

ASLBoT – Assistive Sign

Language Bot Translator

Gustavo Camero, Luis Hurtado, Michael Loyd, and Jared

Spinks

Department of Electrical and Computer Engineering

University of Central Florida

Abstract—Human interpreters are relied upon by the sign

language community for interpretation of the English language.

However, this method of used in order to translate English to the

appropriate sign language results in high costs, reliability, and

availability issues. With major advances in animation programing

and machine translation new avenues may now be taken help this

community obtain the reliable and responsive sign language

translations. Herein, we provide a novel approach to translating

English into the animated sign language version providing a low-

cost alternative. This novel approach is composed of using small

corpora and our own developed training framework. A neural

machine translation (NMT) model is trained to translate from

English to ASL-Gloss and a Unity script generates the

corresponding sign language animation tied to the ASL-Gloss

translation. ASLBoT aims to be the first product on the market

that can translate between English to American Sign Language

while providing a cost-effective, easy-to-use and reliable

translation for people with hearing disabilities.

Keywords—Neural machine translation, American Sign

Language, 3D graphics rendering, Unity Engine.

I. INTRODUCTION

Translation provides the channel for maintaining a
meaningful conversation between two individuals who speak
different languages. Human based translations have been widely
applied in many aspects of society including the financial,
medical, legal, and travel industries. The process of translating
through human interpreters, however, proves to be
erratic, difficult to arrange, and expensive. In a hospital setting
between a doctor and the patient, a human interpreter listens to
the patient speak for several minutes and then provides a
summary of the dialogue to the doctors. This abridged response
that the interpreter provides the doctor may omit important
information of symptoms, medical history, and other details that
are critical. Therefore, this lack of information may “lead to
misdiagnosis and improper or delayed medical treatment”. This
issue has been also seen in classroom settings where deaf
students enrolled in a normal classroom environment require a
robust translation rather than an abridge translation. Research
has shown in a High School environment the performance of
Deaf Students vs Hearing Students in terms of grades. The
research concluded that Deaf Students performed poorly due to
poor quality interpretation services provided by the school.
Additionally, there are multiple cases that patients don’t get up
to standard interpretation services provided by the Hospital’s
translation. This is most evident with deaf people as hospitals
have moved to online interpreting services, requiring continuous
Internet connectivity and high upkeep due to the contract
signings. Since 2011, there have been multiple court cases

regarding interpreting services for deaf hospital patients in
which some cases have settled in the sum of $70,000. Moreover,
in recent years, deaf students have been facing with the issue of
fast responsiveness as the request of ASL interpretation services
enabled by the Services for Students with Disabilities requires
at least a three-day notice. Thus, the need for a more accurate,
responsive, read to use, and low-cost translation system is
required for such applications.  

Neural machine translation (NMT) provides the next
generation of real time translation with minimal errors. NMTs
have proven to be useful for its flexible deployment and its
ease of use. While they require large data sets to function
properly, there are open-source NMTs that can be used for
product commercialization. However, these NMTs only
perform the translations for spoken languages and don’t
consider sign languages such as the American Sign Language
(ASL). People who are congenitally deaf or have never
developed an understanding of spoken language use ASL as
their primary language. They don’t develop the same
understanding of the language as an individual who is able to
listen and speak the language. Thus, an any-to-text translation is
not enough for people that have the disability. This is where the
NMT algorithms’ primary ability to translate any-to-text
falls short of providing the service to ASL users. In this
document, we are proposing a real time translator with virtual
ASL interpretation. This device will be designed to require
minimal overhead, low budget, and be accurate on speech
acquisition and translation delivery. In addition, the device will
deliver real time translations such that conversations
between both users are continuous with no wait on the
translation. The functionality of the translator is to provide two
translation modes: Speech-to-ASL Translation (SAT) mode,
and Speech-to-Text Translation (STT) mode. The SAT mode
will focus on translating spoken language to ASL, while the SST
mode will focus on conventional translation from Speech to Text
to provide further insights on the English to ASL translation. 

Our proposed real time translator with ASL interpretation
bridges the gap between universal machine translation and
physical human translation. This is critical in modern
society where the greater population, including those with
disabilities, rely on advanced artificial intelligence to enrich
their daily lives. The goal of our Assistive Sign Language Bot
Translator (ASLBoT) is to provide a user friendly experience,
effective sign language rendering and a high-level of accuracy.
Ultimately, ASLBoT aims to provide students with hearing
disabilities the capability to provide effortless and natural
communication within classroom environments.

