
THE BARTENDER
BUTLER BOT (B3)

Yianni Babiolakis, Rachael Caskey, Edward

Nichols, and Corey Scott

College of Engineering and Computer Science,
University of Central Florida, Orlando, FL,

32816-2450, USA

ABSTRACT ​— The objective of this project is to design and
implement an automated drink-dispensing and autonomous
delivery system, at a minimized unit-cost, integrated by a
front-end application layer. The aim of the device is to allow
the user to physically select a beverage from a menu via
touchscreen interface, whereupon the system automatically
dispenses the individual ingredients of the drink into an
empty glass and autonomously delivers the completed
beverage back to the user. This prototype provides a
consumer-level proof of concept for a light-hearted
continuous-use appliance as a way to logistically support the
hosting of private social gatherings - and serves as a
precursor to assisting Food and Beverage staff in the
long-run.

Index Terms ​— ​F&B system automation, IR sensor,
iRobot, line-following, MQTT, peristaltic pump, PID,
Python, Raspberry Pi, ultrasonic sensor

I. INTRODUCTION

Since the Industrial Revolution, the relationship
between mankind and technology has been one of
automation, of developing new devices which can
simplify or entirely replace mundane and repetitive
tasks to free ourselves and our time for bigger, better
things. One form of personal automation that has
remained popular since early speculative science
fiction has been the concept of a robotic butler or
assistant, able to perform small tasks around the
house for the families of tomorrow.

The Bartender Butler Bot, or B3, aims to conquer
one aspect of a home robotic-butler by automating
the process of having drinks with a group of friends,
a popular and timeless form of private social
gathering. The device utilizes three distinct
subsystems to take a user’s drink order while they are
seated at a table, transport their empty glass to a
secondary location where the drink is automatically

poured, and deliver the finished drink back to the
user. This aims to prevent the frequent, disruptive
breaks a diligent host must make in the middle of
conversation with their guests to physically leave the
table and restock drinks. The three subsystems which
make up the device are the Bartender (tasked with
processing the user’s order into certain amounts of
specific ingredients, and pouring them into the glass),
the Butler (tasked with the physical delivery of the
user’s glass between the Bartender and the user’s
table), and the Application (tasked with the overall
GUI, recipe storage, and taking the user’s order).

The B3 is not the first drink-dispensing unit to exist.
There are multiple other systems available to
consumers, and henceforth, providing a greater
service was one of the primary focuses of this
project. Automating the process of creating a drink is
appealing, but it would still take the user out of a
social event, albeit only temporarily. In public
venues the service of delivering drinks is provided by
wait staff; however in a private setting this service is
sacrificed in favor of a more intimate interaction. By
creating a system that both dispenses and delivers a
beverage, we hope to be able to allow the user to
comfortably host uninterrupted social gatherings.

II. SUBSYSTEMS

The best way to explain the individual components
of the B3 and their purpose to the greater system is
within terms of it’s three subsystems. The Bartender
and Butler, while primarily operating on a physical
level, can each interact with the Application layer via
MQTT, allowing for cohesion of the overall device.

A. BARTENDER

The primary role of the B3’s Bartender is to dispense
the beverages requested by the user. It is
concurrently responsible for key functions such as,
confirming the presence and exact location and
positioning of a valid drinking glass and, based on
the beverage chosen by the user, dispensing the
liquids from various bottles of available beverage
ingredients into the awaiting drinking glass. As per
our requirements, the design is set to allow at least
three different ingredients for users to choose from

when selecting their desired beverage. This process
will be done precisely, accurately, and at a prompt
rate, in order to achieve a specified time requirement
of less than 2 minutes.

Fig. 1: The Bartender with five (5) ingredients available

The physical structure of the Bartender, as shown in
Figure 1, is designed to house the dispensing system.
It consists of laser-cut sheets of medium-density
fibreboard (MDF), off-the-shelf 2-oz liquor
dispensers, peristaltic pumps, silicon tubing, and a
Wi-Fi enabled microcontroller module on a custom
designed PCB.

