
(1) Initial Height Equation

(2) Freefall Time Equation

Reduced Gravity Flight:

TEARDR0P

Andrew Brahim, Jourdain Francis

Dept. of Electrical and Computer Engineering

University of Central Florida, Orlando, Florida,

32816-2450

Abstract — Since man has achieved the capability to
enter the final frontier, experimentation in a microgravity
environment has exponentially increased our understanding
of the Universe. The Terrestrial Experimentation and
Research Drone Regulating 0-G Parabola (TEARDR0P)
aims at providing a low cost and time effective means for
achieving reduced gravity experimentation. The drone
implements autonomous flight missions to carry a small
payload meant for experimentation on a trajectory that
simulates a reduced gravity environment similar to that
found in space. With the use of a camera feed and blackbox
datalogging, information is parsed and exported in an easy to
understand format.

Index Terms — AC motor, aerospace electronics, aircraft
navigation, global position system, motor drives, radio
communication, telemetry

I. INTRODUCTION

The need for low cost microgravity (reduced gravity)

experimentation platforms exist for researchers who may

not have access to drop tower facilities or the funds to

carry out existing methods of collecting data in reduced

gravity environments. Parabolic flight requires modified

commercial airline equipment that researchers do not

have, and renting such a flight or service is not a feasible

cost for the average university faculty scholar or

researcher. Ergo, we were given a proposal from Northrop

Grumman to make a drone-based system to carry a

payload for experimentation at predetermined altitudes for

free fall drops or parabolic flight. This project set out to

create reduced gravity conditions via drone flight for a

length of time necessary for payload experiments to be

recorded. The payload environment must also be recorded

and instrumentation such as drag, acceleration,

temperature, and velocity are necessary.
We were tasked to work with an assortment of other

engineers from the Mechanical and Aerospace (MAE) and

Computer Science (CS) department. Specifically,

Electrical and Computer (ECE) engineers have designed

the power distribution circuit, implemented an embedded

system required for sensor data logging, and developed

and configured the control system.

The interdisciplinary team’s goal is to carry a payload

minimum 10 pounds at roughly the size of a shoebox via

drone and perform flight maneuver to simulate reduced

gravity within 10-1 to 10-4 G’s for 2.5 seconds or more. The

data is then recorded and is stored on an onboard device

for later interpretation.
Due to the altitude, payload, and air speed variables in

this project, our design is limited by the upper limit of the

Federal Aviation Administration (FAA) regulations for

unmanned aircraft. An aircraft weighing less than 55 lbs

falls under part 107 of the Federal Code of Regulation,

which imposes regulations on model/hobby or small

industrial/commercial grade unmanned aircraft. Part

107.51 of FAA regulation limits air speed of such craft to

100 mph and imposes a maximum flight ceiling of 400

feet above ground level.

II. FLIGHT TECHNICAL OBJECTIVES

A. Microgravity Flight Time

The drone is designed so that microgravity can be

achieved for somewhere between three to seven seconds.

In this time frame, experiments will be in the condition

necessary to record any and all relevant data and be stored

to be reviewed for a later time. The success of reaching

the desired measurement requirement is highly correlated

with the payload weight and dimensions. With more

weight and higher dimensions, the drone may have a more

difficult time achieving microgravity for such a time

frame.
The stability of the freefall can also mean the difference

between a controlled freefall microgravity environment or

a high gravity situation due to uncontrolled circumstances

such as rotation and noise from vibrations.

B. Gross Weight

The weight of the drone will be around twenty pounds,

or 9.07 kilograms. This weight is the sum of the physically

drone, electrical and mechanical components, and the

payload itself. The design and materials used in the

creation of the drone are essential in maintaining the

desired parameters of the weight. A heavier craft will

require higher power output in order to stay within the

constraints of the other engineering requirements. The

drone is built using mostly carbon fiber and 3D printed

components.

C. Telemetry Hardware

The hardware selected is able to accurately

communicate data between the in-flight drone and the

senior design group on the ground. Though the data

recorded is stored onboard the drone until landed at the

ground station, the RC telemetry is required to have a

manual failsafe at all time. This makes the telemetry

component one of the greatest and most important factors

when deciding and setting the height, and henceforth time,

that the microgravity drone will be able to stay and record

the processes and experimentation of being in a

microgravity environment. Our telemetry allows us to

control and protocols throughout the entire duration of our

trajectory.

