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Abstract—Human interpreters are relied upon by the sign 

language community for interpretation of the English language. 

However, this method of used in order to translate English to the 

appropriate sign language results in high costs, reliability, and 

availability issues. With major advances in animation programing 

and machine translation new avenues may now be taken help this 

community obtain the reliable and responsive sign language 

translations. Herein, we provide a novel approach to translating 

English into the animated sign language version providing a low-

cost alternative. This novel approach is composed of using small 

corpora and our own developed training framework. A neural 

machine translation (NMT) model is trained to translate from 

English to ASL-Gloss and a Unity script generates the 

corresponding sign language animation tied to the ASL-Gloss 

translation. ASLBoT aims to be the first product on the market 

that can translate between English to American Sign Language 

while providing a cost-effective, easy-to-use and reliable 

translation for people with hearing disabilities. 

Keywords—Neural machine translation, American Sign 

Language, 3D graphics rendering, Unity Engine. 

I. INTRODUCTION 

Translation provides the channel for maintaining a 
meaningful conversation between two individuals who speak 
different languages. Human based translations have been widely 
applied in many aspects of society including the financial, 
medical, legal, and travel industries. The process of translating 
through human interpreters, however, proves to be 
erratic, difficult to arrange, and expensive. In a hospital setting 
between a doctor and the patient, a human interpreter listens to 
the patient speak for several minutes and then provides a 
summary of the dialogue to the doctors. This abridged response 
that the interpreter provides the doctor may omit important 
information of symptoms, medical history, and other details that 
are critical. Therefore, this lack of information may “lead to 
misdiagnosis and improper or delayed medical treatment”. This 
issue has been also seen in classroom settings where deaf 
students enrolled in a normal classroom environment require a 
robust translation rather than an abridge translation. Research 
has shown in a High School environment the performance of 
Deaf Students vs Hearing Students in terms of grades. The 
research concluded that Deaf Students performed poorly due to 
poor quality interpretation services provided by the school. 
Additionally, there are multiple cases that patients don’t get up 
to standard interpretation services provided by the Hospital’s 
translation. This is most evident with deaf people as hospitals 
have moved to online interpreting services, requiring continuous 
Internet connectivity and high upkeep due to the contract 
signings. Since 2011, there have been multiple court cases 

regarding interpreting services for deaf hospital patients in 
which some cases have settled in the sum of $70,000. Moreover, 
in recent years, deaf students have been facing with the issue of 
fast responsiveness as the request of ASL interpretation services 
enabled by the Services for Students with Disabilities requires 
at least a three-day notice. Thus, the need for a more accurate, 
responsive, read to use, and low-cost translation system is 
required for such applications.    

Neural machine translation (NMT) provides the next 
generation of real time translation with minimal errors. NMTs 
have proven to be useful for its flexible deployment and its 
ease of use. While they require large data sets to function 
properly, there are open-source NMTs that can be used for 
product commercialization. However, these NMTs only 
perform the translations for spoken languages and don’t 
consider sign languages such as the American Sign Language 
(ASL). People who are congenitally deaf or have never 
developed an understanding of spoken language use ASL as 
their primary language. They don’t develop the same 
understanding of the language as an individual who is able to 
listen and speak the language. Thus, an any-to-text translation is 
not enough for people that have the disability. This is where the 
NMT algorithms’ primary ability to translate any-to-text 
falls short of providing the service to ASL users. In this 
document, we are proposing a real time translator with virtual 
ASL interpretation. This device will be designed to require 
minimal overhead, low budget, and be accurate on speech 
acquisition and translation delivery. In addition, the device will 
deliver real time translations such that conversations 
between both users are continuous with no wait on the 
translation. The functionality of the translator is to provide two 
translation modes: Speech-to-ASL Translation (SAT) mode, 
and Speech-to-Text Translation (STT) mode. The SAT mode 
will focus on translating spoken language to ASL, while the SST 
mode will focus on conventional translation from Speech to Text 
to provide further insights on the English to ASL translation.  

