
i

A.I.R.E. - Autonomous Intelligent Roof Enclosure

UCF Senior Design 1 - Fall 2019

Group 8
Sarah Riseden - Electrical Engineering
Lauren Miller - Computer Engineering

Christopher Smith - Electrical Engineering
Ronald Acevedo - Electrical Engineering

Sponsor

OpenAire - Retractable Roofs and Skylights

ii

Table of Contents
1. Executive Summary .. 1

2. Project Description ... 2

2.1 Project Background ... 2

2.2 Objectives.. 3

2.3 Engineering Requirements Specifications .. 3

2.4 House of Quality Analysis ... 7

3. Initial Project Research .. 8

3.1 Existing Projects and Products ... 8

3.2 Relevant Technologies Comparisons ... 9

3.2.1 Relevant Sensing Technology ... 9

 3.2.1.1 Proximity Sensing…..……………………………………………………10

 3.2.1.2 Anemometry………………………………..……………………………12

 3.2.1.3 Barometric Pressure Sensing…………………………………………….14

 3.2.1.4 Temperature Sensing…………………………………………………….14

 3.2.1.5 Humidity Sensing…..……………………………………………………16

 3.2.1.6 Rain Sensing……………………………………………………………..17

3.2.1.7 Light Sensing…………………………………………………………….19

3.2.2 Relevant Power Delivery Technology ... 21

 3.2.2.1 Solar Panels………………………………………………………………21

 3.2.2.2 Batteries………………………………………………………………….21

 3.2.2.3 Voltage Regulation………………………………………………………22

 3.2.2.4 Reverse Polarity Protection………………………………………………24

3.3 Part Selections ... 25

3.3.1 Sensor Components .. 25

 3.3.1.1 Proximity Sensing………………………………………………………..25

 3.3.1.2 Anemometers…………………………………………………………….26

 3.3.1.3 Barometric Pressure Sensor……………………………………………...27

3.3.1.4 Integrated Temperature and Humidity Sensors………………………….29

3.3.1.5 Rain Sensors……………………………………………………………..33

iii

3.3.1.6 Light Sensors…………………………………………………………….35

3.3.2 Power Module Parts…………………………………………………………….....37

 3.3.2.1 Solar Panels………………………………………………………………37

 3.3.2.2 Lithium Ion Batteries…………………………………………………….38

 3.3.2.3 Battery Management System…………………………………………….39

 3.3.2.4 Voltage Regulators……………………………………………………….40

 3.3.2.5 Reverse Polarity Protection P-MOSFETs………………………………..43

3.3.3 Microcontrollers ... 43

3.3.4 Wireless Communication Modules ... 46

3.4 Part Selections Summary ... 48

3.5 Software Development Research ... 50

3.5.1 Microcontroller Firmware ... 50

3.5.2 Microcontroller Programming Hardware .. 51

3.5.3 Weather Application Programming Interface .. 53

3.5.4 Sensor-Input Algorithms ... 55

3.5.5 Database Storage .. 55

3.5.6 Bluetooth and Wi-Fi Algorithms ... 58

3.5.7 iOS vs. Android Research ... 59

3.5.8 Swift vs. ObjectiveC ... 60

4. Standards and Design Constraints ... 62

4.1 Design Impact of Standards and Constraints .. 64

5. Project Hardware and Software Design Details .. 64

5.1 Hardware Design ... 65

 5.1.1 Power Module .. 65

 5.1.2 Sensor Module .. 68

 5.1.3 Motor Module... 71

 5.1.4 Microcontroller Module .. 74

5.2 Software Design .. 75

 5.2.1 iOS Application .. 75

 5.2.1.1 Application Front End (User Interface) .. 75

 5.2.1.2 iOS Application Back End ... 79

iv

 5.2.1.3 Class Design .. 81

5.2.2 Firmware Algorithms .. 85

5.3 Mechanical Design .. 98

6. Prototype Construction and Coding... 102

6.1 Integrated Schematics .. 102

6.2 PCB Vendor and Assembly ... 107

7. Prototype Testing Plan.. 107

7.1 Hardware Test ... 107

 7.1.1 Sensor Module Testing Plan ... 108

 7.1.2 Power Module Testing Plan .. 109

7.2 Microcontroller Firmware Testing Plan ... 111

7.3 Mobile Application Testing Plan ... 112

8. Administrative Content .. 116

8.1 Milestone Discussion ... 117

8.2 Budget and Finance Discussion ... 118

APPENDIX OF DATASHEETS .. 119

APPENDIX OF REFERENCES .. 120

List of Figures
Figure 1: House of Quality Analysis ... 7

Figure 2: Hardware Flow Chart ... 8

Figure 3: Bluetooth and Wi-Fi connection model .. 58

Figure 4: BMS IC Single Element ... 65

Figure 5: Initial design of 12V Buck/Boost Controller .. 66

Figure 6: Initial design of 5V Buck Converter ... 66

Figure 7: Initial design of 3.3V Voltage Regulator .. 67

Figure 8: Initial design of Reverse Polarity Protection Circuitry .. 67

Figure 9: Initial Design of Proximity Sensor ... 68

Figure 10: Initial Design of Anemometer .. 68

Figure 11: Initial Design of Barometric Pressure Sensor ... 69

Figure 12: Proposed Humidity Sensor Design ... 69

v

Figure 13: Proposed Thermistor Design with Relevant Equations ... 70

Figure 14: Initial Pin Layout of YL-83 .. 70

Figure 15: Initial Light Sensor Design ... 71

Figure 16: Initial Design of UV Sensor ... 71

Figure 17: PA-07 Dimensions ... 72

Figure 18: SPDT Relay Configuration Step 1 .. 73

Figure 19: SPDT Relay Configuration Step 2 .. 73

Figure 20: SPDT Relay Configuration Step 3 .. 73

Figure 21: SPDT Relay Configuration Step 4 .. 74

Figure 22: Initial Design of In-Circuit Debugger ... 74

Figure 23: Software Flow Chart for Sensor and Roof Connection ... 93

Figure 24: Light Sensing Algorithm .. 95

Figure 25: Retractable Roof Free Body Diagram ... 101

Figure 26: SolidWorks Drawing of Final Building Design…………………………………….101

Figure 27: Integrated Schematics for the Battery Management System……………………….102

Figure 28: Board Layout for the Battery Management System………………………………...103

Figure 29: Integrated Schematics for the Voltage Regulation Stages………………………….103

Figure 30: Board Layout for the Voltage Regulation Stages…………………………………...104

Figure 31: Integrated Schematics for the Microcontroller……………………………………...104

Figure 32: Board Layout for the Microcontroller………………………………………………105

Figure 33: Sensor Module Placement…………………………………………………………..105

Figure 34: Top Layer Board Layout for Outside Sensor Module………………………………106

Figure 35: Bottom Layer Board Layout for Outside Sensor Module…………………………..106

List of Tables
Table 1: Enclosure Requirements Specification ... 3

Table 2: System Requirements Specifications ... 3

Table 3: Power Module Requirements Specifications .. 5

Table 4: Sensor Specifications .. 5

Table 5: Microcontroller Software Requirements Specifications ... 6

Table 6: Phone Application Software Requirements Specifications ... 6

vi

Table 7: Comparison of Proximity Sensing Technologies ... 12

Table 8: Comparison of Anemometry Technologies .. 13

Table 9: Comparison of Temperature Sensing Technologies ... 16

Table 10: Comparison of Humidity Sensing Technologies .. 17

Table 11: Comparison of Rain Sensing Technologies .. 19

Table 12: Comparison of Light Sensing Technologies... 20

Table 13: Voltage Regulation Technologies Comparison .. 23

Table 14: Proximity Sensor Options Characteristics .. 26

Table 15: Anemometer Options Characteristics ... 27

Table 16: Barometric Pressure Sensors Comparisons .. 28

Table 17: Humidity Sensor Option Characteristic Comparison .. 31

Table 18: Potential Temperature Sensor Characteristics .. 32

Table 19: Potential Rain Sensor Characteristics... 34

Table 20: Comparison of Visible Light Sensing Parts.. 36

Table 21: Comparison of UV Light Sensing Parts ... 37

Table 22: Solar Panel Comparisons ... 38

Table 23: Lithium Ion Battery Package Comparison ... 39

Table 24: Battery Management System Integrated Circuits (BMS IC) Comparison 40

Table 25: 12V Regulator Comparison ... 41

Table 26: 5V Regulator Comparisons.. 42

Table 27: Comparison of 3.3V Regulators... 43

Table 28: Comparison of P-MOSFETs .. 43

Table 29: Microcontroller Comparisons .. 45

Table 30: Bluetooth Class Comparisons…………………………………………………………46

Table 31: Sensor Parts Summary ... 49

Table 32: Power Parts Summary ... 49

Table 33: Microcontroller Parts Summary ... 50

Table 34: Pin connections for the ATmega 1280 and Arduino for Bootloader 52

Table 35: Weather API Comparisons..55

Table 36: Hardware Standards .. 62

Table 37: Software Standards .. 62

vii

Table 38: Hardware Constraints .. 63

Table 39: Software Constraints ... 63

Table 40: Defined default values for the system .. 91

Table 41: Roof Default Behaviors ... 92

Table 42: Illumination Recommendations from NOAO... 94

Table 43: Bluetooth Commands…………………………………………………………………98

Table 44: Sensor Test Plan .. 109

Table 45: Pinlayout for Testing Purposes………………………………………………………112

Table 46: Initial Project Milestones for Senior Design 1 .. 116

Table 47: Initial Project Milestones for Senior Design 2 .. 117

Table 48: Initial Project Budget... 118

Page 1

1. Executive Summary

As the idea of a smart item, also known as the Internet of Things (IoT) technology grows in
popularity, it has begun to appear in everything. The most demand being found in the smart home.
In order to take the automation of a building even further, the next step would be an automated
roof. In order to create a comfortable experience at any location, the roof would be retractable and
glass, bringing the outside in. This system would be appropriate over facilities that can only operate
comfortably in specific weather conditions but would like to continue functioning even when
Mother Nature is not cooperating. In the current market, roof systems like this exist, as created by
our sponsor OpenAire. However, this collaboration will allow for further research into the system,
by testing any updates and modifications before creating something full scale. This can aide in the
company’s growth, in order to go above and beyond any other competitors on the market.

In an attempt to solve the issue of weather restrictions, we propose a fully automated retractable
glass roof. The automation would come from various sensors to provide the most comfortable
outdoor/indoor experience. These sensors would be used primarily for weather predictions to
detect the following characteristics of weather: rain, wind speed, air pressure, temperature,
humidity, and cloud coverage. The roof will act preemptively according to the outside weather
conditions and will be able to detect if unwanted weather is on its way, not just when it arrives.
The sensors would be programmable to connect to an app, where when certain thresholds are met,
the roof will operate automatically. Depending on the environment that the roof will be placed
over, and the climate it is built in, the roofs sensors could also be adjusted to work well in all
conditions.

This system will also come with a locked app available on iPhone, that only allows owners of the
roof access. This allows the user to control the system via app and set their own thresholds for
operation of the roof and lighting depending on the setting the roof encompasses. With this app,
the user can build their own packages of settings and create a schedule on the roofs operation to
fit business hours, daylight hours, etc. Along with providing full control of the system, the app will
include the statistics read in from the weather sensors, allowing the user to make educated
decisions when creating their own roof settings. The app will mainly connect via Wi-Fi as well as
having Bluetooth capabilities for backup. In case of emergencies such as a power outage, Wi-Fi
outage, or sensor failure, the roof will be connected to an emergency power source, and building
will have a main switch inside which will override all app settings and sensor data and close the
roof.

Overall, this system aims to create a comfortable indoor experience for any market, especially
businesses that can only operate in certain weather conditions. Energy and money will be saved
by the various attributes of the roof including, tinting glass, solar panels, photometric lighting, and
HVAC control. According to our sponsor, OpenAire, their customers saw up to 30% in savings
for one year of energy costs. Our goal is to increase this percentage via the automation of the roof.
Lastly, the system will be easily customizable by the user via iOS app, which allows for full
customization of the roof’s operation dependent on the needs of the building owner.

Page 2

2. Project Description

The A.I.R.E. autonomous roofing system appears as a retractable glass roof which operates on a
wide variety of weather sensors. These sensors allow for the roof to be considered a smart systems,
which can react to weather as well as predict incoming weather. Accompanied by an iOS app, this
system allows for user to interface communication as well as customization by the user. The app
will be readable and allow the user to implement their own settings for the roof operation, provide
real-time weather statistics as read by the sensors, as well as connect to a local weather API for
further weather updates and communication with the implemented sensors.

2.1 Project Background

As the idea of a smart item, a.k.a. the Internet of Things technology grows in popularity, it has
begun to appear in everything. The most demand being found in the smart home. In order to take
the automation of a building even further, the next step would be an automated roof. In order to
create a comfortable experience at any location, the roof would be retractable and glass, bringing
the outside in. This system would be appropriate over facilities that can only operate comfortably
in specific weather conditions, but would like to continue functioning even when Mother Nature
isn’t cooperating. These include water facilities, hotels, shopping centers, restaurants, cruise ships,
and even residential homes. In the current market, roof systems like this exist, as created by our
sponsor OpenAire. However, this collaboration will allow for further research into the system, by
testing any updates and modifications before creating something full scale. This can aide in the
company’s growth, in order to go above and beyond any other competitors on the market.

In an attempt to solve the issue of weather restrictions, we propose a fully automated retractable
glass roof. The automation would come from various sensors to provide the most comfortable
outdoor/indoor experience. These sensors would be used primarily for weather predictions to
detect the following characteristics of weather: rain, wind speed, air pressure, temperature,
humidity, and cloud coverage. The roof will act preemptively according to the outside weather
conditions, and will be able to detect if unwanted weather is on its way, not just when it arrives.
The sensors would be programmable to connect to an app, where when certain thresholds are met,
the roof will operate automatically. Depending on the environment that the roof will be placed
over, and the climate it is built in, the roofs sensors could also be adjusted to work well in all
conditions.

This system will also come with a locked app available on iPhone, that only allows owners of the
roof access. This allows the user to control the system via app, and set their own thresholds for
operation of the roof and lighting depending on the setting the roof encompasses. With this app,
the user can build their own packages of settings and create a schedule on the roofs operation to
fit business hours, daylight hours, etc. Along with providing full control of the system, the app will
include the statistics read in from the weather sensors, allowing the user to make educated
decisions when creating their own roof settings. The app will mainly connect to the sensor data
and roof via Wi-Fi as well as having Bluetooth capabilities for backup. In case of emergencies
such as a power outage, Wi-Fi outage, or sensor failure, the building will have a main kill switch
inside which will override all app settings and sensor data, and close the roof.

Page 3

Another pressing issue in today’s society is the matter of energy efficiency. Everyone wants to
save money and energy whenever possible. This roof would assist in this by the addition of solar
panels to power the sensors used for automation. Along with this solar energy, the indoor lighting
would have photometric sensors and connect to switch to the roof, so that they are only on when
it is darker outside and/or when the roof is closed. The HVAC systems would also have a kill
switch connected to the roof, turning it off when the roof is open, so as not to waste excess energy.
The roof would be fit with a tinting glass which helps for controlling the inside temperature, and
the indoor HVAC would be able to adjust to a user specified temperature and humidity.

2.2 Objectives

Overall, this system aims to create a comfortable indoor experience for any market, especially
businesses that can only operate in certain weather conditions. Energy and money will be saved
by the various attributes of the roof including, tinting glass, solar panels, photometric lighting, and
HVAC control. According to our sponsor, OpenAire, their customers saw up to 30% in savings
for one year of energy costs. Our goal is to increase this percentage via the automation of the roof.
Lastly, the system will be easily customizable by the user via iOS app, which allows for full
customization of the roof’s operation dependent on the needs of the building owner.

2.3 Engineering Requirements Specifications

The engineering requirement specifications are broken into the key aspects of the project:
enclosure, hardware, and software. The specifications, and their subsidiaries, are laid out in their
respective Tables 1 - 6.

Enclosure Specifications - The enclosure is the main structure that will support the roof and have
the main unit housing the sensors and the PCB attached to it. Its specifications are compiled in
Table 1 below.

Table 1: Enclosure Requirements Specifications

Specification
Number Specification Value Unit

1 Dimensions 32x11x10 inches

2 Weight < 30 lbs

3 Retractable Roof 1 N/A

Page 4

System Requirement Specifications - Table 2 lays out the specifications for the system. These
specifications are those that involve the entire system, affect the entire system, and will be used by
the different components.

Table 2: System Requirements Specification
Specification

Number
Specification

4 The system shall have a microcontroller capable of handling weather sensing
data and signal processing

5 The system shall have a solar panel system not exceeding 8 cubic feet

6 The system shall have a lithium battery pack for back-up power, to be charged
by the solar panel system

7 The system shall have a battery management system for handling charging
cycles of the lithium ion battery pack

8 The system shall have an array of regulators providing +12V, +5V, and +3.3V
power lines

9 The system shall have weather sensing technology capable of interacting with
the microcontroller

10 The system shall have waterproof protection for all electronic components
that require it

Page 5

Hardware Specifications - The hardware specifications break down more of the specification
mentioned in Table X. The hardware is broken into two tables: power and sensors. The critical
power hardware, including power sources and regulators. The sensor hardware requirements
include all the necessary weather sensors for the project.

Table 2: Power Module Requirements Specifications

Specification
Number Submodule Specification Value Units

11 Solar Panels Power Delivery 1 – 5 Watts /
Panel

12 Lithium Ion Battery Package 18650

13 Reverse Polarity MOSFET Rds(on) < 0.05 Ohms

14 12 V Regulator Input Voltage Range 3.2 – 12.6 Volts

15 5 V Regulator Input Voltage Range ≥12 Volts

16 3.3V Regulator Input Voltage Range ≥5 Volts

17 BMS Voltage Range 3.2 – 12.6 Volts

18 BMS Fault Protection Overcurrent Protection

19 BMS Fault Protection Overvoltage Protection

Sensor Specifications - The sensor specifications outline the main measurement of the given
sensor, and the desired description of that measurement that will drive the selection of the
component.

Table 3: Sensor Specifications

Specification Number Module Specification Value Unit

20 Anemometer Resolution < 10 meters/second

21 Barometric Pressure Sensor Accuracy +/- 5 millibar

22 Temperature Sensor Accuracy +/-1% oCelsius

23 Humidity Sensor Accuracy +/3% Relative Humidity

24 Rain Sensor Response Time < 240 seconds

25 Light Sensor Spectral Range 1500 nanometer

26 Bluetooth Range 50 meters

Page 6

Software Requirements Specifications - Software Specifications can be broken into two parts:
microcontroller software specifications and the phone application software specifications. The
microcontroller specifications include the software implementations for the board and the required
storage for the software.

Table 4: Microcontroller Software Requirements Specifications

Specification Number Specification Value Unit

27 Microcontroller will be hard coded with an
identification number 16 Bits

28 For specific sensors, their status will be polled 60 seconds

29 The Weather API will be polled for predictions 60 seconds

30
Microcontroller will signal a roof reaction when
deemed necessary in an appropriate time frame

from receiving measurements
30 seconds

31 Code will only require half of the microcontroller’s
available storage 128 kiloBytes

32 Weather API prediction data will be stored on the
microcontroller 32 kiloBytes

iOS Application Specifications - The phone application software specifications outline the
expected procedure and protocols that the application will follow.

Table 5: Phone Application Software Requirements Specifications
Specification Number Specification

33 Application shall provide exact parameters for Microcontroller to signal
roof enclosure

34 Application shall support iOS 9.0 and above

35 Application shall support iPhone 6s Models and above

36 Application shall support Bluetooth 4.0 and above

37 Application shall decode sensor data in a human readable manner

38 Application shall show sensor data from last minute of reading

39 Application shall follow security protocol for storing Username Password
information in the database.

Page 7

2.4 House of Quality Analysis

The following shows our house of quality analysis when planning our project development. Out
project aim is to be low cost, accurate, and maintain or improve upon our sponsors level of energy
efficiency.

Legend:

• + Positive Polarity (Increase requirements)
• - Negative Polarity (Decrease requirements)
• ↑↑ Strong positive correlation
• ↑ Positive correlation
• ↓ Negative correlation
• ↓↓ Strong negative correlation

Figure 1: House of Quality Analysis

Page 8

3. Initial Project Research

The high-level lay out for the hardware aspects for this project is depicted below. An iOS app will
be the main interface for users to interact and set certain parameters. The sensors and weather API
will be the driving force for the autonomous movement of the roof. The high-level logic for the
sensors is depicted in the flow chart. The roles of the development and design for the different
hardware aspects are color coded, with the key being located in the bottom right of the figure.

Figure 2: Hardware Flow Chart

3.1 Existing Projects and Products

Open Aire is a designer, manufacturer, and installer of custom glass retractable roof enclosures
and operable skylights. As of now, their systems are only semi-automated, with proximity sensors
to locate the position of the roof, anemometers to calculate the wind speed, and conductivity
sensors detect rainfall. Overall, the company goal is to provide an enclosure for weather sensitive
areas such as water parks, shopping areas, and other activities that are mainly outdoors. They also

Page 9

aim to provide businesses with a potential for a lifelong investment that will save them money by
reducing energy costs and increasing year-round business.

Although our sponsor’s product is one of the most trusted out of the few companies that provide
this service, we would like to provide them with improvements to bring them levels above their
competition. Our ideas for improvement include, updating their current sensors, or finding a better
way to implement them, and adding new sensors for more accurate measurements of outdoor
conditions. These new additions include sensors for temperature, wind, rain, humidity, barometric
pressure, as well as the addition of solar panels for even more energy efficiency.

The addition of more sensors will allow the roof to become a smart system that can detect
unpleasant weather before it happens instead of as it happens. We would also like to provide the
owner of the roof with full interactive control of the roof system. Currently, Open Aire places most
of the roof’s operation in the hands of the few implemented sensors, and provides the owner with
a control panel to override the roof’s semi-automated operation. We propose an app/web server,
which will connect to the roof system via Wi-Fi and Bluetooth. We will also include the data from
the local weather API in an easy to read format, so the user can make educated decisions about
which setting they want the roof to operate in. The weather API will also be compared to the roof’s
sensor information, and the user can receive alerts about inclement weather, roof operation, and
roof failure. As a failsafe, we would like to keep a control switch somewhere inside the building
in case the Wi-Fi or Bluetooth goes out.

Our stretch goals include the addition of lighting and HVAC controls, building our own light
sensor, and power module shutdown. The lighting controller will be connected to the light sensor,
so that the indoor lighting will only turn on when the sunlight goes below a certain level and/or
when the roof is closed. As to not waste energy and create a comfortable environment, the HVAC
will only be on when the roof is closed, and it will include controls for temperature and humidity.
Additionally, we would like to have the power module automatically shut down when there is a
failure to any part of the system, thus requiring the user to manually reset the system via a switch
on the control panel. We would also like to dedicate a control panel that controls different aspects
and sensors of the roof, and another to control the roof system as a whole.

3.2 Relevant Technologies Comparison

Overall, this autonomous roofing system requires a wide range of sensing technologies and power
supply technologies. The following sections analyze each type of sensor needed split into the many
different types of sensors available. These in-depth comparisons allow us to wisely choose relevant
technologies needed for this system to function properly.

3.2.1 Relevant Sensing Technology

For a fully automated system, a wide range of sensors is to be used. This section goes through the
decision process of choosing each sensor used for this enclosure. Because this enclosure operates
based on the weather, the five main characteristics must be measured. These include: wind speed,
temperature, lighting, humidity, and rain. as well as using these, sensors must also be placed on
the enclosure to measure and control the position of the sliding roof.

Page 10

3.2.1.1 Proximity Sensing

The use of proximity sensors will be helpful when controlling the operation of the roof. Unlike
most of the other sensors we have equipped this system with, the proximity sensor will not be used
any sort of weather sensing. It will be used to determine the position of the roof as it moves, going
from full open to full close. This design was originally used by our sponsor, so in order to stay
consistent with them, we have decided to implement proximity sensors as well.

The current design by our sponsor, which we will also be using operates as described within this
paragraph. Proximity sensors and targets are placed on opposite sides of the roof. Two targets will
be placed, one on the uphill side of the roof slider, the other on the downhill side of the roof slider
The target will be a steel or magnetic plate (in contrast to the aluminum structure used by our
sponsor), and will sit on the slider, moving alongside the roof. The two proximity sensors that will
be implemented must stay stationary as the targets move alongside the roof. One proximity
sensor will be mounted to the motor at the bottom of the roof and the other will be mounted to the
top of the roof enclosure.

In proximity sensing there are five different types of sensors that could be used: inductive,
capacitive, magnetic or hall effect, photoelectric, and ultrasonic. The main goal of proximity
sensing is to be a non-contact sensor that can still determine when something is in range of it. Here,
we would only like the proximity sensor to sense when our target is in range, and ignore any other
object that could be within sensing distance. We would also like to consider cost, size, and how
well this sensor fits into our design as a whole. The following paragraphs break down each type
of sensor into their main characteristics.

Inductive Proximity Sensor - Inductive proximity sensors use either a PNP or NPN transistor
along with an inductor to induce a current within the device, thus creating a signal to the output.
When a metal comes into the sensing range of the sensor, the inductor creates an electric field,
which creates a current, or magnetic field, within the target. The closer the target gets to the sensor,
the weaker its electric field, causing a current to flow through the inductor to the output. An
advantage to using a sensor like this, is that it only reacts to certain materials within its range. This
specific material happens to be a ferrous material, or a material that contains iron. Luckily iron
and iron alloys are easy to come by and don’t cost an arm and a leg, assisting us in our goal to
keep this project as low cost as possible without sacrificing too much else.

Most inductive proximity sensors come in the shape of a cylinder, which makes them compact,
perfect for our small-scale building. They can operate within a range of input voltages allowing us
to choose one which fits our needs, and most have a maximum sensing range of 1.5-10mm. keeping
the size of our building, and target in mind, we can pick one which has a fast response time when
the target is within the range that we see best fit.

Conductive Proximity Sensors - Capacitive proximity sensors operate on the notion of two
capacitive plates placed some distance away from each other acting as an open capacitor [5]. This
acts as an open because one of the plates of the capacitor is the proximity sensor itself and the
other is the target we are trying to measure. When the target comes into sensing range of the sensor,
the capacitance of the sensors changes, causing a change in its field amplitudes, thus causing an

Page 11

output change. What may seem like an advantage to most but is actually a disadvantage to this
project, is the wide range of objects the capacitive sensor can detect. These sensors can detect
various, liquids, powders, and metals, which could be cause for unwanted action as our structure
its self will be made of a metal.

Conductive sensors can sense wide ranges of materials, making them popular for water level
applications, or in cases where an object must be detected through another object. They also have
wide sensing range of up to 50mm depending on the sensor. This sensor is still applicable to us
because they can be tuned to ignore certain objects, making it an option for our project.

Hall Effect Proximity Sensors - Hall effect, or magnetic, proximity sensors, operate on the
principle of magnetism as the name suggests [1]. Utilizing the sensors magnetic field, an electric
potential between the sensor and the magnetic target is created and grows as the target comes into
sensing range. Once this potential reaches a threshold value, the current flows through the sensor
to the output creating a control signal. An advantage of Hall effect sensors is that they can detect
static magnetic fields, whereas inductive sensors can only detect changing magnetic fields. This
allows for a wider range of objects to be detected.

A disadvantage of the hall effect sensor is that it is not always stable or accurate. In our application,
we must ensure that the sensor only makes a decision based on the location of the target, so
accuracy is key. These sensors require more compensation, regulation, and maintenance than
would be ideal. Most hall effect sensors come in small sizes and can operate at various input
voltages at around 4.5V-28V and an average response time of about 2 micro seconds. This makes
it easy for us to find a sensor that could still be accurate if the correct regulating circuitry is applied
around it.

Photoelectric Proximity Sensor - Photoelectric proximity sensors use optics, instead of a
materials electromagnetic fields, to sense an object [5]. Mainly used as distance sensors the can
sense an object up to 60m away. All photoelectric sensors have some sort of light source, whether
it be an LED or a laser diode, a photodiode or phototransistor to collect the light, and an
amplification circuit for the signal processing.

The light source emits a photon wave, which interacts with objects around it, and depending on
the material that the light comes into contact with, a large or small amount of light is reflected back
to the receiver [5]. Depending on the setup of the photoelectric sensor, the target could come into
the range of the light, and reflect the light back to the receiver. The light could be on all the time
at an angle that always reflects the light back to the receiver until the target cuts off the light
reflection. Or, the target could diffuse the light until it reaches the perfect spot in which all light
waves converge toward the receiver. Either way, the target material or the reflector must be
specific depending on the wavelength of the light emitted such that the light reflects perfectly back
to the receiver. These specifiers of the materials used could prove difficult to our budget, or the
overall difficulty of our project.

Ultrasonic Proximity Sensor - Last, an ultrasonic sensor could be employed. These sensors use
the reflection of sound waves, in the same way the photoelectric uses the reflection of light waves.
Here, however, the color and material of the object do not matter as long as the texture of the

Page 12

material isn’t fully absorbing or extreme in anyway [5]. These sensors use one of the same three
techniques as photoelectric sensors, except that they measure the propagation time of the sound
wave as a way of detecting the closeness of an object. Most of these sensors can sense an object
up to 2.5m away, which is far enough for our project. However, air quality could greatly alter the
response of this sensor, especially since it will be outdoors.

Proximity Sensing Technologies Conclusion - A final summary of the above sensors is described
below in Table 7.

Table 6: Comparison of Proximity Sensing Technologies

Technology Output Signal Environmental

Inductive Current Safe

Conductive Voltage Safe

Hall Effect Voltage Safe

Photoelectric Voltage Safe

Ultrasonic Current Safe

For simplicity, we have decided to further analyze the inductive and hall effect sensors. These
sensors only respond to certain target materials making it easier for us to find a material to use for
our target. We also won’t have to do much outside configuration of the sensor in order to force it
to only sense certain materials. This leads to less error on the sensor’s end and our end. These
types of sensors often come in compact sizes, which will fit well into our already miniature design.

3.2.1.2 Anemometry

An anemometer is a device that measures wind speed. High winds are important to measure
because they are usually indicative of bad weather, and can be dangerous for the activities going
on inside the enclosure. There are two categories of anemometers, which can then be split further
into four more types. All four sensors can be classified as either a constant-power anemometer or
a constant-temperature anemometer. Both of which can be split into four subtypes: vane, thermal,
thermal with velocity and temperature, and cup anemometers. All of these sensors will be
explained and analyzed, so we can make a better decision for this project.

Constant-power Versus Constant-temperature - Constant-power or constant-temperature
anemometers receive either a constant power flow or constant flow of electrical heat, where the
temperature is proportional to heat with no feedback, to power the device [6]. The most popular
classification of anemometers is the constant-power as it has a higher frequency response rate,
lower electrical noise, a more stable zero-flow, and are overall more compatible with other sensors
and processors. Constant-temperature anemometers has a slower response rate, produce more
noise, have limited temperature compensation, and are not very stable at zero-flow, or when no
wind is present.

Page 13

Vane Anemometer - A vane wind sensor uses a rotary plate with the axis of rotation placed
parallel to the direction of the wind. Because the axis of rotation must stay parallel to the direction
of wind, this style of anemometer is not applicable to our project [6]. In an unobstructed out door
area the wind direction is constantly changing, so vane anemometers are usually employed in areas
where wind direction isn’t as variable.

Thermal Anemometer - A thermal anemometer use a very fine wire (micrometers in length), or
a small element heated to a temperature above the ambient. When air flows over the element, it
produces a cooling effect on it, signaling the presence of wind. Because a material’s resistance is
related to temperature, the change in resistance as the element is cooled, is used to measure the
wind’s velocity. Thermal anemometers can come as constant-current, constant-voltage, and
constant-temperature [6]. Although most constant-temperature devices are slow and inaccurate, a
hot wire anemometer is actually one of the most popular due to its fast response time and fine
spatial resolution.

Thermal Anemometer with Velocity Profiling - Thermal anemometers with velocity profiling
operate the same as thermal anemometers, except with multi-point data-logging. Almost all
anemometers, no matter the type, have data-logging capabilities. However, this specific type can
log the temperature as well as the velocity to measure wind speed and produce statistics about
wind trends due to temperature [6]. This makes these anemometers applicable in data analysis for
heat sinks and wind tunneling.