D. Reduced Microgravity Environment

The reduced microgravity environment is the primary

purpose of our senior design project. Our engineering

requirement is to create an environment that can maintain

10-1 G throughout the duration of freefall. During this time,

there drone will hold a payload that will contain small

experiments to be carried out. These experiments will be

saved, recorded, and held for later analysis while

maintaining this state. The gravitational force experienced

on the payload will be constantly recorded by an

accelerometer. While freefalling, the drone will

mechanically adjust itself to sustain stability and keep the

payload at 10-1 G.

E. Drop Height

An appropriate drop height is needed to achieve an

optimal duration of free-fall and recovery time. The

maximum drop height is restricted by the maximum reach

of the telemetry. The drop height therefore matches the

maximum range of the telemetry hardware at 3000 feet,

however we are limited to 400 feet via FAA.

F. Flight Pattern

There are several ways to simulate microgravity on a

payload. These different methods, whether it’d be a fixed

wing parabolic flight or freefall, require different

constraints, configurations, and overall design and

implementation by all team branches to simulate the

desired results. For the purpose of this project, it was

established that our group would implement freefall by a

quadcopter drone. The drone is programmed to fly up to

its maximum height and drop. While free-falling, the

drone is required to not only maintain stability, but also

add enough, if any is needed, downward momentum to
counteract the drag and maintain the desired measurement

of gravitational force on the payload.

Fig. 1. Flight Pattern of the Quadcopter drone to experience

reduced gravity

G. Cost

Our cost parameter is based on the budget given to us

by Northrop Grumman. This budget is shared among the

three branches of our team and will be used for the

construction and purchasing of the necessary parts and

components for every part of this project. The different

components and the complexity of its design drastically

change the cost. Finding a balance between quality and

cost is essential in the completion of this project.

III. DEFINING THE PROBLEM

In the field of reduced gravity there are many ways to

achieve reduced gravity, but each way comes with its own

set of flaws and inconveniences. In order to produce and

replicate reduced gravity experiments as desired by

Northrop Grumman, we must be able to simulate a

reduced gravity environment.
One way to obtain the amount of gravity, or lack

thereof, necessary is by loading up the experiment onto a

rocket and shipping it up to the International Space

Station. The International Space Station serves as a

central hub for man low earth gravity experiments with its

expansive gallery of scientific laboratories. Another

alternative involves the use of a plane that can fly at

certain angles allowing for a parabolic flight. One such

vessel, originally owned by Nasa and now currently

operated by the Zero Gravity Corporation, is known as the

Vomit Comet. The Vomit Comet serves its purpose in

being far more accessible than sending research material

to the International Space Station, but still not a good

enough alternative to be considered for this project in

regards to cost and ease of usability.
Drop towers are also an option typically used in

attempting reduced gravity experimentation. The issue

with this method is that building such a large tower takes a

high amount of capital. Once constructed, the actual state

of reduced gravity is directly limited by the height of the

tower.
Once in development, other issues began to arise. The

major problem being the ability to autonomously have a

controlled reverse thrust while keeping the drone in

freefall. Though programs exist that allow bidirectionality

in compatible motor, there are very few ways at the

moment to setup the need for reverse thrust autonomously.

IV. HARDWARE DECISIONS

There are a plethora of hardware components in that

market that could allow for our team to achieve the

desired outcome of our project. When researching, the

final decisions were made with the constraints given by

the desired design crafted by the MAE team, as well as the

budget given by Northrup Grumman. Though most of the

physical design of the craft were designed and

implemented by the MAE team, all electronic components

were selected and finalized at the digression of the ECE

team.
A. Battery and Power Distribution

In order for our drone to operate effectively, there is a

need for an extensive amount of power and a battery that

can provide the necessary capacity. We decided on having

one big battery for the sake of this project. The heavy

weight of the battery has also given the added benefit of

serving as a counterweight that sits at the bottom of the

drone and stabilizes the craft.
The battery is the Lumenier 16000mAh six cell LiPo

Battery with a C Rating of 20c and a burst of 40c. The

battery connects to the Lantian 7oz 200A. This power

distribution board allows for the simultaneous power for

all four speed controllers as well as the onboard flight

controller. For the case of the flight controller, a switching

regulator (UBEC) is connected to the power distribution

board to supply the device with 5V.

