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1. Executive Summary 
 
Every year thousands of people die in preventable car accidents, 
and millions are injured. The Auto-Knight team saw the 
opportunity to work with Dr. Yaser Fallah and the Networked 
Systems Laboratory at UCF to make strides in consumer safety 
by designing a small scale preliminary model of a self-driving 
vehicle that can communicate with other vehicles. This small 
scale model with work as a proof of concept to help raise money 
to create a full sized vehicle and also simultaneously learn the 
hardware and software necessary to create an autonomous 
vehicle. 
 
The vehicle uses an RC car as a base, a LiDAR Sensor, a depth 
camera, and 4 ultrasonic sensors to gather data about its 
surroundings. The data is processed using an NVIDIA Jetson 
TX2 board, and that data is then used in multiple algorithms to 
localize the vehicle and create a map of its surroundings. If the 
sensors detect that an object is too close, the vehicle stops or 
turns to avoid said obstacles. By the end of Senior Design II, at 
least 4 of these vehicles will be created and will be able to route 
around one another efficiently. The implications of this 
achievement are not just increased consumer safety, but also 
more efficient routing of vehicles, leading to less time spent on 
the road for the average driver.  
 
This report outlines the specific motivations for our team and the 
requirements laid out before us by our sponsor. This is 
immediately followed by a basic overview of some relevant 
technology and a review of all the considered hardware and the 
final choices for what hardware was used. After that, standards 
and constraints, such as political, economic, and ethical 
concerns, are discussed. After that, the calibration and testing of 
relevant hardware, a description of all the localization algorithms 
used, the OS used for the vehicle, modifications made to the 
vehicle, and circuit design for our PCB are described in detail with 
results for relevant tests. The final section contains our budget 
and our project timelines, which are separated based off our 
sponsors required deadlines for our project and the design 
courses relevant due dates for the paper, meetings with the 
faculty, and other relevant documentation. 
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2. Project Description       
 
With input from our principal sponsor, Dr. Fallah, one of his MS.D 
students, Nitish Gupta, and one of his Ph.D research students, 
Behrad Toghi, we plan on creating two to five smaller scale 
vehicles that utilize wireless communication to navigate around 
one another safely.  
 
These cars will then be used by Dr. Fallah in his laboratory to 
improve upon the technology. The cars will be small so they can 
be tested in Dr. Fallah’s lab, low cost, send highly accurate data 
to one another in real time, and have communication ranges and 
maximum speeds relative to the final size of the product.   
  

2.1. Project Goals 
 
The goal of our project is to create a vehicle network that will 
model concepts of “deep learning” in machine intelligence; that 
is, to form a neural network between units in order to react 
cooperatively to each other’s motion. By utilizing sensor input, 
the vehicles may project a data signal to all receiving units, 
simultaneously. Thus, each unit will predict the collective path(s) 
to avoid a variety of real world collision scenarios. Examples 
include collisions created by one car cutting off another, multiple 
cars reaching a 4 way stop and deciding the order they will move 
in, and a car parking itself.   
 
LiDAR, Ultrasonic Sonar, and camera sensor inputs paired with 
probability algorithms are the operative means of achieving 
computer vision. A LiDAR scanner introduces laser range 
sensing capabilities to each unit, allowing a multi-planar 
representation of the vehicle’s surroundings at each rotation of 
the LiDAR mount. By utilizing an infrared camera calibrated to 
LiDAR sensitivity, we can receive the signal reflected off of the 
surroundings and model the real-time position and orientation of 
nearby objects. Ultrasonic sensors may be utilized in addition to 
LiDAR for accurate short-range applications. The camera’s 
purpose is to recognize pedestrians, stoplights, and other road 
signs so the vehicle can follow driving rules.  
 
Methods of communication must be considered to form a viable 
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DSRC (Dedicated Short Range Communication) network. 
Outfitting the vehicles with modules capable of broadcasting a 
DSRC high-frequency signal 5.9 GHz optimizes the transmission 
of signals due to the “unlicensed” nature of this spectrum. In 
1999, the Federal Communications Commission designated the 
5.9 GHz band to be used exclusively by intelligent transportation 
systems; the standard of which is denoted within IEEE 802.11p. 
 