Cup Anemometer - The cup anemometer is one of the more simple designs, but still widely used
today. Normally designed with three to four cups attached to horizontal arms connected to a
vertical rod, this anemometer uses PWM and angular rotation to measure wind speed. The wind
catches in the cups causing them to rotate, and the number of rotations within a certain time period
is then used to calculate the wind speed using an average value over the specified time period.
Each rotation sends a pulse signal to the microcontroller where the distance between each pulse is
the instantaneous wind speed [6]. This speed is used to find the frequency at which the cups rotate,
which can then be converted to a readable wind speed.

Anemometry Technologies Conclusion - The following table concludes all findings about each
type of anemometer.

Table 7: Comparison of Anemometry Technologies
Type Classification Output Environmental

Vane Constant-power PWM Safe

Thermal Constant-temperature Voltage, Current, or PWM Safe

Thermal with Velocity Constant-temperature Voltage, Current, or PWM Safe

Cup Constant-power PWM Safe

Page 14

From these comparisons, we have decided to look further into the cup and hot-wire styles of
anemometers. The cup anemometer is already employed by our sponsor and requires no calibration
or extra setup. However, we would like to see if this design could improve at all using a hot-wire
thermal anemometer.

3.2.1.3 Barometric Pressure Sensing

One of the main determining factors of inclement weather is pressure. Air rises in a low-pressure
area and falls in a high-pressure area. In a low pressure area the rising air cools and this is likely
to condense water vapor and form clouds, and consequently rain. The opposite is true in a high-
pressure area, which is why high pressure tends to give cloudless skies. More specifically for this
reason, it became quickly evident that a pressure sensor was necessary for the purpose of the
project. This section will discuss the different barometric pressure sensors that were considered
and give insight as to why the sensor chosen was the best fit for the AIRE system.

There is a large variety of pressure sensors out in the market, however, the sensors can largely be
categorized according to the type of pressure measurement they make, the sensing principle
employed, the output signal and the media they’re measuring. These were all factors that were
considered and evaluated when choosing a sensor.

Right off the bat, it was known that this pressure sensor was specifically needed for the outdoors
and its weather, so that removed any sort of air, gas, water, liquid, pneumatic and hydraulic, or any
other pressure sensors. In other words, out of the three different types of pressures can be
measured: gauge, absolute, and differential, an absolute pressure sensor was needed, as these types
of sensors are best suited for measuring atmospheric pressure. There are 5 different ways
(Resistive, capacitive, piezoelectric, optical and MEMS) in which the mechanical displacement
taking place inside a sensor is turned into an electrical output. This is important to understand, as
this factor influences accuracy, reliability, measurement range, and compatibility with the target
environment. Absolute pressure sensors usually use the latest microelectromechanical system
(MEMS) technology.

Going back to the fact that a barometric sensor was the one suitable for the project, the team had
to go with the industry norm, which usually means that the sensor is a small pressure transducer.
Even after understanding how the sensor outputs information, there was more to be considered,
and that was the measurement approach of the transducer, either resistive or capacitive. As the
team was choosing the different suitable options the main variables considered were precision,
sensitivity, maximum limits, energy consumption, and size.

3.2.1.4 Temperature Sensing

Temperature is the measure of heat within an object or substance. For this project, a weather
resistant component is needed as degradation in the sensor’s accuracy is not ideal. A change in
temperature is caused by the change in density of the molecules in the air, and by how much
moisture each molecule is retaining. Because temperature is affected by the properties of small
molecules, an accurate sensor is required for this design.

Page 15

In temperature sensing there are four different types of the main component of the circuit. These
are: thermocouples, resistance temperature detectors (RTDs), thermistors, and semiconductor
based integrated circuit (IC). Each type will be examined in the following sections, as well as their
accuracy and other relevant characteristics.

Thermocouples - Thermocouples measure temperature difference by the Seebeck Effect [7]. They
are constructed of two dissimilar wires joined together, and the difference in temperature between
the two wires produces a voltage. The resulting voltage can then be used to calculate the ambient
temperature. This configuration is highly sensitive, ranging from ten to sixty-eight microvolts per
degree Celsius.

Although high sensitivity is ideal for a more accurate reading of temperature, this can create
problems in building the circuit around the thermocouples [7]. Because their output voltage is so
small (microvolts), a precise amplifier must be placed at the output, and the signal is highly
susceptible to external noise from long wires, and cold junction from any copper that can be found
on the circuitry.

Resistance Temperature Detectors - Resistance temperature diodes (RTDs) measure a material
change in resistance to measure a change in temperature [7]. As any material goes through a
temperature change, its resistance also changes, thus creating a different output voltage. The most
accurate design is made of platinum, as it has an almost linear response to temperature change.
This design also includes four wires, two of which separate force and sense, thus cancelling any
wire resistance or noise that could deplete the sensors accuracy. They also have the largest
temperature measurement range out of any sensing mechanism examined, which includes -200 to
+850 degrees Celsius.

Although accurate, RTDs are extremely sensitive to external forces such as light, moisture, and
other various characteristics of weather. They also have a slow response time, and are susceptible
to self-heating. Because of this, they require specific maintenance regulated by the American
Society for Testing and Materials (ASTM), American Scientific Apparatus Manufacturers
Association (SAMA), International Electrotechnical Commission (IEC), and Japanese Standard
(JIS).

Thermistor - Thermistors operate similarly to RTDs, as they measure temperature change by
measuring the materials change in resistance. Slightly less accurate, they are, on average, less
expensive than the RTDs, as well as made from either polymer or ceramic. The material of the
thermistor makes it a better option for outdoor use, as these materials are less susceptible to
corrosion or degradation due to weather.

The most widely used thermistor is a Negative Temperature Coefficient (NTC) build, in which the
resistance decreases as the temperature increases [7]. From the American Society for Testing and
Materials (ASTM) E879, NTC thermistors must operate at 100 ohms at 0 degrees Celsius, or 10k
ohms at 25 degrees Celsius. Thermistors are fairly accurate, with a resistance tolerance of 1% and
a measuring range of -55 to +150 degrees Celsius.

Page 16

Integrated Circuit - Semiconductor based integrated circuit come in two different types: local
and remote digital temperature sensing. Local temperature sensing measures the change in
temperature of a diode within the circuit, via the physical properties of a transistor [7]. Remote
digital temperature sensors measure the temperature of an external resistor. A local temperature
sensor can be used to measure the temperature of the PCB or the ambient air around it, whereas
the remote sensor only measures the ambient air, as it is placed away from the main PCB.

Local temperature sensing would not be applicable in this case as the heat emitted from the PCB
would cause the ambient air surrounding the diode, therefore not give an accurate reading of the
outside temperature. Remote sensor would be more applicable as the extra diode is placed away
from the main circuit, thus producing a more accurate temperature reading. Either way, IC
temperature circuits produce almost linear outputs with respect to temperature and operate within
the range of -50 to +150 degrees Celsius.

Temperature Sensing Technology Conclusion - A final comparison of the technologies
examined above as well as their RoHS compliance is summarized below in Table 9.

Table 8: Comparison of Temperature Sensing Technologies

Technology Output Signal Environmental Impact

Thermocouple Voltage Hazardous

RTDs Voltage Safe

Thermistor Voltage Safe

IC Digital or Analog (Voltage/Current) Safe

For simplicity and for the environment’s sake, we have decided to implement a thermistor into our
project. Thermistors are easy to implement, even though they require a simple regulating circuit.
They are also the best option for measuring outside air, as they aren’t affected much by extreme
weather, and can be placed away from the rest of the circuitry, such that its measurement isn’t
skewed by the heat emitted from the PCB.

3.2.1.5 Humidity Sensing

Humidity is the measure of moisture within the air at certain temperatures. There are three different
types of humidity sensors, or hygrometers: capacitive, resistive, and thermal. Determining relative
humidity is dependent on the kind of sensor and the type of dielectric that is used in them. For this
project, accurate measurements are important for effective roof functionality. Precision takes a
back seat when it comes to the project’s measurements as drastic weather events will cause large
enough changes in the humidity. The different kinds of sensors and their accuracy and other
characteristics are examined in the following sections.

Capacitive Humidity Sensor - Capacitive humidity sensors measure electrical capacitance when
moisture makes contact with the sensor. Capacitive humidity sensors are very precise compared

Page 17

to other variations of humidity sensors. In capacitive humidity sensors, as the moisture changes,
the output voltage from the electrical capacitance changes [8]. Capacitive humidity sensors can
operate in humidity in the range of 0% to 100%, while some have more accurate readings within
that range. Most capacitive humidity sensors range from about 150 pF to 200 pF for capacitance.

Resistive Humidity Sensor - Resistive humidity sensors are similar to capacitive sensors, in how
they function. When moisture is absorbed by the hygroscopic material within the sensor, the
change in resistance is measured. Resistive humidity sensors have a smaller range in measuring
humidity, only between 5% to 90% relative humidity can be measured. In lower humidity ranges,
resistive humidity sensors tend to perform poorly. Lower temperatures affect the performance the
sensor as well.

Humidity Sensing Technologies Conclusion - The following table provides a brief summary of
the types of humidity sensor relating to their output and environmental effect.

Table 9: Comparison of Humidity Sensing Technologies

Technology Output Environmental

Capacitive Digital/Analog Safe

Resistive Voltage Safe

In order to provide our system with the most accurate design, we have decided to further analyze
both types of humidity sensors. Both sensors have their strengths and weaknesses, so a choice for
this sensor would be better made if multiple different sensors were looked into. This in-depth
discussion will be seen later on in section 3.3 Parts Selections.

3.2.1.6 Rain Sensing

For this project, a major component is a rain sensor in order to keep all activities within the
enclosure ongoing, even during bad weather. Bad weather is usually indicative of high winds,
cloudiness, and rainfall. To detect any level of rainfall, a precise sensor is needed. Rain sensors
come in four main types, water collecting, conductive, optical, and through the use of a
hygroscopic disk. Each of these measures rainfall in a unique way, and have their own properties
which makes them useful for various different applications. The following sections compare each
type of sensor with its main application and ends with a summarized conclusion of our decision.

Water Collecting - Water collecting sensors are usually some sort of cup or basin that acts as rain
gauge. They collect the rain, and once the basin collects a preprogrammed amount of water, the
weight trips a switch which sends a signal to the control system it is connected to [9]. This sensor
is simple, and undeniably easy to implement; however its simplicity can cause problems from the
accuracy stand point. Because its design is basically a cup, the weight of debris that might have
gotten in can cause the switch to trip prematurely.

Page 18

Another inconsistency with these basins is that if they are too large, a gust of wind could blow out
anything in the cup causing the switch to not trip at all. For this project, we need a rain sensor that
will send a signal at even the slightest detection of rain, a.k.a. a couple drops of rain. such small
amount of rain will not trip this type of sensor in time before everything in the enclosure becomes
soaked with rain.

Hygroscopic Disk - Hygroscopic disk sensors, made to replace the outdated water basin, utilizes
the expansion of materials when water is absorbed, to trip the signal switch [9]. These are made of
a synthetic material, most similar to cork, that expands when wet. As this material collects more
and more water, it expands until it hits a switch at a certain, preprogrammed, size point. The system
will not return back to normal until the material has fully dried and its size has gone back to its
base size. Similar to the water basin sensing technique, this type of sensor is not near accurate
enough for this project. Its response time is too slow, and it needs a too large amount of water in
order for it to signal any rain detection to the system. Therefore, other types of sensors must be
analyzed.

Conductive - Conductive rain sensors use capacitors along with the change in conductivity of a
material as it encounters different solutions to detect rainfall [9]. These are normally designed as
copper traces laid out on a flat PCB. Utilizing the effect of fringe fields, the electric fields emitted
from the capacitive plates, not only flow between the plates, but also to its surroundings. The
conductance on the plates when surrounded by the ambient air is noted as normal, and the
conductance of the material when in contact with water is also noted and preprogrammed into the
system. When the conductance of the material changes due to an interaction with a new solution
other than air, the output voltage signal sent to the system changes. When this signal matches those
of the ones programmed to mean water, the system reacts as programmed.

This sensor is much more useful to us as it is far more accurate than the water basin and
hygroscopic disk approaches. Usually with a base capacitance along the order of 2-20pF with a
change in capacitance normally around 0.5pF, even the smallest change in capacitance can cause
a large change to the output. Ideally, these sensors work best when the base capacitance equals the
change in capacitance, however a slight difference between the two values will not cause a large
loss of accuracy.

Optical - Optical rain sensors operate based on the properties of optical electromagnetic fields.
Utilizing the principles of boundary conditions to sense light, these are some of the most popular
rain sensors on the market as of now [9][2]. A pane of glass in placed over an infrared light,
processor, and light receptor. When no moisture has built up onto the glass, almost all of the light
emitted by the sensor is reflected back to the light receptor. As more moisture is built up, the light
emitted by the infrared light is scattered by the water, and less light is reflected back to the receptor.
At this point, the processor is programmed to different settings to determine the intensity of the
rainfall. For this project, even the slightest detection of rainfall is enough to send a signal to our
control system, thus closing the roof.

Page 19

Rain Sensing Technologies Conclusion - A final summary of each type of rain sensor with
respect to output and the environmental effects is seen below in Table 11.

Table 10: Comparison of Rain Sensing Technologies

Technology Output Signal Environmental Impact

Water Basin Switch Safe

Hygroscopic Disk Switch Safe

Conductive Voltage Safe

Optical Voltage Safe

In order to keep this system as accurate as possible, the obvious choices are between the conductive
and optical sensors. Although the water basin and hygroscopic disk sensors are used widely in
irrigation and sprinkler systems, they require a much larger amount of rain in order for a system
shutoff to be worth it. Here, we need a more accurate sensing mechanism for our project purposes,
which can be achieved by either conductive of optical sensing techniques.

3.2.1.7 Light Sensing

A light sensor, though not absolutely necessary for weather prediction, is still helpful in our goal
in creating a comfortable environment inside the enclosure. For this we have two options: buying
and implementing a premade light sensor or building our own. Both options provide different
benefits to this project.

When buying premade sensors, we know we will receive accurate results with very little error from
the sensor, and there are also many resources available for easy implementation in the system.
When building our own light sensor, we will gain a deep understanding of how the sensor is
operating and how to implement it, as well as full customization of the sensor in terms of threshold
measurements, shape, and size.

In the following sections, we will be comparing the different technologies utilized to measure the
intensity of light flooding into our enclosure. The two most popular technologies used are the
photoresistor and photodiode [3].

Photoresistors - Photoresistors are resistors whose resistance is sensitive to light. When dark, the
photoresistor will have very high impedance (MΩs), while in light, the photoresistor will have
very low resistance. The most common material that makes up a light-dependent resistor is
cadmium sulfide or lead supplied.

Since it acts as a passive device, the circuitry required to measure the light it receives is a very
simple non-inverting amplifier. This means that less circuitry will be required to integrate the
photoresistor into our project. On the other hand, the materials often used to manufacture these
photoresistors are highly toxic both to humans and the environment. Having a photoresistor made

Page 20

of lead of cadmium sulfide would be in stark contrast to our goals of creating an environmentally
friendly, economical autonomous roof system.

Photodiodes - Another technology used to measure light is the semiconductor device of a
photodiode. Photodiodes are often constructed using similar material to any other semiconductor
device, typically silicon.

The main difference between the photodiode and photoresistor is the fact that the illumination
measured by a photodiode will be in terms of current produced by the photodiode as opposed to
resistance measured by the photoresistor [4]. This will require a transimpedance amplifier in order
to measure the light received in terms of voltage input to our analog-to-digital converters.

While the photodiode might require more circuitry to integrate, it is much more environmentally-
conscious than a photoresistor.

Phototransistors - The last technology we will be comparing is the phototransistor. This
component has a similar relationship to a photodiode as does a regular transistor has to a regular
diode. Similarly, it has the same advantages and disadvantages to the photodiode technology.

As opposed to a photodiode, the phototransistor can handle its own gain in order to amplify the
signal it produces. This would mean that it will simply need to be placed in its own amplifier stage
instead of using a transimpedance amplifier. The difference in integrability to the photodiode is
negligible.

Light Sensing Technologies Conclusion - A summary of our comparison is established in Table
12 below.

Table 11: Comparison of Light Sensing Technologies

Technology Output Signal Environmental Impact

Manual Manual Button Safe

Photoresistor Resistance Hazardous

Photodiode Current Safe

Phototransistor Voltage Safe

In conclusion, to keep our project both environmentally friendly and simple, we opted for the
semiconductor component to use for our light sensing technology of choice. Out of the two
remaining options, we used the photodiode since we are more familiar with transimpedance
amplifying topology than the other designs that would be required to integrate a phototransistor
into our project.

Page 21

3.2.2 Relevant Power Delivery Technology

To power the whole unit: sensors, motors, and communication modules included, solar panels and
a lithium battery with be utilized together. In order to meet the hardware’s power consumption and
also maintain optimized energy efficiency, the hardware technologies for the power modules will
be analyzed and compared to find the best technology to use for the project.

3.2.2.1 Solar Panels

The solar panel options that we will be exploring will be polycrystalline (photovoltaic) or
monocrystalline. The difference between the two lies in their production. A monocrystalline panel
is constructed from a single ingot of silicon which has been pulled slowly from a vat of molten
silicon. A polycrystalline panel is constructed from a vat of molten silicon, that is allowed to cool
down, where different crystalline structures are formed inside the silicon ingot.
The two different processes result in solar panels with different efficiencies, price ranges, and
reliability. By comparing several products that have abundant availability on Digikey.com, we will
decide on which solar panel to use to power the autonomous roof system.

Due to the similarities between the two technologies, both types will be considered for use in our
project. Further research on which hardware to use will be conducted and summarized in section
3.3.2.1 with specific parts.

3.2.2.2 Batteries

In the event of cloud cover preventing the solar panels from generating sufficient energy to be used
by the autonomous roof system, the system will have a back-up battery pack capable of providing
power to the system until solar power is restored. According to Battery University, the most
commonly used batteries in commercial use are lead-acid batteries and lithium-ion batteries.

Compared to the other options on the market, the lead-acid battery is very inexpensive. It has been
in use for many decades, meaning that the technology used to control this type of battery is very
mature and has a heavily-developed support network to provide application notes for dealing with
the lead-acid battery. On the other hand, the lead-acid battery has very poor energy density and
can only be used for occasional full-discharge cycles.

Compared to lead-acid batteries, lithium-ion batteries have much larger energy density and many
available charge/discharges cycles before needing maintenance. In addition to the improved
energy density, lithium-ion technology lasts much longer in storage while being capable of
discharging more often. While it boasts an impressive list of advantages, the lithium-ion battery
requires a battery management system to protect the circuit it is powering as well as itself. Also,
the technology is relatively new and, while it does have extensive application notes for dealing
with technology, aging of the lithium cells can have a detrimental effect on their performance.
Lithium ion batteries are also much more expensive than lead-acid batteries.

Battery Technology Conclusion - From this simple comparison, it is clear to see that a lithium-
ion battery system will be much better suited for our application.

Page 22

3.2.2.3 Voltage Regulation

There exist many different types of voltage regulation technologies. In our initial research, we will
research the different voltage regulation topologies to see which one will be best for our use.

Shunt Zener Regulator - One of the simplest voltage regulators would be a Zener diode-based
circuit. A Zener diode, reverse-biased, will maintain its constant voltage across itself while
directing any excess current to its negatively-based terminal.

In this circuit diagram, V1 represents the solar panel. The diode D1 will prevent current from
flowing into the solar panel, avoiding damage. The resistor R1 will limit the current being passed
to the load, RL. The Zener diode will have a certain Zener voltage. In our case, the Zener diode
will need to have a Zener voltage of 3.6 - 4.2 V, which will match the nominal voltage of our
battery.

The main advantages of this circuit include its small budgetary footprint and simplicity. Consisting
of only a few components, the Zener diode voltage regular will consist of a bill of materials that
will not exceed the budget set aside for this module. In addition, the components can be configured
simply for the lithium battery.

The main disadvantages of this circuit include its inflexibility, large power loss, and poor voltage
regulation. While simple, the Zener diode voltage regulator will only have provided a reference
voltage of 3.6 – 4.2 V, meaning that it cannot be connected to a different battery, or may run into
issues when the lithium battery exceeds 4.2 V. In addition, the circuit loses much of its power
through a current-limiting resistor. Lastly, if the load current changes drastically, then the Zener
voltage will also change, meaning that the output voltage will drift from its nominal value of 3.6
– 4.2 V.

Linear Voltage Regulator - Another option for a voltage regulator would be a linear voltage
regulator. These voltage regulators are useful for regulating a voltage at low power levels.

In these types of configurations, a low-dropout linear voltage regulator provides powerful voltage
regulation with lower power loss than a Zener shunt voltage regulator. With the LM317 linear
voltage regulator, the regulator takes a more active role in regulating the output voltage to the
battery. The main disadvantage to this is that the LM317 is relatively inflexible compared to a
much more sophisticated battery management integrated circuit (BMIC).

However, much like the Zener regulator, the linear voltage regulator in this configuration has no
feedback for properly controlling the output voltage to the battery. In addition to this, the linear
voltage regulator will only charge the battery to the specified reference voltage. This regulator will
not prevent the lithium battery from overcharging, which can lead to a degradation of the lithium
cells and reduced lifetime of the battery systems.

Buck/Boost Voltage Regulator - The third option for a voltage regulator would be a switching
voltage regulator. These voltage regulators are useful for regulating a voltage at higher power
levels than a linear voltage regulator.

Page 23

The main difference between the switching voltage regulator and the linear one is that the
switching voltage regulator can convert voltage much more efficiently. This configuration wastes
very little power and utilizes a switching mechanism that controls a transistor which drops voltage
over its very low-power-wasting silicon.

The switching voltage regulator, however, produces a lot of broadband noise which can affect
other components operating nearby. When utilizing our Wi-Fi or Bluetooth modules, the noise
from this switching voltage regulator may affect the modules’ abilities to transmit or receive the
high frequency signals it interacts with.

Battery Management IC - The last option that we are considering is to construct our own battery
management system that utilizes a specialized battery management integrated circuit (BMIC). This
provides the most flexibility and allows us to charge the lithium battery without worrying too much
about overvoltage and excessive thermal runaway.

The chief advantage of a dedicated BMIC is the active role the integrated circuit takes in accurately
regulating the charging cycle of the lithium battery. The BMIC operates similarly to the switching
voltage regulator, while having extra features that allows it to account for overcurrent and
excessive thermal anomalies. In addition to the incredibly high efficiency, the exceptionally low
Rds(on) resistance of the transistor controlling the input/output current means that very little power
is dissipated in the transistor.

The main disadvantage of the BMIC is its complexity. The extra features encased in the BMIC
make it more prone to damage compared to simpler systems like the linear and switching voltage
regulators. Despite this downside, the BMIC is the most cost-effective solution to implementing a
battery management system while also taking up a comparable amount of printed circuit board
space to the other considerations.

Voltage Regulation Conclusion - While weighing all relevant factors, Table 13 was constructed
that organizes everything in an easy-to-reference format to accurately consider all solutions.

Table 12: Voltage Regulation Technologies Comparison

Regulation
Technology

Average Bill of Material
Cost ($USD) Active Management Thermal

Shutdown

Shunt Zener
Regulator $3.00 0V-Reference No

Linear Voltage
Regulator $4.00 0V-Reference No

Switching Voltage
Regulator $8.00 0V-Reference and

Feedback Yes

Battery Management
IC $5.00 0V-Reference,

Feedback Yes

Page 24

From the table we constructed comparing the voltage regulation options, we decided that
constructing our own battery management system utilizing the battery management integrated
circuit (BMIC) would be the best candidate for its role in managing the charging cycles for the
lithium ion battery pack.

With its active role in regulating the charge cycles for the battery and preventing over-voltage and
overheating, the BMIC is the most powerful candidate for the battery management system while
keeping costs and board size low. It will also be capable of handling the amount of power that the
solar panel will provide (5 W).

For all other power regulation, buck/boost converters will be used to efficiently maintain voltage
and ensure that there exists power lines for +12 V, +5V, and +3.3V.

3.2.2.4 Reverse Polarity Protection

The lithium ion battery pack is a component of the power module that is expected to be replaced
or tinkered with relatively often. Because of this, there is an increased risk of user error when re-
installing the lithium ion battery pack into the power module.

To protect the output voltage regulators from an unexpected negative polarity that could be
experienced when installing the lithium ion battery pack to the power system incorrectly, a reverse
polarity protection mechanism will be implemented. The most common method for doing this is
to use a semiconductor component such as a diode or p-channel MOSFET. These methods will be
compared to come up with the most efficient solution to this common problem.

Diode - The simplest way to provide for reverse polarity protection is to connect a diode that will
only allow current to flow through a circuit if a positive voltage is applied where it is expected to.
If a battery is placed into the system with its polarity reversed, then the diode will prevent current
from flowing into the system, or into the battery, which protects the circuitry on the other side of
the battery.

The main issue with this system is the power dissipated across the diode at high current loads.
Using the equation P=I⋅V, the power can be calculated assuming a diode forward voltage of 0.6
Volts and expected current load of 2 Amps. The power dissipated will then be a whole 1.2 Watts.
This is a lot of power wasted in just the diode.

P-Channel MOSFET - The p-channel MOSFET topology is another option to provide our
system’s reverse polarity protection.

The MOSFET will turn on when the battery polarity, V_bat, is positive, and current will flow into
the load circuit. When the battery polarity is negative, no current will flow. This topology has the
added benefit of having an exceptionally low R_ds(on) , which will dissipate very little power
when the battery is connected and supplying power.

Reverse Polarity Protection Technologies Conclusion - From the comparison conducted, it was
easy to conclude that the p-channel MOSFET topology would be the most efficient solution to our

Page 25

reverse polarity protection circuit. The MOSFET allows for a very small amount of power to be
wasted in the protection circuitry, which is the best for our expectation of a large amount of current
to supply the plethora of sensors and motors.

3.3 Part Selections

Following the above comparisons of relevant technologies, an even more in-depth comparison of
our considered technologies are done in the following sections. Each chosen technology will be
compared amongst the wide range of products offered. The main considerations for this project
when choosing parts include: cost, environmental impact, ease of implementation with extra
components required, and accuracy. Additionally, since most parts used in this project will be
placed outdoors, or connected to a part outdoors, all chosen technologies must be RoHS compliant.
All parts will be chosen with these in mind as well as any relevant standards and constraints that
may limit our choices when purchasing and implementing these products.

3.3.1 Sensor Components

For a fully automated system, a wide range of sensors is to be used. This section goes through the
decision process of choosing each sensor used for this enclosure. Before decisions are made, more
research will be put into the various types of sensors needed as well as considering accuracy, cost,
and RoHS compliance. Because this enclosure operates based on weather, the five main
characteristics must be measured. These include wind speed, temperature, lighting, humidity, and
rain. as well as using these, sensors must also be placed on the enclosure to measure and control
the position of the sliding roof.

3.3.1.1 Proximity Sensors

As concluded in section 3.2.1.1. we have decided to look further into the implementation of the
inductive and Hall effect proximity sensors. To do so, we will be looking at a few of each type of
sensor. The inductive sensor, as recommended by our sponsor, is the Alselectro Metal Inductive
Proximity Sensor, another inductive sensor GX-F12A by Panasonic, and the Hall effect sensor is
the MP102103 Hall effect Sensor by ZF Electronics. For this we will be looking at how it reacts
to various materials, sensing range, response time, and power consumption.

Inductive Proximity Sensor - The Aleselectro Metal Inductive Proximity Sensor was
recommended to us by an employee of our sponsor because it is the most similar to ones that are
currently in use by OpenAire. This one is cylindrical in shape and only detects metal objects.
Operating in a range of 6-24V DC it consumes a moderate amount of power, and senses an object
up to 4mm away. This sensor best detects objects that are made up of a ferrous material, while
nonferrous materials can decrease the sensing range up to 60%. The main selling point of this
device is that is durable in outdoor environments against dirt and moisture. The main downside for
us it that this sensor retails at about $260.00 USD with a grand total of $920.00 USD after fees,
taxes, and shipping, making it just above our price range for a sensor.

The Panasonic GX-F12A is much less expensive sensor at $24.26 USD which is well within the
amount we are willing to spend, however we must decide if it works well enough for us to

Page 26

implement. This sensor has a maximum sensing distance of 4 mm, stable sensing distance of 3.3
mm, and a variation of +/-8% at maximum. This sensor requires 12V-24V DC +/1 10% which is
within the same range as the Alselectro sensor. This sensor also claims to be durable as it went
through multiple shock tests in production and is encased in plastic making it weather proof and a
good contender for this project.

Hall Effect Proximity Sensor - The MP102103 Hall effect sensor Operates in the same range as
the two inductive sensors of 4.5V-24V DC [a]. It has a maximum sensing range of 4mm and is
housed in a glass reinforced casing. By inspection, this sensor is similar to the inductive sensors,
however its working motivation is driven by different physics. Also different from the inductive
sensors, Hall-Effect sensor all seem to be available at lower price ranges. Compared to the
inductive counter parts, the MP102103 has a cost of $5.41 USD. However it is known that
magnetic proximity sensors need more regulation than the inductive ones, but the amount of
available resources will assist us in making any changes needed to our circuit in order to produce
an accurate measurement.

Below, in Table 14, is a summary of the above paragraphs followed by a final decision for our
preferred proximity sensor.

Table 13: Proximity Sensor Options Characteristics

Type Part Number Supply
Voltage

Measuring
Range

Sensing
Objects RoHS Cost

Inductive Proximity
Sensor Metal 6-24V DC 4mm Ferrous

Metal Yes $920.00

Inductive GX-F12A 12-24V
DC 4mm Ferrous

Metal Unknown $24.26

Hall
Effect MP102103 4.5-24V

DC 4mm Magnetic
Material Yes $5.41

For this sensor the clear winner is the MP102103. It has low power consumption, and has the
lowest cost out of all sensors analyzed. Although Hall effect sensors need routine regulating, the
multitude of resources available to us can assist us when picking a target that will generate the
highest signal, making the sensor ignore any other material that might be in range. The resources
available will also assist us in designing regulating circuitry for accurate signal readings.

3.3.1.2 Anemometers

As concluded in section 3.2.1.2. we have decided to have a more in-depth discussion about the
thermal and cup anemometers. This was concluded based on how applicable these sensors are to
our project, and how fast they respond. We will be taking cost and size into consideration as well
when picking this part. Below is a comparison of two different anemometers: the Jacksking cup
anemometer and the Adafruit 1733 cup anemometer.

Page 27

Cup Anemometers - The Jacksking cup anemometer operates at a range of 12-24V DC and has
an accuracy of +/-0.3m/s. It is made out of an aluminum alloy making it lightweight, and good fit
for up to place on top of our enclosure. It requires a start wind speed of about 0.5m/s which is more
than enough considering the American standard of measuring wind as miles per hour. It operates
in a fair range of -40 to +50 degrees Celsius, and can still operate in 100% relative humidity [b].
This is appealing because it makes the sensor durable, and able to withstand any weather conditions
it may encounter at the top of our structure. With a response time of less than 5 seconds we know
it will give us an almost real time insight as to what the conditions are like outdoors, allowing us
to provide the roof with the most current information as it happens.

The Adafruit 1733 is a bit smaller than the Jacksking anemometer, and only needs an input of 7-
24V DC to operate accurately. Measuring up to 70m/s wind speed with a resolution of no more
than 1m/s we know it is accurate, and can respond quite fast. At about $44.95 USD it costs more
than the Jacksking anemometer by about $15.00. Despite the cost, we think this would be a great
sensor to implement besides one fact. The problem we have encountered with this anemometer is
that it contains led in its material makeup. This means it is not compliant with RoHS standards,
which is a major concern for this project since most of our sensors will be outside, and all of them
will be around people.

Thermal Anemometer - As much as we wanted to find a hotwire anemometer to test, we could
not find one that wasn’t already fully built with its own measurement screen and converter. As it
stands with the current market, thermal anemometers are mainly used for sensing the temperature
of fluids. This design does not fit with the needs of our project. Unfortunately, this sensor would
be have to be built fully from scratch and redesigned, which is not a part of our current goals for
this project. As a stretch goal we would like to design and test a hot wire anemometer.

