards

4.1.1 Wireless Communication Standards
Wireless communications empower any electrical device with the ability to communicate
between different devices and/or access to different variety of products such as a
smartphone trying to access Facebook over the Internet using Wi-Fi connectivity. As stated
before, our device requires some form of wireless connectivity to execute certain
functionalities. This can enhance the user experience plus gives more utility to the device
as it may access a wide range of external functionalities that pertain to language
translations.

4.1.1.1. Wi-Fi Standards

Wireless fidelity, or commonly known as Wi-Fi, is considered a family of radio
technologies that are commonly used in wireless local area networking (WLAN). Wi-Fi
was introduced in 1998 with its base foundation on the IEEE 802.11 family of standard
LAN protocols which cover both the medium access control (MAC) and physical (PHY)
layers. The wireless communication technology allows a user to navigate through the
Internet at broadband speeds with the use of a wireless access point. Wi-Fi is always being
regulated and thoroughly tested by the non-profit organization called the Wi-Fi Alliance
which overviews electrical devices that are “Wi-Fi certified” by passing a series of testing
standards.

This regulation ensures that the user can interconnect between Wi-Fi certified electrical
devices. Due to its ease of use and the extensive use of the Internet, Wi-Fi has become one
of the biggest wireless communication technologies in the market having approximately
580 Wi-Fi integrated circuits chips ship annually. Furthermore, Wi-Fi can be found in a
wide range of devices from Personal Computers (PC) to smartphones. Finally, there are a
wide range of versions of Wi-Fi that are dictated by the IEEE 802.11 standard, specifically
the Physical Layer and MAC, which will further explore in this section.

IEEE 802.11 Physical Layer, based on the Open Systems Interconnection (OSI) model of
the computer networking as seen on Figure 31, is the lowest layer. Composed of direct
hardware transmissions, the physical layer defines the overall means of transmitting raw

Page 70
 Group 14 Final Report

bits. The physical layer provides an interface in which the transmission medium can
transmit bitstreams grouped into code words and converted to a physical signal. The
requirement specifications of frequencies, the line code and electrical connectors are
defined in this layer. Its overall purpose, on the OSI model, is to provide a means of
translation from logical communications requests, provided by the data link layer, to
hardware-specific operations to allow transmission or reception of signals.

IEEE 802.11 MAC, based on the OSI model, is one of the sublayers that belong to the data
link layer, the other one being logical link control (LLC) sublayer. The MAC provides flow
control and multiplexing for the transmission medium that the physical layer employs
which allows for a smooth transition between high-level frames from the LLC sublayer to
the physical layer. Its overall purpose on the OSI model is to translate higher-level frames
into frames that are appropriate for the transmission medium. In addition, it adds control
abstraction so that the upper layers are unaware of the complexities of the physical link
control. However, when it comes to the Ethernet and Wi-Fi, MAC additionally is required
to provide both full and half duplex communications with the addition of error frame
protection.

Figure 31. Organization of the OSI Model.

4.1.1.2. Consumer Infrared Standards

Consumer Infrared (CIR) is a category of electrical devices that can wireless communicate
using the infrared section of the electromagnetic spectrum. It can be found in most common
electrical devices such as remote controls, laptops and PCs. The functionality, performance

Page 71
 Group 14 Final Report

and utility of CIR varies from the protocol being employed since they are not standardized.
This gives the CIR a lot of freedom in functionality as it can serve as a type of command
to the television by remote controls or can be used to navigate through the web by PCs.
CIR devices can bring a plethora of issues due to lack of standardization such as:

● Universal remotes that do not adequately control the target device
● Inability to control more than one device of the same type unit
● The need to own multiple distinct remotes

4.1.1.3 Bluetooth Standard

Developed as a “short-link” radio technology, Bluetooth was created by a group of
engineers from Ericsson Mobile in Lund, Sweden. Another wireless technology that uses
the 2.4GHz to 2.485 GHz ISM bands, Bluetooth is known for data exchange between
electrical devices in a personal area network (PANs) using UHF radio waves. Bluetooth is
one of the most popular wireless technology devices on the market as approximately 920
million units are sold as Bluetooth IC chips annually. It used to be regulated under the
IEEE 802.15.1 Standard, but management move to the Bluetooth Special Interest Group
(SIG) whose main interests is to oversee the development, management of Bluetooth
profiles while protecting their trademarks.

Used primarily for low power consumption, Bluetooth employs a certain profile that
compatible devices are able to interpret for management of the communication and
parameters between the devices. This allows for ease of re-connectivity and wide range of
different applications for devices. This feature allows Bluetooth to be applied to a wide
range of different devices such as wireless headsets, wireless control of electrical devices
such as smartphones, and portable wireless speakers, and wireless streaming of data
between devices between other numerous applications.

4.1.1.4 Zigbee

Zigbee is a low-cost, low-power, low-bit rate communication wireless mesh networks
(WMNs). Developed by the Zigbee Alliance, The Alliance also is in charge of maintaining
and publishing the Zigbee Standard. As seen in Figure 32, its architectural stack is based
on the IEEE 802.15.4 short-range communication standard for low-rate wireless personal
networks (WPANs). While the IEEE 802.15.4 standard provides the physical layer and the
MAC sublayer, Zigbee provides coverage to the upper layers of the stack. Due to its
intended functionality as a low-throughput, low-power, low-cost applications, Zigbee is
much simpler than other wireless protocols such as Bluetooth and Wi-Fi. This simplicity
allows for Zigbee to be used in sensor networks, cyber-physical systems, home automation
and smart buildings.

There are three different types of Zigbee devices which are the Coordinator, the Router,
and the End Devices that are present in every Zigbee network. The Coordinator is the main
device in which its purpose is to create the network and allow other Zigbee devices to join
in. Other tasks are to gather all the data that is being transmitted and assign short addresses
to newly joined devices. The Router works as intermediate devices in which join already

Page 72
 Group 14 Final Report

existing networks and relay packets. Finally, the End Devices which only acquire data and
usually enter sleep mode to save energy. The Zigbee Standard three different network
topologies which are star, mesh and tree topologies which allows different setups for data
transmission between devices.

Figure 32. Zigbee Stack Architecture

4.1.2. Unicode 5.0 Standard

Unicode 5.0 is a universal character encoding standard for characters that can be used on
any computer and transferred internationally. Each character is assigned a specific
numerical value; this value can be compressed into hexadecimal (or octal) bases for ease
of use. There are three encoding forms for ASCII: UTF-32, UTF-16, and UTF-8. The
number associated with each encoding form corresponds to its bit size. Most computers are
preset with UTF-8, which can utilize up to 28 (256) characters, but the extended bit sizes
are required for international use, as certain characters cannot be displayed using UTF-8
alone.

The Basic Multilingual Plane (BMP) comprises the entirety of the UTF-16 encoding form,
which contains the majority of Unicode code points used internationally. The current
standard, Unicode 5.0, contains 99,024 unique characters, with 70,229 characters coming
from East Asian languages alone. The Unicode library is constantly expanding with the
inclusion of many ancient and experimental languages.

To save space, code points are given to diacritics alone, from which multiple diacritics and
a single alphabetic character can be combined into one glyph, for example “a ̈ ̃ ̣”
individually with hex codes [0061 0308 0303 0323] can be combined into the glyph “ä̃”̣.
However, many common characters with diacritics are given their own unique code point.
Although Unicode is a mapping of unique characters, the displayed character may differ
between computers.

Page 73
 Group 14 Final Report

This is due to the use of different fonts and typesets: although the same character may have
the same code point, the letter ‘a’ in Times New Roman, for example, will show up
differently in Wingdings (‘♋’) or MS Mincho (‘a’), but its Unicode code point remains
the same. Likewise, the same code point can be represented in different font sizes: the
character ‘a’ in 12-pt font would have the same code point as a character in 5-pt. (‘a’) and
17-pt. (‘a’) font sizes. Also, within the BMP, over 6,000 unassigned points may be used
for special characters not already in the Unicode library. Another 131,000 unassigned
points within the UTF-32 may also be used. These unused points are often used for logos
or privately used characters commonly used on a specific computer/network [86].

Unicode 5.0 conforms to a variety of standards, including ISO/IEC 6937, 8859, and 8879.
International standards are also covered for Unicode for that country’s respective
contribution to the Unicode library.

4.1.2.1. American Standard Code for Information Interchange (ASCII)

ASCII is a specific substandard of Unicode 5.0 that deals primarily with characters used in
the English language. ASCII was introduced in the Unicode 1.0 and has not changed much
since its implementation. ASCII utilizes the UTF-8 encoding protocol, which enables the
computer to read each character byte-wise. From this, a computer will read a text file saved
as UTF-8 byte-wise. However, when characters not found in the standard ASCII library
are used in a text file, the file will need to be saved in UTF-16 or UTF-32 encodings. The
computer will read these files two or three bytes at a time, respectively. Converting files
from one encoding type to another will display a text file that may seem corrupted but is
actually mis-encoded. ASCII complies with the ISO/IEC 8859 standard.

4.1.3 Python Programming Language Standards

Python is a programming language that is optimized for exploratory code; that is, Python
is useful for benchmarking code and analyzing the state of the GPU, CPU, etc. Although
most operating systems have Python pre-installed, this version of Python is insufficient for
development. Installation of Python and its third-party extensions (such as Pip and
PyTorch) are all implemented through Command Prompt.

Python, like other programming languages such as C and Java, has its own libraries and
syntax. Code written in Python is saved with the “.py” extension and is executed through
Command Prompt with its respective arguments.

4.1.4 Compute Unified Device Architecture (CUDA)

CUDA is a computing platform developed by NVIDIA that allows users to execute
complex and resource-intensive programs on their GPU instead of their CPU. The
utilization of the GPU for these resource-heavy programs instead of the CPU is due to the
contrasting architecture between the two; the GPU is specialized for graphics rendering

Page 74
 Group 14 Final Report

with its high allocation of transistors solely for arithmetic logic units (ALUs) and having a
much smaller cache and control in return.

However, the use of the GPU instead of a CPU via CUDA can only be achieved if the GPU
is a CUDA-enabled device; that is, AMD GPUs and some NVIDIA GPUs do not contain
CUDA cores and will not allow CUDA to run software via those GPUs. The most common
CUDA-enabled GPUs contain either the Kepler, Fermi, or Tesla Architectures.

The CUDA software comes preset with C compatibility for interaction with CUDA,
although there is support for other high-level programming languages such as C++,
Fortran, Java, Python, and directives such as OpenACC.

4.1.5 Hardware Description Language - Verilog Standards

4.1.5.1 HDL

Hardware Description Languages (HDLs) are a type of programming language that allows
us to describe digital systems. Considered to be a Computer Aided Design (CAD) tool, it
allows for designers to create and synthesize modern day digital system. These types of
programming languages are easily read by both humans and machine making code writing
easier on developers and allows for faster execution and translation times. HDLs make up
a huge portion of the tools used to create modern day integrated circuits as they allow
engineers to describe the ever increasingly complex digital circuits being created.

Furthermore, HDL programs are easily debugged with test benches and simulations. These
test modules can be created from the code allowing for developers to save cost and time
when it comes to testing. When the code is ready to be downloaded onto and used in actual
hardware, it is synthesized and then implemented onto the hardware. Synthesizing is the
process in which the code of the HDL program is translated into the logical gates and flip-
flops of the digital circuit it describes.

4.1.5.2 Verilog

Verilog is a widely accepted and used HDL and became an IEEE standard in 2005. Verilog
contains many built-in features for IC development such as logic gates. Furthermore,
Verilog introduces a concept not seen in many programming languages called nets. These
nets allow values to continuously be assigned to them instead of having to call an
assignment for a new variable. Along with nets, Verilog also features classic variables that
software designers are used to.

Designs created in Verilog are made up of modules, much like Object Oriented Programs
are made up of classes. Modules can be instantiated inside of other modules to make use
of the logic inside of them. Furthermore, designs have a set of inputs and outputs that allow
interfacing between other designs connected to them. Verilog brings three different types
of abstraction levels that allow for developers to focus at the Gate level, Behavioral level
and Register-Transfer level.

Page 75
 Group 14 Final Report

The Gate level is characterized as a system described by logical links and timing properties.
In this type of level, we only witness logical values and usable predefined logic primitives
such as AND, OR, XOR gates. The Behavioral level is characterized as a system described
by usage of algorithms. These algorithms are sequential in nature which are a set of
instructions that are executed one after the other. Finally, there is the RTL which is
characterized as a system as a circuit design using data transfers between registers. RTL
design is strictly more focused on exact timing bounds which means certain operations can
be only executed at certain times.

4.1.5.3 System Verilog

System Verilog is another standard based off of the original Verilog standard as well as
several other extensions that were created for Verilog. This extension of the original
standard was created to support the ever increasingly complex designs for digital circuits
as well as making verification much easier. Originally, Verilog did not support verification
and therefore, engineers had to switch between Verilog and a verification language for their
verification process. It was made into IEEE standard 1800 in 2008.

Like Verilog, it is a hardware description language that is used to create, test, and aid in
the implementation of digital circuit designs. System Verilog also allows for use of test
benches that let designers quickly verify their design. Furthermore, System Verilog is
extensible with APIs allowing designers to use the language in a way that works for them.
In Figure 33, we show a standard testing environment of System Verilog Hardware
Description Language. It can be noted in the figure that the testing is done on an expected
scoreboard versus the testing scoreboard for accuracy and performance.

Figure 33. Standard Testing Environment for System Verilog.

4.1.6 Machine Translation Benchmarking Models

There are several algorithms that are used to evaluate the performance of a certain trained
machine translator. Although these metrics are not standardized, the overall algorithm used

Page 76
 Group 14 Final Report

in the production of these scores are widely accepted in the computer science community.
In the benchmarking algorithms discussed here, the scores are given between 0 and 1
which, when used as the power of 10, gives the overall percent accuracy of the machine
translation model.

Some scores utilize negative scores (such as in the range from -1 to 1); here, the negative
sign is used solely to identify a high dissimilarity between the predicted sentence and the
actual sentence. The negative sign is removed to calculate the numerical percent
(in)accuracy. Although each of these metrics are universally applied to any form of
machine translation (gene sequencing, for example), these scores can also be readily
applied to neural machine translation for language processing.

4.1.6.1. Bi-Lingual Evaluation Study (BLEU) Score

The BLEU score is a predictive score that is primarily used in machine translation models
for language processing. The calculation of this score is the simplest of the models
described here. The metric for this model differs with regard to how many words are
considered as one parameter: one-word metrics are called unigram, etc. In this model, there
are two general methods of determining the score. For a unigram metric, there is the
standard precision; here, the words that are provided in a candidate sentence are matched
to reference sentences. If one word in the candidate sentence is matched to a word in the
reference sentence in the same position in their sentences, it is considered a match. This
can be extended to bigrams and trigrams, in which a pair or trio of words, respectively, are
used as the matching parameter between a candidate sentence and a reference sentence.

The overall standard unigram precision score is calculated as the number of matches
divided by the total number of words in the candidate sentence. However, with these
parameters, the candidate sentence “the the the the the the the” and the reference sentence
“the cat is on the mat” would produce a 7/7 (100%) match. To avoid this false-positive
score generated from a “high-precision” but low-accuracy sentence, a modified unigram
precision is created; here, if one word is matched between the candidate and reference
sentences, that specific word in the reference sentence cannot be used again. In this case,
the two previous sentences would result in a modified unigram precision of 2/7 (28.57%).

