
Articulated Autonomous AI-Assisted Solar Farm Grass Cutter

Department of Electrical Engineering and Computer Science

University of Central Florida

Dr. Lei Wei

Sponsors: OUC and Duke Energy

Senior Design I

Fall 2018

Group 19

Brandei Dieter Chris Entwistle Mario Mcclelland Daniel Warner Electrical Engineering Electrical Engineering Computer Engineering Electrical Engineering

1.0 Project Narrative Description

As the rise of technology continues to grow, we are constantly seeking methods to improve the environment around us. Traditionally, lawn mowers are gas powered which inherently poses a threat generated by the carbon footprint left as a result. With solar farms becoming increasingly popular, using traditional lawn mowers to maintain them would mock the motivation behind renewable energy.

Many Solar Farms are constructed on top of a grass terrain. The problem that arises is the cost of labor to keep the grass maintained under the PV structures and surrounding area. We are going to solve this problem by creating an Articulated AI-Assisted Solar Farm Grass Cutter. Our device will be the solution that reduces labor costs while also increasing energy efficiency. Our project is sponsored by Duke Energy and Orlando Utilities Commission and will include interdisciplinary collaboration between fields of engineering.

This project will be developed in conjunction with a team of Mechanical Engineering and Computer Science students. The focus of our team will be the electrical design and power of the system, software algorithms for the hardware, power specifications of the solar panel and batteries, and the design and implementation of the Printed Circuit Board (PCB).

The grass cutter will have various technical requirements. An articulated sweeping motion is needed to move the string-based blade across the terrain to cut the grass to an acceptable height and identify the areas that need grooming. It will avoid all obstacles such as PV structures, humans, rocks, and objects. It will fit below and between the rows of PV panels, and have a remote kill switch that can turn off the cutting system. It will safely navigate through uneven terrain. Be capable of cutting the grass as close to the obstacles but not touching or damaging any objects. A rain detection system is required to detect rain and go back into the charging station. Being waterproof is ideal to prevent any damage to the internal system. A GPS system is required to provide boundary kill and navigation to the Solar Power Charging Station when it needs to be charged.

Another consideration for this project is to guarantee safety in the event of human interaction. This will be accomplished by assuring the necessary steps are taken to avoid collisions when the device is in operation. The Solar Power Charging Station should include a high wattage solar panel that will store energy for when the grass cutter needs to be charged and be waterproof to prevent any damage from weather.

The grass cutter will be portable, have low power consumption and easy to maintain. The grass cutter will be shock proof to prevent internal damage from outside contributing factors. It will have DC motors that can provide enough power to the wheels to navigate through uneven terrain. The wheels will be able to provide a full range of motion. The wheels will be designed to have proper traction to be able to operate in conditions that include inclined or declined terrain.

In conclusion, a microcontroller will be designed to interface the electrical components that will satisfy the customer's requirements. Many of the inputs will be received by the sensors to communicate with the motors that will navigate the device. One stretch goal will include optimizing the blade motor control by turning the blade off when it drives over grass that does not require attention.

2.0 Project Requirement Specifications

The goal of this project is to use the components listed in the table below to design a fully functional, Articulated AI-Assisted Solar Farm Grass Cutter. The project has to contain a development board, Microcontroller, Motor Control Drivers, a GPS module, a Bluetooth module, and a DC-to-DC Conversion Circuit. The grass cutter will use low voltage and power consumption. It will include a Rechargeable Lithium Ion Battery. It will charge the battery via Solar Power through the Solar Power Charging Station.

Table 1: Legend for Project Requirement Specifications Table					
ORS Overall Requirement Specifications					
PRS Project Requirement Specifications					
BRS	Billing Requirement Specifications				

	Table 1: L	egend for Project Requirer	ment Specifications Table
--	------------	----------------------------	---------------------------

