Laser Musical Instrument

Group 24 Joshua Cates, EE David Guacaneme, PSE Lucas Sweet, EE

Motivation

- Engaging music with a new approach
- Provide an auditory and visual experience
- Using lasers in a creative way
- Have fun with Senior Design

Copyrighted image and design by Glenn J. Hill of Laser Harps LLC /Mountain Glen Harps LLC

Overview

Main Operation

Housing Frame

Goals and Objectives

Primary	Secondary	Stretch
Intensity detection for variability in pitches	Replication of a vibrato sound	The ability to change the note tuning for each laser
Minimum an octave range of notes	Laser beam to be visible	Replicate the feel of playing a real string instrument
To be played from a table top or stand	Protection circuit design for reverse voltage and overcurrent	Replication of sound decay that occurs when a string is plucked

Specifications

Parameter	Design Specification
Pitch Range	65 hertz - 3951 kilohertz
Weight	≤ 50 pounds
Voltage operation	≤ 13 volts
Size	≤ 36 Inches in any single direction
Response Time	≤ 1 second
Audible Output	≥ 35 decibels
Run Time	≥ 30 minutes

Overall Block Diagram

Power

Power Requirements

Design Guidelines

- Portability → <u>Battery Pack</u>
- Light weight
- Small enough to fit inside frame of instrument
- Power whole system for at least 30 min
- Voltage operation below 13 volts
- Withstand high current draw from lasers
- Supply a high enough voltage for cooling fans
- For prototype cells should be removable from pack
- 5 volt regulator

NICD 4/5911009EL

Power Management

- Battery pack to have a nominal voltage of 11.1 volts
 - Higher voltage only to power cooling fans
- Rest of the system operates from 5 volts switching regulator
- Alpha detectors
- Lasers
- Op-amps
- Speakers are powered externally by a wall outlet
- Estimated current draw from battery between 2-3 Amps

Power Diagram

Battery Design

- Comprised of six li-ion 18650 cells
 - 11.1 Volts nominal
 - 6000mAh capacity
- Pack orientation to be 3 series 2 parallel
 - Interconnections inside pack to aid in balancing
- Pack to be comprised of three cell holders for ease of swapping cells
 - 12AWG wire used for holder connections
- Cells are all Samsung INR18650-30Q
 - Cells are rated for 15A max output
 - 3.7 Volts per cell
 - Capacity of 3000mAh

Cell Selection

Battery	Capacity	Continuous Discharge rating	Pricepercell
Samsung INR18650-30Q	3000mAh	15A	\$4.99
Samsung INR18650-25R	2500mAh	20A	\$4.99
LG HG2 18650	3000mAh	20A	\$5.49
Panasonic NCR18650BD	3180mAh	10A	\$4.99
Lishen 21700	4500mAh	13.5A	\$5.99

Voltage Regulation

Part	Regulation Type	Efficiency	Max Current rating	Voltageinput	Price per unit
L7805CV	Linear		1.5A	35V	\$0.40
LM2678	Switching	84%	5A	8V - 40V	\$5.82
LM2576	Switching	77%	3A	7V – 40V	\$1.84

- Linear regulator creates too much heat with current loads in system
- A single LM2678 can regulate for the whole system

Voltage Regulation

LM2678

Current Consumption

Part	Current (Turn-on spike)		
Alpha Detectors	Light: 430 μA		
	Dark: 40 μA		
Beta Detectors	Light: 423 μA		
	Dark: 423 μA		
Lasers	@ 5 V: 208 mA		
Op-Amp	423 μΑ		
Fan	@ 12.3 V: 62.0 mA (106.9 mA)		
	@ 11.1 V: 53.0 mA (100.1 mA)		
Arduino	No Sound: 39.62 mA		
	Sound: 46.30 mA		
Linear Voltage regulator (L7805CV)	6 mA		
Switch Regulator	9mA		
Maximum Current	2.15A		