4.1.6.2. Prediction Performance (PRED) Score

PRED is a collection of different performance metrics, but the overall score is a log
likelihood of the produced translation being the correct translation through a specific
machine translator. Within the PRED score are the regression factor (R2), normalized root-
mean-square error (NRMSE), and the Matthews correlation coefficient (MCC). For the
OpenNMT model, there are three different PRED scores produced; the PRED SCORE is
the overall log predictive score of the generated sentence. The PRED AVG SCORE is the
average log predictive score of each word in the sentence; here, the number of words in the
sentence influence this score. The PRED PPL is the perplexity of the sentence. Here, the
perplexity is defined as the exponential of the negative PRED AVG SCORE.

Page 77
 Group 14 Final Report

R2 is a measurement of the prediction accuracy of the MT model with one word in the
sentence altered. Because of this dependence on word count within a sentence, this metric
is biased toward word count; using the R2 metric in higher word-count sentences will
ultimately result in a lower PRED score. There is an alternative R2 method, called “adjusted
R2”, which uses the word count as a parameter in calculating the overall PRED score; here,
the PRED score can be calculated without a word-count bias. This value ranges between 0
and 1, which correlates to a log score of 0 to 100. The calculation of the R2 value is shown
in Figure 34. The calculation of the adjusted R2 value is shown in Figure 35. In this figure,
n refers to the number of words being evaluated, and p refers to the number of parameters
having been evaluated.

Figure 34. Calculation of the Regression Factor.

Figure 35. Calculation of the Adjusted Regression Factor.

NRMSE is another parameter which takes the root-mean-square of the differences between
the observed and simulated values. The simulated and observed values are compared for
each word (or lack of a word), and these values are summated; the summation is then
modified with the root-mean-square process to produce the value between 0 and 1.

The general calculation for the NRMSE is shown in Figure 36. Here, N refers to the number
of terms being compared (word count in a sentence); S and O correspond to the simulated
and observed values, respectively; nval refers to a normalized value; this value can
correspond either to the range (Omax - Omin) or the standard deviation of the observed values.

Figure 36. Calculation of the Normalized Root-Means-Squared Error.

MCC is related to the Χ2 (chi-squared) calculation in its production of positive similarity
and negative similarity (dissimilarity). Dissimilarity is indicated using a negative sign as
explained earlier. Since this metric weighs each entry as a positive or negative correlation,
the detection of false positive and false negative results is possible. The calculation of the
MCC in general is shown below in Figure 37. In this case, Χ2 is the chi-squared value of
the data set, and n is the number of observations.

Figure 37. Calculation of the Matthews Correlation Coefficient.

Page 78
 Group 14 Final Report

4.1.6.3. Recall-Oriented Understudy for Gisting Evaluation (ROUGE)
Score

ROUGE is another metric system that is primarily used for the evaluation of language
processing machine translation models. Within this package are five different metrics. The
first metric, ROUGE-N, is a replica of the BLEU system; here, the ‘N’ stands for the
number of grams being evaluated in the system, so ROUGE-1 refers to unigram
measurements and ROUGE-2 refers to digram measurements, and so on.

ROUGE-L awards the highest score to the longest (here, ‘L’ stands for “longest”) sequence
of matched words between the candidate and reference sentences. ROUGE-L differs from
ROGUE-N in that the longest matching sequence can be found in any position of the
sentence. ROUGE-L also only seeks the sequence in which the words appear; that is, this
sequence can be separated throughout the sentence yet still be considered a sequence.
ROUGE-W is an extension of ROUGE-L. In the comparison between two sentences, the
sentence with the sequence of words consecutively is awarded a higher weight (here, the
‘W’ stands for “weight”) than another sequence of words that is dispersed throughout the
sentence.

ROUGE-S is the measurement of skip-bigram co-occurrences. A skip-bigram is a pair of
words in a sentence; the second word is always after the first word in this bigram, but these
two words need not be consecutive in the sentence. For example, in the sentence “I have
two dogs,” the skip-bigrams would be “I-have,” “I-two,” “I-dogs,” “have-two,” “have-
dogs,” and “two-dogs.” Using this as a reference sentence, ROUGE-S would award the
highest score to the candidate sentence with the highest amount of these skip-bigrams co-
occurring between it and the reference sentence.

ROUGE-SU is an extension of ROUGE-S with the addition of a unigram-weight. This
avoids the false-negative awarding of a reference and candidate sentence where one
sentence is the reverse-word-order of the other. This unigram weight is different than the
ROUGE-1 or the BLEU-1 scores in that the matched words need not have the same position
in the sentence. Since “I have a dog” and “dog a have I” would receive nothing in the
ROUGE-S score, for example, this pair would still receive a 1 (100%) for the unigram
score, since all the words in the reference appear in the candidate.

In our benchmarking of our OpenNMT model, we plan to use a combination of each of
these metric systems to evaluate the accuracy of our model. Note that since these metrics
are language- and algorithm-independent, we can apply these metrics not only to our
English-to-Spanish translation model but also to our English-to-English Gloss translation
model.

4.1.7 Privacy and Data Storage Standards

For the transmission and processing of data in a medical setting, there are national
standards in place to maintain the confidentiality and protection of patients’ rights.
Although different countries may have laws under different names, each country’s data

Page 79
 Group 14 Final Report

privacy laws follow the same principle of regulating the transmission and sharing of
confidential patient data.

4.1.7.1 Health Insurance Portability and Accountability Act (HIPAA)

The HIPAA standard is the US standard for maintaining confidentiality in medical settings.
This standard is separated into two clauses. One clause called the “HIPAA Security Rule”
regulates the susceptibility of unauthorized individuals to obtain private health information
and the measures taken by the original data holder to prevent such a breach. In conforming
to the HIPAA Security Rule, those with original possession of such private health
information are obligated to evaluate potential data breach risks in the information that they
choose to transmit or store. For long-term protection of this data, personnel are hired by
organizations to perform regular data assessments. Staff who produce or come in contact
with this private health information are informed and trained on proper data storage and
transmission protocols to prevent or minimize data loss.

The other clause called the “HIPAA Privacy Rule,” however, addresses the balance
between meaningful use of private health information and how and when this private health
information is acquired. Explained in this clause indicates that any form of information that
could identify the following are not permitted to be shared: mental or physical state of a
patient, whether past, present, or future (prognosis); schedule or access to health care; and
payment methods toward health care (insurance).

These potentially identifying parameters include full name and birthdate, social security
number, street address, and sex/race/ethnicity. Note that within these parameters, giving
sex/race/ethnicity, birthdate, or parts of a name are individually not considered identifiable
parameters; it is, however, the combination of two or more of these parameters that can
potentially identify an individual.

For the compliance of our design with the HIPAA standards, we intend not to store any
conversations. During the training of our NMT model, the data that we use as training may
include examples of private conversations. This data will be scrutinized to ensure that no
potentially identifiable information is contained within these data sets.

4.1.8 Serial Communication Standards

Serial communication is the means of transferring data between different components in a
system. In some instances, the data can consist of one line such as power on/power off or
can consist of a bus (such as file transfers). Serial communication is typically
communication via hardwiring; communication via electromagnetic waves is considered
“wireless” communication, explained elsewhere.

Page 80
 Group 14 Final Report

4.1.8.1 Inter-Integrated Circuit (I2C) Standard

The I2C bus specification is registered under the UM10204 standard. This method of serial
communication was developed by NXP Semiconductors for bidirectional 2-wire bus
communication between integrated circuits. The two wires consist of a serial data line
(SDA) and a serial clock line (SCL). There are five different modes within the I2C
standard. The summary of the transfer speeds and the directionality of each mode is
visualized in Table 14.

Table 14. Summary of the Various I2C Standard Data Transfer Speeds.

Data Transfer Mode Maximum Transmission Speed Directionality

Standard Mode 100 Kbps Bidirectional

Fast Mode 400 Kbps Bidirectional

Fast Mode Plus 1 Mbps Bidirectional

High Speed Mode 3.4 Mbps Bidirectional

Ultra Fast Mode 5 Mbps Unidirectional

Additionally, The I2C has a bus topology which provides flexibility by allowing the
addition of extra peripherals to a single bus. In order for the topology to work, every device
that uses an I2C unique 7-bit address so there are differences between each device. The
I2C bus can be seen in Figure 38A.

I2C follows a master-slave operation in which the master device starts the transmissions
that allows the master to read from and write to other devices. Moreover, the master device
is also in charge of driving the clock signal which is necessary for timing the start and stop
signal. The signals are transmitted during intervals that transmissions of data bits do not
occur such that the signals will not get mixed. The I2C master-slave communication is
shown in Figure 38B with the provided example.

Notice that ACK is the shorthand for “acknowledgement” which is an indication pin the
signal was received successfully. This notation is used by both master and slave devices.
The master will start by sending a signal to signify reading or writing to the target device
using the unique I2C address stored inside the target device. An ACK signal will be sent
back to the master if the device was able to receive the signal successfully. Afterwards, the
data is transmitted or received, and the communication is stopped once the master sends
the “stop” signal.

Page 81
 Group 14 Final Report

Figure 38A. The I2C Bus.

Figure 38B. Master-Slave I2C Communication.

4.1.8.2 Serial Peripheral Interface (SPI)

The serial peripheral interface is a four-wire serial communication method. There is no
formal standard for this type of bus; this method was developed by Motorola in the 1980s
and became widely used in the digital communication area. Since there is no formal
standard for this type of communication, there have been several different implementations
and designs utilizing this communication protocol, such as JTAG, UEXT, and Secure
Digital. This communication protocol employs a simple Master-Slave scheme in which the
master communicates with one or more devices just like I2C.

Since there are two wires (one for receiving and the other for transmitting), the protocol is
considered to be a full duplex. The signal schemed by the protocol is synchronous in nature,
since the master generates the clock signal and transmits it to the external devices. In order
to synchronously communicate with a single device at a time and not allow
miscommunication between devices, the master uses a fourth wire called the chip select
(CS) signal. If the CS signal is high, the master establishes a communication path with a
device. When the CS is low, a high impedance is placed by the external device to disable
communication. This mechanism is also used to ensure that the Master is only
communicating with a single external device at a time. In total SPI communication protocol
offers four wires: Serial Data Out, Serial Data In, Serial Clock and Chip Select.

However, this may not be the case if there is a master connected with a single device. In
this case, a 3-pin SPI can be implemented instead. Figure 39 shows a normal configuration
of master and external device using SPI communication. Noticed that, as previously stated,

Page 82
 Group 14 Final Report

since SPI does not have a formal standard the Serial Data Out and Serial Data In pins have
different names. In this case the names are MOSI and MISO, which means Master Output
Slave Input and Master Input Slave Output, respectively.

Figure 39. SPI Communication Setup.

The communication scheme works as follows: the SPI uses two shift registers (SRs), one
provided by the master and the other by the target external device. Depending on the
number of bits by the two shift registers (usually 8-bit), the master’s SR will exchange its
contents with the target external device’s SR bit by bit an n-bit number of times. To
maintain stability, a D flip-flop is employed to latch the current MSB bit. This mechanism
is known as latch/shift actions since we latch the bit being transmitted and then shift the bit
between the SRs. Four modes of operation are defined by the SPI, which are 0/0, 0/1, 1/0,
1/1. These modes detail the usage of clock signal (clock polarity) and trigger event for
latching and shifting (clock phase). The format used is polarity/phase and is explain in
detail in Figure 40.

Figure 40. SPI Modes of Operations.

4.1.8.3 Universal Asynchronous Receiver/Transmitter (UART)
Standard

The UART is an asynchronous serial communication standard in the sense that the
transmitter and the receiver each has its own clock signal. This communication protocol is
considered full-duplex in that data can be sent and received simultaneously through the use
of a UART-enabled communication using two wires to allow bidirectional simultaneous
transmission. The protocol also allows half-duplex by using one wire to transmit data in
one direction. Through the use of a FIFO and sending and receiving simultaneously, the

Page 83
 Group 14 Final Report

UART is analogous to a bidirectional roadway, where the flow of one set of traffic does
not impede the flow of traffic moving in the opposite direction.

The UART communication protocol has a transmission pattern that is shown in Figure 41.
The scheme, unlike the other serial communication protocol, is simple but effective. It uses
a signal line that represents different modes of the protocol. When the signal is high, it
means the transmission is idle. When the signal, after being idle for a while, drops low, this
is called the Start Bit in which the UART transmission starts to communicate. After that,
each bit transmitted will be considered to be data bits that are sent from the LSB first to the
MSB last. Then, once the signal is switched to high again for a long time, called the Stop
Bit, this signals the transmission to stop.

Figure 41. UART Communication Scheme

This protocol also behaves in a FIFO or queue data structure; that is, the first set of data to
be sent through the UART is also the first set of data to be sent out. FIFO is analogous to
a drain or a funnel, where the first amount of liquid inserted is the first to be removed
through the orifice at the bottom. The FIFO structure differs from the stack architecture,
which is LIFO (last-in, first-out).

4.1.8.4 Inter-Integrated Circuit Sound (I2S) Standard

The I2S bus standard is an extension of the I2C bus standard mentioned previously. This
I2S bus consists of three lines: a continuous serial clock (SCK), a word-select line (WS),
and a serial data line (SD). There are three different configurations regarding I2S. Either
the transmitter, the receiver, or a controller is the master; in any case, there is only one
master, with the other components being the slave. In each case, the transmitter sends data
to the receiver, but the determination of the WS and SCK lines is determined by the master.
The simplified block diagram for each case is shown in Figure 42.

The word select line has a high and low level; the high level indicates transfer via one
channel, while the low level indicates transfer via the other channel. The SCK frequency
is determined by the master component and transfers this frequency to the slave
component.

Page 84
 Group 14 Final Report

Figure 42. Different Configurations for the I2S Protocol.

4.1.8.5 Universal Serial Bus (USB) Standards

The universal serial bus standards define a serial communication protocol that enables
interconnect between various devices, communication between them, and power supply
from one device to another. This specification is attributed to a number of companies,
including the Hewlett-Packard Company, Intel Corp., Microsoft Corp., Renesas Corp, ST-
Ericsson, and Texas Instruments. The various revisions of the USB standard define a series
of different connectors and connection speeds, with each revision providing a more well-
designed, faster connector. The various USB speeds and their date of documentation are
explained in Table 15.

The implementation of the USB as a standard for interconnection between devices is meant
for a simple yet universal communication protocol. The use of USB in the personal
computer realm was intended for the “ease-of-use for PC peripheral expansion,” low-cost
implementation, and universal availability for both device manufacturers and consumers.

Table 15. Summary of Major USB Revisions.

Year Implemented Data Transfer Speed

USB 1.1 Sept. 1998 12 Mbps

USB 2.0 April 2000 480 Mbps

USB 3.0 Nov. 2008 5 Gbps

USB 3.1 July 2013 10 Gbps

USB4 Aug. 2019 40 Gbps

Out of the USB hardware models, the project will use USB 3.0. One of the main reasons
is because the Jetson Nano already provides USB 3.0 ports that can transmit data and
charge the FPGA. USB 3.0 provides differential pairs which provide a full-duplex
communication between the COM and the FPGA. Additionally, we will use the type-A

Page 85
 Group 14 Final Report

connectors as we need to deliver both power to the FPGA and data transmissions between
devices.

4.1.9 Audio/Video Connection Protocols

The process of sending a display from one device to another is achieved through some form
of a cable. There are a wide variety of these cables: some of these cables are developed to
be proprietary to a specific company, while most are developed for universal connectivity,
similar to USB. In fact, while USB acts as a serial communication protocol, some displays
can actually communicate using this protocol.