The silicon tubing extends out from each ingredient
bottle to a dispensing nozzle located directly above
the location of the awaiting drinking glass placed in
the Butler. Once the Bartender receives the user’s
order, it awaits the arrival of the Butler. Upon arrival,
the Bartender, by use of the Hall Effect sensors,
verifies the Butler’s position once it finishes the
docking procedure. The Bartender also utilizes
proximity sensors to confirm the presence and
location of the drinking glass brought by the Butler.
Once all checks are confirmed, the dispensing
process begins.

For the Bartender to communicate with the other
subsystems, it receives various notifications from the
application via MQTT. The Bartender subscribes to
MQTT to receive flags such as ‘app/order’ (that
indicates the recipe of the order placed), the

‘butler/overflow’ (that prevent incidents such as an
overflow that could cause unnecessary messes or
even possible damage to system), and the
‘app/userDeclaredAbort’ (which can be sent at any
time to immediately halt the system). The Bartender
also publishes its own flags to MQTT once it has
confirmed the accuracy of the Butler’s docking
process, verified the validity of the drinking glass,
and the glasses exact positioning. Additionally, the
Bartender publishes a flag, ‘butler/start’, to notify
that the requested beverage has been correctly
dispensed and ready for the Butler to deliver the final
product to the user.

B. BUTLER

The primary purpose of the Butler is to transport the
user’s empty glass to the Bartender to be filled, and
then transport the filled drink back to the user.
Additionally, it holds the touchscreen where the user
inputs their order and interacts with the GUI in
general. Mounted on the Butler at a height
comparable to the table which holds the Bartender is
a cupholder chamber meant to secure the cup during
delivery, whose base is made up of a load sensor,
used for confirming the placement of an empty glass
and preventing an overpour from the Bartender.

The base of the Butler was selected as an iRobot
Create 2.0, since it provides sufficient balance and
motor-driven transportation, can carry a significant
load, has open programmability through serial-port
connection, and has automatic docking features
which help simplify alignment with the Bartender’s
pumps. Using laser-cut sheets of medium-density
fibreboard and 80/20 aluminum supports, the frame
was constructed to mount onto the iRobot Base, with
the cupholder and user touchscreen at the very top, as
shown below.

Fig. 2​. Computer model of the Butler frame.

The Butler as a whole is controlled by a Raspberry Pi
4.0, which connects to the various sensors of the
subsystem through it’s built-in GPIO pins, and to the
iRobot Create 2.0 via USB-to-Serial Port connection.
This connection allows the Raspberry Pi to send
preformatted opcode commands to the iRobot
including direct control over its motorized wheels
and a start command for its automatic docking
procedure.

Fig. 3​ PID Line Following

The additional sensors connected to the Raspberry Pi
include an array of 5 simple IR sensors mounted to
the front of the iRobot and connected to a
multiplexer, as well as TAL221 load sensor
connected to an HX711 amplifier chip. These IR
sensors provide the input which the Pi uses to

process through its PID line following program in
order to control the two wheels of the iRobot and
stay on track throughout its path, regardless of which
direction it is travelling. The PID controller
processes the error between the center of the IR array
and the line itself, producing an output based on the
error value (Proportional) the total error over time
(Integral) and the rate of change in error (Derivative)
in order to adjust the wheels and smoothly correct
this error, whether due to drift or an intentional cure
in the path. The load sensor determines whether or
not an acceptable cup has been placed in the
cupholder as a failsafe to prevent a trip to the
Bartender with nothing to receive the drink.

Fig. 4​ Butler Docking

Both ends of the Butler’s path are marked by a “tee”
in the line of tape it follows, which is wide enough to
simultaneously be picked up by all of the IR sensors.
Since this is the only part of the path where this
occurs, this specific input instance triggers the
Butler’s docking procedure. The docking procedure
consists of the Pi commanding the iRobot to rotate
in place for 180 degrees, then send the docking
command. The initial rotation is due to the fact that
the IR sensors are actually mounted to the back of
the iRobot, a choice made in order to prevent them
from being damaged while the iRobot docks. The
iRobot’s docking procedure is capable of smoothly
and accurately aligning the Butler at the two docking
stations kept at the user’s table and under the
Bartender’s pumps.

