

ASLBoT

Assisted Sign Language Bot Translator

Group #14

Gustavo Camero - CpE

Luis Hurtado - EE

Michael Loyd - EE

Jared Spinks - CpE

Assigned Professor

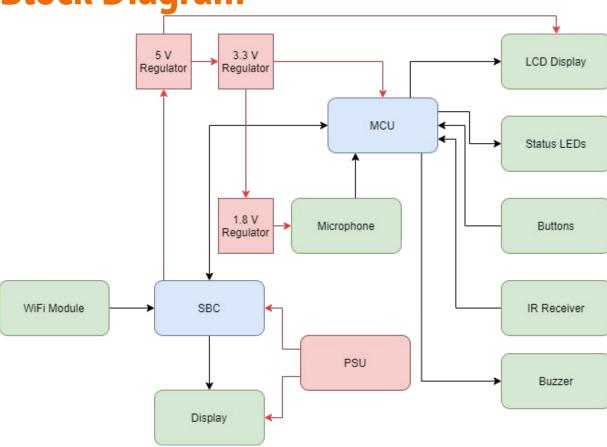
Dr. Samuel Richie

Advisor/Client

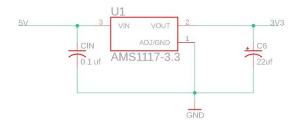
Dr. Chung Yong Chan

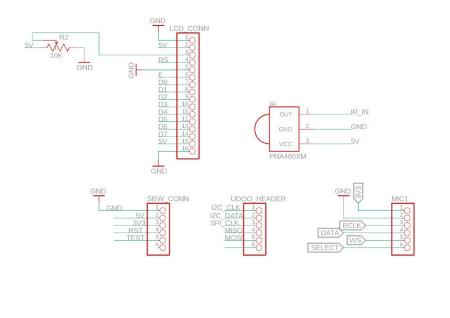
Motivation

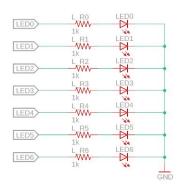
- Member works at clinic
 - Noticed a lack of efficient translation
 - Looking for standardized language interpretation
 - No support for sign language

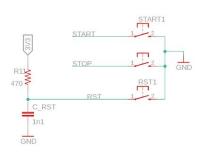

Goals & Objectives

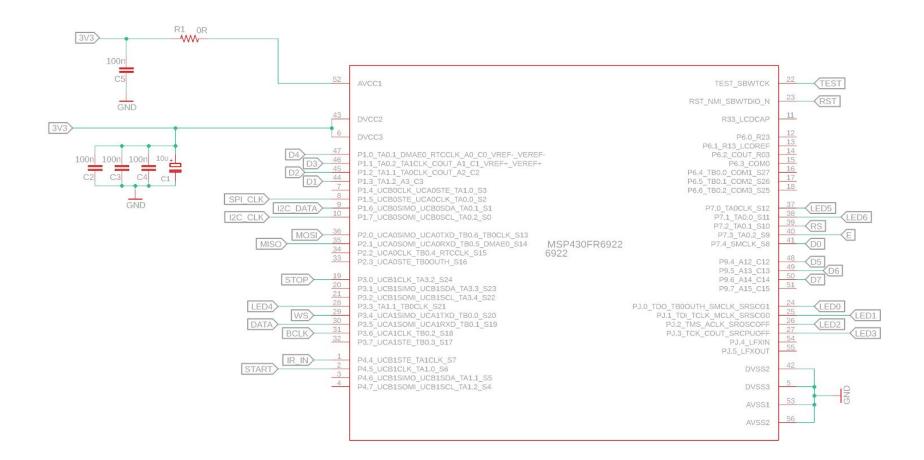
- Translate English speech into American Sign Language.
- Connect wirelessly for cloud-based service access.
- Perform speech-to-text and speech-to-ASL language translations.
- Indicate various statuses of the device via LEDs.
- Capture audio at frequencies around natural human pitches that can be translated into text via speech-to-text algorithms.
- Stand upright in a custom-designed housing, which accommodates the SBC, MCU, Wi-Fi module, buzzer, and microphone.
- Display real-time, high-quality animations of sign language gestures.
- Receive manual inputs from the user, including start/stop recording and mode selection.