2.2.  Project Motivation 
 
Our motivation behind out project has two aspects to it, personal 
gain and societal gain. The opportunity to help create a working 
prototype of an autonomous vehicle for Dr. Fallah’s research will 
provide us with the skills necessary to work on the development 
of a commercial model for a traditional automaker or one of their 
partners. Furthermore, we could end up pursuing research at a 
university for a graduate degree using our knowledge gained 
from this project. There is a very clear personal economic gain to 
this project. Our project also has the potential to help decrease 
the amount of deaths caused by reckless driving every year.   

 

2.2.1. Market Analysis 

 
According to a study released by Intel in June of 2017, the self-
driving vehicle market has the potential to become an 800-billion-
dollar market by 2035 and a 7 trillion dollar market by 2050[58]. 
Currently a large number of established companies in the auto-
industry are engaged in a rat race to create a fully autonomous 
self-driving vehicle. Numerous partnerships have created 
between ride sharing companies, chip manufacturers, and auto-
manufacturers to try to create strategic advantages over their 
competition.  
 

 

2.2.1.1. Ridesharing Projects and Partnerships  
 
The utilization of self-driving cars will provide a massive boon to 
the ridesharing industry by allowing companies to replace drivers 
with their own autonomous vehicles. The potential for this long 
term cost savings has led to companies like Uber, Lyft, and 
Mobileye to deploy self-driving car prototypes to Arizona for 
testing on their roads. Uber has also created a partnership with 
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Volvo and Daimler, and Lyft has generated multiple partnerships 
with Drive.AI, Ford, General Motors, Jaguar, nuTonomy, and 
Waymo to speed up the creation of a self-driving car fleet [58].  
 

2.2.1.2. Chip Manufacturers Projects/ Partnerships  
 
Recently, companies that traditionally only produced products for 
personal computers have entered the self-driving car race. In 
2016, NVIDIA, who are known primarily for their popular GPU’s 
for gaming, developed a car that could read the steering angles 
necessary to drive a car using the NVIDIA DriveTM PX 2 and a 
neural network based system called PilotNet. NVIDIA has also 
worked with Tesla to develop its auto-pilot features on the Model 
3, Model S, and Model X vehicles. NVIDIA is also partnering with 
Toyota, Mercedes-Benz, Honda, BMW, and other manufacturers 
to provide the hardware for their self-driving vehicles. On October 
10th of 2017, NVIDIA also announced a new chip called the 
NVIDIA Drive PX Pegasus, which is capable of performing 320 
trillion operations per second using four processors. NVIDIA’s 
main competition is coming from AMD and Intel, who have 
secured their own partnerships with Tesla and Waymo 
respectively [59].  

 

2.3. Improvements to Public Safety 
 
In the United States, over 37,000 people die in car accidents 
every year. 1,600 of these people are below the age of 15, 2.35 
million people are injured, and the overall cost to the U.S is over 
230 billion USD every year. Around the world, road crashes are 
the leading cause of death between the ages of 15-29. 1.3 million 
people are killed every year in car accidents, an average of 3,287 
people every day, and 20 to 50 million are injured as a result. 
This makes road crashes responsible for 2.2% of all deaths, 
making it the ninth leading cause of death around the world. The 
overall cost is estimated to exceed 518 billion USD every year[1].  
 
This grim description of the world’s auto accidents shows a great 
need for increasingly automated cars capable of preventing 
crashes. According to an article published by the Atlantic, self-
driving cars can prevent 90% of accident related fatalities by half 
by the middle of the century. This equates to about 30,000 lives 
saved using the number of 2013 traffic fatalities in America. 
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Globally, this equates to about 50 million lives saved in half a 
century. In comparison, modern vaccines are estimated to save 
42,000 lives in America according to the Centers for Disease 
Control (CDC)[60]. This project is a step towards creating that 
reality.  

