

# Auto-Knight

Bruce Hardy Electrical Engineering

*Tyler Thompson Electrical Engineering*  Eduardo Linares Electrical Engineering

Christian Theriot Computer Engineering

University of Central Florida Dept. of Electrical and Computer Engineering Senior Design 2018

OF

JERSI

CEN

? \* 1963\*

FLO



**Contributor & Advisor:** Behrad Toghi

# **Project Motivation**

37,000 people die in car accidents within the United States alone.

- Road crashes are the leading cause of death in people ages 15-29.
- Globally, cost of damages due to Automotive crashes is roughly \$518 billion.
- The Autonomous vehicle industry is projected to reach a value of \$800 billion By the year 2050.



**Left:** Tesla Self-Driving Vehicle **Right:** M.I.T. Small-Scale Autonomous Vehicle



## **Project Description & Goals**

- Create a small scale autonomous vehicle that can be used to gather data for used UCF's Networked Systems Lab for research
- Using a variety of sensors and computer vision to create a car that can be situationally aware and accurately maneuver its environment

# Changes to Project Scope

- When we accepted this project, we had goals to try to implement Mapping, LiDAR, Computer Vision, Localization, and Vehicle to Vehicle Communication(V2V).
- Due to time constraints and hardware issues, some of these features were scaled back to refine other aspects of the project.
  - LiDAR
  - Mapping
  - V2V
  - Localization

# Changes to Project Scope

• LiDAR/Mapping

• Scanse LiDAR did not deliver the performance we anticipated.

•V2V

- The most recent updates to the Jetson TX2 did not allow for ad-hoc mode
- Most USB Wi-Fi adapter chipsets are not supported by Linux

Localization

Requires mapping and was subsequently removed

# Requirements & SPECIFICATIONS

| Component                     | Specification                                                                                                        |  |  |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------|--|--|
| Vehicle Speed                 | >= 24 km/h                                                                                                           |  |  |
| Battery Lifetime              | >= 15 min                                                                                                            |  |  |
| Camera Range                  | >= 10 m                                                                                                              |  |  |
| 2 Control Modes               | Manual and autonomous function                                                                                       |  |  |
| Emergency Collision Avoidance | If main processor/localization crashes, the vehicle should be able to continue moving and avoiding direct collisions |  |  |
| Control Range                 | >=10 m                                                                                                               |  |  |

## Hardware Diagram



## Parts Selection: RC CAR

#### **Sunfire Pro**



#### Iron Track E8XBL



#### Traxxas Rally Racer



#### Traxxas Slash Platinum



## Parts Selection: RC CAR

#### **Sunfire Pro**



#### Iron Track E8XBL



#### Traxxas Rally Racer



#### Traxxas Slash Platinum



## **RC CAR SPECIFICATION COMPARISON**

| Specification | Sunfire Pro      | Iron Track E8XBL           | Traxxas Rally Racer       | Traxxas Slash Platinum    |
|---------------|------------------|----------------------------|---------------------------|---------------------------|
| Scale         | 1/10             | 1/8                        | 1/10                      | 1/10                      |
| Cost          | \$192            | \$245                      | \$300                     | \$429                     |
| Motor         | Brushless 3300KV | 2075KV                     | Brushless 3500KV          | Brushless 3500KV          |
| Suspension    | Aluminum Shocks  | Independent and Adjustable | Adjustable Oil-filled     | Aluminum Shocks           |
| Differential  | Metal Gears      | Gear Ratio: 11.3           | Hardened Steel Bevel, LSD | Hardened Steel Bevel, LSD |
| Chassis       | Not Specified    | Plastic Nylon              | Nylon Composite           | Nylon Composite           |
| Battery       | 3000mAh          | 3 Cell Li-Po               | 7-cell NiMH               | Optional                  |
| Drive         | 4 Wheel Drive    | 4 Wheel Drive              | 4 Wheel Drive             | 4 Wheel Drive             |