II. GOALS FOR ASLBOT

Based on our research findings, the main objective and

overall goal of the ASLBoT is to be able to translate from

English Speech to American Sign Language (ASL). To achieve

this, the system will use a neural machine translation model

using only small corpora and the proposed training framework

found in this paper. The system has to perform Speech-to-Text

and Speech-to-ASL language translations. To achieve Speech-

to-Text translation, the system requires wireless capabilities to

access cloud-based services. The system will indicate the

1. The avatar model, Amane Kisora-chan, was designed by SapphiArt Co. and is used in this project under the Extension Asset License provided by Unity.

current status of the system through LEDs and LCDs. To

provide reliable translations, the system will capture audio

recording from the user on real-time. To make the system more

interactive, the system allows the user to dictate when to start

the recording process and when to stop it. Finally, the system

will display real-time rendering animation of the sign language

gestures of the user input sentence. Additionally, to show

transparency of the system, the system will show the original

English sentence and the ASL translated sentence.

Our engineering requirement specifications are based on the

goals and objectives set above. The microphone requirement

for our system needs to be able to operate in the voice frequency

range (300Hz to 3kHz). The memory size of our system needs

to around 32GB so that it can hold the animation rendering of

the ASL gestures locally. The system will require at maximum

32 W of power. The translation accuracy of the system is 20%

on BLEU score. The response of the system should be less than

5 seconds. The vocabulary of the model should be larger than

50 words to add complexity in the sentence. The NMT data set

should be less than 1000 entries to signify the use of small

corpora.

III. PROJECT DESCRIPTION

A. Machine Translation

For proper execution of interlingual translation, the system
must be able to recognize the context of a given sentence or
paragraphs. For example, word-by-word translation is not
sufficient to produce an accurate translation. Thus, machine
learning is required to perform the complex task of text-to-text
translation. Machine translation was used for translating English
to ASL-Gloss, where ASL-Gloss is a written form of ASL where
gestures are marked by their equivalent English word or phrase.
In this project, the English text generated by the Watson Speech-
to-Text API from an audio file is directly passed into the
machine translation system and translated into ASL-Gloss.

Within machine translation, there are several different
approaches, with each approach providing a different algorithm
for achieving the translation. The most common approaches are
rule-based, statistical, and neural machine translation. Each
machine learning method aims to translate the source sentence
into a target sentence while accounting for the necessary context
of the original sentence to produce an accurate translation. In
other words, the meaning of the input text in one must be fully
realized in the output text in another language [1].

Rule-based machine translation (RBMT) and statistical
machine translation (SMT) were initially considered but
ultimately not used for the translation in this project from
English to ASL-Gloss. RBMT relies on a sizeable amount of
built-in linguistic rules and requires the availability of millions
of bilingual dictionaries [1]. This approach was not feasible
because large amounts of time and effort would be required to
produce a database of rules for ASL-Gloss. This method would
not be able to guarantee a successful translation from English to
ASL-Gloss since this approach requires modification of the
linguistic rules. SMT also proved to not be feasible since this
method relies on creating several statistical models that rely
heavily on existing multilingual corpora [1]. The computation of

statistical models is also known to be CPU-intensive and
requires custom hardware configuration. Therefore, creating a
large multilingual corpus for English to ASL-Gloss would not
be possible using this method.

The last approach was neural machine translation (NMT),
and this method proved to be the most appropriate approach for
the English to ASL-Gloss required in this project. NMT is a
more modern approach to machine translation and large tech
companies have already switched from SMT to NMT due to its
proffered fluent translations. This method produces a single
neural network with weights tuned through the training process
rather than developing several models like in SMT [2]. This
method also has the ability to maintain the context of a given
sentence, which is not possible with the RBMT and SMT
approaches. NMT achieves this by using sequence-to-sequence
(seq2seq) based models. The seq2seq models are designed to
have an encoder, an encoder vector, and decoder. Both the
encoder and decoder of the seq2seq are made up of recurrent
neural networks (RNNs). These RNNs allow the neural network
to receive a series of inputs without having a predetermined
number of inputs [3], which is critical for machine translation
since the amount of words in a given sentence is arbitrary. RNNs
also include a hidden state vector that maintains the context of
the previous inputs and outputs. This hidden layer is what allows
the NMT model to give context to each word that would be
translated, allowing for a more natural translation. The seq2seq
models have the encoder RNN collect data and pushes it
forward. The encoder vector then captures the information from
all inputs of the encoder to provide the decoder with additional
assistance in translating [4]. The decoder then delivers the final
translation using the similar RNNs approach as the encoder.
Seq2seq models are popular because of their ability to process
despite having the input and output at different lengths since
they are not associated.