 
In general, car manufacturers are adding more and more safety 
features that either give the driver more information, like blind 
spot detection, or take away control from the driver, like 
automatic braking. One feature that has yet to been implemented 
in commercial models is short range communication networking. 
To increase safety, cars would send each other data about their 
relative positions and velocities to ensure they all remain a safe 
distance from one another. In the event of an accident, the cars 
could communicate with one another and circumnavigate any 
debris efficiently. The effects of this feature have incredible 
potential to create a better and safer world.  
 
Car related deaths would plummet due to the relayed data 
preventing accidents that could have occurred otherwise, less 
people would be injured or disabled in accidents, and people 
would spend less on repairing their vehicles. Less accidents 
would inevitably lead to lower insurance premiums for everyone 
as well, making vehicle ownership less of a strain on working 
families.  
 
A short range communication network could also decrease travel 
times and allow passengers to spend more time at their 
destinations and less time getting there and back home. 

 

2.4. Requirement Specifications 
 
The requirements for our project, developed in conjunction with 
our sponsors and contributors, are detailed below. The 
requirements cover the minimum communication, physical, 
sensor, power, printed circuit board (PCB), and software 
performance metrics to build a functioning autonomous vehicle 
that meets Dr. Fallah’s standards.   
 
 
 

 



 
 

6 
 

2.4.1. Communication Requirements 
 
After careful and prolonged discussion with all our sponsors and 
contributors, we agreed to the requirements stated in Table 1 for 
our vehicle’s communication standards. This is the most 
important standard to adhere to because this parameter is what 
separates other self-driving car projects from our own and has 
the greatest potential to change the standards for self-driving 
vehicles.  
 

Table 1: Communication Requirements 
 

Deliverable Specifications 

Vehicle to Vehicle Communication 
Range 

The vehicle to vehicle communication range 
must be 30 feet in any direction. 

Communication Frequency Signals will be transmitted at a frequency of 
5.9GHz 

 

2.4.2. Physical Requirements 
 
After exploring a variety of options for our vehicle’s physical build, 
we agreed to the following requirements, with slight leeway given 
to the exact size of our base model due to the unknown sizes of 
various parts we are adding. A minimum speed of 15 miles an 
hour was decided on because anything slower would remove any 
concern for latency and not be an accurate model of a real 
vehicle. A brushless DC motor was a requirement due to the 
increased efficiency and reduced friction, which could potentially 
be a fire hazard. A summary of these decisions is shown in Table 
2.  
 

Table 2: Physical Requirements  
 

Deliverable Specifications 

Chassis Size Chassis will be as close 1/16 scale as 
possible. May be changed if necessary to fit 

more components. 
Speed Requirements The car must be able to move at least 15 

miles per hour 

Motor The motor must be a brushless DC electric 
motor 

Motion The car must be capable of steering forward 
and turning left or right 
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2.4.3. Sensor Requirements 
 
For our sensor requirements, we were given 3 primary 
requirements from our sponsor. We are only required to use two 
kinds of sensors, but were provided requirements for infrared 
sensors should we choose to use them. This is detailed in Table 
3 below. 

 
Table 3: Sensor Requirements  

 
Deliverable Specifications 

LiDAR LiDAR must have 360 degree vision and be able to 
detect anything within the minimum communication 

range of 10 meters 

SONAR Sonar sensors must be able to accurately detect 
anything within 30 centimeters of the sensor range. 

Infrared (optional) If any are used for collision avoidance, Infrared 
Sensors must be able to detect anything within 20 cm 

of the sensor range. 

 

2.4.4. Power Requirements 
 
For battery requirements, our sponsor wanted to be able to run 
experiments for at least 15 minutes. After some discussion, 20 
minutes became the new minimum run time to account for 
adjusting or fine tuning experimental conditions. The number of 
batteries was also limited to 2, with one powering the vehicle and 
the other providing power to all sensor related functions. This is 
detailed in Table 4 below. 

 
Table 4: Power Requirements  

   
Deliverable  Specifications 

Battery Life Batteries must be capable of running 
the system for at least 20 minutes 

before requiring recharging 

Number of Batteries No more than 2 batteries can be used 
to power the system and motor of the 

vehicle. One battery must supply 
power to all modules of the system. 