Our proposed real time translator with ASL interpretation 
bridges the gap between universal machine translation and 
physical human translation. This is critical in modern 
society where the greater population, including those with 
disabilities, rely on advanced artificial intelligence to enrich 
their daily lives. The goal of our Assistive Sign Language Bot 
Translator (ASLBoT) is to provide a user friendly experience, 
effective sign language rendering and a high-level of accuracy. 
Ultimately, ASLBoT aims to provide students with hearing 
disabilities the capability to provide effortless and natural 
communication within classroom environments. 

II. GOALS FOR ASLBOT 

Based on our research findings, the main objective and 

overall goal of the ASLBoT is to be able to translate from 

English Speech to American Sign Language (ASL). To achieve 

this, the system will use a neural machine translation model 

using only small corpora and the proposed training framework 

found in this paper. The system has to perform Speech-to-Text 

and Speech-to-ASL language translations. To achieve Speech-

to-Text translation, the system requires wireless capabilities to 

access cloud-based services. The system will indicate the 
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current status of the system through LEDs and LCDs. To 

provide reliable translations, the system will capture audio 

recording from the user on real-time. To make the system more 

interactive, the system allows the user to dictate when to start 

the recording process and when to stop it. Finally, the system 

will display real-time rendering animation of the sign language 

gestures of the user input sentence. Additionally, to show 

transparency of the system, the system will show the original 

English sentence and the ASL translated sentence.  

 

Our engineering requirement specifications are based on the 

goals and objectives set above. The microphone requirement 

for our system needs to be able to operate in the voice frequency 

range (300Hz to 3kHz). The memory size of our system needs 

to around 32GB so that it can hold the animation rendering of 

the ASL gestures locally. The system will require at maximum 

32 W of power. The translation accuracy of the system is 20% 

on BLEU score. The response of the system should be less than 

5 seconds. The vocabulary of the model should be larger than 

50 words to add complexity in the sentence. The NMT data set 

should be less than 1000 entries to signify the use of small 

corpora.  

III. PROJECT DESCRIPTION 

A. Machine Translation 

For proper execution of interlingual translation, the system 
must be able to recognize the context of a given sentence or 
paragraphs. For example, word-by-word translation is not 
sufficient to produce an accurate translation. Thus, machine 
learning is required to perform the complex task of text-to-text 
translation. Machine translation was used for translating English 
to ASL-Gloss, where ASL-Gloss is a written form of ASL where 
gestures are marked by their equivalent English word or phrase. 
In this project, the English text generated by the Watson Speech-
to-Text API from an audio file is directly passed into the 
machine translation system and translated into ASL-Gloss.  

Within machine translation, there are several different 
approaches, with each approach providing a different algorithm 
for achieving the translation. The most common approaches are 
rule-based, statistical, and neural machine translation. Each 
machine learning method aims to translate the source sentence 
into a target sentence while accounting for the necessary context 
of the original sentence to produce an accurate translation. In 
other words, the meaning of the input text in one must be fully 
realized in the output text in another language [1].   

Rule-based machine translation (RBMT) and statistical 
machine translation (SMT) were initially considered but 
ultimately not used for the translation in this project from 
English to ASL-Gloss. RBMT relies on a sizeable amount of 
built-in linguistic rules and requires the availability of millions 
of bilingual dictionaries [1]. This approach was not feasible 
because large amounts of time and effort would be required to 
produce a database of rules for ASL-Gloss. This method would 
not be able to guarantee a successful translation from English to 
ASL-Gloss since this approach requires modification of the 
linguistic rules. SMT also proved to not be feasible since this 
method relies on creating several statistical models that rely 
heavily on existing multilingual corpora [1]. The computation of 

statistical models is also known to be CPU-intensive and 
requires custom hardware configuration. Therefore, creating a 
large multilingual corpus for English to ASL-Gloss would not 
be possible using this method.  

