Battle of the Bikes

Group 20:

Adam Brower - EE Allison Kovarik - EE Nicolas Leocadio - EE

Bo Williams - CpE

Introduction

- Create an entertaining one-on-one racing game to encourage gym members to work out and compete together
- Generate energy from the players' efforts in order to power the system
- Monitor and display users' speed and power generation to encourage competition
- Over course of the game, users will get "power-ups" that make pedaling harder for the other user to further stimulate competition

Motivation

- Create a system that is entirely self-sufficient
- Promote cardiovascular health
- Encourage male gym goers to engage in cardio
- Make cardio fun through competition

Project Goals and Objectives

- Entire system powered by human effort
- Wireless communication between two bikes and two phones
- Direct and automatic control of bicycle tension
- Excess power is directed to lights; faster = brighter
- Charging outlet for accessories

Specifications and Requirements

Feature	Parameter	Design Specification
Wireless Connectivity	Minimum Range	6 feet
Distance Travelled	Accuracy	+/- 4.45 feet
Speed	Accuracy	< 2 mph
Electronics Box	Size	5 ft x 1 ft x 1 ft
Battery	Output Power	At least 30 W

Project Block Diagram

Lights

5V

Regulator

Servo

Motor

Hall Effect

Sensor

MCU

Transceiver

DC

Generator

12V

Regulator

Battery

ATmega328P

- Will be the brain of system
 - Hold information to send to app

Take power-up signal to change tension on bike

Manufacturer	Atmel
Voltage	1.8 - 5.5 V
Processor Speed	20 MHz
Memory	32 KB

Arduino Uno R3

- Program in C
- Many libraries for hardware
- Open source
- Has IDE for ease of programming

Manufacturer	Arduino
Operating Voltage	5 V
IO Pins	14

68.6 mm

Wireless Communication

Wireless Connectivity

- Bluetooth
 - Connect system to smartphones
 - Bi-directional
 - Easy to use with smartphones
- Transceivers
 - Send data between bikes
 - Other user's speed, power generated
 - Power-up
 - Allows bikes to be used independently for single player games

Selection of Wireless Communication

Factors:

- Low cost
- Low power usage
- Ease of implementation

	BLE	Wi-Fi
Transmit Power	2.5 mW	100 mW
Throughput	270 kb/s	900 Mb/s
Price	\$10	\$7

HM-10 BLE Module

- Connect mobile device with microcontroller
- Allows back-and-forth communication to pass info

Manufacturer	DSD Tech
Power Supply	3.3 V
IO Lines	RX, TX, GND, VCC

Transceivers

- QAM
 - o I/Q Data
- Operating at 2.4GHz
 - Does not abide by any protocol
 - Transmitting under 1 Watt
- Transmit and Receive Paths
- Design Focuses
 - Impedance matching
 - Phase conservation

Transceiver Receive Path

Bike Hardware

Tension Control

- Adds competition to the game
- Controlled by the game
- Gear on a servo used to move a rod up and down to apply tension to wheel
- Precise control over tension on bike
- Keeps tension on wheel by keeping servo locked in position

Servo Motor

- Adjusts bike tension
- Controlled by MCU and opposite bike

Specification	Rating	
Torque	20 kg*cm	
Working Voltage	6-7.4V	

Wheel Rotation Monitoring

- Hall Effect Switch Sensor
- Magnet + sensor
- Measures each revolution
- Calculate speed and distance of bicycle

Power

Power Generation

- Rubber belt on axle of stationary bicycle connected to the shaft of motor
- Typical use generates about 60W of power
- Peak generation of 12.5V at 5A
- Power unused by the battery will be diverted to a light - brighter means faster

Generator Selection

Alternator

- Produces alternating current
- Only used for external device power
- Would require transformer for increased voltage

DC Motor

- Produces a direct current
- More ideal as most systems
 will use DC
- Voltage can be more easily manipulated

DC Permanent Magnet Motor Generator

- 12V/24V Generator
- Rated current: 16 A
- Rated speed: 2750 RPM
- Outputs DC
- Output power: 300 W

Battery Selection

Factors

- Size Smaller is better to reduce the overall footprint of this project
- Capacity Battery must be large enough to receive all generated power without being damaged
 - Amps
 - Voltage
- Rechargeable Idea of project is creating a self-sustainable system.
- Temperature Must operate in temps ranging from 50° F to 90° F
- Cost

Comparison of Batteries

- Sealed Lead Acid
 - Advantages
 - Cost Effective
 - Charge
 - Life Span
 - Disadvantages
 - Temp
 - Weight