Requirement Specifications


Component	Parameter	Design Specification
Microphone	Signal Production	100 mV at 1m
Microphone	Frequency Response Gain	-3 dB for 80 Hz to 260 Hz
Speaker	Sound Production	50-70 dB at 1m
Memory	Size	32 GB
Power Supply	Power	32 W (12V @ 3A)
System	Translation Accuracy	20% (BLEU Average)
System	Dimensions	6" x 6" x 3"
System	Cost	\$500


Overall Block Diagram




Hardware Schematic

MCU Selection

	GPIO Pins	ADCs	Communication Protocols	Cost
STM32L162ZDT6	115	12-bit/ 40 Channels	I ² C, I ² S, SPI, USART, USB	\$9.80
STM32L151RDT6TR	51	12-bit/ 40 channels	I ² C, I ² S, SPI, USART, USB	\$6.85
MSP430FR6989	83	12-bit/ 16 channels	I ² C, I ² S, SPI, UART	\$7.86

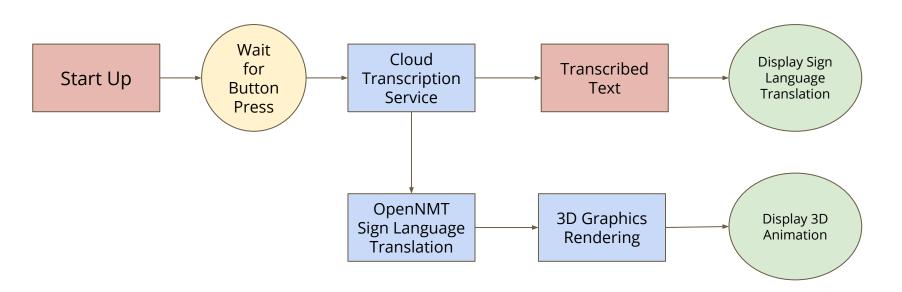
MCU Development Environment

Energia

Code Composer Studio

MCU Functionality

- Takes in raw data from microphone
- Uses LEDs to indicate overall status of system
- Utilizes LCD to indicate recording status and incoming text stream
- Communicates with SBC to send raw audio data and receive updates
- IR sensor for wake functionality
- On-board buttons to start and stop recording and reset


Microphone Selection

	Frequency Range	Output	Interface	Cost
Mini USB Microphone	100 Hz - 10 kHz	Digital	USB	\$4.95
SparkFun MEMS Microphone (INMP401/ADMP401)	100Hz - 15 kHz	Analog	ADC	\$10.95
MEMS Microphone (SPH0645LM4H)	50 Hz - 15 kHz	Digital	l ² S	\$6.95

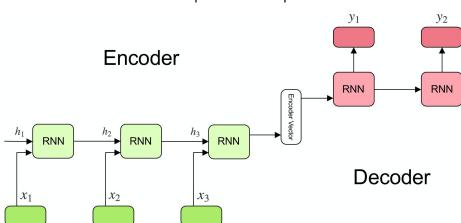
SBC Selection

	Architecture	Communica tion Protocols	os	RAM	Memory	Cost
NVIDIA Jetson Nano	ARM64	I ² C, SPI, UART	Linux	4 GB	External Only	\$99.00
ASUS TinkerBoard	ARM64	I ² C, SPI, UART, I ² S	Linux	2 GB	External Only	\$70.00
UDOO x86 Advanced Plus	x86_64	I ² C, SPI, UART	Linux Windows	4 GB	32 GB	\$176.00

Software Diagram


Machine Translation

Statistical MT Neural MT Rule-Based MT (RBMT) (SMT) (NMT) Statistical models that Uses neural networks with Large database of training sets to tune linguistic rules and have parameters based on weights. millions of bilingual the analysis of Examines entire sentence dictionaries. monolingual and bilingual before translating. For the use of RBMT in corpora. Training requires GPU text to ASL text Relies heavily on existing Large Training sets corpora, minimum of 2 translation, a massive database with the rules million words. and resources will need **CPU-intensive** to be created.