The following Table 15 displays the main characteristics of the sensors discussed, followed by our
final product conclusion.

Table 14: Anemometer Options Characteristics

Type Part Number Supply Voltage RoHS Cost

Cup B07SN1V427 12-24V DC Yes $29.99

Cup 1733 7-24V DC No $44.95

Based on all of the information and products available to us, we have decided to implement the
Jacksking anemometer in our project. Recommended by our sponsor, the cup anemometer is our
best choice for our specific applications. Ultimately, this decision came down to price and RoHS
compliance. Because the Adafruit 1733 is more expensive and not compliant with the RoHS
constraints, we cannot use this component in our final design.

3.3.1.3 Barometric Pressure Sensors

As the team narrowed down the choices, the decision came down to three sensors outlined in the
following table. It appears as though these are the most common technologies used when

Page 28

interfacing sensors with microcontrollers, which is why they were all similar. The three sensors all
fit our needs, so it was small differences that lead to our final decision. Each of the main variables
were looked into and will be discussed for each of the mentioned barometric sensors.

Table 15: Barometric Pressure Sensors Comparisons
Part Name Output Signal Extra Features

MPL115A2 I2C Temperature Sensing

BMP280 I2C/SPI Altitude Sensing

MS5607 I2C/SPI Altitude Sensing

The MPL115A2 is an absolute pressure sensor with a digital I2C output targeting low cost
applications. It employs a MEMS pressure sensor with a conditioning IC to provide accurate
pressure measurements. The MPL225A2 has an accuracy of plus-minus 1 kPa when operating
within the temperature range of -20ºC to 85ºC.

The limits of the sensor are 50 to 115 kPa when it comes to pressure, and operates under the wide
temperature range of -40°C to +105°C. The VDD Power Supply Connection range is 2.375V to
5.5V, Low current consumption of 5 A during Active mode and 1 A during Shutdown (Sleep)
mode. These specs all hint towards a device that can sustain demanding environmental conditions.
When it comes to size, the sensor is a miniature 5 by 3 by 1.2 mm LGA package.

The Adafruit BMP280 I2C or SPI Barometric Pressure & Altitude Sensor is based on Bosch’s
proven Piezo-resistive pressure sensor technology featuring high EMC robustness, high accuracy
and linearity and long-term stability. The relative accuracy (950 … 1050hPa @25°C) is equal to
±0.12 hPa, equiv. to ±1 m, while the absolute accuracy (950 ...1050 hPa, 0 ...+40 °C) is yp. ±1
hPa. The pressure range falls within 300 - 1100 hPa and temperature within -40 - +85 °C [c].

The voltage at which it is operated is within 1.71 and 3.6 V, with a low power consumption of 2.7
µA @1Hz. It is an extremely compact 8-pin metal-lid LGA package with a footprint of only 2.0 ×
2.5 mm^2 and 0.95 mm package height, alongside the low power consumption allow the
implementation in battery driven devices such as mobile phones, GPS modules or watches. This
in turn leads to the impressions that demanding environmental conditions could be sustained by
this sensor.

The last sensor considered was the Micro Altimeter Pressure Sensor MS5607 for Absolute
Pressure, is a new generation of high resolution altimeter sensors from MEAS Switzerland with
SPI and I2C bus interface. This new sensor module generation is based on leading MEMS
technology and consists of a piezo-resistive sensor and a sensor interface IC.. The accuracy at
25°C, 750 mbar is plus/minus 1.5 mbar. When looking at the temperature range falls within -40 to
85 °C and a pressure range of 10 to 1200 mbar. The operating voltage of the device is -0.3 to 4.0
V, and a low power consumption of Low power, 1 µA (standby < 0.15 µA). The sensor has small
dimensions of only 5.0 mm x 3.0 mm and a height of only 1.0 mm allow for integration in mobile
devices.

Page 29

As one can see it is a very small differences that separate the common technologies out in the
market. All the sensors analyzed in this case were MEMS based and had SPI/I2C output
communication with the microcontroller. All had similar power consumption, all fell within the
necessary specifications when it came to temperature and pressure ranges and had similar prices.
In the end, however, the team decided to go with the Adafruit BMP280 I2C or SPI Barometric
Pressure & Altitude Sensor. This device check listed all the boxes when it came to Precision,
Pressure sensitivity, Pressure and temperature limits, Energy consumption, Operation [7] [8]
environment, and size.

The other sensors had similar attributed, however it appeared as though this sensor had better
documentation than the rest, and deemed most flexible when it came to incorporating with our
selected microcontroller. The output units were also much easier to work with in comparison to
the other devices. Below is a schematic, followed by an image of the dimensions.

3.3.1.4 Integrated Temperature and Humidity Sensors

Humidity is the measure of moisture within the air at certain temperatures. There are three different
types of humidity sensors, or hygrometers: capacitive, resistive, and thermal. Determining relative
humidity is dependent on the kind of sensor and the type of dielectric that is used in them.
Temperature sensing is the measure of heat within an object or substance.

This can be done my measure the change in resistance of an object, and converting this resistance
into a voltage, or it can be done via the implementation of diode whose properties are directly
affected by temperature. For this project, accurate measurements are important for effective roof
functionality. Precision takes a back seat when it comes to the project’s measurements as drastic
weather events will cause large enough changes in the humidity and temperature. The different
kinds of sensors and their accuracy and other characteristics are examined in the following
sections.

Capacitive Humidity Sensor -Capacitive humidity sensors measure electrical capacitance when
moisture makes contact with the sensor. Capacitive humidity sensors are very precise, as the
moisture changes, the output voltage from the electrical capacitance changes. Capacitive humidity
sensors can operate in humidity in the range of 0% to 100%, while some have more accurate
readings within that range. Most capacitive humidity sensors range from about 150 pF to 200 pF
for capacitance.

The first option for a capacitive sensor is the ENS210 from amsDesign. It is an integrated humidity
sensor and temperature sensor, allowing for accurate interpretations of the sensor’s readings. The
sensor has an I2C interface for communication and recalibration, although the chip already comes
pre-calibrated. The ENS210 in particular is a good option for low power.

The chip operates in standby mode, with the only the I2C receiving on, and when a measurement
command is sent, the chip will boost to active and begin a measurement. The boost to active takes
approximately 1 millisecond. This is helpful for reducing power consumption and managing the
amount of data received by the board. More electrical and data characteristics are outlined in Table
17 below.

Page 30

The second option for a capacitive sensor is Sensirion’s SHTW2 integrated humidity and
temperature sensor. The sensor includes an A/D converter and uses an I2C communication
interface [d]. The sensor operates mainly in idle mode to conserve power, waiting for a
measurement command from the microcontroller. Although this sensor does come equipped with
a temperature sensor, we will only be using it for backup as we plan to integrate another
temperature sensor into our system for better accuracy.

The third option for a capacitive humidity sensor is Sensirion’s SHT-85 integrated humidity and
temperature sensor. This sensor is built to last with its protective plating that keeps dirt and dust
build-up off the sensing plates, allowing for a more accurate measurement. This feauture is great
for outdoor applications as residue can build up over time from rain, debris, and bird droppings.
This sensor provides a digital output with I2C capabilities, which is what is preferred by the team.
Further specifications are outlined in the table below.

Although each measurement command triggers both the humidity and temperature measurements,
part of the command can be coded to distinguish which measurement is read first. Since this chip
would be used mainly for humidity measurements, this allows for quick measurement readings. A
measurement reading takes a maximum of 14.4 milliseconds. For more comparison of electrical
and data characteristics, reference Table 17 below.

Resistive Humidity Sensor - Resistive humidity sensors are similar to capacitive sensors, in how
they function. When moisture is absorbed by the hygroscopic material within the sensor, the
change in resistance is measured. Resistive humidity sensors have a smaller range in measuring
humidity, only between 5% to 90% relative humidity can be measured. In lower humidity ranges,
resistive humidity sensors tend to perform poorly. Lower temperatures affect the performance the
sensor as well.

The following table compares both capacitive and resistive humidity sensors. The characteristics
that would affect the project the most are evaluated. This means focusing on their power on
voltage, response time, accuracy, operating range for relative humidity, and extended performance
expectancy.

Telaire’s HS30P is a low cost and low power option for a resistive humidity sensor. It only requires
1 Volt of power, and the resistive output changes as moisture makes contact with the sensor.
Unfortunately, extra circuit design would be needed to measure that change of resistance, but that
could be as simple as another capacitor whose voltage would be measured, and any change would
signify a humidity change. HS30P does have a long response time due to the extra circuitry
needed.

The other option for a resistive humidity sensor is the HCZH88 from MultiComp. Similar to
HS30P, additional circuitry is needed to measure the difference is resistance as the humidity
changes. The response time for the resistive changes is quicker than its competition, aiding in
accurate and fast measurements, which this project requires. Other characteristics for this sensor
can be found in the Table 17 below, comparing it to all the other options for this sensor in the
project.

Page 31

The following Table 17 will compare all humidity sensing options considered above, looking at
supply voltage, accuracy, humidity operating range, lifetime, etc. This comparison is followed by
a discussion that includes the final decision for out project.

Table 16: Humidity Sensor Option Characteristic Comparison

Type Part
Number

Supply
Voltage Accuracy Humidity

Range
Response

Time

Extended
Expectancy
(per year)

RoHS

Capacitive ENS210 3.6 V +/-4%RH 0-100% 3-5 sec +/-0.25% RH Yes

Capacitive SHTW2 1.8 V +/-3%RH 0-100% 8 sec +/- 0.25% RH Yes

Capacitive SHT-85 3.3V +/-1.5% RH 0-100% 8 sec <0.25% RH Yes

Resistive HS30P 1 V +/- 5%RH 20-95% 120 sec +/- 1% RH Yes

Resistive HCZH8B 1 V +/- 3%RH 20 - 90% < 10 sec +/- 2% RH Yes

To be accurate and effective in a timely manner of changes in the weather surroundings of the
project’s structure, the SHTW2 is selected as the humidity sensor for this project. With a better
range in measuring relative humidity, and an average response time of all the possible options, it
is the best choice for meeting the goals of accuracy and speed. Having power consumption in mind,
the SHTW2 also has a lower required power supply voltage than it’s competing capacitive sensor.
The SHTW2 can also act as a backup thermometer sensor if the main thermometer sensor is
damaged or loses power.

In addition to the SHTW2, we will also be acquiring an SHT-85 as well as back up. This part has
all the same capabilities with slightly better specifications. A slightly higher voltage is easier to
achieve with our proposed power module, and its accuracy is two times better than the SHTW2.
All other specifications are the same.

Thermistor - The chosen component for temperature sensing is a thermistor. Measuring the
change in resistance of the component’s material, an output voltage can be measured, and from
this a temperature can be calculated. Three different sensors, all NTC (Negative Temperature
Coefficient) type, are compared in the following paragraphs and from this, a part is selected. The
compared components are the SMD 0603, PR103J2, and B57863S, two of which include a two-
wire connection, and the other is a surface mount connection.

The first option is the Vishay SMD 0603 NTC surface mount thermistor. It comes in a protected
case, which allows for it to be used for outdoor temperature measurement. It requires at least 5.6V
for operation and has a resistance tolerance of 1%. It is accurate and provides a stable, almost
linear output versus temperature. However, the regulating circuit to be built around the sensor
requires multiple extra parts such as an operational amplifier, thus needing multiple input sources.
This sensor would also require the implementation of an additional PCB to be wired to the main
circuit, so that it is away from any heat emitted by the PCB. Although this part is only $1.12 USD,

Page 32

the number of additional components required to produce a stable and measurable output, was not
deemed worth it by the group.

The second option is the LittelFuse PR103J2 bead thermistor with two copper wires and an epoxy
coating on the resistive material [e]. This thermistor is small with a fast-thermal response, long
life, and high stability. It has 10k ohm resistance at 25 degrees Celsius with a resistive tolerance
of 0.05% and a measuring range of -55 to +80 degrees Celsius. This part requires a simple voltage
divider, aka, the implementation of another 10k ohm resistor. Then a simple series of calculations
within the program will output the measured ambient air temperature. At a cost of $8.12 this
component is one that was highly considered for implementation.

The final comparison done was with the EPCOS (TDK) B57863S NTC bead thermistor. This one
operates similarly to the PR103J2 except it has a higher resistance tolerance at 1% and a lower
cost of $2.93 USD. This thermistor was placed through a series of tests by the manufacturer to the
effect of storage conditions, temperature cycling, endurance, and long-term stability, all with no
visible damage to the thermistor. This thermistor also requires the same circuitry needed as the
PR103J2, which is a simple voltage divider with minimal code manipulation.

Table 17: Potential Temperature Sensor Characteristics

Type Part
Number

Power
Rating

Resistance
Tolerance

Measuring
Range

Response
Time RoHS Cost

Surface
Mount SMD0603 30mW +/-1% -40 - +150 oC 1-8 sec Yes $1.12

Bead PR103J2 30mW +/-0.05% -55 - +85 oC 1-10sec Yes $8.12

Bead B57863S 30mW +/-1% -55 - +150 oC 1-15 sec Yes $2.93

Using the above comparisons, we ultimately decided to go with the B57863S. This decision was
due to its simplicity in implementation, and low cost compared to the other sensors. Although it
has the slowest response time out of all three sensors, we have decided that this characteristic is
not as important as temperature tends to change gradually throughout the day.

We have also decided that the resistance tolerance value is not a major deal because we want to
measure drastic changes in temperature, and a couple degrees off of the actual temperature will
not cause the system to fail. Because the price of the B57863S is four times less than the sensor
that is two times more accurate, the compromise here was to go with the cheaper, and slightly less
accurate part. This decision was also made with circuitry design in mind. The smaller cheaper part
was found to be easier to implement in our system.

For a better and more accurate description of the outside weather, we have decided to go with both
a humidity sensor with temperature sensing capabilities, and an additional temperature sensor.
Temperature and humidity go hand in hand as the dew point outside can have an effect on the feel
of the temperature. This humidity effect can cause discomfort to the activities within the building
and also be indicative of something worse to come. It is known that high humidity usually leads

Page 33

to precipitation, so having both sensors and allowing them to communicate will provide better
prediction services by our system, making for a better product.

3.3.1.5 Rain Sensors

For this section, two types of rain sensing techniques will be further analyzed in order to make a
decision on which will be implemented into the project. The constraints and specifications that
will be considered are: RoHS compliant, ease of implementation into circuit and software, cost,
accuracy, and size. As concluded in section 3.2.1.6, we have decided to further analyze the
conductive and optical sensors, as they were deemed the most accurate out of the four types of
sensors compared.

Conductive Rain Sensors - The two capacitive rain sensors that will be compared in the following
sections are the Vaisala DRD11A rain detector and the Vaisala YL-83 rain detector. These follow
the principle of fringe fields as they emit an electric field outward onto the coating that covers the
copper plating, and creates a change in capacitance once in contact with different solutions. Both
have been configured to accept contact with ambient air as their normal, and only the specific
capacitance changes due to water will set off signal to the output of the circuit.

The DRD11A, manufactured by Vaisala, has a capacitive plat angled at 30 degrees as to not let
water moisture accumulate on its surface. This allows for better accuracy when sensing rain not
just a morning dew. It also comes with a snow detection setting, and heats itself just enough to
melt off any snow from accumulating on the surface.

With a detection delay of less than 0.1ms and an off delay of less than 5 minutes, it ensures that
the rain has fully subsided before signal that it is no longer raining. It operates at a voltage of 12V
DC +/-10% and consumes around 0.3W of power. When a low signal is sent to the output, this is
the sensors way of signaling that there is rainfall. At a price of $1,1152 USD this sensor, although
extremely accurate and well fit for this project, is too expensive for us to use.

The YL-83, also built by Vaisala, is much more simplified and lower power version of the
DRD11A [12]. This sensor comes with the capacitive plate, and the regulating integrated circuit,
which produces a digital and analog output to indicate rain and measure the strength of the rain,
that can be easily read and converted to an on or off signal by our software. This sensor operates
at 5V DC and sends a high signal when rain is detected.

The response time being about 1sec it is much slower than the DRD11A, but we have accepted
this as a compromise as it consumes less power and only puts us back $7.81 USD from Walmart.
Because it comes with its own microchip that includes and LM393 regulator, we know it will be
much easier to implement and will produce a stable output. This electrical board that comes with
the YL-83 will also allow for an easy connection as it only requires a four-wire connection to be
made to the sensor and the microcontroller.

Optical Rain Sensors - Most optical sensors that aren’t configured specifically for cars, are
configured for motion sensing applications. However, these motion sensors can still be used to
detect rain with a little tweaking in the code. We have decided to look into the PIR-02 sensor by

Page 34

OESPP, and the GRS390 all built by Equalizer. The same standards apply to these sensors as they
did to the capacitive sensors. We will be looking at price, ease of implementation, response time,
and power consumption.

The PIR-02 is an optical motion sensor that, we believe, can be utilized for rain sensing if
configured properly within the code. This sensor has a response time of 2.5 – 250 sec depending
on the amount of resistance applied to the sensor.

Using an input of 5V, this sensor consumes low power, which is ideal, and it connects easily to
the PCB by only three wires. However, we would have to do a very in depth test to see how this
sensor responds to rain, and ensure that it only goes off for rain fall. Because it is primarily a
motion sensor, a bird or debris flying through the sensors line of vision could potentially cause an
unwanted response, which could prove to be difficult when implementing this sensor into our
project.

The GRS390 is manufactured to work for various vehicles, but it is configured to be a rain sensor.
This allows for minimal code manipulation, however the wiring to our main PCB could potentially
prove to be difficult. Because this sensor is made for vehicles, it requires a much larger power
supply of 24V AC. On the other hand, it responds fairly quickly to rain detection, making it a good
option.

Another downfall of this sensor, is that there not many available resources on how this could
implement into our system. The handbook and other resources for this component only show the
implementation of this sensor into a vehicle. This makes the sensor much more difficult to
implement because we will have nowhere to go if we cannot get it to operate correctly. At $55.96
this price point is a little too high to make any struggle we encounter worth it.

Table 18: Potential Rain Sensor Characteristics
Type Part Number Supply Voltage Response Time RoHS Cost

Capacitive DRD11A 12V DC < 0.1ms Yes $1,152.00

Capacitive YL-83 5V DC 1 sec Yes $7.81

Optical PIR-02 5V DC 2.5-250 sec Yes $8.95

Optical GRS390 24V AC < 120 sec Yes $55.96

Looking at the above chart it is easy to see the clear winner. With the lowest cost, and even one of
the shorter response time, the YL-83 is the obvious choice for this project. It is easy to implement,
as it has a multitude of resources available, and it is already configured to sense the presence of
rain without doing any signal manipulations in the code. The other sensors, although great for their
specific applications, are either too expensive, too difficult to implement, or both, thus leading us
to our final choice of the YL-83 rain sensor.

Page 35

3.3.1.6 Light Sensors

As concluded in section 3.2, our choice of light sensing technology is the simple and
environmentally friendly photodiode. The two photodiodes that we will be using are visible light
sensitive photodiodes, with operating frequencies of around 400 – 700 nm, and ultraviolet (UV)
light sensitive photodiodes, with operating frequencies of around 100 – 400 nm. The choice to use
two different types of light sensing diodes is based on the comfort of the customers inside the
enclosure. Visible light sensing is useful for determining cloud coverage or time of day. The UV
light sensor will be used to detect harmful light rays in order to keep customer out of harm’s way
while enjoying the facilities inside the enclosure.

The visible light sensor will be used to measure the amount of light that is flooding into the
enclosure that is topped by the roof. The ultraviolet light sensor will be used to measure the amount
of harmful-to-humans UV light that is flooding into the enclosure. The main goal of the UV light
sensor is to avoid excessive exposure of the occupants in the enclosure to skin-damaging UV light.

Visible Light Sensors - The visible light sensors we will be selecting will be based on their ease
of soldering and their level of efficiency. It will also be based on the communication capabilities
they possess, as we must be able to read the signal data from the sensor in order to control roof
operation as accurately as possible. Based on these criteria, our options include the ODD-5W
photodiode, ALS-PT19 photodiode, and OPT101 integrated photodiode with transimpedance
amplifier.

The first option, the ODD-5W photodiode is a through-hole diode in a TO-5 package. With its
beefy package, it is capable of handling high reverse-bias voltage of at most 60 V and accurately
responds to changes in light with its changing current within 10 ns. The diode has a spectral range
of 300 – 1000 nm, well within the visible light spectrum. The light current will vary from a
minimum of 1 nA up to 100 µA. This diode also has I2C communication capabilities, perfect for
implementation into our system. The main downside to this option is its hefty price of $15.89 per
part.

The second option is the ALS-PT19, which is a surface-mount photodiode with a much smaller
package. Since it is much smaller, it is only capable of handling a maximum supply voltage of 6
V. The diode has a smaller spectral range of 400 – 700 nm, which is still within the visible light
spectrum that we are concerned about. The light current will vary from a minimum of 5 µA up to
520 µA. This option has a very reasonable price of just $0.43 per part.

The last option is the integrated photodiode and transimpedance amplifier that is labeled as
OPT101. This one is an 8-pin IC with a wide supply voltage range of between 2.7 – 36 V, internal
feedback, and internal transimpedance amplifier for easy integration into our sensor system [f].
The photodiode on the chip has a spectral range of 400 – 1000 nm, which is within the visible light
spectrum. This sensor also has I2C capabilities making it easy for us to read and analyze the data
it will be sending to our microcontroller.

The last option, the OPT101, is the most impressive option, since we will be able to integrate this
IC into our design without having to worry about leakage current errors, noise, and gain peaking

Page 36

when designing our own transimpedance amplifier. In addition to these positives, the IC package
means that our design is compact and costs just $8.80 per part. This means we will have saved
space and unneeded effort when designing our printed circuit board (PCB).

The comparison between all the visible light sensor parts is summarized in Table 20 below.

Table 19: Comparison of Visible Light Sensing Parts

Part Name Components Cost Spectral Range Maximum
Voltage

ODD-5W Photodiode $15.89 300 – 1000 nm 60 V

ALS-PT19 Photodiode $0.43 400 – 700 nm 6 V

OPT101 Integrated Photodiode and
Transimpedance Amplifier $8.80 400 – 1000 nm 36 V

The clear winner in this case is the OPT101. With its compromise on both price point and size in
comparison between all three competitors, the integrated photodiode and transimpedance amplifier
simplifies the overall design of the sensor module and allows us to save board space and provide
an accurate reading of illumination.

UV Light Sensors - The UV light sensors, much like the visible ones before, will be selected
based on their ease of soldering, their level of efficiency, and their designed communication
capabilities. . Based on these criteria, our options include the SD040 analog UV photodiode and
the VEML6070 UVA light sensor with I2C interface.

The first option is an analog-output photodiode with a spectral range of 350 - 1050 nm. In a 1206
SMT package, this photodiode is easy to solder while also having a very small board footprint. It
is also an analog-output sensor, allowing easy integration into a transimpedance amplifier that can
then be connected to the microcontroller’s on-board ADC ports. On the other hand, this
photodiode’s spectral responsivity range is far too wide to be a dedicated UV light sensor.

There arises an issue that, although visible light and no UV is entering the enclosure when the roof
is closed, this sensor might provide a false reading that shows that there is too much UV in the
enclosure. This can be circumvented by designing a low-pass filter that will filter out the lower
frequencies of visible light photons. However, this filter will take up space on the printed circuit
board (PCB), which isn’t required if another more accurate part is chosen.

The second option is a digital-output photodiode with an I2C interface. The VEML6070 comes
with an SMT package that contains an integrated photodiode, low pass filter, and I2C interface
that allows for digital communication between the chip and the microcontroller [g].

The comparison between all the UV light sensor parts is summarized in Table 21 below. This
comparison is then followed by a final discussion on our choice of UV light sensor.

Page 37

Table 20: Comparison of UV Light Sensing Parts

Part Name Extra Circuitry Required Cost Spectral Range Maximum
Voltage

SD040 Low Pass Filter,
Transimpedance Amplifier $1.91 350 – 1050 nm 50 V

VEML6070 I2C Support Circuitry $2.77 280 – 400 nm 5.5 V

From the comparison, we are choosing to go with the VEML6070. While it has a much lower
maximum supply voltage and a higher price, the integrated UV sensor with low pass filter,
temperature sensor, and I2C interface makes it a much more integrable candidate for the UV light
sensor. With the VEML6070, we will need to add I2C support circuitry to ensure it can adequately
interact with the microcontroller.

3.3.2 Power Module Parts

To power the whole unit: sensors, motors, and communication modules included, solar panels and
a lithium battery with be utilized together. In order to meet the hardware’s power consumption and
also maintain optimized energy efficiency, the hardware for the power modules will be analyzed
and compared to find the best equipment for the project.

Included in the power module is a solar panel subsystem, a battery management system, a lithium
ion battery pack, a reverse polarity protection interface, and separate voltage regulators for the
+12V, +5V, and +3.3V power lines.

3.3.2.1 Solar Panels

By comparing several products that have abundant availability on Digikey.com, we will decide on
which solar panel to use to power the autonomous roof system.

The Kitronik Polycrystalline Solar Cell 1W, 5.0 V is a polycrystalline solar cell capable of
supplying an open-circuit voltage of 5.0 V and a maximum current of 200 mA. The cell has
dimensions of 110 mm x 110 mm x 3 mm. It has an efficiency of ~13%.

The IXYS Monocrystalline Solar Cell 1W, 6.9 V is a monocrystalline solar cell capable of
supplying an open-circuit voltage of 6.91 V and a maximum current of 205 mA. The cell has
dimensions of 90 mm x 65 mm x1.8 mm. It has an efficiency of ~25%.

The Speed Technology Monocrystalline Solar Cell 1W, 8.2 V is a monocrystalline solar cell
capable of supplying an open-circuit voltage of 8.2 V and a maximum current of 170 mA. The cell
has dimensions of 100 mm x 75 mm x 1.5 mm. It weighs just 33 g and has an efficiency of 15.5%.

To diverge from the low-power solar cells available on Digikey, the ECO-WORTHY solar panel
is a polycrystalline solar panel module capable of supplying up to 12 V and 5 W of power [h]. This
will allow the solar panel to provide enough energy to be used in case the lithium battery is not

Page 38

usable at some particular moment. This solar panel has an aluminum frame for durability and has
dimensions of 255 mm x 194 mm x 17 mm. This solar panel is purchasable from Amazon.com,
which is conducive to manufacturability by being readily purchasable.

Solar Panel Selection Conclusion - While weighing all relevant factors, Table 22 was constructed
that organizes everything in an easy-to-reference format to accurately consider all solutions.

Table 21: Solar Panel Comparisons

Solar Panel
Company

Supply Voltage
(V)

Max Supply
Power (W)

Dimensions
(mm3)

Unit Price
($USD)

Kitronik 5.0 1 110 x 110 x 3 $22.45

IXYS 6.9 1 90 x 65 x 1.8 $21.77

Speed Technology 8.1 1 100 x 75 x 1.5 $12.74

ECO-WORTHY 12.0 5 255 x 194 x 17 $13.45

From the table we constructed comparing the solar panel options, it was easy to deduce that the
ECO-WORTHY 12 V 5 W solar panel system would be the best candidate to integrate into our
autonomous smart roof system. With an impressive maximum power output of 5 W and a high
open circuit voltage of 12 V, the one solar panel module would remove the necessity of having a
large array of solar cells in order to provide enough power to microcontrollers, sensors, and output
motors. This saves us space when designing the dimensions of our building, and assists us from
having to design a solar array specific to our needs.

Not only is the single solar panel capable of delivering an exceptional amount of power, it is also
a lower-cost solution compared to the amount of money that would be required to create the array
of lower-powered solutions. As a stretch goal, we would like to implement more solar panels to
provide the bulk of the power, and use the battery packs as an additional power source for days
when the solar panels are unable to provide an adequate amount of power.

3.3.2.2 Lithium Ion Batteries

The lithium ion batteries we will be looking to add to our project will be housed in an 18650
package in order to easily integrate the battery pack into an off-the-shelf battery enclosure. The
parts that we will have selected will be based primarily on nominal capacity and integration ability.
In order to provide support, the batteries will be held in plastic holders. These precautions must be
taken with lithium-ion batteries because when not handled and taken care of properly, can be very
dangerous.

Batteries - The lithium ion batteries we will be comparing are ones found on Digikey.com and
Amazon.com. The batteries that we have chosen as candidates are the PRT-13189 from SparkFun
Electronics and the 1781 from Adafruit Industries, LLC. The relevant data pulled from their
datasheets are summarized in Table 23 for comparison.

Page 39

Table 22: Lithium Ion Battery Package Comparison

Li-ion Battery Part Nominal Capacity Unit Price ($USD)

PRT-13189 2.6 Ah $6.50

Adafruit-1781 2.2 Ah $9.95

From the comparison conducted, it is obvious to choose the PRT-13189 [i]. This lithium ion battery
package comes an impressive nominal capacity of 200 mAh more than the competition while being
priced at only $6.50 per unit. It also comes with a soldering tab so that we can avoid soldering
directly to the battery, which can often damage the battery if careful considerations are not taken.

Plastic Holder - The plastic holder that will be used to separate and contain the lithium ion
batteries. This will help with securing the batteries close together and on the enclosure. The two
options we have include the Ltvystore battery case holder from Amazon.com and the EV plastic
battery spacer from Ebay.com.

The option we will go with will be the EV plastic battery spacer from Ebay.com due to easy of
ordering and shipping. With its origin of shipping from within the United States, and its use
specifically for 18650 cell packages, the EV plastic battery spacer will be the best candidate for
the plastic battery holder.

3.3.2.3 Battery Management System

The battery management system will be responsible for managing the battery charging and
discharging cycle. Since the safety of both the entire autonomous roof system and the users
handling this system are of utmost importance, the battery management system chosen will have
to be very reliable and capable of operating for longer than the lifetime of the lithium ion battery.

The battery management system will need to be very accurate, with constant-voltage, constant-
current charge cycles that maintain a 0.5 – 1 C charging rate to our lithium ion batteries to preserve
their health. This means that, at a constant charge voltage of 4.1 – 4.2 V, the battery management
IC will need to facilitate at most 1.3 A to the lithium battery. In addition, beneficial features to
have in the BMS IC would include temperature monitoring and emergency safety termination that
will stop all charging until it is reset.

Of course, these features will also have to be balanced with cost and integration ability. With these
conditions and constraints in mind, our options for battery management ICs include the
MCP73842, LT3650-4.2, and the BQ2057. A pre-assembled battery management system is also
considered from Amazon.com.

The relevant information is assembled into Table 24 for accurate comparison. The fault protection
theses battery management systems provide as well as any external circuitry we may have to build
are large portions of our considerations. Additionally we need a battery management system that
can handle the amount of power that will be sent to it from the battery pack and solar panel.

Page 40

Table 23: Battery Management System Integrated Circuits (BMS IC) Comparison

BMS IC Manufacturer
Unit
Price

($USD)

Input Voltage
Range Fault Protection External

Components

MCP73842 Microchip
Technology $1.29 4.5 – 12 V

Overcurrent,
Overvoltage,

Overtemperature

6 passive,
2 active

LT3650-
4.2

Linear
Technology $7.14 7.5 – 32 V

Overcurrent,
Overvoltage,

Overtemperature

5 passive,
2 active

BQ2057 Texas
Instruments $2.11 4.5 – 15 V

Overcurrent,
Overvoltage,

Overtemperature

8 passive,
2 active

HX-3S-
001 DIY MORE $3.00 12 V

Overcurrent,
Overvoltage,

Overtemperature
None

Since the differences between the options were relatively minor, it was concluded that the
MCP73842 would be the better candidate to begin prototyping with. The fact that it is not pre-built
but has a very low unit price of just $1.29 and needing just 8 extra components means that the cost
to manufacture remain low [j].

In addition to its low price, it has the necessary fault protections to adequately maintain the lithium
battery pack throughout its lifetime. It will be easy to integrate into our battery management system
with the help of the reference and application designs provided in the datasheet.

3.3.2.4 Voltage Regulators

The voltage regulators will be responsible for taking the unregulated input voltage from the lithium
ion batteries and holding them at 12, 5 and 3.3V power lines.