The last approach was neural machine translation (NMT), 
and this method proved to be the most appropriate approach for 
the English to ASL-Gloss required in this project. NMT is a 
more modern approach to machine translation and large tech 
companies have already switched from SMT to NMT due to its 
proffered fluent translations. This method produces a single 
neural network with weights tuned through the training process 
rather than developing several models like in SMT [2]. This 
method also has the ability to maintain the context of a given 
sentence, which  is not possible with the RBMT and SMT 
approaches. NMT achieves this by using sequence-to-sequence 
(seq2seq) based models. The seq2seq models are designed to 
have an encoder, an encoder vector, and decoder. Both the 
encoder and decoder of the seq2seq are made up of recurrent 
neural networks (RNNs). These RNNs allow the neural network 
to receive a series of inputs without having a predetermined 
number of inputs [3], which is critical for machine translation 
since the amount of words in a given sentence is arbitrary. RNNs 
also include a hidden state vector that maintains the context of 
the previous inputs and outputs. This hidden layer is what allows 
the NMT model to give context to each word that would be 
translated, allowing for a more natural translation. The seq2seq 
models have the encoder RNN collect data and pushes it 
forward. The encoder vector then captures the information from 
all inputs of the encoder to provide the decoder with additional 
assistance in translating [4]. The decoder then delivers the final 
translation using the similar RNNs approach as the encoder. 
Seq2seq models are popular because of their ability to process 
despite having the input and output at different lengths since 
they are not associated.  

The downside to using an NMT system for the translation is 
that a GPU is required for training the NMT model. The model 
also often requires a large training set such that the appropriate 
weights are reached, and a more natural translation occurs. The 
large training corpora issue was mitigated in this project through 
a two-step approach that allowed the NMT model to focus on 
particular words and cluster of words. This led to a more 
appropriate translation of English to ASL-Gloss without the use 
a large training corpus.  

IV. SYSTEM COMPONENTS 

The system is composed of many different components that 

connect and interface together to form the final product. This 

section provides technical details for each one of these 

components. 

A. Microcontroller 

The brain of the printed circuit board is a TI 

MSP430FR6922IG56R. The MSP430 family was chosen for its 

universal serial communication (USC) port, high capacity 

memory, and large number of general-purpose input and output 

pins. The chip runs at 16 MHz allowing for multiple operations 

to be done in quick succession, which is a vital quality for our 

system. The Universal Serial Communication port supports I2C, 

SPI, and UART serial communication. The integrated 
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development environment, Code Composer Studio, along with 

an MSP-EXP430FR6989 programmer, was used to develop, 

debug, and program the chip. 

B. Single Board Computer  

The powerhouse of the system is the UDOO x86 II 

Advanced Plus, which is a single board computer. This board 

was chosen for its x86_64 architecture which was required to 

run Unity-based applications such as ASLBoT, the application 

used in this project. The board features an Intel Celeron quad-

core processor, 4G of RAM, an Intel HD Graphics card, and an 

Arduino Leonardo MCU that is connected to the processor by 

an internal USB connection. In addition, the board supports 

serial communications through the pins with protocols such as 

I2C, UART and SPI. The UDOO x86 II has 32 GB of internal 

storage with a microSD card slot to expand the memory, if 

desired. Furthermore, the board features several interfacing 

options such as USB 3.0, HDMI, and Arduino pinouts. The 

integrated Arduino unit allows for easy communication 

between the microcontroller unit and the Unity application 

running on the UDOO board. 

C. Microphone 

The Blue Snowball microphone is used to record audio 

snippets to be processed and translated. This microphone was 

chosen because of its easy-to-use digital interface and seamless 

integration into the system. Its wide frequency range of 40 Hz 

to 18 KHz ensures that the user’s voice could be picked up. It 

also features different audio detection patterns that allow for 

this microphone to be used in a variety of situations. The 

Snowball is connected and powered via USB and is plugged 

directly into the UDOO. The microphone does not require 

drivers to use, making setup effortless. 