B. Electronic Speed Controllers

The speed controllers selected for our drone are meant

to sync and control the rate, direction, and power the

motors will exhibit during flight as dictated by the flight

controller. Due to the high-power requirements dictated

by the MAE team, the speed controllers picked have the

following specifications:
• Input: 2-6s LiPoly
• Constant: 51 A
• Burst: 80 A
• DSHOT 1200 protocol
• Bidirectional mode

• Latest Bl Heli 32 firmware
• GD32 ARM Cortex-M MCU, 72mhz clock

speed, PWM freq 48khz
The motors require a significant amount of current in

order to operate. A high current speed controller is

necessary to be able to withstand the bursts during sudden

or prolonged thrust of the motors. In order to achieve a

reduced gravity environment, the motors must be able to

quickly shift from reverse to normal thrust in an instance.

C. Printed Circuit Board

In addition to an off-the-shelf flight controller, GPS

module, and telemetry transceivers, the ECE team has

elected to implement a small, lightweight, robust black

box flight recorder. The recorder is self-contained and

data logs without wireless transmission in order to reduce

printed circuit board complexity and wireless interference

with other signals (e.g. telemetry, flight controller

remote). The design is based around an ATMEGA 328P-

AU chip, an 8-bit microcontroller primarily used in the

popular Arduino R3 Uno prototyping board. For this

application, we will not be using the prototype board, but

the microchip the board is based around.
The eagle cad electrical schematic is given in figure

below. The AVR microcontroller is a RISC (reduced

instruction set count) low power CMOS. Our 9 degree of

freedom sensor will record x, y and z accelerations in the

microgravity environment. We have chosen the MPU9250

sensor due to cheap cost and noise and drift immunity

properties.

Fig. 2. The basic schematic of the PCB components before

being implemented into a layout for the board

It is plenty robust for this small application involving

only a 9 axis IMU and a data-logging unit (SD card

storage). However, the microcontroller only contains 32

kilo-bytes of programmable flash memory and 1 kilobyte

of EEPROM, leaving few options for long term data

storage. Hence, we’ve added an SD card storage

peripheral into the PCB. The SD card schematic is based

on an Adafruit breakout board, which can directly connect

to the ATmega328P via integrated level shifting and a 5v

to 3v regulator. It has been modified for our application.
 The board is set to record the accelerometer data

throughout the duration of the flight. This feature was

initially implemented to make up for a feature that was

lost when choosing between flight controllers. The

redundancy allows for a reaffirmation data received from

the flight controller.

Fig. 3. Final PCB layout

Fig. 4. The final revision of the PCB upon being boot loaded

and programmed from an external Arduino Uno using In-System

Programming (ISP)

D. Flight Controller

The flight controller plays an extremely important part

in the ECE portion of this senior design project. As a

team, there was an ample amount of research implemented

into choosing a flight controller that can fit the constraints

given to us by the MAE department and our own

engineering requirements. For the purpose of this project,

we have selected to use the Racing F4 EVO Flight

Controller. The Racing F4 EVO Flight Controller

provides an assortment of useful features that can be

coded and modified to work with the components

provided by the other branches of our senior design team.
The F4 EVO gives us access to built-in sensors as well

as the ability to add our own. With the use of INAV, a

branch of Betaflight the open source flight controller,

autopilot and flight control patterns can be implemented

and manipulated to incorporate parabolic flight patterns

necessary for reduced gravity. The customizable

firmware, based in the C Programming language, provides

diversity in the electrical components, sensors, and overall

capability.
A main feature provided by the Racing F4 EVO Flight

Controller is compatibility for reverse speed control.

Reverse speed control compatibility gives the drone

accessibility to bidirectional motor control. This feature

provides an extra degree of motion and maneuverability.

In accordance with other components such as the

gyroscope, barometer, and the accelerometer,

bidirectional control of the quad motors will be

implemented for a variety of purposes. This downward

thrust provides stability as well as a canceling force while

traversing along the reduced gravity path of trajectory.

TABLE I
Comparison between SP Racing F4 Evo and 3DR

Pixhawk Flight Controller

Originally, the choice flight controller was the 3DR
Pixhawk Mini. This alternate flight controller offered an
extremely user-friendly setup as well as certain
components that are considered as external components
for the SP Racing F4 Evo board. Shown in table I, there
are certain comparable differences between the two
boards.

The biggest factor of using the SP Racing F4 Evo over

the 3DR Pixhawk is the bidirectional support. As

mentioned earlier, bidirectional support is an integral part

in the proper execution of a reduced gravity flight. Above,

table 2 outlines the specifications for the onboard ICM-

20602 accelerometer, which will be used to determine the

success of all microgravity experimentation.