12V Regulator: Buck/Boost IC - The 12V regulators we will be focusing on will be buck/boost
converters due to the varying input of the lithium ion battery pack. With a 3-series lithium ion
battery pack, the expected input voltage to the system will vary between 11.1 – 12.6 V. This will
also allow flexibility in case we wish to change our set-up for the lithium ion battery pack.
In addition to this, the 12 V regulator, being the main interface between the lithium battery pack
and the entire autonomous roof system, it will need to handle the most power flowing through the
chip. Lastly, the regulator will need to have an efficiency of 80% or greater with a reasonably low
number of external components needed to maintain such efficiency.

Page 41

For this reason, Texas Instruments’ WEBENCH® power designer tool is used. From this tool, and
for our specific application, we are recommended the LM25118 Wide Voltage Range Buck-Boost
Controller [k]. In addition to the designs recommended by the TI WEBENCH® tool, we chose to
compare the LT1370 and MC34063 switching converter circuits from Digikey.com. The relevant
information is pulled from the datasheets and assembled into Table 25 for accurate comparison.

Table 24: 12V Regulator Comparison

Part
Number Manufacturer Unit Price

($USD)

Input
Voltage
Range

Maximum
Power

Handling
Topology

LM25118 Texas Instruments $6.88 3.0 – 42 V 2 W Buck/Boost
Controller

LT1370 Linear Technology $14.89 2.7 – 30 V 2 W Buck/Boost
Converter

MC34063 STMicroelectronics $0.58 3.0 – 40 V 0.625 W Buck/Boost
Controller

From the comparison, we are deciding to go with the LM25118 Buck-Boost Controller. Despite
its simpler topology which requires more external components, the LM25118 presents the best
performance buck-boost system on a chip which has an appropriate amount of power handling
with a wide input voltage for maximum flexibility with our battery system.

12V Regulator: Buck/Boost MOSFET - The LM25118 requires additional transistors to drive
the buck-boost controller’s output. These transistors are known as high-side buck MOSFET and
low-side boost MOSFET [j]. In the following sections, we will be comparing different parts that
can handle the amount of power that will be expected in the buck/boost cycles of the buck/boost
controller. For simplicity, we will be utilizing the design in the typical application circuit published
in the datasheet since its application similarly matches our own application.

From the WEBENCH® power designer tool, the CSD16340Q3 N-channel power MOSFET is
recommended for the high-side buck MOSFET and the BSC046N02KS-G N-channel power
MOSFET is recommended for the low-side boost MOSFET. The LM25118 lists the Si7148 N-
channel power MOSFET in its typical application circuit published in its datasheet.

For now, we will be choosing the Si7148, mainly for simplicity in our design. While its package
may be difficult to work with, we can change it later in case the package proves too cumbersome
to integrate into our design.

5V Regulators - The 5V regulator in our project will be responsible for receiving the 12V power
line produced by the 12V regulator and stepping it down to 5V. Due to its only responsibility being
stepping down voltage, it is appropriate to use a step-down buck converter in order to achieve this.
Similar to the other regulators, our main priority in choosing the 5V regulator will be high

Page 42

efficiency with reasonable costs. Because of the very small variation in input voltage, the minimum
number of external components should be needed in order to step down the voltage.

Similar to the other regulators, we will use both the TI WEBENCH® power designer tool and the
Digikey.com search function in order to find the appropriate systems to integrate into our design.
From the WEBENCH® design tool, it is recommended to use either the TPS563231 or the
TPS561208 3A or 1A, respectively, step-down converter. From Digikey.com, we have chosen to
field the LM2596 step-down regulator as a candidate. The relevant information is pulled from the
datasheets and assembled into Table 26 for accurate comparison

Table 25: 5V Regulator Comparisons

Part Number Manufacturer Unit Price
($USD)

Maximum
Current Handling

TPS563231 Texas Instruments $0.85 3 A

TPS561208 Texas Instruments $0.85 1 A

LM2596 Texas Instruments $5.72 3 A

While the TPS56X series voltage regulators provide adequate current handling capability with an
incredible small price, the LM2596 would be a much more appropriate chip for our application.
The TPS56X series voltage regulators are only available in the very tiny SOT-563 package, while
the LM2596 provides variety in the packages available to use in our design [l]. For this reason,
despite the much higher unit price for similar features, the LM2596 will serve as the 5V regulator
in this project.

3.3V Regulators - The 3.3V regulator in our project will be responsible for receiving the 5V power
line produced by the 5V regulator and stepping it down to 3.3V. Due to its only responsibility
being stepping down voltage, it is appropriate to use a step-down buck converter similar to the 5V
regulator in order to achieve this. Similar to the other regulators, our main priority in choosing the
3.3V regulator will be high efficiency with reasonable costs. Because of the very small variation
in input voltage, the minimum number of external components should be needed in order to step
down the voltage.

In addition to the low variation in voltage input and output, the 3.3V regulator is not expected to
handle much power being dissipated across its package. For this reason, we will be comparing
devices that may use either the step-down regulator technologies or linear regulator
technologies. Similar to the other regulators, we will use both the TI WEBENCH® power designer
tool and the Digikey.com search function in order to find the appropriate systems to integrate into
our design.

The parts we will be comparing are the LT1763 and LM2596. The comparison is compiled in
Table 27. We will be considering efficiency, cost, and ease of implementation into our system.

Page 43

Table 26: Comparison of 3.3V Regulators
Part Name Manufacturer Regulator Type Efficiency Unit Price ($USD)

LT1763 Linear Technology Linear Dropout 82.5% $4.72

LM2596 Texas Instruments Step-Down Switching 75.0% $5.72

From the comparison above, it is clear that the LT1763 from Linear Technology provides superior
performance for a much better price point [m]. Therefore, we will be using the LT1763 Low-Noise
LDO Regulator for our 3.3V regulation.

3.3.2.5 Reverse Polarity Protection P-MOSFETs

The reverse polarity protection P-channel MOSFETs will be responsible for the reverse polarity
protection circuitry that must protect the rest of the power module from an incorrect input of the
lithium ion battery pack.

Texas Instruments’ whitepapers on reverse current protection recommend the IRLML2502 or the
Si2312 MOSFETs for power-path P-channel MOSFET circuitry. The comparison is compiled in
Table 28 below.

Table 27: Comparison of P-MOSFETs

Part Name Manufacturer Rds(on)
@ Vgs = 20V

Unit Price
($USD)

IRLML2502 International Rectifier 0.045 Ω $0.50

Si2312 Vishay 0.031 Ω $0.42

From the comparison above, it is clear that the Si2312 provides a much better Rds(on) for our P-
channel MOSFET acting as reverse polarity. With this low Rds(on) at a cheaper price, less power
will be dissipated across the MOSFET when the lithium ion battery pack is providing power to the
autonomous roof system.

3.3.3 Microcontrollers

The microcontroller will take on multiple roles in this design. The microcontroller will be required
to, with the help of peripheral analog-to-digital converters (ADC), process the weather-related data
from the sensors. From the data, the microcontroller will output a PWM signal that will drive an
external motor and an external fan. The sensors that will be used include barometric pressure,
temperature, humidity, light, wind speed, and pressure plate, meaning there will be a total of 6
sensors whose data needs to be processed. Due to the number of sensors that will be interacting
with the microcontroller, the microcontroller that will be used needs to have enough GPIO ports.

In addition, this microcontroller will interact with an external mobile phone application. The
microcontroller will send information regarding the sensor-gathered data and statuses of the motor

Page 44

and fan drivers to the mobile phone application. In order to enable this feature, a Bluetooth and
Wi-Fi module will need to be interfaceable with the microcontroller.

Lastly, the microcontroller should have enough online application resources to best implement the
design. This means that the microcontroller should be capable of being programmed using a
programming language that is familiar with the software development team. Similarly, the
microcontroller will need to be powerful enough while keeping costs reasonably low.

ATmega1280 - The first microcontroller under consideration is the Atmel ATmega1281. In
summary, this microcontroller is a high-performance RISC-based microcontroller with 128 Kbytes
of flash program memory, 54x GPIO lines, and a plethora of supported peripherals. This
microcontroller can support UART, SPI, and I2C communication. With a CPU speed of 16 MHz,
data processing is exceptionally fast, while keeping operating voltage at a low voltage range of 1.8
– 5.5 V [n].

With the UART, SPI, and I2C communication capabilities, this microcontroller can interface with
digital-output sensor systems that we may need to purchase. The operating voltage range of 1.8 –
5.5 V allows us to keep the amount of voltage regulators that we will need to power all components
of the system to a minimum.

The largest benefits of the ATmega1281 is its 8-channel ADC and large number of GPIO pins.
This ADC can read data from 8 different external sensors with 10-bit resolution. The GPIO pins
can enable many different features in case more can be added. The ATmega1281 can be
programmed in the Atmel Studio 7 development environment. This allows code to be written in
C/C++ or assembly, in which the development team is proficient.

ATmega328 - The second microcontroller under consideration is the Atmel ATmega328. This
microcontroller is a lower-power version of the ATmega1281 with less features. Like its beefier
cousin, the ATmega328 supports UART, SPI, and I2C digital communication, has a low operating
voltage range, and can support many peripherals. With UART, SPI, and I2C communication
capabilities, this microcontroller can interface with digital-output sensor systems that we may need
to purchase. However, it has only 1 UART port, greatly reducing the number of components that
require UART to communicate with a microcontroller. The operating voltage range of 1.8 – 5.5 V
allows us to keep the amount of voltage regulators that we will need to power all components of
the system to a minimum.

The main differences between the chips are that the ATmega328 has 23x GPIO pins, has a 6-
channel, 10-bit resolution ADC, and only 32 Kbytes of flash program memory. The ATmega328
can be programmed in the Atmel Studio 7 development environment. This allows code to be
written in C/C++ or assembly, in which the development team is proficient.

MSP430FR6989 - The third microcontroller under consideration is the Texas Instruments
MSP430FR69x series. This microcontroller is an ultra-low-power microcontroller with 128
Kbytes of FRAM program memory, 63x GPIO pins, and has many opportunities for adding
peripherals. This microcontroller can support I2C, SPI, and UART communication protocols. It
operates at a supply voltage range of 1.8 to 3.6 V.

Page 45

With the UART, SPI, and I2C communication capabilities, this microcontroller can interface with
digital-output sensor systems that we may need to purchase. The operating voltage range of 1.8 –
3.6 V, however, severely limits the voltage range of our voltage regulator network. This may mean
that we would need to have many different voltage levels to power the sensors, motors, and
microcontroller.

Compared to the ATmega microcontrollers above, this microcontroller has a 12-channel 12-bit
resolution ADC, allowing for more analog sensors to be added and with higher-precision data to
be collected. This microcontroller can be programmed using TI’s Code Composer Studio, allowing
the program code to be written in C. In addition to this, the entire senior design group has
experience in programming on the MSP430FR6989 from the Embedded Systems course at the
University of Central Florida. This means that we are all capable of contributing to the coding of
the microcontroller. The main benefits to this microcontroller are the expanded analog-to-digital
converter capabilities and the entire senior design groups’ proficiency in programming this
microcontroller.

Microcontroller Selection Conclusion - While weighing all relevant factors, Table 29 was
constructed that organizes everything mentioned above into an easy-to-reference format to
accurately consider all solutions.

Table 28: Microcontroller Comparisons

Microcontroller
Unit
Price

($USD)

Program
Memory

Operating
Voltage
Range

Digital
Communication

ADC
Capability

ATmega1280 $10.63 128 KB 1.8 – 5.5 V • 4x UART
• 1x I2C
• 4x SPI

16x 10-bit

ATmega328 $1.42 32 KB 1.8 – 5.5 V • 1x UART
• 1x I2C
• 2x SPI

8x 10-bit

MSP430FR6989 $8.40 128 KB 1.8 – 3.6 V • 4x UART
• 1x I2C
• 2x SPI

12x 12-bit

From the table, we were able to quickly deduce that, while the ATmega1280 is much more
expensive than the other options, it provides the best capabilities for our stated goal. The 128 KB
of program memory allow sophisticated algorithms, with as much information as possible, can be
programmed and executed smoothly. This microchip also has adequate amount of pins so we can
connect our multitude of sensors with no space issues.

The wide operating voltage range of 1.8 – 5.5 V allows us to keep the number of voltage regulator
stages to a minimum, which will contribute in keeping both costs low and board size small.

Page 46

As an external-sensor-oriented project such as ours, the 16-channel analog-to-digital converter that
the ATmega1280 possesses, in addition to the plethora of digital communication support and
abundant program memory, provides the flexibility to add as many features to our project as one
might need.

3.3.4 Wireless Communication Modules

To be able to connect to both the web and phone application, the unit must be equipped with both
Wi-fi and Bluetooth capabilities. Since the unit may be placed outside or on top of the structure,
both Wi-fi and Bluetooth are required for full and reliable connectivity to the database and the
user’s phone application. The phone application will need to communicate with the
microcontroller to update user settings and weather data.

The microcontroller will also need to connect to the database to store sensor data, and to receive
predictive data that will drive the trigger for the roof reactions. The Wi-fi will need to handle both
client to client connections and client to access point connections, since Wi-fi will be used to
communicate between the board and the database along with the board and the user’s phone.
Having both Wi-fi and Bluetooth communications will mitigate the loss of functionality of the
roof, if one of the connections is lost due to power or unforeseen errors.

To try and mitigate both cost and power consumption, a module that has both Wi-fi and Bluetooth
would be ideal for the project. One downside of having one module, is that if any damage, or
power loss occurs, both communicative protocols will be lost. But if power is to be lost to the Wi-
fi and Bluetooth modules, it is expected that total power loss is to be expected. The benefit of
lower consumption outweighs that risk as well.

Bluetooth Classes – Before deciding which Bluetooth module we wanted to implement, we had
to find a Bluetooth class which worked with our project scope. There are three Bluetooth classes
all of which have different transmission powers and ranges. The summary and comparison of these
classes can be seen below in Table 30.

Table 30: Bluetooth Class Comparison

Class Transmisson Power Intended Range
Class 3 1 mW <10 meters
Class 2 2.5 mW 10 meters (33 ft)
Class 1 100 mW 100 meters (328 ft)

As seen, Class 1 is the most powerful class with the longest transmission range. Because of this,
we have decided to only investigate Bluetooth Class 1 devices for this project, as a 328 ft range
is more than enough for us. If this were implemented into a full-scale building, multiple
Bluetooth modules could be placed around the building as well as adding the implementation of
Wi-Fi for a more powerful communication between data.

Page 47

CYBT-423028 - The CYBT - 423028 is a dual-mode Bluetooth and low-energy wireless module.
The module’s possible communication modules is compatible with all other hardware for this
project. It is capable of UART, I2C, and SPI, and supports both ADC and PWM functions [o].

There is also a peripheral UART to allow for interfacing any extra peripheral hardware with GPIO.
With the unit being exposed to different weather conditions, the module can handle temperature
ranges from –30 °C to +85 °C. The module has 1024 KB flash memory and 512 KB SRAM to
combat any latency in communication, lowering the risk of data loss due to loss of connection or
power.

The module complies with Bluetooth’s current Core Specification, version 5, and it operates on
the ISM 2.4GHz The minimum voltage for power on of the chip is 1.76 Volts. The CYBT-423028
supports multiple hardware power modes, such as idle, sleep, and Timed-Wake. For transmitting
data, the module requires 5.6 mA, and receiving data requires 5.9 mA. The module has a PCB
antenna and has a dynamic communication range.

nRF24L01 - The nRF24L01 is probably the cheapest and most common radio transceiver. It
transmits on the Industrial, Scientific, and Medical (ISM) band of 2.4 GHz. The nRF24L01 can
be interfaced using Serial Peripheral Interface (SPI) to configure different frequency channels,
data rate, and output power for the communications. There is a built-in power saving mode to
reduce power consumption, but the module still only requires a minimum supply voltage of 1.9
Volts.

The nRF24L01 also comes equipped with Enhanced ShockBurt, which eliminates the need of any
extra hardware or interfaces since the chip can handle its own protocol for receiving packet
acknowledgements and resending packets. The chip functions between -40 °C to 85 °C. For
transmitting data, the chip requires 11.3 mA, and receiving data requires 12.3 mA. The nRF24L01
has a transmission range of 800 meters from a PCB antenna, in open air, and an external antenna
(IPEX) can be used to increase the range.

ESP32 - The ESP32 is another dual module with both Wi-Fi and Bluetooth. The Bluetooth
category is capable of both Bluetooth low-energy and Bluetooth version 4.2. The Wi-Fi category
supports multiple 802.1 protocols. The module can be interfaced with SPI, UART, I2C, and I2S,
which extends to communicating to peripherals via the same protocols. The module is equipped
with 4 MB of Flash data storage but does not include an SRAM. The ESP32 module family can
have either a PCB antenna, or an IPEX antenna for extended communication range. The chip
functions between -40 °C to 85 °C. The minimum power supply voltage is 3.0V.

CC2540 - The CC2540 is a Bluetooth only chip with Bluetooth Low Energy 4.0 capabilities. The
CC2540 uses an RF transceiver with its own 8051 MCU. It also has in-system programmable flash
memory, 8-KB RAM, and many other supporting features and peripherals. Low-power sleep
modes are available as well as short transition times between operating modes. This allows this
product to consume very low amounts of power suitable for our project.

The CC2540 requires minimal external components, and comes with reference designs from if
manufacturer, Texas Instruments (TI), which allows us to have the documentation required to

Page 48

implement correctly. The chip also has five different modes which can be implemented to keep
energy consumption low. These include: Active Mode RX and TX and Power Modes 1, 2, and 3.
With a wide voltage range of 2-3.6V this allows for full RAM and register access in all power
modes activated. The microcontroller available on the chip has 8KB SRAM and 128-256KB of in-
system programmable flash. The peripherals include a 12-Bit ADC with eight channel, one 16-Bit
and two 8-Bit general-purpose timers, twenty-one general-purpose I/O pins, USB interface, and a
battery monitor and temperature sensor.

Software wise, this part comes with a Bluetooth v4.0 compliant protocol stack for single-mode
BLE. This stack comes with the controller and host including: GAP used as the central peripheral,
observer, and broadcaster, ATT/GATT used as the client and server, and SMP for encryption and
decryption. TI also provides software documentation including sample applications for GAP
central peripheral roles, and multiple configuration options.

Wireless Communication Module Conclusion - The design team decided to choose the CYBT-
423028 module to meet the wireless communication needs for this project. The chip is equipped
with both Bluetooth and Wi-Fi capabilities, and most impressively has a dynamic range of
frequencies to combat congestion on the ISM bandwidth. It’s electrical characteristics, plus its
multi-mode options fit the needs of the project the best in remaining effective in its objectives but
low power and low cost.

Along with the CYBT-423028 the team also decided to have the Texas Instruments CC2540
Bluetooth v4.0 chip as a backup. With its impressive functions and capabilities as well as low
power consumption modes, it is a good contender for this project. The main issue with this chip is
its lack of Wi-Fi capabilities, which is a preferred capability by the team. However due to the
constraints of the project, Wi-Fi may or may not be possible to integrate into our system. It is a
stretch goal of ours to enable both communications, but as this is just a small-scale model building,
we will be happy with any mode of communications between the hardware and the software.

3.4 Parts Selection Summary

In this section, we will be summarizing all of our part selections with a table that will outline all
major components that will be included in the initial designs. All part conclusions that were made
in the above sections were also summarized and concluded in sections previous as well. The
following Tables 31 - 33 below contain the outlines of all conclusions made. The following
conclusions were the initial parts that were ultimately tested in our design. The following sections
will then display the communication between technologies as we move toward building the final
product.

Table 31 will be dedicated to the sensor part decisions. This table only shows parts that are just
the major required sensors that we are placing into our design. Any other miscellaneous,
extraneous, or passive components will be excluded for simplicity.

Page 49

Table 31: Sensor Parts Summary

Part Function Part Name

Proximity Sensor MP102103

Anemometer Adafruit 1733

Barometric Pressure Sensor BMP280

Humidity Sensor SHTW2

Temperature Sensor B57863S

Rain Sensor YL-83

Ambient Light Sensor OPT101

UV Light Sensor VEML6070

The following table, Table 32, is dedicated to the power parts. Similar to the sensor list, these parts
are just the major ones we are placing into our design; miscellaneous, extraneous, or passive
components will be excluded for simplicity.

Table 32: Power Parts Summary
Part Function Part Name

Solar Panel ECO-WORTHY 12V 5W

Lithium Ion Battery Pack PRT-13189

Plastic Battery Spacer EV

Battery Management IC MCP73842

Buck/Boost Controller (12V) LM25118

Buck Converter (5V) LM2596

Low Dropout Regulator (3.3V) LT1763

Table 33 summarizes the parts decisions for our microcontroller and integrated Wi-Fi/Bluetooth
module. All other miscellaneous, extraneous, or passive components will be excluded for
simplicity.

Page 50

Table 3: Microcontroller Parts Summary
Part Function Part Name

Microcontroller ATmega1280-16AU

Integrated Wi-Fi/Bluetooth Module CYBT-423028

3.5 Software Development Research

The implementation of the project’s software development is discussed in the following section.
While the capabilities of the hardware on the microcontroller plays a big role in the selection, the
development environment and testing for the software on the microcontroller also needs to be
taken into account. Whether the software development will cost more time and resources,
including learning curves and extra development kits that are necessary for debugging. Both the
ATmega and MSP430 microcontroller development environments are analyzed, as those are the
two main boards under consideration. The different environment options the ATmega is supported
by, along with the possible emulators and debuggers that can be used during the programming and
testing stages of the project are discussed. The MSP430 environment and development tools are
also outlined and evaluated.

3.5.1 Microcontroller Firmware

For developing software on the ATmega 1280, there are two main processes that can be
implemented: using ATmega supported Integrated Development Environments accompanied by
an in-circuit debugger or to use an Arduino as a bootloader. The ATmega 1280 has two supported
Integrated Development Environments (IDE): Atmel Studio and MPLAB. Both IDEs require
additional debugger hardware or development kits in order to interface between the
microcontroller and the computer running the IDE. The possible options for debuggers is discussed
in the next section.

Atmel Studio 7 - The first option for IDEs for the software development of the project is Atmel
Studio 7. Atmel Studio 7 is an integrated development platform (IDP) for all AVR microcontroller
applications written in C/C++ programming languages. It supports all debuggers and development
kits for AVR devices. Some the key features of the IDE that are applicable to this project are the
code libraries help in Atmel Gallery, the online development plug-ins that support Arduino, and
the debugging interface that incorporates real-time value tracking.

The capabilities for interrupt monitoring and tracing would be beneficial for the development of
the A.I.R.E. project because of the number of sensors and interrupts that are expected in
implementation. With supported Arduino plug-ins available, programming the majority of the
project’s sensors, that are Arduino products, will be more feasible. The largest concern for
implementing the Atmel Studio 7 IDE, is the complete lack of a macOS X version. With the
decision to make the phone application for the project an IOS application, the need to have cross
platform development and testing for the microcontroller and phone application decreases
effectiveness and will cost more time and resources for the developers.

Page 51

MPLAB X IDE - The other option for IDEs that is directly supported by the ATmega is MPLAB.
Specifically, the MPLAB X IDE. Similar to the Atmel Studio 7, MPLAB supports C/C++
development for most of Microchips’ controllers (including the 1280) and also includes a Java
platform. MPLAB X functionalities can be expanded using other software libraries from the
MPLAB family of plug-ins The IDE also includes a specific open-source compiler for AVR
microcontrollers.

A real-time steaming data visualizer, including register and bit values, allows for easier debugging
and testing within the IDE. MPLAB is also developed for the major operating systems on the
market today, including macOS X. There is also a web based MPLAB Xpress IDE that allows for
faster and more portable development for different aspects of the project.

3.5.2 Microcontroller Programming Hardware

As previously mentioned, both of these options require an additional debugger hardware piece.
Though there a multiple options for debuggers that both IDEs are compatible with, using ATmega
1280 limits that playing field of possible debuggers to two main options: MPLAB PICKit 4 and
the ATMEL-ICE. The ATAMEL-ICE is more directed towards the use of ARM based SAM
microcontrollers, and the price of the unit eliminates it for being considered for this project.

However, the PICKit 4 functionality meets all the requirements for the project at about half of the
cost and is more versatile in portability. The debugger has the capability to be programmed via a
micro SD card and be powered by the target board. It is capable of both 2 and 4-wire JTAG and
Serial Wire Debug. The PICKit is easily connected via USB to micro-USB to the developing
computer, and connected to the microcontroller via six pins as depicted below:

If development is to stay in the ATmega family, the MPLAB X IDE will be used in conjecture
with the PICKit 4 to program, debug, and test microcontroller for the software aspects of the
project. This option does require extra hardware to be purchased, and a slight learning curve for
the IDE and the debugging processes.

Arduino Bootloader - The other option for programming and debugging the microcontroller is to
program a bootloader using an Arduino through the Arduino Software IDE. A bootloader is a
program that activates whenever a device is powered on to initialize the correct operating system,
when a device has multiple. The Arduino would serve as an in-circuit serial programmer
(ISP). The ATmega will be first programmed as a part of the Arduino kit. This option requires no
extra hardware, besides an Arduino, which members of the development team already possess
from previous projects.

Because we are considering an Arduino, which members of the team have already worked with.
This also means there is no learning curve for the IDE or programming process for the Arduino.
Because there is also a multitude of documentation on the Arduino, this will make testing of our
product more seamless as well. To use the bootloader it will be stored in the memory of the
microcontroller and then programmed as flash memory. Using an Arduino as an ISP is already

Page 52

managed with settings within the Arduino IDE, and only requires four data pins. The pin breakout
is depicted in the Table 34 below:

Table 4: Pin connections for the ATmega 1280 and Arduino for Bootloader
Arduino/Board MOSI MISO SCK Voltage Level

Mega1280 /2560 51 or ICSP-4 50 or ICSP-1 52 or ICSP-3 5V

The only extra steps needed is programming the target board, in this case the ATmega 1280, with
the bootloader, and the code necessary to do so is all open source software. The ATmega will be
connected to the Arduino in order to burn the bootloader. Once the bootloader is burned to the
target board, the microcontroller can be used as a standalone module when connected to a power
source. To upload new development code, the ATmega can be connected to the Arduino via wires
on a breadboard and use the USB to serial converter chip to upload code.

Software Development IDE for MSP430FR6989

The other board option for this project is Texas Instruments’ (TI) MSP430FRx. The software
development for this board is manageable by TI created environment and debugger modules. This
guarantees compatibility with the different hardware and software aspects, when configured
correctly. The development team has had experience working with TI hardware and software
environments, reducing the amount of time and resources for training.

Texas Instruments Code Composer Studio - To program the MSP430 for the project the
development team would use Texas Instrument’s well-known IDE, Code Composer Studio (CCS).
It includes a C/C++ compiler in an Eclipse like framework that allows for no down time for getting
started on projects. Other third-party library and software utilities can be added straight into a
project with the TI App Center. For debugging, CCS includes memory mapping debugger for
memory protection and validation.

Hardware breakpoints can also be implemented within CCS to test and debug data and signal
transfers between different pieces of hardware. EnergyTrace Technology is an application that can
be used within CCS to analyze the microcontrollers power consumption through different
processes in order to optimize it to be low power.

In order to load software onto the MSP430 from CCS, a development kit or evaluation board is
needed to connect the two. The TI Launch Pad Development Kit is a common evaluation module
for programming the MSP430x family. It includes a board emulation for programming and
debugging code. The Launch Pad also allows for burning an MSP Bootloader. The Launch Pad is
equipped with additional hardware for development that would not be used in the scope of this
project and would be unused. Another development board is the MSP-TS430PZ100D standalone
target socket board. Through a JTAG interface the MSP430 can be programmed through a 2-wire
protocol. The standalone board is very basic and has no additional bells and whistles when
compared to the Launch Pad. Making it a better choice for the scope of this project since the
objective is to just download code for testing onto the microcontroller.

Page 53

Texas Instruments IAR Embedded Workbench - IAR Embedded Workbench is TI’s dedicated
C/C++ compiler and debugger for MSP430 microcontrollers. Similar to CCS, the Workbench
includes EnergyTrace Technology to optimize power consumption through different processes in
the code. It also supports library and linker tools, straight into the project, increasing the
capabilities and functionalities of the code.

It has an MSP simulator for real time operating system debugging, and TI specific operating system
debugging. IAR Embedded Workbench requires similar hardware as CCS to communicate with
the microcontroller, development kits such as the standalone MSP-TS430PZ100D board. The
communication would also be via JTAG 2-wire protocol. However, IAR Embedded Workbench
is not compatible with the TI Launch Pad development board.

Software Development Environment Conclusion - With both hardware capabilities, and
software development options investigated. The development team has decided to use the ATmega
1280 microcontroller for this project. The base hardware functionality needed for the project is
met by the ATmega 1280 and the software development process for the microcontroller seems
more flexible than opposing TI hardware.

The additional TI hardware needed for the software development processes greatly exceeded the
price of the ATMega hardware as well. Due to the ease and possession of the required hardware,
the development team has chosen to program the ATmega 1280 using bootloader operations via
the Arduino. This decision saves approximately $55.00 USD for the overall project budget and
will save a predicted two weeks of extra training for using the MPLAB products for development.

3.5.3 Weather Application Programming Interface (API)

In order to provide customers with a reliable and timely execution of the system’s main purpose,
which includes responding to weather and possible weather threats, the software on the
microcontroller will run two main programs. These two programs include the data read in from
the sensors, and data provided by a Weather API The two programs will run algorithms for parsing
the data collected by the sensors and interpreting the Weather Application Programming Interface.

An Application Programming Interface (API), facilitates communication between a server and a
database. In the scope of this project, a Weather API will be used to track data of the surrounding
forecasts and weather alerts. A Weather API holds large databases of historical data as well as
current data, and will aid in our predictive measures. The Weather API will allow for the optimum
opening and closing of the roof in response to weather predictions. The API would solely be used
for predictive measures. Using alerts such as lightning strikes and tornado warnings, will add extra
security to the customer’s structure. A possible stretch goal for the phone application would be to
incorporate these warnings and the API to send push notifications to the user on their device about
weather and the roof operating statuses.

The basic data the project would need from the Weather API would be: precipitation probability,
air quality, lightning strikes, and weather warnings. This data would be pulled from both the
current conditions along with a twenty-four hour prediction. The purpose of the Weather API is to
make predictions to have the roof react before a storm or hazardous weather conditions reach the

Page 54

structure, and with the weather being very temperament, there is no need to have predictions based
twenty-four hours. For this application we will only need at most a 1 hour based prediction or even
less time, as we only need to roof to close just minutes before inclement weather. The 1 hour base
will allow for building owners to make certain safety precautions if the predicted weather is
deemed harmful even with the roof closed.

There are multiple Weather APIs on the market that are free, or have limited free plans, based on
the number of request calls to the database. For development purposes of this project, APIs that
meet the specific data requirements and are free or limited free are taken into account.
Implementation of the product for customers could include a paid API for better accuracy and
more analytical data depending on customer needs.

OpenWeather API - One popular option on the market is OpenWeather API. OpenWeather’s free
API subscription includes current weather, five day forecast (with three hour increments), UV
index, and weather alerts. The weather alerts aspect of the API allows for triggers for different
weather conditions such as wind and temperature. OpenWeather’s free subscription allows for up
to sixty calls a minute to the database. With the free subscription the API is updated every two
hours or less. The API calls can be made specific to city, zip code, or geolocation, allowing for
increased accuracy in data pulling. OpenWeather API data can be returned in both JSON or XML
format, allowing for more flexibility for web development.

Dark Sky API - Another option that includes a free limited subscription that meets most of the
needs of the project is Dark Sky API. Dark Sky’s subscription includes, but is not limited to, access
to data for UV index, nearest storm distance, nearest storm direction, and liquid precipitation rate.
The API forecast capability is down to the minute, but also extends to up to a seven day forecast.
Location for the API is set based off of geo-location. The API has a Time Machine Request, that
returns the forecasted conditions for a specific date in the future. Data requests from the API are
returned in JSON format. The first one thousand calls in a day are free, any more calls made are
charged $0.0001. To remain cost free, the algorithm would be restricted to about forty-one calls
an hour, or a call about every minute and a half.

