

Bartending Butler Bot: B3
Final Design Report

EEL4914-19FALL
15 November 2019

Bartender Butler Bot: B3
Final Design Report

Group 13
Corey Scott co079592 Electrical Engineering
Edward Nichols ed891610 Electrical Engineering
Yianni Babiolakis yi657277 Electrical Engineering
Rachael Caskey ra231875 Electrical Engineering

 1

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 2 of 120

Section

Table of Contents
 Executive Summary ... 6

 The Bartender Butler Bot .. 7

 Motivation .. 7

 Design Objectives ... 8

 Requirements Specifications ... 9

 Total Appliance Cost .. 10

 Bartender Configuration Time ... 11

 Ingredient Capacity ... 11

 Order Time ... 11

 Beverage Mixing Time .. 12

 Drink Accuracy ... 12

 Delivery Time .. 12

 Delivery Range ... 13

 Charge Lifespan ... 13

 Obstacle Collision Rate ... 13

 Bartending Bot Dimensions ... 13

 House of Quality .. 14

 Analysis .. 15

 Notes on Exemplary Trade-offs .. 18

 Background & Technical Research .. 19

 Contemporary Projects & Products .. 19

 SirMixABot .. 19

 Automated Bartender ... 21

 Bartendro .. 23

 Elliot the Line Follower Robot ... 25

 RaspRobot OpenCV Project ... 26

 Relevant Components & Key Technologies 27

 Arduino Uno/Mega .. 28

 ESP8266 .. 28

 Raspberry Pi ... 28

 Peristaltic Pumps .. 29

 H-Bridge DC Motor Drivers ... 29

 1

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 3 of 120

Section

 Relay Modules .. 30

 Infrared Photodiode Sensors .. 31

 Hall Effect Sensors ... 32

 Market Analysis ... Error! Bookmark not defined.

 Typical Consumer Archetype Error! Bookmark not defined.

 Value Proposition Error! Bookmark not defined.

 Commercial Roadmap Error! Bookmark not defined.

 Standards & Regulations .. 35

 Health & Safety Standards .. 35

 Vending Machine for Food and Beverages 35

 Drinking Water System Components .. 35

 Fire Safety and Emergency Symbols .. 36

 Digital Standards ... 36

 Wireless Communication Standards ... 36

 OASIS standards- MQTT v5.0 .. 38

 Key Design Constraints .. 39

 Economic and Time Constraints ... 39

 Environment, Social, Political Constraints 40

 Ethical, Health, Safety Constraints.. 40

 Manufacturability and Sustainability Constraints 41

 System Design & Phased Implementation ... 43

 Functional Description .. 44

 System Conceptual Block Diagram ... 45

 Strategic Components & Parts Selection .. 47

 Bartender .. 47

 Bartending Firmware Host .. 47

 Dispensing Fluids ... 50

 Proximity Sensing & Rangefinding ... 57

 Butler .. 61

 Autonomous Navigation ... 61

 Securing & Validating Cup.. 65

 Core Application.. 67

 Application Backend Environment .. 68

 User Interface ... 72

 1

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 4 of 120

Section

 Structural Components and Aesthetics .. 77

 Parts Selection Summary ... 77

 Phase I: Core Functionality .. 78

 Bartender: Simple Cocktails Error! Bookmark not defined.

 Architecture Error! Bookmark not defined.

 Functional Block Diagram Error! Bookmark not defined.

 Integration Strategy & I/O SummaryError! Bookmark not
defined.

 Butler: Line-Following Error! Bookmark not defined.

 Architecture Error! Bookmark not defined.

 Functional Block Diagram Error! Bookmark not defined.

 Integration Strategy & I/O SummaryError! Bookmark not
defined.

 Core Application: System Integration Error! Bookmark not defined.

 Architecture Error! Bookmark not defined.

 Functional Block Diagram Error! Bookmark not defined.

 Integration Strategy & I/O SummaryError! Bookmark not
defined.

 Phase II: Advanced Features ... 92

 Bartender: Scaling Up... 93

 Advanced Functional Description ... 93

 Advanced Architecture ... 93

 Butler: Path Recognition & Obstacle Avoidance 93

 Advanced Functional Description Error! Bookmark not defined.

 Advanced Architecture Error! Bookmark not defined.

 Core Application: GUI Aesthetics Error! Bookmark not defined.

 Advanced Functional Description Error! Bookmark not defined.

 Advanced Architecture Error! Bookmark not defined.

 Phase III: Commercial Optimization Error! Bookmark not defined.

 Design for Manufacturability Error! Bookmark not defined.

 Market Niche Optimization Error! Bookmark not defined.

 Prototype Construction & Coding Error! Bookmark not defined.

 Integrated Schematics Error! Bookmark not defined.

 PCB Manufacturing Documentation Error! Bookmark not defined.

 1

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 5 of 120

Section

 PCB Properties Error! Bookmark not defined.

 Vendor Information Error! Bookmark not defined.

 Prototype Validation Plan .. 95

 Bartender Prototype Testing Error! Bookmark not defined.

 Photodiode Sensor Testing Error! Bookmark not defined.

 Butler Prototype Testing ... 104

 Valid Drink Identification Testing ... 105

 Core Application Testing Error! Bookmark not defined.

 Photodiode Sensor Testing Error! Bookmark not defined.

 Administrative Content .. 112

 Tasks and Responsibilities .. 112

 Budget and Financing ... 113

 Estimated Budget .. 113

 Current Expenditures .. 114

 Project Milestones ... 116

 Design Phase ... 117

 Implementation Phase .. 118

 Appendices ... 120

 Appendix A - References .. 120

 1

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 6 of 120

Section

 Executive Summary
As a formulation and scoping of a senior design project for the 2019-2020
academic year at UCF’s College of Electrical Engineering and Computer Science,
we propose and introduce the Bartender Butler Bot (B3). This document renders
an ABET mandated composition, to record the efforts dedicated to the research,
design, development, and ultimate implementation of an automated beverage
mixing and delivery home appliance.

This project serves to meet a clearly defined set of goals for an innovative solution
to optimize an experience that is nearly universal in its popularity. The Bartender
Butler Bot (B3) is a robot made up of a drink-mixing station (the Bartender) and a
remote unit (the Butler) which can take a user’s order, send it to the Bartender,
and deliver the drink back to the user. The prototype developed over this course
will demonstrate a strictly limited ability for usage an average home, as a proof of
concept – to lay the groundwork for a more developed appliance that could be
used to support hosting at private events.

Outside of the direct applications of the finished product, this project serves as
both a learning experience of many skills within the field of electrical engineering
for its designers and a demonstration of those which have already been developed
over the course of their undergraduate studies. The finished design of the B3 will
make use of multiple subsystems which communicate using multiple standards, as
well as several sensors and forms of input that will be tested individually before
integrating into a finished product, which will be adapted to meet the requirement
specification laid out in this report. The report will not only be a summary of the
design the finished product exhibits, but will also serve as a timeline and history of
the project itself, including the initial plans for the B3, the problems encountered
throughout their implementation, and the tools used and discovered in developing
solutions to these problems.

 2

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 7 of 120

Section

 The Bartender Butler Bot
This section provides a formal introduction of the Bartender Butler Bot (B3). It
begins with a narrative of intrinsic motivation followed by an enumeration of natural
qualitative design objectives that arise from the motivations explored. From the
concepts formed, a Six Sigma “House of Quality” diagram is constructed and the
key tradeoffs in the design process are identified. An analysis of the tradeoffs is
conducted to then establish a prioritized and multi-faceted approach to the
engineering design process.

 Motivation
Since the Industrial Revolution, the relationship between mankind and technology
has been one of automation, of developing new devices which can simplify or
replace altogether seemingly mundane or repetitive tasks to free ourselves and
our time for bigger and better things. As time has passed, this concept has
expanded from optimizing our places of work to our very homes, with so-called
smart devices creating entirely new definitions of convenience in the modern world.
One form of personal automation that has remained popular since early
speculative science fiction has been the concept of a robotic butler or assistant,
able to perform small tasks around the house for families. We are living on the
cusp of such automated conveniences, with devices such as Amazon’s Alexa or
Google Home having control over minor appliances such as light bulbs and locks.
Inevitably, most aspects of human social interaction will be supported by robotic
assistants, and it is hence natural that the following represent a sufficient
motivation for a baccalaureate’s demonstration of exemplary engineering practice
in that vein:

For millennia, and all over the world, mankind has gathered over the social bond
of sharing drinks with one another. Entertaining others in one’s home, sharing
warm stories and making bonds over cold drinks is so fundamentally ingrained in
our culture that for many adults both young and old, it is a welcome and yearned-
after end to a long workweek. Though part of the beauty in this unifying interaction
is in its timelessness and simplicity, one can’t help but wonder why modern
technology has not yet been used to facilitate the experience – especially for the
dutiful host.

Unlike in a bar or restaurant, where the dedicated wait staff can quickly take refill
orders, the lively stories and deep conversations that come to be while freely,
openly, and directly engaging a group at home must be put on hold while the
chivalrous host walks back to their bar to refill everyone’s drinks. They return to
the possibility that the punchline has been delivered, the close game has been
won, the heated debate lost – or worse, that the collective train of thought has been
completely derailed. With this in mind, this project aims to bring the convenience
of modern technology to serving and entertaining guests at a warm private event.

 2

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 8 of 120

Section

The overarching goal of this project is to design, build, and test a low-cost, proof-
of-concept home appliance made up of two major parts: A “Bartender” bot to be
able to remotely dispense mixed drinks as selected by the user, and a “Butler” bot
to transport these drinks to the user without the need for them to leave the common
area. By automating the process of refilling and transporting people’s drinks, this
device can be used to facilitate the experience of hosting and entertaining guests
with the luxury of a bartender and a waiter, all in the comfort of one’s own home.

 Design Objectives
This section explicitly enumerates qualitative design objectives for the Bartending
Butler Bot (B3). Design objectives are drawn from both the explicit motivation
above and from the genuine technical aspirations intrinsically posited by the team.
Provided first that the project, as a baccalaureate capstone, is limited in scope,
natural overall objectives are deduced. Then, simple but explicit qualitative design
objectives are generated for each major component of the B3, so as to yield
discernable design boundaries to support and constrain design efforts.

Overall:

 Construct an electronic appliance which automates the process of mixing
and delivering a beverage across a predefined path.

 Minimize the number of mechanical subsystems, such as to enable or
otherwise simplify the manufacturing or construction of the overall assembly
– especially as it relates to the achievement of mechanical functions.

 Maximize the number of off-the-shelf or open-source subsystems, such as
to enable or otherwise simplify the design and development process –
especially as it relates to rapidly implementing a functional prototype.

 Minimize the overall cost of the system, such as to practically heed the
natural budget constraints of an undergraduate project and to support the
potential for the commercialization of a more advanced prototype.

Bartending Bot:

 The bartending bot shall be able to dispense drinks made up of any of the
individually configured ingredients combined across a range of proportions,
as may be desired by the user – especially such as in preconfigured recipes.

 The bartending station’s available recipes shall be constrained to those
whose beverage ingredients are both available and configured across the
appliance’s core user interface.

 The bartending station shall be optimized for simple cleaning and quick
configuration, such as to minimize the amount of time required by the host
in maintaining it.

 The bartending station shall provide information on its usage and status so
as to enable the compilation of an active and live inventory of its configured
ingredients – visible to the host on the user interface upon request.

 2

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 9 of 120

Section

 The bartending bot shall have a form factor optimized or otherwise designed
for placement on a countertop or tabletop environment, such as a
contemporary kitchen appliance might.

Butler Bot:

 The butler shall be able to physically transport mixed beverages from the
bartending station to an exact predetermined remote location.

 The butler shall be able to autonomously navigate a strictly defined path
from the bartender to the delivery location without contacting any obstacles,
damaging itself and losing its cargo.

 The Butler shall receive the order on an embedded user interface and
communicate it to the Bartender.

Core Application & GUI:

 The graphical user interface (GUI) for configuring both the Bartender and
the Butler shall be accessible at least across a dedicated touch input panel
on the Bartender.

 The core appliance software shall automatically handle and suggest drink
recipes from the available ingredients configured by the user.

 The core appliance software shall allow the user to configure recipe
preferences, and ingredients available.

 The core appliance software shall mediate interactions and control data
transfer between the two mechanical system control firmware on the Butler
and Bartender, respectively.

 The core appliance software shall directly control the mechanical system
control firmware on the Butler and Bartender, respectively.

 Requirements Specifications
The following section explicitly states quantitative design objectives which arise as
measurable quantities born from the qualitative objective specified previously –
listed summarily in Table 2–A. These requirements shall be used as the
benchmark to validate the successful achievement of the project’s operational
design objectives. The specific value of each requirement is chosen depending
upon the nature of the requirement itself; whereas, the reason for explicitly stating
and observing these particular specifications as boundary conditions to the design
process are that they are the minimum set necessary to achieve the functional
design requirements demanded by aforementioned motivations for the project.

 2

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 10 of 120

Section

Description Unit Requirement

Total Appliance Cost* USD <$1500

Max. Avg. Bartender
Configuration Time

Minutes <10

Min. Capacity for
Beverage Ingredients*

Ingredients >3

Order Time Minutes <1

Beverage Mixing Time* Minutes <2

Drink Accuracy % Target Vol. <5%

Delivery Time* Minutes <5

Delivery Range* Meters <10

Charge Lifespan Minutes >90

Obstacles Collision Num./journey <3

Dimensions of Bartender cm3 <50000

Table 2–A: Engineering Design Specifications (EDS)

 Total Appliance Cost
This specification refers to the total financial expenditure required for a single final
assembled prototype – not including expenses related to development, design, or
the iterative process therein. The key motivation for the assertion of this
requirement specification is the nature of the project as a self-motivated, self-
funded, self-organized undergraduate exposition of technical knowledge. A team
of average undergraduates has naturally limited financial resources – and so the
final prototype must be within the scope afforded by the team’s combined financial
resources.

Further, and equally as important, the potential for commercialization at a later
stage of development would be supported best by aiming for a price-point
nearabout what might be acceptable for the archetype of the target consumer –
such as those who may purchase a luxury espresso machine. This is expressly an
intrinsic objective to minimize the manufactured “cost of goods sold”.

 2

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 11 of 120

Section

To this end, a maximum value of 1500 USD’19 was – by team consensus – a
reasonable value for a ceiling limit on total expenditures for the first prototype. This
value naturally constrains the scope of development and represents a hard barrier
observed across all aspects of the design.

 Bartender Configuration Time
This specification refers to the time it will take the user to configure the Bartender
for typical usage – such as after a maintenance cycle or for initial setup. This only
includes defining both which ingredients are available and how much of each is
remaining for the Bartender to use.

To this end, the maximum average configuration time of 10 minutes is a
compromise between realism and convenience of implementation. The value
represents an achievable upper ceiling on the demands from the owner or
maintainer of the home appliance – and that the value represents a concrete, but
seemingly attainable design objective.

 Ingredient Capacity
This specification refers to the minimum number of beverage ingredient options
that can be configured on the B3, such that they are available to the Bartender for
dispensing at any given moment. This alludes to the number of actively controlled
pumps which must be controlled by the Bartender.

A minimum of 3 simultaneous ingredients for the Bartender was selected as an
attainable benchmark to demonstrate a proof-of-concept ability to mix drinks of
varied recipes through the precise individual control of multiple pumps. This
number was, in part, chosen as many common cocktails contain 2-3 ingredients.

 Order Time
This specification refers to the maximum average total amount of time it takes a
user in a typical usage scenario to navigate the user interface’s menus, peruse the
options, and make a drink selection.

A maximum order time of 1 minute was selected based on the assumption that
the user interface should be efficient and not detract from the user’s experience,
allowing them to order their beverage quickly enough such that the user observes
no major interruption in conversation or presence. This reflects the belief of the
design team that putting one’s conversation on hold for more than a minute does
not lend itself to a seamless interaction with an attendant – especially over the
course of multiple rounds. This also relates directly to the abstract objective of
minimizing the amount of time between ordering a beverage and receiving it.

 2

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 12 of 120

Section

 Beverage Mixing Time
This specification refers to the maximum of the average amount of time required
to mix a beverage – after receiving an order and initiating the fluid dispensing
process at the Bartender.

A maximum beverage mixing time of 2 minutes was selected to support the
minimization of the overall amount of time from ordering to receiving a drink – an
abstract objective that is confounded variously. This value, along with Order Time
and Delivery Time, had to each be selected with regards to one another in order
to keep the overall time from starting an order to receiving a drink reasonably low
during the entire process.

 Drink Accuracy
This specification refers to the maximum range of tolerance in the specific volume
of an ordered and delivered beverage – including the deviations in each
ingredient’s specific pour, and the loss encountered on the journey, if any.

A volumetric drink accuracy of ±5% of the target volume was selected in order
to maintain both consistency in the beverages produced and a safeguard on
alcoholic content, as over-pouring can become a health and safety risk. It was
assumed that, whereas individual pours of ingredients in a commercial food &
beverage environment are standardized to between 1.5-2oz, a maximum
volumetric deviation of 5% aligns with a typical user’s threshold to discern variation
in the composition or flavor of a beverage.

 Delivery Time
This specification refers to the maximum average amount of time required to
physically transport a complete and dispensed beverage from the Bartender to the
Butler’s initial location, where the user submitted the order, at the maximum range
of delivery range of the Butler. This travel time is reasoned to be the maximum of
either the fetch or return journey, and thus represents the target of development
efforts – whereas, achieving the target for one intrinsically achieves the target for
the other half of the journey. This objective also encapsulates a requirement for
minimum avg. velocity along the predefined route.

A maximum delivery time of 5 minutes was selected – by consensus – as a
reasonable pace for mess-free and collision-free navigation within the context of
minimizing an overall “order submission to beverage receival” time. This value was
selected considering the expected max speed of the Butler, the added weight of
its total serving load, and the selected maximum delivery range. Further,
consideration was paid to service times in a commercial food and beverage
environment.

 2

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 13 of 120

Section

 Delivery Range
This specification refers to the maximum target range for a route across a level,
nominally unobstructed surface in operation – such as while retrieving a beverage.
To be clear, this is also a scope-limiting target on the total one-way translation
distance the Butler may have to traverse.

A minimum delivery range of 10 meters was selected in order to support the
fundamental utility of the device, as the express purpose of the Butler unit is to
deliver a beverage from the remote Bartender to the user. Though navigation is a
repeatable process, it has many possible confounding variables. The range is an
attainable value conceivably near the lower boundaries of what might be expected
for a useful route between the user’s entertainment center and their choice of
location for a Bartending station.

 Charge Lifespan
This specification refers to the minimum amount of active time the B3 can
continuously handle orders without a dedicated charging period – including taking
an order, retrieving a beverage, and returning to standby.

A minimum single-charge lifespan of 90 minutes was selected to support the
device’s practicality in usage across the duration of a private social gathering. This
requirement encapsulates an implicit objective to minimize power consumption
with power management strategies or otherwise supply ample power reserves.

 Obstacle Collision Rate
This specification refers to the maximum average number of unintended collisions
with obstacles in or near the predefined route for one half of the route – especially
including those that cause a minor spill or otherwise impede the ability of the Butler
to subsequently navigate. This alludes to the sophistication of the autonomous
navigation strategy that will be employed in the Butler and sets an implicit objective
for maximizing it.

A maximum collision rate for each one-way journey of 3 sets an attainable
objective that limits the scope of sophistication required in the navigation strategy,
but also yields a decent foundation for future development efforts.

 Bartending Bot Dimensions
This specification refers to the maximum volume that the Bartending station may
occupy, without specifying or restricting the form of its packaging. This volume
includes the pumps, electronic hardware, structural framework, outer packaging,
and all supporting systems otherwise required – but not the bottles beverage
ingredients which may yet be varied in size and shape.

 2

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 14 of 120

Section

The maximum overall volume of the Bartender is 50,000 cm3, to ensure this
portion of the device could reasonably be kept in the user’s kitchen, dining room,
or location of choice without taking up an amount of space beyond what might
expected of a common contemporary counter-top appliance, such as a microwave
or espresso machine.

 House of Quality
To enable an analysis of the various competing requirements, to narrow the scope
for focus on aspects of the engineering design process, and to maximize
development efficiency it is useful to integrate the design objectives and
engineering requirement specifications into a matrix of key engineering
considerations which may then be related against the motivating party’s own
qualitative or quantitative objectives. In other words, approaching the engineering
requirements from the summary perspective of key engineering considerations
yields a useful correlation matrix from which one can plot a design approach and
later gauge a current design status.

Due to the fact that some of the “customer’s” requirements are loosely bound
qualitative objectives, the assessment is in some ways subjective. However, by
constructing a framework for assessing the nature of the relationships in a
systematic manner, and then consistently applying that framework for each
consideration, the matrix can be constructed. In Figure 2–B, key
engineering/technical considerations derived from the requirements specifications
relate in mixed ways against the summary and key requirements from the
hypothetical customer.

Naturally any analysis framework must suit the subject being analyzed. Hence, a
discussion of the framework and the process by which it was constructed is served
by first enumerating and defining the key (mostly qualitative) objectives – from an
engineering customer’s perspective, in terms of utility. In this context:

(Reasonable) Total Maximum Cost

Whereas, the entire appliance ought to be under some reasonable total price. Be
that the utility of the device is in its appeal at social gatherings and its ability to
serve drinks successfully, the intuition is that its total cost should not surpass this
utility. In this case, as the project is self-motivated and self-funded, an asserted
value can be taken directly from the engineering design specifications: $1500

 2

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 15 of 120

Section

(Immediate) Availability of Beverage Recipes

Whereas, the appliance should ultimately provide the maximum range of beverage
options at any given time as practically possible. The intuition being that a potential
private owner of the product, for example, would maximize their utility by reducing
the need to reconfigure the apparatus to choose a new set of beverage flavors or
styles, but that it might be readily capable of immediately serving from a large
range of pre-configured and accessible options. Or, similarly, one may wish to
scale the appliance to serve from the ingredients available in a full bar.

Autonomous Drink Delivery

Whereas, the appliance is to maintain some capacity to deliver a beverage from
the bartending station to the user at a predefined location autonomously; it is
implicit that a private user of this appliance would yield the maximum utility from
its ownership from the maximally sophisticated level of autonomous navigation
possible, considering this feature is inherent to the overall application of the device.

Ease of Implementation

Whereas, the appliance is a self-funded and self-motivated engineering project
under a formal and strict development timeline, it is prudent to include the objective
to facilitate the implementation of this appliance and its features wherever and
however possible.

Single-Charge Life Span

Whereas, the appliance yields its utility from serving beverages at private social
gatherings, it is intuitive that a private owner of this appliance would yield the
maximum utility from its ownership where the appliance is capable of operating for
as long as possible during any given event.

Ease of Use

Whereas, the appliance is expected to often interface with lively and inebriated
partygoers at social gatherings, potentially in the absence of the owner and
configurator, it is intuitively imperative that the appliance also be designed such
that is as simple to use as possible.

 Analysis
To be clear, the nature of the relationships between these mostly qualitative
objectives is driven from the practical nature of the technical considerations. The
technical engineering considerations are bound by the engineering design
specifications, the conceptual outline of the B3 appliance, and the engineering
design process. Further, each technical consideration defined maintains a specific
quantitative objective or, otherwise, a direction of objective optimality - an optimal
direction to push the consideration, so to speak.

 2

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 16 of 120

Section

From an engineering perspective, in alignment with the incentives and constraints
mentioned before, it is desirable to observe the following key engineering design
considerations which have been compiled from the overarching design objectives
and requirements specifications:

1. Maximize the number of pumps in the system – so as to enable the
maximum availability of beverage ingredient options.

2. Minimize the number of sensors in the system – so as to facilitate
implementation, such as by simplifying the sophistication of the firmware
required to meaningfully and efficiently interpreting sensor information for
operational purposes.

3. To achieve a target size for the Bartender – so as to ensure the appliance

has both an aesthetic packaging and a minimally invasive form factor.

4. Minimize the sophistication, or design intensity, of the Bartender’s
integrated PCB – so as to facilitate implementation by reducing the amount
of time that must be invested in development.

5. Minimize the overall cost of a manufactured Bartender’s integrated PCB –

so as to support remaining within the prototype’s budget constraint and
otherwise constrain the sophistication of the PCB.

6. Minimize the amount of time required to render a functional firmware for the

Bartender – so as to enable direct focus on the immediate scope of
implementation and other design objectives.

7. To achieve a target size for the Butler – so as to render a stable and

minimally obtrusive platform for transporting a full beverage.

8. Minimize the sophistication, or design intensity, of the Butler integrated PCB
– such as to facilitate implementation by reducing the amount of time that
must be invested in development.

9. Minimize the overall cost of a manufactured Butler’s integrated PCB – so as

to support remaining within the prototype’s budget constraint and otherwise
constrain the sophistication of the PCB.

10. Minimize the amount of time required to render a functional firmware for the

Butler – so as to enable direct focus on the immediate scope of
implementation and other design objectives.

11. Maximize the number of off-the-shelf components – so as to directly

facilitate implementation by limiting the scope of open-ended design
elements outside the scope of the team’s field of expertise.