Current Work for Power System

- Cell testing:
 - Balancing
 - Max voltage
 - Drain rates
 - Impedance
- Adding smoothing capacitors
- Adding protection for:
 - Over currents
 - Under voltage
 - Back currents

Laser Selection Criteria

- Visibility
- Balanced Output Power
- Semiconductor
- Compact
- Low Cost

Laser Comparison

Laser Diode	Wavelength	Rated Output Power	Visibility ^{1,2,3}	Cost	Supplier	Size
Red	650 nm	5 mW	0.107	\$0.20	Amazon	6.5 mm diameter 18 mm long
Violet/Blue	405 nm	10 mW	0.0185	\$6.98	Amazon	12 mm diameter 35 mm long
Green	532 nm	10 mW	0.885	\$5.89	eBay	12mm diameter 54 mm long

Visibility (0 = not visible, 1 = most visible)

1. J. Schwiegerling, Field Guide to Visual and Ophthalmic Optics, SPIE Press, Bellingham, WA (2004).

2. *V*(λ) CIE 1978 (photopic)

3. *V'*(*λ*) CIE 1951 (scotopic)

Laser Safety

- Rated power ≠ Actual power
- Stray beams
- Reflections

Solutions

- Aperture laser beam
- Extend housing roof
- Attenuate beams
- Attach laser safety signs
- Provide eye-safe goggles
- Further development

Laser/Detection System Alpha Detectors

Top detector. Acts as the on/off switch and determines which string is being played. Prevents cross-overs.

- Low cost (< 10 ¢ each)
- Great for switch functionality
- Simple voltage divider

- Low current draw (<430 μA in light, <40 μA in dark)
- Durable against constant laser emission

Beta Detectors

- Bottom detector for intensity detection.
- Detects amplitude modulation of reflected light and determines the note that is played.

Photodiodes	Spectral Range	Responsivity	Cost
Vishay VEMD5510C	440 nm – 700 nm, Peaks at 550 nm	1,000 lux	\$1.47
Vishay TEMD5510FX01	430 nm – 610 nm, 830 nm – 1100nm Peaks at 540 nm	10,000 lux	\$1.16
Excelitas Technologies VTD34H	400 nm – 1100 nm Peaks at 900 nm	1,000 lux	\$2.75

Laser/Detection System Beta Detectors

- Output voltage values are for voltage reads on the MCU.
- Photodiodes create a current from light intensity.
- Comprised of three parallel photodiodes and a transimpedance amplifier.
 - Output voltage is dependent on the input diode current

Beta Detectors

Op-amp Name	Supply Voltage (V)	Quiescent Current (mA/amplifier)	Op-amps/ chip	Input Voltage noise	Input Current noise	Input Impedance	Cost per chip
TLV2171	2.7 - 36, ±1.35 - ±18	0.525	2	27nV/√Hz	NG	0.1x10 ⁹ Ω	\$1.25
TL082	±5 - ±18	1.4	2	18nV/√Hz	0.001pa/√Hz	100 3 MΩ pF	\$0.59
LM358	3 - 32, ±1.5 - ±16	0.5	2	40nV/√Hz	NG	10MΩ pF	\$0.16
OPA2320	1.8 - 5.5	1.45	2	0.8nV/VHz	0.6fA/√Hz	NG	\$2.91

Beta Detector Issues

- Early saturation detection
- Over powered by DC power
- Insufficient voltage range for musical note assignation
- Ambient light

Possible Solutions

- Increase number of photodiodes
- Optimize op-amp
- Add optical/software filters
- Aperture ambient light

