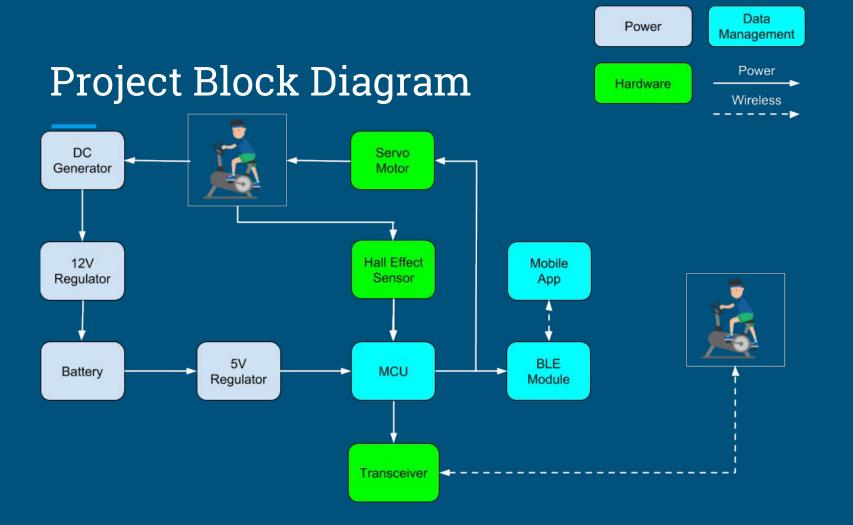
Battle of the Bikes

Group 20: Adam Brower - EE Allison Kovarik - EE Nicolas Leocadio - EE Bo Williams - CpE

Introduction

- Create an entertaining one-on-one racing game to encourage gym members to work out and compete together
- Generate energy from the players' efforts in order to power the system
- Monitor and display users' speed and power generation (Calories) to encourage competition
- Over course of the game, users will get "power-ups" that make pedaling harder for the other user to further stimulate competition

Motivation

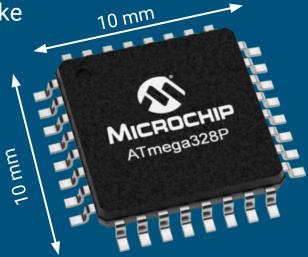

- Promote cardiovascular health by encouraging gym goers to engage in cardiovascular exercise
- Make cardio fun through competition

Project Goals and Objectives

- Entire system powered by human effort
- Wireless communication between two bikes and two phones
- Direct and automatic control of bicycle tension

Specifications and Requirements

Feature	Parameter	Design Specification
Wireless Connectivity	Minimum Range	6 feet
Distance Travelled	Accuracy	+/- 13 feet
Speed	Accuracy	< 2 mph
Electronics Box	Size	3 ft x 1 ft x 1 ft
Battery	Output Power	At least 30 W



ATmega328P

• Brain of the system

- Hold information to send to app
- Take signals to change tension on correct bike

Manufacturer	Atmel
Voltage	1.8 - 5.5 V
Processor Speed	20 MHz
Memory	32 KB

Arduino Uno R3

- Development environment
- Language based on C/C++
- Many libraries for hardware
- Open source

mcu

• Has IDE for ease of programming and is compatible with

Manufacturer	Arduino
Operating Voltage	5 V
IO Pins	14

Wireless Communication

Wireless Connectivity

• Bluetooth

- Connect system to smartphones
- Bi-directional
- Easy to use with smartphones

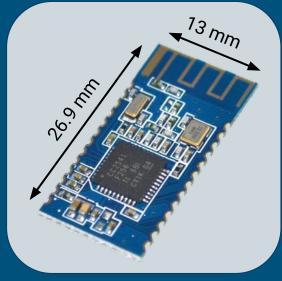
• Transceivers

- Send data between bikes
 - Other user's speed
 - Power-up

Selection of Wireless Communication

• Factors:

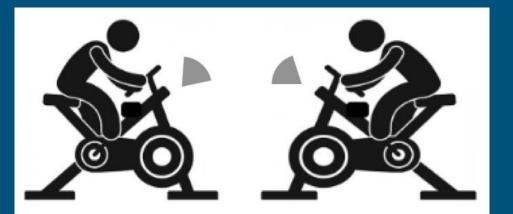
- Low cost
- Low power usage
- Ease of implementation