D. LCD Display 

The LCD display for this project is a 2-line, 16-character 

display with blue backlighting. It takes a 5-V power supply and 

is used in 4-bit mode. Built into the module is a HD44780 

controller, which allows for the microcontroller unit to program 

it. The display is used to indicate the status of the microphone 

to the user. 

E. IR Sensor 

The IR sensor for this project is a TSOP38238. This sensor 

can be powered at any voltage between 3 and 5 V and is tuned 

to 38 KHz making it perfect for the product. Also featured is 

improved ambient light and noise immunity, improving the 

final product’s use in classroom settings. Furthermore, the IR 

codes are automatically demodulated as they arrive at an IR 

diode, allowing the signals to be much easier for the 

microcontroller unit to decode. 

V. PCB DESIGN & UTILIZATION 

Figure 1 shows the hardware block diagram of the final 

product. The system was powered by a 12-V, 3-A DC power 

source that plugs directly into the SBC board through a banana 

plug. Connected to the SBC is the display, microphone, and the 

printed circuit board which was used as a control board. The 

system display was powered by its own power supply, while 

the microphone was powered through its USB port. 

Furthermore, audio for the system was sent to the display’s 

integrated speakers via an HDMI cable. The control board was 

connected to the single board computer by a 2-wire I2C 

connection as well as 5-V power and ground connections for 

the board. 

The 5-V power line from the UDOO was sent to the 16-

character 2-line LCD display and IR sensor connected to 

control board. Furthermore, the 5-V power line was connected 

to an AMS1117 3.3 V regulator that stepped down the voltage 

from 5 V to 3.3 V for powering the MCU located on the control 

board. 

The MCU was programmed to perform key functions for 

the system.  Inputs were taken from the user in the form of 

button presses and an IR receiver. When a button on the IR 

remote was pressed, the MCU transmitted a series of codes over 

the I2C connection that waked the system from sleep and 

automatically signed into Windows. Furthermore, when the 

start button on the PCB was pressed, the MCU sent a signal to 

the SBC that was translated as a keyboard press and made the 

system begin recording. A similar signal was sent when the stop 

button was pressed on the PCB, but instead signals for the game 

to stop the recording and begin translating the captured audio 

file. After these signals were sent to the SBC, an acknowledge 

signal will have been sent back and read by the control board. 

The final input was a reset button that is used in the case that an 

unexpected state was encountered, and the control board 

becomes stuck. The reset button cleared the LCD and was wired 

to the reset pin on the MCU. 

Outputs on the control board included the LCD display 

along with status LEDs. The LCD display showed the current 

status of the microphone as either recording or ready. The LEDs 

show multiple statuses such as power, recording, transmitting, 

and receiving, which were all updated in real time. 

 

 
Fig. 1. Overall Hardware Block Diagram. 
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Shown in Figure 2 is the finalized PCB board. Included on 

the board are 7 status LEDs, 3 push buttons, 5 male pin headers, 

a voltage regulator, and one MSP430FR6922 MCU. Control of 

the contrast of the LCD display was achieved using a 10 kΩ 

trimmer resistor that allowed for control of the voltage that was 

passed to the V0 pin. Due to shortcomings in the microphone 

chosen during the development phase of the PCB, the I2S 

microphone was abandoned; this decision resulted in leaving 

the ‘MIC1’ header left unused. Furthermore, the micro USB 

connector that was planned to power the PCB was not able to 

be soldered properly to the board due to its connectors being 

too small and brittle. Due to the COVID-19 pandemic, no new 

USB connectors for the board could be ordered. However, the 

board was designed robustly enough, and the system was able 

to be powered through the ‘SBW_conn’ header. Therefore, the 

initial board design was able to be used in the final product. 