The downside to using an NMT system for the translation is
that a GPU is required for training the NMT model. The model
also often requires a large training set such that the appropriate
weights are reached, and a more natural translation occurs. The
large training corpora issue was mitigated in this project through
a two-step approach that allowed the NMT model to focus on
particular words and cluster of words. This led to a more
appropriate translation of English to ASL-Gloss without the use
a large training corpus.

IV. SYSTEM COMPONENTS

The system is composed of many different components that

connect and interface together to form the final product. This

section provides technical details for each one of these

components.

A. Microcontroller

The brain of the printed circuit board is a TI

MSP430FR6922IG56R. The MSP430 family was chosen for its

universal serial communication (USC) port, high capacity

memory, and large number of general-purpose input and output

pins. The chip runs at 16 MHz allowing for multiple operations

to be done in quick succession, which is a vital quality for our

system. The Universal Serial Communication port supports I2C,

SPI, and UART serial communication. The integrated

1. The avatar model, Amane Kisora-chan, was designed by SapphiArt Co. and is used in this project under the Extension Asset License provided by Unity.

development environment, Code Composer Studio, along with

an MSP-EXP430FR6989 programmer, was used to develop,

debug, and program the chip.

B. Single Board Computer

The powerhouse of the system is the UDOO x86 II

Advanced Plus, which is a single board computer. This board

was chosen for its x86_64 architecture which was required to

run Unity-based applications such as ASLBoT, the application

used in this project. The board features an Intel Celeron quad-

core processor, 4G of RAM, an Intel HD Graphics card, and an

Arduino Leonardo MCU that is connected to the processor by

an internal USB connection. In addition, the board supports

serial communications through the pins with protocols such as

I2C, UART and SPI. The UDOO x86 II has 32 GB of internal

storage with a microSD card slot to expand the memory, if

desired. Furthermore, the board features several interfacing

options such as USB 3.0, HDMI, and Arduino pinouts. The

integrated Arduino unit allows for easy communication

between the microcontroller unit and the Unity application

running on the UDOO board.

C. Microphone

The Blue Snowball microphone is used to record audio

snippets to be processed and translated. This microphone was

chosen because of its easy-to-use digital interface and seamless

integration into the system. Its wide frequency range of 40 Hz

to 18 KHz ensures that the user’s voice could be picked up. It

also features different audio detection patterns that allow for

this microphone to be used in a variety of situations. The

Snowball is connected and powered via USB and is plugged

directly into the UDOO. The microphone does not require

drivers to use, making setup effortless.

D. LCD Display

The LCD display for this project is a 2-line, 16-character

display with blue backlighting. It takes a 5-V power supply and

is used in 4-bit mode. Built into the module is a HD44780

controller, which allows for the microcontroller unit to program

it. The display is used to indicate the status of the microphone

to the user.

E. IR Sensor

The IR sensor for this project is a TSOP38238. This sensor

can be powered at any voltage between 3 and 5 V and is tuned

to 38 KHz making it perfect for the product. Also featured is

improved ambient light and noise immunity, improving the

final product’s use in classroom settings. Furthermore, the IR

codes are automatically demodulated as they arrive at an IR

diode, allowing the signals to be much easier for the

microcontroller unit to decode.

V. PCB DESIGN & UTILIZATION

Figure 1 shows the hardware block diagram of the final

product. The system was powered by a 12-V, 3-A DC power

source that plugs directly into the SBC board through a banana

plug. Connected to the SBC is the display, microphone, and the

printed circuit board which was used as a control board. The

system display was powered by its own power supply, while

the microphone was powered through its USB port.

Furthermore, audio for the system was sent to the display’s

integrated speakers via an HDMI cable. The control board was

connected to the single board computer by a 2-wire I2C

connection as well as 5-V power and ground connections for

the board.

