

Robotic Flange Assembly

College of Engineering Computer Science Group 18

Antonio Buda (EE) Alana Icenroad (CpE) Cassidy Lyons (CpE) Viviana Gonzalez Pascual (CpE/EE)

Introduction

A Multidisciplinary Effort

- ★ Sponsored by Siemens
- ★ 17 Students
- ★ Computer Engineers
- ★ Electrical Engineers
- ★ Mechanical Engineers
- ★ Industrial Engineers
- ★ Computer Science

SUCF

Motivation

- ★ Chance to work with other disciplines
- ★ Work directly with wants and needs of customer
- ★ Guidance that comes with a sponsored project

What is a Flange?

A flange is a pipe fitting that is often used to attach pipes carrying fluids and gases

FLANGE

The process to assemble a flange is time consuming, physically demanding, and requires careful control.

Project Goals & Objectives

- ★ Ensure accurate control is applied to every flange
- ★ Reduce the manual effort that leads to worker fatigue
- ★ Deliver consistent performance

Improve quality, increase productivity, and provide better workplace safety

Requirement Specifications and Standards

- ★ Safe lifting weight for a single worker- OSHA weight limit (< 50 lbs)
- ★ Adhere to torque sequencing patterns in accordance with ASME standards
- ★ Apply torque in stages as to prevent damage or uneven pressure to seal
- ★ 8" nominal pipe size test case
- ★ American Society of Mechanical Engineers (ASME) grade 150 PVC pipe
- ★ Define a target torque value

Proposed Implementation

- ★ Two robotic arms capable of working together
- ★ Carousel arrangement to serve as the platform
- Tighten threaded fasteners to the specified torque in a programmed sequence

Design Approach

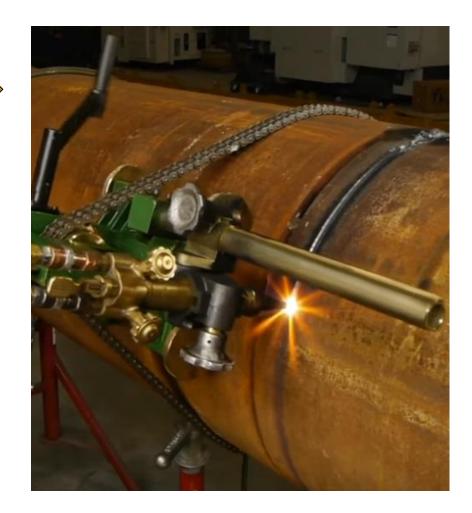
Pros

- ★ Pre assembled
- ★ Immediate Testing
- ★ Sponsor requested

<u>Cons</u>

- ★ Limited Mechanical Engineering involvement
- ★ Robot arms are difficult to control

Design Approach

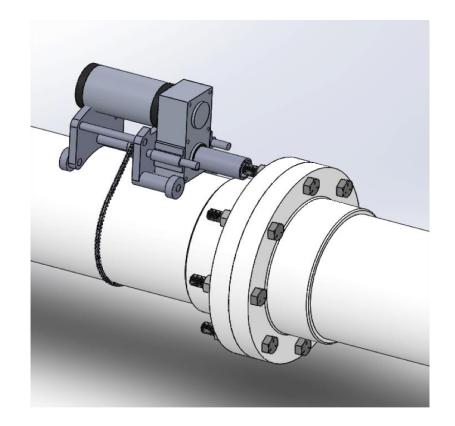

Sawyer Chain Beveling

Design Concept Benefits

- ★ Easy set up
- ★ Simplified control

Design Concept Tradeoffs

- ★ Initially difficult to envision
- ★ Hard to test



Design Approach

COBOT

★ Carriage

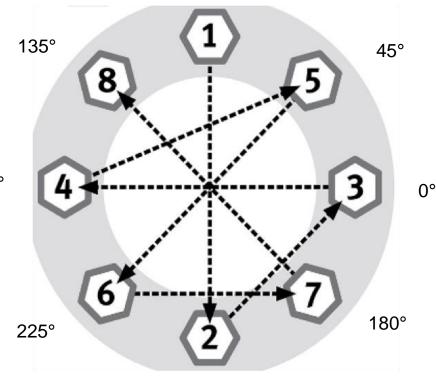
- Component housing
- Includes wheels
- ★ Three motors
 - Carriage Drive
 - Articulation
 - Torque Drive
- ★ Chain attachment
 - Similar to a timing belt