 

VI. SOFTWARE DETAILS 

A. OpenNMT 

After deciding to use an NMT as the default machine 
translation approach for this project, which NMT system would 
be most viable for the purposes of this project needed to be 
decided. NMT systems were offered from the larger tech 
companies; however, these systems remain strictly proprietary 
which would not prevent modifications the system and train a 
suitable model to meet the specifications for this project. Open-
source NMT systems were also available, and this style of an 
NMT was the main focus when deciding on which system to 
choose. After considering various open-source systems, 
OpenNMT was chosen due to its necessary provided support 
that other software lacked. Other software that were mainly used 
for research code did not provide substantial support. OpenNMT 
also provided support for the PyTorch and TensorFlow 
frameworks, which provide the ability to train and validate the 
NMT model from a high-level programming interface. Due to 
the arbitrary choice between the PyTorch and TensorFlow 
backbones in the scope of this project, the PyTorch framework 

was chosen for this project. This OpenNMT software was also 
based on the aforementioned seq2seq models.  

The NMT presented the challenge of finding a GPU capable 
of training the model in a short amount of time. Training with a 
CPU would exceed 24 hours for each session and therefore 
would not be replicable when several models would need to be 
tweaked and re-trained. Google Research’s Colaboratory (abbr. 
Colab) was used to overcome the issue of lacking a capable GPU 
to train the model. Using Colab allowed code to be written to 
and executed on Google’s cloud servers and also use their 
available GPU’s at no cost. Colab also provides a Python 
environment and therefore allows for simple integration of the 
PyTorch framework. Training the NMT model with Google’s 
GPU took about 40 minutes per session.  

Train the OpenNMT model requires four different text files. 
Two of the text files correspond to the English source corpus, 
and the other two correspond to the ASL-Gloss target corpus. 
Both the source and target corpora contained 516 entries within 
each corpus, whereas most training sets for other research teams 
contain up to hundreds of thousands of entries. A smaller set of 
corpora was used for the validation files in both English and 
ASL-Gloss. The validation files had 38 entries for each corpus, 
and the model used these files to evaluate the convergence of its 
training.  

As aforementioned, NMTs require large training corpora in 
order to achieve a respectable translation. The unobtainability of 
large multilingual corpora for English to ASL-Gloss translations 
resulted in the 516-entry corpora. To overcome the lack of such 
a large training corpus, a two-step approach was utilized. The 
two-step approach included keeping the training corpora to a 
specific domain and employing redundancy among the 
sentences.  

For the first step, the corpora were limited to contain 
sentences that were related to the school domain. Therefore, this 
restricted the number of words available throughout both 
corpora. Choosing the school setting as the primary domain also 
allowed for the use of a simpler vocabulary set and more 
commonly used sentences. After implementing the first 
approach, there showed improvements in the translations; 
however, the ASL-Gloss translations were still not acceptable 
for the purposes of this project. Two translation examples 
English to ASL-Gloss are shown in Figure 3. These two 
examples demonstrate that some words such as “Me” and 
“Need” are correctly translated but not the rest of the sentence.  

 

 
Fig. 1. PCB Layout. 

 
 Fig.3. Example of breaking down a sentence from the corpus into smaller 

phrases for redundancy.  
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The second step was to add to the training corpora 
redundancy. This was accomplished by splitting up sentences 
already in the corpora into smaller phrases as shown in Figure 3. 
Sentences similar to existing sentences were also introduced to 
the corpora. This introduction of redundancy greatly improved 
the performance of the resulting NMT model. This amelioration 
can be attributed to the neural network needing to force itself to 
adjust its weights and focus more on the limited and repeated 
words within the corpora. An example of the vast improvement 
after implementation of the second approach can be seen from 
Figure 4. Figure 5A is the previous example still using the first 
approach and Figure 5B is the same example using the second 
approach. Between these two figures, the addition of approach 
two to the training corpora providing a much more accurate and 
more acceptable translation can be shown. A similar 
improvement can similarly be seen between Figures 5C and 5D. 

