
Robotic Flange Assembly 

Antonio Buda, Cassidy Lyons, Viviana 

Gonzalez Pascual, and Alana Icenroad  

Dept. of Electrical Engineering and Computer 

Science, University of Central Florida, Orlando, 

Florida, 32816-2450  

 

Abstract  —  In large-scale pipe assembly, there is an 

industry standard method of tightening bolts on pipe flanges 
which involves torqueing the bolts in a specified pattern 
through incremental torqueing levels. This is done by an 

individual operator using a handheld hydraulic tightening 
device and may takes several hours. This is physically and 
mentally demanding for the worker and can lead to workplace 

accidents as well as inconsistent tightening on the pipe. The 
device shown here will physically assemble the pipe in a 
consistent and predetermined pattern, alleviating strain on 

the worker and providing more efficient assembly. 

Index Terms  —  Autonomous systems, flanges, 

manufacturing automation, robot, safety, torque. 

I. INTRODUCTION 

The Robotic Flange Assembly project is an 

interdisciplinary project sponsored by Siemens that consists 

of 17 members. The following text describes the Robotic 

Flange Assembly project as stated in the project document: 

 “Flanges are often used to attach pipes carrying fluids 

and gases to various power plant equipment and systems. 

Flanges are typically round rims welded to the end of pipes 

with a sequence of holes for threaded fasteners to attach two 

pipes together. A gasket is usually placed in between two 

flanged pipe ends to maintain a seal. The assembly of 

flanges are manually intensive processes requiring careful 

control so as to maintain a proper seal. 

The goal of this project is to develop a scaled prototype 

robotic flange assembly assistant to demonstrate and better 

understand the opportunities associated of the system. 

Benefits of the proposed system include reduced manual 

effort and improved quality.” [1] 

The final product is designed to automate the assembly 

of flanged pipes with minimal worker involvement. The 

process for proper flange assembly requires a strict set of 

guidelines to adhere to; following the proper torque 

sequencing pattern and following the proper bolt tightening 

process from the ASME standards.  

This specified pattern consists a distinct order that 

requires precise and repeated movement. The delivery of 

torque is not all at once for each bolt and the amount of 

torque delivered depends on a time and percentage of the 

overall specified torque. The ASME [2] specified pattern 

for tightening is used to apply torque in stages. The staged 

torque will vary depending on how many bolts a flange has. 

For example, torque may be applied to each bolt on the 

flange in three stages where 30, 60, and then finally 100 

percent of the torque is applied. This ensures that bolts on 

the flange are evenly and properly tightened. Displayed in 

Figure 1 below is the ASME specified torque pattern that 

the Robotic Flange Assembly will be following. 

 

 
 

Fig. 1.  ASME Torque Sequencing Pattern. 

 

The Robotic Flange Assembly system has thus been 

divided into three distinct subsystems to achieve these 

goals; the Torque Drive Subsystem, the Articulation 

Subsystem, and the Carriage Subsystem. We divided the 

Cobot into three subsystems that center around the 

functions that each motor satisfies. Starting with the initial 

alignment setup of the Cobot on the pipe to the first bolt, 

the Torque Drive Subsystem will begin first and start the 

tightening process of the first bolt. Next, the Articulation 

Subsystem will engage and disengage the socket with the 

bolts. Finally, the Carriage Subsystem that uses a chain 

attachment to fasten the Cobot around the pipe will 

circumnavigate around the pipe in the specified torque 

sequencing pattern to each bolt on the flange.  

II. SYSTEM COMPONENTS 

The Robotic Flange Assembly is comprised of several of 

important system components. The best way to exhibit the 

system is in terms of the system components. This section 

provides a semi-technical introduction to the main 

individual components that make up the Robotic Flange 

Assembly.  

 

 



A. Microcontroller 

The main component of the Robotic Flange Assembly is 

the Arduino Mega 2560 microcontroller (ATmega 2560). 

The ATmega 2560 microcontroller was chosen for our 

system because of the compatibility advertised with every 

motor controller that was considered for this system. 