- Lithium Ion
 - Advantages
 - Weight
 - Lifespan(idle)
 - Capacity
 - Disadvantages
 - Cost
 - Lifespan(active)
 - Temperature

Lead Acid Battery

- 12 Volt
- 20 Ah
 - Charges at up to 14.9V
 - Higher voltages charge faster
 - Max recommended charge rate of 4A for battery longevity

Battery Charging

Excess Power

- Excess power generated by the system will be diverted into lightbulbs
- Keep the circuit from heating up too much and causing damage to components

Voltage Regulators

- To obtain specific voltage requirements throughout the system several regulators will be required.
- 12V to 5V
 - LM25575 Switching Regulator
- Linear Regulators
 - 5V to 5V Linear
 - LM317
 - 5V to 3.3V
 - REG1117

- o 3.3V to 2.5V
 - REG1117
- 2.5V to 1.8V
 - REG1117

PCB Schematic

Schematic - Bubba Oscillator

Electronics Enclosure

- Dimensions: 5 ft x 1 ft x 1 ft
- Allow heat to escape enclosure
- Used to hide and protect electronics
- Material: plastic
 - o Don't want to disrupt wireless communication

Mobile App

Android vs iOS

- Programmable on any operating system
- Java
- Open Source
- More users worldwide
- Cheap development and fast publishing
 - One time \$25 fee vs yearly \$100 fee for iOS
 - App on Google Play store in a few hours

- Devices are standardized
- More security
- More iOS users in North America

Startup Screen

Mobile App Features

- Easy to read displays during use
 - Speed
 - Distance
 - Calories burned
 - Competitor's distance
 - Power-up
- Power-up button
- Graphical representation of ride at end of session

Calorie Calculations

 Use METs (Metabolic Equivalent of a Task) to keep track of Calories burned during use

MET	Description
4	Less than 10 mph on average
6	10 - 11.9 mph on average
8	12 - 13.9 mph on average
10	14 - 15.9 mph on average
12	16 - 19.9 mph on average
16	More than 20 mph on average

Calories Burned = 0.0175 * MET * Weight(kg) * Minutes

User Interaction with System

- Provide distance and weight for initialization of system
- Send power-up signal to change tension on other user's bike

System Interaction with User

- Tension constantly changes throughout ride
 - Based off distance user has ridden
 - Gives feeling of riding on different terrain
- Constant updating of speed, distance, and calories burned to app
- Display of average speed through each "section" of ride at end in form of graph
- Cool down phase

Class Diagram

Bike1

Bike2

tension: int

tension: int

revolutions: int

revolutions: int

Administrative

Standards and Benefits of Our System

- IEEE 802.15.1
 - Bluetooth Standard
- ASTM F1250
 - Stationary Bike Safety Standard
- System is self reliant
 - Save on power bills
 - Reduce carbon footprint on our environment
- Promotes self health

Project Budget and Financing

Part	Item Count	Price/Unit	Total Cost
DC Motor	2	\$65	\$130
HM-10 BLE Module	2	\$9.99	\$19.98
Stationary Bike	2	\$149.99	\$299.98
12 V Battery	1	\$42.95	\$42.95
Servo Motor	2	\$17.49	\$34.98
Development Board	1	\$24.37	\$24.37
Magnetic Sensor	20	\$0.50	\$10
PCB	4	-	\$0
Miscellaneous	-	-	\$86.23
Total	-	-	\$648.49

Part	Item Count	Price/Unit	Total Cost
DC Motor	2	\$65	\$130
HM-10 BLE Module	2	\$9.99	\$19.98
Stationary Bike	2	\$149.99	\$299.98
12 V Battery	1	\$42.95	\$42.95
Servo Motor	2	\$17.49	\$34.98
Development Board	1	\$24.37	\$24.37
Magnetic Sensor	20	\$0.50	\$10
PCB	4	-	\$0
Miscellaneous	-	-	\$150
Electronics Housing	1		\$50
Projected Total	-	-	\$762.26

Project Workload Responsibilities

Progress Completion

Current Tasks

- Receive and test first PCB revisions
 - Power Regulation
 - Transceivers
- Finishing power system, prototyping tension system,
- Testing power output and usage
- Bluetooth connection successful
 - Able to send information between each device

Project Difficulties

- First time developing a mobile app
- Handling excess power generated by system
- Staying within a reasonable budget
- Creating necessary mechanical components of system since none of us are ME
- Transceiver implementation

Immediate plans for completion

- Complete communication between transceivers
- Test power regulation PCB with the system
- Integrate all mechanical parts

Questions?