Using MQTT communication protocols (elaborated
upon in the ​Application section), the Butler is able to
subscribe to flags from the Application and the
Bartender, which it stands by for an order to know

when to begin its standard processes for travelling to
or from the Bartender, respectively.

C. APPLICATION

The primary purpose of the application is to get user
input and feedback, as well as mediate the
communication and synchronization of the Bartender
and Butler subsystems. To accomplish this, a
seamless GUI was developed, a persistent database
was connected to the GUI, and a method of
communicating the information to the other
subsystems was established. For developing such an
application, a library that allows for machine to
machine talk, a library that allows interaction with a
persistent database, and a library to assist in GUI
creation are required. Python provides lightweight
libraries that are ideal for fulfilling these roles, such
as paho-mqtt, sqlite3, PyQt5, respectively. As such
the application was developed in Python 3.7, the
most up to date version accessible to the Raspberry
Pi 4.0 used to host the application.

The general layout of the Graphical User Interface,
or GUI, is as follows. Upon application startup, the
GUI will open on what is referred to as the Primary
Window. From here, the user will be able to access
most of the relevant information and actions
available to them. The right panel will display mostly
informational data, such as the status of the
ingredients configured, battery charge of the Butler,
and Bartender connection confirmation. The
remainder of the window will consist of basic
actions, such as a menu button, a quick order
(immediately reorders the previous drink ordered),
settings, and an exit button.

The Menu Window will regenerate every time the
user goes to the page, to ensure any updates in the
configuration or drinks added via the custom recipe
creation are available immediately. The right panel
from the Primary window will be displayed here as
well, but in a thinner panel with simplified
information indicators. A similarly sized panel for
navigation options will appear on the left side.

The Configuration and Custom Recipe Windows are
both simple windows that request user input, and

then insert the user given information into their
respective SQL database tables. The Custom Recipe
Window can be accessed from the Menu Window
and has the same left navigation panel and right
information panel.

In the process of completing its assigned task, the
application goes through 5 various states of
functionality. In its Idle State, the application will
simply be in a low power, low resource consuming
mode designed to reduce average power
consumption of the device. Awakening from there, it
will go into its Primary State, where it displays the
main window and monitors various states of the
Butler and Bartender. Once the user selects the menu,
custom drink, or configuration option, it will enter
the Query State, which ceases monitoring of
everything except for emergency interrupts from the
other subsystems. It will then query the SQL
database at this point to generate a list of options
based on the aforementioned selection from the user.
Once an option has been selected, it will move to the
Primary State if the user was editing the
configuration, or place an order and go to the Order
State if the user was in the custom drink or menu
window.

The Order State is the most delicate state of the
Application, as it will constantly be monitoring the
Butler and Bartender to ensure that the order is being
completed successfully. Furthermore, it needs to be
capable of detecting when something has gone awry
and take proper steps to alert the Bartender and
Butler on how to properly resolve the situation. It
will need to flawlessly communicate between the
two, ensuring that the Butler has successfully arrived
at the Bartender, that alignment is proper, and that no
emergency exit flags are raised. Such emergency
flags include the cup not being present, the cup
overflowing, user input emergency stop, and the
Butler veering off track.

All flags that will be sent through the system will be
interpreted by their own subsystem’s programs.
However, if a message were to be received multiple
times, it would create, in the worst case scenario, a
fatal crash that also results in extraneous data fed into
the SQL database or Bartender subsystem. Because

this worst case scenario would need user input to
manually undo the damage, this was to be avoided at
all costs. On the other hand, if a message were to not
be received at all, then the system would simply not
work as the user told it to. Though this is a simple
result, it still has a significant impact on the quality
of the system as a whole. As such all MQTT
messages are sent with a level 2 Quality of Service
(QoS). This ensures that the MQTT messages are
sent once and exactly one.