Table 2: Project Requirement Specifications								
Designation	Description	Value	Related Standards					
ORS-1	Dimensions of Device	$\leq 2x2x2$ ft.	None, typical					
			competitive size					
ORS-2	Dimensions of PCB	To be determined	None, typical					
			competitive size					
ORS-3	Weight	Less than 50 pounds	None, typical					
			competitive size					
PRS-1	Microcontroller	Compatible with the	IEEE Standard					
		development board						
PRS-2	Development Board	Compatible with C and	IEEE Standard					
		high level functions						
PRS-3	Bluetooth Module	Compatible with the	IEEE Standard					
		microcontroller						
PRS-4	Motor Control Driver Chips	Compatible with the	IEEE Standard					
		microcontroller						
PRS-5	Rechargeable Lithium Ion	High battery capacity	IEEE Standard					
	Battery							
PRS-6	Resistors	Variety	None, typical					
			competitive size					
PRS-7	Capacitors	Variety	None, typical					
			competitive size					
PRS-8	Dc-to-DC Converter	Be able to boost up or	IEEE Standard					
		step down voltages						
PRS-9	Obstacle Avoidance Sensor	>6 inch range detection	IEEE Standard					
PRS-10	Solar Panel	High Power Output	IEEE Standard					
PRS-11	GPS Module	>than 3feet	IEEE Standard					
		accuracy						
PRS-12	Obstacle Detection Sensor	>2 feet range detection	IEEE Standard					
BRS-1	Project Cost Ceiling	\$2000	None, typical					
			competitive size					

	Table 2: Project	Requirement S	pecifications
--	------------------	---------------	---------------

Group 19: Autonomous AI-Assisted Solar F	arm Grass	Cutter										Legend	_
House of Quality (ECE)							\downarrow				Strong Po	sitive Correlation	1
						$\langle \rangle$	$\langle \rangle$				Positive C	orrelation	1
Engineers: Brandei Dieter Chris Entwistle					$\langle \rangle$		\wedge	\nearrow			Negative	Correlation	1
Mario Mcclelland					\checkmark	\searrow	\searrow	\searrow			-	gative Corrleation	+
Daniel Warner				\bigwedge		\mathbf{X}^{\dagger}			\wedge		Positive F Negative	,	-
Customer: Orlando Utility Commission	& Duke En	iergy		\searrow	\searrow	\searrow_1	\sim $<$	\sim	\searrow			ation is BLANK	
			$\langle \rangle$		\land			$\langle \uparrow \rangle$	\bigtriangleup				_
			1			$^{\prime}$	t Xt		\times				
	nical ments	Power System Capabilties	Distribution	Bluetooth Implementation	Control Implementation	Navigation Implementation	Object Recognition	Object Distinction	Safety Protocols	GPS Implementation	Boundary System		
Customer's Desires	Technical Requirements	Power Cap	Power [Blu	Impler	Nav Impler	Object F	Object	Safety	GPS Imp	Boundal		
		+	+	+	+	+	+	+	+	+	+		
Maintain Grass Height Under 6in	+	Î	Î		î1	0.01%	†↑	<u>î</u>	Ļ				
Maintain Area the Size of Solar Farm	+	11	11		Ļ	î1	Î	Ť	1	11	11		
Fit Under/Between PV Structures	+			Ļ	Ļ	Ļ			<u>↑</u> ↑	Ļ	Ļ		
Avoid Damaging Infrastructure/Environment/Humans	+		1	1	11	1	11	↑ ↑	11	1	1		
Utilizes Solar Power Charging Station	+	11	11			↑ ↑	Ť	1		1	Î		
Have Kill Switch at least 50 ft	+	1	Î	11							î		
Capable of Navigating Uneven Terrain	+	1	1	Ļ	↑ ↑	1	1	1	1				
Integrated Off the Shelf Battery and Charger	+	î1	1										
Independently Powered Location Beacon	+	î1	11							↑ ↑	1		
Low Cost	+	↓↓	Ļ	Ļ	Ļ	1	Ļ	Ļ	1	Ļ	↓↓		
Target		> 50x10 ft range	< 75% charge/cycle	> 50x10 ft range	> 50x10 ft/15mins	> 3 in delta in terrain	> 2 ft	> 6 in	No damage	> 2 ft accuracy	> 50x10 ft boundary		
Technical Difficulty (1-5, 5 hardest)		2	4	1	4	5	2	3	4	3	2		