 2

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 17 of 120

Section

Figure 2-A: House of Quality (QFD)

In Figure 2-A, the relationships are approached as either positively or inversely
related. Values are assigned subjectively, but along the aforementioned
conceptual framework. Crucially, a weight is assigned to each customer objective
according to the number of supporting engineering considerations – wherein a
subsequently calculated “focus” score then represents the degree to which the
customer objective is not positively supported (or enabled) by the competing
engineering design considerations.

For example, the customer’s required capacity for the device to navigate
autonomously from the bartending station to the user is positively increased or
technically enabled by also increasing the number of sensors, and the amount of
time spent on the Butler’s autonomous navigation firmware. As another example,
the total cost of the appliance is strongly positively correlated with the number of
pumps, but only inversely correlated with the number of off-the-shelf parts; total
cost increases as the number of pumps increased, but the total cost of a fully
constructed system may only slightly decrease if more of its components are off-
the-shelf.

 2

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 18 of 120

Section

 Notes on Exemplary Trade-offs
This section lightly explores noteworthy observations made from the House of
Quality given in Figure 2-A.

Note 1: It is evident that the customer perspective requirement for a capacity to
achieve autonomous delivery is in direct contention with the parallel requirement
to simplify the implementation. This may yet be feature of how the requirements
were specified.

Note 2: The customer’s objective for ease of implementation scores a high 9 on
the “focus” score. It can be deduced: To achieve the customer’s objective, hard
and overwhelming focus must be placed on the technical design considerations
which support its achievement – namely on maximizing the number of off-the-shelf
parts or open-source software.

 3

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 19 of 120

Section

 Background & Technical Research
This section explores the contemporary environment to discover the most practical
approach to the various mechanical, electrical, and system engineering problems
the B3 must be designed to overcome – as if on the path to commercialization, but
with explicit focus on the achievement of core functionality in the prioritized manner
deduced during the analysis of design tradeoffs in the previous section.

This begins with an analysis of projects and products that fulfill at least portions of
the design objectives, followed by a detailed review of the most critical components
in those designs; these serve as a contextual background for an initial design
architecture. To further frame and direct the initial design architecture and set an
initial prototype on the path to more advanced development, a brief but dedicated
review of the potential commercial space is made – including a roadmap for
optimizing the end-design to find and capture a market space.

 Contemporary Projects & Products
The following section is based on research relative to those contemporary
engineered systems which are similar in major key aspects of function and offer
insightful clues as to where to initiate a foundation for the B3, motivated and
introduced in the previous section; that research plays a key role in building upon
existing solutions to engineering problems, so as to further develop technology
within the intended area is notwithstanding.

 SirMixABot
The SirMixABot began as a personal project with a goal of automating the
bartending process. The developers aimed to facilitate the beverage selection and
making process in a private space and setting. Once the original project was
completed and in use, the positive feedback from those who tested it and the
interest it garnered led to the project undergoing a noticeable development and
expansion. The enthusiasm for the device noticed by the developers led them to
expand what was originally a personal passion project into a fully commercialized
product, sold online for shipment to users’ homes.

The overall design objective for this project is similar to that of the SirMixABot in
that both aim to construct an electronic device that automates the process of
selecting and mixing a beverage. However, the B3’s intended design deviates
from SirMixABot’s in the inclusion of a drink delivery feature provided by the Butler.
Nevertheless, the drink dispensing features of the SirMixABot are a very useful
exemplar in designing the Bartender and uses many components that can be
similarly purposed for this project.

 3

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 20 of 120

Section

Key Features: Wi-Fi Enabled
Key Components:

 Atmel ATmega2560
 Infrared Obstacle Avoidance Sensor Module
 A3144 Hall Effect Sensor
 1602 LCD display and Keypad
 SparkFun Wi-Fi Shield
 AdaFruit v2 Motor Shield

Noteworthy: Open-Source and thorough documentation

The chosen microcontroller in this product was the Arduino Mega 2560, built on
Atmel’s ATmega2560 chip, which is a common choice due to its versatility. This
Arduino possesses the capacity to handle a broad scope of tasks. For this product,
these tasks include the following: receiving signals from both Hall Effect sensors
and IR sensors, controlling motor motion, updating LCD screen, and initiating LED
lights throughout the mixing process. Additionally, it can be used to administer a
Wi-Fi microchip, expanding the product to have Wi-Fi capabilities. The creators
have used the AdaFruit v2 Motor Shield in combination with a SparkFun Wi-Fi
Shield to achieve this feature. A SparkFun Wi-Fi Shield is a development board
integrated with an AT-command, and it breaks out and provides command access
to all of the ESP8266's I/O. This was said to be done to decrease the development
time, regardless of the cost increase.

A common limitation that must be observed for a contemporary microcontroller is
its memory capacity. A microcontroller such as this has 256k of total memory. In
light of such a limitation, other methods of memory can be implemented. In the
case of the “SirMixABot”, a drink server was created to program and store various
drink combinations and generate a menu to be ordered from. A notable aspect
found in this research is that the company made their code open source for others
to use as building blocks and to encourage improvement and creativity.

With respect to marketing, SirMixABot produced two models of the “SirMixABot”.
The first model is constructed to integrate six bottles and is named the “Sixer”.
Their second model is named the “Mega”, which integrates ten bottles into its
configuration. Both models are available to buy, either as a kit or already
assembled. This additionally provides context to the expected number of bottles
available in a marketable form of this project, which can be explored further in the
marketing of a post-prototyping B3 unit.

 3

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 21 of 120

Section

Figure 3-A: SirMixABot

Image courtesy of: SirMixABot

 Automated Bartender

This incomplete project was found on a platform called Hackaday where people
can collaborate, create, and receive feedback from within the community as they
progress through their publicly documented projects. The primary motivation for
this project was intrinsic technical aspirations; the creators were entering the
Hackaday Automation Challenge. The main idea for the project was to automate
domestic bartending while increasing mixing speed, decreasing messes and spills,
and overall enriching the mixology experience.

This project idea shares similar objectives with our intended project, such that the
goal is to automate the beverage mixing process with a bartender bot and in turn
limit or even eliminate factors such as unwanted spills, slow mixing speed, and
inaccurate pours. Again, the groundwork for this project is insightful and provides
a vision for an ambitious implementation of a sophisticated bartending system.

Key Features: Mixing multiple beverages at a time, rotating platform
Key Components:

 Atmel ATmega328P
 Raspberry Pi
 8 Channel Relay Module - Frentaly® 8 Channel DC 5V Relay Module
 Self-Priming Pump

Noteworthy: Incomplete project, too sophisticated for development timeline

 3

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 22 of 120

Section

The Arduino Uno, built on Atmel’s ATmega328P, was the chosen microcontroller
in this project. It was designed to manage the actuators, pumps, position switches,
and the drive motor. The amount of outputs that needed to be controlled exceeded
that available on the Arduino Uno. Therefore, a shift register was added to
accommodate the additional outputs and bypass this limitation.

Another key feature is the creator’s choice of dispensing system. This project
utilized a self-priming pump with vinyl tubing. This seemed to be a noteworthy
aspect due to the fact that it was not the common choice of pump throughout the
research of existing products. Pros for the self-priming pump would be that this
pump only needs to be initially primed before the first use and can handle a very
wide variety of fluids, and solids if necessary. Taking these pros into account
potentially led these creators to choose the self-priming pump for this project. A
flow meter was also added to achieve the desired accuracy of dispensed liquid.

Another notable difference is the physical framework of the system itself. The
platform housing the beverage glasses was designed to rotate throughout the
mixing process. This feature added pleasing aesthetics to the design as well as
another layer to its functionality. This added functionality resulted in a unique
feature not commonly found in other researched projects: the added rotation
allowed the bot to execute more than a single beverage at a time. Thus, the bot
now not only would automate the mixing of beverages but could do so for multiple
beverages simultaneously. This platform was constructed with the use of a drive
motor in combination with a pulse-width-modulated motor controller which is used
to control the speed of the platform’s rotation. Another aspect to note is the use of
position switches to ensure the correct location of the platform holding the
beverage glasses relative to the base before the beverage mixers are dispensed.

This project is also open source to allow others to follow along their journey of the
automated bartender bot’s creation. This was done by the creators to give others
the steps to create one themselves, use it as a steppingstone to further a creation
of their own, or even for others to simply satisfy their curiosity of the project and
possibly learn new things along the way. The creators not only documented the
information for the bot with files on their project site, but they also video
documented their steps throughout the design and building process and showed
the success at each step before moving on. Unfortunately, however, the only
missing video is the final video of the finished product.

This team has an interesting take on the automated bartender bot. Although, our
project relates in some respects, this project possesses fairly defined differences.
The impressive feature of mixing multiple beverages at once is definitely one to
take notice of and a positive motivation for our intended project and possible future
expansions. [2]

 3

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 23 of 120

Section

Figure 3-B: Automated Bartender

Image courtesy of: Hacker House

 Bartendro
The “Bartendro” was created by a company called Party Robotics. Back in 2008,
they started with the idea of a personal robot that automated the cocktail making
process. The idea took off. They began with only a few of the pump systems which
they called the “Bartendro Dispensers”, and they kept expanding with this design
until ultimately reaching a product capable of accommodating as many as fifteen
bottles. They now sell the systems of various bottle capacities with the pitch of
using the systems not only in a personal space such as your home, but also using
it for small or even large parties or events.

In reference to design objectives, the Bartendro possesses a similar idea to our
intended project. As a general objective, both are intended to facilitate the process
of mixing cocktails. The scale of its output is a crucial and outstanding feature that
differentiates it from its peers – at up to 15 bottles in one appliance, it has the
broadest range of possible recipes. However, at nearly 3500 USD’19, it is a hefty
investment in entertainment.

Key Feature: Wi-Fi Enabled
Key Components:

 Arduino ATMega168
 Raspberry Pi 1 B+
 Hall Effect sensors

Noteworthy: Open-source, Peristaltic pump system

 3

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 24 of 120

Section

The team from Party Robotics began designing a modular, open source bartending
bot that they called the “Bartendro” back in 2008 where they, as any good engineer
would, built upon what was previously available to them. Throughout the
development, they posted their findings as they debugged, redesigned, and
improved upon them. They did so in an open-source platform so that posterity
could advance upon their results. Utilizing a microcontroller board with integrated
sensors, an ATMega186 microchip, and peristaltic pumps, they aimed to design
an easily assembled pump system. After much trial and error in this process, the
“dispenser” system was successfully created. This led the team to achieve the
single bottle dispensing system, which they deemed the “ShotBot”. They expanded
to multiple versions of the product by integrating additional dispensers, in turn
broadening the selection of possible beverage combinations. The resulting
products are Bartendro 3, Bartendro 7, and Bartendro 15, which have a 3-bottle
dispensing system, a 7-bottle dispensing system, and an impressive 15-bottle
dispensing system, respectively. While they do sell these versions of the
“Bartendro”, their main product is their dispensing system as a kit. As mentioned
before, being open source, they encourage the use of their designs to inspire and
push the ingenuity of others, which is a noteworthy aspect of any project in the
engineering world.

The Bartender Butler Bot intrinsically shares some similarities with the “Bartendro”.
It forms the core conceptual approach of a successful and scalable beverage
dispensing system. In the sense of achieving the B3’s minimum functionality, this
project yields a wealth of insight and direction. [3]

Figure 3-C: Bartendro 15

Image courtesy of: Party Robotics

 3

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 25 of 120

Section

 Elliot the Line Follower Robot
Autonomous navigation is a highly sought-after technical achievement. In recent
years the plethora of cheap sensors and powerful microcontrollers in the robotics
market has made even rudimentary versions of automated navigation accessible
to entrepreneurs, hobbyists, and scope-limited engineers. The Elliot, a fully
documented Arduino project hub contribution, is a guided approach to autonomous
navigation: a path following robot, supported by an array of path-monitoring
sensors and a PID controller. The project is explicitly motivated by the desire to
minimize the cost and technical difficulty of implementation – i.e. by proving it is
accessible to hobbyists, tinkerers, and DIY enthusiasts. Though the project serves
no functional purpose, it lays the groundwork for an approach to a qualified, if
strictly limited, autonomous navigation system that would be purposefully suited
for the B3’s design objectives.

Key Features: PID controller, off-the-shelf robotic chassis
Key Components:

 Arduino Uno – Atmel ATmega328p
 IR Sensors
 L298N motor controller module

Noteworthy: Simple electrical tape is sufficient for physically defining a path

The Elliot is a crude combination of off-the-shelf components. A digital system
composed of an Arduino Uno, some IR sensors, and a motor controller is laid out
on a prototyping breadboard. The Uno receives digital inputs from the IR sensors
to ascertain its location relative to the center of the physically demarcated path.
The deviation from the path is estimated and pushed through an algorithmic
proportional-integral-derivative open-loop controller that yields a calculated and
precisely tuned correction. The correction actuates the DC motors through the
motor controller, generating a stochastic forward motion that intends to minimize
the robot’s deviation from the center of the path along its route. This entire
electronic system is mounted upon a lightweight prefabricated plastic robotic
chassis, is powered by a simple nickel metal hydride battery and is ultimately
functional for less than 100 USD’19.

The PID controller’s parameters can be optimized in the algorithm to smooth the
stochastic output to render the finest motion across the path possible. A trove of
documentation is available on the project page, sponsored directly by Arduino.
Open-source sample code, descriptive imagery, and a simple BoM is provided. A
more sophisticated implementation of this approach, such as one involving
obstacle detection or avoidance, could be constructed from the groundwork
available and more advanced functions from other projects could be systematically
integrated.

 3

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 26 of 120

Section

Figure 3-D: Elliot the Line Follower Robot

Image courtesy of: Arduino & SMM2

 RaspRobot OpenCV Project
There are various technical obstacles to the implementation of autonomous
navigation. In particular, it is challenging to use digital equipment and sensors to
generate a sufficiently crisp, detailed, and intelligible portrait of the analog world
for computer algorithms to efficiently and accurately interpret. As a result, efforts
turn to imitating biological methods – such as with visual processing in terms of
shapes, colors, edges, and brightness. The “RR.O.P.” is a Brazilian engineering
student’s successful attempt to demonstrate the implementation of OpenCV for
computerized motion on the most inexpensive platform possible. The project
began as university assignment but completed as a machine vision public
sensation. The RR.O.P. is only meant to find and track a bright green object, but it
does so efficiently, at low cost, and with straight-forward well-documented manner.
It lays the groundwork for object identification and tracking, key challenges to
overcome in designing and programming robotic systems to dynamically react to
the spatial environment.

Key Features: Computer-vision, object-tracking
Key Components:

 Raspberry Pi B+
 Logitech C270 HD Camera
 USB 802.11 Wi-Fi EDUP Module EP-MS1537
 Python OpenCV

Noteworthy: Translated documentation is unwieldy but available

 3

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 27 of 120

Section

Mounted on a spare off-the-shelf robotic chassis driven by H-bridge motor drivers,
a front-facing camera, Raspberry Pi, and Wi-Fi module are integrated to form the
hardware backbone of a sophisticated algorithmic approach to mechanical motion.
Images from the camera are fed into a well-developed community-driven computer
vision API and transformed into vector data on hue, saturation, and brightness.
The processed image information is then qualified by built-in OpenCV functions to
identify a clearly and strictly specified object, a bright neon-green ball, in the field
of view. The position of the object relative to the defined “center” of the field of view
is then analyzed to calculate a corrective motion for the robotic platform so as to
bring the object into a prespecified location within the field of view. The design
iterates: motion is first linear – assessing proximity (or depth), and then planar –
assessing the location of the object in relation to itself in 3D space.

This project yields insights on the effort required to achieve the B3’s most
advanced conceivable design. The algorithm employed in this project nears the
self-assessed boundaries of what might be possible to achieve in the given
development timeline but offers a tantalizing and motivating vision of successively
more sophisticated versions of the B3. For example, this algorithm could be used
to find and locate the specific user in the room that made the order, or it could be
used to facilitate obstacle detection and avoidance. A take on this approach, in
fact, is being used by Tesla, an advanced contemporary automaker, to develop a
level 5 autonomous automobile and clearly renders an unknown wealth of potential.

Figure 3-E: RR.O.P

Image courtesy of: Oliveira Saymon & Instructables

 Relevant Components & Key Technologies
This section selects from the list of specific key, useful, or noteworthy components
identified from the similarly scoped projects explored in the previous section and

 3

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 28 of 120

Section

offers further details on their functionality, underlying technologies, and their
relevance to the development efforts documented in this report.

 Arduino Uno/Mega
A microcontroller such as an Arduino Uno is a crucial component in many projects.
An easily flashable development board with a multitude of applications greatly
simplifies the implementation of embedded systems. Firmware can be written more
dynamically than an analog system can be designed; the integrated circuit and
flash memory technology proving once-again its flexibility and practicality. Due to
its ease of implementation and wide compatibility, the Arduino platform itself is
commonplace. Due to the fact that Arduino is an open-source development
platform, the community surrounding it is vast. All items about the Arduino
development approach further enabling the range of creative development with a
focus on practicality, ease of implementation, and deep support foundations.

Key Technologies: NMOS integrated circuits, open-source development boards,
integrated development environments, flash memory, SRAM, EEPROM

 ESP8266
This tiny Wi-Fi-enabled SoC is versatile and well-developed. It has a high number
of GPIO pins with a multitude of functionalities and is often embedded on a large
variety of integrated boards. Crucially, implementing this chipset in a design allows
for the establishment of Wi-Fi communications. It was used in “Bartendro” and the
“SirMixABot”. For the B3, a conceivable application of this capability could, for
example, allow a drink to be ordered by an app on a user’s phone; or provide the
communications framework for IoT-based data exchange.

Key Technologies: 802.11b/g/n wireless RF communications, CMOS integrated
circuits, QFP packaging, 2-layer PCB

 Raspberry Pi
The Raspberry Pi is a full-featured complete SoC that offers a platform to run
external components such as an LCD screen or display. It is powerful enough to
sustain a complete operating system with high-level languages and environments
like MATLAB, R, and Python, whilst making a native suite of GPIO pins available
for embedded digital system applications. This component is used where
sophisticated algorithms are required, such as with OpenCV or a dynamic user
interface. This component integrates a multitude of technologies and yields a
powerful package for a broad range of applications.

Key Technologies: System-on-a-Chip, combined-MOS integrated circuits,
DDPAK packaging, multi-layer printed circuit boards, operating systems, audio
codecs, video codecs, DDR volatile random-access-memory, microSD, Bluetooth

 3

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 29 of 120

Section

 Peristaltic Pumps
Driving and dispensing fluids naturally requires the use of pumps. Peristaltic
pumps are DC driven pumps that drive fluids without ever coming into direct
contact with it. From Figure 3-F, a central rotor (1) is spun by the DC current,
driving “rollers” or “lobes” on spokes (2). The “rollers” compress the flexible tubing
(3) inside the pump against the circular enclosure (4) as they rotate about the rotor
– generating a positive fluid flow. As a result, they were employed in both the
SirMixABot and Bartendro.

Figure 3-F: Peristaltic pump diagram

Image courtesy of: Wikimedia Commons

Key Technologies: anterograde peristalsis pump action, direct current induction

 H-Bridge DC Motor Drivers
It is practical, in many applications beyond the scope of this project and nearest
peers, to control the direction and speed of DC motors. An H-Bridge circuit is a
four terminal switching circuit that allows for control over the polarity of the voltage
drop across the load. Control over the polarity of the voltage across a DC motor
also controls the direction the motor rotates, thus its direction. PWM control over
the DC input to the motor enables the control of its speed.

From Figure 3-G(A): when S1 and S4 are OFF, and S2 and S3 are ON, the voltage
across M is equivalent to the input voltage. As in Figure 3-G(B): when S1 and S4
are ON, and S2 and S3 are OFF, the voltage across M is equivalent to the opposite
of the input voltage. Practical H-Bridge motor drivers are generally MOSFET-
based implementations of H-Bridge circuits in an IC package. These packaged IC
devices enable both direct polarity-switching and PWM control of the DC motors
on the load, and many also support multiple output channels. These were used, at
least implicitly, in all of the products listed above.

 3

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 30 of 120

Section

Figure 3-G: H-Bridge circuit in the case of A) Positive Vin over the motor and
B) negative Vin over the motor

Key Technologies: metal oxide semiconductor field effect transistors, pulse-
width-modulation, combined-MOS integrated circuits

 Relay Modules
The standard state of operation for various systems will require the use of relay
module. A basic relay module is used to determine whether connected circuit
should be powered or unpowered by default and is used to control various
appliances and equipment with high current. Typically, there is an interface that
can be controlled directly by a microcontroller, such as an Arduino. Due to their
small size and the fact that a microcontroller is often used to control the logic input,
it is common to see interface boards that consist of multiple relay modules so an
entire system of equipment can be controlled through a single microcontroller.

Figure 3-H shows a simple diagram of a relay modules two basic states, which
are normally closed operation (NC) and normally open operation (NO). A relay
module consists of 3 inputs, a logic input, and a switch. One of the three inputs is
simply the common input, while the other two determine whether the connected
system is normally powered terminal, NC, or unpowered terminal, NO. The internal
switch is connected to the NC terminal by default, hence the name. When the logic
terminal receives an input, the internal switch changes from the NC input to the
NO input via a magnetic attraction of the metallic switch. So long as the logic
terminal receives a positive voltage, the switch will remain connected to the NO
terminal. When the logic voltage becomes zero, an internal spring will return it to

 3

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 31 of 120

Section

default state. Regardless of whether a system is connected to NC or NO, triggering
the switch will change its on/off state.

Figure 3-H: Relay module schematic

Image courtesy of: Circuit Basics

Key Technologies: Reed switch, electromagnet, MOSFET logic

 Infrared Photodiode Sensors
Infrared obstacle detection sensors are simple photodiode circuits with an output
dependent upon the magnitude of infrared light detected. Common
implementations of this sensing unit have both a digital and an analog range of
output with a built-in IR light-emitting diode. These were invariably employed
explicitly on the Elliot and other similar projects.

From Figure 3-I, the IR LED emits infrared light, and if a reflective surface is before
it the photodiode will yield a significant output voltage. As seen in Part (A), if a
reflective surface is present, the IR light will reflect and be received by the Photo
Diode, whereas (as in Part (B)) if a non-reflective surface is present, the IR light
will be absorbed, and little to no IR light will be received by the Photo Diode.
Therefore, by placing a particularly reflective or particularly non-reflective object as
a guide, a path for the line follower can be produced. In many instances, simple
black electric tape is used for this purpose. The application decides whether the
output received from this Photo Diode needs to be a digital value or analog value.
Although a digital implementation may be simpler, an analog implementation yields
more detailed set of data on the environment.

 3

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 32 of 120

Section

Figure 3-I: Infrared photodiode sensor for: A) a reflective surface, and B) a non-
reflective surface

 Hall Effect Sensors
Hall effect sensors can be implemented to achieve countless goals within a design.
Some of the common implementations are for motion sensing, sensing availability
of power supply, sensing rate of flow, voltage regulation, and sensing proximity or
pressure. Of the projects researched and introduced, the SirMixABot and the
Bartendro, both used this technology at some capacity within their designs.

The Hall Effect sensor is essentially a transducer the yields an output as a
response to a magnetic field. Hall Effect sensors can be broken down into
categories based on the operation and on the output. From there the category of
operation, can be further divided into either a Bipolar Hall Effect sensor or a
Unipolar Hall Effect sensor. To state simply, the bipolar sensor operates by utilizing
both the positive and the negative magnetic field of a magnet to activate and
release the sensor whereas, the unipolar sensors operates by only the use of the
positive magnetic field to activate and release the sensor.

For the focus of output, one could have either an analog output or a digital output,
as seen in Figure3-J. For the case of analog, as seen in Part (A), the circuit is
comprised of a voltage regulator, a hall element, and an amplifier. This yields an
output directly proportional to the magnetic field. Contrastively, seen in Part (B),
the Hall Effect sensors with digital output differs by the addition of a Schmitt Trigger.
This addition allows the Hysteresis effect to take place. Thus, the resulting circuit

 3

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 33 of 120

Section

now only yields one of two outputs, either High or Low – similar to what is
commonly known as a switch.
As previously mentioned, various projects implement sensors such as these to
provide a wide range of information within designs. This allows for a multitude of
possibilities to further advance our possible design features.

Figure 3-J: Hall effect sensor for: Part A) Analog Sensor Circuit,

and B) Digital Sensor Circuit

Source: HowToMetatronics.com:

Key Technologies: hall elements, standard bipolar transistors, voltage regulation,
combined-MOS integrated circuits

 Straight-Bar Strain-Gauge Load Cell
A straight-bar, strain-gauge load cell can be used to cheaply and accurately
measure the weight of a force (usually a weight) applied to an area. This process
works using a metal bar, the strain gauge, which when presented with force below
a certain threshold deforms in a reliable manner. This deformity causes a
consistent change in the overall resistance of the bar, usually made of an
aluminum alloy. This change in resistance can be used to reverse-engineer the
value of the weight being applied to the bar, functionally creating a type of digital
load cell.