	BLE	Wi-Fi
Transmit Power	2.5 mW	100 mW
Throughput	100 kb/s	900 Mb/s
Price	\$10	\$7

HM-10 BLE Module

• Connect mobile device with microcontroller

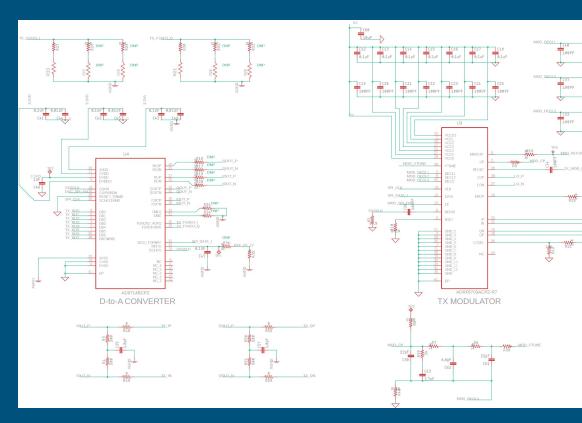
• Allows back-and-forth communication to pass info


Manufacturer	DSD Tech
Power Supply	3.3 V
IO Lines	RX, TX, GND, VCC

Transceivers

• QAM

- I/Q Data
- Operating at 2.49GHz
 - Does not abide by any protocol
 - Transmitting under 1 Watt
- Transmit and Receive Paths
 - RF Switch controlled by firmware
- Design Focuses
 - Impedance matching
 - Phase conservation

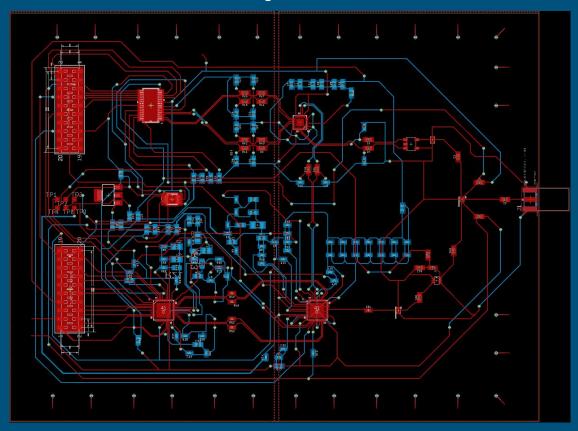


Main Modules

• DAC

- AD9714 Analog Devices, TxDAC family, 8-bit resolution
- Modulator
 - ADRF7603- Analog Devices, on-chip LO generator, wide LO range
- Demodulator
 - ADL5382- Analog Devices, no calibration file necessary
- ADC
 - AD7729- Analog Devices, Dual Sigma Delta ADC, 15-bit resolution

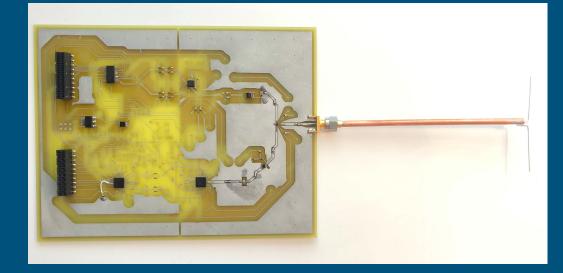
Transceiver Schematic Excerpt



0.1UF C38

0.1UF C35

(31


Transceiver Board Layout

Transceiver Populated PCB

Other Components:

- Band Pass Filters
- Amplifier (15.3 dBm)
- TX/RX Switch
- RF Switch
- Balun
- Coplanar Waveguide
- Dipole Antenna