3.0 Engineering Market House of Quality Trade-Off Table

Figure 1: House of Quality Trade-Off Table

4.0 Block Diagrams

4.1 Hardware Block Diagram for Grass Cutter

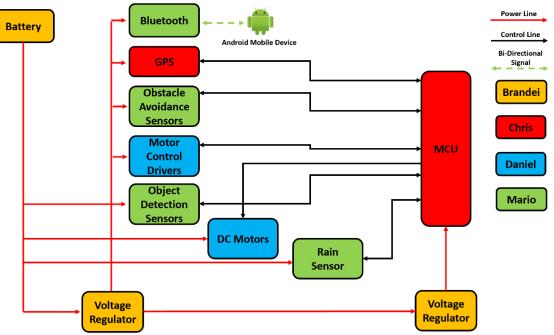


Figure 2: Hardware Block Diagram for Grass Cutter

4.2 Hardware Block Diagram for Charging Station

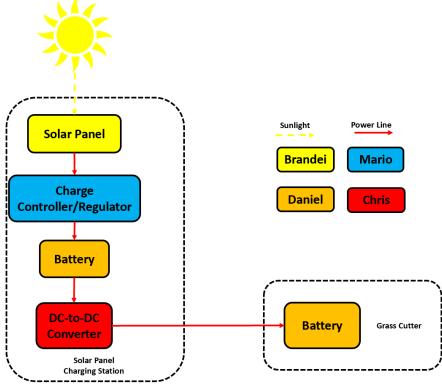
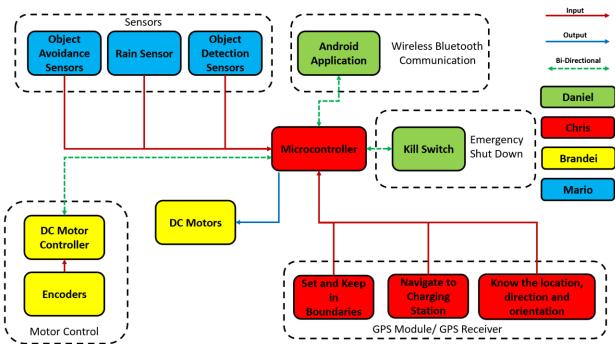



Figure 3: Hardware Block Diagram for Charging Station

4.3 Software Block Diagram for Grass Cutter

Figure 4: Software Block Diagram for Grass Cutter

5.0 Project Budget and Financing

Table 3: Project Budget and Financing						
Item	Description	Quantity	Price (\$)			
Development Board	Able to program and debug the software	1	20.00			
Microcontroller	Compatible with development board	2	4.40			
IC dip Sockets	16-pin	3	0.75			
IC dip Sockets	28-pin	1	0.33			
Female Headers	Variety	As Required	3.00			
Male Headers	Variety	As Required	3.00			
Bluetooth Module	Compatible with microcontroller	1	3.90			
GPS Module	Geolocalization applications	1	20.00			
Capacitors	Variety	As Required	5.00			
Resistors	Variety	As Required	5.00			
Crystal Oscillator	16MHz	1	0.69			
Motor Control	Compatible with	3	12.00			
Drivers	microcontroller					
DC Motors	At least 12 Volt 30000 RPM	3	40.00			
Pins	Variety	As Required	3.00			
Pin Sockets	Variety	As Required	3.00			
Front Wheels	Caster Wheels	2	20.00			
Rear Wheels	Plastic Wheels	2	10.00			
Wheel Screws	Variety	As Required	5.00			
Wheel Screw Nuts	Variety	As Required	5.00			
Axles	Metal Axles	As Required	5.00			
Spacers	Variety	As Required	5.00			
Gears	Variety	As Required	5.00			
Motor Screws	Variety	As Required	5.00			
Screws	Variety	As Required	5.00			
Screw Terminals	2-pin	4	2.28			
DC to DC Converter	Regulator Voltage from Solar Panel Battery to Grass Cutter Battery	1	15.00			
Charge Controller/Regulator	Regulate Voltage from Solar Panel to battery	1	2.35			
Connection Wires	Variety	As Required	5.00			

Battery	Rechargeable	1	200.00			
	Lithium Ion Battery					
	with at least 12V					
Battery	Deep Cycle Battery	1	500.00			
	with at least 50Ah					
	12V					
String-Based Blades	Tough and Durable	1	20.00			
	String-Based Blades					
Solar Panels	At least 100 Watts for	1	300.00			
	the Charging Station					
Obstacle Avoidance	Ultrasonic Module	5	6.84			
Sensors						
Human Detection	Human Body Sensor	1	11.59			
Sensor	Module					
Rain Detection	Arduino Weather	1	2.15			
Sensor	Detect Sensor					
PCB	Copper based	2	0.80			
USB to TLL Serial	Windows Supported	1	6.99			
Cable	USB Programming					
Soldering Kit	Soldering Kit with	1	17.99			
	Soldering wire and					
	rosin	Sub-Total				
	1280.06					
	40.00					
	1320.06					
	Projected Cost Ceiling					