Evaluation of the performance of the model could have been 
done through several available machine translation scoring 
techniques. The BLEU score was used to calculate a score for 
the English to ASL-Gloss translation model. The BLEU score is 
known to be solution that is simple to implement to retrieve a 
score; however, this scoring method also include its draw backs 
[5]. The main objective of the BLEU score is to compare the n-
grams of both the human-translated reference sentence and the 
machine-translated reference sentence [6]. The term “n-gram” 
refers to a consecutive string of words within a sentence; for 
example, a unigram is one word, a bigram is a set of two 
consecutive words, etc. within a sentence. The problem with 
using the BLEU score arises from the fact that the overall BLEU 
score for one sentence is calculated as the geometric mean of the 
all the n-grams calculated for this, where 𝑛 ∈ [1,4]  for this 
project’s scoring method. Therefore, for shorter sentences 
whose word count are less than the highest n-gram (in this case 
4-gram), the resulting geometric mean is zero.  

Evaluate the BLEU score more accurately was done by 
utilizing an open-source script, SacreBLEU. The script provides 
additional smoothing techniques that mitigate the issue when a 
higher n-gram precision resulted in zero [7]. For the calculation 
of the bleu score, a human-translation reference corpus and a 
machine-translated corpus were needed. For this project, 40 
entries were used from the available corpora. The overall BLEU 
score and the subsequent scores for each n-gram match are 
shown in Table I, where BLEU-1 refers to the unigram-based 
score, BLEU-2 for digram scores, etc. The BLEU scores shown 
were multiplied by 100 from their original scores, since the 
original scores were given between 0 to 1. A score of 100 
implies that the entire set of corpora completely match each 
other. Table I shows that the scores for BLEU-1 and BLEU-2 
are much higher than the scores for BLEU-3 and BLEU-4. Since 
the ASL-Gloss translation is a truncation of English, and shorter 
English sentences were used to simplify the training, the 
resulting ASL-Gloss corpus was composed of several sentences 
containing less than 4 words. Therefore, evaluating the 4-gram 
BLEU score resulted in a very small number (nonzero as a result 
of the smoothing provided by SacreBLEU). There is a higher 
general probability for a unigram match than a digram match, or 
a digram match compared to a trigram match, and so on; this is 
why the n-gram BLEU scores show a marked decrease as the n-
gram increases. Based on how English to ASL-Gloss 

translations function for the purposes of these training sets, the 
BLEU-1, BLEU-2, and BLEU-3 scores provide a more 
significant overall score than when combined with the 
calculated BLEU-4 score.  

 

 

 

TABLE I.  BLUE SCORE 

Bleu Score – Corpora of 40 Entries 

Bleu Total Bleu-1 Bleu-2 Bleu-3 Bleu-4 

13.81 62.0 30.2 14.1 1.6 

  

B. Unity Engine 

 The graphics rendering and user interface was created using 
a game built using the Unity 4 Engine. Included with this game 
are the game objects, which include a 3D avatar and a text-
displaying canvas. An animation controller was also included to 
handle animation transitions and flow. C# scripts were attached 
to specific game objects according to the child objects 
referenced within each script. These scripts also communicated 
with the animator controller and between each other to handle 
timing of events within the game.  

The game was built as a standard Unity game folder. 
Included with this pre-built game was a file folder titled “ASL” 
which included two files. The first was a vocabulary text file, 
which included a list of line-separated words that would be used 
during startup to develop a hash table based on the dictionary 
entries available to the OpenNMT model. The second was a file 
which included an OpenNMT model for translating text.  

 

Fig. 4. These are two translation examples from English to Gloss using the 
first training corpora modification approach. Neither of the attempts were 

satisfactory translations.  

 

 

Fig. 5. Here the first and second approach compared for two translation 
examples of English to Gloss. Fig. 5A is translated using a corpora that only 

has aproach one, and Fig. 5B was translated with the addition of approach 

two. Similarly, Fig. 5C is translated using a corpora with approach one and 

Fig. 5D was translated with the addition of approach .two.  



1. The avatar model, Amane Kisora-chan, was designed by SapphiArt Co. and is used in this project under the Extension Asset License provided by Unity.  

