Search and Rescue Helmet for Enhanced Situational Awareness (SARHesa)

Group 21 Harriet Medrozo EE Stephen Hudson EE Jacob Anthony EE Shakira Cummings CpE

MOTIVATION

An integrated solution that could save lives

GOALS AND OBJECTIVES

- Establish a location using GPS
- Send the information of location to the helmet users screen and communication module
- Transmit and receive voice using communications module
- Navigate in the dark and display high near infrared (NIR) sources
- Run all operations with as little power as possible

SPECIFICATIONS

Component	Parameters	Design Specification	Units
GPS	Minimum Range	3	meters
Transceiver, RFM69HCW	Signal Strength	Sub 1 operating frequency	GHz
Transceiver, nRF24L01+	Minimum Range	Transmission at 2	meters
IR Camera	Minimum Range(IR band)	5	meters
IR Beacon detection	Minimum Range	10	meters
Batteries	Charge Time	3	hours
Batteries	Run Time	3.85	hours

REALISTIC DESIGN CONSTRAINTS

- GPS needs time to warm up
- Signal attenuation caused by noise, environmental settings, and distance
- Operation of device between 32 to 113 °F
- Radio waves can interfere with RF circuit
- NIR can be reflected on many surfaces

OVERALL BLOCK DIAGRAM

LOCATION MODULE

Purpose: to track the helmet user using the Global Positioning System (GPS).

DIMENSIONS: 19 x 19 mm

PACKAGE: surface mount device (SMD)

4.57 x 34.8 mm

Photo courtesy of: timeandnavigation.si.edu

LOCATION TECHNOLOGIES

Technology	What it does	Range	Pros	Cons
GPS	Calculates position by finding distance from 30 satellites orbiting earth using trilateration.	unlimited	not expensive. Accessible. Unlimited range. Used in many applications: tracking cars, tracking sports players. low powered.	operates on large scale, which is better use for micro-level tracking. Need a good view of the sky.
BEACON	Short-range wireless technology. Transmitters that send out unique identifiers.	1m-100m	reduced power consumption. Good data speeds. Used in retail, bus stop information, smart houses	effective range can be compromised by physical objects and reflections blocking signal. Too many beacons = signal noise and reduced accuracy.

LOCATION TECHNOLOGIES

Technology	What it does	Range	Pros	Cons
RFID	Radio-frequency identifiers send out a signal that can be transmitted or read.	1cm-100m	Passive RFID good for inventory management, contactless payments, access control	Expensive, because of readers, not useful for hands-off operations for responders.
Wi-Fi	location-based tracking. Makes use of radio waves to transmit information across a network. Wireless adaptors create hotspots for access	20m-100m	to deliver personalized content to customers	Not secure. Not as accurate as RFID and beacons. Need to be in a remote location to access hotspot.
NFC	Near Field Communication. Close proximity communications chip technology. Tagging, key cards	10cm or less	Not very expensive. Secure. accurate, low powered	near range only for accuracy. Need distance for location module.

GPS

Properties	EM-506	GPS Module- Copernicus II	LS20031 5HZ
dimensions	30x30x10.7mm	19x19x2.54mm	N/A
cost	\$39.95	\$44.95	\$69.95
hot start	1s	3s	less than 1s
cold start	35s with CGEE	38s	32 w/out AGPS less than 15 w/ AGPS
power consumption	44-55mA at 4.5V-6.5V	44mA at 3V	41mA at 3.1V
Tracking sensitivity	-163dbM	-160dbM	not on datasheet

VISION MODULE

Purpose: to show the location of the user, to show a video feed in NIR instead of regular visible light.

VISION

CAMERA TECHNOLOGIES

Technology	How it works	Pros	Cons
Low Light	Amplifies incoming visible light	Works very well outside	Dependent on external lighting, often needs extended exposure
Near IR cameras often called Infrared	Detects infrared waves, just outside visible light	Cheaper than Thermal cameras and is not ITAR controlled	Often has to self illuminate with a Near IR light
Thermal also often called Infrared	Detects thermal radiation	Does not use any illumination	ITAR controlled and very expensive with limited resolution

CAMERA

Camera	Company	Technology	Frame Rate	Resolution	Cost
Boson	FLIR	Thermal	30 or 60	640x512 or 320x256	\$1800
Lepton	FLIR	Thermal	8.7	160x120	\$200
USB IR Camera	ELP	NIR	10-30	160x120 - 1280x720	\$40

PROCESSOR

PROCESSOR	PACKAGE	COST
STMf469	LQFP / BGA	\$12.64-17.21
PIC32MZ	BGA	\$11.48-21.15
TI Davinci	NFBGA	\$54.08
Raspberry Pi	Complete Board	\$35

COMMUNICATIONS MODULE

Purpose: provide clear, reliable voice and GPS data communications between users.