Project Structure

Carriage Subsystem	Articulation Subsystem	Torque Drive Subsystem
Cassidy & Viviana + 3 Mechanical Engineers	Alana + 2 Mechanical Engineers	Tony + 1 Mechanical Engineer
Step 1 Move to commanded location when told to do so	Step 2 Engage and disengage socket with bolt	Step 3 Apply target torque

Process



Carriage Subsystem - Objectives

90°

- Maintain a static position while tightening bolts
- Withstand the torque produced by the motors
- ★ Prevent slippage
- Move to bolts in order of ASME torque sequencing pattern

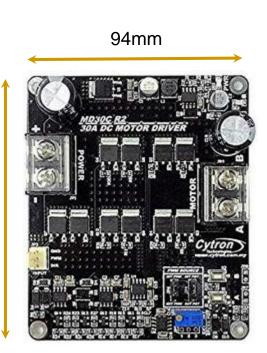
270°

Carriage Subsystem - Motor

Specification	Bison Gear & Motor	Milwaukee Power Drill
Operating Voltage:	90V	18V
No Load RPM:	6.5*	0 - 400 / 0 - 1,800
Torque:	40 ft-lbs	40 ft-Ibs
Battery:	-	18V Li-Ion
Weight:	10 lbs	2.9 lbs
Cost:	\$456.07	<mark>\$119.00</mark>

Selected for it's lightweight capability to provide the power and stability necessary to move the COBOT around the pipe

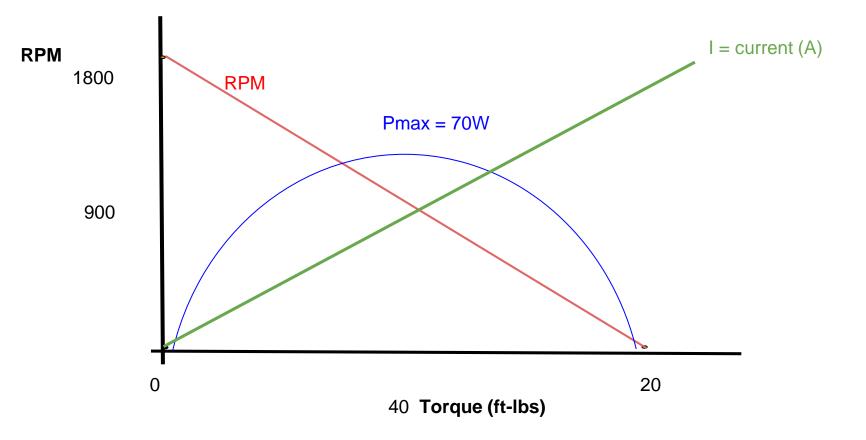
M18 2606-20



Carriage Subsystem - Motor Driver

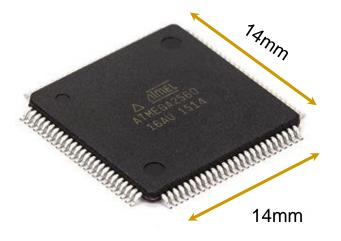
Cytron Brushed DC Motor Driver	Specification
Motor Voltage Support:	5V - 30V
Max Current:	80A (peak) 30A (continuous)
Additions:	Reverse Polarity Protection PWM Generator
Cost:	\$35.00

Purpose:


To drive 18V Motor

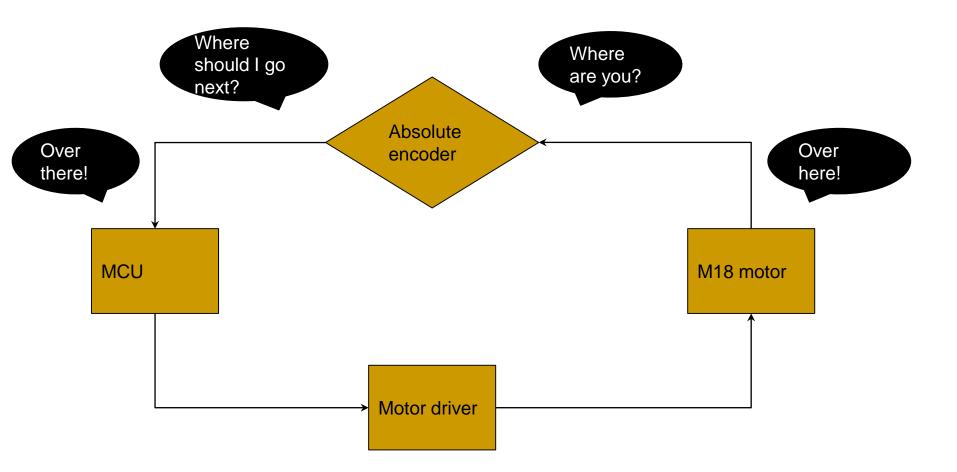
78mm

No load Speed Vs Torque

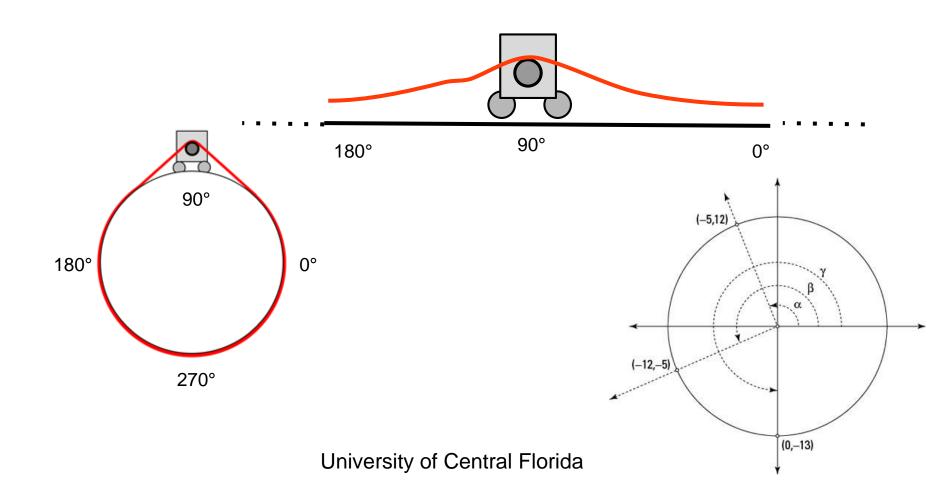


Carriage Subsystem - MCU

Arduino MEGA 2560	Specification	
MCU	ATmega2560	
Operating Voltage	5V	
Digital I/O:	54 pins	
Analog I/O:	16 pins	
Flash Memory:	256KB	
Cost:	\$12.00	


Purpose:

The brains of the cobot



Position Control

Carriage Subsystem - Testing

Carriage Subsystem -Success/Challenges

Success

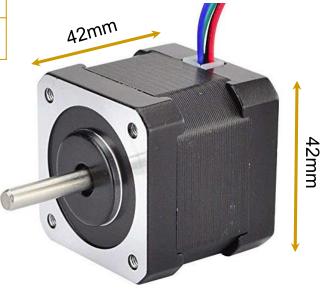
- ★ Change in motor selection resulted in major weight reduction
- ★ Developed test plan for all objectives

Challenges

- ★ Change in motor selection delayed housing development
- ★ Absolute encoder not yet selected

Articulation Subsystem - Objectives

- Move the necessary components towards the bolt head as it is being tightened
- Move components away from bolt after proper tightening has been completed



Articulation Subsystem - Motor Selection

Stepper Motor Nema 17	Specifications
Operating Voltage:	< 36V
Rated Current:	2A
Step Angle:	200 steps/rev
Cost:	\$12.99

Purpose:

To drive the Articulation subsystem with accurate position control

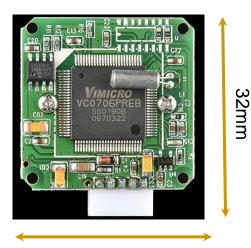


Articulation Subsystem - Motor Control

EasyDriver Stepper Motor Driver	Specifications
Operating Voltage:	7V - 30V
Current Control:	150mA/phase to 750mA/phase
Additions:	Voltage Regulator: 3.3V or 5V
Cost:	\$16.95

Purpose:

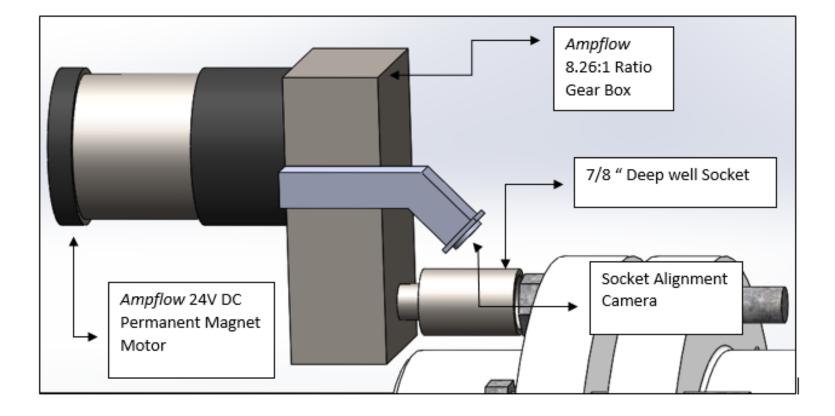
Stepper Motor Controller


Articulation Subsystem - Camera Module

Serial JPEG Color Camera Module	Specifications
Module:	VC0706
Operating Voltage:	5V
Current Consumption:	75mA
Viewing Angle:	90 ໍ
Resolution:	680x480
Cost:	\$35.00

Purpose:

Edge Detection Software



University of Central Florida

32mm

Articulation Subsystem

Articulation Subsystem Success/Challenges

Success

★ Straight forward motor and motor controller selection

Challenges

★ Little experience with edge detection software

Torque Drive Subsystem

Objectives

- ★ Provide 40 ft lb of output torque
- ★ 8 " nominal pipe size
- ★ Meter torque at specified levels such

as 30%, 60%, 100% of specified

torque

Torque Drive Subsystem

Class 150

Unrealistic

Nominal Pipe Size	Torque FT. LB.	
1/2	40	
3/4	60	
1	60	
1 1/4	60	
1 1/2	60	
2	120	
2 2 1/2 3	120	
3	125	
3 1/2	120	
4	115	
4 5 6 8 10	200	
6	200	
8	225	
	320	
12	320	
14	500	
16	405	
18	650	
20	595	
24	835	

Unrealistic

Torque Drive Subsystem

- ★ Apply torque in stages
 - o **30%**
 - o **60%**
 - o **100%**
- Rotate shaft until socket is properly aligned to bolt

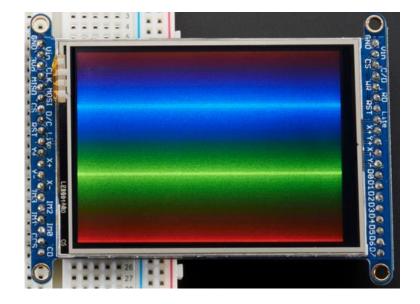
Torque Drive Subsystem -Success/Challenges

Success

- ★ Test rig ready for gathering data
- ★ Using same motor as carriage subsystem
- ★ Change in motor selection resulted in 6 lb weight reduction

Challenges

- ★ High cost of torque sensor
- Realizing a useful work around for sensing and controlling torque


Touchscreen 2.8" LCD

By Adafruit

Specs:	
Operating Voltage:	3.3V - 5V
Current Consumption:	150mA
Interface:	8 bit digital
Pixels:	240x320
Display:	128x64
Cost:	\$29.50

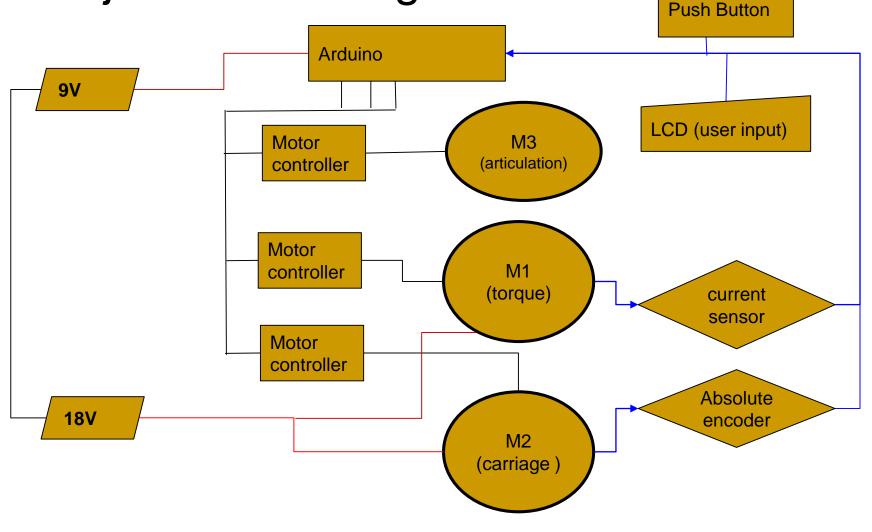
Purpose:

User Interface

16mm Illuminated PushButton

By Adafruit

Specs:	
Operating Voltage:	2.2V
Current Consumption:	75mA
Cost:	\$1.50


Purpose:

Kill Switch

Project Block Diagram

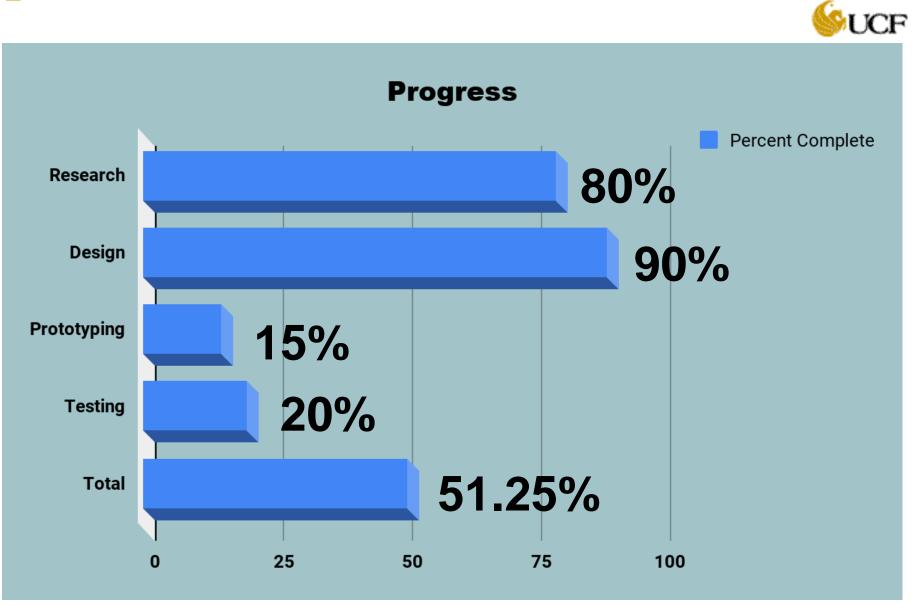
Project Difficulties

- ★ Multiple changes to motor selection
- ★ Supplying Accurate Levels of Torque
- High cost associated with controlling and verifying

torque

Bill of Materials

Quantity:	Total Price:
1	\$39.50
1	\$29.95
1	\$1.50
1	\$35.00
2	\$238.00
1	\$34.80
1	\$12.99
1	\$16.95
	\$408.00
	1 1 1 1 1 2 1 1 1


Still to be Ordered ...

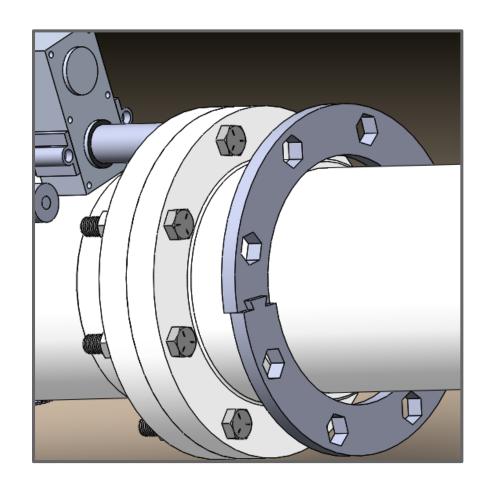
Product:	Quantity:	Total Price:
РСВ	-	\$25
PCB Components	-	\$10
Absolute Encoder	1	\$200
Rotary Shaft Encoder	1	\$50
Closed Loop Current Sensor	1	\$200
Housing Materials/Components	1	\$250
Misc	1	\$50
Total Budget: \$1200		\$1,193.00

Current Status

- ★ Defined a target torque of 40 ft-lbs
- ★ Defined torque vs speed chart for no load case
- ★ Test plan in place for implementing torque sequencing pattern
- ★ Test plan in place for accurate speed control
- ★ Test rig built

Immediate Plans for Successful

- ★ Finalize encoder selection
- ★ Test limits of drill motor under various loads
- ★ Test logic with smaller components



Questions?

Securing the head of the bolt during torquing

- Current Concept: Annular
 Wrench
 - 3D printed with metal sockets embedded
 - Segmented into separate arcs
 - Light weight
 - Facilitate mounting other components