Bike Hardware

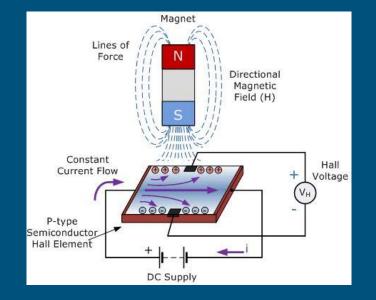
Resistance Control

- Adds competition to the game
- Controlled by the game
- Gear on a servo used to move a rod up and down to change resistance of the wheel
- Precise control over resistance
- Keeps tension on wheel by keeping servo locked in position

Servo Motor

- Adjusts bike tension
- Controlled by MCU and opposite bike

Specification	Rating	
Torque	20 kg*cm	
Working Voltage	6-7.4V	


40 mm

Wheel Rotation Monitoring

- Hall Effect Switch Sensor
- Magnet + sensor
- Measures each revolution
- Calculate speed and distance of bicycle

Electronics Enclosure

- Dimensions: 3 ft x 1 ft x 1 ft
- Allow heat to escape enclosure
- Used to hide and protect electronics as well as to keep tension on generating equipment
- Material: wood
 - Don't want to disrupt wireless communication
 - Easy to work with

Power

Power Generation

- Rubber belt on axle of stationary bicycle connected to the shaft of motor
- Typical use generates about 60W of power
- Peak generation of 12.5V at 5A
- Using the motor shaft for highest possible voltage due to our battery charger

Generator Selection


• Alternator

- Produces alternating current
- Only used for powering external devices

- DC Motor
 - Produces a direct current
 - More ideal as no DC converter will be required for internal systems
 - Voltage can be more easily controlled

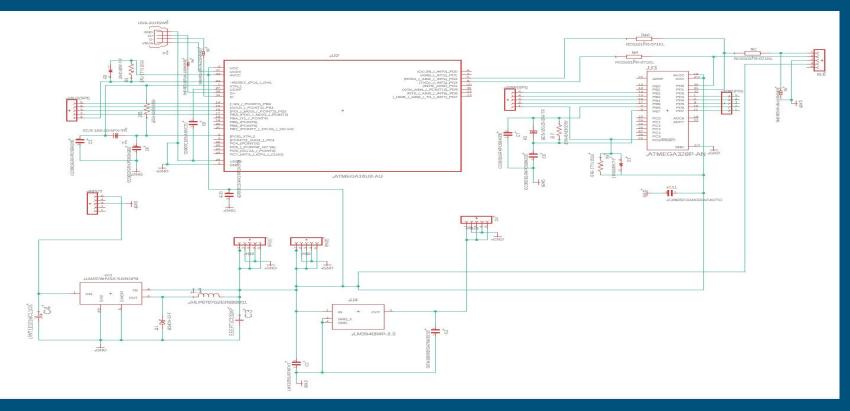
DC Permanent Magnet Motor Generator

- 12V/24V Generator
- Rated current: 16 A
- Rated speed: 2750 RPM
- Outputs DC
- Output power: 300 W

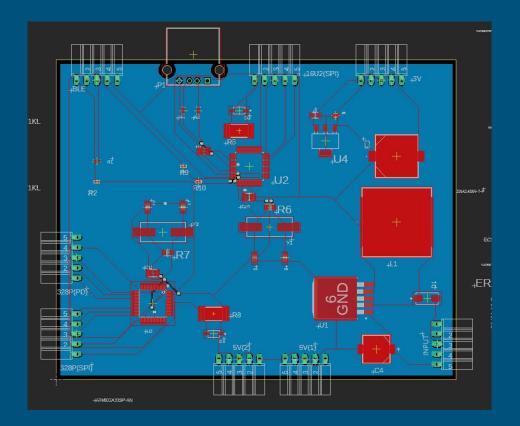
Lead Acid Battery

- 12 Volt
- 20 Ah
 - Charges at up to 14.9V
 - Max recommended charge rate of 4A for battery longevity

Battery Charger


- Thunder 0620 300W
- Multiple selectable modes
- Charges our battery at max of 4A up to 14V (6-cell capacity)
- Requires 10V to operate
- Hackable we are able to begin battery charging via a microcontroller connection

Voltage Regulators


- To obtain specific voltage requirements throughout the system two types of regulators will be required.
- Switching Regulator
 - 12V to 5V
 - TI LT8608 Synchronous Regulator
- Linear Regulator
 - 5V to 3.3V
 - LM3940