 

2.4.5. Camera Requirements 
 
The requirements for our camera were agreed upon after 
discussing the role the camera would play in our project. It will be 
our second most important form of data collection because of it’s 
use in pedestrian detection and road sign detection, so we 
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agreed to hold it to the same standards as our LiDAR sensor. 
This is detailed in Table 5 below.  

 
Table 5: Camera Requirements 

     
Deliverable Specifications 

Camera Range The Camera will have a minimum range of 
10 meters and will face the front of the 
vehicle 

 

2.4.6. Hardware Requirements 
 
For our hardware requirements we agreed that we create a 
vehicle with an onboard transceiver for wireless communications, 
that the vehicle would have the ability to be driven autonomously 
or with a controller, and that that there would be at least 1 
microcontroller or processer to process the data, and we have 
the option of adding more for vehicle controls or PCB 
requirements. This is shown in Table 6. 
 

Table 6: Hardware Requirements  
              

Deliverable Specifications 

Modes of Operation The vehicle will be driven 
autonomously without use input.  

Processors/Microcontrollers At least 1 microcontroller or 
processor will process all sensor 

data. We may add one more 
microcontroller to control the vehicle 

and another to implement PCB 
functions 

 

2.4.7. PCB Requirements 
 
To meet our Senior Design requirements, the team proposed the 
following functions for a PCB that will be added to the vehicle. 
The details for our PCB are provided in Table 7. 
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Table 7: PCB Requirements  

 
Deliverable Specifications 

LED Turn Signals At least 4 LEDs will be powered by the 
PCB and blink according to the state of 

the vehicle. States are defined as: 
stopped, forward, turning left, and 

turning right. 

LCD THE LCD will display the current 
battery life, the current steering angle, 

and the speed of the vehicle in real 
time. 

Temperature Management The PCB will have a temperature 
sensor and fan for regulating heat. 

 
 

2.4.8. Software Requirements 
 
The final requirements for our project are our software 
requirements. The designed software will take input from all 
sensors for localization, be able to communicate the processed 
data wirelessly, be able to coordinate with other vehicles, and will 
be able to avoid collisions with obstacles on its path. This is 
summarized in Table 8. 
 

Table 8: Software Requirements 

 
Deliverable Specifications 

Processing Data The software will process data from all sensors and data 

Size The software will not consume more than 4 GB of 
memory 

Data Transfer Data will be transferred wirelessly between different 
vehicles 

Routing Software will implement basic route planning. 

 

2.5. House of Quality 
 
The house of quality, as seen in Figure 1, is a design tool used 
to create and organize the marketing and engineering design 
requirements and their respective tradeoffs relative to one 
another. The 4 rows contain our house of quality’s marketing 
requirements. These are the descriptive qualities that potential 
customers are drawn to. The columns contain our engineering 
requirements, which detail the specific performance metrics of 
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the system. These are created from a developer standpoint to 
compliment the marketing requirements.   
 

 
Figure 1- House of Quality 

 
The marketing requirements we chose for our project are the 
cost, reliability, size, and autonomy. Lowering cost will save Dr. 
Fallah money that could be used towards other research projects 
in his lab. A smaller car will be easier to test inside of his research 
lab and generally will reduce costs as well. Should the car be 
tested in a different environment, a smaller car will be more 
versatile if the new environment is smaller than what was 
anticipated. Reliability must be maximized to provide the 
research lab with consistent data that can used for analysis and 
development of a consumer sized self-driving car prototype. 
Autonomy must also be maximized because this is what our 
sponsor’s research is primarily focused on. 
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The engineering requirements we chose are the Digital Short-
Range Communication (DSRC) system’s operating distance, 
Chassis Size, Battery Life, Control Distance, Stopping Distance, 
Program Size, Latency, Straight Away Speed of the Autonomous 
Vehicle, and Self Localization. The DSRC system’s 
communication distance was chosen as ten meters because any 
of the vehicles we design would be able to communicate with 
each other from any 2 points in the research lab. The chassis 
size was determined to be 1/10 scale so we could have enough 
room to mount all of our equipment and sensors, reduce cost, 
and have a relatively small vehicle. The battery life was chosen 
to be at least 20 minutes because this provides enough time to 
test the cars and gather data from them.  
 
