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Abstract  —  Since man has achieved the capability to 
enter the final frontier, experimentation in a microgravity 
environment has exponentially increased our understanding 
of the Universe. The Terrestrial Experimentation and 
Research Drone Regulating 0-G Parabola (TEARDR0P) 
aims at providing a low cost and time effective means for 
achieving reduced gravity experimentation. The drone 
implements autonomous flight missions to carry a small 
payload meant for experimentation on a trajectory that 
simulates a reduced gravity environment similar to that 
found in space. With the use of a camera feed and blackbox 
datalogging, information is parsed and exported in an easy to 
understand format. 

Index Terms  —  AC motor, aerospace electronics, aircraft 
navigation, global position system, motor drives, radio 
communication, telemetry 

I. INTRODUCTION 

The need for low cost microgravity (reduced gravity) 

experimentation platforms exist for researchers who may 

not have access to drop tower facilities or the funds to 

carry out existing methods of collecting data in reduced 

gravity environments. Parabolic flight requires modified 

commercial airline equipment that researchers do not 

have, and renting such a flight or service is not a feasible 

cost for the average university faculty scholar or 

researcher. Ergo, we were given a proposal from Northrop 

Grumman to make a drone-based system to carry a 

payload for experimentation at predetermined altitudes for 

free fall drops or parabolic flight. This project set out to 

create reduced gravity conditions via drone flight for a 

length of time necessary for payload experiments to be 

recorded. The payload environment must also be recorded 

and instrumentation such as drag, acceleration, 

temperature, and velocity are necessary. 
We were tasked to work with an assortment of other 

engineers from the Mechanical and Aerospace (MAE) and 

Computer Science (CS) department. Specifically, 

Electrical and Computer (ECE) engineers have designed 

the power distribution circuit, implemented an embedded 

system required for sensor data logging, and developed 

and configured the control system.  

The interdisciplinary team’s goal is to carry a payload 

minimum 10 pounds at roughly the size of a shoebox via 

drone and perform flight maneuver to simulate reduced 

gravity within 10-1 to 10-4 G’s for 2.5 seconds or more. The 

data is then recorded and is stored on an onboard device 

for later interpretation.  
Due to the altitude, payload, and air speed variables in 

this project, our design is limited by the upper limit of the 

Federal Aviation Administration (FAA) regulations for 

unmanned aircraft. An aircraft weighing less than 55 lbs 

falls under part 107 of the Federal Code of Regulation, 

which imposes regulations on model/hobby or small 

industrial/commercial grade unmanned aircraft. Part 

107.51 of FAA regulation limits air speed of such craft to 

100 mph and imposes a maximum flight ceiling of 400 

feet above ground level. 

II. FLIGHT TECHNICAL OBJECTIVES 

A. Microgravity Flight Time  

The drone is designed so that microgravity can be 

achieved for somewhere between three to seven seconds. 

In this time frame, experiments will be in the condition 

necessary to record any and all relevant data and be stored 

to be reviewed for a later time. The success of reaching 

the desired measurement requirement is highly correlated 

with the payload weight and dimensions. With more 

weight and higher dimensions, the drone may have a more 

difficult time achieving microgravity for such a time 

frame.  
The stability of the freefall can also mean the difference 

between a controlled freefall microgravity environment or 

a high gravity situation due to uncontrolled circumstances 

such as rotation and noise from vibrations. 

 

B. Gross Weight 

The weight of the drone will be around twenty pounds, 

or 9.07 kilograms. This weight is the sum of the physically 

drone, electrical and mechanical components, and the 

payload itself. The design and materials used in the 

creation of the drone are essential in maintaining the 

desired parameters of the weight. A heavier craft will 

require higher power output in order to stay within the 

constraints of the other engineering requirements. The 

drone is built using mostly carbon fiber and 3D printed 

components. 

 
C. Telemetry Hardware 



The hardware selected is able to accurately 

communicate data between the in-flight drone and the 

senior design group on the ground. Though the data 

recorded is stored onboard the drone until landed at the 

ground station, the RC telemetry is required to have a 

manual failsafe at all time. This makes the telemetry 

component one of the greatest and most important factors 

when deciding and setting the height, and henceforth time, 

that the microgravity drone will be able to stay and record 

the processes and experimentation of being in a 

microgravity environment. Our telemetry allows us to 

control and protocols throughout the entire duration of our 

trajectory.  
 