 3

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 34 of 120

Section

In order to properly implement a straight-bar strain gauge load cell, the component
is usually mounted on only one side of either end, as seen in Figure 3-H below.
Generally, one of these mounting points is a secure surface, while the other is a
free load platform upon which the weight in question can be applied. This setup
helps to isolate the effect the weight has while minimizing any error present from
other minimal effects on the strain the component experiences, allowing the metric
that is developed for measuring a specific weight from the resistance to act as a
much more accurate load cell.

Figure 3-H: Standard Straight-Bar Strain-Gauge Mounting Setup

 4

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 35 of 120

Section

 Standards & Regulations
The following section details the various externally imposed standards and
regulations which must be met as part of the design and implementation of the B3.
The section is split into broad categorical sub-sections that contain a rigorous
assessment of specific standards and regulations that are relevant to a range of
objectives, the overall design, or a particular functionality of the B3. This list is as
complete as the authors of this report believe it can be, and new items are added
as they are discovered. For each standard or regulation clearly identified, a
summary description of it is made, its motivations are explored and its implications
on the design are analyzed.

 Health & Safety Standards
Due to the goal and nature of the B3, there are various health and safety standards
that must be reviewed and incorporated into its design. These are crucial to the
design and implementation of the B3 because these standards limit the types of
components that can be used. The relevant health and safety standards related to
this project are listed below.

 Vending Machine for Food and Beverages
The standard that covers the dispensation of food or drink via vending machines
is covered in NSF/ANSI 25. The purpose of this standard is to establish the
minimum food protection and sanitation guidelines for materials, design,
construction, and performance testing criteria. The required specifications are
designed to prevent beverages from contamination to ensure that the materials
used to construct vending machines are resistant to wear, vermin, and the effects
of heat, sanitizers, and other various substances that can come into contact with
it. Given the nature of the prototype, to reduce costs, the outer paneling will be
constructed out of wood. If the B3 were to be commercialized in the future the outer
paneling will likely need to be substituted with something more suitable.

 Drinking Water System Components
The NSF/ANSI 61 is the standard that covers drinking water system components.
This standard certifies what materials and chemicals that are used in drinking
water systems are safe and will not produce negative health effects in its users.
This is relevant due to the usage of fluid storage and fluid tubing in our design.
This standard mandates that the containers and tubing do not contain chemicals
that could contaminate fluids that come into contact with them that could result in
negative health effects when ingested. Due to this, they will need to be of food
grade; improper selection of components could be costly and create issues, so this
should be avoided at all costs.

 4

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 36 of 120

Section

 Fire Safety and Emergency Symbols
The NFPA is a fire safety standard that provides symbols used to effectively
communicate fire safety, emergency, and associated hazards information. The
purpose of this standard is to provide a series of easily comprehensible symbols
and signs such that emergency response personnel, employees, and any average
person can understand the meaning of the symbol regardless of reading
comprehension or language spoken. They also greatly aid in comprehension to
reduce reaction time of emergency personnel during a crisis. For the B3, the Butler
contains batteries, as well as a charging station for the Butler. Electrical hazard
symbols will be needed to warn of electric shock if the system is not handled with
proper care.

 Digital Standards
Given that the various subsystems of the B3 will be communicating wirelessly,
there are various digital standards that must be taken into consideration when
selecting components for the design of the B3. Microcontrollers with Wi-Fi
capabilities have various Wi-Fi specific standards that must be followed, and as
such only microcontrollers that follow these standards will be used. Furthermore,
the messaging data that is being transmitted over this Wi-Fi must also follow the
messaging standards outlined by one of various messaging standards. For the B3,
the IEEE 802.11 series of standards will be used for the Wi-Fi and the MQTT v5.0
standards will be taken into consideration for the messaging standards.

 Wireless Communication Standards
The Institute of Electrical and Electronics Engineers (IEEE) developed a set of
standards known as IEEE 802.11 for wireless communication. In order to minimize
costs, and due to the fact that the B3 will be communicating relatively small
amounts of information, older options of Wi-Fi will be used for this project. Many
cheaper Wi-Fi devices communicate on the 2.4-gigahertz(GHz) frequency band.
IEEE 802.11b, IEEE 802.11g, and IEEE 802.11n all set the specifications for Wi-
Fi communication on the 2.4GHz band [4]. In July 1999, IEEE 802.11b was created
as an unregulated radio signaling frequency. It has a theoretical speed of 11
megabits per second (Mbps), and it uses Complementary Code Keying (CCK) to
modulate the signal [4]. However, realistic conditions result in as low a bandwidth
as 5Mbps due to interference from other 2.4GHz devices despite this modulation.
The reason that the data rate drops is to allow for error correction in order to
maintain the integrity of the signal being transmitted. The slower the data rates
allow for much more data correction [4]. The most practical data rate of 802.11b is
5.9 Mbps using Transmission Control Protocol (TCP)[4].

Institute of Electrical and Electronics Engineers 802.11g was created to improve
upon IEEE 802.11b and came out in June of 2003. The primary attraction was the
significantly higher data rate of 54 Mbps. This was the theoretical value based on
the new process of Orthogonal Frequency Division Multiplex (OFDM); however,

 4

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 37 of 120

Section

once again the theoretical value proved to be not practical. To allow for error
correction, the more common data rate was 24Mbps[5]. IEEE 802.11g maintains
backwards compatibility with 802.11b, but the presence of any 802.11b in a
network would greatly reduce the speed of the net [5]. Direct Sequence Spread
Spectrum (DSSS) helps to match the modulation used by 802.11b. To maintain
backwards compatibility whilst ensuring maximum capability, four layers are used,
three of which are defined as Extended Rate Physicals (ERPs), which help to link
exchanges [5]. The first layer ERP-DSSS-CCK is a layer used by 802.11b to
communicate with 802.11g and is capable of data rates similar to the legacy
802.11b. The second layer, ERP-OFDM, allowed 802.11g to acquire the data rates
at 2.4GHz that were created by the 802.11a at 5.8GHz. ERP-DSSS/PBCC is an
optional layer similar to the DSSS/CCK layer, but the primary difference is that it
can end up with the capability to extend data rates to 22Mbps and even 33Mbps.
The fourth and final layer DSSS-OFDM is another optional layer to send the packet
head using DSSS while the payload is transmitted using OFDM. This layer can
also travel at the fastest possible speed for the 802.11g[5].

The IEEE 802.11n was launched in early 2006 and sought to increase the
achievable higher speeds than the 802.11g through tailored use of OFDM. It
comes in three modes, Legacy, Mixed, and Greenfield. Legacy mode can occur as
a 20 MHz signal (the original legacy packet size), or a 40MHz signal that is
composed of two halves of the original 20MHz legacy packet, allowing for High
Throughput (HT). Legacy mode only enables backwards compatibility with
802.11a, 802.11b, and 802.11g. Mixed mode is similar to Legacy in that it allows
the transmission of the previously stated standards; however, it differs by also
allowing the new 802.11n. Rather than the old legacy style, Mixed mode uses a
new Multi Input Multi Output(MIMO) training sequence format [6]. The final mode
is Greenfield mode, which offers the highest data throughput given that it doesn't
need to worry about any legacy elements. Only 802.11n can use this mode, but
the maximum data rate is significantly higher.

The primary issue with the 802.11n is that using the new MIMO format, which is
utilized in all modes except Legacy mode, greatly increases the power used by the
hardware circuitry. This is somewhat counteracted by an improvement to the
power efficiency of the 802.11n systems due to the introduction of a pseudo-
hibernating state to reduce power consumption. This occurs by actively
recognizing moments when there is no data being transmitted, or such little data
that MIMO is unnecessary, and allowing parts of the circuit to become inactive.
Without this, the power consumption to data transmitted ratio would be high
enough that it would see far less use.

Given that most Wi-Fi modules include the 802.11b, 802.11g, and 802.11n, the B3
will have great flexibility in what devices it can communicate with. As such many
the mediatory application will be able to run through any device and effectively
communicate with the Butler and Bartender, as well as between the Butler and the

 4

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 38 of 120

Section

Bartender in order to follow out the commands necessary for the user to receive
an order they input.

 OASIS standards- MQTT v5.0
Message Queuing Telemetry Transport, or MQTT, is one of the most commonly
used protocols for Internet of Things (IoT) projects. This lightweight messaging
protocol uses publishing and subscribing operations to exchange data between
client devices and the server. This IoT platform is often referred to as cloud-based
software. The general objective of this is to provide consistent and efficient
information transfer from machine to machine. MQTT is a method of how this
information transfer takes place.

MQTT’s basic function involves the connected devices, known as the “clients”, to
transfer information to and from the central MQTT server, known as the “broker”.
The actions of “publishing” and “subscribing” are what allow the system to know
what information is relevant to both clients and the broker. Subscribing refers to
the client requesting the broker to send it a specific information that the client thinks
the broker has. Publishing refers to data being sent from one device to the other;
a client can publish information to the broker, or the broker can publish information
to a client based on the subscription the broker received.

The number of times this information is communicated is based on the quality of
service, or QoS, controls applied to a message. QoS 0 is called a “fire and forget;”
the message is sent at most once and no confirmation of message delivery takes
place [7]. QoS 1 is the opposite of QoS 0, that is, the message is transmitted at
least once, and is repeatedly sent until an acknowledgement signal is received.
This is known as “acknowledged delivery”. QoS 2 is the medium between the two.
The message is sent exactly once in an “assured delivery,” meaning the sender
and receiver engage in a two-level handshake to ensure that one and exactly one
copy of the intended message is received.

 4

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 39 of 120

Section

Figure 4-A: The basic series of interactions an MQTT server goes through.
Image courtesy of: Wikipedia

 Key Design Constraints
Any given system must have realistic design constraints in order to implement it
successfully. The sections listed below cover various constraints that will be
utilized in the design and construction of the B3. The constraints will first be
considered as an individual restriction; each individual constraint must be realistic
within the scope of the design. After all constraints have been considered, a
complete set of design and production restrictions will be applied and evaluated in
order to ensure the constraints remain realistic with respect to each other.

 Economic Constraints
The economic constraints will limit the quantity and quality of the parts that will be
viable. The abilities and flexibility of components that are possible or desired will
be restricted based on the total budget of the project. Furthermore, the total value
of the design should not exceed the perceived economic value of service that it
provides; in other words, if the monetary cost and opportunity cost of the project
does not exceed alternatives, then the project will have no relevance. The ability
to deliver drinks automatically is a significant portion of the $1300 budget allocated
for this project, but it also provides users an opportunity cost not seen by similar
designs. Given that most of the budget is allocated to the delivering of the drink, it

 4

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 40 of 120

Section

also restricts other features that would be desirable to add but become unavailable
due to limited budget. Particularly, the expansion of the pump system, allowing
many more drink variations to be made automatically, will have to be restricted to
only a few spirits being available to the Bartender at any given time.

 Time Constraints:
Time constraints are relevant in this case since both the design phase and the
prototyping phase each last only a single semester. This implies the need for
several benchmarks for each phase of the project, creating a list of hard and soft
deadlines. Though there is an imposed 60 page (due October 10, 2019), 100 page
(due November 1), and final version (due December 2) of the design document,
several design decisions, revisions, and other processes need to happen prior to
reaching those definite deadlines. These other processes are given deadlines that
are self-imposed by the group, in order to ensure that higher quality reports can be
created for those hard deadlines. By having a fully fleshed out design prior to the
start of the prototyping phase, we aim to have ample time to manufacture and
adapt to any mishaps or flaws before April of 2020, the rough due date of a working
prototype. This also gives us the flexibility of reworking a segment of the project,
should a previously designed portion be determined to take too long to complete
before the deadline.

 Environment, Social, Political Constraints
Though there are few automated bartending designs, they are completed designs
that are proven and are ready to be manufactured. The social and political
constraints of this project would be to provide features that are not readily available
or inefficiently implemented through other automated bartending designs. The
Butler side of B3 will provide a service that has only really been implemented in
pet projects and has yet to be created in a system that works in tandem with an
automated bartending service. In keeping with the idea of completely automated
service of alcohol, an application that can communicate between the Butler, the
Bartender, and the user will be designed such that a rapid response from minimal
user input will produce the exact desired result. This will give users a different and
more convenient option compared to the pre-existing automated bartending
designs.

 Ethical, Health, Safety Constraints
Due to the nature of alcohol, the ethical, health, and safety constraints are quite
significant for this project. Alcohol is a depressant and has been known to foment
addictions. Substance abuse can make people less aware of the impact of their
actions, which can cause many problems. Furthermore, side effects of heavy
drinking are numerous and varied. Some of these effects include anemia, or low
red blood cell count, which could induce lightheadedness, fatigue, and shortness
of breath. Increased risk of blood clots due to blood platelets clumping together,
which can cause a stroke or a heart attack, are also a common side effect of heavy
drinking. It is also believed that excess alcohol in the bloodstream is converted into

 4

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 41 of 120

Section

acetaldehyde, which is a known carcinogen. One of the more commonly known
conditions is Cirrhosis. Cirrhosis is caused by scarring of the liver tissue due to
filtering the toxicity of alcohol, which permanently inhibits the liver’s ability to
function properly

Given that B3 will be delivering alcohol directly to users, abuse of this ability is
possible, and thus can cause safety issues due to the reasons listed above.
However, users will have to personally supply the system with bottles of alcohol.
This means that the user will have to be able to legally purchase alcohol, and there
are already several laws in place to guard against illegal purchase and possession.
The B3 is also, in the most basic sense, a device that mixes beverages and
delivers them. Though its obvious intended use is with the idea of mixed alcoholic
beverages in mind, it is still absolutely possible to find use of the system with non-
alcoholic beverages. For instance, it could be delivering a cold glass of lemonade
on a summer day, some orange juice to go with breakfast, or even be one of the
world's most expensive water fountains and simply bring the user a glass of water.
The target audience for this is for use in private, non-traffic heavy areas. Given
that individual use is the focus of this project, the necessity of a breathalyzer for
each use is somewhat redundant, given that the sale of alcohol itself is already
regulated by the government. Given that the B3 only simplifies the delivery process,
the sale of the B3 itself will not need to be restricted by age.

There exist a number of other safety concerns unrelated to the impact of alcohol.
Due to the electronic components that operate the system, we will need to ensure
that all components remain within their required power ratings in order to prevent
potential electrical or fire related injuries. Our system will be functioning on mostly
DC voltages, which will require the power from the AC wall outlet to be converted
and properly regulated to avoid such instances. Physical harm is also possible due
to the fact that Butler will be physically moving, thus running the risk of accidents
occurring, especially if the user is intoxicated. In order to ensure safety, the glass
that is being delivered will be secure and the Butler must not move at a speed that
is too fast to avoid high momentum collisions.

There is also a certain health risk inherent when dealing with liquids that will remain
stagnant for long periods of time. The bottles of mixed drink ingredients will be
effectively sealed in our design, but the primary issue remains in the maintenance
of the tubing used to dispense the liquids. An automated process would run the
risk of back flowing cleaning fluid into the input bottles. As such we will need to
specify in a user's manual that a cleaning process should be run whenever a bottle
is switched out.

 Manufacturability and Sustainability Constraints
Though there are a few similar products to the B3 there are none that have been
widely commercialized. Most of these have been targeted at public bars, and as
such included the use of a breathalyzer as to assist bars with the legality of public
distribution of alcohol. However, a publicly used breathalyzer requires cleaning

 4

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 42 of 120

Section

after every use, and even so users might be hesitant to put that in direct contact
with their mouths. Requiring the use of a breathalyzer before drinking not normally
a process involved in modern times and as such disrupts the mood desired by
users. Rather than focusing on public use, the B3 is designed for private use and
expands on that via the implementation of a delivery service, something that is
more ideally applied in a low traffic, private setting. Though it does add to the
overall construction cost of the product, it is still a unique service that other designs
have been unable to offer and provides a much more seamless addition to the
drinking experience. For this reason, it is believed that if this product was to be
commercialized, that it would have much more success compared to other similar
designs.

The technologies used in the B3 are well developed technologies that have proven
to be very robust. The pump system used in the B3 consists of peristaltic pumps.
Peristaltic pumps have been used since the 1800s and are even popular in the
medical field due to their accuracy. The quantity and quality of these pumps are a
non-issue and will be fairly easy to acquire over a long period of time. Both the
power supply and the electronic components, though combined in unique ways,
are standards parts. The loads and electrical needs for this design are
straightforward and relatively small scale. Given that there are no custom
components, future reproduction will not be inhibited by failure to acquire any
custom components.

The application, designed to interact with the user and give orders to, will be written
in Python; while the language used for the microcontrollers, to communicate
actions, will be written in C. Both of these languages are common in modern times
and have growing numbers of applications, as technology becomes more and
more prevalent. There is widespread support for both languages, and even if these
languages were to fall out of practice, there is no foreseeable reason that this will
cause a failure of the B3.

 5

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 43 of 120

Section

 System Design & Phased Implementation
The functional requirements defined or otherwise constrained by the design
objectives and engineering specifications, constructed about the backdrop of
contemporary components, render a complete engineering problem. Constrained
by the set of accessible design parts, any design efforts must yield to or otherwise
follow the flow of actions demanded by the functional requirements and enabled
by the general design architecture.

The general design architecture is motivated by the B3’s functionally distinct
aspects. It must be on constant standby, ready to receive orders for beverages at
the request of the host or their guests. It must be ready to produce beverages, as
the user’s taste may require, based upon its given ingredients. It must be capable
of retrieving and delivering an order, without direct human interaction. These
functionalities are each independent tasks, which may be manifested by
functionally distinct subsystems.

Simultaneously, the B3 must adhere to strict design objectives and technical
motivations: The design must meet strictly defined, quantifiable objectives. The
design must be financially viable. The design must be along the frontier of
contemporary technological achievements; whereto the B3 must remain within the
scope of what may be reasonable to successfully implement for a contemporary
baccalaureate team of Electrical Engineers within the course of approximately
three months. The entirety of the design must be meticulously documented,
diligently developed, and thoroughly validated.

All of these incentives and motivations, explored in depth in sections prior,
generate a clearly defined range of design boundaries. The intrinsic nature of the
engineering problem compels a clear general design architecture. From this, a
roadmap for achieving increasingly sophisticated levels of functionality about a
core set of functionalities is also discernible.

In this section, a core conceptual functional description is outlined. The B3
appliance, by its very definition, must yield to or otherwise functionally contain the
functional description. A core conceptual system component block diagram and
overall cross-functional system flow chart are thereby rendered. Functionalities are
broken down by subsystem, and an assortment of components are selected from
those available on the market to attain those functionalities. The available
components are then assembled unto an initial design which minimally satisfies
the functional requirements of the B3. This Phase I design is explored in depth.
Finally, a framework is constructed to bound development efforts for features and
functionalities that extend the initial core functions for a Phase II design.

 5

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 44 of 120

Section

 Functional Description
The Bartender Butler Bot (B3) is an integration of various off-the-shelf and open-
source subsystems. The focus is on rapid deployment across the integration of
existing systems. The appliance itself can be thought of as two mechanical
subsystems overseen by a core software application. The following conceptual
narrative contains the core design concepts for the prototype:

One of the mechanical subsystems consists of a compact and configurable drink
mixing station capable of consistent and efficient dispensing, dubbed the
Bartender. The Bartender is capable of simultaneously pumping fluid from multiple
available bottles of beverage ingredients in precise amounts in a minimal time
based on the assigned drink it is commanded to pour. It can ascertain the presence
of a beverage and respond to precise recipe orders as prompted by the unifying
core application.

The other mechanical subsystem, dubbed the Butler, consists of a quickly
configurable drink delivery bot with a simple, built-in user interface for conveniently
and efficiently ordering from a customizable menu of available drinks. The Butler
is capable of travelling with a beverage order between the user’s preset location
and the Bartender, carrying a built-in user interface which allows the selection of
drinks, user feedback and interaction. It navigates with an array of sensors, can
identify the presence of a cup in its serving tray, and avoids coming into contact
with obstacles in its path.

The two mechanical subsystems each have an array of sensors and mechanical
actuators that are each controlled by microcontrollers running an optimized and
purposefully written firmware. The firmware communicates – such as selected data
from the available sensors, recipe orders, pump commands, etc. – across an
internet of thing (IoT) framework. The IoT framework will be supported by a host
machine that will then also host an integrating software application – or user’s
interface and other necessary backend services.

In a typical use case, the user, at some location remote from the Bartender, selects
their beverage from a menu available on the Butler’s touch panel interface. The
Butler leverages the core application and its backend services to provide menu
options from the bottles of ingredients it has available.

The Butler accepts an order from the user with an approving notification, and then
checks for the presence of a drink container on its custom serving tray. If a drink
container is discernible, the Butler notifies the core application and begins its
journey to the Bartender. If a drink container is not discernible, the Butler alerts the
user to ensure one is placed and remains until the alarm is cleared. The core
application also notifies the Bartender to expect the Butler.

 5

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 45 of 120

Section

The Butler will navigate across an explicitly laid out path – one preconfigured by
the user to be nominally free of static obstacles. Upon successfully arriving at the
Bartender, the Butler will ensure its drink tray is positioned on the appropriate plane
beneath the Bartender’s dispensing nozzle(s) and notify the core application. The
Bartender will acknowledge the Butler’s arrival and simultaneously verify that a
valid container is indeed secured at the appropriate position and notify the core
application.

Once the core application receives notification that all checks have been made
and the system is ready, the recipe order will be communicated to the Bartender
and the mechanical subsystems will engage to dispense the beverage – as
specified by the user – within some tolerance. After the beverage has been
successfully dispensed, the Butler disengages from the Bartender and returns to
its path. The core application monitors the process and reserves the right to pause,
interrupt, or otherwise terminate the procedure – such as by user request, or
system error. The core application also maintains records of inventory – to facilitate
maintenance and operation for the host or configurator.

Finally, after the Butler has returned to its initial location – such as an entertainment
room – it alerts the user of the arrival of their order. The Butler releases the order
with an affirming notification and enters into a standby state to await new orders.
If the Butler is met with unforeseen difficulties on its journey, such as a malfunction
in motion, the sudden loss of the beverage, or the discovery of unavoidable object,
it will alert the user. If the Bartender’s inventory is depleted, or it has been some
time since the last cleaning cycle, it will alert the user.

 System Conceptual Block Diagram
The following block diagram conveys an overview of a conceptual model divided
into the three main systems: The Bartender, the Butler Bot, and the core
Application. The block diagram is a visual representation of the functional
description above and serves as a conceptual framework for setting reasonable
boundaries on the scope of open-ended design.

This conceptual framework provides adequate boundaries on the design, such that
a wide variety of options for initial implementation can be explored, but also such
that the scope is reasonably limited for the design and development time.

 5

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 46 of 120

Section

Figure 5-A: Overview Block Diagram

For administrative purposes, Figure 2-A maintains a color-coded legend for the
separation of accountability and labor in the implementation of this project.

 5

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 47 of 120

Section

 Strategic Components & Parts Selection
This section details the options that were considered for components in each
distinct piece of the appliance, separated by major appliance purpose, with a
particular focus on the electronic or mechatronic hardware which may be required
to achieve the requirement specifications for a Phase I implementation.

A motivation or function is presented, its purpose is explained, and contemporary
hardware options that may suit the functional purpose of the B3 are discussed from
the relevant components & technologies in the previous section. Ultimately, the
final component selection for the requisite function is revealed with additional
technical details and reasoning.

 Bartender
This sub-section details the parts selection process for the Bartender, broken down
by functional sub-grouping. A core function is identified, and its technical
requirements are qualified. A suite of components that suit the purposes of that
function are selected from the contemporary market are then compared. A final
selection is made based upon the incentives or technical merits evident: a
component is chosen such that it provides both the shortest development time to
achieving the overall functionality given in the B3’s functional description and
qualifies to meet the engineering design specifications.

 Bartending Firmware Host
The bartending station requires a computing device to host its firmware. The
firmware must be on a platform robust and capable enough to simultaneously
interpret sensor information and orchestrate the precisely timed digital signals that
actuate and control the pumps of beverage ingredients, sense the Butler’s
presence, and communicate across a core IoT framework. Further, the firmware
hosting embedded device must be optimized for development and rapid
implementation. It must be sufficiently capable of fulfilling the operational demands
of the bartending station, including processing speed, flash memory capacity, and
GPIO functionalities. It is thereby natural to turn to off-the-shelf microcontrollers.
There are a few possible platforms - all accessible via the C++-based Arduino IDE:

 Atmega328 + Bluetooth
 MT 7697

 ESP8266
 ESP32

 5

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 48 of 120

Section

Microcontroller

In the contemporary era, embedded system applications rely on general-purpose
programmable ICs. These chipsets represent the backbone of any embedded
system design, and the market offers a bountiful range of options across a wide
range of target applications. The following contains a comparison of the options
entertained for the B3’s Bartending unit:

Atmega328p MT 7697 ESP32 ESP8266

Price $15.00 <$40.00 <$20.00 <$17.00

GPIO Pins 23 28 34 17

I2C | SPI ✔ ✔ ✔ ✔

802.11 b/g/n Wi-Fi w/ module ✔ ✔ ✔

Bluetooth w/ module ✔ ✔

Accessible Libraries ✔ ✔ ✔ ✔

Open Schematics ✔

✔ ✔

Community Support ✔

✔ ✔

Table 5–A: Microcontroller chipset comparison

Option A: Atmel’s ATmega328p & Breakouts
Atmel’s ATmega328p is the default contemporary choice for prototype
development delivering 23 GPIO pins. The pins are characteristically multiplexed
with functions including I2C, I2S, UART, PWM, and 8 channel 10-bit ADCs. It
also has wake-up and interrupt pins, a programmable watchdog timer with an
independent clock, and a snappy AVR 8-bit processor with a full featured and
highly optimized ISA running at 16MHz. The primary limitation of this
microcontroller is the lack of wireless communications modules. Hence, it might
be paired with an ESP8266, or an adjacent Bluetooth module. Crucially, however,
the open-source platform has a massive and vibrant community with support on
a wide range of topics - which immensely facilitates development.