Moreover, it was also chosen for its high memory capacity 

and abundance of digital and analog pins that include pulse 

width modulation for controlling the speed of the motors. 

The Arduino IDE is used to program C/C++ code to 

develop and debug the logic incorporated across all 

subsystems as we integrated all moving parts. 

B. M18 Motor 

The M18 Motor inside the Milwaukee Power Drill is the 

main motor responsible for supplying power to two out of 

three subsystems in the Robotic Flange Assembly. This 

motor was selected for its lightweight capability to provide 

the power and stability necessary to move the Cobot around 

the pipe and provide torque.  

Some of the features of this motor include that it comes 

with an 18V red Lithium-ion battery, it has an RPM value 

of 1800, and it can produce up to 40 ft-lbs. of torque. 

C. Stepper Motor 

The Nema 17 Stepper Motor is the primary motor 

responsible for driving the radial direction of movement 

that engages the socket with the bolt in the Articulation 

Subsystem. This stepper motor was chosen because of its 

200-steps per revolution precision.  This precision is 

extremely important because we must ensure that the same 

distance traveled is repeated to and from every bolt. 

Connected to the stepper motor will be a lead screw with 

a nut inside, allowing for movement forwards and 

backwards since the stepper normally moves in a rotating 

radial direction. 

Some of the features of this low-cost, bipolar stepper 

motor include having a step angle of 200-steps per 

revolution at 1.8° per step for smooth motion. This 

stepper motor was purposely built for high-holding 

torque, allowing for the ability to incrementally step to 

the next position. This results in a simple positioning 

system that doesn't require an encoder, and it makes 

stepper motor controllers very simple to use.  

D. Optical Encoder 

The E3-2000 US Digital Optical Encoder was the 

encoder chosen for the Robotic Flange Assembly. This 

optical encoder is designed to easily mount to and dismount 

from an already existing shaft to provide digital feedback 

information. The optical encoder is used in the Carriage 

Subsystem on the main motor shaft to determine where the 

position of the bolts are located on the flange.  

Some of the features include being able to supply 2,000 

cycles per revolution and can easily interface with the 

ATmega2560 MCU and tested with the Arduino 

microcontroller. Furthermore, it is simple to assemble and 

compact in size, making it easy to mount to the main motor 

shaft of the Cobot. Furthermore, it is simple to assemble 

and compact in size, making it easy to mount to the main 

motor shaft of the Cobot. 

E. Touchscreen LCD 

The 2.8” Touchscreen LCD by Adafruit was the LCD 

chosen for the Robotic Flange Assembly. The Cobot will 

integrate a small user interface function that will be used 

for the initial set up of the Cobot. This 2.8" LCD was 

chosen for its touchscreen capabilities and its compact size. 

The operator working alongside the Cobot is expected to 

provide minimal input, so it is not necessary to have a large 

sized LCD. 

Some of the features include that it has an 8-bit digital 

interface and an operating voltage of 3-5V, making it 

compliant to be used with any microcontroller. 

Additionally, this LCD has a controller built into it with 

RAM buffering, so that almost no work is done by the 

microcontroller. 

III. SYSTEM CONCEPT 

The purpose of the Robotic Flange Assembly is to design 

a Cobot that works alongside the worker to tighten the bolts 

on flanges. The Cobot runs based of the integration of three 

separate subsystems, all controlled through the main 

printed circuit board in the back of the device. The Torque 

Drive Subsystem gives a controlled torque on the bolts of 

the flange and feeds information on the torque to MCU. The 

Articulation Subsystem moves the torque drive subsystem 

forwards and backwards in the assembly so the torque 

socket can meet the bolt. The Carriage Subsystem provides 

the motor and sprocket holding the chain that will move the 

Cobot around the pipe in a controlled sequence. 

The system will rely on two 18V power supplies shared 

across the device that are stepped down to voltages of 9 and 

5 where necessary. As well, the carriage and torque drive 

motors will each rely on one Cytron motor driver, while the 

Articulation Subsystem will be driven with SparkFun’s 

Easy Driver motor controller. 

The simplest way to explain the concept of the system is 

to demonstrate how the system is running using a flowchart. 