4.1.9.1 High Definition Multimedia Interface (HDMI)

High Definition Multimedia Interface, or popularly known as HDMI, is currently the most
widely accepted and most versatile form of display communication. This cable type was
introduced in 2002 and was developed by several major electronics companies, including
Sony and Toshiba. As most displays are moving towards integrated visual displays with
audio, the popularity of HDMI can be attributed to this ability to transfer both video and
audio simultaneously. Since both the audio and video can be transmitted through the HDMI
cable at the same time, many audiovisual events can be timed to occur at the same time,
allowing users to watch videos with sound or follow along with a MIDI player on the
screen.

The initial version of HDMI, HDMI 1.0, was introduced in 2002 as an uncompressed, fully
digital audio and video connector. At its inception, the HDMI 1.0 could achieve bitrates of
up to 4.9 Gbps. The first update of the HDMI was the 1.1 version in 2004, which added
support for DVD audio. The 1.2 and 1.2a updates in 2005 provided support for computers,
which greatly contributed to the popularity of this protocol. The 1.3 version in 2006
increased the bandwidth to 10.2 Gbps and allowed for the use of “Deep Color” 16-bit
channels. This version was also able to develop reliable synchronization between audio
and video, greatly reducing the instances of video lag. The later updates continued to
expand upon the resolution and audio capabilities, especially in keeping up with the major
technologies; for example, the current HDMI version supports 4K x 2K displays and has a
bandwidth of 18 Gbps.

4.1.9.2 Digital Video Interface (DVI)

Digital Video Interface (DVI) is another form of digital display connection that was
introduced in 1999. However, unlike HDMI, which is able to transmit both audio and
video, DVI is a video-only transmission protocol. This connector was neglected due to the
introduction of the HDMI cable shortly after the inception of the DVI.

4.1.9.3 Video Graphics Array (VGA)

Video Graphics Array (VGA) is an analog interface that was introduced in 1987. Although
there were other digital connectors before this such as CGA and EGA, VGA provided a

Page 86
 Group 14 Final Report

much higher resolution of 640 x 480 and was able to show up to 256 colors. Although this
form of connector has been quickly replaced by digital connectors that can provide much
faster bandwidths and resolutions (see HDMI), many computers still include VGA output
as a “standard definition” connection, as opposed to a “high definition” connection like
DVI or HDMI.

4.2 Design Constraints

This section describes the constraints that will bound our project into being realistic in
design and implementation. These design constraints are formulated based on the
requirement specifications of this project, on the client’s need, and outside constraints that
we may face as we implement the device. Having the use of realistic constraints provides
us having a direct and throughout understanding of exactly what to focus on. These
constraints aim to improve society and the quality of life by applying constraint factors
such as:

• Economic
• Time
• Manufacturability
• Sustainability
• Health
• Social
• Political
• Moral
• Ethical

4.2.1 Economic and Time Constraints

Our project’s estimated budget is around $1100. Since no financial sponsorship was obtain
from an outside source, all the members had to five an equal amount of $275. The goal
overall was to aim for a COM that was not greater than $500 and an FPGA that was not
greater than $200 but with the mindset of having fast performance and accuracy of
delivering translations. This allows to still pick average quality external peripheral
components such as microphones, speakers, buttons and the LCD. An advantage that we
possessed was the availability of the HDMI port provided by the COM which enabled us
to use an LCD Monitor that had a high refresh rate. This allows for a smooth transition
between ASL models. Even with the budget constraint, we are facing, if this product is
implemented successfully, places that require human translations would spend less money
on translations since human translator require a lot of high upkeep to keep the services.
Our device comes with support of 128 different languages plus ASL translations that would
be easy to assemble and deploy.

Additionally, the court cases against poor services provided, by establishments against the
deaf people, could potentially decrease since our device can produce real-time accurate
translations and display accurate ASL models. This can potentially save a lot of money for

Page 87
 Group 14 Final Report

the establishments as court cases against poor services, for the deaf people, have reached
around $70,000. Moreover, its ease of use could make it more marketable to other settings
outside of schools and hospitals. Finally, most of the components can be bought in easy to
reach websites that allows for assembly of such device with ease by following our user’s
manual.

Time is a big constraint that our project currently faces and will keep facing. The time
schedule for project completion is divided into two sections; Senior Design 1 and Senior
Design 2. Senior Design 1 focuses more on the development, design and documentation of
our project whereas Senior Design 2 focuses on the implementation of the device. The time
span of our project is from August 2019 to April 2020, which is basically 8 months. This
short amount of time damages the performance of our machine translation, as we are
training an NMT to translate from speech to ASL. This training requires a lot of dedication
and time as good machine translations usually take large amounts of data sets. To meet the
requirements set in this document a milestone table has been set and can be found in section
8 of this document.

4.2.2 Manufacturability and Sustainability Constraints

Manufacturability, the art of design devices for ease-of-construction and mass-production,
restricts the selection of the components being used in the device. Manufacturing
constraints affect us in the sense of the limited services that are provided to us. Since we
are a self-funded project, most components will not be of the highest quality which shortens
the range of services that we can potentially use. Designers should always consider certain
functions of manufacturing when developing a device such as assembly, fabrication,
testing, acquisition, shipping and repair of the components being used. Sustainability is the
art of durability and maintenance of the device. This type of constraints narrows down the
component selection even further since cheap components are not as durable as the high-
quality components. Ironically, high-quality component may last longer but their
maintenance is more expensive than cheap components. Our project heavily benefits from
having high quality components that are manufacturable, since high manufacturability
brings high sustainability in the maintenance area.

One of the main goals was to deliver real-time accurate machine translations for languages
and ASL and since we needed to deliver high quality translations, we based our component
selection with high quality components that were manufacturable and preferably cheap to
buy. Following the requirement specifications found in this document, we required high
quality microphone components since we need the speech translation to acquire the audio
accurately. Additionally, we needed to ensure that, if the microphone ever malfunctioned,
it could be easily replaceable. The same mindset for selecting the speaker and display was
used. A more detailed selection process was discussed in section 3 in which
manufacturability and sustainability were in mind when selecting these components.
However, when selecting the COM and the FPGA we faced manufacturability constraints
since they were expensive even the midrange-quality components. To ensure the
sustainability of these expensive devices, we decided that an electrical safe environment
had to be used to minimize potential electrical damage that can be done to the boards. This

Page 88
 Group 14 Final Report

can lead to the malfunction of the device and a new one would have to be bought which
would cause the expenses of the project to expand. Furthermore, we bought most of the
components from third-party vendors that possess fast shipping and large quantities of the
components used.

4.2.3 Moral and Ethical Constraints

Our project involves the automation of the occupation of human-performed language
interpretation. In this society of the constant evolution of technology and the requirement
of automation for the purposes of streamlining, improving, and cost-reducing, there is
always the question of whether the implication of this automated technology is truly
beneficial to society; for while a new technology may improve the lives of those using the
technology and those developing it, this new technology may also negatively affect others.

4.2.3.1 Automation Displacing Human Labor

One aspect of ethicality our group discussed was the potential destruction of others’ current
occupations. Since we are developing an automated language translation machine, one
could assert that we are effectively removing the demand for organic language
interpretation done by humans. We counter this with the point that natural language
translation is still in its developmental stages due to the complexity not only of individual
languages alone but also the complexity of attempting to describe a sentence in one
language in the language of another. We also counter this claim with the notion that because
this concept of natural language translation is still being developed, the demand for
language interpreters has not diminished but rather shifted. This shift is marked by
language interpreters translating in their field, e.g. during press conferences, broadcasting,
etc. to collaborating with scientists and engineers for the continued research and application
of machine translation and natural language processing.

This concept of the balance of human versus machine labor is described by Pramod
Khargonekar and Meera Sampath in four tiers. These tiers start at level 0 as the most
unethical level and progress to level 3 as the most ethical tier.

In level 0, called the “cost-focused automation,” ethics are completely ignored, and human
labor is completely replaced by automation for the sole purpose of “economic gain.” This
approach to automation is considered not only unethical but also potentially fatal to the
economy, since this displacement of labor would lead to a rise in unemployment and the
decrease in demand for goods and services.

In level 1, called the “performance-driven automation,” human labor is not completely
forfeited for robotic automation. Tasks that would be too labor-intensive, time-consuming,
or monotonous would be given to robots, while tasks too complicated or dynamic for
robotic programming would be sustained by human labor. While this level of automation
still maintains a certain level of human labor, this approach to automation is desired for the
expedition and streamlining of labor without enhancing human labor in any way.

Page 89
 Group 14 Final Report

In level 2, called “worker-centered automation,” human labor is left completely alone for
a period of time. Since this labor is performed by humans, the humanistic concepts of
finding more efficient (or lazier) methods to achieve the same results to the same quality
can still be done. Conversely, in levels 0 and 1, since the labor is immediately given to
robots without consideration on how the process could be streamlined, this concept of
pathfinding would be delegated to the ones working on the machines alone. Since robots
are usually programmed to perform a specific set of tasks without room for improvement
or intelligence, these robots would never consider improving their current job. However,
for level 2, once this task has been considered to be well-developed and streamlined, the
task is then given to a robot that would perform the same task in the same way as the
streamlined human method. Since human labor is left to flourish for a longer period of time
than the lower levels, this approach to automation is considered more ethical; but since the
job is still immediately taken away from humans and given to machines, the result is still
as unethical as the lower levels.

In level 3, called “socially responsible automation,” automation is created for the sole
purpose of streamlining work done through human labor. This form of automation can also
be thought of as making machinery that is operated by humans and teaching them how to
use it effectively. This level is considered the most ethical since the creation of automation
not only streamlines the production of labor but also sustains the demand for human labor
concurrently.

This tier system proposed by Khargonekar and Sampath can be ambiguous depending on
the perspective on whose labor is being defined. This tier system only observes the final
result of automation but does not consider the development, implementation, improvement,
and evaluation of the automation system. Our device would be considered at level 0 or 1
from the perspective of the human language translator but level 3 from the perspective of
the potential users of our device. Note that despite the eventual elimination of human
language interpretation, those who used to be language interpreters would continue to work
alongside engineers in the further development and refinement of our language translation
machine.

If we take the example of a clinic visit that requires a translator, the language translator
would be replaced by our device entirely, and the demand for language interpreters for
clinic visits would cease. In this case, our device would be considered level 0 or level 1.
However, medical providers and staff would now have a new tool that would help them in
their provision of medical care. This new staff would need to be trained on how to use the
system, but their jobs would not be replaced entirely by our device; thus, our device could
be considered level 3.

4.2.4 Environmental, Health and Safety Constraints

When designing new electrical devices, there is a lot of environmental, health and safety
concerns when operating such devices. Since it can damage either the environment or even
the user. To avoid this, we need to follow the constraints that ensures the device will not
be harmful to anything. Our device will market to hospitals and schools, in such

Page 90
 Group 14 Final Report

establishments a wide range of ages will be exposed to our device. We have to ensure that
device, even if it malfunctions, does not damage the surrounding in any way. Additionally,
even if it works as intended, another functionality that we have to ensure is that the display
does not hurt the eyes of the viewer. In this section, we will discuss the RoHS complaint
parts, and the potential harmful effects of the backup battery, and the display.

Restriction of Hazardous Substances, or RoHS for short, was developed by the European
Union and restrictions specific materials that are hazardous to the environment and that can
be found in electrical and electronic products. The substances currently ban are lead,
mercury, cadmium, hexavalent chromium, polybrominated biphenyls and polybrominated
diphenyl ethers. These substances are harmful to the environment and pollute landfills.
They are also dangerous due to occupational exposure during manufacturing and disposal.
We had to select electrical components that were RoHS compliant. However, the providers
that we purchased from were kind enough to label which components were RoHS
complaint before the purchase of said component. This made the selection process easier.

The use of Lithium-Polymer batteries has been the cause of a lot recent commotion, since
a brand line of smartphones developed by Samsung were imploding on the pocket of users.
To avoid this, we need to thoroughly follow and apply the benchmarks imposed by the
power standards on battery. Additionally, we will need to safeguard against current
leakages that can cause malfunctioning of the system to avoid any unforeseeable
happenings with the device. Most providers document a way to safely guard against the
leakages. Finally, the monitor cannot hurt the eyes of the viewer since the idea is for the
audience to see the ASL translation. A normal brightness rate with a high refresh rate
ensures that the viewer will have no problems in viewing the video.

4.2.5 Social and Political Constraints

The project has a lot of implications in the Social and Political constraints aspects. An
obstacle that we need to answer is how our device will stand out from the rest while also
using cloud services provided by the competition. As started early in the document, no
machine translator has done ASL translations using image processing techniques or
anything at all. Many establishments hiring human translators have become the norm for
too long and the implementation of our device can bring the end of a job that is highly used
in society overall. Another question that is imposed by these constraints is the process of
delivery fast accurate translations without facing latency issues.

The main purpose of our system is to deliver accurate and quality service to the deaf people.
Competitors such as Google Translate and Amazon Translate do not provide translation
services for the deaf people. Human translators are still being employed to do this type of
task. However, a high upkeep is required to maintain the human translator and most of
them work online in which a limited wireless coverage or low internet speed (since
streaming of a video is required) can lead to mistranslations between two people. In
hospitals and schools, this can bring a lot of issues.

Page 91
 Group 14 Final Report

In order to promote and market our device, we use high-quality cost-effective components
which allows the overall cost of the device to be lower than the upkeep required by the
human translators. Additionally, since we are also offering normal language translations
plus the ASL translation for deaf people, establishments will find our product more
affordable and attractive to purchase. Finally, we need to consider the ease of use that the
device will require. This is required because we want the establishments such as schools
and hospitals to familiarize fast with the device so that usage can be quickly for real time
events such as emergencies. Therefore, the installation and GUI of the device with its
modes and functionalities should be easy to explain and user-friendly. This additional
feature can make our product become more attractive.

Political constrains can apply to our device in the area of human replacement. Since we are
marketing the device as a way to obtain an affordable translator that requires a one-time
buy instead of a steady maintenance, the device will be compared in terms of performance
to a human translator. This means that we need the device to translate in real-time and
accurate. Additionally, the flow of displaying the ASL models must match, if any, the way
human ASL translators do sign language. Machine translations can be deployed for
diplomatic use which would require for the device to support a wide range of languages
for translations. For this reason, our device can use cloud services to obtain a fast-accurate
translation. Moreover, using machines for translations can benefit the government and even
the military with concerns over biasness.

5. Project Hardware Design Details

5.1 Initial Project Design and Component Diagrams

When we first started to design our project, we were overly optimistic with the capabilities
of the technology we were using and with our programming skills. Our first idea was to
use a GPU as the main brain of the system and have all the components connected to it. It
would run both the trained NMT model and the graphical rendering for the product.
Furthermore, we expected it to take the inputs from a microphone, remotes, and output the
animations and speech.

After taking a harder look at the problem that we were trying to accomplish and the
technology we were trying to use, we decided that we would need more than just a single
GPU. Not only would a GPU not be able to handle everything that we were throwing at it,
but programming everything in CUDA would be a steep learning curve. Therefore, we
decided to change the design of the project to use both an FPGA and a GPU to complete
this task. The FPGA would oversee running the NMT model and outputting the results on
to the display, while the GPU would focus on the peripherals and creating the sign language
graphics. Figure 43 shows the initial hardware block diagram. In this diagram, we also
included which personnel of our group will work on which aspect of the project. Gustavo
will work on the GPU. Jared will work on the FPGA. Michael will be working on the
Stokoe notation and graphics rendering. Luis will be working on the PSU and the NMT.
Any other aspect of the project will be work upon by all members of the group.

