UCF COBOT – Robotic Flange Assembly

Senior Design 2018–2019

A Multidisciplinary Effort

M.E. Team Fernando Gil Juan Meneses Justin Connolly **Rodrigo Duran** Juan Barajas

E.C.E. Team Alana Icenroad Cassidy Lyons Tony Buda Reed Snowden Viviana Gonzalez

C.S. Team **Deepak Gunturu** Sopheap Chea Tyler Teixeira

I.E. Team Sara Alvarado Yannick Giraud Keaton Marn Allison Randall

Cobot Evolution

V1

Mechanical Design

- Concept development
- Breakdown of Subsystems
- Carriage Subsystem

Articulation Subsystem

Torque Drive Subsystem

Electrical Components

- Components & hardware
- Feedback System
- PCB
- Power Supply

Simulation & Future Components

- Reference Simulation Monitor
- Finished features
 - Proximity sensors
 - Camera view
 - User Interface

Results

- Quality
 - Consistent bolt tightening
- Safety
 - Reduced fatigue
- Productivity
 - Reduced cycle time

Total Time	Manual	COBOT	% Difference
Interface w/nut	19.99	95.394	477%
Tighten first round	133.94	10.088	8%
Change Position	41.94	21.133	50%
Total	195.87	126.615	65%

COBOT vs Manual Assembly Performance - Standard Deviation

Static Test

Cobot Demonstration

Articulation System in Action

A Glimpse of Hope!

If only pipes are flat and bolts are playdoh...

It Smoked...

Out for a stroll

Even Cobots need a Chipotle break

The patient is prep for surgery

Girl Power!

How many ME does it take to hold a Cobot?

List of Components – Electrical/Computer

Component Name	Specs & Features	Purpose
Arduino Mega 2560	Additional pins are available	Support a flexible design approach
Cytron Motor Controller (2)	Current rating compatible with the high-current draw of the drill motors	Drive the M18 Drill Motors in Carriage and Torque Drive Subsystems
Easy Driver Stepper Motor Controller	Compatibility and user out-of-the- box implementation	Drive the Nema 17 Stepper Motor in the Articulation Subsystem

Software Functions for Subsystems

- activateTorqueMotor()
 - First Subassembly to run
 - Begins the process of tightening the bolt

- startCarriageMotor()
 - Third Subassembly to run
 - Begins the process of circumnavigating around The pipe to find next bolt

```
void articulationSystemBackward()
{
```

```
Serial.println("Articulation System Activated");
```

```
myStepper.setSpeed(SRPM);
for(int i = 0; i < REVOLUTIONS; i++)
{
    myStepper.step(-stepsPerRevolution);
    delayMicroseconds(DELAYMCRO);
</pre>
```

- articulationSystemBackward()
 - Second Subassembly to run
 - Disengages the Torque Drive subsystem from the bolt
- articulationSystemForward()
 - Fourth Subassembly to run
 - Engages the Torque Drive subsystem towards the bolt

```
void startCarriageMotor()
```

startCarriageMotor():

20

PLanning Out Software Logic

- Identify coordinates of bolts
- Using circumference of pipe to find distance
- Using peak diameter of gear and CPR for estimated travel
- Plan out path for torque sequencing
- Use Computer Science teammate suggestion for one direction travel

Multiply Cycles by estimated constant to define a distance

How it works - Electrical & Computer

- The interface between the mechanical hardware and electrical components.
 - Provides COBOT with logical control
 - Implements main electrical connections to subsystems
 - Regulates power given to certain components

Simulation Scenarios

2-Cobot

16-bolt Scale-up

Proto-Cobot

24-bolt Scale-up

Upward Design

Downward Design

Features

• Finished

- Full dynamic movement
- Socket alignment
- Torque drive positioning
- Proximity sensors
- Camera view
- Data log
- Expandable database
- User Interface
 - User options
 - Dynamic results
 - Live progress
 - Estimated time to completion

- Future
 - Torque calibration
 - Precise time estimate
 - Alignment via camera
 - Perform in depth safety analysis
 - Test limitations of design