D. Reduced Microgravity Environment 

The reduced microgravity environment is the primary 

purpose of our senior design project. Our engineering 

requirement is to create an environment that can maintain 

10-1 G throughout the duration of freefall. During this time, 

there drone will hold a payload that will contain small 

experiments to be carried out. These experiments will be 

saved, recorded, and held for later analysis while 

maintaining this state. The gravitational force experienced 

on the payload will be constantly recorded by an 

accelerometer. While freefalling, the drone will 

mechanically adjust itself to sustain stability and keep the 

payload at 10-1 G. 
 

E. Drop Height 

An appropriate drop height is needed to achieve an 

optimal duration of free-fall and recovery time. The 

maximum drop height is restricted by the maximum reach 

of the telemetry. The drop height therefore matches the 

maximum range of the telemetry hardware at 3000 feet, 

however we are limited to 400 feet via FAA. 
 

F. Flight Pattern 

There are several ways to simulate microgravity on a 

payload. These different methods, whether it’d be a fixed 

wing parabolic flight or freefall, require different 

constraints, configurations, and overall design and 

implementation by all team branches to simulate the 

desired results. For the purpose of this project, it was 

established that our group would implement freefall by a 

quadcopter drone. The drone is programmed to fly up to 

its maximum height and drop. While free-falling, the 

drone is required to not only maintain stability, but also 

add enough, if any is needed, downward momentum to  
counteract the drag and maintain the desired measurement 

of gravitational force on the payload.  
 

 

Fig. 1. Flight Pattern of the Quadcopter drone to experience 

reduced gravity 

 
 

G. Cost 

Our cost parameter is based on the budget given to us 

by Northrop Grumman. This budget is shared among the 

three branches of our team and will be used for the 

construction and purchasing of the necessary parts and 

components for every part of this project. The different 

components and the complexity of its design drastically 

change the cost. Finding a balance between quality and 

cost is essential in the completion of this project.  

III. DEFINING THE PROBLEM 

In the field of reduced gravity there are many ways to 

achieve reduced gravity, but each way comes with its own 

set of flaws and inconveniences. In order to produce and 

replicate reduced gravity experiments as desired by 

Northrop Grumman, we must be able to simulate a 

reduced gravity environment. 
One way to obtain the amount of gravity, or lack 

thereof, necessary is by loading up the experiment onto a 

rocket and shipping it up to the International Space 

Station. The International Space Station serves as a 

central hub for man low earth gravity experiments with its 

expansive gallery of scientific laboratories. Another 

alternative involves the use of a plane that can fly at 

certain angles allowing for a parabolic flight. One such 

vessel, originally owned by Nasa and now currently 

operated by the Zero Gravity Corporation, is known as the 

Vomit Comet. The Vomit Comet serves its purpose in 

being far more accessible than sending research material 

to the International Space Station, but still not a good 

enough alternative to be considered for this project in 

regards to cost and ease of usability. 
Drop towers are also an option typically used in 

attempting reduced gravity experimentation. The issue 



with this method is that building such a large tower takes a 

high amount of capital. Once constructed, the actual state 

of reduced gravity is directly limited by the height of the 

tower.  
Once in development, other issues began to arise. The 

major problem being the ability to autonomously have a 

controlled reverse thrust while keeping the drone in 

freefall. Though programs exist that allow bidirectionality 

in compatible motor, there are very few ways at the 

moment to setup the need for reverse thrust autonomously. 

  

IV. HARDWARE DECISIONS  

There are a plethora of hardware components in that 

market that could allow for our team to achieve the 

desired outcome of our project. When researching, the 

final decisions were made with the constraints given by 

the desired design crafted by the MAE team, as well as the 

budget given by Northrup Grumman. Though most of the 

physical design of the craft were designed and 

implemented by the MAE team, all electronic components 

were selected and finalized at the digression of the ECE 

team. 
A. Battery and Power Distribution 

In order for our drone to operate effectively, there is a 

need for an extensive amount of power and a battery that 

can provide the necessary capacity. We decided on having 

one big battery for the sake of this project. The heavy 

weight of the battery has also given the added benefit of 

serving as a counterweight that sits at the bottom of the 

drone and stabilizes the craft. 
The battery is the Lumenier 16000mAh six cell LiPo 

Battery with a C Rating of 20c and a burst of 40c. The 

battery connects to the Lantian 7oz 200A. This power 

distribution board allows for the simultaneous power for 

all four speed controllers as well as the onboard flight 

controller. For the case of the flight controller, a switching 

regulator (UBEC) is connected to the power distribution 

board to supply the device with 5V.   
 