Unfortunately, a tradeoff is present because a larger battery will 
most likely be necessary to increase the length of time the vehicle 
can operate between recharges, meaning our chassis would 
need to be larger or we would be more limited for space when 
placing our sensors. A larger battery would also distribute heat 
differently across the vehicle, meaning more heat protection 
might be necessary. The vehicle will be able to be remote 
controlled from a minimum of 10 meters because this will 
encompass the minimum communication range for the cars. The 
stopping distance was chosen to be 25 mm because this is a 
stringent condition that would force us to create a more reliable 
vehicle. We chose to keep our total program size below 4 
gigabytes because we assume latency will increase with program 
size, which we want to reduce at all costs because latency will 
compromise reliability. The straightaway speed was chosen to be 
30 miles per hour because a larger speed could lead to significant 
damage to the vehicle if a crash occurs, and the project is very 
expensive. The self-localization error was decided to be less than 
20 mm to increase reliability. This is important for full size 
vehicles because they need to stay within the lanes of the road 
to avoid collisions with other cars.  
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3.  Research Related to Project 
Definition 

 
To construct our project, research into similar projects and 
relevant technology was conducted to assist with choosing our 
specific components and maximizing our performance within the 
budget.   

 

3.1. Similar Projects 
 
In this section we examine similar projects that were the 
inspiration for our project. The choice of software algorithms and 
hardware was heavily influenced by these projects. 
 

3.1.1. MIT RACECAR 
 

One of the main inspirations for our project was the MIT Rapid 
Autonomous Complex-Environment Competing Ackermann-
steering Robot (RACECAR) course videos from 2015. In this 
course, students learn to implement a self-driving car that can 
navigate a tunnel system it does not have a map of. The students 
are divided into 4 teams and then must compete against each 
other for the fastest time. The students were given an already 
assembled RC Car with an NVIDIA Jetson TK1 board and 
various sensors [85]; their only task was programming their 
vehicle. This differs greatly from our project, where we will modify 
the car ourselves and then program it to work autonomously. We 
are also using newer and more powerful hardware for our main 
CPU, and our vehicle is also going to be distinctively faster than 
the MIT vehicles. The maximum speed of our vehicle will be more 
than double that of the MIT cars.  A picture of the MIT racecar is 
shown in Figure 2. 
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Figure 2- MIT RACECAR from 2016 (Permission Pending on Photo) 

 
 

3.1.2. Zheng Wang’s OPEN CV RC Car 
 
Zheng Wang’s project incorporated OPEN CV software and a 
Raspberry PI B+ model to create a car with computer vision that 
could perform in traffic scenarios e.g. stopping at a stop sign and 
recognizing the differences between red and green lights [86]. 
This inspired us to use the OpenCV tech for to simulate traffic 
scenarios with our car, but also go a step forward and incorporate 
pedestrian detection.    

 

3.2. Relevant Technology  
                               
In this section we provide a brief overview of the sensors and 
important vehicle components to provide insight into how our 
vehicle will collect data and how the vehicle functions 
mechanically. Specific choices regarding performance, brand, 
and cost will be covered in the next section. These sections may 
be referenced in future discussions in the component selection 
and the project design   
            

3.2.1. LiDAR Sensors 
             
A LiDAR sensor records when the beam of light was fired and 
when the reflected light returns to the sensor. This measurement 
is double the time it takes for the light beam to travel from the 
object to the sensor [61]. Using this time and the speed of light, 
the distance of the measured object can be calculated using 
Equation 1. 
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Distance Recorded = (time) * Speed of Light/2 

 
Equation 1. Distance recorded by LiDAR Sensor 

   
LiDAR systems are typically composed of a laser, 
scanners/optics, photodetectors/receivers, and a positioning 
system. The laser is usually within the 600 to 1000 nanometer 
range at lower power levels or at the 1550 nanometer range. The 
600 to 1000 nanometer range laser has the benefit of higher 
accuracy, but must maintain the lower power level to be eye safe. 
The 1550 nanometer laser has the advantage of longer reach 
and being invisible to night vision, but also has lower accuracy. 
The scanners and optics determine how fast and at what 
resolution and range the data can be entered into the system. 
Photodetectors are responsible for reading and recording the 
data that the laser returns to the LiDAR system. 
 