A component present in the 3DR Pixhawk that is

missing from the SP Racing F4 is the GPS unit. The GPS

unit is a required component for our software to be able to

incorporate autonomous flight. We are using the Ublox

M8N. This device allows for accuracy up to 2.5 meters

with a 0.5° heading accuracy and 0.1 m/s velocity

accuracy. This accuracy is crucial in determining the

speed, and henceforth acceleration, needed in order to

achieve the results desired.

V. SOFTWARE

The SP Racing F4 Evo flight controller requires the

cooperation and synchronization between three different

flight navigation programs. During the development of the

SP Racing F4 Evo, the initial firmware used to control the

craft allowed for certain features over others. With the

development of new software, certain features brought

upon by the use of the firmware has been altered

throughout its course. To achieve maximum usability

during the implementation of the board with our product,

the SP Racing F4 Evo board will be running a custom

version of INAV. In order to fully understand INAV, one

must understand the other firmware it is based off of.

The first of these firmware is the open source

BetaFlight firmware. This piece of software will be the

base firmware in processes regarding flight performance,

sensor monitoring, telemetry logging and protocol, and

third-party support. BetaFlight allows for an arrangement

of tools to be integrated a modified to accommodate the

motors, and sensors involved in the design of the

quadcopter.
The basic firmware code is structured in the C

programming language. Changes for the firmware is

TABLE II

ICM-20602 ACCELEROMETER DATASHEET

necessary to allow for the implementation of other key

features in later firmware.
BetaFlight allows for the configuration of the flight

mechanics that will need to be set and adjusted before and

during the flight. The program will allow for the control of

the motors and the rudders. While working in conjunction

with other firmware, the quadcopter drone will

autonomously control the thrust and angle that has been

planned prior to launch.
The second of these firmware is INAV. INAV is a

program that adds certain navigational features that the

previously mentioned firmware lack. The presence of a

strong navigational component provides the possibility for

autopilot. INAV includes a waypoint system. The

waypoint system lets us, in accordance with the flight

controller, physically map and trace out the course of

action for the quadcopter drone. With mission planning in

place, the drone will be able to take off, complete the

experiment, and land safely without any and all external

interactions.
The INAV program waypoint system is accessed and

programmed by a Linux application called MWP tools

(Figure 5). INAV includes several other features, such as

access to in flight adjustment. .Running with this firmware

on the flight controller enables the craft to follow the

planned trajectory to achieve a reduced gravity

environment suitable for testing.

Fig. 5. MWP tools being used to draft a waypoint mission

A key adjustment to INAV was created by a user

KenImhof on GitHub [1]. His branch of the program,

named INAV3D, revolutionized the way in which the

default INAV accounts for motor bidirectionality. This is

down through certain changes in the navigation system of

the code to account for the need of reverse thrust if

dictated in a waypoint.
Upon further inspection of the code, there were further

certain adjustments that had to be made to the already

custom INAV3D firmware in order to achieve

microgravity. Inserted into INAV are certain failsafe in

the navigation system. This set up would constrain our

drone to only being able to accelerate at one-fifth Gs and

limiting velocity to that of 9 miles per hour.

For the drone to meet the specifications of each point of

its trajectory, the drone would have to be able to break

these certain conditions. Certain waypoints, in order to

maintain microgravity, will need to achieve velocities over

90 miles per hour. By modifying the navigation system

implemented into the code, we are able to break the limits

set before.
A third program was also used extensively during the

process through a BetaFlight pass through. The BLHeli

program, though separate from the BetaFlight

configurator, can be used to connect and configure the

onboard speed controllers. BLHeli is a program that

allows for flashing and configuring onto a speed

controller. These configurations allow for certain settings

being set, such as the capability for reversed motor

function.

VI. SIMULATION AND PROTOTYPING

A series of tests are necessary in order to adjust and

adapt the firmware changes of the flight controller and the

implantation of autopilot directives present in the Racing

F4 EVO Flight Controller. In an effort to test the

programming of the flight controller before the final

development of the final drone project as created by the

Mechanical and Aerospace teams, as well as preserve the

integrity of the final product, the Electrical and Computer

engineering branch of this senior design project has

elected the use of simulation software.
For the sake of simulation, we have selected to use