 

 Overall, the user has three available options while 
interfacing with the game. The first option is the START button 
on the PCB. Once this button is pressed, the microphone 
connected to the computer is enabled to begin recording. The 
second option is the STOP button on the PCB. If this button is 
pressed while the microphone had been recording, the game will 
stop recording from the microphone and proceed with its 
background translation and animation processes.  

 There are a set of processes that are performed before the 
game is initialized and another set of process that are performed 
after a WAV file has been generated. The first set of processes 
include the microphone initialization, the hash table creation, 
and component referencing. The microphone connected to the 
computer is initialized before the game starts, which forces the 
game to prompt the user to enable microphone privileges.  The 
hash table is created by reading the vocabulary text file and 
associating each word in this file to the corresponding animation 
clip in the animation controller. 

 The overall software diagram for the system is shown in Fig. 
6. The program will start in an idle state waiting for the input of 
the user. The user can input three different requests: the “start 
recording” request, the “stop recording” request and the “wake-
up” request. All of these options are available through the PCB 
as button presses and IR signals.  

 Depending on the request, the system will first see if the 
board is on a sleep state (or off). The program will not start until 
the system is awaken from its sleep state by sending the wake-
up request through an IR signal. After the system is awoken, the 
program will now wait for the user to request a “start recording” 
process. The background animation and translation processes 
include file conversion, command terminal calls, and variable 
manipulation. The recording interface was performed using the 
Microphone class and AudioSource object available in the 
UnityEngine library. The AudioSource object allowed the game 
to save an instance of an audio file to the game locally, while the 
Microphone class allowed the game to create a WAV file from 
an AudioSource object within Unity.  

 The Watson Speech-to-Text online API service was utilized 
in the script to handle conversion of the generated WAV file to 
a transcribed text file in a JSON format. This JSON file contains 
the transcript string corresponding to what was spoken in the 
microphone recording. This file was declassified and the 
transcript string was isolated and written to a text file. This text 
file was used as an input to the OpenNMT translate command 
which used the trained translation model. The output text file 
was read and parsed into a string array, from which the game 
could display each text consecutively. After the string array had 
been created, any unnecessary files are deleted to prepare the 
game for producing the next set of files for a new translation. 
These unnecessary files include the WAV file, the JSON file, 
and the two text files. The OpenNMT model, however, is kept 
as it is required to perform the next translation. Also, the 
vocabulary text file is kept since the hash table created upon 
starting the game is lost upon exiting the game and must be 
initialized using this file at the beginning of every gameplay.  

 

 The animation controller was utilized by taking the 
generated string array and evaluating each string in order. The 
animations consists of an animation controller and a parameter 
list. The animation controller is composed of transitions to 
individual states containing a corresponding animation. The 
parameter list is composed of triggers which will enable a 
transition to the specified animation clip. A trigger is a special 
variable type in Unity which operates similar to a Boolean value; 
a trigger has a true/false nature similar to a Boolean, but once 
the trigger is set to true and is referenced by the animation 
controller, the trigger is automatically reset to false.  

 As the animation controller parses through the string array, 
if a string exactly matches an entry in the hash table, the string 
is passed to the animation controller and the corresponding 
trigger is set. If the string does not return a match, the string is 
further split into a string array; each letter is passed individually 
to the animation controller to set the triggers for the individual 
letter animations; this is referred as fingerspelling in the sign 
language community and is used for words that lack an 
applicable gesture in ASL. This hash table mapping is described 
in Fig. 7. 

 The animation controller starts with an “Entry” block which 
immediately transitions to the “IDLE” animation upon starting 
the game. At this point, any transition is handled using the “Any 
State” block in the controller. All transitions to animations from 
this “Any State” block are controlled by a unique trigger 
associated only with that transition. The animation controller 
utilizes a FIFO stack while processing triggers; i.e., no two 
triggers can be set simultaneously despite multiple possible 
transitions out of the “Any State” block. While the game is 
processing the audio file in the background, the controller 
transitions to the “THINKING” state. 