Additional Lightning API - The above APIs provide data to reach most of the weather API goals,
but both are missing data on lightning strikes. Lighting is an important measurement in weather
prediction, as it is dangerous and we want to keep the customers safety in mind, especially if the
roof is operating over a water based enclosure. Measuring lightning strikes with sensors has a low
accuracy due to noise and light pollution, making an API the only solution to be able to track
lightning. Most lightning APIs come as a part of other paid for packages for other APIs.
MeteoGroup has a lightning API that provides real time data of lighting strikes for a specific time
period for a specific region. The region is determined by longitude and latitude. Requests can be
made to only return lightning strikes within a certain range and certain time frame, which can be
configured, of a geographical location. Request calls then return JSON formatted data which we
can easily implement into the firmware.

Page 55

Table 35 shows a comparison of all Weather APIs considered for use in our final project.
Besides cost, functionality, and poll amount, we also had to consider copyright and legal issues
when choosing, as we didn’t want to wrongfully use a prebuilt program.

Table 35: Weather API Comparisons

API Maximum Free Polls Main Functionality Additional Cost

OpenWeather 60 per minute

• Current weather
• UV Index
• Weather Alerts
• 5 day forecast

$40 per month

Dark Sky 1000 polls a day

• Current weather
• UV Index
• Nearest Storm
• Time Machine

Request

$0.0001 per call

MeteoGroup Every 30 seconds • Location of
lighting strikes Free

Table 35 holds a recap of the information, relatable functionalities, and cost for the weather API
options for the software side of this project. To meet all the needs of the weather API, and to
provide a timely and effective reaction of the roof, the Dark Sky API and the MeteoGroup lightning
API will both be used to predict the opening or closing of the roof to avoid extraneous weather
that would not be picked up by the sensors until the storm reached the structure. The limited free
subscription allows for adequate request calls to the database, and provides more weather data and
more accurate forecasting to the minute.

3.5.4 Sensor-Input Management

With incoming data from both the Weather API and the sensors, the software needs well defined
trigger events to have the roof react. The sensors’ data will work together to determine the current
weather state at the unit. A weather condition or event will not be defined by just one sensor, but
will be confirmed by another to increase accuracy and effectivity of the unit. The storage of this
data will need to be done in an external source, such as a database, as our microcontroller does not
have enough space for the multitude of incoming data we are excepted to have. This section will
detail the comparisons of various databases available for use, and will concluded with a decision
on which database will be utilized for this project.

3.5.5 Database Storage

To increase user customizability, multiple settings for the roof and the roof reactions can be
changed. These changes need to be stored for each enclosure’s kit. The database can also store
historical data for the weather tracking and analytics. The database would be referenced from both
the phone application for user preferences and data, and the microcontroller for sensor data history

Page 56

and Weather API data. Most of the computing power the database would need to perform would
be simple arithmetic equations for converting the data from the sensors.

Simple security for logins of users would be needed, but nothing more than password protection.
Password protection will be provided by simply hashing user passwords. This opens the options
for databases up to all the popular databases available. The biggest thing to consider with choosing
a database for the project is the fact that the phone application will be an iOS application. Databases
that have strong compatibility with iOD applications will be considered. The following sections
will analyze the pros and cons for the different databases, and how applicable they are to the
project.

MongoDB - MongoDB’s Stitch is a serverless platform that connects MongoDB Atlas databases
to both iOS and Android phone applications. MongoDB Stitch is mainly controlled with JavaScript
queries for data and backend functions. Database triggers are one main functionality that would
help with the functionality of this project. Triggers allow for specific non server based functions
to execute whenever any data within the website is changed. They are applicable to user
authentication and data changes.

MongoDB Stitch utilizes MongoDB authentication, which provides regular user authentication via
username and password, but also supports external authentication through social media and third
party accounts. Multiple third party libraries, such as Twilo (cloud communication interface within
applications), are compatible and easy to integrate into the application backend for more
functionality in the phone and web applications. MongoDB is free based on the size of the
database, up to 25GB downloaded per month, which the development team does not expect to
exceed, because historical data will not reach back more than forty-eight hours.

Using MongoDB would require extra time and training for the development team, as no past
experience of using MongoDB for phone applications is available. Extra time and resources for
combating the learning curve for the database needs to be taken into account. However, Firebase
is a free open source database that would not cost the project any monetary resources.

For testing and development purposes, Stitch creates a new draft state that needs to be published
every time to change existing application versions. This is helpful for maintaining and managing
bugs during transition, but does not support beta version testing for development releases. New
drafts can be deployed straight from GitHub with a hook.

Google’s Firebase - Google’s Firebase Database for phone applications supports real time hosting
and database solutions with cloud storage both off and online. Firebase uses NoSQL databases for
real time cloud storage. This allows for custom data storage and queries in collections and
documentations. Combined with Google’s storage capabilities, data can be synced easily both
online, and managed offline.

Google’s SDK allows for pauses in data downloads and transfers for when connectivity is lost or
low. Google’s cloud storage also includes Google’s security for files and applications. Firebase
Authentication is the main security protocol, and includes usernames, phone numbers, and popular

Page 57

social media platform authentication for all users. Data queries are written and returned in JSON
formats through Firebase.

This complies with all of the Weather API choices, keeping queries in one coherent format for the
project. Firebase supports serverless web and phone application development, allowing for one
less middleware, decreasing the need for additional unit or end to end testing for new APIs. Part
of the development team has experience creating an iOS based Firebase application, which
eliminates part of the learning curve and extra time and resources for training.

Google’s Test Lab allows for a simulated testing environment that can be used to test all
functionalities of both phone and web applications. This would come in handy for trying to test
API triggers, that may not be as frequent due to the sporadic and uncontrollable behavior of the
weather. Firebase’s app distribution also allows for simple app releases to both iOS and Android
devices for testing and beta distributions.

SQLite - SQLite is a popular choice for phone applications as it is an embedded database, which
runs off of C based programming and SQL queries. SQLite is a free and open source domain,
making it easy to apply and find documentation for implementations for this project. SQLite is a
complete SQL database, including all the functionalities and services of a SQL database, plus
more. SQLites provides no learning curve for the whole development team, therefore saving both
time and resources. No extra resources, both time and monetary would be needed for implementing
a SQLite database for the project.

SQLite runs off The biggest aspect of SQLite is that is a part of the application itself. It may not
be as powerful as other databases, but it does not require as much backend, as it is literally a part
of the application. It is stand alone and self-contained within the application. SQLite can be paired
with other development platforms such as Swift to increase its functionality and scope. SQLite
does tend to perform better with larger amounts of data, which will be built up over time, but may
be hard to test at the beginning of development.

Testing the application through SQLite is as simple as downloading the development app straight
from Xcode. SQLite does have built in testing capabilities in different libraries to verify data
insertions. There are three different branch testing that are included in SQLite for different parts
of the development process: TCL Tests, TH3 Test, and SQL Logic Tests.

TCL Tests are aimed towards testing development relations. TH3 Tests cover branch testing and
would be used for testing the embedded platform on the microcontroller for this project. SQL
Logic Tests are used to test the validity of the database data and relations across the whole board.
The database can be tested and implemented easily through the application development
environment but would require new releases to test changes.

The options for databases all include serverless solutions in order to minimize the extra step and
possible intrusion of error that a server requires. The project requires storing of sensor data for the
past forty-eight hours, and only requires minimal analytic computation to provide the user with
the weather conditions.

Page 58

No final decision for which database will be used has been made, but Firebase is the leading
contender. It provides vast flexibility for data both off and online. It also provides ease with control
over documentation and queries for data to the application. Google’s environment allows for
heightened functionality and security for the database and its users.

3.5.6 Bluetooth and Wi-Fi Algorithms

For reference as to what specific hardware is used for Wi-Fi and Bluetooth, please reference
section 3.4 of this paper. This section will outline the basic communication structure between the
three main points of contact in this project: microcontroller, database, and user’s phone. All other
communications in this project are hardwired within the microcontroller.

The Bluetooth’s main connection will be with the user’s phone for setting up the kit and change
any settings or implement a schedule. The user’s phone can also connect to the microcontroller
through Wi-Fi, but the Wi-Fi’s main connection will be between the microcontroller and the
database to read and write data gathered by the sensors. The following diagram illustrates the
possible connections for the Bluetooth and Wi-Fi in this project. Note how the arrows are double
headed to indicate that the connection will allow for data to flow both to and from the
microcontroller on both communication methods:

Figure 3: Bluetooth and Wi-Fi connection model

When a user sets up a new unit, they will connect to the unit via Bluetooth, and verify their unit
with a serial number. They will set their default settings and schedule, and any time after initial
set-up, if those settings change, the new data will be pushed to the microcontroller via Bluetooth
connection. That data will also be extended into the database to be stored and referenced when a
trigger event occurs.

One of the stretch goals for the project is the implementation of push notifications to the user’s
phone when a weather event is triggered. The push notifications will be sent from the
microcontroller to the user’s phone via Wi-Fi. Meaning a push notification’s path would start at
the microcontroller and be sent to the database via Wi-Fi connection, which will push the
notification to the user’s phone via Wi-Fi connection.

Page 59

3.5.7 iOS vs. Android Operating Systems

When choosing between which of the two development environments were to be used it came
down to the two the title says. The team knew that a mobile application was wanted, so that quickly
determined that the decision was going to come down to the two global phone leaders in the
market.

Market share was one of the first things considered when looking to make a decision. Apple’s
iPhone currently holds the lead in the United States smartphone battle, having 41% of the US
Smartphone Shipments Market Share (%) as of Quarter 2, 2019. If one is to look at the statistics
globally, the story is a little different, as Android holds majority market share. So, when making
our decision, it was clear that if we were to target a global audience, Android needed to be our
choice.

Android - Although Android is the leader in the global market, Android fragmentation is one of
the main problems that developers must take into account. This fragmentation occurs due to the
open nature of Android. When initially launched, Android differed from iOS in that developers
had more liberty to customize the base operating system as they pleased, leading to a bit of a
different experience per manufacturer. This is an issue when the owner of Android. Google Inc.
decides to push and update the base version, as it each manufacturer’s responsibly to make the
proper modifications in order for this newer version to be pushed to their respective devices.

This leads to obsolescence of older devices, as the business side of things pushes manufactures to
stop the support older devices, forcing individuals to buy their newer devices. This causes users to
be left with versions of the Android OS that lack the newer features, forcing developers to consider
how far back they wish to go in support of aging versions of the operating system. Not only that,
due to the competitive nature of the market, manufactures have differing device features, further
complicating a developer’s work. A lack of standardization means more devices, components, and
software fragmentation to account for.

Apple - Fragmentation is different for Apple devices. Because Apple decided to not make their
operating system open-source and is responsible for the development of both their operating
system and devices, the fragmentation issue does not affect developers as much. Apple still pushes
yearly updates, as Apple comes out with a new iPhone, and this new iPhone usually comes with a
newer version of iOS with it, but this doesn’t affect things as much.

Apple’s control over their products allows for them to easily customize their software for the
various iPhones still out on the market. This makes obsolescence not be as pronounced, allowing
the push of the latest OS to older devices. This in turn is helpful for developers, since the concern
over supporting the older devices in not as bad. Not only that, iPhones tend to all have similar
features, with the few differences coming in the newer versions. These differences aren’t usually
too major and are easily identifiable from device to device, making a developer’s work much
easier.

Making an App for iOS is faster and less expensive. Although this may be a subjective statement,
the consensus amongst individuals and forums in the internet claim that it’s faster, easier, and

Page 60

cheaper to develop for iOS — some estimates put development time at 30–40% longer for Android
. It is easier to develop for iOS because of the code. Android applications are generally written in
Java, a language that involves writing more code than Swift.

Also, as it has been repeatedly stated, Android is an open source platform, which does add a bit of
complication; Apple’s closed ecosystem means you’re developing for a few standardized devices
and operating systems, making it easier. It is also important to note that Apple’s closed nature, is
what gives it its perception of being more secure, why iOS has a larger audience in the enterprise
market.

Phone Application Conclusion - Market share, fragmentation/maintainability, the ease, overall
cost, and security were the major players in making a final team decision. Other factors such as
features and aesthetics were considered, where ultimately, Apple became the platform of choice.
iOS’ gestured-based interface was one that heavily influenced our decision, as iOS-unique
features, such as 3D touch, among others were desired for OpenAir’s application. Also, the fact
that all team members have iPhones and are familiar with its environment, a preference in
appearance and style was evident amongst team members, as well as the fact that having the
devices available to every member made testing much easier. The lack of having the Android open-
source environment did lead the team to give up a bit of freedom, however in the end, that did not
matter, For all the stated reasons, it was evident that an iOS application was the best option for the
purposes of the A.I.R.E. system.

3.5.8 Swift vs. Objective C

Before going over all the technical aspects of the Aire Controller, it is important to discuss why
the team chose to program the application with Swift. It was already covered why for this project,
the iPhone operating system was more suitable in comparison to Android Operating System. This,
however, was not the only initial decision that needed to be made.

Application development in the iOS environment can be done with two programming languages,
Swift and Objective-C. Of course, there are pros and cons to using the two, and the team had to
analyze all these things before ultimately making a final decision. This section will compare and
contrast the two-programming language and discuss why the team decided to go one route instead
of the other [9].

Objective C - To begin, there are some comparative advantages to Objective-C over Swift.
Objective-C interoperability with C++ and Objective C++ is one of the main ones. Because all
these languages have been around for so long, developers around the world have developed a
variety of libraries that are useful. This specifically applies to this sort of Internet of Things based
project, as there are plenty of libraries created by individuals that allow for interfacing with a
microcontroller, giving access to all its different functionalities.

Another comparative advantage is Objective-C’s dynamic features like method swizzling. Method
swizzling is the process of changing the implementation of an existing selector. It’s a technique
made possible by the fact that method invocations in Objective-C can be changed at runtime, by
changing how selectors are mapped to underlying functions in a class’s dispatch table.

Page 61

The last advantage worth mentioning for Objective-C is the programming language’s better
support for writing binary frameworks. This comes into play when it comes to the business aspect
of the application, as one could have protected the source code and build a business out of the
created framework, since the team’s application can be used for other iOS developers trying to
accomplish a similar IoT project.

When looking at the disadvantages, the list outnumbers that of the advantages. One thing is that
Objective-C lacks name spacing. Much like C, this requires everything to be within one global
namespace, which could lead to issues if one doesn't prefix classes as it is done in common
practice. Explicit pointers is another inconvenience that makes up the language, as memory
management must be taken into account due to this. Objective-C allows developers to send nil
objects a message. This and the lack of strict typing leads bugs that are difficult to find and solve.
On top of it all, Objective-C’s complex syntax does not help its case when it comes to choosing a
language for development.

Swift - Swift on the other hand has a list of advantages that far outnumber its number of
disadvantages, as well as the number of advantages that Objective-C possesses. For one, static
typing, optionals, and optionals chaining, all make Swift a safer language. A developer is less
prone to encountering issues thanks to the language’s support for namespaces, functional patterns,
and the simpler more concise syntax.

Playgrounds, a Swift based application available in the Apple App Store allows for interactive
development, a huge advantage for the development within the team. On top of it all, the biggest
advantage of using Swift has to be the SwiftUI, which is a declarative framework that gives
developers the ability to make user interfaces for multiple platforms. The preview of the SwiftUI
is found within XCode itself, which allows developers to avoid any sort of iPhone simulator, which
is usually filled with bugs that add difficulties to a programmer when creating an application.

Of course, to properly be able to compare and contrast the two programming languages at hand, it
is only fair to list the disadvantages that developers face when using Swift. The first, which is an
advantage of using Objective-C, is the lack of direct access to the thousands of useful C++ libraries
that exist, by far the biggest disadvantage. From the business perspective that was discussed earlier,
the lack of module format stability makes it more difficult for the team to share the code in a
private manner as a binary framework.

Lastly, Swift is known to compile at a slower rate than Objective-C, something that does not affect
the making of this project as it still compiles fast enough for what we need. It is very evident that
using Swift was the best way to go about creating the Aire Controller application. Although some
aspects of the application development may have been easier with the larger pool of resources that
come with Objective-C, Swift’s comparative advantages made it very clear to the team which route
to take.

Page 62

4. Standards and Design Constraints

The following tables are used to demonstrate the different constraints and standards that guided
the design of the project. These constraints and standard parameters are formed in conjunction
with the identification of the project’s requirement specifications and are also decided based on
the end user’s needs, the manufacturer’s resources, and a plethora of other outside factors. Below
are Tables 36 - 39 that break are broken up into hardware and software standards, followed by the
hardware and software constraints.

Table 36 specifies all relevant hardware standards and specifications for our project that aided us
in our parts decision.

Table 36: Hardware Standards
Description

The Bluetooth module selected will comply with Bluetooth Core Specifications 5.1

The Wi-Fi module will comply with IEEE 802.11 and broadcast on the Industrial, Scientific, and
Medical (ISM) band of 2.4Ghz

All electrical and electronic components will comply with RoHS 3 directive 2015/863

All sensors will comply with IEEE 2700-2017 Standards for Sensor Performance Parameter
Definitions

The solar panels will comply with AES/SS IEEE 307-1969 Standard Definitions of Terms for Solar
Cells

To maintain manufacturability, electrical components chosen for the project shall be manageable for
hand soldering

Table 37 specifies all relevant software standards considered when creating the initial design of
our firmware and iOS Application.

Table37: Software Standards
Description

To program the chosen microcontroller, a debugger will be used via a USB connection, and it will
be used in compliance with USB 3.0

Microcontroller software will need to be written in ANSI C

The next two Tables 38 and 39, similar to the ones above, will serve the same purpose, showing
the hardware and software constraints that were considered throughout the design of the project.

Page 63

Table 38 specifies all constraints considered when creating our project. These limited some of our
ideas for our design while also providing a more specific path for us to take during initial design.

Table 38: Hardware Constraints
Description

The total cost of all hardware ordered for this project should not exceed the sponsor’s stipend of
$2000 USD.

The wireless communication system shall contain a Bluetooth module compliant with the Bluetooth
5 standard

The wireless communication system shall contain a wi-fi module compliant with IEEE 802.1

All devices shall be compliant with UART, SPI, and/or I2C capability for communication with the
microcontroller

All passive components shall come in packages greater than 0608 and all integrated circuits shall
have leads extending out from its package

All electronic components shall be RoHS-compliant

Table 39 specifies all software contraints and limitations placed on us during the programming
process.

Table 39: Software Constraints

Description

iOS application constraints will be based on the iOS version and phone model for design and layout
of the app

App release will be constrained by Apple Inc.’s app requirements.

The Bluetooth chip CYBT-423028-02 code will be developed within the Wiced integrated
development environment.

The PICKit 4 cannot be connected to pull up resistors or capacitors on the data or clock line.

As the project continues our constraints and specifications can and will change, but during this
stage we have found the above limitations to be our main concerns.

Page 64

4.1 Design Impact of Standards and Constraints

As with all projects, there exists standards and constraints that can impose wide-spreading impacts
to the designing of the system. The following paragraphs will narrate the impact of the standards
and constraints applied to our project.

The hardware standards applied to the project will ensure that the sensors and wireless
communication modules will be able to interact with our chosen microcontroller without the use
of extensive hardware for interfacing said communication. The RoHS standards applied to our
project will maintain a low environmental impact for our system as a whole, leading to a greener
future. The sensor and solar panel performance standards ensure that our sensors and solar panels
will be the best in the industry.

Software standards applied to our project will ensure that the microcontroller we choose to utilize
will be programmable in a language that all of our team members are familiar with, which includes
ANSI C and MIPS Assembly.

The constraints in our project arise from the from multiple sources. The first constraint, relating to
the overall cost of our design, is a constraint applied to the project due to the budget allocated for
this particular design. Totaling $2000 USD, our budget will need to be maintained in order to keep
our system low-cost while getting the most performance out of our limited component count.

The constraints related to the wireless communication used by the modules will ensure that our
microcontroller can interface with any Bluetooth or Wi-Fi devices that may represent any user that
wishes to utilize their standard industry device to connect with our system. The digital
communication constraints relate to the typical method of communication between
microcontrollers and other digital components.

The constraints related to manufacturability and package size will allow us to hand-solder parts
when assembling our prototypes. Finding packages with these constraints is not very trivial due to
the diversity of parts available for all applications from a myriad of manufacturers.

The software constraints represent constraints placed on us by the specification of application we
will use. Mobile devices utilize primarily iOS or Android operating systems. Since we have chosen
to use the iOS operating system, our constraints will relate to the iOS and Apple terms and
conditions of use of their operating system

5. Project Hardware and Software Design Details

Section 5 will be designated for initial design details based on our strategic parts selection from
Section 4. Each subsection in this will relate to how individual submodules will be designed based
on the applications notes from datasheets, or from our own designs based off material learned from
the curriculum so graciously provided by UCF. This section will also include depictions of how
all of the project subsystems will come together in the end to create a final working project. This

Page 65

begins with initial schematic designs and software ideas before creating PCB layouts and program
design.

5.1 Hardware Design

This section includes any physical designs that will be used. This entails the subsystem design of
the power module including the battery management system (BMS) and the voltage regulation
system. This also includes the circuit design of all sensors, and how they connect to the
microcontroller. This will also include discussions about the power, microcontroller, and motor
modules. Lastly, a depiction of how all hardware aspects will connect together to create the final
project layout will be discussed as well. The high-level lay out for the hardware aspects for this
project are depicted below.

5.1.1 Power Module

The following section details all initial and proposed design solutions for our power module
printed circuit board (PCB). This includes battery management system design, all voltage
regulation designs, and the implementation of the solar panel. All initial schematic designs will be
shown in the section followed by implementation of these schematics onto our proposed PCBs.

Battery Management System - MCP73842 - The battery management system will utilize the
MCP73842 to oversee the charge and discharge cycles of the lithium ion battery pack. The BMS
IC will be be configured similar to the application schematic provided in the datasheet. An example
of this is provided in Figure 4 below.

Figure 4: BMS IC Single Element

The optimal efficiency for the 12V buck/boost controller occurs when the input voltage is between
12 and 20 V. For this reason, we will be setting up a 3-series configuration of lithium ion battery
cells. In order to accommodate this, we will be setting up 3x BMS IC elements in series that will
be responsible for the safe charging and discharging of the lithium ion battery pack. Because of
the design of our battery management and voltage regulation system, the 12V regulator is the first
in line after the BMS, therefore the BMS must be configured to work with the 12V regulation

Page 66

system. All other regulation system will follow the 12V regulator and won’t be directly connected
to the power sources.

12V Buck/Boost Controller - LM25118 - The 12V buck/boost converter we chose to use is the
LM25118. Utilizing the datasheet, we came up with an initial design schematic, which can be
found in Figure 5 below. This converter requires the most external circuitry as it takes all of the
power from the source and converts it to the required 12V. This output voltage then goes into the
5V regulator and to the Bluetooth module. Having a correct and sophisticated design for this
portion of the power module is extremely important if we want the project to operate as required.

Figure 5: Initial design of 12V Buck/Boost Controller

In the schematic, CINx and COUTx are bypass capacitors responsible for filtering out any voltage
spikes that might be picked up in the environment. CR, CSS, CFR, COMP, and RCOMP are
components recommended in their typical application schematics. R1 and R2 serve as a voltage
divider for providing feedback.

On the right of the buck/boost controller contains the output components. Q1, L1, and D1 serve to
provide high-side output current, while Q2 and D2 serve to provide low-side output current. The
other components are recommended in the datasheet’s typical application schematics.

Two jumpers serve as temporary pins for supplying the battery voltage, VBAT, and output voltage,
+12V. These jumpers will be replaced with a more appropriate pin header when final designs are
created.

5V Buck Converter - LM2596 - The 5V buck converter we chose to use is the LM2596. Utilizing
the datasheet, we came up with an initial design schematic, which can be found in Figure 6 below.

Figure 6: Initial design of 5V Buck Converter

Page 67

In the schematic, CINx and COUTx are bypass capacitors responsible for filtering out any voltage
spikes that might be picked up in the environment. D2 and L2 are responsible for providing the
output current during normal operation.

Two jumpers serve as temporary pins for supplying the input voltage, +12V, and output voltage,
+5V. These jumpers will be replaced with a more appropriate pin header when final designs are
created.

3.3V Voltage Regulator - LT1763 - The 3.3V voltage regulator we chose to use is the LT1763.
Utilizing the datasheet, we came up with an initial design schematic, which can be found in Figure
7 below.

Figure 7: Initial design of 3.3V Voltage Regulator

In the schematic, CINx and COUTx are bypass capacitors responsible for filtering out any voltage
spikes that might be picked up in the environment. CBYP is a bypass capacitor required for normal
operation.

Two jumpers serve as temporary pins for supplying the input voltage, +5V, and output voltage,
+3.3V. These jumpers will be replaced with a more appropriate pin header when final designs are
created.

Reverse Polarity Protection - Our initial design for reverse polarity protection is shown in Figure
8 below.

Figure 8: Initial design of Reverse Polarity Protection Circuitry

In the schematic, Q1 is the primary component responsible for protecting the Vout circuitry from
negative input voltage. When positive voltage is applied, it turns on and allows current to flow.

Page 68

Two jumpers serve as temporary pins for supplying the input voltage, VBAT, and output voltage,
Vout. These jumpers will be replaced with a more appropriate pin header when final designs are
created.

5.1.2 Sensor Module

The following sections display our proposed initial designs for our sensor schematics and pin
layouts. Each sensor requires a voltage regulating circuit from one of our chosen regulators
displayed in sections 5.1.1. These regulating circuits are not displayed here, only the components
of the circuit which directly connect to the sensors are laid out in the following schematics. All
schematic designs are based off provided schematics given in the datasheets, as well as any
documentation found in the datasheets or through outside research. All schematics will them
connect together on the final PCB layout to create a working and compact sensor layout.

Proximity Sensor – MP102103 - Our chosen proximity sensor is the MP102103. Below in Figure
9 is our proposed initial design, where the output pull up resistor value will depend on the supply
voltage. The datasheet for the proximity sensor recommends an external pull-up resistor of 1kohms
or 2.4kohms for 5V and 12V supply voltages, respectively. In the circuit, VCC is the supply
voltage, which should be in the range of 4.5 - 13 V.

Figure 9: Initial Design of Proximity Sensor

Anemometer – Jacksking - The chosen anemometer for this project is the Jacksking cup
anemometer. Because it uses pulse width modulation (PWM) to measure the wind speed, acting
as a switch, a debounce circuit is needed to stabilize the signal. Because wind is unpredictable, or
asynchronous, this debounce circuit will need to connect to an interrupt handling software.

Figure 10: Initial Design of Anemometer

Page 69

In this circuit shown in Figure 10, the capacitor stabilizes the output to prevent any overshoot, or
extreme voltage dropping, while the diode controls current flow throughout the circuit. Our diode
recommendation is the 1N4148 because it is simple to implement, can work with a wide range of
input voltages, and works well overall for almost any application.

Barometric Pressure Sensor – BMP280 - The barometric pressure sensor chosen is the Adafruit
BMP280 microchip. a proposed schematic for this sensor is seen below.

Figure 11: Initial Design of Barometric Pressure Sensor

When building this circuit as shown in Figure 11 we must keep in mind that this sensor should
only be operated on at a supply voltage of 3.3V, and the chip select (CSB) and serial data output
(SDO) pins are only required if interfacing with SPI communication.

Humidity Sensor - SHTW2 - Our chosen humidity sensor is the SHTW2, which measures
temperature and humidity, however we will only be focusing on this sensor’s humidity sensing
capabilities.

Figure 12: Proposed Humidity Sensor Design

This proposed circuit design in Figure 12 equips the chip sensor with two pull up resistors, to
create a higher output, and a stabilizing capacitor. The pull-up resistor values are typically 10k
ohms but will ultimately depend on our bus capacity. In order to avoid signal contention, SCL and
SDA must be driven low.

Page 70

Temperature Sensor – B5786S - The chosen temperature sensor is the B5786S bead thermistor.
To measure the temperature, the following voltage divider is proposed with the following
equations that will be implemented in the software. There is no need for added stability
components due to the fact that the input to this device will already be a stable regulated value.

Figure 13: Proposed Thermistor Design with Relevant Equations

Where T0is the reference temperature, R0is the thermistor resistance at reference temperature, R is
the thermistor resistance at the measured temperature, T is the newly measured temperature, and
β is given in the component datasheet and depends on the thermistor resistance at reference
temperature.

Rain Sensor – YL-83 - Our chosen rain sensor is the YL-83, which is a capacitive plate sensor.
Because this sensor comes in two parts: a collector board and an electronic board, we do not need
to design a circuit for this sensor. The sensor connects to a 5V power supply, ground, and analog
and digital output pins. The electronic board is equipped with everything that is needed in order
for this sensor to operate appropriately. All that is required is following pin layout as shown in
Figure 14.

Figure 14: Initial Pin Layout of YL-83

Page 71

Light Sensor – OPT101 - The light sensor that has been chosen for this design is an OPT101
integrated circuit. Because it is an integrated circuit chip, we will not have to worry about leakage
current, noise handling, etc. Below shows our proposed design, which only includes a capacitor
for output stability purposes.

Figure 15: Initial Light Sensor Design

UV Sensor -VEML6070 - For UV protection and sensing we are using the VEML6070 UV
sensor. Illustrated in Figure 16 is our proposed schematic with each pull up resistor to be 2.2k ohm
as recommended by the manufacturer, Vishay.

Figure 16: Initial Design of UV Sensor

If the supply is disturbed, unstable, or carries a lot of noise, the capacitor C1 and the resistor R4
are implemented to stabilize the input to the chip. The pull-up resistors are used to pull-up the
output coming from the VEML6070 to the microcontroller.

5.1.3 Motor Module

For this project, a motor is needed to control the glass roof’s movements. As discussed in previous
sections, we went with the Progressive Automations - 07.

Page 72

The Progressive Automations - 07 motor’s dimensions, all in inches, are drawn in Figure 17.

Figure 17: PA-07 Dimensions

The shape and size of this linear actuator was a main factor when choosing this specific design.
As discussed earlier in the prototype section, it was easy to make modification to the top face of
the initial module, since its two-inch thickness was more than enough to fit the height and width
dimensions into the carve and trim done into the face. The cost of the linear actuator itself was also
a good motivator for the team to decide to go with it, as these motors appear to have a cost over
$100.00 in the market.

Giving some insight on how the functionality of the “PA-07” motor works, allows the reader to
understand the reason for the overall design of the electrical side of things. The actuator is extended
by a +12 VDC signal and retracted by a -12VDC signal. This means we will need something to
switch the provided +12V signal from our power module, to a -12V signal to control the movement
of the actuator.

One could go about providing these opposite Voltages by using a rocker switcher to do so,
connected to the power supply. Due to the nature of this project, however, it being an intelligent
system, the use of a physical switcher would not be useful. Luckily, any time one wants to add
intelligence into a linear actuator application, you can use a micro controller and relays to control
the actuator, since relays are effectively a switch controlled by electricity.

The relays used in this project to control the linear actuator are called 'Single Pole Double Throw'
(SPDT) relays. These relays are 5V relays and will be connected to the system’s microcontroller
through a 5V relay board (The voltage necessary to power the microcontroller) [p]. The
combination two SPDT relays, allowed us easily to reverse the polarity of electricity going to the
actuator motor.

By controlling the polarity going to the motor, we can control the direction of travel for the linear
actuator. Figures 18-21 serve as a step-by-step demonstration of how the different components in
the SPDT relay are wired up in order to complete this action.

Page 73

Figure 18 shows two SPDT relays setup side by side with no wires attached. Following are
instructions of how the relay will begin the wiring with another relay, and why it is important that
two relays are connected to one another.

Figure 18: SPDT Relay Configuration Step 1

A small wire is used to connect the Normally Open (NO) connection on relay #1 with the with the
Normally Open on relay #2. This is for our source +12VDC that will be used for the linear actuator
motor. These come from the + 12V Power lines provided from the lithium ion battery discussed
in the power section of this experiment.

Figure 19: SPDT Relay Configuration Step 2

The same process is done for the Normally Close (NC) pins. A small wire is used to connect the
Normally Close (NC) connection on relay #1 with the Normally Close on relay #2. This is for our
Ground that will be used for the linear actuator motor.

Figure 20: SPDT Relay Configuration Step 3

These two wires can effectively be connected to the power line for the A.I.R.E. systems,
connecting the first and second wire (red and black in the photos provided) to +12VDC and Ground
respectively.