## Parts Selection: CPU

#### **NVIDIA Jetson TX2**

**Raspberry Pi** 



#### Drawbacks:

- Expensive
- Little Documentation

#### Advantages:

• Exceptional Image Processing ability



#### Drawbacks:

• Not Sufficient for image processing

#### Advantages:

- Online Community
- Affordable

## NVIDIA CPU COMPARISON

| Specification           | NVIDIA Jetson TX2                                                               | NVIDIA Jetson TX1                                                               |
|-------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| CPU                     | Quad ARM A57 and a HMP Dual Denver                                              | Quad ARM A57                                                                    |
| Video Processing        | Encoding: HEVC 4K x 2K at 60Hz<br>Decoding: 4K x 2K at 60Hz with 12-bit Support | Encoding: HEVC 4K x 2K at 30Hz<br>Decoding: 4K x 2K at 60Hz with 10-bit Support |
| Memory                  | 8 GB / 128-Bit / 59.7 GB per sec                                                | 4 GB / 64-Bit / 25.6 GB per sec                                                 |
| Display                 | 2x DSI, 2x DP 1.2 / HDMI 2.0 / eDP 1.4                                          | 2x DSI, 1x eDP 1.4 / DP 1.2 / HDMI                                              |
| Camera Serial Interface | 6 Cameras in 2 Lanes 2.5 Gbps per Lane                                          | 6 Cameras in 2 Lanes 1.5 Gbps per Lane                                          |
| Data Storage            | 32 GB                                                                           | 16GB                                                                            |
| Serial Communication    | CAN, UART, SPI, I2C, I2S, GPIOs                                                 | UART, SPI, I2C, I2S, GPIOs                                                      |

## Parts Selection: MICROCONTROLLER





#### **Controllers Researched:**

- Arduino
- Texas Instruments

Texas Instruments Drawbacks:

- 3.3V Operating Voltage
- Less extensive resources

## ARDUINO MCU COMPARISON

| Specification        | Uno R3                             | 101                                | Due                                  | Mega 2560                            |
|----------------------|------------------------------------|------------------------------------|--------------------------------------|--------------------------------------|
| RAM                  | 2 KB                               | 24 KB                              | 96 KB                                | 8 KB                                 |
| Memory               | 32 KB                              | 196 KB                             | 512 KB                               | 256 KB                               |
| Power                | 1.8-5V                             | 3.3V                               | 3.3V                                 | 5V                                   |
| Serial Communication | UART,SPI,& I2C                     | UART,SPI, & I2C                    | UART,SPI & I2C                       | (4)UART,SPI & I2C                    |
| I/O Pins             | Digital: 14<br>Analog: 6<br>PWM: 6 | Digital: 14<br>Analog: 6<br>PWM: 4 | Digital: 54<br>Analog: 12<br>PWM: 12 | Digital: 54<br>Analog: 16<br>PWM: 15 |
| Size                 | 68.6mm x 53.4mm                    | 68.6mm x<br>53.4mm                 | 101.52mm x 53.3mm                    | 101.5mm x 53.3mm                     |
| Weight               | 25 g                               | 45 g                               | 36 g                                 | 37 g                                 |
| Cost                 | \$22                               | \$30                               | \$37                                 | \$40                                 |

## PARTS SELECTION: STEREO CAMERA

#### **Sense 3D Sensor**



#### **Stereolabs ZED Camera**



| Specification         | Sense 3D Sensor                        | Stereolabs ZED Camera                          |
|-----------------------|----------------------------------------|------------------------------------------------|
| Resolution            | 1344x376 megapixels (max)              | 640x480 megapixels                             |
| Range                 | 20 meters                              | 3.5 meters                                     |
| Frame Rate            | 100 fps                                | 30/60 fps                                      |
| Field of Vision       | 110 degrees<br>Horizontal and vertical | 58 degrees horizontal<br>45 degrees vertical   |
| Illumination Method   | Visible light                          | Visible light and Infared                      |
| Power                 | 5 VDC                                  | 5 VDC                                          |
| Hardware Requirements | Windows, Linux, ROS                    | Windows, IOS, Linux, Android Operating Systems |
| Cost                  | \$449                                  | \$449                                          |