The 5-V power line from the UDOO was sent to the 16-

character 2-line LCD display and IR sensor connected to

control board. Furthermore, the 5-V power line was connected

to an AMS1117 3.3 V regulator that stepped down the voltage

from 5 V to 3.3 V for powering the MCU located on the control

board.

The MCU was programmed to perform key functions for

the system. Inputs were taken from the user in the form of

button presses and an IR receiver. When a button on the IR

remote was pressed, the MCU transmitted a series of codes over

the I2C connection that waked the system from sleep and

automatically signed into Windows. Furthermore, when the

start button on the PCB was pressed, the MCU sent a signal to

the SBC that was translated as a keyboard press and made the

system begin recording. A similar signal was sent when the stop

button was pressed on the PCB, but instead signals for the game

to stop the recording and begin translating the captured audio

file. After these signals were sent to the SBC, an acknowledge

signal will have been sent back and read by the control board.

The final input was a reset button that is used in the case that an

unexpected state was encountered, and the control board

becomes stuck. The reset button cleared the LCD and was wired

to the reset pin on the MCU.

Outputs on the control board included the LCD display

along with status LEDs. The LCD display showed the current

status of the microphone as either recording or ready. The LEDs

show multiple statuses such as power, recording, transmitting,

and receiving, which were all updated in real time.

Fig. 1. Overall Hardware Block Diagram.

1. The avatar model, Amane Kisora-chan, was designed by SapphiArt Co. and is used in this project under the Extension Asset License provided by Unity.

Shown in Figure 2 is the finalized PCB board. Included on

the board are 7 status LEDs, 3 push buttons, 5 male pin headers,

a voltage regulator, and one MSP430FR6922 MCU. Control of

the contrast of the LCD display was achieved using a 10 kΩ

trimmer resistor that allowed for control of the voltage that was

passed to the V0 pin. Due to shortcomings in the microphone

chosen during the development phase of the PCB, the I2S

microphone was abandoned; this decision resulted in leaving

the ‘MIC1’ header left unused. Furthermore, the micro USB

connector that was planned to power the PCB was not able to

be soldered properly to the board due to its connectors being

too small and brittle. Due to the COVID-19 pandemic, no new

USB connectors for the board could be ordered. However, the

board was designed robustly enough, and the system was able

to be powered through the ‘SBW_conn’ header. Therefore, the

initial board design was able to be used in the final product.

VI. SOFTWARE DETAILS

A. OpenNMT

After deciding to use an NMT as the default machine
translation approach for this project, which NMT system would
be most viable for the purposes of this project needed to be
decided. NMT systems were offered from the larger tech
companies; however, these systems remain strictly proprietary
which would not prevent modifications the system and train a
suitable model to meet the specifications for this project. Open-
source NMT systems were also available, and this style of an
NMT was the main focus when deciding on which system to
choose. After considering various open-source systems,
OpenNMT was chosen due to its necessary provided support
that other software lacked. Other software that were mainly used
for research code did not provide substantial support. OpenNMT
also provided support for the PyTorch and TensorFlow
frameworks, which provide the ability to train and validate the
NMT model from a high-level programming interface. Due to
the arbitrary choice between the PyTorch and TensorFlow
backbones in the scope of this project, the PyTorch framework

was chosen for this project. This OpenNMT software was also
based on the aforementioned seq2seq models.

The NMT presented the challenge of finding a GPU capable
of training the model in a short amount of time. Training with a
CPU would exceed 24 hours for each session and therefore
would not be replicable when several models would need to be
tweaked and re-trained. Google Research’s Colaboratory (abbr.
Colab) was used to overcome the issue of lacking a capable GPU
to train the model. Using Colab allowed code to be written to
and executed on Google’s cloud servers and also use their
available GPU’s at no cost. Colab also provides a Python
environment and therefore allows for simple integration of the
PyTorch framework. Training the NMT model with Google’s
GPU took about 40 minutes per session.

Train the OpenNMT model requires four different text files.
Two of the text files correspond to the English source corpus,
and the other two correspond to the ASL-Gloss target corpus.
Both the source and target corpora contained 516 entries within
each corpus, whereas most training sets for other research teams
contain up to hundreds of thousands of entries. A smaller set of
corpora was used for the validation files in both English and
ASL-Gloss. The validation files had 38 entries for each corpus,
and the model used these files to evaluate the convergence of its
training.