Page 92
 Group 14 Final Report

Figure 43. Hardware Block Diagram of the Second Initial Project Design.

This design was always extremely optimistic for our knowledge levels in the technology
we chose to work with, mostly because we were going to try to deploy an NMT model to
an FPGA board. Deploying python code into FPGA boards is something that is just now
starting to emerge in the world of research and implementing an OpenNMT model created
in python has never been attempted before.

Therefore, we would be completely on our own in the process of deploying our model to
our system. Furthermore, we would still have to learn how to learn in CUDA to be able to
use the GPU as the hub of the design and learn to make a GPU take inputs from a
microphone and other peripherals. Finally, The GPU would also have to be running an
operating system that could run some sort of game engine, like unity, to be able to generate
and display the sign language graphical models. Despite doing research, we were unable
to find instances of this type of deployment being done and therefore were forced to
abandon the idea in the pursuit of a more feasible design.

Page 93
 Group 14 Final Report

After we had given it more though, we settled on the design of having a COM unit as the
brain of the project and an FPGA I/O board to handle the audio recording and button
management.

With this design, we had originally planned on using a mobile battery to power the system
so that we could place the system on a mobile cart. However, we ran into two issues that
prevented us from using a rechargeable battery system. The first was that the Jetson would
occasionally go into sleep mode with the user telling the system to shut off. We found that
this was caused by the lack of a consistent voltage and amperage from the battery pack.

While this issue could have possibly been avoided by purchasing a higher quality battery
pack, it would have stretched the budget thin. Furthermore, this problem would make the
system extremely difficult to use, as the user would then have to stop their conversation
and restore power to the system.

The second issue that we encountered while trying to use a battery pack was finding a
method of powering the display that we had chosen for the system. We had chosen to
purchase a 20-inch computer monitor that came preinstalled with speakers. This was cost
effective as it limited the number of components that we were required to buy and also
provided the users with a large, high quality image.

However, since we had chosen a full-size monitor, it has to be powered with 100 - 240 V
AC, with a maximum power consumption of 30W. This type of power draw is only
sustainable through an outlet plug and so we were resigned to power the system via a PSU
that plugged into a wall socket.

5.2 Power Supply Design

In this section, we will talk about the different power supply requirements along with the
final power supply of the system. The data gathered in this section is mostly based on the
datasheets of each major component of the system plus the selected power supply system.
Table 16 shows the overall power requirements for the major components in our design.

On the DE0-Nano development board for the Altera Cyclone IV FPGA, all of the voltage
inputs required for proper functionality of the FPGA are supplied entirely from a single
USB 3.0 power input. Given that the DE0-Nano board uses a USB 3.0 protocol, a 5V
input voltage is required at up to 900 mA through this pin. From this 5V, 900 mA input,
six different voltages will need to be created to accommodate the various voltage
requirements for the FPGA, including a power supply for the I/O pins and the phased-
locked loop. For the VCCINT and VCCD_PLL input voltages, the input voltage can vary
between 1.0 V and 1.2 V.

Page 94
 Group 14 Final Report

Table 16. Overall Power Requirements.

Device Name Input Voltage Current Power

NVIDIA Jetson
Nano

USB Micro/ Barrel
Jack/ Power Pin

5 V > 4 A > 20 W

Altera Cyclone IV -
EP4CE22E22C8N

VCCINT 1.0-1.2 V 1.5 A 1.8 W

VCCA 2.5 V 150 mA 375 mW

VCCD_PLL 1.0-1.2 V 1.5 A 1.8 W

VCCIO 1.2, 1.5, 1.8,
2.5, 3.0, 3.3 V

150 mA
or 1.5 A

375 mW, 1.8
W, or 4.95

W

Digital MEMS
Microphone -

SPH0645LM4H

3V Pin 3.3 V 600 μA 1.08 mW

RF T4 Receiver -
Adafruit 1097

5V Pin 5 V 0.1 μA 0.5 μW

The overall configuration of this schematic is realized in Figure 44. The schematic will
require the use of linear voltage regulators (LP38500SD-ADJ and LP5900SD-2.5) to
produce the required voltages and corresponding currents while also maintaining that
specific voltage for the I/O peripheral device.

Included with the voltage regulators are the corresponding components such as capacitors
and resistors for proper functionality of the voltage regulator. Also included in the circuit
are Schottky diodes (PMEG2010AEB) to rectify current and prevent current backflow. For
each voltage produced by this circuit, an indicator LED will be used to show that each
voltage is available. There will be four different LEDs shown because we are operating
with the following voltages: 1.2V, 2.5V, 3.3V and 5V. Figure A shows the full power
supply unit schematic.

The power supply for our project consists of an input voltage provided by the power pins
of a USB 3.0 port, denoted as VCC_USB. A typical USB 3.0 port supplies 5 V at up to 900
mA. As the USB is to provide input power and should not leak power the other way, two
Schottky diodes (denoted as CR1 and CR2 in Figure 41) are used. The voltage at this node
at the other end of these diodes is the 5V node, denoted as VCC_SYS.

From the 5 V power supplies, we will use zero-ohm resistors to safeguard against possible
high currents that might affect the power supply unit. To output 3.3V and 1.2V, we are

Page 95
 Group 14 Final Report

using the LP38500 (U2 and U3) from Texas Instrument as selected in the parts selection
section of the report in two different sets of configurations. The 3.3V output voltage is
assigned to the VCC3P3 label whereas the 1.2V output voltage will be assigned to the
VCC1P2. Additionally, we use the LP5900 (U1) from Texas Instrument to generate an
output voltage of 2.5V. Both voltage regulators’ configurations were based on the
documentation provided by the Altera Cyclone IV FPGA Chip and the DE0-Nano
development board.

The VCC_SYS will provide power to the main system which is the Jetson Nano and the
RF T4 receiver. The VCC3P3 will be used to power on the MEMS microphone along with
the I/O Banks that are configurable in the Cyclone IV (This case the I/O Banks 1,3,6 and
8), the banks are necessary for the configurations of GPIOs.

The VCCA voltage will be used to power the Phase-Locked Loop (PLL) analog power
supply, which allows use to control the frequency of the clock of the Cyclone IV. Finally,
VCC1P2 will power the digital power supply of the PLL and the core chip of the Cyclone
IV. A Bill of Materials (BOM) of the PSU Schematic is provided in Table 17 with the
components used in the schematic.

Figure 44. Power Supply Circuit Schematic.

Page 96
 Group 14 Final Report

Table 17: Power Supply BOM

Label Quantity Package Manufacturer Description
C1, C2 2 C0603 TDK Capacitor, 10 µF

C3, C6, C9 3 C0603 AVX Capacitor, 0.1 µF
C4, C5, C7,

C8 4 C0603 KEMET Capacitor, 0.47 µF
CR1, CR2 2 SOD523 NEXPERIA Rectifier Diode

LED1,
LED2,
LED3,
LED4 4 0603 DIALIGHT RED LED

R1, R4, R6 3 R0603 VISHAY Chip Resistor, 0 ohm

R2 1 R0603 VISHAY
Chip Resistor, 5.36 k

ohm

R3 1 R0603 NIC COMPONENTS
Chip Resistor, 1.2 k

ohm

R5 1 R0603 VISHAY
Chip Resistor, 10 k

ohm

R7, R8 2 R0603 VISHAY
Chip Resistor, 4.99 k

ohm
R9, R10,
R11, R12 4 R0603 YAGEO Chip Resistor, 120 ohm

U1 1 SDB06A
TEXAS

INSTRUMENTS
Voltage Regulator,

2.5V

U2, U3 2 SDA08C
TEXAS

INSTRUMENTS
Voltage Regulator,

3.3V, 1.2V

5.3 Hybrid COM with FPGA

This section entails the hardware functionality of the device by implementing a hybrid
COM with FPGA architecture. We will discuss the I/O board first and then proceed to
describe the different modules using FNMs.

5.3.1 I/O Board Description

Our I/O board will perform the functions of taking inputs from users and processing the
data before sending it to the Jetson Nano unit, our COM. The I/O board will perform 3
distinct functions: the first function will be to keep track of its current operating mode and
change the mode in which the device operates when the mode button from the RF remote
is pressed. Secondly, it will oversee capturing the user’s voice whenever they press the
record button on the remote. Finally, it will track of the status of the unit, by having a status
LED, a recording LED, and buttons for both resetting the unit and for turning the unit on
and off. Figure 45 shows the software block diagram of the Verilog code.

Page 97
 Group 14 Final Report

Figure 45. Block Diagram of I/O Board.

5.3.1.1 Mode Selection Module

This module of the board will be implemented using a state machine that has two states;
each state representing a functional mode. The program will stay in the current mode until
the mode button on the RF remote is pressed. When the mode button is pressed, it will
toggle the state of the pin on the RF receiver, which will be read on the positive edge of
every clock cycle. If the voltage level of the pin has changed, it will change to the respective
state in the state machine and it will pass this information to the Jetson Nano over an I2C
connection. Figure 46 shows the state machine of the mode selection.

Page 98
 Group 14 Final Report

Figure 46. State Machine for Mode Selection.

5.3.1.2 Voice Recording Module

This module of the board will be implemented using a state machine that has 4 states. The
state machine will stay idle in state 0 while the recording pin (pin d0) on the RF receiver
is low. When the record button on the RF remote is pressed, the recording pin will go high
and the state machine will move to state 1, the start state. This will allow initialization of
any necessary processes to start, such as communication with the COM unit and setting
addresses to the block RAM FIFO. Figure 47 shows the state machine for the voice
recording module.

After one clock cycle, the state machine will move to state 2 and start recording, in which
the state machine will remain until the record key on the remote is pressed again, setting
this recording pin to low. Once this recording pin is low, the state machine will move to
state 3, the stop state, which will tell other processes that the machine has stopped
transmitting audio signals. After 1 clock cycle the state machine will move back to state 0.

Figure 47. State Machine for Voice Recording.

Page 99
 Group 14 Final Report

5.3.1.3 Status Module

This module will not contain any state machines and will be just check for certain
conditions to be met on the board. If the board is turned on, then the power LED
will be on. Furthermore, if the device is currently recording, the recording LED
will be on and will turn off when the recording is finished. The board will also
contain a reset and power button that will send signals to the Jetson Nano when
pressed to reset the device or to power off, respectively.

5.3.2 General Layout of the I/O Board
Figure 48 shows the general board layout of the PCB we intend to create.

Figure 48. General Board Layout.

5.3.3 Communication for Hybrid System

The connection between the FPGA I/O board and the Jetson Nano will be a 6-pin
connection. 3 of the pins will be used for I2S audio transmission and the last 3 pins will be
used to connect the recording status, power on button, and mode pins. We chose to connect
the board in this fashion to avoid using more complicated and finicky interfaces over PCI-
e and USB.

5.3.3.1 Audio Transmission

The microphone we have selected requires no configuration or drivers and therefore can
be directly connected to the board. It will be connected to the PCB board with 5 pins;
Voltage, Ground, LRCLK, BCLK, and DATA. The board will be running an I2S controller

Page 100
 Group 14 Final Report

IP block that will handle the audio with two 64 x 32-bit FIFOs and is capable for both
transmitting and receiving audio. Figure 49 shows the block diagram of the I2S controller
IP block from Intel.

Figure 49. Block Diagram of I2S Controller IP.

It will then send this audio to the Jetson Nano through the 3 pins connecting the boards;
LRCLK, BCLK, and DATA. On the Jetson Nano, we will be using the ALSA command
line interface to mix and record the audio being received from the I2S input into an audio
file that we can send off for transcription.

5.3.3.2 Status Transmission

The other two pins that will connect the FPGA PCB board to the Jetson Nano will be to
transmit the status of translator to the Jetson. When the user presses the record button, the
respective pin from the RF receiver will go high and this will be transmitted to the Jetson
through the recording status wire. This will tell the Jetson to start the process of mixing
and recording audio through the command line interface.

When the user presses the mode button, the respective pin coming from the RF receiver
will go high and this will be reflected on the wire leading to the Jetson. When the wire is
low the system will be in mode 0 and when it is high the system will be in mode 1.
Furthermore, we will have a power on button attached to the I/O board that will turn on
and off the Jetson Nano. This is done by shorting pins 7 and 8 with a jumper and then
momentarily shorting pins 1 and 2. Shorting pins 7 and 8 will disable the auto power on
sequence that is on by default, while shorting pins 1 and 2 will restore power to the system.
We will use the FPGA chip to create a reset button style signal from a button press.

5.4 LCD Interface

For our project, we are intending to use a Spectre 20” monitor. This monitor utilizes the
HDMI protocol, which allows us to connect the Jetson Nano to this monitor directly using
a male to male HDMI cable. This monitor runs at 75 Hz and at a 1600x900 resolution
which is easily handled by HDMI protocol. The Jetson Nano natively interacts with an
HDMI output; therefore, we do not have to implement any drivers or code modules to
obtain an image output. Furthermore, because the monitor comes installed with speakers,
we will be taking advantage of how the HDMI protocol natively carries audio over the

Page 101
 Group 14 Final Report

same cable as video. This will allow us to transmit both audio and video with one cable
natively without the need of additional hardware.

5.5 Overall Hardware Design

5.5.1 Final Hardware Block Diagram
Figure 50 shows the final hardware block diagram for the overall device design.

Figure 50. Final Hardware Block Diagram.

The FPGA PCB board will be responsible for taking the inputs from our system’s
peripherals. It will send this received data to the Jetson Nano COM unit to be processed.
The audio received from the I2S microphone will be sent via Wi-Fi to a cloud-based
transcription service and then sent back to the Jetson for input into a trained English to
Gloss NMT model.

We will then map this translated Gloss text to our Extended Stokoe Notation and map it to
a sign language motion animation. This animation will then be displayed on the display
and the translated text will be converted to speech and played through the speakers.

The RF remote will signal to the device for it to start recording and to change modes and
the power on button will restore power to the system after it has been turned off.
Furthermore, the PSU will provide power primarily to the COM unit and to the display.

Page 102
 Group 14 Final Report

The COM unit will provide power to the I/O board through one of its USB connections.
The final block diagram is shown in Figure 51.

5.5.2 Hardware Schematics

This section will cover the wiring and the interfacing between the different components in
our device. Each major component that contains several I/O lines will be given its own
schematic. The peripherals will not be given their own schematic, but rather will be
included as necessary as the input/output to the other major components. Additionally,
power supply systems will be provided as schematics in this section.

5.5.2.1 FPGA Diagram

To create the I/O Board schematic, we first had to take into consideration the pin
connections necessary to communicate with the Jetson Nano and the peripherals. We
decided to use one of the USB ports of the Nano to communicate any non-audio data from
the FPGA to the Nano and vice versa. When it came to audio-related data, we use the I2S-
enabled pins on the Jetson Nano to receive such data. This audio transmission required
three pins from the Jetson Nano and the Cyclone IV chip.

Additionally, the Cyclone IV used two more pins for mode selection to the Jetson Nano,
these pins were record mode and translation mode. The final pin for the transmission
between the Nano and the Cyclone IV was a power on button feature which turns off the
system by pressing a button. Six GPIO pins were used and connected to a 6-pin header to
the Jetson Nano and it can be seen in Figure 51.