Option B: Espressif’s ESP8266 & Breakouts
The ESP8266, is a low-cost small-profile 802.11 b/g/n Wi-Fi enabled module that
can be embedded in any PCB, has a 1MB flash memory, a Tensilica L106 32-bit
processor at 52MHz, and 17 GPIO pins with functions including I2C, I2S, UART,
PWM, and 10-bit ADCs. With minimal effort the ESP8266 base could be
expanded to include the broadest range of applications and firmware on its own;
the modularity of the ESP8266 enables more flexibility with integrating optimized
and special purpose SMDs on a complete system PCB. Fortunately, easily

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 49 of 120

accessible and well documented libraries exist for directly and easily interfacing
with IoT communications protocols. Paired with the Atmega328p chip, the duo
could coordinate a host of complicated maneuvers or logic; alone the chip
provides a lightweight basis for plugging directly into an IoT core service.

Option C: Espressif’s ESP32 & Breakouts
The next generation ESP32 pushes the parameters of the ESP8266 forward for
a slight premium, with 34 GPIO pins, 12-bit ADCs, and a better Wi-Fi antenna.
Naturally, its pins are multiplexed with functionalities including I2C, UART, PWM,
and SPI. Again, the modularity of this approach enables a wide range of flexibility
with integrating special application ICs or SMDs. At this stage, the ESP32 is
nearly a mature system on a chip (SoC) on its own. Its open documentation is
already rich and the IoT communities it is popular in are both robust and vibrant.
The Arduino IDE, the accessible development platform of choice, has easy
compiling integrations and constantly updated libraries. This popular chip -
conveniently prepackaged by many - offers a powerful platform to base the
bartending station’s firmware and is at a value high enough to be an attractive
option.

Option D: MediaTek ARM 7697
The MT 7697 is an extremely low-cost but powerful ARM Cortex-M4F based
system on a chip (SoC) board that runs at 192MHz, with 4MB flash memory, has
both 802.11 b/g/n Wi-Fi and Bluetooth. It supports 28 GPIO pins with multiplexed
functions including I2C, I2S, UART, PWM, and 12-bit ADCs. The developers that
maintain performance is superior to all comparable units and even ported a
simple-to-integrate library for the Arduino IDE to improve user accessibility and
encourage its usage. Its community is somewhat niche, and the support is limited,
but its performance characteristics are superb for the value.

Microcontroller Final Selection: Esp8266 Breakout

The Feather HUZZAH with ESP8266 is a complete open-source development
board from Adafruit based on the ESP8266. At 51mm x 23mm x 8mm, with only
one side of surface mounted components, the board has a compact profile. Further,
access to 9 broken out GPIO pins with I2C and SPI functionality enables the use
of an adjacent multiplexer to control a large number of peripheral devices. A pre-
existing on-board regulated power supply with room for an optional battery pack
provides a ready safeguard to safely powering the microcontroller and its digitally
controlled peripheral devices from a less robust or carefully designed system
power source. Further, the onboard USB-Serial converter IC supports a blazing
921600 maximum baud rate for boot loading, while convenient status LEDs and
an auto-reset button provide yet another quick way to facilitate development.

 5

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 50 of 120

Section

Figure 5-B: Feather HUZZAH with ESP8266

Image courtesy of: Adafruit

The most important characteristics of the microcontroller platform for this project is
the accessibility of its documentation, the breadth and scope of support from its
vibrant community, and the ease with which one might integrate the complete and
entire development board design with an application-specific circuit on a PCB.
Adafruit’s breakout of the ESP8266 comes with vendor-developed board
definitions for the Arduino IDE, and easy integrations to popular IoT frameworks.
For these reasons, the Feather HUZZAH with ESP8266 from Adafruit is an obvious
and functionally appropriate choice for the B3.

 Dispensing Fluids
The bartending station must dispense fluids from bottles of spirit, soda, juice, syrup,
or flavoring. The fluid must be dispensed precisely, accurately, and preferably at a
sufficiently prompt rate. Further, the dispensing system needs to be hygienic and
easy to clean. It would be convenient for its control to be both precise and
immediate. Fortunately, variations on the approach to automating a drink mixing
station generally converge neatly upon some combination of the following:

 Pump(s)
 H-Bridge Motor Drivers
 Optocoupler Relays

 Multiplexers
 F&B Flexible Tubing

Pumps

This component is the specific electronically controlled mechanical sub-system
that will push beverage ingredient fluids from their respective bottles through a
nozzle to the beverage container. This component must be compliant with hygienic
standards, be cost effective, and maintain a sufficient flow rate to support the
design objectives. It is a standard and generically available part with a large
number of suppliers, across a wide range of performance characteristics. The
following contains a brief technical and qualitative comparison of pumps available
on the market, such as those which may meet the particular functional
requirements of the B3 aforementioned.

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 51 of 120

Uxcell Self-Priming Generic Peristaltic Uniquers Peristaltic

Price (ea.) $7.12 $24.95 $16.49

FDA

✔ ✔

Voltage 12V DC 12V DC 12V DC

Flow Rate ~2.8L/min 100mL/min 100mL/min

Unit Weight 110 grams 200 grams 200 grams

Table 5–B: Pump comparison

Option A: Self-Priming Pump by Uxcell
Self-priming pumps appeared multiple times in the documentation available for
the projects and products explored. This warranted further investigation into the
product as an option for this system. This type of pump clears its lines, if/when
air gets in them, on its own without outside/manual intervention. This method
could be beneficial to the pump system designed for this project. The pump also
provides a flow rate of about 2.8L/minute, is relatively small in size, and is on the
lower end of the cost spectrum.

Option B: Peristaltic Liquid Pumps by Adafruit
By design, the liquid being dispensed never touches the inside of a peristaltic
pump, thus facilitating compliance with FDA standards. A high-quality motor for
this pump can be hit with a PWM signal to achieve the desired flow rate, within
the range of the pump output capacity. This pump is also said to integrate well
with other components that are being considered for this system.

Food & Beverage Flexible Tubing

This component is complementary to the pump selected above. It serves as the
dedicated conduit from the bottles of beverage ingredients through the pumps and
to the dispensing nozzle. This tubing must be amenable to the same hygienic
standards, accessible to quick cleaning, and optimally sized for the pumps’ fittings.

Adafruit Silicon
Tubing

Vinyl
Tubing

Kynar®
PVDF

McMaster-
Carr Silicon
Tubing

Price (per Meter) $3.50 $0.89 $14.58 $3.16

Material Silicon PVC PVDF Silicon

FDA Approved

✔ ✔ ✔

Offered in various
sizes and lengths

✔ ✔ ✔

Table 5–C: Flexible tubing comparison

 5

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 52 of 120

Section

Option A: Silicon Tubing distributed by Adafruit
Silicon tubing conveniently sized for and bundled with the peristaltic pump
offering from Adafruit was a natural choice. Tube length of one meter and a
diameter of 2.5mm (internal diameter) / 4.7mm (external diameter), for this
particular tubing, was used in this combination to ensure maximum efficiency with
the pump. Due to this combination being sold together, the ease of integration of
the two was thought to be seamless. Additionally, relative to the other possible
options, the tubing fell within an ideal price range. The fall back of this option was
the fact that it was not a sterile tubing, and thus was not FDA approved. Our
project must meet certain standards to be considered safe. By the Health and
Safety standards, the tubing for our design must be FDA approved to meet these
standards.

Option B: PVC Tubing (Vinyl Tubing) manufactured by FreelinWade
The FreelinWade company offered a product made of an alternative material with
promising benefits. This tubing is made up of Poly-Vinyl Chloride, also called PVC
or simply shortened to Vinyl. This material provides a clear tubing that is prized
on providing efficiency, cleanliness, and longevity. Additionally, it is an
environmentally friendly and bio-based material. This product is also very
versatile in the available options of the size and lengths, and it also offers the
option for custom sizing. As another high point, this tubing checked off a major
box for our project by being compliant with regulatory standards such that it is an
FDA approved product.

Option C: Kynar® PVDF by FreelinWade
The Kynar PVDF, or Polyvinylidene Fluoride, is another option available through
FreelinWade. This Kynar option is comprised of a material that is an alternative
to Teflon and is also available in a wide variety of sizes and lengths. Also, a key
product feature in which this tubing possesses is being FDA approved.

Option D: Silicon Tubing by McMaster-Carr
Silicon Tubing by McMaster-Carr is offered in various sizes and lengths that
would be optimal for the B3. Their tubing is frequently used in combination with
peristaltic pump applications, such as the one selected for the pump system, to
provide efficiency. A notable feature of this tubing is that it is FDA approved.
Taking this into consideration along with the features previously stated, this
tubing appears to be a valid option to be implemented into our design.

Pump & Tubing Final Selection

After considering the options, the silicon tubing from Adafruit was first selected and
purchased. It was then used within our testing phase. Unfortunately, upon further
investigation, the tubing was found to be not FDA approved. This prompted an
additional purchase of an FDA approved tubing. The chosen FDA approved tubing
was an offering of generic silicon tubing by McMaster-Carr.

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 53 of 120

Taking into consideration that fluids may not come in direct contact with the
pumping mechanism itself, peristaltic pumps were found to provide a neat,
prepackaged, electrically powered mechanism for transporting fluids hygienically
from bottles to drinking glasses. With a focus on rapid implementation, the low-
cost 12V DC peristaltic pumps distributed by Adafruit are an obvious selection.
Paired with FDA approved silicone tubing from McMaster-Carr, the system is
sanitary for food and beverage usage.

Figure 5-C: 12V DC Peristaltic Pump

Image courtesy of: Adafruit

A conventional peristaltic pump runs on DC power; optocoupler relays offer a
convenient on/off power switching mechanism for safeguarding and controlling the
pump, while dual H-bridge motor drivers provide the electronic mechanism for
accurately and precisely controlling the available range of flow rates via an
application of PWM. The options identified for these two components are listed and
described below.

Relay

Relays are electromagnetically controlled switches capable of rapidly and
accurately controlling the flow of current in a circuit. Many times, this takes the form
of a MOSFET or BJT as they are popular methods for using voltage and current to
open and close paths for current to freely flow. For the pump system of the
Bartender, the circuits controlling the pumps themselves will need to be opened
and closed based on digital logic from the microcontroller so that the pumps can
be turned on and off on command.

Optocoupler Relays
by KNACRO

Optocoupler Relays
by MCIGICM

Price $7.00 $8.00

Operating Voltage 12V DC 5V DC

Multiple Channel 4 2

Accessible Schematics

✔

Accessible Documentation ✔ ✔

 5

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 54 of 120

Section

Table 5–D: Relay module comparison

Option A: Optocoupler Relay Module by KNACRO
The first option for relays is a 2-Channel Relay Module DC 12V with Optocoupler
Isolation, manufactured by KNACRO. This relay has a trigger current of 2-4mA,
as well as a trigger low level of 0-1.5V and high level of 2.5-5V.The main
motivation for this option was its compatibility with Arduino, at 5V logic. This
compatibility provides an ease of integration with the testing board and the rest
of the components of the pump system.

Option B: Optocoupler Relay Module by MCIGICM
The second option for relays was found to be a DC Relay Module with
Optocouplers on a Songle platform, manufactured by MCIGICM. By observing
the comparison Table 5-D, the boards are very similar in most aspects, including
price range. Again, as a module compatible with Arduino, that being a sought-
after feature, this provides a simple process of integration with the testing board
and all the additional components that make up the pump system.

Relay Module Final Selection

A 2-Channel DC 5V Relay Module with optocouplers distributed by MCIGICM
based on a Songle platform provides a simple development component for
prototyping and proof-of-concept validation. An open-source relay module or
functionally equivalent alternative, such as a power switching MOSFET, with
documentation and resources ready for integration in a wider system PCB has yet
to be identified and is earmarked for further research and validation.

Figure 5-D: 5V 2-Channel DC Relay Module

Image courtesy of: Amazon and MCIGICM

DC Motor Drivers

Although relays provide circuit-based control of the open/closed nature of circuits
such as those controlling the pump system’s motors, the motors themselves draw
such high DC voltage that they cannot be directly controlled through the same
circuits being used to run the digital logic which opens and closes these circuits.
As such, DC motor drivers serve to selectively raise the operating voltage provided
to the motors from that presented in the digital logic circuits to an actually useable
level. These motor drivers will in turn be what is directly controlled by the relay

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 55 of 120

modules. As descried above, a common method for easy control of these types of
components is the H-bridge motor driver setup, seen again in the options
considered below.

L293D Breakout by
Texas Instruments

L298N Breakout by
Qunqi

Price $3.34 $6.89

Current 600mA 2A

Voltage Range 4.5V to 36V 5 V to 35V

Compatible with
Microcontroller

✔ ✔

Accessible Schematics ✔ ✔

Number of Channels 4 2

Table 5–E: DC motor driver comparison

Option A: L293D Motor Driver Breakout by Texas Instruments
The L293D quadruple high-current half-H drivers from Texas Instruments is a
small-profile IC designed to provide bi-directional currents of up to 600mA across
inductive loads such as solenoids, DC motors, or pumps. As seen in Table 5-E
above, it carries 4 DC output channels, and has a voltage range of 4.5V to 36V.

Option B: L298N Motor Driver Breakout by Qunqi
Although similar in overall functionality to the L293D Breakout, it can be seen in
Table 5-E above that the major differences seen in the L298N are a higher price
point at $6.89, a significantly higher maximum output current (with a similar
voltage availability leading to much higher potential maximum output power), and
a lower number of available channels for output, with only two against the
L293D’s four.

DC Motor Driver Final Selection

When it came to the final decision between these two breakouts, the greater
number of controlled channels at a lower overall cost provided by the L293D
Breakout outweighed the greater power delivery available with the L298N in terms
of applicability for this project. As multiple pumps will all need to be controlled, and
they will each require relatively low power well within the range provided by the
L293D, the L298N is noticeably less cost-efficient for overall control of a set
number of pumps and does not provide any necessary greater functionality.
Therefore, the L293D Breakout from Texas Instruments was selected.

 5

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 56 of 120

Section

Figure 5-E: TI L293D H-Bridge Motor Driver

Image courtesy of: Texas Instruments

Multiplexers

 Multiplexers are extremely versatile components which can be applied in many
circuit systems to process multiple inputs or outputs in order to manage more
channels of information than a circuit may initially be capable of. The Bartender’s
base design only necessitates three distinct bottles of ingredients to select from,
but based on the similar projects explored, a clear improvement to be made in later
models will be the addition of new pumps. A reliable multiplexer will assist greatly
in the scalability of this project, avoiding mass redesigning and retreading when
trying to expand the number of pumps in use.

3:8 MUX IC by
Nexperia

3:8 MUX Breakout
by SparkFun

Price $0.52 $2.50

Compatible with
microcontroller

✔ ✔

Accessible Schematics ✔ ✔

Accessible Documentation ✔ ✔

Voltage Range 2V - 6V 2V - 10V

Table 5–F: Multiplexer comparison

Option A: Through-hole 3:8 Multiplexer IC by Nexperia
Considering the limited number of GPIO pins of the selected microcontroller, the
multiplexer is used to overcome these limitations. The 8-input, 3-state multiplexer
from Nexperia provides quick compatibility, a supply voltage range of 2V to 6V,
and an abundance of documentation. Though it is significantly cheaper, we would
have to break it out ourselves, costing time and effort into learning to process of
breaking out the multiplexer. Furthermore, there is the potential of incorrectly
breaking out the circuit since group members have not done so before, which
could lead to delays and errors in the B3.

Option B: Broken-Out 3:8 Multiplexer module by SparkFun

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 57 of 120

The option from SparkFun is an open-source breakout of the 74HC4051 MUX
from TI. It is designed for either digital or analog signals and has a voltage supply
range within typical use by digital circuits. Hence, it is easily compatible with any
development board and easily integrated into a larger system PCB. Though this
breakout is for a 3:8 mux, the logic used essentially requires 4 input pins to create
the 8 outputs. The reason for this is that 3 of the input pins are simply to control
which output pin will receive data transmitted by the fourth. Though this is not
optimal, it still increases the number of available pins and is established as a
finished product capable of immediate use.

Multiplexer Final Selection

Given the limited number of GPIO pins on any microcontroller, in general,
multiplexers would provide a simple GPIO pin switching mechanism to allow for
control of multiple pumps from a limited number of pins. An open-source
74HC4051 8-channel MUX breakout from SparkFun offers an accessible and
easily integrated component for this purpose. Given that this project will likely only
need a few more of the GPIO pins, the slight inefficiency of this pre-made breakout
is greatly outweighed by its ease of use and the marginally more expensive cost.
Therefore, this option was chosen to be implemented into the prototype design of
the B3.

Figure 5-F: SparkFun 3:8 MUX Breakout

Ultimately, the bulk of the open-ended development effort regarding the controlled
dispensing of fluid from the bartending station is related directly to the level of
sophistication in the firmware of the station’s electronic system and the
physical/structural layout of the bartending station in relation to that of the Butler
bot.

 Proximity Sensing & Rangefinding
When the Butler bot arrives at the bartending station, the Butler will have to “dock”
into a standard and predetermined location under the fluid dispensing nozzle to
ensure that fluids are being released in the desired container - without spills. Hence,
the bartending station must be able to verify the Butler’s presence and validate the
presence of a container. To achieve this functionality, it is necessary to ascertain
the exact physical location of the Butler in relation to its “docking station” and

 5

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 58 of 120

Section

identify the presence of a drink container in its strict predetermined location. As
discussed in the previous sections, some combination of the following can be used:

 Hall Effect Sensors
 IR Near-Field Proximity

Sensor

 Ultra-Sonic Proximity Sensors
 Digital Camera + Open-CV

Hall Effect Sensors Final Selection

Wireless communications and systems on the Butler shall independently navigate
to the “docking” location, but for redundancy, the bartending station should be able
to independently verify that the Butler “docked” appropriately with a valid and open
drinking container. Hall effect sensors placed in strategic locations around where
the Butler’s cup-holding serving tray meets the bartending station would be
activated when Butler’s base docks with the bartending station appropriately.

MPU9250/6500
Module by: HiLetGo

MPU9250 Breakout
by: SparkFun

Price $8.49 $14.95

Compatible with I2C ✔ ✔

Compatible with Arduino ✔ ✔

Degrees of Freedom 9 DOF 9 DOF

Accessible Library ✔ ✔

Accessible Schematics ✔ ✔

Accessible Documentation ✔ ✔

Voltage Range 4.4V - 6.5V 2.4V - 3.6V

Table 5–G: Hall effect sensor comparison

Range Finding Sensors for Validating Cup Placement

The Butler shall independently ascertain the presence of a beverage container,
and algorithmic safeguards in the Butler’s firmware shall prevent the Butler from
navigating to the Bartender if a valid container is not present. However, for
redundancy, the Bartender shall itself validate the presence and position of the
cup. As the fluid dispensing nozzle on the bartending station does not move, it is
necessary to ensure an open beverage container with adequate volume is placed
directly beneath it. As with automated water bottle filling stations, infrared (IR)
proximity sensors or ultrasonic (SONAR) proximity sensors placed strategically
at the height of a beverage container and directly facing where the beverage
container is expected to be.

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 59 of 120

VL6180 TCRT5000 3-pin

Price $25.95 $9.50

I2C ✔ ✔

Voltage Regulator ✔

Measuring Distance Range ~100mm 1mm - 8mm

Accessible Library ✔ ✔

Accessible Schematics ✔ ✔

Accessible Documentation ✔ ✔

Table 5–H: Infrared rangefinding sensor

Option A: VL6180 infrared range finder breakout by SparkFun
The first option for the IR sensor is the VL6180 infrared range finder. This module
is compatible with Arduino and can achieve communication by an I2C interface.
To accomplish valid communication, the module consists of an integration of an
IR emitter, a range sensor, and an ambient light sensor. Having these features,
as well as a few others, increase the desirability of this product.

Option B: TCRT5000 3-pin IR sensor module by Diymore
The second option in this section is the TCRT5000 3-pin IR Sensor Module. This
module is also compatible with Arduino. By observing the comparison table below,
various similarities between the two options are noted; however, a key difference
that is evidently seen is the measuring distance.

LV-MaxSonar
(MB1000) EZ0 by
Maxbotix

Ultrasonic sensor
by Seeed

Price $29.95 $15.00

Compatible with Arduino ✔

Voltage Regulator ✔ ✔

Detecting Range 0 - 6.45m 3cm - 4m

Accessible Library ✔ ✔

Accessible Schematics ✔ ✔

Accessible Documentation ✔ ✔

Voltage Range 2.5V - 5.5V 5V

Table 5–I: Ultrasonic rangefinding sensor

 5

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 60 of 120

Section

Option C: LV-MaxSonar (MB1000) EZ0 range finder by Maxbotix
The first option for an ultrasonic sonar sensor is the LV-MaxSonar (MB1000) EZ0
range finder sold by Maxbotix. This sensor has variations used for short- and
long-range detection. It has a substantial detection distance measuring from zero
to approximately six and a half meters. This is a key feature to consider for this
system. This product also comes with the means of reducing interference when
integrating multiple sensors into a system. The product-based solution is called
chaining, and this has three optional methods that can be applied to achieve this
solution. The noise mitigating and easily implemented features offered by this
product line could facilitate development.

Option D: Ultrasonic sensor by Seeed
The second option of this section is the Ultrasonic sensor by Seeed. This is
included as an option due to its prominent compatible to Arduino. Using the
Arduino community assets, aids the integration of this product. Additionally, this
sensor possesses an acceptable range of detection.

Range Finding Sensors Final Selection

A clear option for presence sensing is the open-source VL6180 infrared range
finder breakout from SparkFun. It features a linear range-finding curve for a broad
range of surface reflectance within approximately 100mm and an easily integrated
I2C control interface across an Arduino library. The documentation is thorough and
production documentation is available from the vendor, simplifying any possible
integration with the system PCB, thus this was the product chosen for the design.

As an alternative to IR proximity sensors, presence sensing on the bartending
station may be achieved with the LV-MaxSonar (MB1000) EZ0 range finder from
Maxbotix. Implementation requires the use of an RS-232 serial interface enabled
pair of GPIO pins on the microcontroller and firmware-based calibration, but the
documented range of accurate usage extends well beyond 1m, even for smaller
objects like beverage containers, and could further facilitate control of the Butler’s
approach vector. However, the operational distance must exceed 150mm, which
would impose a structural design constraint.

Ultimately, both the IR rangefinding sensor and ultrasonic sonar rangefinding
sensors were selected for direct testing. Once the results of the two have been
gathered, the team will evaluate the elements of comparison and determine which
of the sensors is best for the project and selected to be implemented into the final
design.

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 61 of 120

Figure 5-G: VL6180 SparkFun Breakout

Image courtesy of: SparkFun LLC & ST Microelectronics

 Butler
This sub-section details the parts selection process for the Butler, broken down by
functional sub-grouping. As before, a core function is identified, and its technical
requirements are qualified. A suite of components that suit the purposes of that
function are selected from the contemporary market are then compared. A final
selection is made based upon the incentives or technical merits evident: a
component is chosen such that it provides both the shortest development time to
achieving the overall functionality given in the B3’s functional description and
qualifies to meet the engineering design specifications.

 Autonomous Navigation
The Butler bot’s key operational requirement specification is that it shall be able to
autonomously deliver a mixed beverage to the user at a location remote from the
bartending station. This operational requirement requires a sophisticated and
multi-faceted approach, which intrinsically includes complex mechanical elements
and well-developed firmware. In alignment with the objective to maximize off-the-
shelf components and facilitate implementation as much as possible, the following
components shall conceivably be used:

 iRobot Create 2.0
 Raspberry Pi 4/Zero
 Infrared Photodiode Sensors

 6-Axis Accelerometer
 Digital Camera + OpenCV

Robotic Platform

The scale of transport the requirements of the Butler present physically make the
course of its design lean heavily towards some programmable robotic base which
is motorized to be able to provide both sheer power in travel time and load-bearing
while also providing high scalability with regards to the navigation systems which
guide it. Through whatever means, the Butler will need a base which can carry
itself, a significant frame, and a drink with precision and smoothness that can make
this project truly suitable for an actual home.