The flowchart will illustrate how the subsystems are 

interacting with each other and show their sequence of 

arrival. Breaking the system down into a pictured diagram 



will allow for a better overall understanding of the entire 

system.      

       

 

 

 

 

 

                               

 

                                  

                                                                                                 

 

 

                                          NO 

 

Fig. 2.  Flowchart of Subsystem Flow. 

 

Displayed in the flowchart above, it is easy to understand 

how the Robotic Flange Assembly is operating. First, begin 

with the start which will be the pressing of the button 

START on the LCD by the worker. Then, begin the process 

of tightening the first bolt with the Torque Drive 

Subsystem. Once that process is completed, move 

backwards on the Articulation Subsystem and then begin 

the Carriage Subsystem. If the position of the bolt was not 

found, keep repeating the Carriage Subsystem functions. If 

the position of the bolt was found, begin moving the 

Articulation Subsystem forward. If the process has finished 

and tightened the bolts on the flange by 30%, 60%, then 

100%, then the process is finished. If the process is not 

finished, keep repeating the same steps until finally 

finished. 

IV. SUBSYSTEM DETAIL 

The Robotic Flange Assembly system is broken down 

into three main subsystems; the Torque Drive Subsystem, 

the Articulation Subsystem, and the Carriage Subsystem. 

This section provides a deeper, more technical look into the 

subsystems that make up the Robotic Flange Assembly. It 

will discuss the main roles and objectives of each 

subsystem, the order each subsystem goes when  the system 

is running, and the main components that are comprised in 

each subsystem. 

A. Torque Drive Subsystem 

For the Torque Drive Subsystem, the main objectives 

consist of tightening and loosening bolts autonomously, 

using a motor to provide a desired torqueing force on the 

bolts in the flange. The motor will also have to apply torque 

in stages so that the flange is uniformly tightened and that 

it provides an even seal. The purpose of this subsystem is 

to ensure that all bolts on the flange are tightened evenly 

and properly according to the ASME bolt tightening 

standards and torque sequencing patterns. 

The Torque Drive Subsystem is the first subsystem to run 

on the Cobot. This subsystem relies on the Articulation 

Subsystem to move towards the bolts on the flange so that 

torque can be applied. 

The main components that are used in the Torque Drive 

Subsystem include the Milwaukee Power Drill’s M18 

Motor, the Cytron Brushed DC Motor Driver, and 

programmed logic on the Arduino. The M18 Motor was 

chosen for this subsystem because it has a stall torque of 40 

ft-lbs., giving us our set torque value. The Cytron Brushed 

DC Motor Driver was chosen to drive the M18 motor 

because this will allow us to control the speed of the motor 

by pulse width modulation. Additionally, this driver was 

chosen because it has a max amperage rating that is twice 

as large as the motor’s continuous current consumption 

under load which is recommended when selecting a motor 

driver. Since the Torque Drive Subsystem has a high 

demand for torqueing capabilities, this motor and driver are 

the perfect choices for applying the target torque on the 

bolts. 

 

 
 

Fig. 3.  Torque Drive Subsystem main body. 

 

B. Articulation Subsystem 

For the Articulation Subsystem, the main objectives 

consist of having to move the necessary components 

towards the bolt head as it is being tightened and move 

components away from bolt head after proper tightening 

has been completed. With the setup of the initial height 

being implemented, the purpose of this subsystem is to 

engage and disengage the socket with the bolt. 

NO 

START 

Torque 

Subsystem 

Articulation 

Backward 

Carriage 

Subsystem 

Tighten 

Bolts 

Articulation 

Forward 

Bolt 

Found? 

Finished?

? 

END 

YES 

YES 



Between the three listed subsystems, the Articulation 

Subsystem falls in the middle. This subsystem relies 

heavily on the function terminations coming from the 

Torque Drive Subsystem and the Carriage Subsystem. 