## PARTS SELECTION: LIDAR

#### **RPLiDAR A1M8**



#### Scanse Sweep SEN 14117



| Specification         | RPLIDAR A1M8                | Scanse Sweep SEN 14117                         |
|-----------------------|-----------------------------|------------------------------------------------|
| Resolution            | 0.019 inches                | 0.4 inches                                     |
| Range                 | 6 meters                    | 40 meters                                      |
| Field of Vision       | 360 degrees horizontal      | 360 degrees horizontal                         |
| Rotation Frequency    | Up to 10 Hz                 | Up to 1075 Hz                                  |
| Power                 | 4.9-5.5 VDC                 | 5 VDC                                          |
| Hardware Requirements | Intel core i5 or equivalent | Windows, IOS, Linux, Android Operating Systems |
| Cost                  | \$199                       | \$349                                          |

## Parts Selection: SENSORS AND OTHER ITEMS

- Ultrasonic Sensor
  - SparkFun HC-SR04
     Ultrasonic Sensor Pack

- Hall Sensor
  - Traxxas RPM Telemetry
     Sensor

- Auxiliary Battery
  - MAXOAK 50,000mAH
- Powered USB Hub
  - Aukey Powered USB hub
- Wireless Router
  - TP-Link TL-WR940N





### PERIPHERAL HEADER PINS

- 1 Ultrasonic Sensor
- Temperature Sensor and Fan
- LCD Display
- LED Headlights and Taillights
- Motor Control
- Traxxas Battery Monitoring
- Additional Pins for Integration of Other Sensors



### PROGRAMMING

- USB to UART for data transmission with Jetson using FT232RL
- Mini USB Connector
- Bootloader Header ICSP
- Addition Header for backup USB Breakout
- Spare TX and RX Pins for dedicated Ultrasonic Alerts









Serial to UART USB Communication and Programming circuit



Motor Control and Sonar MCU



LCD and LED Display MCU



Communication between Microcontrollers is achieved by connecting analog pins 1, 2 & 3 on both MCUs together to signify drive states:

000 - Park 001 - Stop 010 - Teleop Control 011- Reverse 100- Forward 101- Right Turn 110- Left Turn 111- Error

# Logic Level Shifter PCB Design



## Logic Level Shifter PCB Design





## STRUCTURE DESIGN & 3D PRINTED MODELS

- For a mobile unit of high-speeds, it became apparent standard methods of construction had to be intricately designed to fit within the scale of the selected vehicle chassis.
- To keep design and sleek for proper maneuverability, mounts and structures were either laser-cut or 3D printed.
- All sensors, processing boards, and the PCB were integrated into the design and each possessed a personalized mount or designated area.
- AutoCAD software was used to construct all designs to precision.



Current 3D Model

## STRUCTURE DESIGN & 3D PRINTED MODELS



Designed with tapered insert – fixed to front bumper

| Base N | Nount |
|--------|-------|
|        |       |
|        |       |

Designed for support, ventilation, and for ample cable access





Designed to support USB hub with ports facing upward – fixed to base mount

## STRUCTURE DESIGN & 3D PRINTED MODELS



Working Prototype



Final Unit Design with Protective Body

## CAR TESTING

### STEERING ANGLES

- Arduino Servo.write() Command sends pulses with different duty cycles at 50 Hz.
  - Find the range of inputs where Servo.write() works
- Attached a ruler to the wheel of the vehicle
  - Took photos as we incremented duty cycle by .01%
  - Used Photoshop tools to measure Steering Angles



## **Motor Testing**

- Like Steering, the motor is driven using pulse widths
  - Corresponds to [1000, 2000] in servo.write
  - [1551,1649]=Neutral
  - [1650,2000]=Forward
  - [1000,1550]=Backward
- Braking is done by going from Forward to Backward or vice versa
  - Direction can only be changed from neutral



### Tachometer

- Measures rotations of the spur gear that turns the wheels
  - Using engine rotations you can calculate the distance the car travels.
  - Needed for braking function and other features to be implemented later e.g localization and collision avoidance.
  - Hall Sensor attached to spur gear logs the rotations

### Tachometer

- Only Rising edges are read
  - Edges are asymmetric
  - Reading only the rising or falling edge is simpler and loss of information is minimal.