Photodetectors are usually solid-state devices (e.g. a silicon 
photodiode) or photo multipliers. The final component is the 
navigation system, which helps the laser determine its 
orientation, velocity, and the position of the system when it fires 
the laser pulse [62]. Without knowing the angle the laser is fired 
at and where it is being fired, the data becomes unreliable for 
creating a point cloud. The navigation system is typically 
composed of a GPS and an Inertial Measurement Unit (IMU) to 
measure position and velocity. A generic LIDAR sensor is shown 
in Figure 3. 
 
Generally speaking, LiDAR has two detection methods, coherent 
and incoherent detection. Incoherent detection only measures 
changes in the received signal’s power. Incoherent detection can 
measure changes in phase and frequency, making it useful in 
applications where the Doppler Effect can take place. LiDAR also 
has two main pulse models called micropulse and high energy 
systems. Micropulse models use low energy lasers to gather data 
and are safe to the human eye. High energy systems are 
commonly used for atmospheric research for measuring cloud 
data (e.g. density, height, and pressure). 
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Figure 3- Generic LIDAR Sensor Block Diagram 

 
 

3.2.2. Ultrasonic Sensors  
 
Ultrasonic sensors are sonar sensors that use sound waves that 
are at a frequency above 20,000 hertz (see Figure 4). The reason 
this frequency range is used is because the human ear cannot 
process these sounds. The speed of sound can vary with 
temperature and the medium it travels through. Higher 
temperatures increase the speed of sound through a medium 
because hotter particles have more energy. Sound travels faster 
through liquids than gases due to the relative distance in particles 
being much smaller at the expense of needing more energy to 
propagate a noticeable sound wave. The same logic applies to 
solids and liquids, but even greater energy is necessary to 
propagate the sound due to the more powerful chemical bonds 
present.  Ultrasonic sensors are used to measure distances 
within 3 meters of the sensors, and generally have an error of 
about 3 centimeters. 
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Figure 4- Sound Spectrum 

 
Ultrasonic sensors have a small electro-acoustic amplifier that 
transmits a pulse called a ping. When the ping hits another 
object, it is reflected towards the sensor and then hits a tiny 
microphone that acts as a receiver. A generalized block diagram 
is shown in Figure 5. The distance is then calculated using 
Equation 2. 
 

Distance = (Recorded Time) * Speed of Sound/2 
 

Equation 2. Ultrasonic Sensor Distance Calculation 

 

 
Figure 5- Ultrasonic Sensor Block Diagram 

 

3.2.3. Infrared Sensors 
 
Infrared sensors function by measuring radiation in the 300 GHz 
to 430 THz frequency range. Infrared sensors can exist as either 
passive or active sensors. Active sensors transmit infrared light 
and then detect the reflected light using a photodiode for 
processing [66]. Passive sensors detect the thermal radiation off 
of an object. Not all thermal radiation is in the infrared range, but 
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objects near room temperature and on the earth’s surface mainly 
emit thermal radiation in this range. These waves are then used 
to construct the point cloud based on temperature at different 
points, with hotter objects emitting different frequencies in this 
range than colder ones. IR sensors are accurate within one 
meter. 

 

3.2.4. Inertial Measurement Unit (IMU) 
 
An IMU is an electronic component that has 2 sensors to 
measure the angular and linear velocity of whatever it is attached 
to. The 2 sensors are a triad of accelerometers and gyroscopes 
respectively [64]. The signals produced from these components 
are analog signals that are then put through an ADC converter 
for processing with a microcontroller using a Kalman Filter 
algorithm. A block diagram is shown in Figure 6. 
 