WALKIE-TALKIE WITH LOCATION CAPABILITIES

3 Types of Channels for Voice Transmission

COMMUNICATIONS

TRANSCEIVERS

PART NAME	OPERATING FREQUENCY	OPERATING VOLTAGE	MAX OUTPUT POWER	POWER CONSUMPTION	RECEIVER SENSITIVITY	DATA RATE
CC1352P	sub-1 GHz, 2.4 GHz	1.8V-3.8V	+20 dBm for 863-930 MHz, +5 dBm for 2.4GHz	sub-1 Rx - 5.8mA sub-1 Tx - 14.3mA 2.4 Tx - 8.2mA	-122 dBm	4Mbps
nRF24L01	2.4 GHz	1.9V-3.6V	+4 dBm	Rx- 12.3mA Tx-11.3mA	-85 dBm	250 kbps- 2Mbps
RFM69HC W	sub-1 GHz	1.8V-3.6V	+20 dBm	Rx- 16mA Tx- 20mA	-120 dBm	300 kbps

Why Two Transceivers?

- FCC REGULATION: AT 2.4 GHz can not send data
- FCC REGULATION: at Sub 1-GHz can not send data
- MISSION CRITICAL SYSTEM: dedicated lines to prevent system crippling

Purpose: transmit and receive voice at 2.4 GHz

DIMENSIONS: 4 x 4mm

- Low power consumption, decent range
- Price \$3.50 each
- Hardware architecture suits our needs

Purpose: transmit and receive data at sub-1 GHz

- Excellent receiver sensitivity
- Price \$5.95 each
- Hardware architecture suits our needs

DIMENSIONS: 16 x 16 mm

PACKAGE: surface mount device (SMD)

PROCESSOR FOR COMMUNICATIONS AND LOCATION MODULES

PART NAME	POWER CONSUMPTION	THROUGHPUT	MEMORY SIZE	SUPPORTED PROTOCOL	SRAM	CLOCK SPEED
ARM CORTEX M4F, M0	2.82 mA at 48 MHz	1.25 DMIPS per MHz, at 48 MHz operation		(2) UART, (2) SSI, (1) I2C, (1) I2S	(5) 16-KB blocks, 8- KB cache, 4-KB SRAM for sensor control engine	48 MHZ
ATmega328P	0.3 mA at 1 MHz	20 MIPS throughput at 20 MHz	32-KB Flash, 2- KB RAM	(1) UART, (2) SPI, (1) I2C	1-KB EEPROM, 2-KB	20 MHz

POWER MODULE

Switch mode power supply

POWER

AC/DC CONVERTOR

BATTERY MANAGERS

PART NAME	INPUT SUPPLY VOLTAGE RANGE	PROGRAMMABLE CHARGE CURRENT RANGE	VOLTAGE	TRICKLE CHARGE CURRENT	EXTERNAL COMPONENTS	ANALOG PROGRAMMABLE
TP4056	4-8V	130-1000mA	1.5%	120-140mA	10	Yes
LT1512	2.7-25V	**	1%	-	13	No
BQ24725	4.5-17V	1000-2500mA	0.5%	-	20-25	Yes

Input supply voltage: 5V

Desired charging current range: 1300-2600mA
Acceptable charge voltage accuracy: 0.5-1.5%

Battery Charger: TP4056

MANUFACTURER	NANJING TOP POWER ASIC CORP.
Part No.	293-dfs3
Price	\$0.60
current required	0.15mA
program charge current up to	1000mA
accuracy within	1.5%

DIMENSIONS: 4 x 6 mm

Lithium Ion or Nickel-Metal Hydride?

LITHIUM ION

- Higher energy density
- Rechargeable cycle is 4 times faster than NiMH
- Higher self discharge rate
- Smaller and lighter
- More resistant to varying temperatures

NICKEL METAL HYDRIDE

Found anywhere

Lithium Ion 18650 3.7 Volt

REGULATORS

PART NAME	OPERATING SUPPLY CURRENT	SUPPLY VOLTAGE RANGE	OUTPUT VOLTAGE	IOUT RANGE	EXTERNAL COMPONENTS	SWITCHING FREQUENCY
LT1108	.11mA	2-12V	Adjustable	.8A	5	19kHz
LT1371	4mA	2.7-25V	Adjustable	3A	8	500 kHz
LT1111	.3mA	2-12V	Adjustable	.8A	4	72kHz
MIC4685	5mA	4-30V	Adjustable	3A	7	200kHz

- Needed low input voltage
- Needed high output current

Regulator: LT 1371 Regulator: LT 1108

DIMENSIONS: 16 x 10 mm

PACKAGE: 7-DD

Manufacturer	Analog Devices/ Linear Technology
Part No.	LT1371CR#PBF
Price	\$10.14
Voltage supplied	5V