 

Fig. 6. Overall Software Flow Diagram 
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 After a string array is made available, the animator controller 
sets the corresponding trigger for an animation with respect to 
the order of the string array. After iterating through the string 
array, the controller transitions back to the “IDLE” animation. 
A fragment of the animator controller showing the “Entry”, 
“Any State”, “IDLE”, and “THINKING” animations is shown 
in Figure 8. 

 

 Every individual animation was created using the animation 
clip editor within Unity. Animation clips were created by 
manipulating the 3D rotations of specific joints in the avatar. 
The bones required for animation of sign language gestures are 
shown in Figure 9 under the “Chest” directory. For the purposes 
of sign language gesture animations, the only joints utilized in 
this bone/joint map are the neck and the entire upper extremities 
from the fingers to the shoulders. The model, designed by 
SapphiArt Co.1, contains a fairly standard pelvis-to-head 
bone/joint structure. Each bone in the bone/joint map is 

characterized by its root bone, followed by its child bones which 
are directly connected to it. A three-dimensional, global 
position, rotation, and size are also attributed to each bone. 

 During the recording of a sign language animation, the 
starting pose of the gesture was recorded at 0.00 seconds and the 
ending pose was recorded at 0.30 seconds temporarily. Key 
intermediate poses were also recorded between 0.00 and 0.30. 
For a more realistic animation, the timestamps of the final and 
intermediate poses were rearranged. Complex gestures, like 
ones requiring individual finger rotations that start and end 
consecutively, were recorded with an overall starting and ending 
pose, but intermediate poses were replaced with intermediate 
animation fragments that are blended together. 

 

VII. USER UTILIZATION 

Upon starting the game, the user is presented with the avatar 
in the foreground and the canvas in the background. The avatar 
will continue to display an idle animation until the microphone 
starts and finishes a recording. When the user presses the 
START button on the PCB, the canvas displays “Recording…” 
which prompts the user to speak a sentence into the microphone. 
The game waits until the user presses the STOP button on the 
PCB, but only the first 30 seconds of recorded audio would be 
kept. Once the STOP button is pressed, the avatar displays a 
thinking animation while the audio processing occurs.  Once 
these background processes have finished, the canvas refreshes 
to display the English text generated from the Watson Speech-
to-Text API and the sign-language gloss text generated from the 
OpenNMT model. While this text is being displayed, the avatar 
will perform the corresponding sign-language gestures. Once 

 
Fig. 7. Animation Flow Diagram. 

 

Fig. 8. Animator controller fragment. 

 

 

 

Fig. 9s. Bone/joint structure of Unity avatar, Amane Kisora-chan. 
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the avatar finishes signing the sentence, she returns to an idle 
animation state. 

There are two warning messages that will be displayed in the 
top-left corner. The first warning message is displayed if the user 
attempts to quit the game while the avatar is not in the idle state. 
The second warning message is displayed if the user presses the 
STOP button without having first pressed the START button; 
without the START button being pressed, the microphone does 
not start recording. 

VIII. CONCLUSION 

The novel approach of training an NMT model based on a 

much smaller corpora by defining the domain and utilizing 

redundancy allowed for the realization of a machine-based 

interpreter that can potentially replace the need of human 

translators. Due to its cost-effectiveness, ease of use, reliability, 

and response time, ASLBoT is the first marketable out-of-the-

box English-to-ASL machine translator solution that delivers 

results with no required installation time. The techniques used 

in the training framework allowed for the product to be 

deployed in different scenarios under specific domains, 

including but not limited to hospitals or classrooms. Moreover, 

the flexibility of this device allowed for any user to create their 

own smaller, personalized corpora rather than using extensive 

large corpora that require expensive technological equipment 

such as high-end GPUs. This means that product can be adapted 

to the needs of the user for a variety of situations. With the 

current growing demand for human interpreters in sign 

language translation being answered with poor-quality 

interpretation services, ASLBoT provides a crucial bridge to 

fulfill these shortages. 
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