B. Electronic Speed Controllers 

The speed controllers selected for our drone are meant 

to sync and control the rate, direction, and power the 

motors will exhibit during flight as dictated by the flight 

controller. Due to the high-power requirements dictated 

by the MAE team, the speed controllers picked have the 

following specifications: 
• Input: 2-6s LiPoly 
• Constant: 51 A 
• Burst: 80 A 
• DSHOT 1200 protocol 
• Bidirectional mode 

• Latest Bl Heli 32 firmware  
• GD32 ARM Cortex-M MCU, 72mhz clock 

speed, PWM freq 48khz    
The motors require a significant amount of current in 

order to operate. A high current speed controller is 

necessary to be able to withstand the bursts during sudden 

or prolonged thrust of the motors. In order to achieve a 

reduced gravity environment, the motors must be able to 

quickly shift from reverse to normal thrust in an instance. 
 

C. Printed Circuit Board 

In addition to an off-the-shelf flight controller, GPS 

module, and telemetry transceivers, the ECE team has 

elected to implement a small, lightweight, robust black 

box flight recorder. The recorder is self-contained and 

data logs without wireless transmission in order to reduce 

printed circuit board complexity and wireless interference 

with other signals (e.g. telemetry, flight controller 

remote). The design is based around an ATMEGA 328P-

AU chip, an 8-bit microcontroller primarily used in the 

popular Arduino R3 Uno prototyping board. For this 

application, we will not be using the prototype board, but 

the microchip the board is based around. 
The eagle cad electrical schematic is given in figure 

below. The AVR microcontroller is a RISC (reduced 

instruction set count) low power CMOS. Our 9 degree of 

freedom sensor will record x, y and z accelerations in the 

microgravity environment. We have chosen the MPU9250 

sensor due to cheap cost and noise and drift immunity 

properties.  
 



Fig. 2. The basic schematic of the PCB components before 

being implemented into a layout for the board  
 

 
 

It is plenty robust for this small application involving 

only a 9 axis IMU and a data-logging unit (SD card 

storage). However, the microcontroller only contains 32 

kilo-bytes of programmable flash memory and 1 kilobyte 

of EEPROM, leaving few options for long term data 

storage. Hence, we’ve added an SD card storage 

peripheral into the PCB. The SD card schematic is based 

on an Adafruit breakout board, which can directly connect 

to the ATmega328P via integrated level shifting and a 5v 

to 3v regulator. It has been modified for our application. 
 The board is set to record the accelerometer data 

throughout the duration of the flight. This feature was 

initially implemented to make up for a feature that was 

lost when choosing between flight controllers. The 

redundancy allows for a reaffirmation data received from 

the flight controller. 

Fig. 3. Final PCB layout 
 

  

Fig. 4. The final revision of the PCB upon being boot loaded 

and programmed from an external Arduino Uno using In-System 

Programming (ISP) 
 

D. Flight Controller 

The flight controller plays an extremely important part 

in the ECE portion of this senior design project. As a 

team, there was an ample amount of research implemented 

into choosing a flight controller that can fit the constraints 

given to us by the MAE department and our own 

engineering requirements. For the purpose of this project, 

we have selected to use the Racing F4 EVO Flight 

Controller. The Racing F4 EVO Flight Controller 

provides an assortment of useful features that can be 

coded and modified to work with the components 

provided by the other branches of our senior design team. 
The F4 EVO gives us access to built-in sensors as well 

as the ability to add our own. With the use of INAV, a 

branch of Betaflight the open source flight controller, 

autopilot and flight control patterns can be implemented 

and manipulated to incorporate parabolic flight patterns 

necessary for reduced gravity. The customizable 

firmware, based in the C Programming language, provides 

diversity in the electrical components, sensors, and overall 

capability. 
A main feature provided by the Racing F4 EVO Flight 

Controller is compatibility for reverse speed control. 

Reverse speed control compatibility gives the drone 

accessibility to bidirectional motor control. This feature 

provides an extra degree of motion and maneuverability. 

In accordance with other components such as the 

gyroscope, barometer, and the accelerometer, 

bidirectional control of the quad motors will be 

implemented for a variety of purposes. This downward 

thrust provides stability as well as a canceling force while 

traversing along the reduced gravity path of trajectory. 
 