 5

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 62 of 120

Section

 Custom Robotics iRobot Create 2.0

Cost ~$250+ ~$200

Time Commitment > 240 hours > 100 hours

Homing Feature ✔

Flexible Development ✔

Variety of Sensors ✔ ✔

Table 5–J: Robotic platform comparison

Option A: Original Design from Scratch
The first option considered for the motorized base component of the Butler unit
was a completely original design, with motors, sensors, and controls all
purchased separately and integrated by hand. This option was estimated to have
an overall cost in the neighborhood of $250 but would involve an extremely large
amount of time developing and testing each aspect of the design. Because of this,
this option was quickly disregarded upon finding the iRobot Create 2.0, and this
component selection wound up being one of the fastest made in this project.

Option B: iRobot Create 2.0
The iRobot Create 2.0 seemed to be a perfect fit for this project upon finding it.
The unit cost $200 in total, and with its standard components provided a
motorized base capable of all the necessary motions the Butler would need to
make, a frame capable of custom mounting procedures for building up the rest of
the Butler’s frame, and an open IED for programming the entire controls of the
unit and integrating them into the Raspberry Pi and other modules used. Crucially,
the unit has an array of built-in sensors that allow for recognizing objects at the
ground level, impact sensors, and a homing feature for locating its charging
station, directly available through the command line terminal interface over UART
which can be integrated with the Butler’s firmware host for easier navigation.

Robotic Platform Final Selection

As the incentive is to select an existing robotic platform to minimize the design
effort regarding the mechanical elements, a natural choice for initial development
is the iRobot Create 2.0 Development Roomba, seen in Figure 5-H. Its accessible
full-featured serial command-line interface removes the technical imperative to
program a functional robotic platform from scratch – freeing up valuable
development time. It features predetermined and well-documented mounting
points such as for attaching a structural frame for supporting additional electronic
hardware and serving tray, along with full control of its locomotive actuators, and
access to all of its embedded sensors’ data.

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 63 of 120

Crucially, it already has smooth, well-developed, and commercially validated built-
in functions like “seek docking station”. Moreover, the iRobot Create 2 has an
active support channel maintained by the vendor and a broad array of documented
DIY-style projects. Ultimately, the iRobot Create 2 offers the maximum value in
terms of both ease of implementation and price.

Figure 5-H: iRobot Create 2.0

Image courtesy of: iRobot

Navigation Firmware Host Final Selection

The Butler is the physical host of the navigation firmware and the graphical user
interface. Crunching data for autonomous navigation, interfacing with the robotic
platform, while simultaneously providing a core for the user interface requires a lot
of computing power in one physical unit. In the pursuit of simplifying
implementation efforts, minimizing the total cost of the system, and the number of
distinct pieces of hardware, it is thereby compelling to base all of the computing
resources in a single physical unit. Naturally, the focus turns to self-contained
development-oriented platforms with the computing capacity and memory space
to handle these tasks. Of these, including Intel’s NUC, Samsung’s NanoPC-T3, or
Huawei’s HiKey 4, none are as functionally competitive, cost-effective, or
accessible as the Raspberry Pi Foundation’s quintessential Raspberry Pi platform.

In particular, The Raspberry Pi 4, seen in Figure 5-I, offers an affordable and
neatly packaged development platform with the capacity to run sophisticated
peripherals – with a dedicated and conveniently available breakout of its GPIO
pins. With a microSD card, it can host a full-fledged operating system all while
natively supporting 40 broken out GPIO pins with multiplexed functionalities
including PWM, I2C, and SPI. It has native support for HDMI video, touch screen
LCDs, and 3.4mm audio. With up to 4GB of RAM and a quad-core Cortex-A72
(ARM v8) 64-bit processor running at a blistering 1.5GHz, the Raspberry Pi 4 is a
perfect host for both navigation firmware, IoT core applications, and the user
interface. For these reasons, the Raspberry Pi 4 is the obvious choice for
development at this stage.

 5

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 64 of 120

Section

Figure 5-I: Raspberry Pi 4

Image courtesy of: Raspberry Pi Foundation

Navigation Sensors Final Selection

Navigating autonomously intrinsically requires an awareness of the environment
being navigated. One possibility is to employ crude light intensity sensors that
could be used to enable the bot to travel along a clearly marked path or otherwise
identify overhanging obstacles that could interfere with its movement. Another
possibility is to employ a sophisticated digital-camera based computer vision
algorithm. Ultimately, the technical approach to autonomous navigation is
intrinsically linked to the quantity and quality of information available from the
sensing approach. The primary constraint in that effort, invariably, is the explicit
objective to frame the inevitable design within the scope of what is achievable with
limited resources and experience. Hence, the selection of sensors, and thus
approach to navigation, falls into two categories – one that functionally satisfies
the engineering requirements specifications, and one that exceeds them. This
aligns with the phased, or staggered approach to development.

Phase I: Line-Following
For this purpose, an array of strategically placed IR Infrared Reflective
Photoelectric Light Intensity Sensor Modules from GikFun, are quickly employable
and easily integrated. The sensors would require access to ADC enabled GPIO
pins on the microcontroller (or SoC), as they generate an analog voltage from the
measured light intensity. A sudden change in light intensity at any sensor, in
relation to the rest of the array, could signal the presence of an obstacle or the
identification of a path marker.

These sensors, seen in Figure 5-J, and the limited range of navigation algorithms
that are enabled by them, are already fairly well-documented. Their schematics
and fundamental construction are simple, easy to tailor to suit a specific
application’s demands, and widely available. Further, the line-following navigation
approaches enabled by these sensors vary in sophistication – range from simple
conditional motion algorithms to full control system feedback loops. It is for this
reason that these sensors are selected for a Phase I, core minimum functionality

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 65 of 120

design, as the open-ended question of the level of sophistication in implementation
is largely unconstrained in software.

Phase II: OpenCV & Path Markers
As noted previously, another possibility would be to use an application of computer
vision, via the OpenCV platform across Python in conjunction with a digital camera.
The Raspberry Pi has native support for a digital camera and the capacity to host
advanced high-level language environments directly. Provided the definitive
selection of the Raspberry Pi, or the future integration of an equally – if not more
– capable SoC, a Phase II approach would extend the navigation capability to

Figure 5-J

Figure 5-K: IR Photodiode Sensor Module
Image courtesy of: Gikfun

 Securing & Validating Cup
The Butler represents a large mechanical unit. It must contain a serving tray, or
dedicated cupholder, to secure the beverage. The serving tray and its beverage
container must be reliably positioned beneath the dispensing nozzles of the
Bartender. The Butler must also be aware of whether the beverage is or isn’t
present – or that a container is or isn’t present.

To ensure that the provision of a beverage by the Bartender only occurs when
there is a valid container available for filling, the Butler must be able to
independently identify and validate its presence and position. To achieve this
functionality at various levels of sophistication, the following components may be
used:

 Wheatstone Load Cell
 Load Cell Amplifier
 IR Proximity Sensor

 Accelerometers
 Digital Camera + OpenCV

 5

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 66 of 120

Section

Presence Sensing Sensor

In order to keep track of higher-level inputs of the system past standard drink
delivery, such as the successful placement of an empty cup in the Butler or a
failsafe to ensure the Bartender is not about to overpour a beverage, some type of
weight-sensing is needed. A simple load sensor can be used to determine weights
within a certain defined range consistently, and its input can easily be connected
to a microcontroller so as to use that data to produce a binary response of the
placement of a drink or lack thereof. Alternatively, simple proximity sensors

 TAL220B TAL221
Cost <$11 <$9
Material Aluminum Alloy Aluminum Alloy
Max Weight 5kg 100g

Table 5–K: load cell comparison

Option A: SparkFun TAL220B Load Cell
This SparkFun distributed load cell is sold on their website for $10.95, and is
made from an aluminum alloy, offering sturdiness and a measurable weight range
up to 5kg. The unit has four wires that are clearly color-indicated that run from its
Wheatstone layout out to open leads for integration into the selected amplifier
board. The unit has good reviews, and seems all-around to be a standard, reliable
source for a basic load cell, with clear tutorials on their website on how to mount
the unit to various objects to create small digital scales.

Option B: SparkFun TAL221 Load Cell
As advertised on SparkFun’s website, the TAL221 module is extremely similar to
the TAL220B with regards to overall design and composition. The main key
differences being that the TAL221 can measure weights only up to 100g, whereas
the 221B can measure up to 5kg.

Option C: Infrared Proximity Sensor
Sensors of the same form and function as described in the Bartender section
above; the same options will be considered as described in that section.

Option D: Digital Camera + OpenCV
Alternative or parallel approaches to sensing the presence of a beverage
container involve the use of a strategically placed digital camera with OpenCV
via Python. These components have already been discussed but are noteworthy
in this context also; it may be prudent to validate the presence of the cup in
multiple ways for redundancy’s sake.

Presence Sensor Final Selection

The ultimate selection for this functionality was a combination of the TAL221 Load
Cell with an HX711 Load Cell Amplifier. Whereas the TAL221 is sold for only $8.95

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 67 of 120

on the SparkFun site, as opposed to the $10.95 TAL220B. Though cheaper, the
TAL221 simply does not offer the necessary weight range for this project, as a
filled cup will most definitely weigh more than merely 100g. For this reason, the
TAL220B was selected as the load cell for this project.

It was realized earlier in the research for a load cell amplifier that nearly every
amplifier of the general size, price point, and range of applications relevant to this
project that could be found was a variation of the HX711 chip, with different
breakout boards being the only true selection that was open to make. Of the
breakouts available, the options were limited down to two variations. One
manufacturer was selected primarily because of their reviews, which proved to
reflect them being the most reliable relative to their competitors. Since each
breakout board was virtually identical in the actual design of its components, this
reliability factor proved very important, as some options were excluded early on for
negative reviews stating malfunctioning or damaged parts being received by past
customers.

The first of these two HX711 breakouts was the version offered by SparkFun, an
established supplier of electrical components. They described their breakout on
their website as having a clear 2-wire interface for clock and data, and a simple
connection procedure for integrating a Wheatstone bridge load cell, with the four
wire connections clearly labelled. A single unit cost $9.95 as advertised on their
website, and they additionally offered many in-depth, step-by-step guides for
connecting the load cell to the amplifier and performing tests on it.

Serving Tray Tilt Sensors Final Selection

Ideally, the Butler bot shall deliver the beverage without spilling it. An elevated
serving tray, with a dedicated cup-holder, may not be sufficient to ensure that the
beverage remains entirely in its container along its journey from the Bartender to
the user’s remote location. Ensuring that the serving tray and beverage remain
relatively level is paramount to preventing spills. For this purpose, an I2C enabled
MPU6050 6-Axis accelerometers from TDK InvenSense, placed strategically at the
same elevation and orientation of the serving tray can enable the firmware host to
prevent, prohibit, or otherwise mitigate motions which could cause spilling. A
prepackaged breakout of the MPU6050 by HiLetGo is an accessible solution for
development.

 Core Application
This sub-section details the parts selection process for the Core Application,
broken down by functional sub-grouping. As in the previous sections, a core
function is identified, and its technical requirements are qualified. A suite of
software packages, services, or applications that suit the purposes of that function
are selected from the available suite of public options and are subsequently
compared. A final selection which fulfills the functional demands is made based
upon the incentives or technical merits evident.

 5

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 68 of 120

Section

 Application Backend Environment
The core software application which shall interface with and effectively control the
mechanically actuating firmware on both the Butler and the Bartender requires a
host. The necessarily powerful SoC available on the Butler, which is already
responsible for hosting the IoT core functions and the autonomous navigation
firmware is also a natural place for the overseeing software. That overseeing
software, which is itself responsible for directing the Bartender on what and how
much to pour for each recipe, validating docking the sequence, and maintaining
an active record of the possible concoctions from the available ingredients,
requires a dynamic and open environment to reside. The primary components of
that environment include:

 Operating System
 Programming Language

 Persistent Database
 IoT Core

Operating System

 Windows 10 IoT Raspbian
Open-Source ✔
Vendor Support ✔
Customizable Services ✔ ✔

Table 5–L: operating system comparison

Option A: Windows 10 IoT
Designed for helping developers make connected devices, Windows 10 IoT is an
operating system that is meant to prototype internet connected devices using a
Raspberry Pi and Windows 10. In order to further help developers, the licensing
fee is waived for use in prototyping, making it attractive for use in this project. It
can run programs on smaller devices with or without a display. Though you
cannot get the full benefits of the Windows OS, this is actually a benefit for use
in lightweight devices that utilize minimal user input to generate a functional
output. Furthermore, it has ties to Visual Studio, a well-developed IDE that greatly
assists in developing headless (lacking a graphical user interface) programs.

Option B: Raspbian
A lean but full-fledged operating system, such as the Raspbian distro customized
for the Raspberry Pi from Debian (a Linux variant) by the Raspberry Pi foundation,
is the default and most easily accessible option. Raspbian was designed for the
Raspberry Pi and it already comes with Python and other useful shell
environments. It uses PIXEL, or Pi Improved X-Window Environment, Lightweight,
as its primary desktop environment. This environment is based off of the old
LXDE desktop environment, which is known for its comparatively low resource
requirements. It includes support for the peripheral devices on the Raspberry Pi.
Further, the operating system could be expanded or streamlined as needed to
suit the application specific demands.

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 69 of 120

Operating System Final Selection

Given the overall dynamic flexibility, Raspbian was selected as the final operating
system. It’s compatibility with the other major components of the application core
also lends itself to easy integration. Notably, MQTT can easily be configured
through Raspbian.

Application Programming Language

Option A: C++
With many libraries and materials available to it, development and deployment is
relatively simple. It is portable across a wide range of operating systems,
especially across iterations of Windows, OSX or popular distributions of Linux.
The debuggers available are detailed, robust, and can significantly assist in
ensuring the viability of the program prior to actual implementation. Crucially, C++
provides great control over the resource and memory management of the system,
allowing for the optimization of algorithms for particular hardware.

Option B: Python
Known for its flexibility relative to other languages, Python has the capability to
save time and space when running scripts. Unlike other languages that require
variables to be declared before they can be assigned, Python can compile
regardless of this. Similarly, it has the capability of compiling even with errors, as
the type checking is performed during run time rather than compile time, also
known as a “dynamically typed” language. Though will prevent the script from
running properly, the ability to compile code even with errors allows for a large
amount of flexibility and testing while creating code. Overall it is a good general-
purpose language that can be tailored to nearly any specific need.

Option C: Java
As an older high-level language, it has extensive libraries and materials available,
allowing for dynamic and extensive creative flexibility. One of the primary
attractions of Java is its automated garbage collector system, that is, the
automated deallocation of memory based on what java determines as “no longer
relevant.” Java is optimized for object-oriented coding, allowing for variables and
methods to be more easily created and referenced in code. The method of
memory address pointing is also far easier compared to C++ and can simplify the
process of writing code. However, due to these many features, Java programs
tends to perform poorly compared to other languages.

Programming Language Final Selection

Python offers the most flexibility with its libraries for the MQTT core and SQL
wrapping for Python. Furthermore, it is also a coding language that many among
the group is familiar with, allowing for an easier time with the actual construction

 5

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 70 of 120

Section

of the application. The GUI library, PyQt is a well known library that is useful for
seamlessly and easily constructing workable GUI.

Persistent Database

A database would facilitate the development of an application by providing a
persistent storage location for information including configuration parameters,
beverage recipes, and user history. The methodology for storing information
would lend itself to quick

 SQL Mongo
Community support ✔ ✔
Mature technology ✔
High transaction rate ✔
Optimized for scalability ✔ ✔
Optimized for failure recovery ✔

Native data validation ✔

Table 5–M: Persistent database comparison

Option A: SQL
Oracle Corporation, the same company that made Java, created SQL to be a full-
featured open-source relational database management system (RDBMS). The
purpose of this was to create an easily workable system of tables that could store
a variety of data and perform queries across various tables. Although it’s made
by Oracle, it is compatible with nearly all operating systems, as well as having
many libraries and resources for many coding languages. The basic structure of
the database is a series of tables and rows and allows for large volumes of data
to be frequently updated and modified.

Option B: MongoDB
Developed by 10gen, MongoDB is an open source, document-oriented database
that stores its data in JavaScript Object Notation (JSON). This document format
allows the database to be versatile, allowing easy connection to applications of
various languages via its drivers. Because of its JSON format, the data
transferred is in a human readable format, and its efficiency and reliability are
greatly enhanced. The cost of this is that the setup for this is lengthy, and given
that many existing databases use SQL, the additional process of utilizing a tool
to process a SQL to MongoDB query is required.

IoT Core Framework

The IoT core framework is absolutely crucial to the communication between the
Bartender, Butler, and core application. Without a consistent method of
communication, the flow of the system can be broken and the intended desire of

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 71 of 120

the B3 will fall short. For this wireless system to be realistically implementable,
some sort of IoT core will need to be run in the background of the core application.

Option A: MODBUS-TCP
Modbus-TCP is a byte-oriented, application layer protocol originally developed in
1979 by Modicon. It was originally designed as a simple way for sensors to
transfer data to and from a control setup; however, through separate specification
it now supports other communication such as TCP/IP (Transmission Control
Protocol/Internet Protocol). The Modbus standard protocol does not specify how
its register values are sent, and as a result there is wide variety in the
interpretation of its data. Since the data types are not strictly defined, knowledge
of how a device sends data is crucial for Modbus devices to accurately
communicate, adding a layer of complexity. Because of its limited functionality,
most Modbus device manufacturers add their own custom extensions to increase
the functionality beyond what standard Modbus provides. Though this is
beneficial, it also means that a familiarity with a Modbus device’s unique
extensions is required in order to properly work with it.

Option B: MQTT
MQTT, or Message Queuing Telemetry Transport, is an open, lightweight
machine-to-machine protocol. The core network, known as the broker, mediates
the interactions among MQTT agents or clients. After connecting, the clients are
then able to publish information to the broker and receive information they are
subscribed to. When finished, clients will then disconnect from the MQTT broker.
MQTT is designed for use by resource-constrained embedded devices, and as
such has a minimal footprint. The microcontrollers that will be used in this project
are essentially what MQTT is designed to be run on, making it very appealing for
application in the B3. On top of this, MQTT was designed to communicate
efficiently, with various qualities of service that can be designated to messages
to determine how it is communicated and confirmed based on both the data
contained within the message as well as the importance of that message to the
system. There are also a variety of libraries for all major languages for initializing
and integrating an MQTT server into an application or device, simplifying the
process of creating a functional prototype.

Option C: DNP3
The Distributed Networking Protocol, DNP3, similar to Modbus, is a byte-oriented
application layer protocol developed by Westronic, Inc. in 1990. Unlike Modbus,
it also contains a Data Link layer with a pseudo-transport layer and its protocol is
simply encapsulated within TCP/IP. Also unlike Modbus, DNP defines a large
number of data types, so communication between DNP devices is far more
seamless. Furthermore, within each datatype there is are variations available,
such as different data sizes, timestamps, and quality indicator flags. DNP3 also
supports high security two-step control operations, ensuring the integrity of the
control commands given to the “Slave” device.

 5

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 72 of 120

Section

DNP3 was specifically developed for use in supervisory control and data
acquisition (SCADA) applications and is a dominant protocol in the field. Due to
this, it is highly standardized, allowing for high compatibility and inter-operability
between devices constructed by different manufacturers. Because the B3 will be
connected to many electrical devices, this is quite an appealing method of inter-
device communication.

IoT Core Framework Final Selection

MQTT is a dynamic and lightweight IoT framework. It operates as a background
service with a small footprint. Configuration of tags is on-the-fly, and data
exchange is centralized. It is easy to integrate with most high-level languages and
often has community support for Wi-Fi enabled microcontrollers. It is open-source
and free to implement. As a result it is the obvious choice for the B3.

Figure 5-L: MQTT icon logo

Image courtesy of: MQTT.org

 User Interface
The Butler is intended to be the primary point of contact with users or partygoers.
The user experience is thus centered about the interface on the Butler. The ideal
interface needs to be easily accessible, simple-to-use, and also appealing.
Providing the user with an ideal interface requires thoughtful consideration of the
user during what is expected to be a typical interaction with the appliance. It is
conceivable that the user may not always be the owner of the appliance, who may
yet be more intimately familiar with the configuration and capabilities of the
appliance than a house guest. The interface needs to be simple enough for a first
timer to quickly use, but robust and flexible enough to offer a gratifying experience.
However, constraints on resources, especially those related to development time,
also compel a focus upon ease of implementation. Ultimately, to provide a rapidly
deployable, easy-to-use, and flexible user interface, the following components
shall be used:

 GUI Application Platform
 Display
 Input Device(s)
 Speaker(s)

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 73 of 120

GUI Application Library

High-level programming languages, such as C++ or Python, have various
libraries, modules, or packages for implementing a graphical user interface (GUI)
based application. The library, package or module of choice shall be a platform
for the development of the GUI application; and there are a wide range of options
available, each offering unique incentives for their adoption.

The ideal platform to be within the natural constraints imposed, and to enable the
achievement of the design objectives and specifications, has several distinct ideal
characteristics. It must be well-documented, easy-to-use – such as by
maintaining graphical tools for facilitating design, and flexible enough to provide
a broad range of creative options. Further, the ideal development platform for a
GUI application should also be light-weight – or built with careful and dynamic
resource management in mind.

 GTK+ Qt pyQt5 appJar Swing

Open Source Dev. ✔ ✔ ✔ ✔

Free Visual Dev. Toolkit ✔ ✔ ✔
Community Resources ✔ ✔ ✔ ✔ ✔
Native Multi-Threading,
Pipelining, Queuing

✔ ✔ ✔ ✔

Custom Widgets ✔ ✔ ✔ ✔

Interrupts ✔ ✔ ✔
Broad Compatibility with
External Libraries

✔ ✔ ✔

Project Member Experience ✔ ✔ ✔
Table 5–N: GUI library framework comparison

Option A: The C++ GTK+ library
The GTK+ library is an implementation of the popular GTK object-oriented widget
toolkit and open-source GUI development library for use in a C++ development
environment. The core is derived from decades old GNOME project; it sustains a
robust community, an accessible GitHub-based technical/development issue
handling system, and thorough documentation. There are tutorials and manuals
on implementing GUIs in C++ via the GCC compiler, and on integrating the library
with most C++ IDEs.

Further, the Wayland or X11 backend is popular and operational on the most
popular OS platforms, including Windows, OSX and the main Linux distros. It
supports the creation of sophisticated graphical applications, but the learning
curve appears steep.

 5

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 74 of 120

Section

Option B: The C++ Qt library
Qt is a well-developed platform for implementing GUIs written natively in C++. It
was a platform built by the Qt Company in the early 1990s that was later pushed
forward by the increasing number of stakeholders represented by the Qt Project.
The official website provides ample documentation, encouraging tutorials, and
access to a dedicated community. It is a convoluted platform with many bells and
whistles, including multithreading, pipelining, and event handling and is popular
with advanced developers. There are great features available through the Qt and
its dedicated development apps – but the best features are behind paywalls.

Option C: The Python pyQT5 library
pyQt5 is an open-source Python wrapper for the core functionalities of Qt. This
version is accessible to beginners and advanced users alike, as the
documentation is both vast and meticulously thorough. Further, the
documentation from the original library and the free visual development tools
provided by the Qt Company are compatible with this library, which may simplify
design and development efforts. All of the bells and whistles from the C++ native
Qt, including the object-based widget-class inheritance, multi-threading,
procedural page generation, and pipelining/queuing enables are easily
accessible. The toolset hence offers broad creative range, a powerful core set of
functions, and the best of the rapid development environment provided by Python.

Option D: The Python appJar library
appJar is a simple GUI toolkit designed for beginners and those seeking to
streamline the implementation of a GUI as much as possible. The features are
limited, the widgets are strictly defined, and the backend is not accessible, but
development in the creative range afforded is effectively trivial. There are various
helpful tutorials and a plethora of online resources encapsulating almost the
entire swathe of possibilities rendered by the platform. The best argument for this
toolkit is succinct: “It just works”.

Option E: The Java Swing library
Java’s Swing library is the default “rapid implementation” option for those
dedicated to development in Java. Swing is built upon Abstract Windowing Toolkit
and is designed specifically for Windows-based applications. Though using this
platform constrains the project to a Windows-based OS, such as Windows 10 IoT,
for the application layer, it does provide a ready and full-featured platform from
which to develop.

The community for the Swing platform is active, the documentation is thorough,
and there are a multitude of open examples for quick implementation. Further,
the modularity of the platform enables the construction of custom widgets and the
usage of advanced features like ODBC integrations. However, a clear pitfall is
the steep learning curve.

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 75 of 120

GUI Library Final Selection

PyQt5, a Python wrapper for the popular Qt graphical user interface development
platform, offers an open-source and full-featured API for generating that user
interface. It is the natural and ultimate choice for the development of a GUI
application overlay to handle the interactions between the firmware on the Butler,
the firmware on the Bartender, the IoT data traffic, and the user’s inputs. The
crucial deciding factors in the selection of pyQt5 is its accessibility, that it can be
developed in the rapid development platform of simple Python script, and that
members of the project already have experience working with this library - so the
learning curve is not quite as steep as it might be otherwise.