The database will consist of 3 tables that will assist
the application in determining what to display to the
user as viable menu options. The configuration table
will be populated with data the user has input and
configured with the Bartender. Upon traversing to
the menu, the menu will auto generate by cross
referencing the configuration table with the recipes
table through the menu table. The recipes table will
have a row for each ingredient in a recipe involved in
a recipe, as well as its name. The menu table will
then specify which rows in the recipes table contain a
recipe with any given name. This will initially be
populated with popular drinks commonly served in
both public and private settings; however, if the user
so choses, they can create a custom recipe that will
be added to the end of these tables with the
appropriate information. When the menu is next
traversed to, it will be recreated with the new recipe
(so long as the relevant ingredients have been
configured.)

Fig. 5​- Table layout for SQL database

III. COMPONENTS
A. BARTENDER

​The dispensing system of the Bartender is made up

of carefully chosen components that follow the
applicable standards and meet the design
specifications. A main standard that needed to be
recognized for our project is that of the health and
safety standards, due to the fact that our end product
is one that will be consumed. This required the
choice of dispensing components that come in
contact with the liquids, to be FDA approved thus the
silicon tubing was used. Additionally, digital
standards such as the wireless communication
standards were ones that needed to be accounted for
during the component selection process, specifically
that of the microcontroller. To successfully reach the
goal for the specified mixing time of a beverage, as
stated in our design specifications, the selection of
peristaltic pumps with silicon tubing was made,
along with the Feather HUZZAH with ESP8266 as
the microcontroller. To complete the dispensing
system the following were also chosen based on
desired characteristics and ease of integration with
the testing board and each of the other components;
the L293D Motor Driver Breakout, the open - source
74HC4051 8-channel MUX breakout, and 2-Channel
DC 5V Relay Module with optocouplers. These
selections not only produced the required rate
required for dispensing the liquid into the awaiting
glass, they were also utilized because they
successfully achieved the required accuracy needed
during the testing process.

Fig 6​- Feather HUZZAH with ESP826, selected
microcontroller for the Bartender.

Sensors are also essential components for the
Bartender in that they are needed for the purpose of
validating the presence and exact location of the
drinking glass brought by the Butler. Following the
successful testing process of multiple sensors, the
HC-SR04 UltraSonic Proximity sensors were chosen
to accomplish this function. Additionally, Hall Effect
sensors were added to verify the accuracy of the
Butler’s position once it finished the docking
procedure.

B. BUTLER

The primary function of the Butler subsystem is to
deliver drinks between the Bartender and the user. To
accomplish this, some kind of robotic platform was
needed for structural foundation and for
transportation. Three viable options were identified:
creating our own robotic platform from scratch,
modifying a motorized base to receive control
signals, or purchasing an existing platform with
built-in communication protocols and preset
commands. Given that creating a custom robotic
platform or modifying an existing one would involve
several mechanical elements, the natural choice for
initial development was to use a platform already
designed to accept serial commands. The iRobot
Create 2.0 was by far the most flexible and
development friendly robotic platform, with features
such as serial command-line interface and automatic
system docking.

To properly direct the robotic platform, a method of
navigation was required. Given the requirement
specs and environments that the system was likely to
be in, the two most viable methods of navigation was
a line following algorithm utilizing an array of
infra-red (IR) sensors, or use an application of
computer vision, via the OpenCV platform in
conjunction with a camera. Though the Raspberry Pi
that the Butler is hosted on has the resources and
capacity to support OpenCV, and the idea of an
overall system that doesn’t require making a visible
path in a user’s home was tempting, the high
difficulty and lengthy process of fine tuning such a

system was intimidating given the short time frame
allotted for this project. Thus, line following
algorithms directed by IR sensors was selected for
this prototype stage of development

A development environment is needed to receive
information from the application, control multiple
sensor inputs, and run a line following algorithm.
Additionally, with the intent to house the Butler
program and the Application within the same
environment, ample computing power was a
requirement. Though there are many self-contained
development-oriented platforms with the computing
capacity and memory space to handle these tasks,
such as Intel's NUC, or Huawei’s HiKey 4, none are
as functionally accessible, or cost-effective as the
Raspberry Pi 4.0 from the Raspberry Pi Foundation.
Additionally, the Raspberry Pi 4.0 draws
significantly less power than its competition,
requiring a consistent 5 V at 2.5A to power on and
stay actively running. This lends itself well to the
requirement specification of having the Butler unit
stay active on a single charge for a minimum of 90
minutes, a goal which was greatly surpassed in this
project.