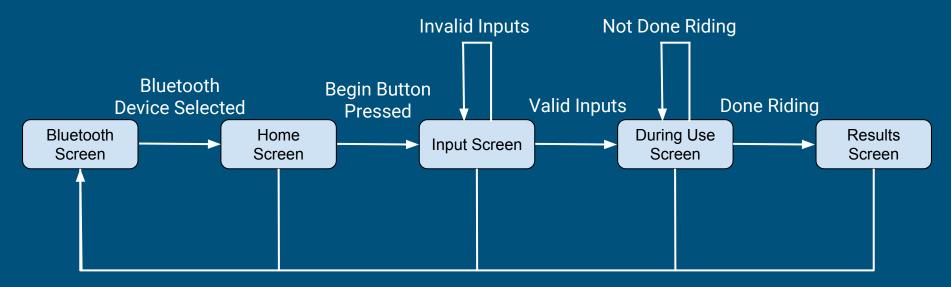
Main_PCB Schematic

Main PCB Layout

- 3rd Revision
- Notable Changes from REV 2
 - Additional control pins from Atmega328p
 - Additional 5V output voltage pins
 - Adjusted 5V regulator circuit due to previously missed connection in schematic

Mobile App

Android vs iOS


- Programmable on any operating system
- Java
- Open Source
- More users worldwide
- Cheap development and fast publishing
 - One time \$25 fee vs yearly \$100 fee for iOS
 - \circ \quad App on Google Play store in a few hours

- Devices are standardized
- More security
- More iOS users in North America

Application Flow Diagram

Reset Application

Bluetooth Selection Screen

🛠 💐 🛜 📶 98% 🗗 7:38 PM <u>a</u> 👓 **BLE** BLE Device Scan STOP Unknown device 27:52:98:1C:CC:D7 BlueBike D8:A9:8B:B0:FF:67 Unknown device 42'BB'F7'73'54'4F ENVY 5000 series B6'B6'86'98'84'7F Unknown device 6B:87:05:C1:D4:37 RedBike A8:1B:6A:B3:F2:0B Gear S3 (22FF) LE E4:25:1C:8E:04:FF Unknown device 14:99:E2:07:7F:75 Unknown device 4F:E4:A0:85:C6:CC Unknown device 6C:0B:FA:BB:27:B8 Unknown device 4A:48:89:CA:0F:89 Unknown device

Startup Screen

Input Screens

🛋 🕹 🚥	🕸 💐 🛜 📶 98% 🛿 7:39 PM
K BLE BlueBike	DISCONNECT
	(in miles)
Weight (i	n pounds)
	Submit

🗚 💐 🗊 📶 98% 🖻 7:39 PM 🔺 🙆 🚥 KedBike DISCONNECT Weight (in pounds) Submit

Master Bike

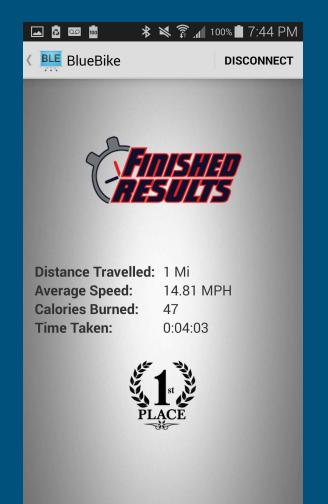
Slave Bike

Mobile App Features

• Easy to read displays during use

- Current speed
- Distance travelled
- Competitor's speed
- Competitor's distance
- Time that user has been riding
- Power-up
- Power-up button

Current Distance: 0.0 / 1 Mi Current Speed: 0.0 MPH



Current Distance: 0.52 / 1 Mi Current Speed: 3.03 MPH

Time: 00:17

PowerUp

Results Screen

Calorie Calculations

 Use METs (Metabolic Equivalent of a Task) to keep track of Calories burned during use

MET	Description
4	Less than 10 mph on average
6	10 - 11.9 mph on average
8	12 - 13.9 mph on average
10	14 - 15.9 mph on average
12	16 - 19.9 mph on average
16	More than 20 mph on average