Manufacturer	Analog Devices/ Linear Technology
Part No.	LT1108CS8#PBF
Price	\$5.26
Voltage supplied	1.8V & 3.3V

Power Draw per Component

Device	Current in
RFM69HCW Transceiver	130mA
nRM24I01 Transceiver	12.3mA
Copernicus 2	44mA
ATmega328p x 2	0.6mA
Raspberry Pi	2500mA*
MEMS GPS	3.11mA
TOTAL CURRENT	2689.71mA

$$\frac{10400}{2698.7} = 3866 \approx 3.8 \ hours \ of \ runtime$$

*Anticipated current draw is from 1000-1500mA

OVERALL PCB SCHEMATIC

OVERALL PCB LAYOUT

OVERALL PCB LAYOUT

COMMUNICATIONS MODULE

Special Communication Needs:

- Separate radio placement
- Short Trace distance
- Insulative Ground Plane

VISION SCHEMATIC

SOFTWARE TOOLS FOR ATMEGA 328P

- ATmega328P only runs on C
- Arduino IDE is native. There are other IDE's but they are modified versions of the Arduino IDE
- Open Source Arduino Libraries are readily available
- National Marine Electronics Association(NMEA) Regulates
 GPS communications and GPS data formats

OPERATING SYSTEMS

OS	PROS	CONS
Raspbian	Native OS for Raspberry Pi	Bloated with extra software
Arch Linux	Less extra programs than Raspbian	Not as optimized as Raspbian
Windows	Easiest to use	Slowest and least optimized

COMPUTER VISION LIBRARY

LIBRARY	PROS	CONS
OpenCV	Documentation and large number of functions	Can be harder to learn
Mahotas	Easier to start than OpenCV	Fewer Optimizations than OpenCV
Skimage	Easiest option	Fewest Functions

Version of OpenCV

LIBRARY	PROS	CONS
C++	Original OpenCV library	C++ is not as easy to code in as Python
Python	Easier to use, uses the C++ code	Can be slower if code is not optimized
Java	Easiest to use for those familiar with Java	Slowest of the three

SOFTWARE FLOWCHART - LOCATION

SOFTWARE FLOWCHART - COMMUNICATIONS

SOFTWARE FLOWCHART - VISION MODULE

USE-CASE DIAGRAM

COMMUNICATIONS MODULE RANGE TESTING

RFM69HCW TRANSCEIVER
DATA COMMUNICATIONS RANGE TEST

NRF24LO1+ TRANSCEIVER VOICE COMMUNICATIONS RANGE TEST

WORK DISTRIBUTION

	Location	Vision	Communication	Power	TeamLead	PCB	CDR	CAD
Harriet	×		A		A		×	
Stephen				_		×	×	
Jacob							×	
Shakira	A	×	×				_	

Lead

Second

Project Management Insight - Cost vs. Influence

Minimum Viable Product(MVP)

Opportunity for Influence Insights:

 As the project gets closer and closer to construction, there is much less opportunity to influence changes in design

Cost of Changes Insights:

 As the project gets closer to the construction phase, the cost of changes to the design increase significantly

Source: WBDG, www.wbdg.org

BUDGET

Part Name	Quantity	Price Each	Price Total
Other components	varies	varies	~\$208.24
PCB	1	\$54.88	\$54.88
ATMEGA ₃₂ 8P	4	\$2.14	\$8.56
POWER			
Batteries	4	\$5.95	\$46.56
Battery chargers	8	\$0.60	\$4.80
Regulators	6	\$5-10	\$24.00
Breadboard testing parts	varies	varies	~\$60.00

ESTIMATED FINAL BUDGET: ~\$1500

Part Name	Quantity	Price Each	Price Total			
COMMUNICA	COMMUNICATION					
n24L01+ transceiver	2	\$3.50	\$7.00			
RFM69HCW transceiver	2	\$5.95	\$11.90			
Headphones	2	\$9.99	\$19.98			
VISION						
Raspberry Pi	2	\$35.00	\$70.00			
Camera	2	\$40.00	\$80.00			
Screen	2	\$19.99	\$39.98			
LOCATION						
GPS	2	\$45.00	\$90.00			
MEMS Motion Tracking Device	2	\$15.00	\$30.00			
Total Price			~\$755.90			

FINANCING

Percent of Funding Stream

PROGRESS CHART

Percentage of Project Completed

ISSUES

- Noise on voice channels
- FCC Title 47 Part 15.231

TO-DO LIST

- Integration
- Optimize code
- 8 pg. conference paper
- Assembly of housing for PCB
- Assembly of rail attachment to helmet

THANK YOU!