Since the external sensors all draw power through the
Raspberry Pi’s GPIO pins, the setup for powering the
Pi in turn solves the need for powering the additional
sensors. Originally, this was to be accomplished by
tapping into the current of the iRobot’s motor driver.
This was a very intuitive solution in that the iRobot’s
docking stations constantly recharge its battery,
meaning that the entire system would be charged
through the docking stations at either destination for
the majority of any given period of time,
hypothetically giving a very efficient single-charge
battery life for the system. However, this plan fell
apart due to the docking command on the iRobot
automatically overriding the motor driver settings,
causing the power to be cut off at every instance of
docking, in turn shutting off the Raspberry Pi.
Instead, an external battery was purchased to
constantly keep the Raspberry Pi powered on
throughout the system functions, which luckily still
provided an overall system charge life well above the
initial requirement specifications.

Given that the Butler, whose main task is to transport
liquid, would have an array of electronic equipment
onboard, some level of precautionary measure had to
be made to ensure any small error would not cause
the Bartender to pour fluid into the Butler when it
does not have a cup. There would need to be a
method of checking to ensure that a container had
been placed in the Butler’s cup holder. A simple load
sensor could be used to determine if weight had been
placed, IR sensors could detect if an object was
nearby when it blocked the environment’s light, or
utilizing OpenCV for computer vision software. For
similar reasons stated before, computer vision was
eliminated due to complexity and time. Between IR
sensors and load cells, both were prone to human
errors, such as using the system in a low-light
environment or placing a weight that was not a cup
in the cup holder, respectively. Ultimately, the
potential of variable light levels, as well as glass
cups, eventually led to the decision to use a load cell.
The TAL220B was a highly rated load cell, cheap
and consistent, ideal for use in the weight range of an
empty cup to a full cup.

C. SOFTWARE

To host the programs for the Application and Butler
on the Raspberry Pi 4.0 an operating system was
needed. Though there are many available options,
Raspbian is a Debian variant tailored to specifically
providing ease of use for a Raspberry Pi. As such, we
started with the baseline version of Raspbian. The
default installation of Raspbian includes many
general use utility services and programs; however,
to further improve efficiency and to free up as many
resources as possible, it was stripped down to its bare
essentials.

With technology having such a large impact on
modern day society, there are an innumerable amount
of methods of machine to machine communication,
as such there were many appealing options for the
design to be able to utilize; however, MQTT stood
out from the rest. Simple and free, MQTT offered the
ability for a low resource machine to machine talk on
a publish/subscribe basis. That is to say, when new
information is published to a central broker, it is then
redistributed only to machines that have subscribed

to that topic. This allows a simple, centralized
distribution system distinctly separated from each of
the subsystems that are connected to it, ensuring that
there is no irrelevant information given.

For the persistent database, there are a few standard
options, such as MongoDB, SQLite3, and Oracle;
however, SQLite3 offers a lightweight format of the
SQL style database. In addition to this, SQL is a
familiar database language, helping to reduce the
amount of development time. Many existing
databases utilize SQL, which allows for the potential
of future development to be able to cross reference
existing databases for additional recipes or other
relational data, such as flavor or drink
recommendations.

IV. CONCLUSION

Over the course of this two-semester project’s
development and implementation, this group has had
the opportunity to develop on much of the
knowledge gained throughout undergraduate studies,
gaining an additional understanding of topics such as
M2M industrial communication protocols (MQTT)
closed-loop control systems (PID), and front-end
GUI design. Ultimately, the process of developing
these concepts as tangible parts of a greater project
helped not only in gaining hands-on experience in
development but also an understanding of
collaborative engineering and the integration of
electrical subsystems. The experience of identifying
a function that seemed it could be improved upon,
designing a system capable of accomplishing the
tasks necessary to do so, and then engineering a
realization of that design in the real world has been
rewarding on many levels. Given the opportunity to
continue development on this project, this group
would incorporate a complete PCB for the Bartender
and Butler units, provide them with aesthetic
improvements, and expand the GUI to be more
robust.