Matlab Simulink, or more specifically an addon called

QuadSim. As the drone itself is a costly endeavor, this

allows for testing without risking any damage to the

physical drone that is attached to the electrical

components for the end product.
Our reduced gravity unmanned aerial system, as defined

by the engineering design constraints, is scheduled to

reach nearly 400 feet above the ground and perform

controlled and precise movements. A key part of these

maneuvers is the presence of freefall. The lack of control

or the occurrence of an error in the flight controller would

leave the craft spiraling downwards towards a certain

destruction.
Testing different control system approaches on a

physically craft could equate to the accumulation of cost

for necessary components that would consistently break

upon impact. The motivation behind simulating the

aircraft and reduced gravity environment is two-fold: the

ability to test various control system approaches to best

obtain clean reduced gravity, and ironing out kinks in our

flight dynamics, system identification, and reduced gravity

trajectories that could cause our quadrotor to become

unstable. That latter case is an effort by our

interdisciplinary engineering team to prevent collisions to

the craft. This practice greatly increases the chance of

success on the fun on the final craft. The quadcopter drone

needs to be able to remain stable through the freefall while

also being able to retain enough control to have a safe

landing.
Reusability and cost are two major factors that this

reduced gravity drone is tasked to solve. Meticulous

testing through simulation ensures the future reusability of

the craft by lowering the number of critical failures to the

craft through testing. Money is also saved on the craft by

not needing to produce another physical drone every time

an experiment needs to be run. A system that crashes

frequently also runs the unacceptable risk of destroying

not only the materials used in the experiment, but also any

potential data that could have been recorded throughout

the duration of the flight.
Matlab is a widely-used and well supported by

Mathworks in addition to 3rd party applications and add-

ons. The interface is simple and allows easy access to live

scripts, Simulink examples, and help/tutorial guides for

many relevant topics pertaining to a quadrotor simulation.
QuadSim was used in order to get a better understanding

in how to tune the PID as well as get a better grasp on the

power to weight ratio of our drone. Figure 6 and Figure 7

below shows the results of this testing.

Fig. 6. Simulation of Drone reaching and hovering at a

position

In order to get an accurate reading, intensive thrust

testing was done in order to determine the RPM for major

throttle points and was compiled into a table. QuadSim

took these values and created the necessary constants used

later in the simulation.

Fig. 7. Simulation of Drone reaching and hovering at a

position

Other than simulation, testing was also done on a small

test drone in order to receive accurate readings from the

black-box sensor and test the different firmware

modifications necessary to successfully execute the

expectations for the main drone.
The initial concept of the PCB was also tested using a

breadboard, Arduino, and breakout components. These

tests aided in developing the Arduino code that would

later become the final program implemented onto the PCB

for data recording.
The raw data, shown below, is accessed post flight by the

CS team and analyzed using their web application.

Fig. 8. Snippet of Raw Data from PCB

These easy to read graphs give us a visual way to view the

trend of microgravity and its duration during the flight.

Fig. 9. Final Parsed Data

VII. CONCLUSION

The design constraints and decisions, as well as heavy

integration with teams in both the Mechanical and

Aerospace and Computer Science departments has

allowed us to develop a mostly autonomous drone that is

capable of running flight missions that would induce a

reduced gravity environment on its payload. Large

amounts of testing and prototyping has led us to

successfully create the final large-scale drone.

Additionally, inexpensive MEMS sensors and cheap,

rapid, PCB prototyping allowed us to develop a simple,

but accurate black box recorder, utilizing various

techniques to reduce sensor noise and interference from

outside sources or internal copper.

VIII. ACKNOWLEDGEMENT

We would like to extend thanks and acknowledgement

to Nathan Bodnar of the UCF radio club, and Kris Werner

of the MPU9250 GitHub for consultation and guidance.

IX. BIOGRAPHY

Jourdain Francis will be

graduating with his

undergraduate degree in

Computer Engineering in

Spring of 2018. He currently

works as a software

engineering intern at L3

Mobile Vision. Upon

graduation, Jourdain intends

to move to Baltimore, Maryland in order to start his

Master’s degree at the University of Maryland, Baltimore

County in Computer Engineering. Jourdain’s primary

interest are Software Development and Embedded

Systems.

Andrew Brahim is presently

a senior at the University of

Central Florida. He intends

to graduate with his

Bachelor’s of Science in

Electrical Engineering in

May of 2018. He is

currently working at

Mitsubishi Hitachi Power

systems as an Engineering

Associate, Instrumentation and Controls. He has no plans

for graduate studies, however he has accepted an offer to

work full time in the aerospace industry. Andrew’s

primary interests are computer simulation, sensors and

instrumentation, and vehicle dynamics and control

systems.

X. REFERENCES

[1] Kenlmhof. Inav3d: Navigation-enabled flight control

software (2018). https://github.com/KenImhof/iNav3d