Interface Display, Input & Audio

The GUI platform shall thus render its application on a display for the user to
interface with. Given the circumstances of what is expected to be the typical
usage, the display on the Butler ought to be vibrant, clearly visible, simple to use,
and simple to integrate as part of the system architecture. Again, the predominant
deciding factor in the selection process for peripheral devices supporting core
functionalities is indeed the ease of implementation; options for the primary user-
interface display embedded on the Butler should be as close to “plug & play” as
possible, or otherwise offer clear configuration steps and documented libraries.

 TFT LCD
Resistive

IPS LCD
Capacitive

Mini-OLED
Array

Price $40.99 $79.99 $10.99, ea.

Touch Capable ✔ ✔

Size 4” 7” .96”, ea.

Color Range Full, RGB Full, RGB White

Resolution 320x480 1024x600 128x32

Speaker(s)
Purchase
Separately Built-In, Native

✔

Purchase
Separately

Drivers & I/O SPI
w/ Library

HDMI
USB-C

I2C
w/ Library

Warranty ✔ ✔

Table 5–O: Interface comparison

Option A: TFT LCD with Resistive Touch by waveshare
There are various vendors offering TFT LCD displays with resistive touch, all at
various sizes and performance characteristics. However, a handy 4” offering by
waveshare has key performance characteristics that are ideal, including a simple
SPI interface and a configurable FBCP software driver. This display is desirable
over the plethora of alternatives because of its simplicity, it’s high contrast
capacity for vibrant colors, and it’s mounting points for a microcontroller shield.
Paired with a generic off-the-shelf speaker, the option entertains a whole user
interface hardware package.

 5

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 76 of 120

Section

Option B: IPS LCD with Capacitive Touch by EVICIV
A 7” portable USB-powered 16:9 Monitor with capacitive touch, built-in speakers,
and a solid glossy plastic frame with mounting brackets by EVICIV (or similar
discount brand) is another clear option. Capacitive touch provides the input
capability and the built-in speakers offer the opportunity for audio feedback, all
powered through simple drivers. The EVICIV monitor also features HDMI ports,
flexible power options, a high-definition resolution, and overwhelmingly positive
feedback. Though significantly more expensive than the rest, the completeness
of the packaging and the native support for HDMI make this display simple to
implement.

Option C: Array of mini-OLEDs by MakerFocus
A final alternative to displaying the graphical user interface is to distribute the
tasks across an array of small, cheap, OLEDs. Receiving input could then be
restricted to generic off-the-shelf piezoelectric or capacitive touchpads, and audio
feedback provided through a generic off-the-shelf speaker. The I2C interface
enables the simple control of multiple displays, and the low price offers a
reasonable path towards implementation. This approach, however, lacks the
appeal of a full-range color display and may yet prove difficult to implement in
software.

Interface Display Final Selection

The complete 7” Portable USB Touch Screen 16:9 Monitor by EVICIV, is the
obvious selection. Though it is more expensive than any of the other options, its
native support for HDMI, capacitive touch, a high-resolution display and it’s built-
in speakers meet the entirety of the requirements for a display device, input device,
and also provide room for optional audio feedback. The mounting brackets impose
a clear design constraint in overall packaging, but their existence may yet prove to
be more helpful than not.

Figure 5-M: 7” IPS CapacitiveTouch Screen, Portable LCD

Image courtesy of: EVICIV & Amazon

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 77 of 120

 Structural Components and Aesthetics
Though the focus is on successful implementation of the desired functionality,
manufacturability, size, and the visual appeal of a practical enclosure for both
distinct pieces of the total appliance are considered. The packaging of the
Bartender and the Butler yields an opportunity for maximizing the allure of the
system with ergonomic and aesthetic considerations in conjunction with practical
ones. Thus, a rapidly deployable structural framework with room for all of the
necessary electronic hardware, interfacing cabling, and the flexibility to include
additional aesthetic features is ideal. To achieve this, the following components
may be used:

 ¼” Medium Density
Fibreboard

 ⅛” Hardwood Paneling
 80/20 Aluminum T-slot &

Fasteners

 Hardwood Stain & Sealer
 Vinyl/Acrylic/Matte Paint
 OLED/TFT Screen(s)
 Various LEDs
 Speaker(s)/Microphone(s)

 Parts Selection Summary
This section is intended as an accessible, quickly informative reference. The
component parts selected for each of the Bartender, Butler, and unifying Core
Application are enumerated and a brief description of its technical purpose is
provided. Details on precise sub-system functionality, cross-functionality
interfacing, and other descriptive information are omitted.

Bartender:

 Microntroller – ESP8266
 Dispensing Fluids – Peristaltic Pumps (Generic from Adafruit)
 Tubing – Generic Silicon (McMaster-Carr)
 Relay – MCIGICM
 Motor Driver – L293D
 Multiplexer – 74HC4051 8-Channel (Sparkfun)
 Docking – Hall Effect Sensor (Analog)

Butler:

 Robotic Platform – iRobot Create 2.0
 Navigation Firmware Host – Raspberry Pi 4.0
 Navigation Sensors – IR Photodiode Sensors
 Load Sensors – TAL221 Load Sensor with HX711 Amplifier Chip

Core Application:

 Operating System – Raspbian
 Programming language – Python
 Persistent Database – SQL
 IoT Core – MQTT

 5

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 78 of 120

Section

 GUI Library – PyQt5 (Python)
 Interface Display – USB Touchscreen by EVICIV

 Phase I: Core Functionality
This section details the initial design architecture which is intended to provide a
minimum proof of concept prototype and which satisfies the engineering
requirement specifications (ERS) and design objectives. The core functionalities
of the two mechanical subsystems can largely be developed independently, until
system integration of their respective firmware is enabled by the unifying Core
Application. Meeting the minimum ERS requires mutual and simultaneous
development of each distinct system. To simplify development and facilitate
successful integration, the overall Phase I system design is broken down by its
component subsystems, Bartender, Butler, or Core Application.

For each subsystem: An architecture with a component block diagram meeting the
minimum ERS defined by the overview block diagram, Figure 5-A, is proposed
based upon the available component selections. A functional block diagram is
given, where system-level inputs and outputs are labeled, and each internal
process block is clearly identified. Each process identified in the functional block
diagram is then rigorously broken down, describing sensor inputs, conditional
outputs, data formats, and firmware functions. Finally, an integration strategy is
specified with explicit regard to the IoT framework and I/O strategy therein.

 Bartender: Simple Cocktails
This section details the Phase I architecture for the Bartender unit of the B3. The
Bartender unit is responsible for key functions such as, confirming the presence
and exact location and positioning of a valid drinking glass and, based on the
beverage chosen by the user, dispensing the liquids from various bottles of
available beverage ingredients into the awaiting drinking glass. This will be done
precisely, accurately, and at a prompt rate, in order to achieve the specified time
requirement.

 Architecture
As with each sub-system in the design, the bartender unit plays a key role. The
bartender is the entity that physically hosts the system that ultimately dispenses
the beverage ordered by the user. This goal is achieved by the integration of
carefully selected components.

First, the microcontroller to host the firmware was chosen to be the Feather
HUZZAH with ESP8266. Following this important selection, is that of the FDA
approved peristaltic pump with silicon tubing and to round out the dispensing
system itself, the following were also chosen based on desired characteristics and
ease of integration with the testing board and each of the other components; the
L293D Motor Driver Breakout, the open - source 74HC4051 8-channel MUX
breakout, and 2-Channel DC 5V Relay Module with optocouplers. These

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 79 of 120

components integrating with the ESP8266 will be implemented, tested, and finely
tuned as necessary to achieve the desired beverage within the time requirement
with accuracy and precision.

Sensors are also implemented on the bartender in order to independently confirm
that the butler docked accurately, as a supplementary check in regard to the
butler’s verification. Hall Effect sensors, more specifically the MPU-9250
Magnetometer Breakout module, was chosen to integrate with the ESP8266
microcontroller to achieve this feature.

Range finding sensors were researched for another supplementary check of the
butler’s verification, however this one is aimed to confirm, not only the presence of
a valid drinking glass but the exact positioning of the glass as well. Information was
gathered on two types of range finding sensors, infrared (IR) proximity sensors and
ultrasonic (SONAR) proximity sensors. In this instance, one of each type, the LV-
MaxSonar (MB1000) EZ0 range finder and open-source VL6180 infrared range
finder breakout, were both chosen. Each sensor will be tested with the system and
the results will be evaluated by the team before a final decision is made on which
will be implemented with the ESP8266 microcontroller to achieve this feature.

Figure 5-N: Bartender Components Block Diagram

 5

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 80 of 120

Section

Overall, the Bartender’s appearance is based upon its need to facilitate the
housing of the Butler and the drinking glass held in its cupholder when docked.
The silicon tubing connected to each pump will be suspended from above into the
center location designated to accurately dispense the liquids in the awaiting
drinking glass. The Bartender’s main structure will be large enough to house the
components that physically make up its dispensing system, where the largest
components to account for are the three pumps, and the overall size must be kept
below the volume limit as specified in the design requirements.

 Functional Block Diagram
The block diagram below is a representation of the functional process that the
bartender unit aims to achieve. The process integrates with the microcontroller to
transmit and receive data from each input and output, successfully and coherently.
The following section breaks down the induvial aspects of the process and explains
how they integrate with each other cohesively.

Figure 5-O: Bartender Functional Block Diagram

Dispensing

The goal of this process is to dispense the desired beverage with the correct
ingredients and the appropriate volumes of each ingredient. The first input seen
in the diagram of this process is the “aligned” signal. The “aligned” signal
encapsulates the confirmation of the successful docking of the Butler unit, the
verification of a valid drinking glass and its position in the exact location necessary
for the following process to occur. This process is activated once the Bartender
receives the recipe of the beverage chosen by the user and the notification that
the verified drinking glass is “aligned”.

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 81 of 120

The dispensing of each ingredient continues as the condition of the function
applies. The three conditions of the function are: (1) the “aligned” signal
remains, (2) the “is dispensing” signal remains, and (3) the “overflow interrupt”
signal is not present. The “aligned” signal will continue to remain as long as the
Butler remains docked – as actively verified by the input data of the sensors, both
the hall effect and those built into the iRobot. The “is dispensing” signal remains
for the length of time determined by the flowrate and the volume of liquid needed
per pump in use, based on the chosen beverage. The “overflow interrupt” signal
will not occur unless a specified load limit is exceeded on the Butler. This signal is
included to ensure that if a malfunction occurs the signal becomes an emergency
abort flag which ceases all dispensing to avoid any unnecessary messes. The
“Completed Beverage” signal is the output of this process.

 Integration Strategy & I/O Summary
The Bartender receives a notification from the core application to expect the
Butler’s arrival. Upon the Butler’s arrival, the Bartender confirms the accuracy of
the docking process and verifies the validity of the drinking glass and its exact
positioning; the Bartender then notifies the core of the success. Once the core
receives all confirmations necessary, the recipe of the beverage chosen by the
user is sent to the Bartender.

At this point, the dispensing process is activated. The dispensing process is
actively monitored throughout its duration. Upon completion of this process, the
notification is sent to the Butler to activate its process to deliver the finished product
to the intended user/location.

MQTT Subscribe Tag List:

 Overflow_Interrupt_Flag
 Order_Recipe
 Emergency_Abort_Flag

MQTT Publish Tag List:

 Butler_Go_Flag
 Bartender_Docked_Flag

 Butler: Line-Following
This section details the Phase I core functionality of the Butler unit of the B3. After
successfully reaching this level of development in the Butler unit, the subsystem
will be capable of using a load cell to accurately determine whether a valid drink
container has been placed in its cupholder, and will be able to autonomously
navigate a path between the user and the Bartender via a line-following system
marked by a simple electrical tape path. The information read from the load
sensing system and the completion of a navigated path will both be transmittable
to the rest of the B3 through the MQTT core.

 5

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 82 of 120

Section

 Architecture
The Butler unit’s core design will be composed of the following major units: 3-5 IR
Photodiode sensors, a simple load cell and associated amplifier circuit, the iRobot
Create 2.0 unit, a Raspberry Pi module, and a custom PCB shield mounted to the
Raspberry Pi for pinout connections to the other components and additional
peripheral device support. The Load Cell selected for this prototype has four
standard color-coded leads which will be soldered to the associated pins of the
selected amplifier circuit. The output pins of this amplifier circuit will in turn be
connected to the PCB shield of the Raspberry Pi.

Similarly, the IR sensors, which come already mounted to small PCBs, will be
integrated through the PCB shield of the Raspberry Pi. Lastly the iRobot Create
will have its serial ports connected to the available output pins of the Raspberry
Pi’s PCB shield to allow for control of the unit’s motors from the Raspberry Pi
module.

Figure 5-P: Butler Architecture Block Diagram.

Physically, the load cell will itself be mounted to a custom-made cupholder and
calibrated for use as such, located at the top surface of the Butler’s overall frame.
The Base of this frame is mounted to the top of the iRobot Create 2.0, with the IR
sensors mounted to the front of the iRobot in order to properly trace the path’s line.
The Raspberry Pi, its PCB shield, and the amplifier circuit of the load cell will all be
contained within the Butler’s frame, so as to keep the components covered
throughout use.

 Functional Block Diagram
The Butler subsystem’s primary task is to navigate between the Bartender’s and
the User’s locations. As seen below in Figure 5-O, the majority of the specific

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 83 of 120

processes defined in the Butler’s functional block diagram are in fact incremental
portions of the greater navigation system. Note that these “building blocks” of the
navigation are in fact identical regardless of the direction the Butler is travelling.
Because of this, the navigation processes are grouped within this section as
Undocking/Pathfinding and Line-Following/Docking, following a reasonable
chronological order.

Outside of the navigation itself, the Butler makes use of its load sensor to develop
a failsafe preventing false starts to the drink preparation process or any chance of
overpouring to the point of spilling. Unlike the navigation processes, these
processes are specific to the Butler’s current location. If the Butler is located at the
user, it uses its load sensor to ensure a valid, empty drink container has been
placed in its cupholder before accepting an order from the Core Application. If the
Butler is located at the Bartender station, it constantly checks the load sensor for
an overpour, and is prepared to shut down the Bartender as a failsafe if it believes
this is about to occur.

Figure 5-Q: Butler Functional Block Diagram.

Valid Drink Detection

The valid drink detection process determines whether the Butler’s cupholder is
presently holding a valid and empty drink container. This is used to determine

 5

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 84 of 120

Section

when to allow the Butler to begin its path to the Bartender, acting as a failsafe to
avoid sending the Butler without a drink container, or with a partially filled container.
This is crucial as either of these cases would likely result in serious spills which
could damage the system and ruin the device’s intended experience.

This process takes an input from the Load Cell through its amplification circuit to
the Raspberry Pi, which has been calibrated to read this input as a legible and unit-
quantified value. This value is then compared to a stored reference value with
previously selected range of acceptable error. When the measured value falls
within the acceptable range of passing value, the process will return an output
signifying that a valid drink container has been placed. In all other situations, a
failure will be returned as output continuously.

Drink Overflow Detection

Equally as important as the valid drink detection and providing a similar function is
the drink overflow detection of the Butler’s load cell. After the load cell has
confirmed the object placed in its holder to be a valid empty container, the sensor
will zero-out its reference upon reaching the Bartender. This serves to allow the
Butler to track the overall weight of the fluid the Bartender pours into its cup alone,
meaning if the value becomes greater than a certain threshold established in the
Butler’s Raspberry Pi unit, it will execute a failsafe operation commanding the
Bartender to immediately cease pouring.
This is accomplished by having previously calibrated this threshold weight in the
unit, and upon any instance of the measured weight exceeding that threshold,
raising a flag which will be published to the MQTT core. Naturally, the Bartender
is subscribed to this flag, and will respond by stopping the pour from all pumps
immediately.

Undocking and Finding Line Path

When the Butler’s Raspberry Pi receives published information from the MQTT
core which shows the Butler_Go_Flag has been raised, it will begin its undocking
and line-path locating procedure. Whether it is initially at the user docking station
or Bartender docking station, it will begin the process of undocking and locating
the line path laid out in front of its current station. This begins by the Raspberry Pi
sending a command to the iRobot Create 2.0’s serial input ports to command it to
reverse off of the included charging station (docking port).

After undocking, the unit will again be commanded by the Raspberry Pi to slowly
rotate clockwise, while the Raspberry Pi begins monitoring the data input of the IR
photodiode sensors. Upon the IR sensors producing an input which corresponds
to the line-path being centered between themselves, the undocking/pathfinding
process will be considered complete, and the Raspberry Pi will begin its Line-
Following process. This change between processes does not necessitate raising
any flags or publishing information to MQTT, as it is merely a logical decision
performed by the Raspberry Pi and is not relevant to the other subsystems.

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 85 of 120

Overall, this process requires both control over the motors of the iRobot Create 2.0
by the Raspberry Pi, and communication of the data from the IR sensors as an
input to the Raspberry PI as well. Although no output is produced by the process,
its completion triggers the Line-Following process. The Line-Following process is
activated only upon the completion of the Undocking and Pathfinding process, as
observed by the Raspberry Pi.

Line-Following/Docking

The Line-Following process is activated only upon the completion of the Undocking
and Pathfinding process (a change which will be controlled through the Raspberry
Pi directly). Upon beginning the Line-Following process, the Raspberry Pi will
make calculations based on the inputs received by the IR photodiode sensors in
order to determine what path-corrections need to be made via control of the iRobot
Create 2.0’s motors. These corrections will be based on the deviation of the line
from the center of the IR sensors in an attempt to keep the Butler aligned on the
path while moving forward continuously.

The Raspberry Pi will command the motors to adjust in speed accordingly, and this
process will continue successively until all of the IR photodiode sensors
simultaneously register encountering a marked off path of tape at once. This will
only occur at a marked “Tee” at the two ends of the line path and will signify to the
Raspberry Pi that the Line-Following process has been completed. This Tee will
be carefully placed at a distance from the docking station such that when the Butler
reverses off the station at a later time, it will be centered physically over the Tee.

At this point, much like at the end of the Undocking/Pathfinding process, the
Docking procedure will be signaled to begin by having the Raspberry Pi relinquish
control of the iRobot Create 2.0’s motors, and command the iRobot to begin its
pre-programmed Docking command, in which the top-mounted IR sensor of the
device is used to measure its orientation relative to the nearest of the two docking
stations. Throughout this part of the process, the IR Photodiode sensors mounted
to the front of the Butler will not be used.

It is worth noting that these last two described processes are part of a continuous
cycle that forms the path the Butler will take back and forth between its two
destinations. As seen below in Figure 5-P, as the Butler follows the line
continuously in (A), it is purely under the command of the Raspberry Pi based on
inputs from the IR Photodiodes, but in (B), upon reaching the Tee, it recognizes
the end of its line-following process, and hands control off to the preprogrammed
docking feature of the iRobot. Once docked, as in (C), it can be called upon by a
flag-raise to reverse off the docking station, by a distance pre-determined to place
it over the Tee, and begin rotating as in (D) until it is once again facing in parallel
with the line it is centered on. At this point the Butler can once again begin its line-
following procedure.

 5

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 86 of 120

Section

Figure 5-R: Butler Navigation

 Integration Strategy & I/O Summary
The completed Butler system will, like the Bartender, primarily be integrated with
the other subsystems through the use of input/output tags published through the
MQTT core. The only true outputs produced by the Butler subsystem for use by
the rest of the device is the flag which represents having completed the navigation
and docking at either end of its defined path, so the rest of the system can respond
accordingly and prepare for the next phase of the overall process, and the
emergency failsafe flag in the case of overpouring from the Bartender. However,
input signals from both the Bartender (in the case of the drink being completed)
and the Application (in the case of the order having been completed) will be used
as prerequisites for beginning the navigation processes, along with the Butler’s
own failsafe load sensing process. The flag raised by either one of the other two
subsystems is in fact the same GO flag, but it is raised by different parameters
depending on the Butler’s location. Finally, a last-resort abort flag will be reserved
for the Application such that in the case of any emergency the flag can be raised,
causing the Butler to immediately stop its path and await a full reset.

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 87 of 120

MQTT Subscribe Tag List:

 Butler_Go_Flag
 Emergency_Abort_Flag

MQTT Publish Tag List:

 Butler_EmptyCup_Flag
 Butler_Returned_Flag
 Overflow_Interrupt_Flag

 Core Application: System Integration
The purpose of this subsystem is to mediate between the Butler and the Bartender,
as well as to interact with the user. The user will be required to interact with the
Core Application pertaining to the configuration of the Bartender, drink order
selection, and various notifications for cleaning, errors and restocking the
Bartender.

 Architecture
There are three main components needed for the Core Application to accomplish
its goals. First, a workable and intuitive GUI is needed to the user can easily
understand what inputs are required from them as well as what the outputs mean.
Second, a persistent database that can store a table of all available drink recipes,
and user input configuration parameters. Finally, the MQTT server needs to be
complete and effectively able to communicate with both the Bartender and the
Butler to ensure that critical data is being transmitted and applied.

The integration of these main components is the basis for how the entire system
will run. Based on the inputs from the user, and configuration of available drinks
will be filtered out from the database. This will then be used in the GUI to describe
to the user what drinks are available based on the configuration they input.
Following an actual order made by the user, the core application will then publish
various flags to the MQTT broker retrieve the recipe for the drink selected from the
database and use the MQTT server to transmit this information to the Bartender.

 5

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 88 of 120

Section

Figure 5-S: Core Application basic structure

The physical layout of what the core application will be directly interacting with is
displayed in block diagram in Figure 5-J. The Raspberry Pi that will host the
application will be directly attached to the Butler and use the power supply of the
iRobot base to power it. Connected to this physically will be an LCD screen with
touchscreen capabilities that will display the GUI to the user and receive input from
them. The IoT core, database, and forward-facing GUI will all be run internally on
the Raspberry Pi.

The GUI will have four primary pages, consisting of the main menu, a configuration
page, an order confirmation page, and a loading page. The main menu page will
have a few important components, the primary one consisting of a short list
showing the available drink options. These drink options will be selected based on
the user inputs for beverage ingredients. If the list of available drinks exceeds a
certain length, the list on the main menu will have the ability to scroll down to see
further options, as well as a side bar to indicate that this list is scrollable.

Selecting a drink from this list will bring the drink confirmation page to overlay the
main page. Other available components include a hibernate button, which will send
the touch screen into a page-less, low power mode, and a configuration button that
will take the user to the configuration page.

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 89 of 120

The configuration page will allow the user to add or remove beverage ingredients
from the internal list of “available ingredients” that the application uses to determine
what recipes are available to be mixed. The actual layout of the configuration page
will consist of a central list, similar to the beverage order list on the main page. This
list will include all the ingredients the user had previous added and will allow the
user to see an approximation of how much of that ingredient is left, as well as the
option to remove an ingredient from the list.

Separate from the list will be a button that allows the user to add a new ingredient
to the system. When the user selects this option, a secondary page will overlay the
entire configuration page requesting the details of the new addition. The specific
details that will be requested will be the name of the ingredient, the amount of liquid
that will be added to the system, and the pump number that the user will be
connecting it to. If the pump is already in use, an error notification will appear
warning the user of the confliction and recommend removing that ingredient before
adding a new one in its place. Once the information has been logged, a notification
will appear indicating the user should now connect the new addition to the
Bartender’s system, and briefly pause before allowing the notification to be
dismissed to encourage immediate action.

The loading page will appear for the duration of the Butler’s travel to and from the
Bartender. While the loading page is active, the user will be incapable of interacting
with any components except for an emergency stop button. Pressing this button
will halt all actions and have the Butler return to its default docking station.

 Functional Block Diagram

Configuration

The persistent database will initially be filled with a series of tables that consist of
several dozen recipes, collectively referred to as the “Blackbook”. The Blackbook
will contain a large variety of ingredients. The user will need configure the B3 with
the ingredients that they have purchased independently. Using the GUI of the core
application, they will need to input the ingredient they wish to add to the system.
Once an ingredient is selected, the application will request the user to enter the
quantity of the ingredient being added to the system, either in ounces or milliliters,
and subsequently assign it to a dedicated pump. After the information has been
entered, information will be stored in a table consisting of “available ingredients,”
and the user must physically connect the ingredient to the Bartender’s chosen
pump.

 5

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 90 of 120

Section

Figure 5-T: Configuration and Simple Drink Select Block Diagram

Select from Available Drinks

To accomplish this task, the SQL database containing all known recipes will have
a related sub-table for each recipe consisting of a column of ingredients and a
column of the quantity of the ingredients. After the “available ingredients” table has
been updated, a sub-function of the configuration process will then compare the
list of ingredients to all recipes in the Blackbook. Any recipe that has all of
ingredients listed in the “available ingredients” table will then have its name
selected to an active in-memory table for “available recipes.” This list of available
recipes will be used by the GUI to give the user a list of options to order from. It is
also worth noting that if a recipe requires an amount of an ingredient larger than
that which is available, the recipe will not appear on the “available recipes” list.

GUI Modes

There need to be two primary modes of function for the GUI. When there has been
a significant period without user input, or without completion/error flags from other
subsystems, a hibernation mode will be activated in order to save power. During

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 91 of 120

this hibernation, the display will be turned off, and the GUI will go into a standby
mode that will need to constantly await any touchscreen input to “wake” the device.