OpenNMT

- Open source
- Can be used with Pytorch
- Based on seq2seq models

Recurrent Neural Network

Sequence-to-sequence

OpenNMT

- Needs GPU for fast training
- Google Colaboratory
- ~40 minute training time

Requirements:

- Source (English)
- Target (Sign language Gloss)
- Source Validation
- Target Validation

Source	Target	Source Validation	Target Validation
I know sign language	ME KNOW SIGN	I want to know sign language	ME WANT KNOW SIGN LANGUAGE

Approach #1 Specific Domain

- Limits variety of words used
- Corpora based on daily school

hurry we need to go now
on campus
I need to write this paper tonight
this project is due tomorrow
my lecture starts in five minutes
I am going to college this semester
what classes are you taking
I took that class last semester
I wanted to go to the student union
did you finish the paper last night
I was absent from class yesterday
Was the homework supposed to be done individually
I am making new friends in college
I made a friend yesterday
Do you want to be friends
there are a few ways to get to that building
why is the campus so large
the engineering building is very big
I need help because I can not find this classroom
I can't find this classroom
I need help making these signs
How many buildings are there on campus
How much did you write for the paper

Issue - Very Limited Translations

```
SENT 1: ['where', 'can', 'I', 'find', 'the', 'classroom', 'building']
PRED 1: ME NEED HELP MAKE SIGN SIGN
PRED SCORE: -0.0293
```

```
SENT 1: ['I', 'need', 'help', 'finding', 'the', 'classroom']
PRED 1: ME NEED HELP MAKE SIGN SIGN
PRED SCORE: -0.0002
```

Approach #2 Specific Domain + Redundancy

- Continue to limit variety of words used
- Breakdown existing sentences
- Introduce similar sentences

the engineering building is big	W
the engineering building	w
engineering building	— di
building is big	ui
engineering building is big	fir

when did you finish your homework
when did you finish
did you finish your homework
finish your homework

```
SENT 1: ['where', 'can', 'I', 'find', 'the', 'classroom', 'building']
PRED 1: ME NEED HELP MAKE SIGN SIGN
PRED SCORE: -0.0293

SENT 1: ['where', 'can', 'I', 'find', 'the', 'classroom', 'building']
PRED 1: WHERE ME CAN FIND CLASSROOM
PRED SCORE: -0.0006

Second approach
```

```
PRED 1: ME NOT WANT KNOW
PRED SCORE: -0.2670

SENT 1: ['I', 'do', 'understand', 'the', 'homework']
PRED 1: ME UNDERSTAND HOMEWORK
PRED SCORE: -0.0006

First approach
Second approach
```

SENT 1: ['I', 'do', 'understand', 'the', 'homework'

Some issues:

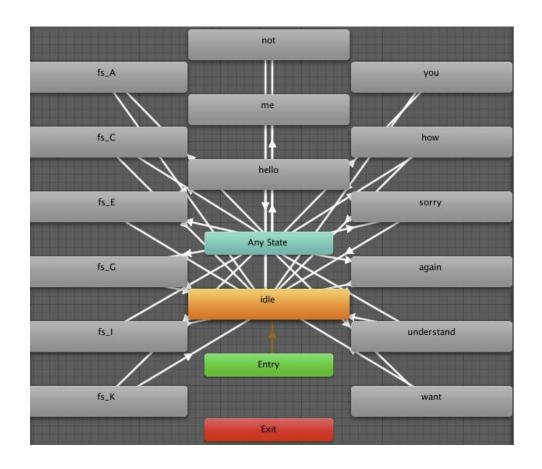
```
PRED 1: ME WANT MAKE FRIEND AT COLLEGE
PRED SCORE: -0.0245

SENT 1: ['I', 'want', 'to', 'make', 'friends']
PRED 1: ME WANT MAKE FRIEND
PRED SCORE: -0.0001

Second approach
```