V. REFERENCES

[1] iRobot. “Create ® 2 Battery Power.” 2015.
https://www.irobotweb.com/-/media/MainSite/PDFs/About/
STEM/Create/BatteryPower.pdf.

[2] van Heesch, Dimitri. “Quality of Service.” Paho MQTT
C Client Library, 13 Sept. 2018, 13:40:20,
www.eclipse.org/paho/files/mqttdoc/MQTTClient/html/qos.
html.

[3] Poole, Ian. “IEEE 802.11b.” Electronics Notes,
Radio-Electronics.com, 2006,
www.electronics-notes.com/articles/connectivity/wifi-ieee-8
02-11/802-11b.php

[4] Poole, Ian. “IEEE 802.11g Wi-Fi.” Electronics Notes,
Radio-Electronics.com, 2006,
www.electronics-notes.com/articles/connectivity/wifi-ieee-8
02-11/80211g.php.

[5] Poole, Ian. “IEEE 802.11n Standard.” Electronics
Notes, Radio-Electronics.com, 2006,
www.electronics-notes.com/articles/connectivity/wifi-ieee-8
02-11/80211b.php.

[6] Jiang, Nancy. “NSF/ANSI 25-2017: Vending
Machines for Food and Beverages - ANSI Blog.” ​The ANSI
Blog​, 3 July 2019,
blog.ansi.org/2017/06/nsfansi-25-2017-vending-machines/#
gref.

[7] Kelechava, Brad. “NSF/ANSI 61-2019 - Drinking
Water Components Health Effects - ANSI Blog.” ​The ANSI
Blog​, 21 Oct. 2019,
blog.ansi.org/2016/10/nsf-ansi-61-2016-drinking-water-com
ponents/#gref.

[8] “NSF/ANSI/CAN 61.” ​Drupal​,
www.nsf.org.cn/en/our-services/service-by-industry/water_
and_wastewater/municipal-water-treatment/nsf-ansi-standar
d-61.

[9] iRobot. “Create ® 2 Open Interface (OI) Specification
based on the iRobot® Roomba® 600.” 2016.
https://www.irobotweb.com/~/media/MainSite/PDFs/About
/STEM/Create/iRobot_Roomba_600_Open_Interface_Spec.
pdf?la=en.pdf

VI. ENGINEERS

Yianni Babiolakis is
studying for a Bachelor’s
degree in Electrical
Engineering at the University
of Central Florida, with intent
to graduate in May 2020. He
plans to begin work at Burns
& McDonnell after

graduation, as a substation engineer in their
Transmission and Distribution department. He
passed his FE examination this year and hopes to
earn PE Licensure in the future.

Rachael Caskey is
studying for a Bachelor’s
degree in Electrical
Engineering, along with
a minor in Mathematics
at the University of
Central Florida, with
intent to graduate in May
2020. Her goal is to

pursue a career in engineering with a focus in power
and renewable energy. She is currently studying to
take her FE exam after graduation and is a student
member of IEEE and PES.

Edward Nichols, is
studying for dual
Bachelor’s degrees in
Electrical Engineering and
Economics, with intent to
graduate in Fall of 2020.
He transitioned directly
from an internship that
began in mid 2018 to a
full-time role as a SCADA

Engineer at Siemens Gamesa Renewable Energy
since September of 2019, and actively endeavors to
continue assembly of a successful career in SCADA
and industrial control systems before venturing into
entrepreneurship. He is currently studying for FE and
CFA examinations.

Corey Scott is studying for
his Bachelor’s degree in
Electrical Engineering, along
with a minor in Computer
Science at the University of
Central Florida, with intent to
graduate May 2020. Corey is
looking to pursue a career in
computer science, as well as

independently developing applications to further
solidify his programming foundations.