Figure 5-U: GUI mockup, initial screen

The other primary mode of function will be the active use state, in which the
application has recently been updated, either by user input or from activity from
either the Butler or the Bartender. Upon transitioning from the hibernation state to
the active use state, the initial screen that will appear will contain a large menu that
consists of the list of available drinks. Other, small items on this screen will include
a “return to hibernation” button and a button for editing the current configuration of
the Bartender (for adding or removing ingredients). Once a drink has been selected,
a pop up will appear that will give a short description of the drink that was selected
alongside a confirmation button and a cancellation button. The cancellation button
will return the user to the drink selection menu, whereas the confirmation button
will bring the user to a loading screen, shortly after which the Butler will begin its
journey to the Bartender.

The loading screen will have an additional cancellation button (one that is distinctly
different from the previously mentioned one). If at any time this second cancellation
button is pressed, the core application will send an emergency signal. Upon
receiving this signal, the Bartender will immediately stop any dispensing taking
place and the Butler will turn around and return to its starting docking platform.

 Integration Strategy & I/O Summary
Many of the inputs for the core application will come from the user, and there are
only two inputs that it receives from the MQTT; however, those two that it does
receive from the MQTT are crucial to the function of the B3 as a whole. The first
input is a simple flag from the Bartender that is sent once the Butler arrives at the
Bartender and is confirmed to be aligned. Upon receiving this flag, the core

 5

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 92 of 120

Section

application will then and only then send the recipe that the user ordered to the
Bartender to start the dispensing process. The other input is sent by the Butler
when it returns from the Bartender. Upon receiving this flag, the core application
will create a notification (preferably with an audible notification) to alert the user
that their beverage has arrived.

The total amount of outputs from the core application to the MQTT is also low in
number, totaling at three. The first is a simple flag indicating that the user has made
an order. Only the Butler will be subscribed to updates on this flag and is essentially
telling the Butler that it should start making its way towards the Bartender. The
second output is the recipe for the drink that the user has ordered. Only the
Bartender will be subscribed to this information, and it will be sent once the core
application has received the flag from the Butler saying it has arrived at the
Bartender and is correctly aligned.

MQTT Subscribe Tag List:

 Bartender_Docked_Flag
 Butler_Returned_Flag
 Butler_EmptyCup_Flag
 Overflow_Interrupt_Flag

MQTT Publish Tag List:

 Butler_Go_Flag
 Emergency_Abort_Flag
 Order_Recipe (actual recipe, not a flag)

 Phase II: Advanced Features
This section details a set of mostly mutually independent expansions of core
functionalities at each subsystem of the B3. Each expansion of functionalities
increases the overall capacity of the B3 to meet its design objectives, with
incremental steps in the degree of sophistication. Once the Phase I design has
been completed and validated, development will continue along the clearly defined
roadmap outlined here. Each distinct Phase II sub-system design may yet require
coordinated changes to the overall IoT framework and I/O integration strategy, but
the roadmap has been laid out such that a fundamental redesign is unnecessary.
The key focus is on generating an achievable target for implementation, given the
functional basis from Phase I.

For each sub-system: The next phase of implementation is motivated and briefly
summarized. The updated Phase II features, functionalities, or methods are then
roughly outlined in what effectively amounts to a brief narrative addendum to the

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 93 of 120

Phase I functional block diagram. Finally, changes to the component or design
architecture are discussed and conceptual groundwork for implementation is set.

 Bartender: Scaling Up
A key commercial point for the SirMixABot is its scalability; it is clear that more
simultaneously configurable ingredients yields a greater diversity in beverage
options – and so capacity for maximizing user utility. Further, by design, it is
technically straightforward to scale the Phase I implementation of the Bartender
and its dispensing system. Hence, an obvious next step from the Phase I design
of the Bartending station is to provide additional space for more beverage
ingredients – and thus expand on the available beverage recipes.

Phase II Objective(s):

 Provide at least 5 configurable pumps.

 Advanced Functional Description
The functional block diagram for the Butler differs in a few aspects from the . The
Butler shall qualify and dispense a beverage order in the identical manner it did in
Phase I – namely, after the system proceeds through readiness checks and the
core application delivers the beverage “recipe”. However, it will now behoove the
configurator of the device to include additional ingredient options – such as by
explicitly listing them in the configuration menu and physically connecting them to
the additional pumps. Further, a new variety of pumps could be introduced for
specialized beverage ingredient options – such as viscous mixers like sour-mix or
simple syrup.

 Advanced Architecture
To support the additional beverage ingredient options more pumps would need to
be integrated unto the Phase I platform. This could be achieved with additional
multiplexers, relays, motor drivers. The power system may yet require an update
to support the additional maximal load from the new pumps. A modular approach
to firmware would facilitate this implementation, but that precondition is not strictly
necessary – as the desire for scalability may yet warrant and motivate optimization
of the firmware itself.

At the system level, additional IoT framework data tags would need to be
generated to support the additional pumps – such as to receive drink orders.
However, it is possible to reorganize the IoT framework to be modular in its initial
implementation – such that support for scaling is technically intrinsic.

 Butler: Path Recognition & Obstacle Avoidance

By the development of Phase II in the B3, the main goal for the Butler unit is to
achieve navigation without a guided line to follow. This will begin with a bridging

 5

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 94 of 120

Section

process of having the unit first run through a course with a guided path, but commit
the path to memory. This will not necessarily require any new components, but
simply further development of the firmware with which the navigation is run.

An additional goal of the next stage of the Butler is to incorporate object avoidance
into its path development, essentially updating its path based on obstacles
encountered such as furniture. This will likely necessitate new sensors in order to
detect these obstacles and develop a new path based on encountering them,
unlike the added memory features.

 Core Application: GUI Aesthetics
The Phase I core application is entirely functional in the scope of delivering a final
product, which is successfully being able to receive an order, facilitate the process
to complete the order, and deliver it to the user. Despite this, there is still plenty of
room for improvement. As far as the core application is concerned, a more
elaborate GUI would go a long way towards improving the user’s experience with
the B3

 Advanced Functional Description
The primary advanced function that is desired for the core application is the ability
to add new drink recipes to the pre-established Blackbook that is stored in the core
application’s database. In its current iteration, the Blackbook is a static set of
recipes that cannot be given new parameters, changed, or expanded by the user.
Allowing users to edit recipes to their exact taste, adding new recipes, or adding
custom descriptions to recipes are features that are realistically achievable but are
secondary objectives compared to basic functionality of needed for the successful
proof of concept of the B3.

To accomplish these tasks, additional functions would be need for within the GUI
that allow the user to input string that would then have to be interpreted into the
data and commands necessary to interact with the SQL database. Slight errors
from the user could cause a great discrepancy, such as misspellings and incorrect
formatting of data. This could have the potential to lead to the cup overflowing due
to a large recipe, null values, and miscommunications through the MQTT core. To
mitigate this, a series of “smart” detections would be needed to cover the many
edge cases that a human user naturally causes, which could involve heavy coding.

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 95 of 120

 Prototype Construction & Coding
This section contains information related to the production and manufacturing of
the electronics that constitute the B3.

 PCB Design and Assembly
After extensive research and development is completed, a functional prototype
must be made. This prototype will be necessary to completely build a functional
unit. One of the components for this working prototype will be a printed circuit
board (PCB) designed by the group for specific use in the B3. Eagle is a well-
known program will be used to design the PCB as well as various schematics.

Our group has never created a PCB before; there is much that is unknown about
the process of creating a quality PCB. Fortunately, Eagle is a program that has
the powerful ability to design a schematic and create a PCB based on that
schematic. Though our group has heard of it, it has infrequently be used within
our group, and as such there will need to be quite a bit of research for our group
to be able to utilize this program effectively.

A total of two PCBs will need to be created for the B3. One will be used to shield
the Raspberry Pi that will house the core application. The other PCB will
integrate the microcontroller with the relay modules, H-bridge motors, and 3:8
multiplexers that will allows the Bartender to function as a whole system, rather
than a series of connected parts.

When designing the actual PCB, there are various factors that need to be
considered. One of the primary issues with PCBs is the size of the components,
simply because a board will not work if all the parts needed for it do not fit.
Another crucial factor is the power needed for the board as well as the heat that
that power generates.

The various resistors contained in each of the parts generate a lot of the heat,
and as a result routing traces will be needed. Though Eagle has an auto router to
assist in the placement of these routers, it is usually recommended to route them
manually and only use autotracers for precision and bottleneck detection. As this
is standard, it is expected that it will be followed for this project’s development.

 7

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 96 of 120

Section

 Prototype Validation Plan
This section provides an in-depth, step-by-step description of the testing performed
over the course of developing a functioning prototype of the B3. These tests are
grouped by the three major subsystems of design used throughout this project; the
Butler, Bartender, and Core Application. This format was selected in order to break
the overall testing plan into several small tests, many of which can be performed
in parallel as each subsystem is simultaneously developed. Upon successful
testing of each distinct subsystem as described below, the completed project can
be integrated as a whole and tested in simple trial-runs of what actual
demonstrable use of the device has been defined as. That is, the final test will be
a simple attempt at using the completed prototype.

Each subsystem’s multiple tests will be defined so as to test each major
component for functionality and compatibility with the rest of the design before
attempting to integrate it with other components to form the subsystem. This lends
itself such that each subsystem’s testing plan can be followed as a chronological
guide of assuring that no errors have been made throughout the construction of
the B3. The tests will be laid out in such a way that if failure occurs, the reason
behind it can easily be isolated to the most recent component being integrated or
the process used to integrate it. In the event of failure for any one test, the standard
protocol will be to search for the cause, attempt to correct it, and repeat the test.

Each test will be described in its respective section with a clearly defined objective
listing any and all parameters being tested, as well as what constitutes as a
minimum “passing” output, followed by a brief description of the testing
environment including the necessary tools or elements to perform the test. A step-
by-step narrative of the procedures performed will follow, then finally summary
detailing the results of the test for those which have been performed. For tests
which have yet to be performed, there will be no results.

 Bartender Prototype Testing
This section details the overall testing environment of the Bartender unit. The
testing is broken down into two general systems that make up the Bartender, first
the testing process of the systems are described narratively with the following
section being the overall criteria the systems aim to meet. The two systems of
focus in the section for the Bartender are the dispensing system and the sensor
system.

Overall Testing Environment

The Bartender testing environment will need to spatially resemble that of a
standard home. This is required in order accurately determine if the overall size of
the Bartender itself remains confined within the range specified in the design
requirements. The final structure will need to be measured once physically built

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 97 of 120

and it effectively houses the necessary components the Bartender requires. This
also needs to be done to determine the height in which the Bartender’s placement
needs to be in order to allow the Butler to dock and disengage successfully.

 Dispensing System Testing
The central task of the Bartender is the administration of beverages that have been
ordered. To accomplish this task successfully, the Bartender must be able to
dispense fluids from the bottles of various liquors and mixers, quickly, accurately,
and precisely into the awaiting drinking glass. Thus, to achieve this desired feature,
this section describes the plan of testing to achieve this goal. With respect to the
pump system, the following elements of the system will be tested: the
microcontroller, the peristaltic pumps, silicon tubing, motor driver, the multiplexer,
and the relays.

The main component for the bartender is a ESP8266 microcontroller. Due to its
importance, we will be testing the GPIO pins of this component thoroughly by
testing each functionality including: I2C, I2S, UART, PWM, and the 10-bit ADCs.
This will be tested in combination with the multiplexer by plugging into the interface,
integrating the specified libraries correlating to the functionality being tested, and
verifying that we can receive coherent data from a component such as a sensor.

The second test, with respect to the pump system, is based on the functionality of
the main component of the project, the ESP8266 microcontroller, with the testing
process previously described. Once verified, a pass or fail test will be done on the
optocoupler relays selected. This is not a test to see if it can be integrated with a
certain board but is simply to verify its basic ON/OFF functionality.

 7

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 98 of 120

Section

Figure 7-A: Confirming the basic ON/OFF function of both the microcontroller and the

two channel relays, as indicated by the red LEDs.

Based on confirmed functionality of the previous tests, the testing process would
then move on to utilizing the microcontroller and the peristaltic liquid pumps by
integrating the dual h-bridge motor drivers, the silicon tubing, and the optocoupler
relays and testing to ensure their individual functionality. Based on the selection of
the Arduino compatible components, the testing code will be written in the chosen
environment, Arduino IDE. The functionality of each component will be determined
based on the flow rate. The flow rate testing will be achieved using the pulse width
modulation feature of the motor, testing at 50%, 75%, and 100% power. From
these results, the team can determine if the selected components are integrating
with the chosen board as desired.

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 99 of 120

Figure 7-B: Initial circuit design for testing (1) peristaltic pump through dual h-bridge

motor driver based on proper microcontroller setup and code.

The previous testing will be repeated with additional peristaltic pumps. First, the
testing will be completed with one additional pump. With this addition, the team will
modify the existing code in the Arduino IDE to account for the addition and upload
the changes to the connected microcontroller. With these changes, the integration
will be observed and altered until deemed successful based on previous results of
the single pump integration. Upon successful integration of the second pump, the
third pump will be added. Once again, the code will be changed, uploaded to the
connected microcontroller, and the integration will be similarly observed, altered,
and verified.

Figure 7-C: Initial circuit design for testing (2) peristaltic pump through dual h-bridge

motor driver based on proper microcontroller setup and code. Code alternated between
states of both being unpowered, each one individually being powered, and finally both

being powered simultaneously.

 7

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 100 of 120

Section

Further testing of this system will include the use of multiple liquids of various
viscosities to gauge and to determine the accuracy of the amount of dispensed
liquid that is anticipated. Additionally, while completing these tests, we will be
observing the tubing for any existing perforations, as well as ensuring no
discoloration occurs. Resistors, capacitors, and other passive components will
also be tested primarily by using a multimeter. We will be checking the values
stated to ensure the correct part was received as well as for the safety of our main
components.

Testing Criteria

The parameters being tested for their basic functionality using a pass or fail testing
process are; the multiplexer, the GPIO pins of the ESP8266 microcontroller, the
optocoupler relays, and the peristaltic pumps with the silicon tubing. Following the
confirmation of basic functionality of the component, the integration is then tested
to confirm the ability to send/receive coherent data with respect to the multiplexer,
the GPIO pins of the ESP8266 microcontroller, and the optocoupler relays; and
the flowrate accuracy using the pulse width modulation feature of the motor, testing
at 50%, 75%, and 100% power, with respect to the pumps with its tubing.

The parameters overall integrations being tested are ultimately to determine the
bartender’s ability to receive a drink order and based on the recipe received,
accurately dispensing the required volume of the correct liquids, and within the
time specified time requirement.

Procedure

1. Plug the multiplexer into the interface of the ESP8266 microcontroller.
2. Integrating specified libraries correlating to functionalities that need to be

tested.
3. Determine the ability of the GPIO pins of the ESP8266 microcontroller to

receive coherent data by testing each functionality including: I2C, I2S,
UART, PWM, and the 10-bit ADCs.

4. Wire the relay to the power source
5. Logic of relay determined by the GPIO pin logic (pass/fail)
6. Determine if the selected relays successfully display its basic ON/OFF

functionality. (pass or fail test)
7. The testing code, based in the Arduino IDE environment, will be written to

integrate the pump(s) with the microcontroller.
8. Determine individual functionality of the peristaltic liquid pumps (pass/fail)
9. Determine flowrate accuracy of a single pump using the pulse width

modulation feature of the motor, testing at 50%, 75%, and 100% power.
10. Update the testing code to integrate an additional pump with the

microcontroller.

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 101 of 120

11. Determine flowrate accuracy with two integrated pumps using the pulse
width modulation feature of the motor, testing at 50%, 75%, and 100%
power.

12. Update the testing code to integrate two additional pumps with the
microcontroller.

13. Determine flowrate accuracy with all three integrated pumps using the pulse
width modulation feature of the motor, testing at 50%, 75%, and 100%
power.

14. Repeat step 13 with multiple liquids of various viscosities to gauge and to
determine the accuracy of the amount of dispensed liquid that is anticipated.

15. Throughout testing of pumps, observing the tubing for any existing
perforations and discoloration.

16. Determine accuracy of components such as resistors, capacitors, and other
passive components used in the circuit design by multimeter.

17. Determine the bartender’s ability to receive a drink order. (pass/fail)
18. Based on the recipe received, determine the bartender’s ability to select the

correct liquids.
19. Determine accuracy of dispensing the required volume.
20. Determine the accuracy of the overall time required to complete the

dispensing of the beverage desired.

Results

From the functionality results of the main components of the system, based on
flowrate accuracy, the team can determine if the selected components are
integrating with the chosen board as desired. By this protocol, while testing the
peristaltic pumps, we observed that the pumps were not dispensing at a desired
rate. Taking into consideration the ratio of alcohol to mixer per drink, the existing
pumps can be used to dispense the alcohol. However, for the intended mixers, a
pump with a higher flow rate will be needed. Based on this finding, the team is
looking into alternate pumps with a higher flow rate.

Upon receiving the data from further testing, the design team can decide if the
components are meeting the specified requirements set in place for this design. If
any component may fail to reach such expectations, the team will reevaluate and
make an alternate selection for the failed component(s). The results and decisions
made based upon those results will be found in this and the following results
sections.

 Proximity Sensor Testing
A task of the Bartender is the to sense the presence of the Butler Bot,
independently of the Butler sensors. To accomplish this task successfully, the
Bartender must be able to determine the positioning of the Butler Bot as it docks
into its station which is integrated into the framework of the Bartender. The
intended use of the sensors is to achieve a high accuracy of the Butler’s placement.
This is necessary to ensure that the awaiting glass is in the exact location prior to

 7

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 102 of 120

Section

the bartender beginning to dispense the liquids to avoid any spills or messes. Thus,
to achieve this desired feature, this section describes the plan of testing to achieve
this goal. The following elements of the system will be tested: Hall Effect sensors,
IR proximity sensors, and ultrasonic SONAR sensors.

The first test with respect to the system that senses the Butler’s presence is also
based on the functionality of the main component of the project, the ESP8266
microcontroller, with the testing process previously described. Once the
functionality of the microcontroller is verified, the sensors will be integrated and a
pass or fail test will be done on the selected Hall effect sensors. To achieve
cohesiveness of the system, the testing code will be written in the same
environment, Arduino IDE, and uploaded to the development board. Performing
this test will determine if we are getting an input from the sensors or not. This is
not a test to see if it can be integrated with a certain board, but simply to verify its
basic functionality.

Upon confirmation of the basic functionality of the Hall Effect sensors, the testing
process would then move on to incorporate testing of the physical presence of the
butler. The testing code will be adapted to integrate the sensor on the bartender
as well as the components on the butler. Testing the integrated sensors will be
done by detecting the magnetic field of the magnetic components placed on the
butler bot itself. The test will determine if the Butler’s presence is being “seen” by
the sensors or not. The outcome of this test will determine if the Hall Effect sensors
are successfully achieving our goal or if an alternate component will need to be
researched acquired.

The following stage will proceed in a similar manner to that of the Hall Effect
sensors. The first step in this testing stage will test and verify the basic functionality
of the IR proximity sensors, by way integration with the development board and
uploading the testing code. The following step will be to establish the connection
between the sensors on the Bartender and the Butler. With a confirmed connection,
the team will then evaluate the communication of data and make the necessary
alterations until yielding a successful outcome that meets the specified
requirements.

This next stage now repeats the process previously stated, with the selected
Ultrasonic Sonar sensors. First, testing and verifying the basic functionality by
integration with the development board and uploading the testing code. Then, the
process of establishing the connection between the sensors on the Bartender and
the Butler will be tested. With this confirmed connection, the team will then
evaluate the communication of data and make the necessary alterations until
yielding a successful outcome that meets the specified requirements. The testing
of the Ultrasonic Sonar sensors will be done to compare with the IR proximity
sensors. They are both possibilities to be used for the detection of the drinking
glass relative to the location anticipated by the Bartender. While taking into
consideration that the Butler itself will have sensors used to detect the presence

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 103 of 120

of a valid drinking glass, the options of the IR and sonar sensors are necessary to
provide redundancy as a failsafe for the dispensing system of the Bartender, so as
to not create any avoidable messes. Some elements of comparison will be
accuracy, limitations, and the overall ease and success of integration with the rest
of the unit. Based on the results of each, the team will determine which of the
sensors will be selected to be implemented in the final design.

Testing Criteria

The parameters being tested for their basic functionality using a pass or fail testing
process are; the hall effect sensors, the IR proximity sensors, and the ultrasonic
proximity sensors. Following the confirmation of basic functionality of the
component, the integration is then tested to confirm the ability to send/receive
coherent data.

The parameters overall integrations being tested are ultimately to determine the
bartender’s ability to determine the positioning of the Butler Bot as it docks into its
station, independently of the Butler sensors. Further testing, to determine a high-
level accuracy of the Butler’s placement of the drinking glass.

Upon receiving the data from this testing section, the design team can decide
between the proximity sensors being tested for comparison as well as determine
if the components are meeting the specified requirements set in place for this
design. If any component may fail to reach such expectations, the team will
reevaluate and make an alternate selection for the failed component(s). The
results and decisions made based upon those results will be found in this and the
following results sections.

Testing Equipment

These sensors are ultimately intended to be used for the detection of the Butler
unit. At the time of these intermediate tests, the Butler is not fully functional or
completely constructed. Due to this fact, for these tests to place the additional
tools/resources were used to perform this test.

 Neodymium magnets

Procedure

1. Write testing code in Arduino IDE environment for hall effect sensor
integration.

2. Uploaded the code to the development board to integrate the hall effect
sensor

3. Determine the functionality of the hall effect sensor (pass or fail test)
4. Determine if bartender can receive coherent data from the hall effect sensor
5. Alter the testing code in Arduino IDE environment for IR proximity sensor

integration.

 7

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 104 of 120

Section

6. Uploaded the code to the development board to integrate the IR proximity
sensor

7. Determine the functionality of the IR proximity sensor (pass or fail test)
8. Determine if bartender can receive coherent data from the IR sensor
9. Alter the testing code in Arduino IDE environment for ultrasonic proximity

sensor integration.
10. Uploaded the code to the development board to integrate the ultrasonic

proximity sensor
11. Determine the functionality of the ultrasonic proximity sensor (pass or fail

test)
12. Determine if bartender can receive coherent data from the ultrasonic

proximity sensor
13. Use the results of the proximity sensors and decide between IR and

ultrasonic proximity sensors.

 Butler Prototype Testing
This section details the testing procedures relating to the Butler subsystem of the
B3, including not only the process of the tests as planned, but all the necessary
tools and associated components, the implications of each test on the system as
a whole, and the environment in which to perform the tests. The overall navigation
systems and load sensor setup are described throughout this section within this
setup.

Overall Testing Environment

The Butler’s navigation testing will require a testing environment which accurately
reflects a standard home’s smooth and hard floor, with the freedom to place black
tape where needed. Because of this, any standard tile or hardwood floor can be
used, and the tests themselves will likely be performed in available rooms or
hallways of the UCF engineering buildings. Prior to beginning the navigation
testing, the floor should be verified as being reasonably level.

As the project expands past its initial core functions, the navigation is expected to
develop from a simple straight line to a path with turns and obstacles. These
obstacles can take the form of chairs, tables, couches, and other furniture, so as
to most accurately simulate a typical user’s actual living room items. The curves
formed by tape paths may need to be experimented with in order to achieve a
setup which produces the best possible environment for smooth turns by the Butler.

The Butler’s drink identification testing will have an “environment” defined by the
structure surrounding the load sensor, which is the Butler’s frame itself. Because
of this, the Butler’s valid drink identification testing’s late stages will need to be
performed after the frame has been completely constructed.

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 105 of 120

 Valid Drink Identification Testing
The Butler’s ability to determine if a valid drink has been placed in its cupholder is
a failsafe before allowing the navigation procedures to begin and protects the
system as a whole from false starts and potential damages as a result of no cup
or an overfilled cup being placed in it. Therefore, the valid drink identification
feature needs to be a consistently reliable system which can be depended upon
by the rest of the Butler’s functions.

After passing this validation milestone, the Butler system should be capable of
consistently assessing whether a valid, empty drink container has been placed in
its cupholder or not. Additionally, it should be capable of zero-ing out its reading
and determining if an overflow is being approached. To accomplish this, the load
cell, amplifier circuit, and pin connections to the Raspberry Pi will all need to be
tested, and calibration will need to be accomplished through the Raspberry Pi
module itself.

Testing Criteria

The efficacy of the valid drink detection system will be tested in steps – across the
Raspberry Pi’s ability to receive legible data from the Load Cell and its amplifier
and its ability to transcribe this data into a quantifiable weight in units with accuracy
great enough to discern an empty cup from one with 10mL of water. Finally, the
Raspberry Pi will be set up to return a pass or fail based on the system created for
determining if the object placed is an empty valid drink container, and the outcome
of this standard will be tested for many varied outputs. After completing these three
key points of testing, “passing” will be defined as receiving a legible pass/fail output
from the Raspberry Pi that can successfully determine whether what is placed in
the cupholder is in fact a valid drink for 10 successive trials, and the ability to
consistently recognize an overpour for 10 consecutive trials.