As aforementioned, NMTs require large training corpora in
order to achieve a respectable translation. The unobtainability of
large multilingual corpora for English to ASL-Gloss translations
resulted in the 516-entry corpora. To overcome the lack of such
a large training corpus, a two-step approach was utilized. The
two-step approach included keeping the training corpora to a
specific domain and employing redundancy among the
sentences.

For the first step, the corpora were limited to contain
sentences that were related to the school domain. Therefore, this
restricted the number of words available throughout both
corpora. Choosing the school setting as the primary domain also
allowed for the use of a simpler vocabulary set and more
commonly used sentences. After implementing the first
approach, there showed improvements in the translations;
however, the ASL-Gloss translations were still not acceptable
for the purposes of this project. Two translation examples
English to ASL-Gloss are shown in Figure 3. These two
examples demonstrate that some words such as “Me” and
“Need” are correctly translated but not the rest of the sentence.

Fig. 1. PCB Layout.

 Fig.3. Example of breaking down a sentence from the corpus into smaller

phrases for redundancy.

1. The avatar model, Amane Kisora-chan, was designed by SapphiArt Co. and is used in this project under the Extension Asset License provided by Unity.

The second step was to add to the training corpora
redundancy. This was accomplished by splitting up sentences
already in the corpora into smaller phrases as shown in Figure 3.
Sentences similar to existing sentences were also introduced to
the corpora. This introduction of redundancy greatly improved
the performance of the resulting NMT model. This amelioration
can be attributed to the neural network needing to force itself to
adjust its weights and focus more on the limited and repeated
words within the corpora. An example of the vast improvement
after implementation of the second approach can be seen from
Figure 4. Figure 5A is the previous example still using the first
approach and Figure 5B is the same example using the second
approach. Between these two figures, the addition of approach
two to the training corpora providing a much more accurate and
more acceptable translation can be shown. A similar
improvement can similarly be seen between Figures 5C and 5D.

Evaluation of the performance of the model could have been
done through several available machine translation scoring
techniques. The BLEU score was used to calculate a score for
the English to ASL-Gloss translation model. The BLEU score is
known to be solution that is simple to implement to retrieve a
score; however, this scoring method also include its draw backs
[5]. The main objective of the BLEU score is to compare the n-
grams of both the human-translated reference sentence and the
machine-translated reference sentence [6]. The term “n-gram”
refers to a consecutive string of words within a sentence; for
example, a unigram is one word, a bigram is a set of two
consecutive words, etc. within a sentence. The problem with
using the BLEU score arises from the fact that the overall BLEU
score for one sentence is calculated as the geometric mean of the
all the n-grams calculated for this, where 𝑛 ∈ [1,4] for this
project’s scoring method. Therefore, for shorter sentences
whose word count are less than the highest n-gram (in this case
4-gram), the resulting geometric mean is zero.

Evaluate the BLEU score more accurately was done by
utilizing an open-source script, SacreBLEU. The script provides
additional smoothing techniques that mitigate the issue when a
higher n-gram precision resulted in zero [7]. For the calculation
of the bleu score, a human-translation reference corpus and a
machine-translated corpus were needed. For this project, 40
entries were used from the available corpora. The overall BLEU
score and the subsequent scores for each n-gram match are
shown in Table I, where BLEU-1 refers to the unigram-based
score, BLEU-2 for digram scores, etc. The BLEU scores shown
were multiplied by 100 from their original scores, since the
original scores were given between 0 to 1. A score of 100
implies that the entire set of corpora completely match each
other. Table I shows that the scores for BLEU-1 and BLEU-2
are much higher than the scores for BLEU-3 and BLEU-4. Since
the ASL-Gloss translation is a truncation of English, and shorter
English sentences were used to simplify the training, the
resulting ASL-Gloss corpus was composed of several sentences
containing less than 4 words. Therefore, evaluating the 4-gram
BLEU score resulted in a very small number (nonzero as a result
of the smoothing provided by SacreBLEU). There is a higher
general probability for a unigram match than a digram match, or
a digram match compared to a trigram match, and so on; this is
why the n-gram BLEU scores show a marked decrease as the n-
gram increases. Based on how English to ASL-Gloss

translations function for the purposes of these training sets, the
BLEU-1, BLEU-2, and BLEU-3 scores provide a more
significant overall score than when combined with the
calculated BLEU-4 score.