For the RF receiver, we only required to use four pins which were the VDD, GND, D0 and
D1. The VDD which is used to power the system was supplied power from the PSU. We
only required D0 and D1 since we are using a two button RF transmitter to control when
are we recording and when are we translating. The recording mode will toggle between
start and stop whereas the translating mode will toggle between ASL translation and
language translation. The D0 and D1 pins will connect to GPIO pins in the Cyclone IV
chip so that the Cyclone IV can drive the Jetson Nano to the aforementioned modes.

The Cyclone IV chip also communicates with an external I2S module. This module
provides a clean transmission of data between the selected MEMS microphone and the I/O
Board. As part of the datasheet and documentation of the module, we only require three
more I/O pins. Finally, the Cyclone IV chip needs to be driven with a 50MHz oscillator as
required by the datasheet and documentation.

The schematic of the oscillator is included in Figure 51. The overall Hardware design will
possess LEDs that display the current mode of operation, the system is in. We will use two
LEDs to signify ASL and Language translation, and one LED for recording mode
operation. The final hardware schematic is shown in Figure 51 along with its BOM on
Table 18.

Page 103
 Group 14 Final Report

Figure 51. FPGA Schematic.

Page 104
 Group 14 Final Report

The RF remote has been wired directly to IO_1 and IO_2. Although the direct wiring of
the RF remote to the FPGA seems counterintuitive, this has been done to show the eventual
transmission of the RF remote input. The sole reason for using only two IO pins was
because the remote controller intended for the usage of the RF transmitter only possesses
two buttons. One for ASL translation and the other for normal translation. Eventually, this
schematic will include the RF receiver, to which the RF transmitter will provide a wireless
signal.

Table 18. I/O Board BOM.

Label Quantity Package Manufacturer Description

C1 1 0603 AVX
Multilayer Ceramic

Capacitor, 0.1uf

FPGA 1
QFP 144

pin ALTERA
FPGA, CYCLONE

IV, EP4CE22E22C8N

JETSONNANO,
I2SMODULE 2 1x6 SAMTEC

Board-To-Board
Connector, 6 Contacts,

Header, 1 Rows
RECORD,

MODE0, MODE1 3 0603 ROHM RED LED

R1, R2 2 0603
MULTICOMP

PRO
Chip Resistor, Thick

Film, 100k

RF TOGGLE
TRANSMITTER 1 2x8 SAMTEC

Board-To-Board
Connector,

8 Contacts, Header, 2
Rows

S1, S2 2 12 mm OMRON
SWITCH 12MM x

12MM

Y1 1
3.2 x 2.5
x 1.2 mm ABRACON

Oscillator, 50 MHz,
3.3 V

The microphone has also been wired correspondingly. The digital out (DOUT) pin is wired
to IO_5. The 3V pin, although it has not been wired yet, will be wired to the VCC3P3
signal. The microphone can operate from voltage between 1.5 V and 3.6 V, so the 3.3 V
power from the FPGA will be sufficient to power the microphone.

The LEDs have been wired to I/O banks 6, 8, 9, and 10. These LEDs will be used as
indicators for the various statuses of the overall device. One indication will be whether
power is being given to the FPGA, COM, etc. Another indication will be whether the device
is currently recording audio. This indicator light will illuminate when the user presses the
button on the RF remote and the device is actively listening for an audio signal.

Another indication will be whether the device is successfully connected to the Internet.
Connection to the Internet is crucial for all of the cloud-based services and APIs that our
device will be using, including the speech-to-text and text-to-speech services. The absence

Page 105
 Group 14 Final Report

of this light being illuminated will indicate to the user that cloud-based services (and thus
the overall functionality of the translator) is not available.

Although there will be many different clocks that will be operating simultaneously
throughout the FPGA, only one clock has been indicated on our schematic so far, the
50MCLK. This clock is attached to CLK11. Additionally, S3 and S4 are buttons that will
direct the FPGA into changing to different modes that allow certain functionalities. One of
the buttons will be the ON/OFF button for the overall device whereas the other button will
be a Reset button that cleans the data being processed by the FPGA. The ON/OFF button
will shut down or powerup the system completely and the reset button will be used
whenever the data being processed to the FPGA is erroneous in nature (early stop of audio
acquisition) or if the FPGA stops processing data as intended.

5.6 Overview of Hardware Design & Bill of Materials
(BOM)

This section describes the overall hardware usage and total cost for our project based on
the assembly and parts selected for the device based on the shown electrical schematic
designs, as shown in Table 19. The Jetson Nano from NVIDIA and the Cyclone IV FPGA
from Altera will both serve as our main processor units. The Jetson Nano will control
anything related to the NMT model, language translations, the 3D graphics rendering, and
displaying the model on the monitor screen. The Cyclone IV will control the data
transmissions from the microphone using an I2S module, the RF T4 receiver, the LED
power status board and the LED current operation status board. Our remote controller will
interact with the RF receiver using two functionalities. The first functionality is to switch
between ASL translations and normal language translations whereas the second
functionality will focus on the audio capturing by using a start and stop recording. A
MEMS microphone will be used to acquire speech data and we will use an I2S module to
transmit the data correctly into the Cyclone IV. Afterwards, the Cyclone IV will send the
data to the Jetson Nano through USB connection.

Our PCB vendor is going to be JLCPCB due to its cheap cost and well-known reputation
for delivering quality PCBs. The contents of the PCB will consist of the power supply
circuitry required to power both of these processors and the I/O board, driven by an FPGA,
functionality that will handle the data transmissions between the peripherals and the hybrid
processor. For proper user-end functionality of our product, we included a 20” monitor,
microphone, and RF receiver/transmitter set. Note that for speakers, the monitor we chose
from Spectre also has built-in speakers and can receive audio input via an HDMI-HDMI
cable from the Jetson Nano.

In terms of connectivity, we included an HDMI-HDMI cable to connect the Jetson Nano
to the 20” display to show the graphics rendering software. For proper functionality of the
Jetson Nano, a microSD card containing the operating system and room for general storage
is required; for this reason, we included a SanDisk 32GB microSD card. Table A possesses
the overall components used in the system.

Page 106
 Group 14 Final Report

Table 19. Overall BOM.

6. Project Software Design Details

Our project has a high emphasis on software and programming. The software for our
project requires six different functions in sequence that it must complete for proper
translation. This section will deal primarily with the English to ASL-Gloss translation;
other translation pairs, however, will be achieved through online cloud services. The six
steps in the software design are as follows: speech capture, speech-to-text translation,
neural machine translation of English text to ASL-Gloss, mapping the ASL-Gloss to ELS
notation, and rendering ASL graphics and displaying them on the final display. The overall
software flow chart is summarized in Figure 48.

6.1 Overall Software Functionality

Our software will have two different modes that users can choose between: speech-to-
speech translation mode or speech-to-ASL mode. These modes will perform essentially the
same steps with the speech-to-ASL mode requiring an alternate process to the speech-to-

Page 107
 Group 14 Final Report

speech translation mode as the speech-to-ASL mode has a greater emphasis on our project.
At the start of the program, the user will be prompted to choose between the two available
modes using an IR remote. Once the user has chosen a mode, the main loop of that chosen
mode will begin.

6.1.1 User Options

6.1.1.1 Option A: Speech-to-Speech Translation Mode

When this loop begins, the user will be prompted to input the source and target languages
for their translations. Once the users have chosen the source and target languages the
system will wait until a recording button is pressed. Once the button has been pressed, the
software will take in the input soundwaves of speech from the microphone and pass these
snippets to an online speech-to-text service. Once this typographic text has been received
from the online speech recognition service, the program will pass this through another
online service to translate it from the source language to the destination language. Once the
system has received the translated text the program will output this text onto the screen.

Additionally, the program will also send the translated text to another cloud service that
will perform text-to-speech of the translated text. This sound file will be passed to the
speaker so that users can both read and hear the translated communication.

6.1.1.2 Option B: Speech-to-Sign Mode

When the loop begins, the program will wait for the recording button to be pressed. Once
the button has been pressed the software will begin taking in the input sound waves of
speech from the microphone, pass them through an online speech-to-text service, and then
take the received English text and translate it into English Gloss. Once the text is translated
to Gloss, the text will be converted into our proposed Extended Linear Stokoe (ELS)
notation that will tell our graphic rendering software how to perform the specific American
Sign Language gesture. These motions will then be sent onto the terminal monitor along
with a log of the text received from the speech-to-text conversion.

6.1.2 Software Procedure

6.1.2.1 Step 1: Speech Capture

This first step in the software process will capture speech from the person speaking into
the microphone on the device. The microphone will only capture speech once a button has
been pressed; we have not yet decided whether this button will be available on the device
itself or if the button will be available on a remote and transmitted via IR.

Once the signal from the button has been received, the microphone will capture the sound
waves of the person speaking and convert this signal into a corresponding digital signal.

Page 108
 Group 14 Final Report

The microphone we have chosen for the project will output a digital signal instead of analog
to mitigate the need for an analog-to-digital converter (ADC) system.

6.1.2.2 Step 2: Speech-To-Text Conversion

The function of this second step is to send the digital voice signals to the cloud-based
transcription service and to receive the transcribed text. Once the button has been released
and we have a digital signal for the input, we can send this signal from the board to the
cloud-based transcription service. This will handle the conversion from speech to text and
we will receive a stream of text back from service.

Once we have received this stream of text, we will parse through the text and replace any
of the pronouns that are present in the sentences with our filler pronoun word. The NMT
model does not understand the distinction between pronouns and will weight every
unknown pronoun differently. We would have to train the NMT model with every proper
noun for the field this product was being deployed in for it accurately be able to pass proper
nouns through the model.

We can avoid having weights on the proper nouns by keeping track of all the pronouns in
the original sentences and simply replacing them once they have been passed through the
NMT model. We can make this substitution since in ASL, most proper nouns are spelled
out with individual letters so passing it through the model would yield the same word.

6.1.2.3 Step 3: Neural Machine Text-to-Text Translation

The function of this third step is to translate the text received from the cloud-based
transcription service to ASL-Gloss. This will be accomplished by feeding sentences of the
transcribed text into a pretrained OpenNMT model that will make predictions on the best
match for the English text in ASL-Gloss, along with removing words that are not
necessarily used in ASL (such as auxiliary verbs, etc.).

6.1.2.4 Step 4: Mapping ASL-Gloss to Custom ELS Notation

The function of this task is to map the ASL-Gloss text received from the model translation
verbatim to our ELS notation. We will parse through the sentences of Gloss, removing any
of the empty words along the way. Furthermore, as we parse the sentences, any pronoun
fillers found will be replaced with its respective pronoun from the original sentence. We
will have a database of all the words that we have trained in the NMT model that have been
pre-translated into our ELS notation, from which we can translate the ASL-Gloss
word/phrase into the ELS equivalent. The use of the ELS notation is to allow a structured
form of rendering the graphics in the next step. We will also translate the proper nouns into
the ELS Notation by changing it to individual letters or its gesture equivalent in ASL.

Page 109
 Group 14 Final Report

6.1.2.5 Step 5: Rendering ASL Gestures in 3D Graphics Platform

The function of this task is to create ASL graphics for the translated text that can be
displayed on the screen for the deaf user to understand what the original English speaker
had said. We will be creating models using a 3D rendering software such as Unity and
using the ELS notation that we have created as a set of instructions on how to animate the
virtual avatar. Figure 52 shows the breakdown of how our rendering software will interpret
our ELS.

Figure 52. Breakdown of Conversion of ELS Notation into 3D Graphics Rendering.

Each character in the ELS notation will tell the program what the location of the hands will
be, the location and handshape of the hands, hand movements, and other elements that are
essential in the delivery of a sentence in ASL. This will allow for natural-looking ASL
motions that are created in real-time.

After the sequence of gestures have been produced, the final step is to output the ASL
graphics created by the software onto the terminal display. These motions will play in the
sequence determined by the ELS input so that the sentence can be created by stringing
these motion bits together. Figure 53 shows the overall software flow of our device.

Page 110
 Group 14 Final Report

Figure 53. Overall Software Flow Chart.

Once they have finished playing, the users will have the option to restart the animation and
replay the translation, start recording another sentence to be translated, or exit the current
mode and switch to the other for speech-to-speech translation.

The engine will use a preset of already defined “frame layers”. These layers will possess a
unique characteristic based on the symbols provided which will be divided into space, left
hand, right hand. Within each major layer, there will be sub layers that will have unique
characteristics such as location, handshape and modifier. After all the layers have been
selected based on the provided symbol, we will extract the unique characteristics of each
sub layer and add them to the pertaining major layers.

Moreover, the major layers, once done, will mesh into the orientation layer. Finally, the
layers pertaining to the movements of the hand or any other additional layer will be

Page 111
 Group 14 Final Report

provided. The extractions explained here can be already done on most game engines. The
reason is because modern games such as Telltale Games make non-playable characters or
surroundings to change depending on the user’s decisions. We can use this feature and
translate it into different “movements” based on the input symbols that we receive.

7. Project Testing and Prototyping

7.1 OpenNMT Model Testing

This section is a collection of the various attempts in modifying the training and validation
sets used in creating a translation model using OpenNMT. Our first step is the creation of
the pair of training and validation files. One file is typed in English while the other is typed
in ASL-Gloss. The contents of these files will provide the basis for the creation of our NMT
model. After running the steps of preprocessing and training, we made another test file
containing sample sentences.

The output of these sentences is shown through the Command Prompt window (or the
Terminal window on macOS). Included with the predicted sentence are various statistics
represented by their PRED score. (The PRED score can be converted to the approximated
percent accuracy by raising 10 to this number.)

Note that each training set consists of four different files: a training source corpus, a
training target corpus, a validation source corpus, and a validation target corpus. In each
training run, the OpenNMT algorithm pairs each line between the two training corpora and
uses the validation corpora to confirm that its training model was successful. For each
attempt, we included examples of the contents of each corpus, but the full list for each
corpus for each attempt can be found in Appendix C.

Attempt 1 — October 18, 2019

We began training our model for the English-to-ASL Gloss neural machine translation by
creating a data set of two text files from which we could benchmark the effectiveness of
the NMT model. In each of the text files, we chose a handful of common medical checkup
terms and phrases. Included in this dataset are introductory phrases such as “Hello”, “How
are you?”, “How old are you?”

In OpenNMT, the translator is trained by having a source file for the start language and a
source file for the destination language that must match in length of phrases for proper
translation. The entire test and validation corpora are shown in Figures 54 and 55,
respectively.

Page 112
 Group 14 Final Report

English Training Corpus Gloss Training Corpus
Figure 54. Test English and Gloss Corpora used in Attempt 1.

Furthermore, the training algorithm needs to have a validation file for languages used in
the translation, which are English and Gloss in our case. These validation files use the same
words that are in the original training corpora but contain different combinations of the
words that are not found in the original training corpora but the NMT should be able to
translate effectively. This process of cross-validation ensures that the weights of the words
and sentences will be adjusted properly in the NMT and will translate accurately when
someone inputs a sentence that is not verbatim found in either the training or the validation
corpora.

English Validation Corpus Gloss Validation Corpus
Figure 55. Validation English and Gloss Corpora for Attempt 1.

After training with this data set, we input some test sentences through the NMT using the
model created. The results were not as expected and did not produce accurate predictions,
even when tested with sentences that were located both in the training and validation files.
A few examples of the output test results are shown in Figure 56.

Page 113
 Group 14 Final Report

Figure 56. Example Results of Attempt 1 Post-Training.