Testing Equipment

Outside of the actual components being tested in this process, the additional
equipment needed includes a single cup of the standard size and weight selected
for the actual B3 to use, access to water to fill the cup, and a measuring cup for
determining the exact amount of water being filled.

Procedure

1. Connect the Load Cell’s color-coded leads to the corresponding pins of the
amplifier circuit.

2. Use a breadboard to wire the output pins of the amplifier circuit to the
selected input pins of the Raspberry Pi.

3. Setup the Raspberry Pi’s program for processing input from the Load Cell.
4. Determine if the variable used to display the input value from the Load Cell

changes significantly in the presence of weight on the cell (pass/fail).
5. Mount the Load Cell to the cupholder and zero out the Raspberry Pi’s

reading of the input. Use a test cup to develop a scale in measurable units.

 7

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 106 of 120

Section

6. Determine if the scale can accurately be used to discern an empty cup from
a cup with 10mL of water for 10 trials (pass/fail).

7. Define a pass/fail output in the Raspberry Pi based on the input of the Load
Cell.

8. Determine if the program can now successfully allow empty, valid cups to
pass, and filled cups/invalid cups to fail for 10 trials (pass/fail).

9. Set up the Raspberry Pi’s function for zeroing out the load cell measurement.
10. Zero out the measurement and then fill the cup to what has been selected

as the maximum acceptable pour before failsafe-cancelling the Bartender.
11. Set this measurement as the maximum before the failsafe flag is raised.
12. Determine if the scale can accurately raise the flag after filling the cup past

this amount (obviously stopping before an actual overflow) for 10
consecutive trials (pass/fail).

 Navigation Testing: Line Following and Docking
This next set of tests covers the half of the Butler’s navigation systems that allow
it to follow a line path and recognize the end of its path by the Tee marker, as well
as the docking procedure that occurs at this path end. This feature is extremely
important, as it makes up half of the Butler’s key defining function; the travel
between user and Bartender. The components being tested in this section
specifically include the IR photodiode sensors, the iRobot Create 2.0, and the
Raspberry Pi module which manages them both.

Testing Criteria

The specific parameters being tested for line following in this section are the
Butler’s navigation system’s ability to recognize input from the IR sensors, to
successfully use that input to identify the presence of the tape path or lack thereof,
and to successfully use that identification to travel a smooth, straight path, stopping
at the recognized Tee that concludes the tape. For this portion of the test, “passing”
is defined as being able to successfully travel a 10-meter straight line of tape and
stop at the Tee that concludes it without spilling a cup that has been filled with as
much water as a standard drink provided from the Bartender by volume.

The docking procedure is a preprogrammed function that can be performed by the
iRobot Create 2.0, but nevertheless must be tested for both level of quality
provided and ability of the Raspberry Pi to call this function on command. These
two parameters will be considered at a “passing” level if the Raspberry Pi can
successfully call the docking procedure for 10 consecutive trials without spilling a
glass that is again filled to the volume of a standard drink from the Bartender.
These trials will be performed from the same distance away from the docking
station that the Tee marker is placed at.

Testing Equipment

Outside of the actual components being tested in this process, the additional
equipment needed includes a single cup of the standard size and weight selected

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 107 of 120

for the actual B3 to use, access to water to fill the cup, and a measuring cup for
determining the exact amount of water being filled.

Procedure

1. Wire the IR sensors to the selected input pins of the Raspberry Pi module
2. Set up the Raspberry Pi’s program for recognizing the input of these

sensors as quantifiable units.
3. Determine if the Raspberry Pi can be used to determine if a reflective

surface is placed in front of the IR sensors (pass/fail).
4. Wire the serial connections of the iRobot Create 2.0 to the Raspberry Pi

module.
5. Set up the Raspberry Pi’s program for controlling the two motors of the

iRobot Create 2.0.
6. Determine if the Raspberry Pi can be used to selectively control motors for

forward, backward, and bi-rotational movement (pass/fail).
7. Apply the tape that will be used to test the simple line-following test to the

testing environment.
8. Set up the PID control function on the Raspberry Pi that will be used to

process the IR input into motor-control output.
9. Determine if the integrated unit can successfully travel a 10m taped

distance with no additional weight (pass/fail).
10. Apply the additional weight of the frame, repeat (9) (pass/fail).
11. Apply a filled drink to the unit’s cupholder, repeat (10), with success now

including no spills (pass/fail).
12. Determine if the Raspberry Pi can successfully initiate the iRobot Create

2.0’s homing feature to the docking station (pass/fail).
13. Determine if this process can be used to successfully dock from the taped

Tee for 10 consecutive trials without spilling any liquid from a filled drink
(pass/fail).

 Navigation Testing: Undocking and Pathfinding
The second, equally important half of the Butler’s navigation system is made up of
the undocking and pathfinding features. Without these features, the previous
sections could not even be performed, as the Butler would never be able to place
itself on the line path. After completing this level of testing ,the Butler system will
be able to undock from its station from a command placed by the Raspberry Pi, by
reversing off the dock onto the taped Tee. It will then be able to rotate without
travelling while scanning the input of the IR sensors in order to locate the beginning
of the taped path and orient itself to begin the line-following function. The specific
components being tested here are again the IR sensors, iRobot unit, and the
Raspberry Pi module.

 7

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 108 of 120

Section

Testing Criteria

The specific parameters being tested in the undocking procedure are the
Raspberry Pi’s ability to command the iRobot Create 2.0 to undock from the station,
and it’s control thereafter in reversing the iRobot to be centered on the Tee of the
taped path. For the Raspberry Pi’s undocking control to have passed this test, the
module will need to successfully command an undocking procedure for 10
consecutive trials. Similarly, for the control aspect to be considered passable, the
unit will need to reverse successfully onto the taped Tee, without over- or under-
shooting the travel, for 10 consecutive trials.

For the pathway-finding feature, the parameters being tested are the IR sensor’s
ability to notice the appearance of the tape line from rotation, and the Raspberry
Pi’s ability to control the rotation such that the device stops in a position from which
it can begin to run the line-following procedures. For these features to be
considered passable, the pathway-finding feature will need to successfully orient
the Butler such that the line-following procedure can successfully begin running for
10 consecutive trials. As such, this testing must be completed following the
completion of the line-following testing plan.

Testing Equipment

Outside of the actual components being tested in this process, the additional
equipment needed includes a single cup of the standard size and weight selected
for the actual B3 to use, access to water to fill the cup, and a measuring cup for
determining the exact amount of water being filled.

Procedure

Note: Much of the setup for this procedure has already incidentally been performed
in the previous section, and as such will not be repeated here.

1. Set up the program with which the Raspberry Pi can send an undock
command to the iRobot unit.

2. Determine if the Raspberry Pi can successfully command the iRobot unit to
release from its docking station (pass/fail).

3. Adjust the aforementioned program to have a set reverse travel distance
calibrated to place the iRobot on the taped Tee.

4. Determine if the program can successfully command the iRobot to leave its
docking station and stop on the taped Tee for 10 consecutive trials
(pass/fail).

5. Set up the program in through which the Raspberry Pi commands the
iRobot to rotate clockwise until the IR sensors receive input corresponding
to the taped line being centered on the iRobot’s face.

6. Determine if the above program can successfully orient the undocked
module with great enough accuracy to successfully begin the line-following
procedure immediately after for 10 consecutive trials (pass/fail).

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 109 of 120

 Core Application Testing
This section details the expected test plans for validating the functionality of the core
system application and it’s supporting backend services. Ensuring the functionality of the
front-end application, especially the ability to receive user inputs for configuration and
beverage ordering, along with the ability to provide direct feedback to the user via display
or audio, requires an incremental test plan that tracks the development steps and verifies
functionality at each step. After establishing the viability and stability of the operating
environment, testing for the GUI shall track the development of its features and culminate
in overall validation.

Overall Testing Environment

The environment in which the following tests will occur will be on the Raspberry Pi
that will be used in the B3 prototype. More specifically, the environments will
include the Python application and GUI, the MQTT server running in the
background, and the SQL persistent database that will also be running in the
background. All three of these environments will be run on the Raspberry Pi. As
further tests are completed, these various components of the core application will
be tested alongside each other to ensure that the various components are able to
run simultaneously. It further serves as a way to test that the total resource
requirement of the entire application is able to be met by the Raspberry Pi.

 Stability of Operating System/Host Environment
As stated above, the various tests will need to be performed in the MQTT server,
the SQL database, and the Python application. In order to do this, each
environment will need to be stripped down to its bare essentials in order to remove
excess demands on resources. After this, it first needs to be verified that these
three stripped environments can be created on the Raspberry Pi. After this test
has been passed, we will be able to be able to test the various capabilities of each
of these components, as well as their functionality in tandem with one another.

Testing Criteria

There are various, basic questions that must be answered to determine if the
environment is alive and stable. Given that the operating system is Rasbian, use
various commands to determine the following questions. Is the system accessible
by the root user? Do the core services supporting the host environment start
without prompt and remain stable in operation? Are the audio/visual drivers
installed, operational, and configured properly? Are input devices configured
properly? Is the file system intact and persistent? Does the system have access to
a package library of resources, to integrate new functionalities as needed? Is the
software development environment installed and operational with the necessary
packages, modules, libraries and services installed?

Procedure

1. Log into root user to ensure administrative system access

 7

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 110 of 120

Section

2. Check the is-active status of basic application. Services (return 0 is active)
3. File system error check command “fsck” on system reboot
4. Using ispci to find the driver locations for video and audio, using the /sys

command allows you to find their file location by searching top down
5. A full list of possible file locations for python libraries can be determined by

inputting $python into the command window
6. To test that the software IDE, database services, and MQTT services are

installed and working, a simple startup and basic command is all that’s
required to ensure each is working.

 Database access and MQTT service access via
Development Platform

Now that it has been established that these three components are able to function
and coexist on the Raspberry Pi while remaining stable, the next test is to confirm
that the development platform is able to interact with each of them successfully.
Communication both to and from the SQL database and the MQTT broker need to
be confirmed.

Testing Criteria

The SQL database needs to be able to be added to, edited, and read from in order
to completely confirm that it is capable of being used in a meaningful way. The
MQTT server is slightly more difficult to confirm; a testing application will need to
be subscribed to information that it itself will publish. As a result, there is a need
for a function that will constantly listen to the MQTT after both subscribing and
publishing dummy test data.

Procedure

1. Start up the development environment for python coding. Import the
relevant libraries needed for python to interact with MQTT services and to
establish SQL database.

2. For SQL, import the SQL module and create a connection object to
represent the database.

3. Create a dummy table with dummy variable of differing types
4. Set up a SQL cursor by calling its method from the connection object.
5. Use SQL command insert to insert some data into the database following

the format used for the table created earlier.
6. Use various SQL commands to query the data that was input to ensure the

insert and various querying commands are working as intended
7. For MQTT, first install the MQTT client by using install paho-mqtt
8. Import paho.mqtt.client as mqtt
9. Create a client instance for use in testing and a reliable broker address
10. Subscribe to a dummy topic with a QoS of 0. Print a marker statement.

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 111 of 120

11. Connect to the broker using the client ID and publish data to that dummy
topic to test. Print a marker statement

12. Create a callback loop that will listen for the response from the broker due
to newly published data on the dummy topic you subscribed to. Print the
message topic, QoS, and retain flag to show all relevant data was
transmitted.

13. Repeat steps 10 -12 with QoS 1 and QoS 2.

 Basic Test of a Simple GUI
Following the establishment of a complete and operational development
environment within the GUI application host machine, as validated in part by the
tests performed in the previous sections, it is then necessary to execute an
incremental testing procedure that tracks development efforts for the front-end
interface. The need for this testing plan approach in derives from the multifaceted
and abstract nature of the application itself: it carries many responsibilities and is
sustained across various levels of abstraction. Hence, it is prudent to test the
functionality in the order in which it is expected to be developed. It is noted that the
test plan may not reflect the reality of development, so it must also be flexible.

Testing Criteria

There are five basic functions that directly relate to the implementation of any
simple GUI. The primary window must be visible, it must best able to respond to
user inputs, the data from those inputs should have the capability of being logged,
custom widgets must be functional, the application must have some form of
terminability and/or restartability.

Procedure

1. Construct a simplistic GUI consisting of some unique form of user input,
such as a numbered slider, and a button that allows application termination.
Allow for the number from the slider to be printed to a text document for
recording.

2. If the GUI appears and is intractable, then the most basic functions of
visibility and responsiveness are met.

3. Provide some input for the slider and terminate the application.

Check the application’s log to confirm the data that was input was recorded
properly. Given that the slider was able to move, and the program terminated
correctly, we have shown a workable basic UI.

 8

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 112 of 120

Section

 Administrative Content
This section will document the division of labor, planning and scheduling, and
overall group coordination involved in this project as a whole.

 Tasks and Responsibilities
This project has the requirement of being completed within two normal school
semesters. Given the packed schedules of the team, there are many self-imposed
deadlines for smaller tasks in order to keep on track with the development, design,
and future construction of the prototype. Initial stages of prototyping are to begin
prior to the spring semester. This was deemed necessary to give an excessive
amount of time for the implementation of additional desired features. Furthermore,
an aggressive timeline also acts as a safeguard against unexpected disasters,
such as an accident involving the complete reconstruction of the prototype. In order
to stay on top of such an aggressive timeline, each member volunteered to take
executive responsibility over various modules and components of the B3. The
exact distribution of responsibility is shown in the block diagram from Figure 8-A
below:

Figure 8-A: Responsibilities block diagram

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 113 of 120

 Budget and Financing
The B3 is a project that is comprised of Electrical Engineering aspects as well as
some Computer Engineering and Computer Science knowledge. Though the
entire team is made up of Electrical Engineering majors, the entire team has
experience coding and one has a minor in Computer Science. Given that software
is something that is created independently, the cost of producing the software
needed for this project is $0. The majority of the expenditures will be the cost of
the materials and components needed to construct the B3. Since there exists the
possibility of commercializing the B3, the group chose to pay for the prototyping of
the B3 out of pocket, rather than seeking funding. Due to this, it is crucial to
determine an estimated cost and do as much as possible to remain within this
range.

 Estimated Budget
The estimated budget shown in Table 9.2 is a based on an additional generous
value of $300 due to the anticipation of broken parts and failures due to the natural
process of prototyping and changes in ideas or features. An additional table shown
in Table 9.3 must be created in order to keep track of the total amount of true
expenditures, as well as the total cost of the components that actually ended up
being used in the B3, that is, the true cost of constructing the working prototype.

 Item Description Estimated
Cost

User interface host
computer and touch screen
display

A compact and low-end system for
running the underlying application

$100

Packaging / Aesthetics Frames, fasteners, paint, veneer,
bowties, and other outfacing
aesthetics

$150

Pumps, Valves,
Actuators

For hygienically and precisely
controlling liquid flow rates in the
drink mixing station

6 x $30

Sensors, Relays,
Converters

For digitally monitoring and
controlling the mechanical
subsystems

$100

Delivery bot base To form the mechanical base of the
autonomous bot

$250

Development boards For prototyping the integration of
pumps, sensors, actuators, valves,
etc. with the interface host

$75

 8

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 114 of 120

Section

PCB manufacturing
& shipping

For integrating the prototyping
circuits into a final product

$180
$45

Final Documentation
Printing/Binding,
Showcase Props

For presentation and showcasing ~ $25-65

Miscellaneous For unexpected failures and minor
to moderate pivoting

$300

Total

~ $1355

Table 8-B: Estimated Budget

 Current Expenditures
Even without the $300 set aside for mishaps and unexpected changes, we are still
remaining almost $100 under budget current. The additional room in the budget
could potentially allow us to pursue implementing other features; however, such
ideas should be put aside until a working prototype is put together.

 Item Description Actual
Cost

(6)Silicone Tubing for
peristaltic liquid pump

A compact and low-end system for
running the underlying application

$21.00

(3) Peristaltic pumps 12V DC Power peristaltic liquid pumps.
Comes with a length of silicone tubing
attached

$74.85

(2) Dual H-Bridge Motor
Driver

H-Bridge motor driver that works with
DC or steppers. Used for up to 600 mA

$5.90

(1) Spy cam for Raspberry
Pi

Small camera for capturing visual input
data. Meant for use on a Raspberry Pi

$39.95

(1) Raspberry Pi Zero WH Raspberry Pi zero with headers $14.00

(1) Raspberry Pi Zero
camera cable

Cable used to connect a Raspberry Pi
Spy cam to a Raspberry Pi Zero

$5.95

(1) Break-away .1” 2x20pin
strip Dual Male Header

Soldered through microcontroller pins
to allow for use on a breadboard

$0.95

(1) Mini HDMI to HDMI
Cable

Mini HDMI to HDMI Cable $5.95

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 115 of 120

(1) Raspberry Pi Zero Raspberry Pi Zero… what’d you expect $10.00

(1) Adafruit Perma- Proto
breadboard

It’s a breadboard! $0.00

Delivery Charge 2 day shipping $10.53

(1) (0 - 1M) Ohm Resistor
Kit

Resistors for circuit building $10.86

(3) SanDisk 16GB
microSD card

16GB microSD card- 98MB/s, Full hD,
C10, U1

$11.58

(1) Assorted Schottky
diode kit

200 pieces, 14 values, fast switching $7.99

(1) 7” USB monitor
Raspberry Pi Touchscreen

Touchscreen IPS display computer
monitor. 1024x600, 16:9, HDMI

$79.99

(2) Lithium Battery pack Lithium ion polymer batteries. 3.7V,
1200mAh

$12.87

(2) Jumper Wire 120pc.
Assorted Kit

Breadboard jumper cable kit. Comes
with male-male, male-female, and
female-female

$7.49

(1) Solderless 400 pin
breadboard -6 pack

Total of six 400 pin breadboards
designed for raspberry pi and arduino
projects

$9.99

(1) Solderless 830 pin
breadboard -3 pack

Total of three 830 pin breadboards
designed for raspberry pi and arduino
projects

$9.21

(1) solder tip cleaning wire Cleaning wire for soldering $7.95

(1) Lead free solder tip
thinner, 20g

0.8 oz can of tip thinner for soldering $6.59

(1) Basic Soldering Kit 60W adjustable temperature soldering
kit with ON/OFF switch

$23.79

(1) AC/DC switching power
supply

AC/DC power supply, input 100-240V,
output 12V DC, 3A

$12.99

(2) Multiplexer Breakout Multiplexer breakout with 8 channels $5.95

(1) 500 pc. Capacitor
Assortment Box

Electrolytic capacitor assortment
ranging from 0.1uF to 1000uF

$14.99

 8

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 116 of 120

Section

(2) Relay Module, 2
channel

5V DC, 2 channel relay module for
Arduino UNO

$7.99

(1) Raspberry Pi 4 Raspberry Pi 4 QuadCore 64 bit w/ Wi-
Fi (4GB)

$62.00

(1) Multiaxis Gyroscope, 3
pc. pack

Contains 3 axis and 6 axis
accelerometer gyroscope modules

$8.99

(1) Wire stripping tool 8 inch wire stripping tool $13.69

(1) Ultra thin Solder wire 0.3mm solder wire. Rosin Core Flux
2.5% lead free

$9.99

(1) Rosin Paste Flux Rosin Paste Flux, 2oz jar $16.45

(1) Multiaxis Gyroscope, 8
pc. pack

Contains 3 axis accelerometer
gyroscope modules

$19.90

(1) Wi-Fi transceiver pack 4 piece pack of 1MB serial Wi-Fi
transcievers

$13.98

(1) Adjustable voltage
regulator 2 pack

2 adjustable voltage regulators. 4-38V
to 1.25-36V step down regulators

$11.95

(2) Arduino Feather
Huzzah microcontroller

Adafruit Feather Huzzah with ESP8266
Wi-Fi

$19.00

Various coupons Save some pennies -$5.20

Taxes As certain as death $10.19

(1) iRobot Create iRobot Create programmable robot $199.99

Shipping 1 day shipping $26.50

Taxes As certain as death $15.86

Total

$938.80

Table 8-C: Current financial expenditures

 Project Milestones
Monitoring the progress of the design and implementation of the B3 is crucial given
the time constraints of the individual members of the team. This milestone table
shown below will assist in ensuring that the project is completed in a timely manner
over the fall and spring semesters. Individual group members can use this to gauge

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 117 of 120

their progress in independent assignments as well as set dates for important group
meetings. Many of the important milestones include research, project
documentation for Senior Design 1, acquisition of components and materials,
various construction phases, testing, preparing for the final presentation.

As far as research and documentation, individuals will take charge of properly
gathering information and filing in portions of the documentation based on the
sections each individual selected. Given that various checkpoints for the Senior
Design 1 documentation, completing certain tasks prior to the documentation
checkpoint is critical to having enough information and data to complete the task.

 Design Phase
This section serves to outline the estimated and idealized project milestones for
the design phase of the project. This closely correlates with the Senior Design I
term and concludes in December 2019. The items listed deal primarily with the
associated documentation for the project, as well as the formation of a design and
testing plan.

Week # Date Action

3 9/10 Formally initiate project brainstorming

9/20 Set primary project objectives, scope

9/20 Cement budget constraint

4 9/20 Initial D&C Document Due

9/24 Meet with Professor(s) for Initial Feedback

9/26 Re-evaluate primary objectives and project scope, pivot if necessary

5 9/27 Compile an initial list of all possible components, applicable or
desirable technologies in budget

10/4 Configure project management tracking system for development

timeline: GitHub, Asana, etc.

10/4 Cement primary project objectives, scope

6 10/4 Updated D&C Document Due

10/8 Identify key prototyping components, tools, supplies

7 10/11 Assess and distribute research load

8 10/18 Acquire/Order key prototyping components

10/22 Outline critical design report

9 10/25 Standards Assignment Due

 8

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 118 of 120

Section

10 11/1 60 Page Draft Due

11/8 Validate control of valves, pumps, and key mechanical elements via

development boards

11/8 Validate relays, power systems, and control schemes via development

boards

11/8 Draft the presentation

11 11/8 Complete functional drinking mixing station breadboard prototype

12 11/15 100 Page Submission Due

11/23 Formalize BoM, budget

13 11/23 Finalize critical design report

14 11/29 Finalize presentation

15 12/2 Final SD1 Document Due

12/13 CAD structural components and packaging frames

16 12/13 Identify and acquire additional key components

17 12/20 Complete autonomous drink delivery breadboard prototype
functionality

Figure 8-D:Senior Design I timeline

 Implementation Phase
This section serves to outline the estimated and idealized project milestones for
the implementation phase of the project. This closely correlates with the Senior
Design II term and aims to conclude before the final presentation of the course.
The items listed deal primarily with the actual construction, testing, and
implementation of the prototype, and are meant to add a frame of reference with
regards to time to the designs described above.

Week # Date Action

1 1/10 Order/machine structural and aesthetic components

1/10 Integrate functional subsystems via host application

1/10 Overall system schematic

2 1/17 Mock-Up application and GUI

1/24 Validate core application functionality

1/24 Order/machine structural and aesthetic components

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 119 of 120

3 1/24 Mock-Up project website

4 1/31 Complete initial draft PCB layout

2/7 Assemble structural framework, enclosures, and
packaging

5 2/7 Optimize application GUI

2/14 Assess possibility of additional scope

2/14 Finalize PCB design and order it

6 2/14 Achieve overall project prototype functionality

7 2/21 Trial, Adjust or Accommodate

8 2/28 Finalize project and continue testing

3/6 Continue testing

10 3/13 Integrate consolidated PCB(s) into appliance

11 3/20 Prepare Final Document

TBD Final Document Due

1
Week
Prior
Final Pres.

Review/Revise/Practice Presentation

TBD Final Presentation

*** Preliminary and subject to change.
Figure 8-E:Senior Design timeline

 9

Bartender Butler Bot
CS | EN | YB | RC

Final Design Report
Page 120 of 120

Section

 Appendices
This minimal section contains references and additional resources that may be
required or convenient to the user.

 Appendix A - References
[1] “SirMixABot Robotic Bartender - The Automated Bar For Your Home.”
SirMixABot, 4 Jan. 2018, https://www.sirmixabot.com/.
[2] “Automated Bartender.” Hackaday.io, https://hackaday.io/project/12260-
automated-bartender.
[3] “Party Robotics Blog.” Party Robotics Store,
https://partyrobotics.com/blogs/blog.
[4] Poole, Ian. “IEEE 802.11b.” Electronics Notes, Radio-Electronics.com, 2006,
www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/802-11b.php.
[5] Poole, Ian. “IEEE 802.11g Wi-Fi.” Electronics Notes, Radio-Electronics.com,
2006, www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/802-
11g.php.
[6] Poole, Ian. “IEEE 802.11n Standard.” Electronics Notes, Radio-Electronics.com,
2006, www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/802-
11b.php.
[7] van Heesch, Dimitri. “Quality of Service.” Paho MQTT C Client Library, 13 Sept.
2018, 13:40:20, www.eclipse.org/paho/files/mqttdoc/MQTTClient/html/qos.html.