## **Odometer Testing**

- To verify that the Tachometer works accurately, we implemented an odometer to log data using 2 different tests
  - Forward to neutral distance
  - Forward to brake distance
- Distance measured is then compared to the distance the vehicle thought it moved

### **Odometer Results**

### • Forward to Brake

| Servo Command | Odometer Distance (Inches) | Actual Distance (Inches) |
|---------------|----------------------------|--------------------------|
| 1650          | 46.0                       | 47.5                     |
| 1700          | 60.49                      | 61.74                    |
| 1750          | 132.44                     | 133                      |

#### • Brake to Neutral

| Servo Command | Odometer Distance (Inches) | Actual Distance (Inches) |
|---------------|----------------------------|--------------------------|
| 1650          | 40.45                      | 45.364                   |
| 1700          | 110.27                     | 103.4                    |
| 1750          | -                          | -                        |

## Brake Stopping Distance Results

#### • Forward to Brake (average of 5 runs)

| Servo Command | Odometer Distance (Inches) | Actual Distance (Inches) |  |
|---------------|----------------------------|--------------------------|--|
| 1650          | 46.0                       | 47.5                     |  |
| 1700          | 60.49                      | 61.74                    |  |
| 1750          | 132.44                     | 133                      |  |

#### • Brake to Neutral

| Servo Command | Odometer Distance (Inches) | Actual Distance (Inches) |
|---------------|----------------------------|--------------------------|
| 1650          | 40.45                      | 45.364                   |
| 1700          | 110.27                     | 103.4                    |
| 1750          | -                          | -                        |

### **Collision Avoidance**

- If "main" ever fails, all the sensors will go down, but the PCB will keep driving the engine and servos using the last received values.
- An ultrasonic sensor on the front of the vehicle will determine if we have an object near the vehicle.
- If the vehicle is moving at a certain "servo" value and detects an object near it, the car will begin to brake.
  - We tried to implement this on Jetson, but the latency was too high for them to be useful.

## **GPIO** interfacing

28 GPIO pins
14 "true" GPIO pins
1 RPM sensor
1 Brake Pin
1 "Emergency" Pin



- A chief component in autonomous vehicle localization is sensing the lanes of a road
- OpenCV provides various algorithms to be employed and manipulated for proper lane detection
- Various methods were tested including:
  - Color Gradient Masking
  - "Canny" Edge Detection
  - Extrapolation of "Hough" Lines
  - Perspective Transform
  - Polynomial fitting to lane contour
  - Sliding window approach

Using a combination of these methods, the algorithm is able to detect a left and right lane and calculate the position of the vehicle between the two



**ADVANCED LANE DETECTION** 



- Advanced lane detection proved to be too latent for operation
- Offset, or line deviation was the sole value while yaw angle and radius of curvature was discarded
- Optimized, original code operated at around 0.04 seconds including steering angle writing same functionality
- Improved latency gave way to new feature opportunities:
  - Live camera stop function
  - Ignoring visual noise and horizontal lines



- No deep learning used visual system still highly adaptable to any environment with a line
- Algorithm functional for straight, angled, or curved lines
- Only parameter to be changed is acceptable RBG range of line color
- Sensitive to light and color: future considerations may include and adaptable color mask











### SOFTWARE DIAGRAM





### MAIN

• To coordinate all processes and threads running in the TX2

- Directly launches threads controlling tachometer, serial write/read, keyboard input, and teleoperation
- Integrates the offset angle returned from the Vision and PID process
- Inform the PCB about the TX's state through auxiliary GPIO pins
- Uses distinct threads for tachometer, serial input, serial output, and keyboard to allow for multiple tasks to execute simultaneously in a compact manner
  - Shared resources are mutex-protected to prevent cross-talk and undefined behaviour from occurring

## TELEOPERATION







### • Each sensor has a different purpose

- Vision is the primary sensor
- Tachometer used to implement a coherent and safe brake function
- Sonar sensors use to detect objects in front of the vehicle

- For autonomous vehicles, the ability to track object is essential for localization purposes and predictions of path and velocity of surrounding objects in motion.
- OpenCV is an open-source computer vision library, and is the main tool for customized computer vision.
- Python 3.5 programming language was used to interface with the ZED camera module and feed video into the computer vision algorithms

Early Tests:



Object Detection & Isolation



Motion Mapping



Motion Detection



### TELEOPERATION

- Move the vehicle with the keyboard from a remote computer via SSH
- Manually pause the vehicle for any reason

1 byte sent to PCB over UART, interpreted as an int
 0 <= value <= 100: motor command</li>
 Value < 0: steering command</li>