Note that despite the inaccurate sentences produced, the level of confidence in this model
is quite high, as exemplified in the top-left box which shows a PRED score of -0.0873,
which corresponds to an 81.79% accuracy.

Page 114
 Group 14 Final Report

Attempt 2 — October 25, 2019

We experimented further by making several changes to the training files. We made both
the training and verification files the same on both sides so that we could see the effect of
this. Furthermore, because of how Gloss is structured to represent sign language, its
sentence structure is Object Verb Subject (OVS). On the other hand, the sentence structure
in English is Subject Verb Object (SVO). We were concerned that this was affecting the
training outcomes, so we restructured the Gloss files to follow SVO.

At this point we were more worried about the accuracy of the translation rather than the
structure of the translation, so this is something we could sacrifice for the time being.
Furthermore, if time had permitted, we could create an algorithm that would convert
sentences from SVO to OVS. These training and validation corpora can be seen in Figures
57 and 58, respectively.

Finally, we changed the training files so that all the sentences on both sides of the
translation were of the same word length. We have some concerns that the algorithm is
attempting to do one-to-one mapping on the sentences in the corpus and so when they are
of different length, it might have been leading to the mistranslations. Therefore, we made
them the same length throughout the files.

Because Gloss removed many unneeded or unrepresented words out of sentences being
translated to Gloss from English, we implemented an “empty word” filler which is simply
the underscore character ‘_’. Our reasoning for this approach is that these unnecessary
words will be mapped to the empty word, so when we perform our Gloss to ELS
transcription after the translation, we can simply ignore these empty words.

English Training Corpus Gloss Training Corpus
Figure 57. Test English and Gloss Corpora used in Attempt 2.

Page 115
 Group 14 Final Report

English Validation Corpus Gloss Validation Corpus
Figure 58. Validation English and Gloss Corpora for Attempt 2.

After training with these modifications, we saw improvements to the results and were able
to get much better predictions from sentences that were outside of our training set even
with the small training set that we had. We were even able to correctly translate a six-word
sentence, as shown in Figure 59.

Figure 59. Example Results of Attempt 1 Post-Training, Part 1.

However, even with these improvements, we are still facing problems with the NMT model
not understanding the weight of certain words or what exactly proper nouns are. An
example of a mistranslated sentence that adds excessive weight to a proper noun is shown
in Figure 60.

Proper nouns are used in sentences to talk about subjects. If we would like accurate
predictions when using proper nouns, we would have to teach the NMT every single proper
noun that we believe would be implemented with the system and have several different
combinations of said pronoun inside of sentences.

Figure 60. Example Results of Attempt 1 Post-Training, Part 2.

Page 116
 Group 14 Final Report

For the scope of this project, it is not feasible to create a dataset like this, so we would have
to derive a potential workaround to this problem. Our proposed solution is to filter proper
nouns out and replace them with a “filler word”. This filler word would replace any actual
proper nouns that are in the transcribed text that we receive from the cloud transcribing
service. If we were to use both the filler word and the empty word that we used in this
attempt, we would need to distinguish between both words.

When the proper noun is filtered out, we would need to keep track of the position of that
pronoun so that we can replace the filler word with the original word after it has passed
through the model. Inside the training set for the NMT, we will use this filler pronoun, just
like we would a regular pronoun so that the NMT can learn how to use it and weight it
properly. We believe this will help us work around the problem our NMT is facing with
translating pronouns.

In both attempt 1 and 2 we had not realized that the contents of the training and validation
files must be different in some way to produce an accurate NMT model. Not only do the
training and validation files need to have different content, the content of the validation
model should contain words that are available in the training corpus but should include
different orders and combinations of words into phrases that were not originally in the
training corpus but should be understood by the NMT.

Attempt 3 — November 6, 2019

Following the success of attempt 2, we decided to maintain this type of training style and
to implement the changes that we discussed in attempt 2. We added a “filler” name
(CHARLES) that would be used to replace all other names, allowing for easier and more
accurate translations from our model. Furthermore, we decided to change the setting of our
model and train the model to be used in a school setting instead of a hospital setting. We
made this decision because we wanted to reduce the number of proper nouns that we would
have to filter as well as make the scope of the project closer to where it will be used.

To discover how to train the NMT model further in an efficient manner, we started to add
more variation to the validation files so that we could ensure more accurate translations
when non-exact matches were encountered. We took the words from the training sentences
and created more sentences combinations to ensure that words are being weighted
correctly. The approach of these training sets is similar to the approach in attempt 2 with
the use of the empty-word “_” and the word-by-word mapping of words between the
English corpora and the ASL-gloss corpora. Like previously aforementioned, with this
word-by-word mapping, we lose the grammatical aspects of ASL, but we intend to write
another back-end algorithm which will ensure that the output ASL gestures are performed
in accordance with correct ASL grammar. Figures 61 and 62 show the test and validation
files, respectively, for attempt 3.

Page 117
 Group 14 Final Report

English Training Corpus Gloss Training Corpus
Figure 61. Sample of Test English and Gloss Corpora used in Attempt 3.

English Validation Corpus Gloss Validation Corpus
Figure 62. Sample of Validation English and Gloss Corpora for Attempt 3.

After training the NMT using these corpora, we realized that the NMT may be case
sensitive; that is, the weighting for the word “What” is not the same as the weighting for
the word “what.” This presented us with an inaccurate model. Because of this, we decided
to keep the entirety of each English corpus in lowercase characters except for those that are
inherently capitalized (such as proper nouns like “Charles” and the pronoun “I”). Figures
63, 64, and 65 show the results of attempt 3 post-training.

Page 118
 Group 14 Final Report

Figure 63. Example Results of Attempt 3 Post-Training, Part 1.

Figure 64. Example Results of Attempt 3 Post-Training, Part 2.

Figure 65. Example Results of Attempt 3 Post-Training, Part 3.

 Attempt 4 — November 6, 2019

After realizing the shortcomings of the data set that we had tested, we fixed the issues with
capitalization and trained a new model shortly after our third attempt. Figures 66 and 67
show the results of attempt 4 after fixing issues from attempt 3.

Figure 66. Example Results of Attempt 4 Post-Training, Part 1.

Figure 67. Example Results of Attempt 4 Post-Training, Part 2.

Page 119
 Group 14 Final Report

While, this model performed slightly better than attempt 3, on closer examination of the
data set we realized that we had made several mistakes not only with capitalization but also
with words being linked to different translated words in the target files. Furthermore, in
this data set, we had tried to replace some words such as ‘did’ with ‘before’ to indicate past
tense. However, in doing this, we accidentally would take out the subject of the sentence,
such as ‘you’ or ‘me’ and replace them with an empty character. These two issues would
affect the weights of those words and skew the predictions of the model greatly. This would
have to be fixed in the next data set before trying to train again.

Attempt 5 — November 6, 2019

Attempt 5 takes a detour away from our typical testing at the request of our advisor Dr.
Chan. While in our weekly meeting with Dr. Chan, he wanted to see the results of using
corpora for training and validation files which consist of single-word entries alone.
Therefore, we created a small corpus and validation file to his specifications and trained
the model. The goal was to see if the model could be trained to create sentences when being
trained with single words. When the model was finished training, we were to see the results
of trying to create 2 sentences from this data set: “Where is the classroom?” and “Where is
my classroom?”. Figure 68 shows the entirety of the corpus for attempt 5. Figure 69 shows
the result of this training set.

the
my
where
is
classroom
?

_
MY
WHERE
_
CLASSROOM
?

English Training Corpus Gloss Training Corpus
Figure 68. Sample of Test English and Gloss Corpora used in Attempt 5.

Figure 69. Example Results of Attempt 5 Post-Training.

As we can see, the use of single words as entries within the corpora seems to have a
negative impact on the success of training the NMT model. While this set was very small,
we trained it with the intent of translating these two sentences error-free, but it failed.
Furthermore, the scores for these predictions show that the model was fairly confident in

Page 120
 Group 14 Final Report

its prediction, suggesting that attempting to train a model using single-word entries is not
the correct approach.

Using the results from attempts 3, 4, and 5, we decided we should consider using complete
sentences with each word in the source corpora mapped only to one translated word in the
target corpora.

8. Administrative Content

In this section, we will show the time management and budget constraints that the team
had to overcome during the trajectory of Senior Design I and II. In addition, a milestone
section will be discussed for both Senior Design I and II. The deadlines and deliverables
will be explained in a projected manner. The budget and finance of the team will also be
discussed in a projected manner.

8.1 Budget and Finance

Our project so far possesses no external sponsorship. Therefore, everything that is being
projected has to be paid by the members of the team. The component selection with its
pertaining price range is based on the extensive research done in Senior Design I so far.
The price ranges are rough estimates from what we have encountered online. The
component with their pricing range as shown in Table 20. Given these number below, our
finalized project will cost $448.42. We are planning to have a budget of $1000.

Table 20. Original Business Budget Approximations for each Component.
GPU - NVIDIA Jetson Nano $ 95.96

FPGA – Altera Cyclone IV $ 35.52

Display – 20” A/V Monitor $ 59.99

Speaker –- included with display --

MEMS Microphone $ 6.95

Wi-Fi Module / Antenna Donated

PCB $ 50

Miscellaneous $ 200

Total $ 448.42

Page 121
 Group 14 Final Report

8.2 Project Milestones

In this section, we demonstrate the milestones requirement had to meet in order to complete
the project. We broke down the milestones into two sections. One for Senior Design I in
which selection of the project, researching and testing was done. The other for Senior
Design II in which the integration will be carried out. For Table 21, we assigned the
duration of tasks based on the Important Deadline section. For Table 22, we are just giving
a rough estimate and projection on how the team will perform at integrating the project
together. In addition, we are also taking into consideration the feasibility of running into
roadblocks in the integration phase of the project for Senior Design II. We took this
consideration also in Senior Design I. It can be noted that a lot of Senior Design I was spent
in training the neural machine translation model since we needed to use an accurate model
for Senior Design II. Moreover, we have to train the NMT with a robust data set such that
it would understand the GLOSS translation we want to implement.

Table 21. Senior Design I – Milestones

Process Description Duration Dates

Brainstorming & Project Selection 2 weeks Aug. 30 - Sept. 14

Initial Research / Divide & Conquer 1 week Sept. 14 - Sept. 20

Continuation of Research 3 weeks Sept. 20 - Oct. 12

Possible Hardware & Software
Selection, Purchase Demos for
Preliminary Testing

3 weeks Sept. 20 - Oct. 12

Cover page/Executive
Summary/Technical Contents/Training
Neural Machine Translation Model

4 weeks Oct. 12 - Oct. Nov. 1

Administrative Content/Project
Summary/Conclusion/Appendices/
Finalize Training

2 weeks Nov. 1 - Nov. 15

Final Document Revision + Initial
Prototyping

2 - 3 weeks Nov. 15 - Dec 2

Page 122
 Group 14 Final Report

Table 22. Senior Design II – Milestones
Process Description Duration Dates

Complete Prototype 4 weeks Jan. - Feb.

Prototype Testing and Debugging 4 weeks Feb. - March

Product Finalization 4 weeks March - April

Peer Presentation TBA

Final Report TBA

Final Presentation TBA

8.2.1 Important Deadlines

● September 20th - Initial Divide & Conquer Document
● October 4th - Updated Divide & Conquer Document
● November 1st - 60 Page Draft Senior Design I Documentation
● November 15th - 100 Page Submission
● December 2nd - Final Document Due

Page 123
 Group 14 Final Report

Appendix A: Copyright Permissions

We intend to ask for permission from SapphiArt, Inc. for our usage of their Amane Kisora
model in our Unity-based program. The link to the download for the Unity model is given
below, and the link to the developer’s website is http://www.sapphiart.co.jp/.

https://assetstore.unity.com/packages/3d/characters/amane-kisora-chan-free-ver-70581

We also intend to ask for permission from the Harvard NLP group and SYSTRAN for our
usage and manipulation of their open-source OpenNMT program. The OpenNMT
information website can be found at http://opennmt.net/, and the open-source files can be
found on their GitHub here: https://github.com/OpenNMT.

Page 124
 Group 14 Final Report

Appendix B: NMT Training Corpora

English Training Corpus, 11/8/19

Page 125
 Group 14 Final Report

ASL-Gloss Training Corpus, 11/8/19

Page 126
 Group 14 Final Report

English Validation Corpus, 11/8/19

Page 127
 Group 14 Final Report

ASL-Gloss Training Corpus, 11/8/19

Page 128
 Group 14 Final Report

Appendix C: Acknowledgements

We would like to give credit to Jolanta Lapiak and her online ASL database Handspeak
(handspeak.com). She has taught us not only how the signs are done, but she has also
included sample sentences and their ASL-Gloss equivalents.

We would also like to give credit to Dr. William Vicars with his Lifeprint.com website and
the European Sign Language Center with their Spread the Sign
(https://www.spreadthesign.com/) ASL databases. Without their help, we would not have
been able to produce many of the ASL-gloss sentences necessary for our NMT corpora.

Page 129
 Group 14 Final Report

Appendix D: Works Cited

[1] “6 Big Industries that can benefit from language translation services.” Pangeanic.

Boston, MA. Feb. 24, 2015. Accessed Sept. 18, 2019.
https://www.pangeanic.com/knowledge_center/6-big-industries-can-benefit-
language-translation-services/#

[2] Leila Miller. “‘I was panicked”: Deaf patients struggle to get interpreters in medical
emergencies.” STAT. Boston, MA. May 22, 2017. Accessed Sept. 18, 2019.
https://www.statnews.com/2017/05/22/deaf-patients-interpreters/

[3] U.S. Department of Justice. “Communicating with People Who Are Deaf or Hard of
Hearing in Hospital Settings.” Civil Rights Division: Disability Rights Section.
Washington, DC. August 11, 2005. Accessed Sept. 18, 2019.
https://www.ada.gov/hospcombr.htm

[8] “Compare Translate Features for Each Language - Google Translate,” Google. N.d.
[Online]. [Accessed Oct. 11, 2019].
https://translate.google.com/intl/en/about/languages/

[9] M. Schuster, M. Johnson, and N. Thorat, “Zero-Shot Translation with Google’s
Multilingual Neural Machine Translation System,” Google AI Blog, Nov. 22,
2016. [Online]. [Accessed Oct. 11, 2019].
https://ai.googleblog.com/2016/11/zero-shot-translation-with-googles.html

[10] N. McGuire, “How Accurate is Google Translate in 2018?,” Glenview, IL: Argo
Translation, July 26, 2018. [Online]. [Accessed Oct. 11, 2019].
https://www.argotrans.com/blog/accurate-google-translate-2018/

[11] “Amazon Translate - Neural Machine Translation - AWS,” Amazon Web Service,
Inc, 2019. [Online]. [Accessed Oct. 11, 2019]. https://aws.amazon.com/translate/

[12] “Amazon Translate - Developer Guide,” Amazon Web Services, Inc, 2019.
[Online]. [Accessed Oct. 11, 2019].
https://docs.aws.amazon.com/translate/latest/dg/translate-dg.pdf

[13] A. Mlievski, “Amazon Tops Overall Quarterly Survey by One Hour Translation of
Neural Machine Translation Engines,” Washington, D.C: PR Newswire
Association LLC, Sept. 26, 2018. [Online]. [Accessed Oct. 18, 2019].
https://www.prnewswire.com/news-releases/amazon-tops-overall-quarterly-
survey-by-one-hour-translation-of-neural-machine-translation-engines-
300719593.html