Embedded Software

Embedded Software

Software Layout

MCU Comparisons

MCU	Analog Inputs	Unit Cost	Digital I/O Pins	Available External Interrupts	Current Consumption
ATMega2560	16	\$12.21	54	6	5.5 mA @ 5V, 16 MHz .6 uA @ 5V in power down
AT91SAM3X8E	12	\$11.54	54	54	71 mA @ 3.3V, 84 MHz 29.4 mA in sleep mode
ATMega328P	8	\$1.90	13	2	5.2 mA @ 5V, 8 MHz .1 uA @ 3 V in power down
MSP430G2553	14	\$1.04	14	0	330 uA @ 3V, 1 MHz .8 uA @ 2.2V in low power mode 4
MSP430FG4618	80	\$8.35	80	0	600 uA @ 3V, 1 MHz .3 uA @ 3V in low power mode 4

MCU

- Features of ATMega2560
- Up to six beams
- Supports C/C++
- Six hardware timers
- 16 channel, 10 bit ADC
- Digital and pulse-width modulation output

Embedded Software

- One octave per beam
 - 12 notes per octave
- C2 B7
 - 65 3951 Hz
- Arduino IDE

Open-sourced

https://www.reddit.com/r/coolguides/comments/ackdf5/this_chart_of_note_ranges_by_instrument/

Main PCB

Top PCB

2.9 x 1.9 in

Main PCB

Housing Frame

- Slide Doors
- Dimensions
- 24"X25.25"
- Playing field
 - 16"X21"
- Light-weight
- Cheap
- Wood

Portable

Single String Prototype

Thermal Management

- Regulate temperature to optimize efficiency
- Alpha detector Heat sinks on laser diodes Beta detector Lasers dissipate ~ 1W of heat Laser diode w/ heat sink Emitted Fans laser beam Fan Vents in Frame Vent Air flow

Secondary Objectives

- Increase Beam Visibility
 - Diffuser
 - Black backdrop
 - Dim/low-light environments
- Vibrato
- Tremolo

Administrative Content

Work Distribution

Name	Power	Optics	Embedded Software	PCB	Schematics	Sensors	Thermal Control
Joshua			Р	Р	S		
David		Р				Р	Р
Lucas	Ρ				Р	S	

P = Primary S = Secondary

Budget

Item Name	Supplier	Price/Unit (USD)	Quantity	Total Cost (USD)*	Item Name	Supplier	Price/Unit (USD)	Quantity	Total Cost (USD)*
Samsung-30Q	18650 Battery Store	4.49	8	40.53	47 μF electrolytic capacitor	Digi-Key	0.24	20	4.76
First PCB order	JLPCB	0.80	10	25.92	1 MΩ resistor	Digi-Key	0.01	10	0.13
3.5mm mono Jack	Mouser	0.90	5	12.49	1 KΩ resistor	Digi-Key	0.19	10	1.88
Voltage regulator L7805cv	Amazon	0.40	20	7.99	GS1G diode	Digi-Key	0.26	10	2.58
Battery Holder	Amazon	1.50	6	8.99	535-9355-ND oscillator	Digi-Key	0.23	10	2.25
Vishay TEMD5510FX01 PIN photodiode	Arrow	1.16	30	34.80	NCP1117ST50T3G regulator	Digi-Key	0.46	10	4.58
Red laser diodes	Amazon	0.2	10	1.95	Heat sink for laser diodes	eBay	5.71	7	39.98
Green laser diodes	ebay	5.89	12	70.68	Digital Illuminance/Light Meter	Amazon	29.99	1	29.99
18650 Cell Charger	Amazon	14.99	1	14.99	LM358N Op-Amp	Amazon	0.1598	50	7.99
Arduino Mega 2560 Rev3	Arduino Store	38.50	1	38.50	12AWG Wire	Amazon	0.849	10ft	8.49
ATMEGA2560 microcontroller	Digi-Key	12.21	3	49.19	Proposed: \$745 + \$745 for reconstruction				
TLV2171 Op-Amp	Texas Instruments	1.25	5	13.01		Total	: \$421.67		

*Total costs include shipping costs

Progress

Issues/Challenges

- Maintain a linear response
- Range detection
- Laser safety
- Start-up is inconsistent
- Coding
- Cell balancing and BMS