Calories Burned = 0.0175 * MET * Weight(kg) * Minutes

User Interaction with System

- Provide distance and weight for initialization of system
- Send power-up signal to change tension on other user's bike

System Interaction with User

• Tension constantly changes throughout ride

- Based off distance user has ridden
 - Checkpoints
- Gives feeling of riding on different terrain

Constant updating of speed and distance to app

Class Diagram

	User				
dist : double weight : int caloriesBurned : i topSpeed : doubl aveSpeed : doubl speedGraph : dou timeMin : int timeSec : int powerUp : int	e e				
sendPowerUp(int pollSystem()	int distance, int weight) t powerUp) ble[] speedGraph)				
	Main				
user1_dist : double				Bil	ke1
user1_weight : int user1_caloriesBurned : int user1_topSpeed : double user1_aveSpeed : double user1_timeMin : int			←───	tension : int revolutions : int	
ser1_timeSec : int ser2_dist : double ser2_weight : int ser2_caloriesBurned : int				Bik	e2
user2_topSpeed : double user2_aveSpeed : double user2_timeMin : int user2_timeSec : int			←───	tension : int revolutions : int	
calculateCalories(double aveSpe calculateSpeed(int revolutions, i calculateDistance(int revolution changeTension(int powerUp)	nt timeMin, int timeSec)	n, int TimeSec)			

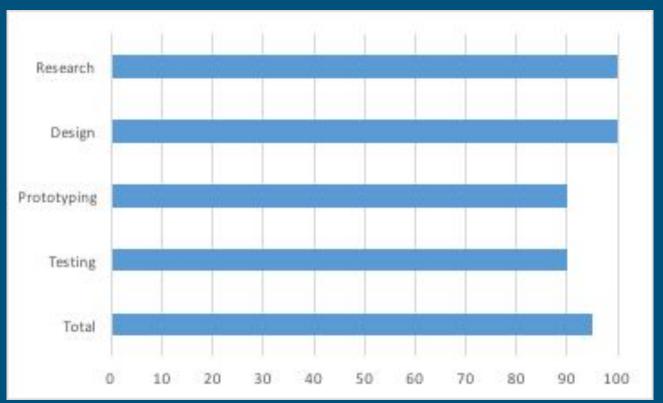
Administrative

Standards and Benefits of Our System

• IEEE 802.15.1

- Bluetooth Standard
- ASTM F1250
 - Stationary Bike Safety Standard
- System is self reliant
 - Save on power bills
 - Reduce carbon footprint on our environment
- Promotes self health

Project Budget and Financing


Part	Item Count	Price/Unit	Total Cost
DC Motor	2	\$65	\$130
HM-10 BLE Module	2	\$9.99	\$19.98
Stationary Bike	2	\$149.99	\$299.98
12 V Battery	1	\$42.95	\$42.95
Servo Motor	2	\$17.49	\$34.98
Development Board	1	\$24.37	\$24.37
Magnetic Sensor	20	\$0.50	\$10
PCB	4	-	\$20
Miscellaneous	-	-	\$86.23
Total	-	-	\$668.49

Part	Item Count	Price/Unit	Total Cost
DC Motor	2	\$65	\$130
HM-10 BLE Module	2	\$9.99	\$19.98
Stationary Bike	2	\$149.99	\$299.98
12 V Battery	1	\$42.95	\$42.95
Servo Motor	2	\$17.49	\$34.98
Development Board	1	\$24.37	\$24.37
Magnetic Sensor	20	\$0.50	\$10
PCB	13	Varies	\$80
Miscellaneous (Parts)	-	-	\$250
Electronics Housing	1		\$35
Battery Charger	1	\$83.95	\$83.95
Projected Total	-	-	\$1011.21

Project Workload Responsibilities

Progress Completion

Project Difficulties

- First time developing a mobile app
- Staying within a reasonable budget
- Creating necessary mechanical components of system
- Transceiver module cal file loading
- ATmega bootloading

Immediate plans for completion

Load cal files into DAC and modulator

 Access if transceiver PCB is viable

Once main PCB is fully functional, integrate all components together

Questions?