[14] “Video Remote Interpreting (VRI),” Stratus Video, 2018. [Online]. [Accessed Oct.
18, 2019]. https://www.stratusvideo.com/stratus-video/

[15] Kwamikagami, “Brief Comparison of ASL Writing Systems,” Wikimedia
Commons: Feb. 17, 2014. [Online]. [Accessed Oct. 9,
2019].https://commons.wikimedia.org/wiki/File:Brief_Comparison_of_ASL_Wri
ting_Systems.jpg

[16] aslfont, “Symbol Font for ASL.” aslfont GitHub Repository. March 29, 2013.
[Online]. [Accessed Sept. 28, 2019.] https://aslfont.github.io/Symbol-Font-For-
ASL/ways-to-write.html

[17] Slevinski, “SignWriting-render,” Wikimedia Commons: Apr. 25, 2017. [Online].
[Accessed Oct. 9, 2019]. https://commons.wikimedia.org/wiki/File:SignWriting-
render.svg

Page 130
 Group 14 Final Report

[18] J.A. Hochgesang, “Introduction to Stokoe Notation,” Gallaudet University
Linguistics Dept. Fall 2007. [Online]. [Accessed Sept. 23, 2019].
https://lingdept.files.wordpress.com/2015/08/quickguidestokoenotation-pages.pdf

[19] W. Vicars. “Gloss.” American Sign Language University. [Online]. [Accessed Oct.
5, 2019.] https://lifeprint.com/asl101/topics/gloss.htm

[20] M. Gales and S. Young, “The Application of Hidden Markov Models in Speech
Recognition,” J. Foundations and Trends in Signal Processing, vol. 1, no. 3, Jan.
2008. pp. 195-304. [Online]. [Accessed Oct. 11, 2019].
https://mi.eng.cam.ac.uk/~mjfg/mjfg_NOW.pdf

[21] L.R. Rabiner and B.H. Juang, “Hidden Markov Models for Speech Recognition –
Strengths and Limitations,” in Speech, Recognition, and Understanding: Recent
Advances, Trends, and Applications, Berlin, Germany: Springer Heidelberg,
1992. pp. 3-29. [Online]. [Accessed Oct. 11, 2019].
https://link.springer.com/chapter/10.1007/978-3-642-76626-8_1

[22] R. Rivera, “Strengths and weaknesses of hidden Markov models,” UCSC
Bioinformatics, Univ. California Santa Cruz, Aug. 22, 1996. [Online]. [Accessed
Oct. 11, 2019]. https://compbio.soe.ucsc.edu/html_format_papers/tr-94-
24/node11.html

[23] C.B. Kare and V.S. Navale. “Speech recognition by Dynamic Time Warping,” IOSR
J. Electronics and Comm. Engineering, NCIEST, pp. 12-16. [Online]. [Accessed
Oct. 11, 2019]. http://www.iosrjournals.org/iosr-
jece/papers/NCIEST/Volume%202/3.%2012-16.pdf

[24] S. Xihao and Y. Miyanaga, “Dynamic time warping for speech recognition with
training part to reduce the computation,” in International Symposium on Signals,
Circuits and Systems, ISSCS 2013, Iasi, Romania, July 11-12, 2013. IEEE Xplore,
Dec. 2, 2018. [Online]. [Accessed Oct. 11,
2019]. https://ieeexplore.ieee.org/document/6651269

[25] A.B. Nassif et al., “Speech Recognition Using Deep Neural Networks: A
Systematic Review,” Access IEEE, vol. 7, pp. 26777-26787. IEEE Xplore, Feb. 1,
2019. [Online]. [Accessed Oct. 31, 2019].
https://ieeexplore.ieee.org/document/8632885/

[26] D. Wang, X. Wang, and S. Lv, “An Overview of End-to-End Automatic Speech
Recognition,” Symmetry, vol. 10. MDPI, August 7, 2019. [Online]. [Accessed
Oct. 31, 2019]. https://www.mdpi.com/2073-8994/11/8/1018

[27] “CMUSphinx Open Source Speech Recognition,” GitHub, 2019. [Online].
[Accessed Oct. 31, 2019]. https://cmusphinx.github.io/

[28] “Julius: Open-Source Large Vocabulary Continuous Speech Recognition Engine,”
GitHub, 2019. [Online]. [Accessed Oct. 31, 2019]. https://github.com/julius-
speech/julius

[29] D. Povey et al, “The Kaldi Speech Recognition Toolkit,” in IEEE 2011 Workshop
on Automatic Speech Recognition and Understanding, ASRU 2011, Big Island,
HI, December 11-15, 2011. [Online]. [Accessed Oct. 31, 2019].
https://publications.idiap.ch/downloads/papers/2012/Povey_ASRU2011_2011.pdf

[30] “DeepSpeech - TensorFlow implementation of Baidu’s DeepSpeech architecture,”
GitHub, Oct. 2019. [Online]. [Accessed Oct. 31, 2019].
https://github.com/mozilla/DeepSpeech

Page 131
 Group 14 Final Report

[31] “Wav2Letter++: A Fast Open-source Speech Recognition System,” in 2019 IEEE
International Conference on Acoustics, Speech and Signal Processing, ICASSP
2019, Brighton, United Kingdom, May 12-17 2019. IEEE Xplore, April 17, 2019.
[Online]. [Accessed Oct. 31, 2019]. https://ieeexplore.ieee.org/document/8683535

[32] “Wav2letter++, the fastest open-source speech system,” Facebook Engineering,
December 21, 2018. [Online]. [Accessed Oct. 31, 2019].

[33] “DeepSpeech2 - OpenSeq2Seq 0.2 Documentation,” Nvidia GitHub, 2018.
[Online]. [Accessed Oct. 31, 2019].
https://nvidia.github.io/OpenSeq2Seq/html/speech-recognition/deepspeech2.html

[34] “HTK Speech Recognition Toolkit,” HTK, June 2016. [Online]. [Accessed Oct. 31,
2019]. http://htk.eng.cam.ac.uk

[35] D. Rybach, S. Hahn, P. Lehnen, D. Nolden, M. Sundermeyer, Z. Tüske, S. Wiesler,
R. Schlüter, and H. Ney: "RASR - The RWTH Aachen University Open Source
Speech Recognition Toolkit,” in IEEE Automatic Speech Recognition and
Understanding Workshop, ASRU 2011, Big Island, Hawaii, December 11-15,
2011. [Online]. [Accessed Oct. 31, 2019]. https://www-i6.informatik.rwth-
aachen.de/rwth-asr/

[36] “Dialogflow,” Google, 2019. [Online]. [Accessed Oct. 31, 2019].
https://dialogflow.com/

[37] “Dragon Speech Recognition - Get More Done By Voice | Nuance,” Nuance
Communications Inc, 2019. [Online]. [Accessed Oct. 31, 2019].
https://www.nuance.com/dragon.html

[38] “Cloud Speech-to-Text,” Google Cloud, 2019. [Online]. [Accessed Oct. 31, 2019].
https://cloud.google.com/speech-to-text/

[39] “What is speech-to-text?,” Microsoft Azure, July 4, 2019. [Online]. [Accessed Oct.
31, 2019]. https://docs.microsoft.com/en-us/azure/cognitive-services/speech-
service/speech-to-text

[40] “Amazon Transcribe - Automatic Speech Recognition,” Amazon Web Services,
2019. [Online]. [Accessed Oct. 31, 2019]. https://aws.amazon.com/transcribe/
https://engineering.fb.com/ai-research/wav2letter/

[41] S. Sreelekha, “Statistical Vs Rule Based Machine Translation: A Case Study on
Indian Language Perspective,” Dept. Comp. Sci. & Eng., Indian Institute of
Technology, Bombay, India, Aug. 12, 2017. [Online]. [Accessed Oct. 11,
2019]. https://arxiv.org/abs/1708.04559

[42] “What is Machine Translation? Rule Based Machine Translation vs. Statistical
Machine Translation,” SYSTRAN, 2016. [Online]. [Accessed Oct. 11, 2019].
http://www.systransoft.com/systran/translation-technology/what-is-machine-
translation/

[43] “What is Rules Based Machine Translation (RBMT)?,” Omniscien Technologies,
Asia Online Pte Ltd, n.d. [Online]. [Accessed Oct. 11, 2019].
https://omniscien.com/rules-based-machine-translation/

[44] C. Dove, O. Loskutova, and R. de la Fuente, “What’s Your Pick: RbMT, SMT, or
Hybrid?,” in Proceedings of the 11th Conference of the Association for Machine
Translation in the Americas, AMTA 2012, San Diego, CA, Oct. 28-Nov. 1, 2012.
Machine Translation Archive, Nov. 7, 2012. [Online]. [Accessed Oct. 11, 2019].
http://www.mt-archive.info/AMTA-2012-Dove.pdf

Page 132
 Group 14 Final Report

[45] “What is Statistical Machine Translation (SMT),” Omniscien Technologies, Asia
Online Pte Ltd, n.d. [Online]. [Accessed Oct. 11,
2019]. https://omniscien.com/?faqs=what-is-statistical-machine-translation-smt

[46] <removed>
[47] G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. Rush, “OpenNMT: Open-Source

Toolkit for Neural Machine Translation.” Proc. ACL, 2017. [Online]. [Accessed
Sept. 22, 2019.] https://arxiv.org/pdf/1701.02810.pdf

[48] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly
Learning to Align and Translate,” in 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015. arXiv, Sept. 1,
2014. [Online]. [Accessed Sept. 30, 2019]. https://arxiv.org/abs/1409.0473

[49] “Neural Machine Translation,” San Francisco, CA: Deep AI, Inc, May 17, 2019.
[Online]. [Accessed Oct. 11, 2019]. https://deepai.org/machine-learning-glossary-
and-terms/neural-machine-translation

[50] M.L. Forcada et al., “Apertium: a free/open-source platform for rule-based machine
translation,” J. Machine Translation, vol. 25, no. 2, June 2011. pp. 127-144.
Dordrecht, Netherlands: Springer Netherlands. [Online]. [Accessed Oct. 11,
2019].
https://www.jstor.org/stable/41487458?seq=1#metadata_info_tab_contents

[51] P. Koehn et al., “Moses: Open Source Toolkit for Statistical Machine Translation,”
in Proceedings of the 45th Annual Meeting of the Association for Computational
Linguistics Companion Volume Proceedings of the Demo and Poster Sessions,
ACL 2007, Prague, Czech Republic, June 25-27, 2007. ACL Anthology, 2007.
pp. 177-180. [Online]. [Accessed Oct. 11,
2019]. https://www.aclweb.org/anthology/P07-2045/

[52] D. Takamori, “Apache Joshua Home,” Atlassian: Confluence, Mar. 22, 2019.
[Online]. [Accessed Oct. 11, 2019].
https://cwiki.apache.org/confluence/display/JOSHUA/

[53] J. González and F. Casacuberta, “GREAT: open source software for statistical
machine translation,” J. Machine Translation, vol. 25, no. 2, June 2011.
Dordrecht, Netherlands: Springer Netherlands, Aug. 28, 2011.
https://link.springer.com/article/10.1007/s10590-011-9097-6

[54] C.H. Lee, “Speech Recognition and Production by Machines,” International
Encyclopedia of the Social & Behavioral Sciences, ed. 2. pp. 259-263. [Online].
Elsevier: Science Direct, 2015. [Online]. [Accessed Oct. 31, 2019].
https://www.sciencedirect.com/science/article/pii/B9780080970868520236

[55] P. Birkholz, “About Articulatory Speech Synthesis,” VocalTractLab, 2017.
[Online]. [Accessed Oct. 31, 2019].
http://www.vocaltractlab.de/index.php?page=background-articulatory-synthesis

[56] J.O. Smith III, “Formant Synthesis Models,” Physical Audio Signal Processing.
Stanford Univ.: Center for Computer Research in Music and Acoustics, July 30,
2019. [Online]. [Accessed Oct. 31, 2019].
https://ccrma.stanford.edu/~jos/pasp/Formant_Synthesis_Models.html

[57] J. Yamagishi, “An Introduction to HMM-Based Speech Synthesis,” Univ. of
Edinburgh,

Page 133
 Group 14 Final Report

Oct. 2006. [Online]. [Accessed Oct. 31, 2019].
https://wiki.inf.ed.ac.uk/twiki/pub/CSTR/TrajectoryModelling/HTS-
Introduction.pdf

[58] R.E. Remez, “Sine-wave speech,” Scholarpedia, 2008. [Online]. [Accessed Oct. 31,
2019].
http://www.scholarpedia.org/article/Sine-wave_speech

[59] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N.
Kalchbrenner, A. Senior, and K. Kavukcuoglu, “WaveNet: A Generative Model
for Raw Audio,” Cornell University: arXiv, September 12, 2016. [Online].
[Accessed Oct. 31, 2019]. https://arxiv.org/abs/1609.03499

[60] U. Saxena, “Speech Synthesis Techniques using Deep Neural Networks,” Medium,
October 21, 2017. [Online]. [Accessed Oct. 31, 2019].
https://medium.com/@saxenauts/speech-synthesis-techniques-using-deep-neural-
networks-38699e943861

[61] I. Steiner et al. “Mary Text-to-Speech,” Saarland Univ.: Language Technology Lab
and Institute of Phonetics, 2018. [Online]. [Accessed Oct. 31, 2019].
http://mary.dfki.de/documentation/overview.html

[62] “eSpeak: Speech Synthesizer,” SourceForge, 2017. [Online]. [Accessed Oct. 31,
2019]. http://espeak.sourceforge.net

[63] P.A. Taylor, A. Black, and R. Caley, “The architecture of the festival speech
synthesis system,” in the Third ESCA Workshop in Speech Synthesis, SSW3 1998,
Blue Mountains, Australia, November 26-29, 1998. pp. 147-151. [Online].
[Accessed Oct. 31, 2019]. http://www.cstr.ed.ac.uk/projects/festival/

[64] “Cloud Text-to-Speech,” Google Cloud, 2019. [Online]. [Accessed Oct. 31, 2019].
https://cloud.google.com/text-to-speech/

[65] “Text to Speech API,” Microsoft Azure, 2019. [Online]. [Accessed Oct. 31, 2019].
https://azure.microsoft.com/en-us/services/cognitive-services/text-to-speech/

[66] “Amazon Polly - Turn text into lifelike speech using deep learning,” Amazon Web
Services, 2019. [Online]. [Accessed Oct. 31, 2019].
https://aws.amazon.com/polly/

[67] “Speech to Text Conversion,” Vocapia Research, 2019. [Online]. [Accessed Nov.
15, 2019]. https://www.vocapia.com/speech-to-text.html

[68] Z. Feng and H. Nian, “NiuTrans: A Statistical Machine Translation System,”
NiuTrans, April 16, 2014. [Online]. [Accessed Nov. 15, 2019].
http://www.niutrans.com/niutrans/NiuTrans.html

[69] “Watson Language Translator,” IBM, 2019. [Online]. [Accessed Nov. 15, 2019].
https://www.ibm.com/watson/services/language-translator/

[70] B. Scott and A. Barreiro, “OpenLogos MT and the SAL Representation
Language,” Repositorio Institucional de la Universidad de Alicante, Nov. 2009.
[Online]. [Accessed Nov. 15, 2019] http://hdl.handle.net/10045/12023

[71] “Translation API Documentation,” Google Cloud, 2019. [Online]. [Accessed Nov.
15, 2019]. https://cloud.google.com/translate/docs/