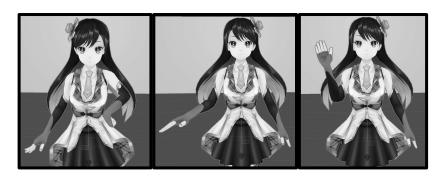
SENT 1: ['I', 'want', 'to', 'make', 'friends', 'this', 'semester']

Second approach

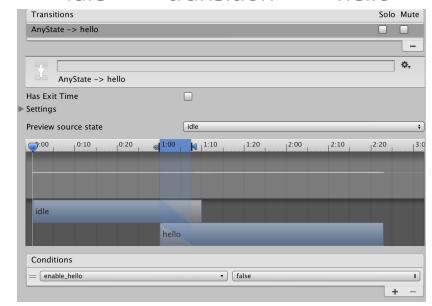

Game Engine

- Functions of the game engine:
 - Display animations
 - Integration of text-to-speech, speech-to-text, and (possible) audio-to-WAV API

	Minimum RAM	Compatible with Linux-based ARM64	Compatible with x86_64	Community Support for SBCs
Unity	None	No	Yes	Full
Unreal Engine 4	8 GB	Yes	Yes	Limited
Godot	4 GB	No	Yes	None


Video Rendering

- Dynamic state machine
- Hashmap to map incoming sign language translation from NMT

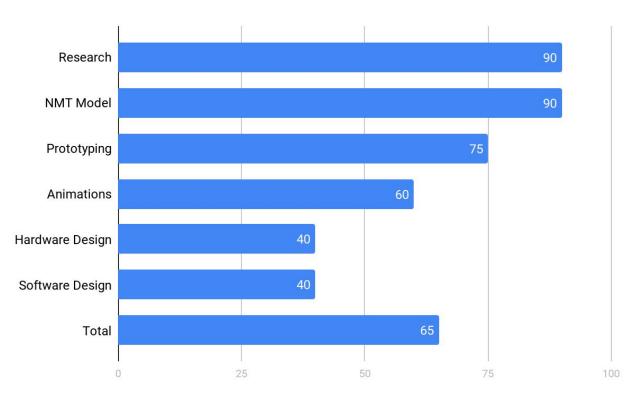


Video Rendering

- Dynamic state machine
- Hashmap to map incoming sign language translation from NMT

"idle" \rightarrow <transition> \rightarrow "hello"

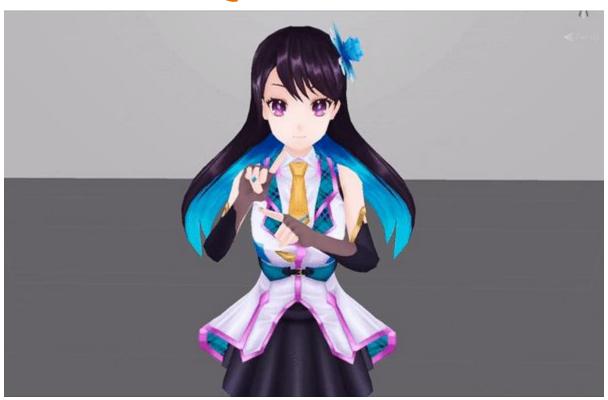
Work Distribution


Member	Embedded	Machine Translation	Graphics Rendering	GUI
Gustavo Camero				
Luis Hurtado				
Michael Loyd				
Jared Spinks				

Lead	
Help	

Challenges & Issues

- Hardware Design Challenges:
 - SBC architecture compatibility
 - FPGA difficulty for soldering and programming given timeframe
- Software Design Challenges:
 - Granularity-based OpenNMT (trial and error)


Progress

Project Budget

Part	Supplier	Cost
UDOO x86 Advanced Plus	UDOO	\$ 176.00
12V-3A Barrel Jack Power Supply	UDOO	\$ 8.90
MSP430FR6989	Mouser	\$ 7.86
MEMS Microphone SPH0645LM4H	Adafruit	\$ 6.95
IR Receiver TSOP38238	Adafruit	\$ 1.95
Self-Funded		\$
Total	Supplier	\$ 192.76

Questions?