TABLE I 
Comparison between SP Racing F4 Evo and 3DR 

Pixhawk Flight Controller 



Originally, the choice flight controller was the 3DR 
Pixhawk Mini. This alternate flight controller offered an 
extremely user-friendly setup as well as certain 
components that are considered as external components 
for the SP Racing F4 Evo board. Shown in table I, there 
are certain comparable differences between the two 
boards. 

The biggest factor of using the SP Racing F4 Evo over 

the 3DR Pixhawk is the bidirectional support. As 

mentioned earlier, bidirectional support is an integral part 

in the proper execution of a reduced gravity flight. Above, 

table 2 outlines the specifications for the onboard ICM-

20602 accelerometer, which will be used to determine the 

success of all microgravity experimentation.  

  
A component present in the 3DR Pixhawk that is 

missing from the SP Racing F4 is the GPS unit. The GPS 

unit is a required component for our software to be able to 

incorporate autonomous flight. We are using the Ublox 

M8N. This device allows for accuracy up to 2.5 meters 

with a 0.5° heading accuracy and 0.1 m/s velocity 

accuracy. This accuracy is crucial in determining the 

speed, and henceforth acceleration, needed in order to 

achieve the results desired.  

V. SOFTWARE 

The SP Racing F4 Evo flight controller requires the 

cooperation and synchronization between three different 

flight navigation programs. During the development of the 

SP Racing F4 Evo, the initial firmware used to control the 

craft allowed for certain features over others. With the 

development of new software, certain features brought 

upon by the use of the firmware has been altered 

throughout its course. To achieve maximum usability 

during the implementation of the board with our product, 

the SP Racing F4 Evo board will be running a custom 

version of INAV. In order to fully understand INAV, one 

must understand the other firmware it is based off of.   

The first of these firmware is the open source 

BetaFlight firmware. This piece of software will be the 

base firmware in processes regarding flight performance, 

sensor monitoring, telemetry logging and protocol, and 

third-party support. BetaFlight allows for an arrangement 

of tools to be integrated a modified to accommodate the 

motors, and sensors involved in the design of the 

quadcopter. 
The basic firmware code is structured in the C 

programming language. Changes for the firmware is 

TABLE II 

ICM-20602 ACCELEROMETER DATASHEET 

 



necessary to allow for the implementation of other key 

features in later firmware. 
BetaFlight allows for the configuration of the flight 

mechanics that will need to be set and adjusted before and 

during the flight. The program will allow for the control of 

the motors and the rudders. While working in conjunction 

with other firmware, the quadcopter drone will 

autonomously control the thrust and angle that has been 

planned prior to launch.  
The second of these firmware is INAV. INAV is a 

program that adds certain navigational features that the 

previously mentioned firmware lack. The presence of a 

strong navigational component provides the possibility for 

autopilot. INAV includes a waypoint system. The 

waypoint system lets us, in accordance with the flight 

controller, physically map and trace out the course of 

action for the quadcopter drone. With mission planning in 

place, the drone will be able to take off, complete the 

experiment, and land safely without any and all external 

interactions. 
The INAV program waypoint system is accessed and 

programmed by a Linux application called MWP tools 

(Figure 5). INAV includes several other features, such as 

access to in flight adjustment. .Running with this firmware 

on the flight controller enables the craft to follow the 

planned trajectory to achieve a reduced gravity 

environment suitable for testing. 

Fig. 5. MWP tools being used to draft a waypoint mission 
 

A key adjustment to INAV was created by a user 

KenImhof on GitHub [1]. His branch of the program, 

named INAV3D, revolutionized the way in which the 

default INAV accounts for motor bidirectionality. This is 

down through certain changes in the navigation system of 

the code to account for the need of reverse thrust if 

dictated in a waypoint. 
Upon further inspection of the code, there were further 

certain adjustments that had to be made to the already 

custom INAV3D firmware in order to achieve 

microgravity. Inserted into INAV are certain failsafe in 

the navigation system. This set up would constrain our 

drone to only being able to accelerate at one-fifth Gs and 

limiting velocity to that of 9 miles per hour. 

For the drone to meet the specifications of each point of 

its trajectory, the drone would have to be able to break 

these certain conditions. Certain waypoints, in order to 

maintain microgravity, will need to achieve velocities over 

90 miles per hour. By modifying the navigation system 

implemented into the code, we are able to break the limits 

set before. 
A third program was also used extensively during the 

process through a BetaFlight pass through. The BLHeli 

program, though separate from the BetaFlight 

configurator, can be used to connect and configure the 

onboard speed controllers. BLHeli is a program that 

allows for flashing and configuring onto a speed 

controller. These configurations allow for certain settings 

being set, such as the capability for reversed motor 

function. 