#### Cons:

- Latency of the ssh connection may cause noticeable lag
- TeleOp *MUST* take priority over all other planning algorithms to allow emergency stopping of the vehicle

### **Brake Function**

#### • The ESC expects a remote controller

- PCB simulates this based on the last valid received motor byte
- TX2 simulates this based on the knowledge of whether it's commanding the PCB to move forward, brake, or neutral

#### • Issues:

- PCB and TX2 try to simulate braking at the same time
- If the wheels are still "moving," the Jetson may misinterpret its state as unintentional movement

## PID CONTROLLER



### LINE DEVIATION



### LINE DEVIATION/PID

- Using OpenCV, a line will be drawn in the center of the image captured by the camera that the vehicle will attempt to follow.
- If the vehicle has issues achieving this, a PID controller will be designed to reduce error.
   3 cm maximum deviation from a straight line
   Maximum settling time of 5 seconds

## **PID** Tuning

- A PID controller was used to control the steering angle of the vehicle
  - Controlling Yaw Rate proved difficult to simulate due to the number of variables ()
- PID tuning was done manually as opposed to simulated
  - Varying speeds, turning radii, etc. made it difficult to create an acceptable simulation
- The method:
  - Start with all values at 0
  - Set a value for P ( $P_0=1$ )
  - Choose a Step Size (S=0.5)
  - Run the vehicle at  $P=P_0-S$  (0.5) and  $P=P_0+S$  (1.5)
  - Choose the value that lead to better results ( $P_0=1.5$ )
  - Halve the step size and repeat until satisfactory results are obtained.
  - Repeat procedure for D, and then I

## PROJECT EXPENSES

| PCB And Prototyping      |                    |       |         |          |
|--------------------------|--------------------|-------|---------|----------|
| Product                  | Location           | Qty   | Price   | Total    |
| 10K Trimmer              | Mouser Electronics | 6.00  | \$0.77  | \$4.62   |
| 12 Pin Header            | Mouser Electronics | 6.00  | \$0.88  | \$5.28   |
| 4 Pin Headers            | Mouser Electronics | 24.00 | \$0.32  | \$7.70   |
| 3 Pin Headers            | Mouser Electronics | 10.00 | \$1.05  | \$10.50  |
| 2 Pin Header             | Mouser Electronics | 6.00  | \$0.22  | \$1.32   |
| Fuse Holder              | Mouser Electronics | 6.00  | \$0.61  | \$3.66   |
| 16MHz Crystal Ocillator  | Mouser Electronics | 6.00  | \$0.39  | \$2.34   |
| 5V Voltage Regulators    | Mouser Electronics | 6.00  | \$1.32  | \$7.92   |
| Momentary Pushbutton     | Mouser Electronics | 6.00  | \$0.26  | \$1.56   |
| 2.1mm x 5.5mm Power Jack | Mouser Electronics | 6.00  | \$0.59  | \$3.54   |
| 5V Brushless Fan 2 Pack  | Amazon             | 2.00  | \$7.99  | \$15.98  |
| Arduino Uno              | Amazon             | 2.00  | \$10.90 | \$21.80  |
| ATMEGA2560-16AU          | Mouser Electronics | 4.00  | \$14.22 | \$56.88  |
| FT232RL-REEL             | Mouser Electronics | 4.00  | \$4.50  | \$18.00  |
| 10K Variable Resistor    | Mouser Electronics | 4.00  | \$0.95  | \$3.80   |
| SMD 0402 Resistor        | Mouser Electronics | 8.00  | \$0.11  | \$0.88   |
| SMD 10uF 10V             | Mouser Electronics | 4.00  | \$0.41  | \$1.64   |
| SMD 0.1uF                | Mouser Electronics | 4.00  | \$0.34  | \$1.36   |
| SMD 22pF                 | Mouser Electronics | 8.00  | \$0.10  | \$0.80   |
| 1206 LED Red             | Mouser Electronics | 8.00  | \$0.33  | \$2.64   |
| 1206 LED Green           | Mouser Electronics | 8.00  | \$0.36  | \$2.88   |
| Mini USB Connector       | Mouser Electronics | 8.00  | \$0.90  | \$7.20   |
| 1206 SMD 500mA Fuse      | Mouser Electronics | 8.00  | \$0.48  | \$3.84   |
| SMD Switch               | Mouser Electronics | 4.00  | \$0.97  | \$3.88   |
| SMD Resistor 1K          | Mouser Electronics | 6.00  | \$0.83  | \$4.98   |
| PCB Manufacturing        | Seeed Studio       | 1.00  | \$34.00 | \$34.00  |
| Total                    |                    |       |         | \$229.00 |