TABLE I. BLUE SCORE

Bleu Score – Corpora of 40 Entries

Bleu Total Bleu-1 Bleu-2 Bleu-3 Bleu-4

13.81 62.0 30.2 14.1 1.6

B. Unity Engine

 The graphics rendering and user interface was created using
a game built using the Unity 4 Engine. Included with this game
are the game objects, which include a 3D avatar and a text-
displaying canvas. An animation controller was also included to
handle animation transitions and flow. C# scripts were attached
to specific game objects according to the child objects
referenced within each script. These scripts also communicated
with the animator controller and between each other to handle
timing of events within the game.

The game was built as a standard Unity game folder.
Included with this pre-built game was a file folder titled “ASL”
which included two files. The first was a vocabulary text file,
which included a list of line-separated words that would be used
during startup to develop a hash table based on the dictionary
entries available to the OpenNMT model. The second was a file
which included an OpenNMT model for translating text.

Fig. 4. These are two translation examples from English to Gloss using the
first training corpora modification approach. Neither of the attempts were

satisfactory translations.

Fig. 5. Here the first and second approach compared for two translation
examples of English to Gloss. Fig. 5A is translated using a corpora that only

has aproach one, and Fig. 5B was translated with the addition of approach

two. Similarly, Fig. 5C is translated using a corpora with approach one and

Fig. 5D was translated with the addition of approach .two.

1. The avatar model, Amane Kisora-chan, was designed by SapphiArt Co. and is used in this project under the Extension Asset License provided by Unity.

 Overall, the user has three available options while
interfacing with the game. The first option is the START button
on the PCB. Once this button is pressed, the microphone
connected to the computer is enabled to begin recording. The
second option is the STOP button on the PCB. If this button is
pressed while the microphone had been recording, the game will
stop recording from the microphone and proceed with its
background translation and animation processes.

 There are a set of processes that are performed before the
game is initialized and another set of process that are performed
after a WAV file has been generated. The first set of processes
include the microphone initialization, the hash table creation,
and component referencing. The microphone connected to the
computer is initialized before the game starts, which forces the
game to prompt the user to enable microphone privileges. The
hash table is created by reading the vocabulary text file and
associating each word in this file to the corresponding animation
clip in the animation controller.

 The overall software diagram for the system is shown in Fig.
6. The program will start in an idle state waiting for the input of
the user. The user can input three different requests: the “start
recording” request, the “stop recording” request and the “wake-
up” request. All of these options are available through the PCB
as button presses and IR signals.

 Depending on the request, the system will first see if the
board is on a sleep state (or off). The program will not start until
the system is awaken from its sleep state by sending the wake-
up request through an IR signal. After the system is awoken, the
program will now wait for the user to request a “start recording”
process. The background animation and translation processes
include file conversion, command terminal calls, and variable
manipulation. The recording interface was performed using the
Microphone class and AudioSource object available in the
UnityEngine library. The AudioSource object allowed the game
to save an instance of an audio file to the game locally, while the
Microphone class allowed the game to create a WAV file from
an AudioSource object within Unity.

 The Watson Speech-to-Text online API service was utilized
in the script to handle conversion of the generated WAV file to
a transcribed text file in a JSON format. This JSON file contains
the transcript string corresponding to what was spoken in the
microphone recording. This file was declassified and the
transcript string was isolated and written to a text file. This text
file was used as an input to the OpenNMT translate command
which used the trained translation model. The output text file
was read and parsed into a string array, from which the game
could display each text consecutively. After the string array had
been created, any unnecessary files are deleted to prepare the
game for producing the next set of files for a new translation.
These unnecessary files include the WAV file, the JSON file,
and the two text files. The OpenNMT model, however, is kept
as it is required to perform the next translation. Also, the
vocabulary text file is kept since the hash table created upon
starting the game is lost upon exiting the game and must be
initialized using this file at the beginning of every gameplay.