VI. SIMULATION AND PROTOTYPING 

A series of tests are necessary in order to adjust and 

adapt the firmware changes of the flight controller and the 

implantation of autopilot directives present in the Racing 

F4 EVO Flight Controller. In an effort to test the 

programming of the flight controller before the final 

development of the final drone project as created by the 

Mechanical and Aerospace teams, as well as preserve the 

integrity of the final product, the Electrical and Computer 

engineering branch of this senior design project has 

elected the use of simulation software. 
For the sake of simulation, we have selected to use 

Matlab Simulink, or more specifically an addon called 

QuadSim. As the drone itself is a costly endeavor, this 

allows for testing without risking any damage to the 

physical drone that is attached to the electrical 

components for the end product.  
Our reduced gravity unmanned aerial system, as defined 

by the engineering design constraints, is scheduled to 

reach nearly 400 feet above the ground and perform 

controlled and precise movements. A key part of these 

maneuvers is the presence of freefall. The lack of control 

or the occurrence of an error in the flight controller would 

leave the craft spiraling downwards towards a certain 

destruction.  
Testing different control system approaches on a 

physically craft could equate to the accumulation of cost 

for necessary components that would consistently break 

upon impact. The motivation behind simulating the 

aircraft and reduced gravity environment is two-fold: the 

ability to test various control system approaches to best 

obtain clean reduced gravity, and ironing out kinks in our 

flight dynamics, system identification, and reduced gravity 

trajectories that could cause our quadrotor to become 

unstable. That latter case is an effort by our 



interdisciplinary engineering team to prevent collisions to 

the craft. This practice greatly increases the chance of 

success on the fun on the final craft. The quadcopter drone 

needs to be able to remain stable through the freefall while 

also being able to retain enough control to have a safe 

landing. 
Reusability and cost are two major factors that this 

reduced gravity drone is tasked to solve. Meticulous 

testing through simulation ensures the future reusability of 

the craft by lowering the number of critical failures to the 

craft through testing. Money is also saved on the craft by 

not needing to produce another physical drone every time 

an experiment needs to be run. A system that crashes 

frequently also runs the unacceptable risk of destroying 

not only the materials used in the experiment, but also any 

potential data that could have been recorded throughout 

the duration of the flight. 
Matlab is a widely-used and well supported by 

Mathworks in addition to 3rd party applications and add-

ons. The interface is simple and allows easy access to live 

scripts, Simulink examples, and help/tutorial guides for 

many relevant topics pertaining to a quadrotor simulation. 
QuadSim was used in order to get a better understanding 

in how to tune the PID as well as get a better grasp on the 

power to weight ratio of our drone. Figure 6 and Figure 7 

below shows the results of this testing. 

 

 
Fig. 6. Simulation of Drone reaching and hovering at a 

position 
 

In order to get an accurate reading, intensive thrust 

testing was done in order to determine the RPM for major 

throttle points and was compiled into a table. QuadSim 

took these values and created the necessary constants used 

later in the simulation. 

 

 
Fig. 7. Simulation of Drone reaching and hovering at a 

position 
 

Other than simulation, testing was also done on a small 

test drone in order to receive accurate readings from the 

black-box sensor and test the different firmware 

modifications necessary to successfully execute the 

expectations for the main drone.  
The initial concept of the PCB was also tested using a 

breadboard, Arduino, and breakout components. These 

tests aided in developing the Arduino code that would 

later become the final program implemented onto the PCB 

for data recording.  
The raw data, shown below, is accessed post flight by the 

CS team and analyzed using their web application.  

Fig. 8. Snippet of Raw Data from PCB 

 

These easy to read graphs give us a visual way to view the 

trend of microgravity and its duration during the flight. 
 



Fig. 9. Final Parsed Data 

VII. CONCLUSION 

The design constraints and decisions, as well as heavy 

integration with teams in both the Mechanical and 

Aerospace and Computer Science departments has 

allowed us to develop a mostly autonomous drone that is 

capable of running flight missions that would induce a 

reduced gravity environment on its payload. Large 

amounts of testing and prototyping has led us to 

successfully create the final large-scale drone. 

Additionally, inexpensive MEMS sensors and cheap, 

rapid, PCB prototyping allowed us to develop a simple, 

but accurate black box recorder, utilizing various 

techniques to reduce sensor noise and interference from 

outside sources or internal copper.  
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