| Car, Sensors and Wiring          |                     |            |  |  |
|----------------------------------|---------------------|------------|--|--|
| Product                          | Location            | Price      |  |  |
| Plastic Knife                    | Ace Hardware        | \$4.99     |  |  |
| Gorilla Glue                     | Ace Hardware        | \$5.99     |  |  |
| 4" Cable Ties                    | Ace Hardware        | \$4.99     |  |  |
| 1/4" Heat Shrink Tubing          | Ace Hardware \$2.   |            |  |  |
| Fasteners                        | Ace Hardware \$4.99 |            |  |  |
| Breadboard                       | RadioShack \$4.16   |            |  |  |
| 18GA 300V Wire Blk               | RadioShack          | \$4.18     |  |  |
| Electrical Tape                  | RadioShack          | \$0.98     |  |  |
| Universal Power Cable            | Radioshack          | \$9.99     |  |  |
| 2.1mm x 5.5mm Male Jacks         | Amazon              | \$9.99     |  |  |
| Dupont Connector and Header Kit  | Amazon              | \$14.79    |  |  |
| USB 2.0 Male Solder Connectors   | Amazon              | \$6.99     |  |  |
| USB 3.0 Solder Connectors        | Amazon              | \$7.99     |  |  |
| 8mm Heat Shrink Length:5m        | Amazon              | \$7.42     |  |  |
| Rainbow DuPont Wires             | Amazon              | \$7.99     |  |  |
| WiFi Antenna Connector Cables    | Amazon              | \$24.57    |  |  |
| 2.5mm X 5.5mm Solder Connectors  | Amazon              | \$6.99     |  |  |
| Arcyllic Sheet                   | Home Depot          | \$25.00    |  |  |
| Traxxas Slash 4x4 Platinum       | Traxxas             | \$429.00   |  |  |
| Traxxas Battery Pack and Charger | Traxxas             | \$99.00    |  |  |
| Nvidia Jetson TX2                | Nvidia              | \$299.00   |  |  |
| Scanse LiDAR                     | Scanse              | \$349.00   |  |  |
| Zed Stereo Camera                | StructuredIO        | \$449.00   |  |  |
| Ultrasonic Sensors               | Amazon              | \$15.00    |  |  |
| IMU Breakout                     | SparkFun            | \$25.00    |  |  |
| GPS Breakout                     | SparkFun            | \$13.00    |  |  |
| TP-Link N450 Wireless Router     | Amazon \$30         |            |  |  |
| 7 Port USB Hub                   | Amazon \$27.00      |            |  |  |
| 50,000mAh Auxiliary Battery Pack | Amazon \$136.00     |            |  |  |
| Laser Cutting                    | UCF                 | Free       |  |  |
| 3D Printed Mounts                | UCF                 | Free       |  |  |
| Total                            |                     | \$2,025.99 |  |  |

## Work Distribution

| Task                            | Bruce | Tyler | Eduardo | Christian |
|---------------------------------|-------|-------|---------|-----------|
| Purchasing and Product Research | Х     | Х     |         |           |
| Mount Design                    | Х     | Х     |         |           |
| Sensor Testing                  |       |       | Х       | Х         |
| PCB Design                      | Х     |       |         |           |
| Electrical Wiring and Soldering | Х     | Х     | Х       | Х         |
| OpenCV Computer VIsion          |       | Х     |         |           |
| Lane Detection                  |       | Х     |         |           |
| PID Control Design              |       |       | Х       |           |
| System Integration              |       |       | Х       | X         |
| Nvidia Programming Setup        |       |       |         | Х         |



- Linux and OpenCV learning curve
- Unavailability of NVIDIA documentation
- Zed Camera software and library installation on Jetson
- Interprocess and interprocessor communication

## Line Following Demo

Test Run With:
 P = 1.8
 I = 0.01
 D = 0.1



# Thank You For Your Time