 The animation controller was utilized by taking the
generated string array and evaluating each string in order. The
animations consists of an animation controller and a parameter
list. The animation controller is composed of transitions to
individual states containing a corresponding animation. The
parameter list is composed of triggers which will enable a
transition to the specified animation clip. A trigger is a special
variable type in Unity which operates similar to a Boolean value;
a trigger has a true/false nature similar to a Boolean, but once
the trigger is set to true and is referenced by the animation
controller, the trigger is automatically reset to false.

 As the animation controller parses through the string array,
if a string exactly matches an entry in the hash table, the string
is passed to the animation controller and the corresponding
trigger is set. If the string does not return a match, the string is
further split into a string array; each letter is passed individually
to the animation controller to set the triggers for the individual
letter animations; this is referred as fingerspelling in the sign
language community and is used for words that lack an
applicable gesture in ASL. This hash table mapping is described
in Fig. 7.

 The animation controller starts with an “Entry” block which
immediately transitions to the “IDLE” animation upon starting
the game. At this point, any transition is handled using the “Any
State” block in the controller. All transitions to animations from
this “Any State” block are controlled by a unique trigger
associated only with that transition. The animation controller
utilizes a FIFO stack while processing triggers; i.e., no two
triggers can be set simultaneously despite multiple possible
transitions out of the “Any State” block. While the game is
processing the audio file in the background, the controller
transitions to the “THINKING” state.

Fig. 6. Overall Software Flow Diagram

1. The avatar model, Amane Kisora-chan, was designed by SapphiArt Co. and is used in this project under the Extension Asset License provided by Unity.

 After a string array is made available, the animator controller
sets the corresponding trigger for an animation with respect to
the order of the string array. After iterating through the string
array, the controller transitions back to the “IDLE” animation.
A fragment of the animator controller showing the “Entry”,
“Any State”, “IDLE”, and “THINKING” animations is shown
in Figure 8.

 Every individual animation was created using the animation
clip editor within Unity. Animation clips were created by
manipulating the 3D rotations of specific joints in the avatar.
The bones required for animation of sign language gestures are
shown in Figure 9 under the “Chest” directory. For the purposes
of sign language gesture animations, the only joints utilized in
this bone/joint map are the neck and the entire upper extremities
from the fingers to the shoulders. The model, designed by
SapphiArt Co.1, contains a fairly standard pelvis-to-head
bone/joint structure. Each bone in the bone/joint map is

characterized by its root bone, followed by its child bones which
are directly connected to it. A three-dimensional, global
position, rotation, and size are also attributed to each bone.

 During the recording of a sign language animation, the
starting pose of the gesture was recorded at 0.00 seconds and the
ending pose was recorded at 0.30 seconds temporarily. Key
intermediate poses were also recorded between 0.00 and 0.30.
For a more realistic animation, the timestamps of the final and
intermediate poses were rearranged. Complex gestures, like
ones requiring individual finger rotations that start and end
consecutively, were recorded with an overall starting and ending
pose, but intermediate poses were replaced with intermediate
animation fragments that are blended together.

VII. USER UTILIZATION

Upon starting the game, the user is presented with the avatar
in the foreground and the canvas in the background. The avatar
will continue to display an idle animation until the microphone
starts and finishes a recording. When the user presses the
START button on the PCB, the canvas displays “Recording…”
which prompts the user to speak a sentence into the microphone.
The game waits until the user presses the STOP button on the
PCB, but only the first 30 seconds of recorded audio would be
kept. Once the STOP button is pressed, the avatar displays a
thinking animation while the audio processing occurs. Once
these background processes have finished, the canvas refreshes
to display the English text generated from the Watson Speech-
to-Text API and the sign-language gloss text generated from the
OpenNMT model. While this text is being displayed, the avatar
will perform the corresponding sign-language gestures. Once

Fig. 7. Animation Flow Diagram.

Fig. 8. Animator controller fragment.

Fig. 9s. Bone/joint structure of Unity avatar, Amane Kisora-chan.

1. The avatar model, Amane Kisora-chan, was designed by SapphiArt Co. and is used in this project under the Extension Asset License provided by Unity.

the avatar finishes signing the sentence, she returns to an idle
animation state.

There are two warning messages that will be displayed in the
top-left corner. The first warning message is displayed if the user
attempts to quit the game while the avatar is not in the idle state.
The second warning message is displayed if the user presses the
STOP button without having first pressed the START button;
without the START button being pressed, the microphone does
not start recording.