Table 4: Fall 2018 Milestones Fall 2018- Senior Design I							
Number	Task	Start	End	Status	Responsible		
1	Group Members	08/22/18	08/22/18	Completed	Group 19		
	Established			1	1		
2	Research Project Idea	08/22/18	09/14/18	Completed	Group 19		
3	Project Idea	08/22/18	08/29/18	Completed	Group 19		
4	Group Meeting	08/26/18	08/26/18	Completed	Group 19		
5	Group Meeting	09/09/18	09/09/18	Pending	Group 19		
6	Initial Document –	09/10/18	09/14/18	Initiated	Group 19		
	Divide & Conquer						
7	Prepare Questions for	09/03/18	09/14/18	Initiated	Group 19		
	Meeting						
8	SD1 Half Hour Meeting	09/17/18	09/19/18	Pending	Group 19		
9	Sponsor Meeting	09/20/18	09/21/18	Pending	Group 19		
10	Cover Page	09/01/18	09/01/18	Completed	Group 19		
11	Table of Contents	09/01/18	11/28/18	Pending	Group 19		
12	Project Description	09/01/18	09/03/18	Pending	Group 19		
13	Research	09/01/18	11/28/18	Pending	Group 19		
14	Related Standards and	09/01/18	09/07/18	Pending	Group 19		
	Design Constraints						
15	Hardware Design	09/20/18	10/01/18	Pending	Group 19		
16	Software Design	10/01/18	11/01/18	Pending	Group 19		
17	Update Project	11/01/18	11/02/18	Pending	Group 19		
	Milestones and Project						
	Budgets						
18	Conclusion	11/15/18	11/28/18	Pending	Group 19		
19	Copyright Permissions	11/15/18	11/28/18	Pending	Group 19		
20	Datasheets	11/16/18	11/23/18	Pending	Group 19		
21	Citations	11/16/18	11/30/18	Pending	Group 19		
22	Table of Figures and	11/16/18	11/30/18	Pending	Group 19		
	Table of Tables						
23	Final Document Draft	11/20/18	11/21/18	Pending	Group 19		
24	Group Progress Check	11/20/18	11/21/18	Pending	Group 19		
25	Prepare Questions for	11/21/18	11/21/18	Pending	Group 19		
	Meeting						
26	SD1 Half Hour Meeting	11/23/18	11/23/18	Pending	Group 19		
27	Revision of Final	11/30/18	11/30/18	Pending	Group 19		
	Document						
28	Final Document Due	12/03/18	12/03/18	Pending	Group 19		
29	Order Components	09/28/18	12/01/18	Pending	Group 19		
30	Build Prototype	10/15/18	11/30/18	Pending	Group 19		
31	Test Prototype	11/30/18	11/30/18	Pending	Group 19		

6.0 Project Milestones 6.1 Fall 2018 Senior Design I Milestones Table 4: Fall 2018 Milestones

Table 5: Spring 2019 Milestones									
Spring 2019- Senior Design II									
Number	Task	Start	End	Status	Responsible				
1	Verify committee members	01/19/19	TBD	Pending	Group 19 and committee members				
2	Group Meeting	01/20/19	TBD	Pending	Group 19				
3	Prototype Equipment Bought	01/22/19	1/22/19	Pending	Group 19				
4	PCB Board schematic for prototype trial #1	01/30/19	02/03/19	Pending	Group 19				
5	Ordered trial #1 PCB Board from Manu.	02/03/19	02/04/19	Pending	Group 19				
6	Initial Wheel Motors in Operation	02/10/19	02/09/19	Pending	Group 19				
7	Sensor on Microcontroller initiated	02/20/19	02/22/19	Pending	Group 19				
8	Operation of wheels and Sensors for Trial #1 prototype complete	02/28/19	02/28/19	Pending	Group 19				
9	Group Meeting In regard to Trial #1	03/01/19	03/01/19	Pending	Group 19				
10	Improve Prototype With third, swinging motion, Motor	03/02/19	03/10/19	Pending	Group 19				
11	Test Prototype Trial #2	03/11/19	03/11/19	Pending	Group 19				
12	Finalize Prototype (Final Trial #3)	03/15/19	04/01/19	Pending	Group 19				
13	Peer Report	TBD	TBD	Pending	Group 19				
14	Final Documentation	01/01/19	05/03/19	Pending	Group 19				
15	Final Presentation	TBD	TBD	Pending	Group 19 and committee members				

6.2 Spring 2019 Senior Design II Milestones