When the Torque Drive Subsystem terminates, the 

Articulation Subsystem moves away from the bolt and then 

begins the Carriage Subsystem process. When the Carriage 

Subsystem terminates, the Articulation Subsystem moves 

toward the bolt to provide linear movement for the Torque 

Drive Subsystem. This process is constantly repeated until 

all bolts are properly tightened on the flange by ASME 

standards. 

The main components that are used in the Articulation 

Subsystem include the Nema 17 Stepper Motor, Sparkfun’s 

Easy Driver Stepper Motor Driver, and programmed logic 

on the Arduino. Since the Articulation Subsystem doesn’t 

demand the high torque capabilities that the other two 

subsystems require, the stepper motor is the perfect choice 

for moving the subsystem back and forth. 

 

 
 

Fig. 4.  Articulation Subsystem Parts 

 

C. Carriage Subsystem 

For the Carriage Subsystem, the main objectives consist 

of circumnavigating around the pipe and maintaining 

proper control to the motor in order to implement a 

specified torque sequencing pattern. The Carriage 

Subsystem shall also strive to maintain a static position 

while tightening bolts, withstand the torque produced by 

the motors in the system, and prevent slippage while on the 

pipe. The purpose of this subsystem is to ensure that we are 

following the specified torque sequencing pattern when 

circumnavigating around the pipe, all while moving to a 

specified location when instructed. 

The Carriage Subsystem is the third subsystem to run on 

the Cobot. This subsystem is the main support for all the 

components and the main body for our prototype. The 

Carriage Subsystem relies on the Articulation Subsystem to 

move away from the bolts on the flange so it can begin its 

process of circumnavigating around the pipe and go to the 

next bolt in a specified pattern. 

The main components that are used in the Carriage 

Subsystem include the Milwaukee Power Drill’s M18 

Motor, the Cytron Brushed DC Motor Driver, an optical 

encoder, and programmed logic on the Arduino. The 

Carriage Subsystem uses the same motor and motor 

controller that the Torque Drive Subsystem uses because 

both subsystems demand high torque capabilities. The 

optical encoder is used for the Carriage Subsystem because 

it will provide feedback about the position of the motor 

shaft. This will allow us to use this data to move to 

predetermined positions that will correspond to the location 

of each bolt. Having an encoder is critical for this 

subsystem because without it, the subsystem would not 

know where each bolt is located on the flange, therefore 

resulting in an increased error and miss rate in our system. 

V. HARDWARE DETAIL 

Each of the main major system components outlined in 

Section II, System Components, along with a few more 

additional components, will now be explained in further 

technical detail in this section. 

A. Microcontroller 

 The Arduino Mega 2560 (ATmega 2560) has 256 KB of 

flash memory, 8KB of SRAM, 4 KB of EEPROM, and a 16 

MHz clock speed, the highest speed grade amongst other 

Arduinos. It has an operating voltage of 5V and can receive 

input  voltage values from 7V-12V. Each pin on the 

ATmega can provide or receive a maximum of 40 mA and 

has an internal pull-up resistor of 20-50 kOhms. The 

ATmega also has the function of operating at ultra-low 

power mode, running on a 1 MHz clock speed, operating 

voltage at 1.8V, and a current value of 500 microamps.  

The ATmega 2560 has 54 digital input/output pins and 

16 analog inputs. Some pins on the Arduino have 

specialized functions including pulse width modulation (14 

digital pins), external interrupts, SPI communication, and 

many more. Since the Arduino is the heart of the Robotic 

Flange Assembly, all electrical components will be 

accurately wired throughout corresponding pins on the 

Arduino board. 

B. M18 Motor and Driver 

The M18 Motor that comes from the Milwaukee Power 

Drill delivers 500 in-lbs. of torque and up to 1800 RPM. It 

comes with two external red lithium-ion batteries that 

operate up to 18V; these motor batteries will be the main 

power supply for the Robotic Flange Assembly, delivering 

more runtime, power, and speed than standard lithium-ion 

batteries. These motor batteries are also optimized to work 

per charge and work over pack life, offering 3.0 amp-hours 



of runtime. Moreover, these motor batteries run cooler, 

preventing the overall system from overheating. 