Page 74

Figure 21 shows the final wiring connection (C) which connects the relays to the microcontroller.
The microcontroller then sends signals to relays, which will ultimately control the movement of
the roof.

Figure 21: SPDT Relay Configuration Step 4

With this combination, we are able to program the microcontroller and trigger the proper relay
based on the action that wants to be accomplished. Whether it be to open or close the roof. Refer
to the microcontroller algorithm section of this document in order to understand the logic in the
code behind this operation. Two of these smaller systems will be needed in order to complete the
task for both actuators/roofs [10].

5.1.4 Microcontroller Module

For uploading new software onto the board during development, the microcontroller is connected
to a debugger. The debugger is the interface between the computer and the microcontroller. The
PICKit 4 is the debugger, paired with the MPLAB X IDE, chosen for this project. Please see
software development section of this paper for more information on why the PICKit 4 along with
MPLAB X were selected. One important note is that the PICKit allows for in-circuit debugging,
which will be extremely helpful during the project design proccess. The following schematic
illustrated in Figure 22 is the initial design for connecting the PICKit to the microcontroller when
it is in-circuit.

Figure 22: Initial Design of In-Circuit Debugger

Page 75

5.2 Software Design

The following section and corresponding subsections will cover the software aspect of A.I.R.E.,
delving into detail regarding design, algorithm, intricacies, and implementations for both back-end
and front-end of the iOS application. Lastly, communication between the application and
controller will be explained, from the application side of things, focusing on the Bluetooth
procedure required for every subsystem to be connected within the overall A.I.R.E system.

5.2.1 iOS Application

A Swift-based application will be used for the design, development, and testing phases of the
software. Swift is a powerful and intuitive programming language for macOS, iOS, watchOS, tvOS
and beyond, which is exactly the reason it is chosen as the programming language used for this
project. Swift allows the team to provide a user-friendly interface that provides the following
capabilities:

• Open/close roof
• Control light ambience/color
• Change default attributes
• Modify accesses and such based on account permissions
• Access weather metrics collected by system

All the stages of the Swift 5.1 based software development will be completed using XCode 10.1
Integrated Development environment for macOS. As one reads through the paper, it will be noticed
that the use of the word simple will be thrown out a variety of times; This was a priority during
the development of the application, making a simple GUI that provides its user with a large amount
of capability.

5.2.1.1. Application Front End (User Interface)

On the very first initial opening of the application, the user will be asked to login using a unique
User Id and password. This will be initially provided by OpenAire to a certain user, who will have
authoritative rights from the start and will then be able to create and provide login credentials for
application access. These login credentials are a requirement, as application will be inaccessible
unless proper authentication is executed. Once the user successfully logs in, he or she will no
longer need to go through the procedure again, as it is expected that this is the user’s personal
device, therefore will not need to log in every time. Refer to the database section of this document
for more information regarding security and this topic.

Login Page - The design of this login page will be simple. It will contain the OpenAire logo on
top, with login and password text fields below the image respectively. At the bottom there will be
a “Sign in” button, as well as a “Need access?” button below it. Application color
design/combination is based on the sponsor's company colors, white, aqua blue, and grey,
headlining the color combination. When the user taps on the User ID or password text field, the
individual will input the respective strings.

Page 76

Once done, the “Sign in” button shall be pressed, which will trigger the click event, signaling for
the algorithm to process the strings within the text fields. These strings will be processed by the
back-end design of the application, being passed to “loginAuthentication” method which will
return a Boolean value based on whether proper authentication information was inputted.

If proper credentials were passed, then “Control Page” will be displayed, else, the user will be
notified that login credentials were invalid and will have to redo process. If the “Need access?”
button is pressed, then click event will cause “AccessRequestPage” to display, which will just
consist of text explaining the procedure to get access, as well as contact information for the
individual that must be contacted for this credential information.

If proper logging procedure is followed, in other words “loginAuthentication” returns true,
application takes the user into the “ControlsPage”. It is important to note that this is the default
main page, in which algorithm is programmed to display at initial application opening and/or
login. This page, however, is not the only page that will make up the user interface.

At the bottom of the screen, there will be a ribbon containing three different buttons: “Settings”,
“Controls”, and “Metrics”. The click event of each of these buttons takes the user to each of the
respective pages, each one having unique functionality based on the capabilities of the application.
Following this paragraph is a description of each of the pages within the user interface, including
those accessed through the different buttons in the ribbon, as well as pages within these pages.

Settings Page - The “SettingsPage” is displayed once user presses the “Settings” button, triggering
its click event. The purpose of this part of the application is for the user have access to two features
that the application provides. The first one is the capability of modifying the default setting set for
the sensors. The user is able to modify how the microcontroller triggers the opening and closing
of the roof that the A.I.R.E. system is connected to; this part of the application will be further
discussed later on in this document.

The second capability is for administrators to modify users. This includes creating users as well as
modifying a specific user’s rights; these determine whether a user can modify settings, manipulate
the roof structure through the use of the controls page, or have view only access of the
“WeatherMetricsPage” for the collected metrics by the system’s sensors.

These two capabilities are accessed through the click events of two buttons within the
“SettingsPage”, each event effectively redirecting the user to whatever page the individual desired
based on the button he or she pressed. As the title of the buttons will describe, the “Roof Settings”
button redirects the user to the “RoofSettingsPage” while the “User Settings” button redirects the
user to the “UserAuthorizationPage”, with if conditionals behind the clicking event’s algorithm to
determine whether the user has access to either of these two setting modes.

User Authorization Page - The “UserAuthorizationPage” will display at the click of the “User
Settings” button event with a conditional in the backend preventing access to this feature if the
currently logged in user does not have the right. As previously said, only administrators can access

Page 77

this page, given full control of adding/editing users to the app, with ability to change the different
rights of these users.

They layout is effectively a table made up of five columns, “Name”, “Last Name”, “User Name”,
“Password”, “Administrator Rights”, “Roof Control Rights”, “Roof Setting Rights”, “View
Rights” with each column’s data type, in the same order as listed, being “char[50]” , “char[50]” ,
“char[50]”, “char[50]”, “Boolean”, “Boolean”, “Boolean”, “Boolean”. All the users will be listed,
with any administrator (Based on whether their “Administrator” field is true or false) having the
ability to modify the table’s fields. All conditionals that cause restrictions for certain individuals
will be based on this table’s data.

The page’s layout also includes two buttons above the table, the “Filter” Button and the “Add New
User” button. The clicking events of these two will do as their name says. The “Filter button”
allows the user to search for specific users via a pop-up box that will have 3 fields and a button,
“Name”, “Last Name”, “User Name” and a “Search” button. After one or all the fields are filled
with input strings from the user, and the “Search” button is pressed, the algorithm uses the given
data to filter the table. Effectively, the table will reduce to display what the user wanted to search
for based on the inputted strings to filter.

The pressing of the “Add New User” button will also trigger, a pop up, this time containing a pop
up with eight empty string fields along an “Add” button, each field representing each of the
columns in the table layout. The administrator will fill out each field, and then press the “Add”
button, which will effectively add a new row to the table with the new input fields. This added user
will now have access to the application once he or she attempts to newly login to the application.

Roof Settings Page - The “RoofSettingsPage” is the second settings page that a user with the
proper rights has access to. As the title describes, this page gives the ability to change how the
A.I.R.E. system functions. OpenAire often works on retractable roofs that are intended for
recreational pools. For this reason, the team picked a set of default settings that dictate whether the
roof is at an open or a closed state. If system detects a pressure lower than 29.54 inHg, ultraviolet
radiation higher than 8 uV, a wind speed larger than 25 MPH, or physical drops of rain, A.I.RE.’s
algorithm assumes bad weather and closes the roofs. The team understood that the project was not
only going to be used over pools however, which is why this page was implemented.

The “RoofSettingsPage” is laid out in a simple manner for administrators to have access to these
key attributes mentioned and have the ability to modify them. Four buttons are laid out in a vertical
manner, the “Atmospheric Pressure”, “UV”, “Wind”, and “Rain Pressures” buttons. These are
3dTouch buttons, where the event of pressing the buttons with pressure is what triggers their
respective buttons.

The pop up that shows up with the “Atmospheric Pressure” button is a red slider that is set to the
default number of 29.54 inHg; If the slider is raised up, the user is effectively raising the threshold
pressure at which the A.I.R.E. system will open or close, this being determined by the current color
of the slider, which can be changed between green and red at the tap of the slider. In other words,
if the slider is red, it will close at the threshold set, however once tapped, the slider color will
change to green, meaning it will open at the threshold set.

Page 78

The pop-up window for the “UV” and “Wind” buttons will be the same, with the same logic of a
color-based slider, green or red, determining whether the roof opens or closes at the set threshold.
The rain pressure button act more like a switch, where if the rain sensor detects rain, the
administrators have the ability to either cause the roof to open or close. If the roof will open on
rain, then the button will be green, while a red button will signify the roof will close. It was
important to keep standardizations with colors and what not in order to prevent complication of
design.

Controls Page - Going back to the main page of the application, the “ControlsPage” gives the user
the capability of opening or closing the roof, as well as control the light ambience/color of the
building structure. As mentioned, this page is reached upon pressing of the “Controls” button in
the ribbon, as well as being the initial page that the user sees upon initial opening of the application.
Thee layout of the page is simple, two “buttons” one being the “Open/Close” button, the other
being “Light” button. These two are icon shaped, the “Open/Close” being a rocker switcher icon
while the other a light bulb icon. This is where the desire of having iOS capabilities came into
play, as 3DTouch features are implemented at the touch of the button.

Upon just the tapping event of the “Open/Close” button, the system will trigger the microcontroller
to send a signal to the motors of the roof structure in order to either open or close it, based on
whatever state it is currently in. If one is to press the button with pressure, then a pop-up switch
will come up, with an up and down arrow. Pressing the up arrow will move the roof up to its
closing limit, or until the user stops pressing the button, while the down arrow will do the opposite
and move the roof to its opening limit, or until the users stops pressing the button.

When it comes to the “Light” button, the user is able to turn the lights on and off based on the state
they are currently in. If the button is pressed with pressure, a pop-up window with a brightness
slide comes up. The user is able to slide that bar up and down to modify brightness, the bar being
all the way up meaning that the lights are to their full brightness, while the opposite means they
are the dimmest.

Weather Metrics Page - The “WetherMetricsPage” displays all the different weather metrics that
the A.I.R.E. system is capable of measuring. This is based on all the sensors that were implemented
in the electrical interface; Temperature, air pressure, humidity, UV intensity, and wind speed.
Following the color theme that has been discussed throughout this paper, the page will be split into
two panels, one consisting of the data metrics that are measured from physical sensors placed for
the vicinity, while the other coming from the weather source utilized for information in the area.

In each panel, Text labels containing strings serve as labels for each of the statistics, followed by
a string that represent the actual data. The information for the first panel representing the physical
sensors’ data can be displayed using a table format. The second panel is formatted in a similar
manner, with the string labels changing based on the information provided by the API. In other
words, instead of certain metrics not provided by the weather API such as UV intensity, air
pressure, etc., the panel displays precipitation chance data, temperature from weather source, etc.
Refer to the weather API section of the document to see API functionality and algorithm procedure.

Page 79

5.2.1.2. iOS Application Back End

For the purposes of this document, one will refer to the back-end as the applications interactions
with the database. This includes overviews of the application’s classes, how algorithms store the
user data information and weather metrics in the database, as well as how it gathers information
from the Weather API. This also includes Bluetooth communication with the sensor’s,
implementation of security, and all other required settings needed to support full operation of the
application.

Bluetooth Communication (Application Side) - One of the main selling points of the A.I.R.E
system is the ability to control an OpenAire retractable roof from a distance. Communication
between standalone electronic devices has become a norm in the tech world, so much so that users
have come to expect that wireless devices can and should gather/analyze data about whatever
purpose the technologies have.

For this reason, the team knew from the start that our intelligent system needed to be Internet of
Things based, with capabilities of controlling the retractable roof, as well as gather and show the
data collected by the system’s many sensors to the user. For this reason, Bluetooth capabilities are
a requirement for this project. This section will cover how Bluetooth communication is achieved
through the front-end side of this project, providing an overview of the frameworks being used to
accomplish functionality, as well as walking the reader through the code of the iOS application
that allows for the wireless magic to occur [11].

Bluetooth Framework - When deciding what programing language to use to develop the Aire
Controller, one of the main considerations that was not mentioned in the Objective-C vs. Swift
section, was available Bluetooth frameworks and libraries available in the two. Bluetooth
communication is achievable through both, however, having access to Apple’s “Core Bluetooth”
framework using Swift was just another deciding factor in favor of Swift. The Core Bluetooth
framework lets your iOS and Mac apps communicate with Bluetooth low energy devices.

The framework is an abstraction of the Bluetooth 4.0 specification for use with low energy devices.
That said, it hides many of the low-level details of the specification from the developer, making it
much easier for one to develop apps that interact with Bluetooth low energy devices. “Low energy”
is an important term to be highlighted, as “Core Bluetooth” only deals with Bluetooth Low Energy
(BLE) devices. The framework is effectively an API for Bluetooth 4.0, which is why having this
was a requirement when selecting project parts that deal with the Bluetooth side of things.

Classic Bluetooth is not achievable through this framework, which for the purposes of this project
was not wanted. Communication with classic Bluetooth devices such as wireless speakers can
drain battery power at a fast rate, whereas BLE uses much less power, since it is used to
communicate small amounts of data. That fact in it of itself made this form of Bluetooth
communication the perfect fit for the A.I.R.E. system, as it is small amounts of data that is being
communicated between the project and the cellular device.

BLE protocol is based on a client/server and consumer/producer model. In the overall system,
there are situations where the iPhone and the microcontrollers interchange roles. The team used

Page 80

Apple’s documentation to guide the programming based on this model, here are some excerpts
that are worth inserting in this document. From the Core Bluetooth perspective, “The delegate of
a CBPeripheral object must adopt the CBPeripheralDelegate protocol.

The delegate uses this protocol’s methods to monitor the discovery, exploration, and interaction
of a remote peripheral’s services and properties. There are no required methods in this protocol.”
When it comes to the central, or the client, “The delegate of a CBPeripheral object must adopt the
CBPeripheralDelegate protocol. The delegate uses this protocol’s methods to monitor the
discovery, exploration, and interaction of a remote peripheral’s services and properties. There are
no required methods in this protocol.” In the overall system, there are situations where the iPhone
and the microcontroller interchange roles.

When it comes to receiving sensor data and displaying it to the user the iPhone is the client, or the
device that needs data; the Server, or the device that has data, is the microcontroller. One could
state the opposite when it comes to the iOS application sending commands in order to control the
retractable roof. Because of this, the Bluetooth class will be split into two parts, each covering one
of the two cases. The proper parameters will be passed into each class when initiating an instance
of it.

Client Server Protocol - When the iPhone is the Client, and the microcontroller is the server, the
procedure is a s follows. In order to make use of the peripherals, one must connect to them by
scanning for the advertising packets of data the peripheral is constantly broadcasting, a process
called advertising. These packets are relatively small bundle of data that may contain useful
information about what a peripheral has to offer, such as the peripheral’s name and primary
functionality.

The central must scan and find the peripheral, which once detected and connected to, stops
advertising. The code is written to listen for and connect to the peripheral with the specific service
being sought. This specific service is uniquely identified by the UUID of the microcontroller’s
service. In order to accomplish a connection with peripheral and the specified service, the
following method is called: ‘centralManager?.scanForPeripherals(withServices: nil)’. This
method effectively updates specific ‘CBPeripheral’ fields important to us when connecting to the
peripheral.

It is important to note that before this, one must ensure that Bluetooth is on before scanning for
peripherals, which is why conditionals were places prior to this function call in order to ensure that
the Bluetooth is at proper status. If the CBCentralManager.state method returned anything but
‘.poweredOn’ case, the ‘self.bluetoothOffLabel.alpha’ parameter was set to 1.0, which lets the
algorithm know that it cannot scan for peripherals if not on a powered on state.

The next step in the process discovers what peripheral devices that phone can connect to, makes
the proper referencing to the different important fields, and effectively connects. By proper
referencing, what is meant is that one must store a reference to the peripheral in a class instance
variable and adopt the ViewController to the CBPeripheralDelegate protocol.

Page 81

Other steps such as stopping the scan are included in the algorithm to save battery life. After all
these steps are completed, one connects to the device using the function
‘centralManager?.connect()’. Once connected the algorithm looks for the services of the peripheral
using the ‘discoverServices’ method followed by looking for the characteristic of interest within
the service of interest, using the ‘discoverCharacteristics’ method.

After confirmation, one subscribes to the specific data wanted from the characteric of interest.
From this one obtains binary values that are not readable to humans. In order to decoded, one must
go to the GATT specification page for the subscribed characteristic; The first byte is metadata
(Flags) about the rest of the data. With this information one is able to write the proper algorithm
to obtain the right data. The code will constantly be looking to connect to the microcontroller, as
the data is always changing. That in essence summarize the Bluetooth side of things when the
iPhone is the client and the microcontroller is the server.

When the iPhone is the server, and the microcontroller is the client, the procedure is similar. This
takes place during the controller’s aspect of the application, where the user is able to open and
close the roof as well as turn the lights on or off.

5.2.1.3. Class Design

The application’s class design was organized based on the different pages discussed in the
application front end section. In other words, each respective page will be a class of its own, with
the classes’ event-based methods taking care of all the functionality of the application. The
following section will detail each class that make up the application, covering how they interact
with one another, the backend of the application, and other features that make up the Aire
controller. Each class’ methods and member variables will also be detailed in this section of this
document.

LoginPageClass - The LoginPageClass is the simplest of the classes. This class will be made up
of two member variables and three methods. The two member variables will be ‘userName’ and
‘password’, two string type variables that are initially set to be empty, ‘’. As their name states, the
two are intended to hold the current user and their password, data that will be set when the class
‘LoginUser’ is called. This method will be invoked at the press of the “Sign in” button event, hence
named “signInButton_Press”. The first thing that the method will do is pull the strings off of the
Username and Password text boxes strings and set the two member variables to their respective
strings.

These will then be passed to the “loginAuthentication” method discussed in the Login page section.
This method directly interacts with the database and effectively manipulates the strings for proper
security procedure. It returns a Boolean value based on whether a respective user was found. The
method will be further discussed in the next paragraph. Conditionals will proceed with the calling
of the “loginAuthentication” method. If the method returns true, then the Controls Page will be
loaded into the screen, and the login page will be hidden. If false is returned, then a
“MessageBox.Show” method will be invoked, which will effectively display to the user the
notification that the login credentials were invalid.

Page 82

The ‘loginAuthentication’ method will be searching for the username and the representation of
that user’s password in the database. In this context, representation means the password that was
hashed using a salt, a salt which is different for every user, and a secure 1-way algorithm.This
process takes place when an administrator is adding a new user, which when completed, this
representation is what will be stored, throwing away the original password.

This hashing algorithm will be further discussed in the insertUser method. In order for the method
to verify a UserName and Password, it hashes the current variable values using the same hashing
algorithm and salt and compares it to the username and hashed password value in the database.
The procedure is similar to the process discussed in the inserUser method, which is why it will not
be discussed in this section of the document. As previously mentioned the method will finally
return a true or false boolean value based on whether a user was properly matched.

The last method within the LoginPageClass is the ‘needAccessButton_Press’, which as the name
describes, is invoked at the press of the ‘Need Access Button?’. This short method will be one line
of code. It will be a ‘MessageBox.Show’ method whose parameter will be “In order to obtain
access to the Aire Controller, and administrator must create a Username and Password for
you.\nPlease contact OpenAire (855)-813-7363 to proceed with this procedure. ”

ControlPageClass - The controls page class is probably the most important to the user, as this is
the back end functionality of the main page of the application, the controls page. With this class,
the user is effectively opening or closing the roof, as well as control the light ambience/color of
the building structure. As mentioned in the front-end section, this page contains two buttons. If
one is to translate that into a more Object-Oriented way of seeing it, each of these will be the
methods of our class.

This, however, does not mean that there will only be two methods in the class. Since the button
will have 3d touch capabilities, each button will have two methods, one for tapping the button, and
the other for 3d touching it. This means that since there are two buttons, there will be four methods.
This class will initiate an instance of the team’s custom ‘OpenAireRoofClass’ in order to have
access to all the roof’s capabilities, as well as having access to the different status parameters
within this class. Refer to this section of the document in order to further understand the class.

The first method ‘roofOpenClose_Press’ will do as its name says, open or close the roof upon
tapping the button. This method will be quite simple, as all that it manipulates the instance of our
custom ‘OpenAireRoofClass’ and then executes the ‘openOrClose’ method of this universal class.
‘roofOpenClose_Peek’ will be invoked at the event of 3d touching the item.

This will show a pop-up slider, similar to the brightness slider that iOS users are familiar with, and
then from there the user is able to “slide” the roof. In Swift, this is called peeking, which shows a
preview of the next viewController. Popping does the same, what differentiates the two is the fact
that one is able to invoke events within that preview windows displayed while “peeking”. Similar
to the ‘roofOpenClose_Press’ method, this method is a few simple lines of code that will use the
instance of the ‘OpenAireRoofClass’ to then execute the ‘customOpenOrClose’ method, which as
mentioned, is explained in the respective section of the document.

Page 83

Same as the first button, ‘lightsOnOrOff_Press’ will do as the name says, turn on or off the lights.
The method will simply manipulate the instance the ‘OpenAireRoofClass’ and then execute the
‘onOrOff’method of the class. ‘brightness_Peek’ will be invoked at the event of 3d touching the
item, this will show the pop up slider described earlier, allowing the user to custom slide to
whatever brightness level the user desires. This method is a few simple lines of code that will use
the instance of the ‘OpenAireRoofClass’ to then execute the ‘customBrightness’ method, further
explained in the respective section of the document.

OpenAireRoofClass - This custom class will effectively represent the capabilities of an
openAIRE roof. An object of this custom class will have member Boolean variables representing
different statuses for the roof; ‘opened’, ‘closed’, ‘lightsOn’, ‘lightsOff’. As mentioned, these are
all Boolean values that will be set to true and false based on the current status of the roof. There
will be two additional double variables, ‘brightness’ and ‘customOC’, the first indicating how dim
or bright the lights are and the second indication how much the linear actuator is extended. When
it comes to the capabilities, there really are only four things that an OpenAire roof can do: open or
close itself, open or close itself to a certain level, turn the lights on or off, brighten or dim the
lights. Each of these will be controlled through their own respective method.

The ‘openOrClose’ method will have no parameters passed to it. The structure will be a simple
conditional, ‘if(this.Opened)’, ‘else if(this.Closed)’ where based on the status of the roof, that
portion of the code will be executed. Once within the conditional, the procedure to connect to the
microcontroller will be executed. It is important to remember that this system is based on a
Bluetooth Low Energy procedure; refer to the respective section within the document in order to
see how the code will look like once this process starts.

Once connected, one will ensure that one subscribes to the correct service advertised by the
microcontroller. In this case it will be the opening closing capabilities, therefore once subscribed
to the service, one is able to execute the command to either open or close the roof. Once this
command is executed, the firmware code will take care of the rest, and can be better understood in
that respective section of the document. One then ends the connection with the device. After all
this, the member variables are updated based on whatever the new status of the OpenAire roof is,
which in this case would be setting the ‘opened’ and ‘closed’ variables to true and false based on
which conditional was entered.

The ‘customOpenOrClose’ will have one parameters passed to it. This parameter is a double
representing the distance of the edge of the stroke of the linear actuator from the base of the motor.
In other words, how much it has been extended. This value is passed to the function when the user
3D touches the slide in the Controls page, where the user is then able to slide the slider to whatever
value he or she desires to extend the linear actuator.

Once that value is set, this function is executed. Similar to the ‘openOrClose’ method, a BLE
connection is set based on the procedure established earlier in the document. Once connected, one
will subscribe to the custom Close and Open service by the microcontroller. This allows the code
to programmatically pass the variable, and then setting how much the roof is opened or closed
through the firmware. One then ends the connection with the device. After all this, the member
variables are updated based on whatever the new status of the OpenAire roof is, in this case the

Page 84

‘customOC’ double being set to whatever the parameter of the slider was set to and passed to the
function.

The next two methods follow a similar intuition that the first two methods followed. The ‘onOrOff’
method effectively turns the lights on or off no matter how dim or bright they are. The structure
will be a simple conditional, ‘if(this.Opened)’, ‘else if(this.Closed)’ where based on the status of
the roof, that portion of the code will be executed. Once within the conditional, the procedure to
connect to the microcontroller will be executed.

Once connected, one will ensure that one subscribes to the correct service advertised by the
microcontroller. In this case it would be turning lights on or off. Once this command is executed,
the firmware code will take care of the rest, and can be better understood in that respective section
of the document. One then ends the connection with the device. After all this, the member variables
are updated based on whatever the new status of the OpenAire roof is, in this case changing the
‘lightsOn’ and ‘lightsOff’ boolean based on whatever conditional was entered within the code.

SettingsPageClass - The SettingsPageClass serves as the backend to the Settings Page. It is also
important to note that this class is important because it is what interacts with the database of the
system’s infrastructure; In this section, a very top level overview of the code will be mentioned,
as more detail as to how a database is connected is within that respective section. As mentioned,
one of the main features this page allows is for admins to modify user permissions. At the press
event of the ‘User Settings’ button ‘userSettingsButton_Press’ method will be triggered. This
method begins by opening a connection with the SQLite database.

Once the connection is established, the program will automatically query the current user’s
information from the permissions table and pull from the specific columns that determine whether
the current user has access to this page. An if conditional is used to determine whether the current
user trying to access the User Settings Page has the permission to do so. If the user does not have
access, a message box will be triggered saying “No access to this page”. If the user does have
access, he or she will be transferred to the ‘UserAuthorizationPage’.

In this page the user will have a view of the table containing all important information. It is sort of
like a spreadsheet, where the admin user will be able to modify the fields within the table and save
the new settings. As mentioned, the interaction behind this procedure is better explained in the
database section of this document. The two buttons within this page, ‘Filter’ and ‘Add User’
buttons will have event based methods as well whose code composition is based on using user
inputted data via variables in order to execute the proper queries to either insert or filter based on
whichever of the two buttons was pressed.

The second feature within this page is what occurs at the pressing event of the ‘Roof Settings’
button. The ‘RoofSettings_Press’ button will begin by with an if conditional checking whether the
current user has access to this feature. Of course a similar procedure to the one just explained needs
to be executed first, where a connection to the SQLite database needs to be established, in which
then the code can access the table with the permission information.

Page 85

If the current user does not have access to modifying the roof settings, a message box will be
triggered saying “No access to this page”. If the user has access to this page, the user will be able
to see all the buttons described in the “RoofSettingPage”: The “Atmospheric Pressure”, “UV”,
“Wind”, and “Rain Pressures” buttons. As mentioned, all these buttons are 3D touch buttons,
where 3D pressing the buttons will trigger the button’s specific purpose and allow for the user to
move the pop up slider and change a variable.

As simple as that sounds, the code was built in a way where once the ‘xButton_3Dpress’ method
was triggered, and once the user sets the respective slider to whatever value he or she desires, then
a variable that represents that specific setting will be updated and then sent via Bluetooth (ensuring
proper procedure is followed) to the microcontroller where the firmware takes care of the rest.

WeatherMetricsPage Class - The last major class at the backend of the application is the
‘WeatherMetricsPage’ class. As discussed, this page will display two important metrics sets; the
data collected from the sensors, as well as the data obtained from the API. It is important to note
that this class is not responsible for anything but displaying metrics; everything else regarding the
specific thresholds that affect how the roof operates are modified within the firmware of the system
or within the “Roof Settings Page” of the application.

This class was designed to specifically connect with the microcontroller of the A.I.R.E. system
and collect the current data that is currently being measured by all the different sensors
implemented. This is done through two methods: ‘displaySensorData’ and ‘displayOnlineData’.
As the title of each of the methods displays, each is responsible for obtaining the data from their
respective sources within the microcontroller and updating class member variables.

These class member variables represent each individual label and text field combinations in the
page that represent each of the different metrics. The variables are ‘sensorTemp’, ‘sensorAP’,
‘sensorHumidity’, ‘sensorUV’, ‘sensorWP’, ‘onlineTemp’, ‘onlineAP’, ‘onlineHumidity’,
‘onlineUV’, ‘onlineWP’, and ‘onlinePrecip’. The names of the member variables give away what
they represent, and what both methods do is connected to the Microcontroller device via the BLE
procedure that has been discussed multiple times, to obtain access to the data needed. Once data
is obtained, each member variable is matched with its respective set of data.

Once each variable is properly set, then the displayed text on the Weather Metrics Page is updated,
granting the user the ability to see. Once proper data is matched and displayed, the connection is
closed. This process occurs every three minutes, as that time frame was what the team decided is
concurrent enough for the purposes of the users while allowing us to stay within the limits set by
the weather API being used.

5.2.2 Firmware Algorithms

The main purpose of the microcontroller in this project is communication. Communication
between the six sensors and the roof, sending requests for measurements and interpreting the
received data, and sending a signal to trigger a roof event if necessary. Communication with the
database and API servers for information about users and predictive weather. Communication with
the user to set up a new unit or update previous settings. This section will decompose and analyze

Page 86

each of these objectives and outline how the software development team plans on structuring the
microcontroller software.

Firmware Interrupts - Along with the logic flow algorithms that the new sensor measurements
are traversed through, the other main aspect of the firmware code is the three interrupts that
actually drive the microcontroller. The three specific interrupts are a timer interrupt, UART
receive complete interrupt, and external interrupt. These interrupts drive the specific actions the
microcontroller needs to take when an event is triggered or needs to be triggered.

The specific timer interrupt that is used is the Timer/Counter 3 Compare Match A interrupt. Timer
3 was chosen to be the main project timer due to it’s precision being one of the sixteen bit timers,
and due to it’s interrupt vector location. The Timer 3 interrupt vector falls below the UART receive
complete interrupt, and we need that interrupt to not be hindered for any reason. The Compare
Match A part of the interrupt is due to the specific timer mode selected for the project. The timer
counter increments until it reaches the value in counter register A, which in this case is the value
to create a four second interrupt, and then executes the timer interrupt. Using this mode allows for
higher precision and control of the timer counter.
	
The Timer 3 interrupt service routine will be executed seven times, incrementing a Timer 3 global
counter, to achieve an overall delay of thirty second. On the eight execution of the interrupt service
routine the function for polling all the sensors for new measurements will be called and the Timer
3 global counter will be set to zero. 	

The second interrupt that is utilized for this project is the UART0 Receive Complete interrupt.
This specific interrupt is to handle any new bluetooth communications between the iOS application
and the microcontroller. This interrupt vector resides high on the interrupt table, which is important
for this project, as the bluetooth commands sent to the microcontroller need to be handled first and
foremost. These commands can change the roof status or can change the thresholds of the sensor
measurements, which if not handled could cause the roof to malfunction when it comes to the
desired behaviors. 	

The UART0 interrupt service routine immediately reads the data in the UART Data Register 0 for
the command that has been sent. The command is then compared to the hardcoded command
values, which describes the specific values and bluetooth command algorithm, and calls the
respective functions for changing thresholds or behaviors, or changing the roof status. 	

The last major interrupt in this project is the external interrupt for the wind sensor. The specific
interrupt is External Interrupt Request 4, this is due to the location of the anemometer pin,
connected to the microcontroller on pin six. The pin is triggered to execute an interrupt on the
falling edge of the input signal.	

The External Interrupt Request interrupt service routine handles the polling and measurement of
the anemometer. When the interrupt service routine is executed it increments the number of
rotations of the anemometer in the time between the current, and last interrupt. After four interrupts
have been executed a sample is required. The sample for the wind speed is calculated by using the

Page 87

following equation, where T is the amount of time since the first interrupt until the last: Velocity
= Rotations * (2.25 / T).
	
Firmware SetUp - Peripherals	-	When the microcontroller powers on, it runs through the set up
code for the project once. This code includes setting up the microcontroller peripherals and
initializing any sensors. The microcontroller peripherals that are used for this project are the
Universal Asynchronous Receiver/Transmitter (UART), Pulse Width Modulation (PWM), Analog
to Digital Conversion (ADC), and Two Wire Serial (I2C). All the peripherals need to be initialized
in some way at the power on of the microcontroller.
	