[72] “Microsoft Translator Text API,” Microsoft, 2019. [Online]. [Accessed Nov. 15,
2019]. https://www.microsoft.com/en-us/translator/business/translator-api/

[73] “Machine Translation,” Yandex LLC, 2019. [Online]. [Accessed Nov. 15, 2019].
https://yandex.com/company/technologies/translation/

Page 134
 Group 14 Final Report

[74] “Welcome to SYSTRAN.io,” SYSTRAN, 2015. [Online]. [Accessed Nov. 15,
2019]. https://platform.systran.net/index

[75] “GramTrans,” GrammarSoft ApS, 2019. https://gramtrans.com
[76] “PROMT Neural Translation Server 19 is a multi - functional translation system,”

PROMT LLC, 2019. [Online]. [Accessed Nov. 15, 2019].
https://www.promt.com/translation_software/corporate/promt-translation-server-
neural/

[77] “Babylon Translation Software and Dictionary Tool,” Babylon Software Ltd.
[Online]. [Accessed Nov. 15, 2019]. https://www.babylon-
software.com/translation_software

[78] “IdiomaX Review,” business.com, May 20, 2019. [Online]. [Accessed Nov. 15,
2019]. https://www.business.com/reviews/idiomax/

[79] F. Shaikh, “Why are GPUs necessary for training Deep Learning models?,”
Analytics Vidhya, May 28, 2017. [Online]. [Accessed Oct. 10, 2019].
https://www.analyticsvidhya.com/blog/2017/05/gpus-necessary-for-deep-
learning/

[80] F. Fallahlalehzari, “FPGA vs GPU for Machine Learning Applications: Which one
is better?,” Aldec Inc. [Online]. [Accessed Sept. 30, 2019].
https://www.aldec.com/en/company/blog/167--fpgas-vs-gpus-for-machine-
learning-applications-which-one-is-better

[81] S. Deoras, “GPU vs. FPGA: The Battle For AI Hardware Rages On,” Analytics
India Magazine, Dec. 31, 2018. [Online]. [Accessed Sept. 30, 2019].
https://analyticsindiamag.com/gpu-vs-fpga-the-battle-for-ai-hardware-rages-
on/amp/

[82] D. Steinkraus, I. Buck, and P.Y. Simard, “Using GPUs for Machine Learning
Algorithms,” in Proceedings of the 2005 Eighth International Conference on
Document Analysis and Recognition, ICDAR 2005, Seoul, South Korea, Aug. 31-
Sept. 1. pp. 1115-1120. IEEE Xplore, Jan. 16, 2006. [Online]. [Accessed Oct. 10,
2019]. https://ieeexplore.ieee.org/document/1575717

[83] “Understanding How a Voltage Regulator Works,” Analog Devices, 2019.
[Online]. [Accessed Dec. 4, 2019]. https://www.analog.com/en/technical-
articles/how-voltage-regulator-works.html

[84] “Linear and Switching Voltage Regulators – An Introduction,” Predictable
Designs, 2019. [Online]. [Accessed Dec. 3, 2019].
https://predictabledesigns.com/linear-and-switching-voltage-regulators-
introduction/

[85] EEE4309 Lab Manual
[86] “What is Unreal Engine 4,” Epic Games, Inc, 2019. [Online]. [Accessed Oct. 28,

2019]. https://www.unrealengine.com/en-US/
[87] “Unreal Engine | Features,” Epic Games, Inc, 2019. [Online]. [Accessed Oct. 28,

2019]. https://www.unrealengine.com/en-US/features
[88] “Unreal Engine | EULA,” Epic Games, Inc, 2019. [Online]. [Accessed Oct. 28,

2019]. https://www.unrealengine.com/en-US/eula
[89] D. Takahashi, “Unity Technologies CTO declares the company isn’t up for sale,”

VentureBeat, Oct 16, 2014. [Online]. [Accessed Oct. 29, 2019].

Page 135
 Group 14 Final Report

https://venturebeat.com/2014/10/16/unity-cto-declares-the-company-isnt-up-for-
sale/

[90] “Unity 2019: Performance by default, high-fidelity real-time graphics, and artist
tools,” Unity Technologies, 2019. [Online]. [Accessed Oct. 28, 2019].
https://unity3d.com/unity?_ga=2.189971691.1333607966.1572374500-
54223329.1572153467#editor

[91] “Unity Software Additional Terms - Unity,” Unity Technologies, 2019. [Online].
[Accessed Oct. 29, 2019]. https://unity3d.com/legal/terms-of-service/software

[92] “FAQ New Subscription - Unity,” Unity Technologies, 2019. [Online]. [Accessed
Oct. 28, 2019]. https://unity3d.com/unity/faq

[93] Daniru17, “HiguchiM,” MikuMikuDance Wiki, June 23, 2011. [Online]. [Accessed
Oct. 28, 2019]. https://mikumikudance.fandom.com/wiki/HiguchiM

[94] “Learn MikuMikuDance - The MMD Instructions you always wanted!,”
LearnMMD.com. [Online]. [Accessed Oct. 29, 2019]. https://learnmmd.com/

[95] “About - blender.org,” Blender, 2019. [Online]. [Accessed Oct. 31, 2019].
https://www.blender.org/about/

[96] “Requirements - blender.org,” Blender, 2019. [Online]. [Accessed Oct. 31, 2019].
https://www.blender.org/download/requirements/

[97] “License - blender.org,” Blender, 2019. [Online]. [Accessed Oct. 31, 2019].
https://www.blender.org/about/license

[98] “Godot Engine - Free and open source 2D and 3D game engine,” Godot, 2019.
[Online]. [Accessed Nov. 14, 2019]. https://godotengine.org/

[99] “What specs are good for a computer that you are planning to use godot with?,”
Godot Engine Q&A, Feb. 4, 2018. [Online]. [Accessed Nov. 14, 2019].
https://godotengine.org/qa/23206/what-specs-are-good-for-computer-that-
planning-use-godot-with

[100] Adafruit Industries, “Mini USB Microphone” 3367 datasheet, Feb. 2017. [Online].
[Accessed Nov. 13, 2019].
https://media.digikey.com/pdf/Data%20Sheets/Adafruit%20PDFs/3367_Web.pdf

[101] Adafruit Industries, “I2S Output Digital Microphone,” SPH0645LM4H-B
datasheet, 2015. [Online]. [Accessed Nov. 13, 2019]. https://cdn-
shop.adafruit.com/product-files/3421/i2S+Datasheet.PDF

[102] Knowles, “Top Port SiSonic Microphone,” SPW2430HR5H-B datasheet, Feb.
2014. [Online]. [Accessed Nov. 14, 2019].
https://www.knowles.com/docs/default-source/model-downloads/spw2430hr5h-
b.pdf

[103] Analog Devices, “Omnidirectional Microphone with Bottom Port and Analog
Output,” ADMP401 datasheet, 2012. [Online]. [Accessed Nov. 14, 2019].
https://www.analog.com/media/en/technical-documentation/obsolete-data-
sheets/ADMP401.pdf

[104] I.R. Titze, “Principles of Voice Production,” Prentice Hall, Mar. 1994.
[105] “Buy the Latest Jetson Products | NVIDIA Developer,” NVIDIA Corporation,

2019. [Online]. [Accessed Nov. 8, 2019]. https://www.nvidia.com/en-
us/autonomous-machines/jetson-store/

[106] “10.1" Display & Audio 1280x800 IPS - HDMI/VGA/NTSC/PAL,” Adafruit,
2019. [Online]. [Accessed Oct. 31, 2019]. https://www.adafruit.com/product/1694

Page 136
 Group 14 Final Report

[107] “Sceptre 20” 75Hz LED Monitor HDMI VGA Build-in Speakers, Brushed Black
2019 (E205-16003S),” Amazon.com, Jan. 2019. [Online]. [Accessed Oct. 31,
2019]. https://www.amazon.com/Sceptre-Monitor-Speakers-Brushed-E205W-
16003S/dp/B07MLGGHTP/

[108] “UPERFECT 12.3-inch Touch Display Portable Monitor 10 Point Capacitive
Touchscreen 1600×1200 Resolution PC Display 4:3 60HZ Speakers VESA for
Security Camera Laptop Phone Mac Raspberry Pi PS4 Nintendo,” Amazon.com,
Jan. 2019. [Online]. [Accessed Oct. 31, 2019].
https://www.amazon.com/UPERFECT-12-3-inch-
Touchscreen1600%C3%971200-Resolution/dp/B07N4LB7FT

[109] “Simple RF T4 Receiver - 315MHz Toggle Type,” Adafruit, 2019. [Online].
[Accessed Nov. 14, 2019]. https://www.adafruit.com/product/1097

[110] “Keyfob 2-button RF Remote Control - 315MHz,” Adafruit, 2019. [Online].
[Accessed Nov. 14, 2019]. https://www.adafruit.com/product/1391

[111] “Intel Dual Band Wireless-AC 8265 Product Brief,” Intel Corporation, 2016.
[Online]. [Accessed Dec. 4, 2019].
https://www.intel.com/content/dam/www/public/us/en/documents/product-
briefs/dual-band-wireless-ac-8265-brief.pdf

[112] K. Shaw, “The OSI model explained: How to understand (and remember) the 7
layer network model,” Network World, Oct. 22, 2018. [Online]. [Accessed Nov.
1, 2019]. https://www.networkworld.com/article/3239677/the-osi-model-
explained-how-to-understand-and-remember-the-7-layer-network-model.html

[113] G. Phillips, “The Most Common Wi-Fi Standards and Types Explained,”
MakeUseOf, Mar. 13, 2019. [Online]. [Accessed Nov. 1, 2019].
https://www.makeuseof.com/tag/understanding-common-wifi-standards-
technology-explained/

[114] J.D. Allen, Ed., The Unicode Standard: The Unicode Consortium. Boston, MA:
Pearson Education Inc, 2007.

[115] “CUDA C Programming Guide,” NVIDIA, Oct. 2012. [Online]. [Accessed Nov.
15, 2019]. https://www3.nd.edu/~zxu2/acms60212-
40212/CUDA_C_Programming_Guide.pdf

[116] N. Botros, “HDL With Digital Design: VHDL and Verilog,” Dulles, VA: Mercury
Learning and Information, 2015.

[117] IEEE Standard for Verilog Hardware Description Language, IEEE Standard 1364,
2005.

[118] System Verilog for Quality of Results (QoR), IEEE Standard 1800, 2008.
[119] IEEE Standard for SystemVerilog--Unified Hardware Design, Specification, and

Verification Language, IEEE Standard 1800, 2017.
[120] K. Papineni, S. Roukos, T. Ward, and W.J. Zhu, “BLEU: a Method for Automatic

Evaluation of Machine Translation,” in Proceedings of the 40th Annual Meeting
of the Association for Computational Linguistics, ACL 2002, Philadelphia, PA,
July 2002. pp. 311-318. ACL Anthology. [Online]. [Accessed Oct. 18, 2019].
https://www.aclweb.org/anthology/P02-1040/

[121] “R/pred.score.R,” predictionnet, May 6, 2019. [Online]. [Accessed Oct. 18, 2019].
https://rdrr.io/bioc/predictionet/src/R/pred.score.R

[122] V. Nguyen, G. Klein, and SeisQ, “Metrics (Bleu, ppl, gold ppl, pred ….),”

Page 137
 Group 14 Final Report

OpenNMT Forum, March 2017. [Online]. [Accessed Oct. 18, 2019].
http://forum.opennmt.net/t/metrics-bleu-ppl-gold-ppl-pred/249

[123] AntoViral, “Predictive R-squared according to Tom Hopper,” RPubs, Aug. 16,
2015. [Online]. [Accessed Oct. 18, 2019]. https://rpubs.com/RatherBit/102428

[124] M. Zambrano-Bigiarini, “nrmse function,” RDocumentation, Aug. 8, 2017.
[Online]. [Accessed Oct. 18, 2019].
https://www.rdocumentation.org/packages/hydroGOF/versions/0.3-
10/topics/nrmse

[125] S. Boughorbel, F. Jarray, and M. El-Anbari, “Optimal classifier for imbalanced
data using Matthews Correlation Coefficient metric,” San Francisco, CA: PLOS
ONE, June 2, 2017. [Online]. [Accessed Oct. 19, 2019].
https://doi.org/10.1371/journal.pone.0177678

[126] C.Y. Lin, “ROUGE: A Package for Automatic Evaluation of Summaries,” in
Proceedings of the ACL-04 Workshop, W04-10 2004, Barcelona, Spain, July 25-
26, 2004. pp. 74-81. ACL Anthology, June 15, 2004. [Online]. [Accessed Oct. 18,
2019]. https://www.aclweb.org/anthology/W04-1013/

[127] “Summary of the HIPAA Security Rule,” Washington, D.C.: U.S. Dept. of Health
and Human Services, Office for Civil Rights, July 26, 2013. [Online]. [Accessed
Oct. 18, 2019]. https://www.hhs.gov/hipaa/for-professionals/security/laws-
regulations/index.html

[128] “Summary of the HIPAA Privacy Rule,” Washington, D.C.: U.S. Dept. of Health
and Human Services, Office for Civil Rights, July 26, 2013. [Online]. [Accessed
Oct. 18, 2019]. https://www.hhs.gov/hipaa/for-professionals/privacy/laws-
regulations/index.html

[129] I2C-Bus Specification and User Manual, NXP Semiconductors, standard
UM10204, 1986. Rev. 06, Apr. 4, 2014.

[130] I2S-Bus Specification, NXP Semiconductors, 1986. Revised June 5, 1996.
[131] Universal Serial Bus Specification, Compaq, Intel, Microsoft, NEC. Rev. 1.1, Sept.

23, 1998.
[132] Universal Serial Bus Specification, Compaq, Hewlett-Packard, Intel, Lucent,

Microsoft, NEC, Philips. Rev. 2.0, April 27, 2000.
[133] Universal Serial Bus 3.0 Specification, Hewlett-Packard Company, Intel

Corporation, Microsoft Corporation, NEC Corporation, ST-NXP Wireless, Texas
Instruments. Rev. 1.0, Nov. 12, 2008.

[134] Universal Serial Bus 3.1 Specification, Hewlett-Packard Company, Intel
Corporation, Microsoft Corporation, Renesas Corporation, ST-Ericsson, Texas
Instruments. Rev. 1.0, July 26, 2013.

[135] Universal Serial Bus 4 (USB4™) Specification, Apple Inc., Hewlett-Packard Inc.,
Intel Corporation, Microsoft Corporation, Renesas Corporation,
STMicroelectronics, Texas Instruments. Rev. 1.0, August 2019.

[136] T. Fisher, “USB: Everything You Need to Know,” Lifewire, Nov. 13, 2019.
[Online]. [Accessed Nov. 15, 2019]. https://www.lifewire.com/universal-serial-
bus-usb-2626039

[137] T. Mayor, “Ethics and automation: What to do when workers are displaced,” MIT

Page 138
 Group 14 Final Report

Management, Sloan School, July 8, 2019. [Online]. [Accessed Nov. 14, 2019].
https://mitsloan.mit.edu/ideas-made-to-matter/ethics-and-automation-what-to-do-
when-workers-are-displaced

[138] P. Khargonekar and M. Sampath, “Socially Responsible Automation: A
Framework for Shaping the Future,” EmTech Next, June 12, 2019. [Online
Video]. [Accessed Nov. 14, 2019].
https://events.technologyreview.com/video/watch/pramod-khargonekar-meera-
sampath-socially-responsible-automation/