The Cytron Brushed DC Motor Driver is the motor 

controller responsible for driving the two M18 Motor’s in 

the system. This motor controller has an operating voltage 

of 5V-30V and has a maximum current of 80A peak (30A 

continuously). Some additions of this motor controller 

include having reverse polarity protection, a PWM 

generator, operation between 3.3V-5V for logic level input, 

and speed control PWM frequency for up to 20 KHz. We 

use PWM for this motor controller because of power 

efficiency, controlling the speed of the motor, and having a 

controlled circuit.   

The three main pins used on the Cytron Brushed DC 

Motor Driver are direction, pulse width modulation, and 

ground. The two motor direction pins are set to pins seven 

and ten and the motor enable pins are set to pins six and 

nine for running on the pulse width modulation signal. 

C. Stepper Motor and Driver 

The Nema 17 Stepper Motor is the perfect motor when it 

comes to positioning and repeatability. It is a bipolar 4-

wire stepper motor that can be connected to the ATmega 

2560 to obtain precision motor control. Some of the main 

features include having a step angle of 200-steps per 

revolution at 1.8° per step for smooth motion. The rated 

voltage is 12V, but it can operate up to 36V and the rated 

current is 2A per phase. The high-holding torque is 64 

oz. in, 45 N*cm, allowing the stepper to incrementally 

step the next position. The stepper has a 5mm diameter 

shaft which allows for our lead screw to be attached 

directly on to it, and the motor width is only 42mm, 

making it compact in size and easy to mount onto the 

Robotic Flange Assembly. 

Sparkfun’s Easy Driver Stepper Motor Driver is the 

motor controller responsible for driving the Nema 17 

Stepper Motor.  This stepper driver is simple to use and 

compatible with anything that can output a digital 0V-

5V pulse. The stepper driver requires a 6V-30V power 

supply to the motor and it can power any voltage of 

stepper motor. 

This stepper motor driver provides flexibility and 

control over the Nema 17 Stepper Motor. Connecting the 

4-wired stepper motor is very straightforward; the four 

wires that breakout from the stepper motor simply 

require connections to the A+ (black wire), A- (green 

wire), B+ (red wire), and B- (blue wire) leads that go to 

the corresponding phase outputs on the motor drive. 

These four wires are connected to pins 35, 37, 39, and 41 

on the ATmega 2560. Pins 35, 37, and 41 are digital pins, 

and pin 39 is a digital pin that provides PWM for the 

motor to control the speed of the motor. The stepper 

motor driver also uses the step and direction pins. The 

step input uses a low-to-high transition and advances the 

motor one increment. The direction input will determine 

the direction of rotation of the motor. 

D. Optical Encoder 

The E3-2000 US Digital Optical Encoder is the 

component that determines where the position of the bolts 

are located on the flange. It can supply 2,000 cycles per 

revolution and can easily interface with the ATmega 2560 

with an operating voltage of 5V. The optical encoder is 

designed to easily mount to and dismount from an existing 

shaft to provide digital feedback information. 

This optical encoder utilizes a 5-pin standard connector, 

where the index output pin is optional. The first pin starts 

with Channel B, then VCC, then Channel A, then index, 

then ground. Channel A and Channel B are the two output 

channels that issue square waves in quadrature when the 

encoder shaft rotates. The square wave frequency indicates 

the speed of shaft rotation, whereas the A-B phase 

relationship indicates the direction of rotation. Channel B 

does not need to support interrupts whereas Channel A 

does. This is because when the encoder is mounted to the 

motor shaft of the Carriage Subsystem, the interrupt on 

Channel A is used to determine if the encoder position 

should be incremented or decremented (depending on the 

direction of rotation). 

E. Touchscreen LCD 

The 2.8” Touchscreen LCD by Adafruit is a resistive 

touch LCD that will be used to integrate a small user 

interface function that will be used for the initial set up of 

the Cobot. This display has a controller built into it with 

RAM buffering, so that almost no work is done by the 

microcontroller. It has an operating voltage of 3V-5V and 

an 8-bit digital interface. 