The UART for this project is initialized to use the UART0 channel. The baud rate must be defined
and used during the initialization. RTo keep with the low power consumption and to have better
accuracy, according to the ATMega datasheet a baud rate of 4800 or 9600 would suffice. The team
selected to use a baud rate of 4800, and to convert the baud rate into the required sixteen-bit baud
rate register, UBRR, the following equation is utilized from the datasheet: UBRR = Clock
Frequency / (16 * Baud) - 1. The UART0 is structured to be eight bits, with no parity bit, one
stop bit, and run in asynchronous mode. The UART0 is able to both transmit and receive data.
Most importantly, the receive complete interrupt bit must be set in the UART register during
initialization to allow for the interrupt service request to execute. 	

The PWM will be used to create the signal to the actuators to move the roof when an event is
triggered. The PWM is quite simple to initialize, as the duty cycle for the PWM will be 100%,
since the whole 3.3V is needed to be outputted to the relays. When a PWM is required, the pins
are written to be high until the roof is completely open or closed. To initialize the PWM, the
specific pins need to be written to be output pins. This is done by the single line of code, by setting
pin 5 in port G to be 1 (DDRG |= (1 << DDG5)).	

ADC peripheral for this project is used to monitor the analog voltage signal of multiple sensors,
which is then used to calculate the respective measurements for those sensors. The ADC is
initialized by setting the pins as input for the analog signals, setting the register values for the
ADC, and starting the first conversion. The first conversion takes place at the power on of the
microcontroller because it takes an abnormally longer period of time to complete. It takes about
twenty-five ADC clock cycles to complete, when on average a normal conversion takes about
twelve clock cycles. In order to eliminate any delay this may cause, the first conversion is started
when the ADC is initialized. The pins for the ADC are set to input by writing all the pins in port
D to be 0. For this project the ADC is initialized to be running in free mode, left adjusted, and use
the internal 3.3V as reference. ADC is left adjusted to cause the eight most significant bits of the
conversion to be in the ADCH register. This project does not require that the precision of the
measurement be any better than eight bits. This also makes reading the ADC result much easier
and faster. 	

The final peripheral is the I2C communication that needs to be set up in order to communicate
with different sensors to command for measurements and readings. The I2C clock is set to 100kHz
to meet the clock frequency needs of all the sensors using the two wire communication. 	

Page 88

During the setup and initialization of the peripherals the global interrupts are disabeled to ensure
that none of the initializations throw an interrupt that the microcontroller is not prepared to handle
yet. At the end of the setup, the global interrupts are re-enabled to allow for the peripherals to
execute the proper interrupt service request if applicable.
	
Sensors Firmware	-	When the timer interrupt request service calls the function for polling all the
sensors for new measurements. The polling consists of reading a new ADC conversion or
commanding a new measurement to be taken and then read over I2C. I2C is set in master by
sending the START command first over the I2C wire. The following section breaks down the
polling process for each sensor for the specific peripheral it goes through. 	

The humidity sensor communicates with the microcontroller via I2C. To request a new
measurement, the microcontroller sends the START signal. The START signal is followed by the
slave address 0x88 (in write mode). The command medium repeatability for measurements, 0x24
and 0x0B, is sent followed by a STOP from the microcontroller. Once the measurement is
completed the microcontroller sends another START signal followed by the slave address 0x89
(in read mode). The sensor then responds with two sixteen bit measurements. The first being the
temperature measurement followed by the humidity measurement. The measurements are sent in
two eight bit segments. Each segment must be followed by an ACK from the microcontroller.
Once both sixteen bit measurements are received a NACK and a STOP signal are sent from the
microcontroller. The sixteen bit humidity value is divided by 65535 and multiplied by 100 to
calculate the relative humidity percentage. 	

The barometric pressure sensor follows a very similar structure for polling new measurements, as
it also communicates via I2C. The slave address for the barometric pressure sensor is dependent
on the SDO pin being connected to ground or voltage. For this project it is connected to Vcc,
resulting in a slave address of 0x77. When it write mode the slave address becomes 0xEE, and in
read mode 0xEF. The barometric pressure sensor however needs to be initialized before the first
measurement. A START signal is sent by the microcontroller, followed by the slave address 0xEE.
The control register 0xF4 needs to be written to 0x05 to enter the single measurement trigger mode.
This allows a new measurement to be taken whenever 0x01 is written to the control register. The
calibration registers, which are specific for each sensor, must also be read and stored for calculating
the pressure value. The calibration registers reside at 0x88 to 0xA1. To read in the calibration
registers and calculate the barometric pressure value, the manufacture, Bosch Sensortec, library is
used for efficiency. 	

The sensor measures both temperature and barometric pressure. The temperature measurement is
needed for calculating the pressure value. They are read in similar fashion as the sixteen bit
measurements from the humidity sensor, but these measurements are actually twenty bits. But the
last four are not used in this implementation because that level or precision is unnecessary. Once
the measurements are read they are used in the Bosch Sensortec library functions to calculate the
barometric pressure value in Pascals. 	

To poll the light sensor the VEML6070 library provided by the manufacturer is used. The basis of
the library is off of I2C communication. The library provides reading and writing functions, along
with all necessary addresses for the I2C protocol. Another helpful part of the library is the

Page 89

hardcoded UV level index it includes. The library function returns a single integer that depicts the
UV index risk level.	

The rain and temperature measurements are obtained via ADC. Both sensors use the same ADC
functions. To start a conversion the ADC channel for the respective sensor is stored in the ADMUX
register and the ADSC bit in the ADC status register is written to 1. The ADC channels for
temperature and rain are channel zero and channel one respectively. Once the conversion is
completed the eight bit result is read from the ADCH register. 	

For the rain sensor, to calculate the value of the input voltage the following equation is used:
Voltage = ADC * 3.3 / 256. The closer the input voltage is to 1.0 volts, the more water there is on
the sensor. The closer the input voltage is to 3.0 volts, the drier the sensor is. Through testing it
was found that 2.4 volts was an unacceptable voltage threshold for determining if it was raining
enough to trigger a “raining” event. 	

To calculate the temperature from the input voltage two equations are utilized. The values are
based on the implemented circuit, for this project the implemented circuit results in the following
constants: 𝛃 = 3998, Balance resistor (Rb) = 10 kOhms, and Room Temperature (To) is 298.15
Kelvins. With those constants the ADC value is used in the following equation to calculate the
resistance at the current temperature: R = Rb * (1023 / ADC - 1). With the calculated R value, the
following equation gives the measured temperature (T):	
 1/T = 1/To + (1/𝛃) * ln(R/Rb).	

All the values that are returned from the polling process are stored into a measurement structure
that is used later to check against the threshold values to determine if inclement weather is present.
These values are also used to average the sensor measurement since the last data push to the iOS
application.	

Sensor Default Limit Values - Six different sensors are used within this project to provide current
conditions of the structure’s surroundings. Some of the sensors alone can give an accurate
interpretation of the weather, while others need to be paired with data from another sensor to be
able to be implicit. A few of the sensors have multiple purposes, providing extra measurements.
Not all of the sensors have predefined extremes for the conditions that they measure. Some of the
sensors conditions and limits will be defined by the user based off of location or purpose of the
structure.

Wind has been studied enough, both on water and on land, to have a set of wind speed ranges to
define a “windy” condition. These values come from the Beaufort Wind Force Scale which has
been used for centuries and was last updated in 1955 [12][1]. Beaufort Scale 6, defining wind
speeds between 25-31 miles per hour, is the range the team has decided to use to define a “windy”
condition.

During this kind of wind, large tree branches will begin to wave and whistling occurs in electric
and telephone wires. The default value for windy will be defined within the software to be 28 miles
per hour. This wind speed will need to be recorded at least three times in a ninety second, or hold
for 15 seconds to trigger a change in the roof’s position.

Page 90

With the selected rain sensor, precipitation and the intensity of precipitation, is measured. The
sensor allows for a sixty second delay between droplet detections to accurately decipher between
actual rain or mist-like conditions. No default values are needed for a raining condition, an analog
signal is returned with the intensity in the format of a dynamic voltage.

Ultraviolet radiation is another weather measurement that has abundant research that can provide
the project with predefined default limits. UV has a predefined index from the Environmental
Protection Agency (EPA), which is based off the guidelines for UV Index reporting from the.
World Health Organization. The UV Index from the EPA is broken into three groups: Low,
Moderate to High, Very High to Extreme. For the purposes of the project, the third group, Very
High to Extreme, is analyzed. A UV Index of 10 is a preferable limit to set as the default for the
system. At a UV Index of 11, skin damage can occur in as little as fifteen minutes [7][2].

Humidity and Temperature go hand in hand to create the Heat Index. The Heat Index indicates
how hot it really feels. Using measurements from both sensors the system can calculate the Heat
Index, The National Weather Service has a Heat Index table that is based off of air temperature
and relative humidity. The Heat Index is calculated from an equation that has been refined from
the research of Lans P. Rothfusz in 1990 [8]. The equation, which will be used to calculate Heat
Index for this project is:

Heat Index = 42.379 + 2.04901523 ∙ T + 10.1433127 ∙ RH - 0.22475541 ∙ T ∙ RH - 0.00683783
∙T2 - 0.05481717 ∙ RH2 + 0.0012287 ∙ T2 ∙ RH ∙ 0.00085282 ∙ T ∙ RH2 - 0.00000199 ∙ T2 ∙ RH2

Dangerous levels, where the likelihood of heat disorders such as heat stroke and dehydration, occur
when the Heat Index reaches about 105-108°F with prolonged exposure. Extremely dangerous
levels occurs when the Heat Index reached around 120°F. The default value for Heat Index will be
110°F, as that is the middle range for dangerous levels.

While Heat Index can be calculated, and certain values will be set as defaults for the system, alone
temperature and humidity will be mainly based off of user’s preference. The preference can change
based on the structure’s purpose. Default values for the two measurements will still be
implemented, but users will be prompted to change them during setup. Unlike other measurements
however, temperature will have both maximum and minimum limits. The default maximum value
for temperature will be 100°F, as prolonged exposure at this temperature is likely to cause heat
disorders. The default minimum value for temperature will be 32°F, as that is the freezing point
for water. For humidity, the default value will be 82% RH.

The maximum relative humidity for Tampa, Florida was 78.4% [13][4], so 82% was selected as
the default to add in a small buffer for sensor measurement error. However, at different
temperatures, relative humidity can vary greatly. At lower temperatures, relative humidity can
spike into the 90th percentile [14][5]. Whenever the relative humidity limit is reached, the
temperature needs to be measured and referenced. If the limit is reached, and the temperature is
above 80°F, then the roof trigger event shall occur.

Page 91

Barometric pressure is a good indication of what weather conditions are fast approaching. Usually
rising barometric pressure is a sign of good weather, while decreasing pressure indicates a storm
is approaching. Barometric pressure changes due to altitude, for this project it will be assumed that
the default is at sea level, meaning altitude is zero.

At sea level barometric pressure is defined to be 101.325 kilopascals. To calculate a new
barometric pressure, in the event that a system is not at sea level, the following equation will be
used to calculate the new pressure in Pascals, where Height is the difference from sea level [15][6]:

Pressure = 101325 ∙ [1 + (-2.256 × 10-5) ∙ Height]5.256

With the base barometric pressure, any changes will be measured, and the previous state of the
pressure will be referenced. Unfortunately, pressure changes are very minute and can take a longer
time to occur. Barometric pressure is usually only important to notice when drastic changes occur
over a short period of time. Because of this, the barometric pressure readings will be used along
with the data from other sensors and information from the Weather API to trigger a roof event.

The following Table 40 reviews the different conditions and their respective defined default values
that will be hardcoded for the initial installation of the system. During setup, the user will be
prompted to change these values, if they so desire. These values can also be changed throughout
the life cycle of the system.

Table 40: Defined default values for the system

Measurement/Condition Value Unit

Windy 28 Miles per Hour

Raining NA NA

Temperature (Maximum) 100 Degrees Fahrenheit

Temperature (Maximum) 32 Degrees Fahrenheit

Relative Humidity 82 %

Heat Index 110 Degrees Fahrenheit

Barometric Pressure 101.325 KiloPascals

UV 11 UV Index

Roof Default Behaviors - The roof of the project will also have default actions that will be hard
coded in for the initial installation of the system. These default actions will be in response to the
measurements/conditions the sensors report, along with the data that will be pulled in from the
Weather API. Just like the sensor defaults, the roof defaults can be changed during set-up and at
any time during the life cycle of the system. Two different set of defaults will be outlined, one for

Page 92

a pool structure, and one for a garden/greenhouse structure. This is to demonstrate the different
capabilities the roof will have with both the sensors and the Weather API.

These values are examples of possible roof behavior and would change on user preference. They
are also based off of the default values for the sensors found in the previous section. For a structure
with a pool, any kind of hazardous weather conditions such as rain, strong winds, and damaging
UV the roof should be closed to protect patrons. A pool structure may not care about maximum
temperatures but would likely care when temperatures drop and reach freezing. A greenhouse
structure on the other hand may want more rainfall to be allowed within the structure to decrease
the use of watering systems. These examples show the vast options that the roof can react to and
what possibilities that the structures can have.

If the measurement or condition changes for the listed aspects, the current state of the roof would
be examined. If the state is the opposite of the defined behavior value, an event would be triggered
to power on the roof mechanics to change the state of the roof to match the defined behavior.

Table 41 depicts all considerations that will be taken into account when deciding if the roof should
be open or closed based on the type of activities happening inside the structure. Some data will
only be taken into to consideration with other sets of data. While more important and dangerous
weather conditions can prompt the roof to open or close immediately with no other data needed.

Table 41: Roof Default Behaviors

Measurement/Condition
Changes

Roof Behavior for Pool
Structure

Roof Behavior for Greenhouse
Structure

Windy Close Close

Raining Close Open

Temperature (Maximum) Open Open

Temperature (Minimum) Close Close

Relative Humidity Close Open

Heat Index Close Close

Barometric Pressure Close Open

UV Close Open

Whenever the roof is in the open state, the central air conditioning or any kind of climate control
should be turned off. When a roof event is triggered, the new state should signal to the climate
control systems to be powered on or powered off. This saves power and efficiency for the structure.

Software Algorithm Flowchart - To better encapsulate the connection between the sensors and
the behavior of the roof, the following flowchart in Figure 23 depicts the basic logic behind the

Page 93

software algorithms for the microcontroller. It also depicts specific values taken into consideration
when deciding which sensor data has precedence over others, and how multiple sensors can work
together to initiate a decision for the roof. It then shows how the microcontroller makes a decision
by checking various conditionals as well as comparing the current roof state to the desired roof
state.

The diagram shows how the data received from the sensors will be put through different
conditionals to determine the current state of the weather. The arrows indicate the directions of the
flow chart, a green arrow indicates a ‘TRUE’ for the conditional and a red arrow indicates a
‘FALSE’ for the conditional. If the data received from the sensors indicates inclement weather,
the current status of the roof, whether it is open or closed is checked, along with the defined
behavior of the roof for that weather. If the two do not match, then the microcontroller will send a
signal to either close or open the roof based on the defined behavior. If the roof state does match
the required roof behavior for a certain condition, the microcontroller will either do nothing or
send a signal to stay the same.

The flow chart also depicts how different sensors interact with one another in order to make
accurate measurements on the current weather. The temperature and humidity sensors interact
together, while also being used separately for their own measurements. The barometric pressure
sensor also interacts with the Weather API to check predictions for the forecasted weather of the
area. All sensor interactions are depicted with black arrows to show how some conditions are only
met if multiple sensor conditions are all met at the same time.

Figure 23: Software Flow Chart for Sensor and Roof Connection

Page 94

Additional Light Sensor Algorithm - The other purpose of the light sensor in this project, besides
sun protection for the customers and liability issues for the building owners, is to measure the
amount of natural sunlight the structure is receiving. Based off this measurement, the lighting
inside the structure will be responsive, either increasing in brightness or decreasing. This will save
power consumption for the overall lighting of the building by controlling the indoor lighting as the
outdoor lighting changes. When there is ample sunlight, the interior lights will remain off or dimly
lit, and similarly when it is dark outside the interior lights will be brighter. We can also implement
a timer that fully turns off all indoor lights, except emergency lights, when the building closes for
the day. The app will connect to the lighting system allowing the user to control these settings as
well based on their own preferences. This also serves as a good implementation for structures that
are green houses. When the weather is cloudy and there is not much light for plants, internal lights
will be turned on to combat the lack of sunlight. To implement this design, the light sensor’s
measurements of lux and UV light will be used.

In order to determine which light levels the visible light sensor and UV light sensor should signal
a change, the type of environment inside of the enclosure must be determined. The average amount
of full daylight is around 10,752 lux according the National Optical Astronomy Observation
(NOAO) [16][7]. The NOAO has recommendations for the amount of illumination that should be
present for different activities. These lighting recommendations are important as they feed into the
phycological enjoyment of an activity. Keeping a room too dark or too light can make a situation
very uncomfortable even though it might not seem like a big aspect at first glance.

The Table 42 below extracts some of those recommendations that are relevant to this project.

Table 42: Illumination Recommendations from NOAO
Activity/Space Illumination (in lux)

Dinning Areas 150-200

Lobbies/Atrium 200

Physical Fitness Space 500

Outleased Space 500

Supermarket 750

Detailed drawing or mechanical work 3000

These values could serve as possible predefined default values, based on the type of structure the
user selects during setup. If the illumination from outside does not meet the value for the activity
or space, the microcontroller would signal the interior lights to turn on or turn on to a certain
brightness.

The following flowchart shown below in Figure 24 shows the behavior for light sensing
algorithms. Using the recommended illuminations provided above in Table 42 The following
decision flowchart was made. Once the program starts and the system powers on, the light sensor

Page 95

reads in lux data, and checks if it is greater or less than the default lux value. If it is less than, the
lights inside will turn on or get brighter if they are already on. If the measured value is greater than
the default, the lights inside the enclosure will turn off as to not waste energy.

Figure 24: Light Sensing Algorithm

Database Design - The database will be used to offload larger data from the microcontroller to
increase storage space and runtime performance. The two main purposes of the database will be
storing user settings and logins, and data for the characteristics and statistics from the API and
sensors for the weather. The data from the API will be stored for analysis and statistics for twenty-
four hours before being overwritten. This will decrease the amount of storage needed for the
database and decrease time for calculations and data retrieval.

For implementing the user settings and login storage, three tables will be created. The first table,
titled ‘Users’, will hold the user identification number, system number, and hashed password. The
user identification number will be the primary key for the table and will be an auto incremented
number. The system number will be the hardcoded identification number for the kit that is on the
microcontroller. This can be thought of almost as a username, as each microcontroller will have a
unique identification number itself. The hashed password will be stored and verified on the
database side to protect the user’s identification and data. The system number and hashed password
will be created and stored during the initial setup of the system.

To increase security, but also increase the usability of the system the table titled Permission will
hold user identification number, approved, and access. The user identification will be pulled from
the Users table and serves as the primary key of the table. Access will be an integer and will be
used to distinguish between which kind of user is interacting with the roof. The different kind of
users for the system will be administrator and employee. Administrators will be allowed to change
measurement and setting preferences, behaviors, and schedules of the roof. Administrators will
also have all the capabilities of an employee user. Employees will have access to control the
lighting, movement of the roof, and view weather statistics. An administrator must approve new

Page 96

employee users before employee users can login, and that will be managed by the approved
Boolean column.

The multiple settings for the system, will be stored in a table titled Preferences which will hold the
user identification number, schedule identification number, behaviors identification number,
temperature maximum, temperature minimum, relative humidity, UV Index, heat index, light, and
structure type. The user identification will be a primary key, and will be selected from the Users
table. The scheduled identification number will be a foreign key referencing the Schedule table.
The behaviors identification number will be a foreign key referencing the Behaviors table.
Structure type will be the type of structure the system is being used for, i.e. garden house or
physical fitness space.

The rest of the values for the table are the user’s preferred threshold values. These measurement
threshold values along with the expected behaviors will be collected during the initial setup of the
system. If the user makes no change to the threshold values, the default values will be stored. By
collecting the what type of structure is being used, the default values for the expected roof
behaviors can be changed.

The different expected behaviors of the roof based off user preferences will be stored in a table
titled Behaviors, which will hold behaviors identification number, on wind, on rain, on UV, on
temperature max, on temperature min, on relative humidity, on heat index, and on API. Behaviors
identification number will be an auto incremented primary key for the table, and is the value the
Preferences table will use for reference. The remaining values will be the user’s expect roof
behavior for the trigger on that particular measurement. These values will be collected during the
initial setup of the system, and if unchanged, will be the default behaviors as aforementioned.

An optional schedule can be put in place for the opening and closing of the roof. The Schedule
table will hold time one, behavior one, time two, behavior two. Time one is the first instance that
the roof is expected to trigger a behavior, and that corresponding behavior will be behavior one.
While it is expected that at the second time instance the roof behavior will be the opposite, the user
will still be able to schedule a second time instance and expected behavior which will be stored in
time two and behavior two. There is no default schedule, so schedules will be created as the user
requests.

The weather data will be broken into API and sensor tables. The data from the API will be stored
for analysis and statistics for twenty-four hours from its original poll request, before being
overwritten. This will decrease the amount of storage needed for the database and decrease time
for calculations and data retrieval. The data from the API will be used for predictions and analysis,
so two tables will be used to break those purposes down. The sensor data will be stored for thirty-
six hours before being overwritten, since the sensors are a more accurate measurement of the
weather at the actual structure the data is stored for a longer duration.

Storing sensor data will be done in the Sensors Collection table, which will hold the system
identification number, average temperature, average relative humidity, average barometric
pressure, average wind speed, average precipitation, average light, average UV, average heat
index, and the maximum and minimum value for each of those measurements.

Page 97

To reduce the amount of data being collected and the number of pushes to the database only the
average, maximum, and minimum value for each measurement will be recorded. The average will
be calculated using the current measurement with the stored current average. The values for
averages will be reset at every 0:00 of the day. But the data in the database will be stored for thirty-
six hours for analysis and statistics that will be pushed to the phone application.

The first table for storing data from the API will be API Predictions, which will hold weather
alerts, precipitation rate, precipitation type, nearest storm, nearest storm direction, lighting strike
distance, wind speed, and wind direction. This data will be updated whenever a new poll request
to the API returns. This table is expected to be the most queried and updated. The second table for
storing data from the API will be the API Collections table which will hold the same values as API
predictions, but they will be averaged throughout the day and will be reset at 0:00 every day.

Google Firebase and API Polling Algorithms

Another reason the team decided to utilize Google Firebase as the database of choice for the project
is due to the fact that it supports cloud functions. Cloud functions allow for background code to
execute based on a trigger from the Firebase database. It is typically JavaScript or TypeScript, but
for this project the software team decided to write the cloud functions in JavaScript. To create
functions, the Firebase CLI commands are utilized. These commands allow for easy management
of the cloud functions for the Firebase UI. For the scope of this project, using cloud functions is
free for the first twelve months which is more than enough time for the completion of this project. 	

The Weather API polling is completed in the background of the database and mobile application
by the cloud functions. The triggering event will either be new weather data being stored in the
database from the iOS application or an elapsed time since the last API poll. Timing for polls can
be found in the Weather API selection section. Both Weather APIs that were selected will be polled
and their data stored in their respective database tables.
	
Moving the Weather API polls to the cloud functions has multiple benefits. It allows for constant
API polling, no matter if the mobile device with the iOS application is connected to Wifi or data
services. The data can be aggregated by another cloud function, and old data can be deleted from
the firebase with yet another function. This keeps the weather data up to date and helps keep the
total data stored within the database smaller. Using the cloud functions also offloads extensive
tasks from the mobile application, so it is able to perform efficiently and is not bogged down with
additional computations and server interactions.
	
Utilizing Firebase cloud functions allows the team to continue its goal in project efficiency and
reliability. Having up to date weather API data to help predict roof behaviors is made simple and
low cost with the few cloud functions to poll the data, aggregate the data, and delete old data.

	
Bluetooth Communication Algorithm

To communicate between the iOS application and the microcontroller specific commands are sent
via Bluetooth. The main data that is sent to the microcontroller are the new thresholds for the

Page 98

sensor measurements along with the main open and close command for the roof. Each command
is formatted in similar fashion, but all commands start with a single character to represent the
sensor the new threshold is for, or the command to change the status of the roof.

For commands that change new threshold values the starting character is followed by the threshold
float value in the command format of [0xXX , 0xXX , 0x2E , 0xXX , 0xXX , 0x(4F/43)]. The
first four commands represent the float value itself, with the whole number, the decimal point, and
the decimal value of the threshold. The sixth command is the representation of the roof behavior
for the given threshold. The value is either “C” or “O”, representing closed or open. The command
for a new threshold is sent to the microcontroller whenever the threshold value or the open or close
preference is changed on the app. In total the commands for new thresholds or new roof behaviors
contain seven hexadecimal values in total.

The rain sensor is slightly unique compared to the other sensors as it does not have a threshold,
only a boolean if it is raining or not raining. For the rain sensor, only the roof behavior command
can be changed for the preference of the roof when it is raining. The rain command only contains
two sub-commands. The preceding command letter followed by the value of “C” or “O” for the
roof status preference.

The only other command sent to the microcontroller is the open and close roof command. This
command is denoted by the character “S’. It does not contain any other hexadecimal values. The
microcontroller decides what the current state of the roof is, and operates the relay and actuators
to the opposite state.

In total there are six commands sent via Bluetooth to the microcontroller. The commands specific
formats and justifications are outlined in Table 43. The specific values for each command are also
outlined in both decimal and hexadecimal because both are used to determine the specific
command and the respective sensor the value is for. The hexadecimal value is used for
differentiating between commands and the decimal value is to specify the specific sensor when
assigning the values.

Table 43: Bluetooth Commands
Command
Character

Decimal
Value

Hexadecimal
Value

Sensor/Threshold
or Command

Command Format

W 87 0x57 Wind [0xXX , 0xXX , 0x2E , 0xXX ,
0xXX , 0x(4F/43)]

U 85 0x55 UV Index [0xXX , 0xXX , 0x2E , 0xXX ,
0xXX , 0x(4F/43)]

L 76 0x4C Temperature Min [0xXX , 0xXX , 0x2E , 0xXX ,
0xXX , 0x(4F/43)]

H 72 0x48 Temperature Max [0xXX , 0xXX , 0x2E , 0xXX ,
0xXX , 0x(4F/43)]

R 82 0x52 Rain Sensor [0x(4F/43)]
S 83 0x53 Open/Close N/A

Page 99

5.3 Mechanical Design

Although this project’s main focus is the electrical and software design of the A.I.R.E. system,
there are some mechanical aspects of the project that require some level of explanation and detail.
This section will be a small overview of the mechanical side, including the housing needed for the
electrical components as well as the prototype design that will be used to demonstrate the
functionality of the system.

Proposed Enclosure - A rectangular prism like enclosure was designed out of Acrylonitrile
Butadiene Styrene (ABS) plastic to acts as a housing for the electrical boards. This encasing shall
protect the electrical equipment from accidental damage or the slight ingress of any liquids or
substances that could potentially damage the electrical parts. This protection is provided by the
design of the enclosure itself, as well as the materials used to make it.

ABS is the perfect material for the enclosure as it is cheap and has water resistant properties after
a bit of treatment. Once the design is printed, acetone treatment along with using water-proof
epoxy to seal every dimension of the shape together makes the enclosure suitable for the purposes
of this project.

In summary, the design consists of two rectangular prisms, both without a top face and sharing the
bottom face, effectively making one structure. The dimensions for the prism are 12 inches in
height, and 6 inches for the width and length. The purpose of removing the two faces is so that one
can place the electrical components inside of one of the sides to then enclose it with another ABS-
based face, using water-proof epoxy to properly seal. There will be holes in that “in-between” face,
allowing for air flow into electrical components, although heat is not an expected issue when final
developments are completed.

The other side (the other prism) will house the sensors that require to be exposed to the air. This
include the atmospheric pressure sensor and temperature sensors. The holes in the in between face
will be used to connect the sensors to the microcontroller. Other Sensors will be connected the
same way as well, with waterproof wires because of the fact that these will need to be placed in
the places outside of box. This is more specific to rain and ultraviolet sensors.

It is important to note that this design will only be good if the rectangular prism is placed on the
side of a building. This is the only way that one can waterproof the whole system, while still
exposing the sensors to the outside environment to gather the proper data.

Proposed Prototype - With OpenAire being a company that makes custom retractable roof
enclosures, it was important to test the functionality of the A.I.R.E. system on a model roof
structure. Of course, this model could not be an actual sized roof, as that would drive project’s
costs up dramatically and would be difficult to demonstrate. Luckily, the intention for creating this
system was to show that we could control the roof based on the intelligence of the A.I.R.E system,
which is driven by all the sensors data, and how back-end algorithm uses that information to retract
or contract. For this reason, the most important thing was to be able to see that we could trigger a
motor to activate based on the microcontroller’s signal.

Page 100

This is the whole concept behind the team’s prototype design, where two linear actuators are built
into a building like structure and are activated based on the microcontroller’s signal. Upon
activation, these motors output a force that drives a roof back and forth. More detail about the
whole structure and how it operates will be discussed below.

The first part that will be discussed is the building structure itself. The model is meant to be similar
to the buildings which OpenAir works in, mainly meant to house pools. The built prototype
consists of 3 separate entities that are then connected. The first entity will be a 10x10 inch cube,
with two faces removed, the bottom and one of the sides. The walls (The side faces of the cube)
are 1 inch in thickness, while the roof (Top face) will be two inches in thickness. The reason for
the larger thickness on the roof is because a carve and trim of .75 inches in height and .90 inches
in width is needed to satisfy linear actuator detail design, with the purpose of placing this motor
within the altered section of the face. Refer to the linear actuator section for more detail regarding
it.
The top of the roof will also have two linear rails, with carriage blocks, about 12 inches in length,
placed 4 inches from the back edge of the roof; since they railings are longer than the reaming part
of the roof, they will be outside of the tops area, which is the intention. This is furthered discussed
in the next paragraph. The placement has to do with the fact that these railings are used to drive
another roof, a 6x6 inch square on top of the rail’s carriage blocks, serving as the retractable roof.
This is pushed by the linear actuator from the top of the first module, onto ser. To give a better
depiction of what is being discussed, refer to the sketches below, as well as the free body diagram
which will explain why things were chosen as they were.

The second entity is simple, two wooden walls, 6 inches in height, 12 inches in length, and 1 inch
wide, connected vertically to the first module, as well as the third model’s module. There is no top
face between these two side faces because the 6x6 roof on the railings on the first module will
slide onto the top of these two faces. This will be done through the force exerted by the linear
actuators. The railings will come off the first module’s area and will continue on top of the side
wall’s top edge, allowing for this to happen.

This is effectively how the retractable roof is simulated, or at least the first half. The other side of
the two vertical walls will have the third module, which is a copy of the first module just on the
opposite side. Same functionality, with the same specifications as the first module. Things were
made this way in order for the two sliding roofs to meet in the middle and close. In order to prevent
collisions between the two sliding roofs that may cause damage, a proximity switch sensor,
connected to the microcontroller, is used to communicate to the linear actuators to stop exerting
force. This is more of a safety net, as the dimensions of the modules were selected specifically to
prevent any form of problems of this nature. Refer to the sensors section of this paper.

Page 101

The physics behind this design is based on the following free body diagram:

Figure 25: Retractable Roof Free Body Diagram

It is known that the coefficient of friction for ball style carriages is 0.002-0.003. These are the
carriage style for the linear railings selected, the “Iverntech MGN12 300mm Linear Rail Guide
with MGN12H Carriage Block for 3D Printer and CNC Machine”.

This low friction coefficient allows for a large amount of weight to be moved in the x direction
without a lot of force needed. This is part of the reason that the “PA-07 linear actuator” was chosen,
aside from its dimensions that made it easy to fit in the design of the prototype structure. As 12V
are applied to the actuators the actuator is able to extends it stroke, 6 inches in length, with a force
of 5 pounds. If one converts these 5 pounds into Newtons, 22.24 N, one can solve for the total
Mass that can be moved:

755.69 Kg is the maximum amount of mass that the actuator can actually move, more than enough
of a threshold for the mass of the roof. The dimensions and the overall force that “PA-07 linear
actuator” outputs are more than fit for the purposes of this model.