VIII. CONCLUSION

The novel approach of training an NMT model based on a

much smaller corpora by defining the domain and utilizing

redundancy allowed for the realization of a machine-based

interpreter that can potentially replace the need of human

translators. Due to its cost-effectiveness, ease of use, reliability,

and response time, ASLBoT is the first marketable out-of-the-

box English-to-ASL machine translator solution that delivers

results with no required installation time. The techniques used

in the training framework allowed for the product to be

deployed in different scenarios under specific domains,

including but not limited to hospitals or classrooms. Moreover,

the flexibility of this device allowed for any user to create their

own smaller, personalized corpora rather than using extensive

large corpora that require expensive technological equipment

such as high-end GPUs. This means that product can be adapted

to the needs of the user for a variety of situations. With the

current growing demand for human interpreters in sign

language translation being answered with poor-quality

interpretation services, ASLBoT provides a crucial bridge to

fulfill these shortages.

ACKNOWLEDGMENT

The group would like to extend our appreciation to Dr.
Chung-Yong Chan. His guidance and input on the project while
providing extensive feedback from the design stages to
development stages of the project were priceless. Moreover, his
willingness to always meet with the group and go over the
progress of the project allowed for the group to succeed in the
project. The group would also like to acknowledge Dr. Samuel
Richie for his assistance on the project.

REFERENCES

[1] “What Is Machine Translation? Rule Based Machine Translation vs.

Statistical Machine Translation.” SYSTRAN,

www.systransoft.com/systran/translation-technology/what-is-
machine-translation/.

[2] Bahdaau, Dzmitry, et al. NEURAL MACHINE TRANSLATION BY

JOINTLY LEARNING TO ALIGN AND TRANSLATE, 19 May 2016.
[3] Venkatachalam, Mahendran. “Recurrent Neural Networks.” Medium,

Towards Data Science, 22 June 2019,
towardsdatascience.com/recurrent-neural-networks-d4642c9bc7ce.

[4] Kostadinov, Simeon. “Understanding Encoder-Decoder Sequence to
Sequence Model.” Medium, Towards Data Science, 10 Nov. 2019,

towardsdatascience.com/understanding-encoder-decoder-sequence-

to-sequence-model-679e04af4346.
[5] Brownlee, Jason. “A Gentle Introduction to Calculating the BLEU Score

for Text in Python.” Machine Learning Mastery, 18 Dec. 2019,

machinelearningmastery.com/calculate-bleu-score-for-text-python/
[6] Papineni, Kishore, et al. “Bleu.” Proceedings of the 40th Annual Meeting

on Association for Computational Linguistics - ACL '02, 2001,

doi:10.3115/1073083.1073135.
[7] Chen, Boxing, and Colin Cherry. “A Systematic Comparison of

Smoothing Techniques for Sentence-Level BLEU.” Proceedings of

the Ninth Workshop on Statistical Machine Translation, 2014,
doi:10.3115/v1/w14-3346.

Gustavo Camero is senior undergraduate student
currently pursuing a BSCpE degree at the

University of Central Florida. An experienced

Research Fellow in the research areas of
Computer Architecture, Emerging Devices and

Education with two first-author publications.

Currently set to pursuit a PhD in Computer
Engineering at Carnegie Mellon University in

Fall 2020. His main goal is to become a Professor
to guide students from all sectors into achieving

their dreams and to conduct research in the area of In-Memory Computing.

Luis Hurtado is a senior at the University of Central

Florida pursuing a BSEE degree. During his time at
UCF he worked as a research assistant from Prof.

Yeonwoong Jung’s lab, conducting research on

unconventional semiconductor materials for next
generation electronics. He will be attending Carnegie

Mellon University in Fall 2020 where he will pursue

a PhD in the department of Electrical and Computer
Engineering.

Michael Loyd is a senior currently pursuing a
BSEE degree and Bioengineering minor at the

University of Central Florida. He is currently

applying to medical schools with the goal of
designing medical robotics and prosthetics.

Jared Spinks is a 21-year old graduating Computer

Engineering student. He will be taking a job with

L3Harris after graduation, as a FPGA Engineer,
designing satellite payloads.

http://www.systransoft.com/systran/translation-technology/what-is-machine-translation/
http://www.systransoft.com/systran/translation-technology/what-is-machine-translation/