For using the 8-bit digital interface, it is necessary to have 

eight digital data lines and four or five control lines to read 

and write to the display, making this a total of twelve data 

lines. Since this LCD is resistive touch,  it allows for the 

user to use the LCD’s touchscreen functionalities for the 

user interface function being implemented. 

F. PCB Finalization 

The Electrical Engineer’s main task was to design, 

assemble, and test a printed circuit board (PCB). Besides 

software (detailed in section VI) being the one instance to 

give the Cobot meaning, energy and control that a PCB 

provides is the one to give it life. Due to mechanical aspects 

of the COBOT, like motor selection and overall dimensions 

that continued to undergo major changes in our first and 

second semester, finalizing the PCB proved to be quite 



challenging. We struggled to incorporate a PCB that would 

meet the demands for proper motor control and provide 

meaningful connections for a physical design that remained 

undecided. The design the PCB was made in parallel with 

component selection and rather than waiting to test our 

components, the PCB and components were ordered at the 

same time. Other than the footprints chosen for the input 

pins being too small, our first PCB appeared to be a success. 

Nonetheless, going through a second revision was needed 

because we had to accommodate amplification for a voltage 

signal that was coming from a strain gauge that had not 

been tested due to the incompleteness of the custom 

machinery for the physical component it required. In the 

end the small signal (7mV) was accompanied by a large 

amount of noise generated by the vibration of the motor and 

became indistinguishable. Fortunately, this did not require 

additional revisions to the PCB.  .  

   The final PCB includes some unused analog and digital 

breakout pins in case we can incorporate an alternative to 

the stain gauge or to simply serve as backup. The main 

component of the PCB is the Atmega2560 microcontroller 

unit (MCU) and it drives the software in this system. This 

microcontroller was chosen for having more than fifty input 

and output pins. Having an abundance of input/output 

support allows our team to remain flexible and 

accommodate changes to the system when unforeseen 

problems arise and provides an easy transition in future 

growth. In addition, the ATmega2560 can support an 

external 16MHz oscillator crystal, which was desired to 

provide optimal performance. To communicate with this 

microcontroller, we added an Arduino In Circuit Serial 

Programming (ICSP) header. Without the ICSP header we 

would be unable to translate our programming software to 

the microcontroller driving our PCB. It is important to note 

the PCB must include a reset button for the MCU for 

efficient troubleshooting. To support onboard components 

that have a lower voltage rating than the Lithium ion 18V 

batteries that will be supplying power two voltage 

regulators were included to step down the voltage. A DC-

to-DC converter was used for this since it allows us to step 

down the voltage from 18V to 5V for the MCU to provide 

the 5V to the optical encoder, LCD, and the (external) 

stepper motor driver. A second voltage regulator was added 

for the main purpose of supplying the peak voltage 

excitation of 9V to the strain gauge. However, due to the 

excessive noise distortion that deterred us form 

implementing the strain gauge, the 9V regulator no longer 

served a purpose. Lastly, it is very important to note that the 

9V regulator was eventually repurposed, over heated, fixed, 

and then modified and is, at this time, now being used as an 

additional 5V regulator that supplies a constant 5V to the 

stepper motor driver. 

 
Fig. 5.  System Block Diagram.  

 

In the figure above you can see the inputs and outputs of 

our printed circuit board and how the components are 

arranged on the final design. The final design has three 

areas that are dedicated to electronic components, all on the 

back side of the system.  

VI. SOFTWARE DETAIL 

The overall success of the Robotic Flange Assembly is 

its ability to circumnavigate around the pipe in an ASME 

torque sequencing pattern and tighten the bolts on the 

flange. The incorporated software that was written for this 

system will be able to complete the desired tasks.  

The software which controls this system is written in C 

code and is approximately 350+ lines long. Since we are 

using an Arduino Mega 2560 as our microcontroller, the 

void setup() C function is called when a sketch starts. This 

function is used to initialize variables, pin modes, baud rate, 

start using libraries, et cetera. In this section of the code, we 

declare our instances of the libraries being used such as the 

PID library, the CytronMD library, the stepper library, et 

cetera. Additionally, the array of the bolt positions are 

declared and initialized to the starting position. All the 

major variables that are used with the microcontroller and 

motors are also declared here as well. 