Final Building Design – The final building design is shown below in the following SolidWorks
drawing. It is a 32”x10”x11” rectangular box where the top panels include indents for the
actuators to fit in, and the plexiglass panels for the roof will be attached to the actuators. This
design was done with ¾" plywood in mind as it is inexpensive, easily accessible, and lightweight
enough to fit within the specifications we sent for ourselves. The size constraint was altered
slightly as the size of the actuators played a large role in deciding the enclosure dimensions.

In the final build, this structure is made from medium density fiberboard (MDF) plywood. The
material changed from the original plywood choice as one of the group members already had MDF
in their possession pre-senior design. Instead of spending unnecessary money, we went with MDF
which was the same thickness and general weight of the proposed plywood.

The solar panel will be attached, at an angle, to the side of the building, and the sensors will attach
to the corner of the roof out of the way of the plexiglass panels. All other components that are not
required to be outside, will be inside the enclosure away from the roof’s opening. This is to protect

Page 102

the essential working components from damage due to outdoor weather conditions. As mentioned
above, we wanted to build another structure to place all working components in in order to protect
them from the weather. However, due to COVID-19 restrictions we were unable to use the
university’s on campus printing lab, and no one in the group would have been able to obtain a 3-
D printer feasibly.

Figure 26: Solidworks Drawing of Final Building Design

As with all projects, the initial stages of ours will begin with combining our initial designs into
an integrated schematics section for PCB layout. The first section will be dedicated to illustrating
these integrated schematics and their respective PCB board layouts. In the next section, we will
be extracting our gerber files from the PCB design software and comparing different PCB
vendors to get the best price, service, and lead time for assembly and delivery. Once that is
finished, we will put together our final designs for the software that we will be programming
both for our mobile application and the embedded software on the microcontroller. In this
section, we will also discuss how we will be programming the microcontroller, and our PCB
design will reflect it as well. 

6. Prototype Construction and Coding

As with all projects, the initial stages of ours will begin with combining our initial designs into an
integrated schematics section for PCB layout. The first section will be dedicated to illustrating
these integrated schematics and their respective PCB board layouts. In the next section, we will be
extracting our gerber files from the PCB design software and comparing different PCB vendors to
get the best price, service, and lead time for assembly and delivery. Once that is finished, we will
put together our final designs for the software that we will be programming both for our mobile
application and the embedded software on the microcontroller. In this section, we will also discuss
how we will be programming the microcontroller, and our PCB design will reflect it as well.

Page 103

6.1 Integrated Schematics

This section illustrates all of our PCB designs based on our hardware design from section 5.1. it is
broken into three sections: Power Module, Microcontroller, and Sensor Module. Each section
shows our PCB designs for each module and any additional comments about our hardware design.

Integrated Schematics and Board Layout for Power Module - The integrated schematics for
the power modules are compiled into the figures in this section. These designs are based off of the
schematics we proposed in the previous sections. Each design shows the final schematic layout
followed by the final printed circuit board (PCB) design.

The integrated schematics for the battery management system are illustrated in Figure 27. As
discussed in previous sections, three battery management systems are connected together in series.
This is done because we need to regulate and protect a large input before sending it to the voltage
regulators.

Figure 27: Integrated Schematics for Battery Management System

Page 104

The board layout for the battery management system is illustrated in Figure 28. In this figure, red
signifies the top copper layer and blue signifies the bottom copper layer.

Figure 28: Board Layout for Battery Management System

The integrated schematics for the voltage regulation stages are illustrated in Figure 29. As seen,
the largest schematic is for the 12V regulator as it is arguably the most important step in this
process. Creating a stable 12V is imperative as the next voltage regulation steps will run much
more smoothly, and ensure no voltage errors throughout our system.

Figure 29: Integrated Schematics for the Voltage Regulation Stages

Page 105

The board layout is illustrated in Figure 30. In the latter figure, red signifies the top copper layer
and white is the bottom copper layer.

Figure 30: Board Layout for the Voltage Regulation Stages

Integrated Schematics and Board Layout for Microcontroller Module - The integrated
schematics for the microcontroller module are compiled into the figures in this section. The
integrated schematics for the microcontroller are illustrated in Figure 31. As shown all ports are
connected to jumpers and a few external components to regulate the signals coming into the
microcontroller. Each jumper connects to either the power module, motor module, Bluetooth
module, or one of the various sensors on the sensor module.

Figure 31: Integrated Schematics for the Microcontroller

Page 106

The board layout for the microcontroller is illustrated in Figure 32. In this figure, red signifies
the top copper layer and blue is the bottom copper layer.

Figure 32: Board Layout for the Microcontroller

Integrated Schematics and Board Layout for Sensor Module - In order to create a design in
which all of our sensors operated as desired, we went with a multiple part PCB design. One
PCB will be placed outdoors holding all of our sensors. This must be directly outdoors to operate
correctly and accurately , and it will connect to the microcontroller PCB inside the building. The
proximity sensors that need to be in other various places around the building will also connect
back to the inside MCU PCB. Figure 33 depicts the overall sensor board layout.

Figure 33: Sensor Module Placement

Page 107

Figure 34 depicts the top layer of the sensor module. One important note is the placement of the
copper layer being kept away from any sensors that may be heat sensitive, or may be in accurate
due to the external PCB heat.

Figure 34: Top Layer Board Layout for Outside Sensor Module

Figure 35 depicts the bottom layer of the sensor module PCB. Green depicts any components or
through hole placements in the PCB

Figure 35: Bottom Layer Board Layout for Outside Sensor Module

Page 108

6.2 PCB Vendor and Assembly

For any electronic project with a deadline, the PCB vendor used is almost as critical as the
designing and testing of the prototypes built. Therefore, in this section, we will be reviewing the
different available PCB vendors. Our major criteria for selection involve price point, lead time,
assembly services, and previous customer reviews.

The available PCB manufacturers that we have come across, with a demonstrable service record,
include JLCPCB, PCBWay, and 4PCB. For our PCB needs, JLCPCB offers $4 per 5 boards, $7
in shipping, and a 3-week lead time for delivery. They also offer assembly of the PCB in-house.
PCBWay offers $5 per 5 boards, $17 in shipping, and a 2-week lead time for delivery.

While PCBWay offers a faster lead time, we will be using JLCPCB for our initial PCB vendor for
the low cost and assembly service. Our team is familiar with JLCPCB, and so we heavily favor
using them for our PCB manufacturing needs.

In terms of assembly, a large majority of the components we are purchasing and assembling onto
the PCB are surface-mount-technology. Therefore, we may need external aid in assembling the
final prototypes of the project. For this reason, we will be seeking the services of Quality
Management Services due to their extensive history aiding in UCF’s senior design projects and
convenient proximity to the UCF campus. For assembly that we are able to complete on our own,
we will be utilizing the UCF-provided soldering stations to assemble what is needed.

7. Prototype Testing Plan

In order to test the functionality of the software on the microcontroller integrated with the hardware
for the rest of the system, a test plan will be followed throughout the life cycle of the project. The
test plan will be broken into multiple parts to test all the components extensively as singular pieces
and as components in the system. The overall test plan includes testing each component on its own
before combining parts into subsystems. Once an entire subsystem is tested, we will move into
testing an entire module, once all modules are tested they will slowly be combined together to
create the final design.

7.1 Hardware Test Plan

This section will describe our plans for testing all of our hardware modules. Beginning with how
we plan to order our designed PCBs, and devising a plan to solder them, either on our own or with
the help of outside resources. Then we will go into a discussion of the test plan for the sensors,
power module, and microcontroller. Separate testing will be done first for each subsystem in every
module, before testing the module as a whole, and then combing all hardware together. This
breakdown is done for easier debugging.

7.1.1 Sensor Module Testing Plan

Page 109

Each sensor will be tested separately to check calibration, communication protocols, and accuracy.
These kind of unit tests will allow the development team to catch any errors in the basic
functionalities. The sensor will be tested at its respective measurement boundaries. The
communication will be checked for both sending and receiving signals. Sensors that are used in
multi-sensor measurements, such as the temperature and humidity sensor, will be tested together
for the same criteria which a single sensor is checked. The following are examples of tests that
will be completed to check the multiple sensors.

Table 44: Sensor Test Plan
Sensor Test

Temperature Sensor will be exposed to four different temperatures, two of which will be at
the extremes of the range, in order to check for the validity of the
measurement and the relay of the data to the microcontroller.

Humidity Sensor will be exposed to four different humidities in order to check for the
validity of the measurement and the relay of the data to the microcontroller.

Wind Sensor will be exposed to different wind speeds from different directions to
check that the wind is detected and the speed measured accurately.

Rain Sensor will be exposed to different rates and volumes of water to check that
the signal to the microcontroller is accurate and timely.

Barometric
Pressure

Sensor will be monitored for 24 hours and compared to the National Weather
Service’s data for those 24 hours. Verify that the Weather API is polled
whenever there was a change.

Light Sensor will be exposed to different light levels and UV indexes to check
accuracy. Verify that the signal to change interior lights is sent when light
lumination changes.

The roof actuators will each be tested separately to check calibration, communication, change in
location, change in direction, and for uniformity in their force applied. Signals will be sent to the
actuator to move in the positive direction, then the signal will change for the actuator to move in
the negative direction. This will test the communication between the microcontroller and the
actuator, and the functionality of the actuator in one simple test.

Once verified, the components will be added to the team’s constructed PCB and more testing will
be completed. The sensors will go through the same testing as mentioned in Table 44. The actuators
will also go through the same testing as before to demonstrate the total functionality. This is to
verify that the soldered connection did not cause any damage to the component. This testing will
also highlight any interference a component might have on another component.

After the final verification of the component’s measurements and functionality on the PCB, the
system will undergo multiple fully immersive artificial tests. These artificial tests will be created
by the development team to test the range of the sensors. Each sensor will have at least two tests

Page 110

that are created specifically to target that sensor. There will be five tests that will test the system
as a whole.

7.1.2 Power Module Testing Plan

The power module, which consists of a solar panel system, lithium ion battery pack, battery
management system, reverse polarity protection, and three stages of buck/boost and voltage
regulators, will have its testing plan outlined below.

Solar Panel Test Plan - The solar panels will need to be tested to ensure that their datasheet
specifications are relatively accurate and that they are capable of supplying the amount of current
necessary for charging a lithium ion battery at 0.5 C. According to its datasheet, the ECO-
WORTHY 5W 12V Solar Panel can supply a maximum of power of 5 W. At a charging voltage
of 1 A at 4.2 V, the solar panel will need to be able to handle this 4.2 W charge.

In order to determine if the solar panel is capable of this, the solar panel will be placed outside at
noon, in order to input the maximum amount of sunlight, and connected to a load of 1 ohm, 10-
Watt resistor. The voltage across this resistor will be measured as well as the current flowing into
the resistor to determine if the solar panel will truly be capable of supplying 5 W of power.

Battery Pack Test Plan - The lithium ion batteries we will be using will need to ensure that the
capacity it is rated for is true to within +/- 1%. The lithium ion batteries we are using are rated for
a nominal capacity of 2.6 Ah and can handle a maximum discharge rate of 0.2 C to a minimum of
3.0 V. This translates to a total discharge time of 5 hours, supplying a maximum of 0.52 A per cell.
In order to provide more current, a 3-S, 2-P (3 series, 2 in parallel) configuration will be used to
supply up to 1.04 A with a supply voltage range from 9 – 12.6 V.

To test the battery pack’s capacity, each individual lithium ion battery will be connected to an
active load that maintains 0.5 A of output current and the battery’s voltage will be monitored from
its peak voltage of 4.2 to 3.2 V. Every 15 minutes, the battery’s voltage will be written down, and,
at the end of discharging to 3.2 V, the data will be input into excel and analyzed.

To test the battery pack’s performance, the batteries will be set up in a 3-S, 2-P configuration and
an active load of 1A will be maintained from a peak output voltage of 12.6 V to a minimum of 9.6
V.

Due to the danger posed by these tests, the active load will have to have a precision current limiter
of 1.01 Amps and, if possible, a fuse rated for 1.05 A will be placed in between the batteries and
the active load.

Battery Management System Test Plan - Due to the integrated circuit’s nature of already coming
with safety features, the main goal of the testing of the BMS IC will be towards its current handling
capability and ability to charge our 3-S, 2-P configuration of lithium ion batteries.

The BMS IC’s safety features, which includes its overcurrent and overtemperature protection, will
be tested by essentially abusing the BMS IC. The BMS IC’s outputs will be applied to a very low,

Page 111

1-ohm, 10-W power resistor to observe if it terminates its output current to avoid overcurrent. In
another test, a lighter will be waved across the BMS IC multiple times to observe if
overtemperature protection activates at the time specified in the datasheet. Once these safety
features are determined, then the BMS IC will have its performance measured in the following
paragraph’s testing plan.

To test its performance and overvoltage protection, the BMS IC will be set up as it is in the initial
design in Section 5.1 and then connected to the battery pack system. During a 2-hour window, the
batteries’ voltages will be measured to ensure that each voltage remains at a similar voltage to the
batteries surrounding it. Once this window is concluded and the BMS IC has ceased its charging,
the voltage of each battery that it has charged will be measured to ensure that they are all 4.2 V.
This will ensure consistency in the supply voltage of our battery pack.

Reverse Polarity Protection Test Plan - The reverse polarity protection circuit will be testing to
ensure that it can handle up to –20V without conducting electricity on the load side. The reverse
polarity protection circuit will begin with –10V at its input, respective to ground, and increased to
–50V over a period of 2 minutes. To measure the magnitude of its output current, a load of 100
ohms will be applied to the output and the output measured throughout the testing. If there exists
an excessive output current of >1 mA, then the reverse polarity protection circuit will need a new
type of power MOSFET capable of handling the input voltage better.

12V Buck/Boost Controller Test Plan - The buck/boost controller that will take in the battery’s
voltage and output a steady 12V will be tested to measure several key performance and standard
metrics: efficiency and buck/boost capability.

According to its datasheet, the LM25118 should have an efficiency of between 85 – 95% when its
input voltage is between 10 – 20V and its output voltage is 12V while its output current is between
1 – 2 A. To ensure that the LM25118 chip we have is capable of doing this, we will supply the
buck/boost controller with multiple voltages, maintain its output voltage at 12 V, and apply an
active load of 2 A at its output. The input voltages that will be applied to the buck/boost controller
will range from 10 – 20V, with increments of +1V. The efficiency at each increment will be
measured by comparing the input and output power. This test will also measure the buck/boost
controller’s buck/boost capability.

5V Buck Converter Test Plan - The 5V buck converter’s testing plan will be geared towards
performing two key measurements: the buck converter’s efficiency and output line regulation at
high current loads.

According to its datasheet, the LM2596 should have a typical efficiency of 80% when supplying
3A of current and 5V of voltage with an input voltage of 12V. To test this in accordance with our
own requirements, the LM2596 will be supplied with input voltages of 11V, 12V, and 13V, have
a steady output voltage of 5V, and be connected to an active load of 2 A. The input and output
power will be compared to determine if the efficiency is ≥80%.

According to its datasheet, the LM2596 should have an output line regulation of a maximum of
+/- 0.1% output voltage change with an input voltage of 12V, output voltage of 5V, and output

Page 112

current of 0.1 A. This will be scaled up to +/- 0.5% output voltage change of similar input and
output voltage, but with a load current of 1 A. This will ensure that the output voltage remains
within the range of 4.5 – 5.5 V.

3.3V Regulator Test Plan - The 3.3V regulator’s testing plan will be geared towards measuring
its efficiency, since in its role, it will only need to provide a relatively small amount of power.

According to its datasheet, the LT1763 can supply an output current of 500 mA. Our testing plan
will ensure that it is capable of doing so with an efficiency of ≥80%. To test this, an input voltage
of 5V will be applied, and an output of 3.3V will be maintained with an active load of 500 mA
connected to its output. The input and output power will be compared to determine if the efficiency
is ≥80%.

7.2 Microcontroller Firmware Test Plan

To test the software implemented on the microcontroller both unit tests and end to end test will be
implemented. Unit tests will allow the development team to check the validity of the data through
different procedures and communications. While end to end test will check the connectivity of the
multiple components on the board and their ability to exchange data accurately and efficiently.

To assist in the testing we will also be utilizing a Bluno Mega 1280 development board. The Bluno
Mega 1280 comes equppied with an ATMega 1280 chip on it and a Texas Instruments CC2540
Bluetooth Low Energy v4.0 chip on it as well. All specifications are the same as the ones stated
for the ATMega chip with the exception of a higher operating voltage range, which has proven to
add some complications to the programming of this board. This board also has Bluetooth
capabilities with a fair amount of documentation to assist in the setup of this board and its
connections. The use of this board will help us test the microcontroller functionalities as well as
our implemented Bluetooth functionalities first before moving onto the PCB and schematic tests.

Unit tests will be implemented first for testing the microcontroller software. The unit tests do not
require that the whole system be in place. In fact, it is preferred that unit testing take place when
only a single sensor or component is in place. Each measurement from a sensor will be read and
stored in a temporary variable. That specific measurement will be checked before and after
executing the logical tests for checking threshold values. Testing with each measurement also
allows the development team to check the expected signals for changes in roof behavior. The
expected signals will be validated with unit tests by checking the creation of the signal after
receiving a trigger signal, and checking the actual state of the signal.

To validate the connection and communication with the database, the measurement will be
checked when received from the sensors, then it will be checked again before being sent to the
database, and that same measurement will be read back from the database after a short delay
(approximately three seconds). It is expected that the two values should match. The value will also
be checked within a database management user interface for correct positioning within the
different tables and columns, specifically checking the values of the primary keys to line up. This
validation will be used for each measurement in the database to ensure the structure of the database
and queries are correct throughout.

Page 113

End to end testing will be implemented once the whole system has been constructed. Each sensor
has two end to end test. The first end to end would be between the microcontroller and the sensor,
for both sending and receiving signals. This will be tested by checking each sensor triggers its
appropriate response, or lack of response, from new stimuli. The appropriate response for testing
will be based off of the roof’s default behaviors. The other end to end test for validating the
software on the microcontroller is to ensure that sensor data is being stored properly in the
database. This will be done similarly as the unit test but the value of the measurement will be
controlled by the development team, and will only be checked in a database management
interface.

The following table, Table 45, shows the pin layout that we have decided to use on the Bluno
Mega 1280 for testing purposes. Once all technologies are tested we will move on to building the
final prototype.

Table 45: Pinlayout for Testing Purposes
Device/Sensor Pin Port/Pin Peripheral

Wind 6 PE4 Interrupt
Pressure 43/44 PD0/PDI I2C
Humidity 43/44 PD0/PDI I2C

Temperature 97 PF0 ADC
Rain 96 PF1 ADC

Light (UV) 94 PF3 I2C
Actuator Relay 1 PG5 PWM

BLE (RX) 2 PE0 UART
BLE (TX) 3 PE1 UART

7.3 Mobile Application Test Plan

No different than then other software-based test plans, the iOS application will be tested using
both the end to end and unit testing methodologies, as both procedures fit the different facets of
the application. End to end unit testing will be done to test the application when it comes to
functionality and ensuring that the user is able to access every page within the application. During
this procedure, no variables will be altered, and no action which would affect the roof’s activity
will be invoked. These will be tested during the unit step testing phase of the Mobile Application
test plan, where different parameters within the application such as Roof Setting fields, User
Authorization fields, and Roof Control fields will be modified and tested in order to ensure that
respective field changed or remained the same based on whatever is expected for the variable to
do.

The end to end process will consist of login into the application with an administrator user and
password; if one is able to successfully login to the application without a problem, one can continue
with the procedures. Once within the application, the test will then lead each of the different pages
and sliders in which a user can end in. In other words, one will ensure to enter all the different

Page 114

pages that are accessed based on the buttons that are pressed, and also make sure that the proper
sliders are displayed when 3D pressing the buttons that open a slider.

The test will begin in the controls page, since it is the default start page when the user first logs in.
As discussed in the page’s section of the document, this page consists of a few different buttons
that will invoke a slide once they are pressured touched. During this end to end testing, one ensures
that each of the buttons do what they are supposed to once these pressing events take place. In this
part of the testing, the sliders will not be manipulated, as that will take place during the unit test
phase of the procedure. Once all the buttons are verified to be working, the team goes on to test
the settings page. The settings page has two buttons, one the ‘Roof Settings’ the other for the ‘User
Settings’. To test this part end to end, one just presses each of the buttons and ensures that the
application redirects the user to the page that corresponds. In other words, pressing the ‘User
Settings’ button leads to the modifiable table of the SQLite database, while pressing the ‘Roof
Settings’ button leads to the page with all the 3D press buttons, which are tested the same way as
they were tested in the controls page. Once again no values are manipulated. Last step in this end
to end testing phase would be going into the weather metric page, which involves tapping its
respective button in the ribbon, and ensuring that the user is taken to the correct page and can view
all the metrics.

As mentioned, the unit test will consist of ensuring that the variables and other fields within the
different pages of the application remain constant or changed based on whatever the user does.
Because of the large quantity of variables that make up the backend and frontend of the application,
the section will only cover certain examples, as a lot of the different variables are tested the same
way, which means there is no need to repeat the procedure repetitively. The main focuses behind
this unit test procedure will be ensuring the user logged in remains constant throughout the whole
process, and verifying the different fields in the controls page and setting pages can be modified
as the user desires.

In the settings page, an authorized user is allowed to modify the different attributes that would
cause the roof to open or close based on what the user desires. Whether this be pressure, humidity,
temperature, or any other of the important metrics mentioned, all these are modified in the same
manner, therefore unit testing them is approached the same way for all of them. In other words, to
verify that these variables are manipulated as desired, one effectively modifies the attribute at
hand, and then checks the corresponding value at the register level, ensuring that the value remains
the same throughout all procedures, except for going through the event of actually changing the
threshold value through the slider in the settings page. One also effectively unit tests one of the
fields by checking if the parameter holds true versus real time measurements and is reacting as
expected based on these real life measurements. In other words, if one were to set the roof to close
when the temperature is greater than ninety degrees Fahrenheit, one can verify this by making sure
that this statement holds true, and that the system sends the proper signal to close the roof if the
condition is met. Because the fields are similar in the controls page, a similar process if followed
for the fields in that page, where one manipulates the variables, whether that be the open/close
Booleans, or the brightness levels of the lights, and checks that the values are changed in the
register level and cause the system to properly behave based on these changes.

Page 115

The second type of field that can be altered and unit tested is the system’s database values, more
specifically the permission fields for all the users in the table. As known, an authorized user is able
to access the User Settings page and manipulate the different permission fields for each user
registered in the system. To test when one of these parameters are changed, there are three main
things analyzed. The first is ensuring that once a field is changed within the user settings page, the
change is reflected within the database itself. This is simply done by changing a field via the
application, and then cross referencing whether this change was implemented by querying the
information from SQLite database via another source. The second thing to be sure of, is that once
this specific parameter is modified, the behavior of the application changes, and that the user
modification actually affects what the modified individual can or cannot access. Lastly, one
ensures that changing a field does not affect any other variable and remains constant throughout
any procedure executed in the application other than the event of changing the field. An example
of this procedure would be if testing whether a user has ‘Roof Control Rights’. If one is to change
this field to false, this unit test would consist of verifying that this specific cell within the table is
‘False’ when querying it from an external source. Then one would verify whether the change
actually took place by testing whether the user modified did indeed loose access to controlling the
roof. Lastly, the individual executing this testing procedure shall ensure that this specific field
doesn’t affect any other fields within the database and remains constant unless changed.

8. Administrative Content

All administrative content is discussed in this section. This includes milestone discussion, which
involves discussion about our time-keeping, and budget discussion, which tracks how well we are
able to keep within our initial budget estimates. All deadlines are based on the project’s personal
goals within the scope of the university’s senior design deadlines. All budgeting is based on the
amount given to us by our sponsor, and any outside help we may receive.

Page 116

8.1 Milestone Discussion

The initial project milestones for the entire Senior Design project are incorporated into two
separate tables, one for Senior Design 1 and the other for Senior Design 2. Initial milestones for
Senior Design 1 are compiled into Table 46 below.

Table 46: Initial Project Milestones for Senior Design 1

Number Milestone Completion
By

1 Divide and Conquer v1 Discussion with Richie Sept 25

2 Sponsorship and financial details finalized Sept 27

3 Major electrical component orders placed Sept 30

4 Build structure foundation Oct 6

5 Complete build of roof and mechanical operations Oct 12

6 Finish research stage Oct 19

7 Implement power Oct 25

8 Begin iOS app development Nov 1

9 Research write up 50-70% complete Nov 3

10 Master switch for open/close functionality on prototype board
complete Nov 10

11 Begin programming microcontroller Nov 11

12 Begin PCB designing stage Nov 18

13 Add sensor connections to PCB Dec 14

Page 117

Further milestones, while still being developed, are compiled into Table 47 below.

Table 47: Initial Project Milestones for Senior Design 2
Number Milestone Completion By

14 Set up Database and Server for phone application Dec 10

15 Phone application prototype complete Dec 31

16 Order PCB manufacturing Jan 4

16 Implement WIFI & Bluetooth on development Jan 5

17 Implement motor functionality on development
board, and have a structure prototype Jan 10

18 Master switch for open/close functionality on app Jan 12

19 Implement software onto board Jan 25

20 Sensor Testing Feb 8

21 App Testing Feb 15

22 Full comprehensive Testing (Indoors) Mar 20

23 Full comprehensive Testing (Outdoors) Mar 30

24 Final documentation editing and website
complete April 15

25 Senior Design Showcase End of April

Page 118

8.2 Budget and Finance Discussion

Our initial project budget is displayed in Table 48 below. This budget is based on the received
$2,000 generously provided to us by our sponsor, OpenAire.

Table 48: Initial Project Budget

Module Item Qty Item Price Cost Estimate

Microcontroller Microcontroller 2 50 100

Power

Power Module 1 20 20

Battery Management System 1 20 20

PV panels 2 15 30

Sensors

Temperature Sensor 1 10 10

Barometric Pressure Sensor 1 50 50

Pressure Plate Sensor 1 15 15

Humidity Sensor 1 25 25

Anemometer 1 50 50

Adaptive light sensor 1 10 10

Wireless
Wi-Fi Module 1 20 20

Bluetooth Module 1 20 20

Peripherals and
Drivers

Motor Driver 1 10 10

Fan Driver 1 10 10

Stepper Motor 1 20 20

Fan 1 10 10

Miscellaneous

Miscellaneous Passives 1 50 50

PCB Design and Fabrication 5 5 25

Glass Tinting 1 100 100

Waterproof Enclosure 1 200 200

Total Cost $735

Page 119

APPENDIX OF DATASHEETS

[a] ZF Electronics, “Magnetic Proximity Sensors (Hall Effect),” MP1021 datasheet, June
 2017.
[b] Jacksking, “Jacksking Anemometer, 360 12V-24V DC Pulse Signal Output Aluminum
 Alloyed Wind Speed Direction Sensor Measurement Tool,” B07SN1V427, Oct. 2019.
[c] Bosch Sensortec, “Digital Pressure Sensor,” BMP280 datasheet, May 2015
 [Revised Jan. 14].
[d] Sensirion “Datasheet SHTW2”, SHTW2 datasheet, 2017 [Revised July 2017]
[e] Little Fuse, “Leaded Thermistors”, PR103J2 datasheet, 2018 [Revised Feb. 26 2018]
[f] Texas Instruments, “OPT101 Monolithic Photodiode and Single-Supply Transimpedance

Amplifier”, Opt101 datasheet, Jan. 1994 [Revised Jan. 2015]

[g] Vishay, “UVA Light Sensor With I2C Interface”, VEML6070 datasheet, 2019 [Revised
Sept 12, 2019]

[h] ECO-Worthy, “Polycrystalline Solar Panels”, ECO-Worthy datasheet 2019
[i] Great Power, “Lithium Ion Battery”, PRT-13189 datasheet, July 7, 1028
[j] Microchip, “Advanced Single or Dual Cell Lithium-Ion/ Lithium-Polymer Charge

Management Controllers”, MCP73842 datasheet, 2013
[k] Texas Instruments, “LM25118 Wide Voltage Range Buck-Boost Controller”, LM25118

datasheet, July 2011 [Revised Mar. 2018]
[l] Texas Instruments, “LM2596 SIMPLE SWITCHER® Power Converter 150-kHz 3-A

Step-Down Voltage Regulator”, LM2596 datasheet, Nov. 1999 [Revised May 2016]
[m] Linear Technology, “500mA, Low Noise, LDO Micropower Regulators”, LT1763

datasheet, 2019
[n] Atmel, “8-bit Atmel Microcontroller with 16/32/64KB In-System Programmable Flash”,

ATMEGA 1280 datasheet, 2014
[o] Cypress “EZ-BTTMXRWICED® Module”, CYBT-423028-02/CYBT-423054-

02/CYBT-423060-02 datasheet, 2019 [Revised Sept. 26, 2019]
[p] Progressive Automations, “PA-07 Datasheet”, PA-07 datasheet, 2019

Page 120

APPENDIX OF REFERENCES

[1] S. W., "Hall Effect Sensor," Electronics Tutorials, 2019. [Online]. Available:
https://www.electronics-tutorials.ws/electromagnetism/hall-effect.html. [Accessed 31
October 2019].

[2] S. D., "How Rain Sensors Work," Don's Mobile Glass, 2016. [Online]. Available:
https://www.donsmobileglass.com/ask-jacques/rain-sensors-work/. [Accessed 31 October
2019].

[3] S. W., "Light Sensors," Electronics Turtoials, 2019. [Online]. Available:
https://www.electronics-tutorials.ws/io/io_4.html. [Accessed 31 October 2019].

[4] A. T., "Working Principle of a Photodiode," ElProCus - Electronic Projects for
Engineering Students, 2019. [Online]. Available: https://www.elprocus.com/photodiode-
working-principle-applications/. [Accessed 31 October 2019].

[5] T. Kinney, "Proximity Sensors Compared: Inductive, Capacitive, Photoelectric, and
Ultrasonic," Machine Design, 1 September 2001. [Online]. Available:
https://www.machinedesign.com/sensors/proximity-sensors-compared-inductive-
capacitive-photoelectric-and-ultrasonic.

[6] "Anemometer," Omega Engineering, 2003. [Online]. Available:
https://www.omega.nl/prodinfo/anemometers.html.

[7] "UV Index," United States Environmental Protection Agency, 2019. [Online]. Available:
https://www.epa.gov/sunsafety/uv-index-1#day3.

[8] "The Heat Index Equation," National Weather Service, 2014. [Online]. Available:
https://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml.

[9] I. Hassan, "Swift vs Objective C in 2019," Medium.com, February 2017. [Online].
Available: https://medium.com/swiftify/swift-vs-objective-c-comparison-32aba9dad4e3.
[Accessed 3 December 2019].

[10] Shit Automation, "How to control a linear actuator with an Arduino and relays," Shift
Automation, 20 January 2016. [Online]. Available: https://shiftautomation.com/control-
linear-actuator-with-arduino-and-relays. [Accessed 30 October 2019].

[11] A. Jaffee, "Working with Core Bluetooth in iOS 11," AppCoda, 18 April 2018. [Online].
Available: https://www.appcoda.com/core-bluetooth/. [Accessed 20 November 2019].

[12] "JetStream Max: Beaufort Wind Force Scale," National Weather Service, 2019. [Online].
Available: https://www.weather.gov/jetstream/beaufort_max.

[13] "Monthly Weather Forecast - Tampa FL," Weather Atlas, 2019. [Online]. Available:
https://www.weather-us.com/en/florida-usa/tampa-climate.

[14] NOAA, "Weather Observations for the Past Three Days," NOAA, 2019. [Online].
Available: https://w1.weather.gov/data/obhistory/KMCO.html.

[15] MIDE, "Air Pressure Altitude Calculations," MIDE Technology, 2019. [Online].
Available: https://www.mide.com/air-pressure-at-altitude-calculator.

[16] NOAO, "Reccomended Light Levels," National Optical Astronomy Observatory, 2015.
[Online]. Available:

Page 121

https://www.noao.edu/education/QLTkit/ACTIVITY_Documents/Safety/LightLevels_out
door+indoor.pdf.

[17] A. Jaffee, "Working with Core Bluetooth in iOS 11," 18 April 2018. [Online]. Available:
https://www.appcoda.com/core-bluetooth/.