 

 Fig. 6.  Primary Software Functions. 

 

activateTorqueMotor(); 

     articulationSystemBackward(); 

          startCarriageMotor(); 

               articulationSystemForward(); 



Displayed in Figure 6 above are the main functions that 

are being called in the Robotic Flange Assembly. To follow 

the order in which the subsystem processes begin, we start 

with the first function activateTorqueMotor(). This 

function is responsible for triggering the torque motor to 

spin to tighten the bolts on the flange.  The set RPM of the 

motor is initialized to 30 and incorporates a delay before 

the next function is called. 

Once the activateTorqueMotor() function is complete, it 

will then call the articulationSystemBackward() function. 

This function is solely responsible for disengaging the 

socket with the bolt. The RPM of the motor is initialized to 

200 and set to iteratively move a fixed set of revolutions 

that equal to approximately two inches. Since the 

Articulation Subsystem is moving backwards at this point, 

the steps per revolution is being decremented to allow for 

the backwards movement. 

Once the articulationSystemBackward() function is 

complete, it will then call the startCarriageMotor() 

function. This function is responsible for using an encoder 

and PID (proportional-integral-derivative) control to 

determine the position on the motor shaft for where the 

bolts  are located on the flange. Since the encoder is not 

absolute, the location will not always be spot on and PID 

helps with getting that accurate location. The RPM on the 

motor is set to 35 and then incorporates a delay once a bis 

found. Once the Carriage Subsystem finds a bolt, it will 

proceed with the next function. 

Once the startCarriageMotor() function is complete, it 

will then call the articulationSystemForward() function. 

The articulationSystemForward() is the same as the 

articulationSystemBackward() function. The only 

difference now is the Articulation Subsystem will be 

engaging the socket with the bolt to allow linear movement 

for the Torque Drive Subsystem. 

While it is too complex to formally document the entire 

codes functionality here such as how the encoder is working 

or understanding how the proportional-integral-derivative 

control method is being used, it is extremely important to 

understand how the main functions call one another in a 

sequence while running. These sequences are what produce 

the order of the subsystems and allow for the Robotic 

Flange Assembly to follow ASME standards. 

VII. CONCLUSION 

This document provides a technical description of the 

Robotic Flange Assembly project, an interdisciplinary 

project of seventeen electrical, computer, industrial, 

mechanical engineering and computer science students. 

The resulting prototype is a collaborative robot that moves 

around a specified pipe size and tightens flange bolts in a 

predetermined sequence for an even seal. This device is 

meant as a safer and more consistent alternative to hand-

tightening bolts on a flange. The device as it stands today is 

meant as a prototype for future groups to improve upon and 

redesign. As well, this document is meant to provide an 

insight into the project through the lens of the electrical and 

computer engineering team, and as such focuses more on 

the electrical and computer hardware aspects necessary to 

drive the device. 

ACKNOWLEDGEMENT 

The authors wish to acknowledge the assistance and 

support of their sponsors at Siemens: Gerald J. Feller, Paul 

Zombo, and Matt Johnson. As well, the authors would like 

to thank their advisors and for their continuous guidance 

throughout the project. This includes Kurt Stresau and 

Mark Steiner (ME), Mike Conroy and Mark Heinrich (CS), 

Lei Wei, Samuel Richie, and Michael Young (ECE), and 

Luis Rabelo (IE). Finally, the authors would like to thank 

Bonnie Marini, whose constant support and leadership 

guided us through this last semester. 

REFERENCES 

[1] L.Wei EEL4914 Microsoft Word document titled “2018-19 
I-Design Projects 8_07  update.docx” College of 
Engineering and Computer Science, University of Central 
Florida Orlando, FL, Aug. 9, 2018.  

[2] HardHat Engineer. Flange Bolt Torque Sequence and Torque 
Table - A Complete Bolt Tightening Procedure. [Online]. 
Available from: https://hardhatengineer.com/ flange-
bolt-torque- sequence-table/  [Accessed 7th April 2019].

 