 
Figure 6- IMU Block Diagram 

 

3.2.5. Differentials 
 
Differentials are a mechanical device located at the bottom of a 
car that redistributes the torque from the engine to the wheels on 
an axle. This is necessary because when a car is turning, the 
inner and outer wheels on an axle travel different distances 
around the curve. For the car to make the turn, the outer wheel 
must be spinning faster so when the turn is finished, the wheels 
are parallel again. Differentials come in different types as well. 
Open differentials split the torque between the two wheels, but 
encounter issues if one wheel loses traction because the other 
wheel will experience a loss of torque to compensate. Any vehicle 
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that is not intended to go off-road uses open differentials (e.g. 
sedans, economy cars, and minivans).  
 
A locking differential has a mechanism that makes the angular 
speed of the wheels remain equal until it is released. This is 
useful for terrains where traction is more difficult to maintain (e.g. 
snow or mud). These differentials experience difficulties if they 
lock on high traction surfaces like pavement because turning with 
wheels spinning at equal speeds can lead to stuttering or 
skidding. These differentials are present in off-road vehicles and 
some full-size trucks. Limited slip differentials combine the best 
of both worlds, and only have their locking mechanism activate 
when one wheel begins to slip [65]. These differentials are 
present in a small number of sports cars. Figure 7 shows these 
three differentials.  
 
In four-wheel drive cars, a center differential is present as well to 
distribute torque to the forward and rear differentials. The center 
differential will always distribute more torque to the back 
differential.  

 

 
Figure 7- Type of Differentials 

 

3.2.6. PID Controller 
 

Controllers are electronic systems that are designed to improve 
the response characteristics of a plant whose transfer function 
cannot be changed (e.g. a motor). In control theory, 5 basic types 
of controllers exist: Proportional (P), Integral (I), Derivative (D), 
Lead, and Lag. In most control systems today, the first 3 kinds of 
controllers are combined to create the PID controller. The integral 
and derivative controllers are tuned using the values 𝑇𝑖 and 𝑇𝑑 to 
create the desired response. Sometimes the constants in the PID 



 
 

19 
 

transfer function are represented using Ki and Kd. The transfer 
function of a PID controller is shown in equation 3 for both forms. 

 

𝐺(𝑠) = 𝐾𝑝(1 +
1

𝑇𝑖𝑠
+ 𝑇𝑑𝑠) 

 

𝐺(𝑠) = 𝐾𝑝(1 +
𝐾𝑖

𝑠
+ 𝐾𝑑𝑠) 

 

𝐾𝑖 =
1

𝐾𝑝𝑇𝑖
    𝐾𝑑 =

𝑇𝑑

𝐾𝑝
 

 
Equation 3. Transfer function of PID controller 

 
KP refers to the gain of the proportional controller’s gain. A 
higher Kp creates a larger overshoot, a smaller rise time, and 
reduces steady state error. Ki increases the settling time and 
overshoot of the system, but greatly decreases the steady state 
error and decreases the rise time of the system. Kd reduces the 
overshoot and the settling time. Kd has no effect on the steady 
state error and minimal effect on the rise time. Table 9 
summarizes the effects of the components. 
 

Table 9: Effect of PID parameters on system output 
 

PID 
Parameter 

Rise Time Overshoot Settling 
Time 

Steady 
State 
Error 

KP Decreases Increase Minimal 
effect 

 

Decreases 

Ki Decreases 
 

Increases Increases Decreases 

KD Minimal 
Effect 

Decreases Decreases No Effect 

 

3.3. Parts Selection 

 
In this section, a variety of potential components and their 
specifications are listed and compared along with their costs to 
provide a full cost benefit analysis. Our list of components 
includes microcontrollers, CPUs, a variety of different sensors, 
RC cars, batteries, and routers. Minor components used for 
testing will not be listed, and this list may be changed as the 
project progresses due to component failure or need for better 
hardware.  
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3.3.1. RC Car Selection 
 
In creating an accurate model of a road vehicle for the purposes 
of crash-avoidance testing, one may begin with modifying a pre-
built design to cater the specific project requirements. For the 
purposes of this project, we aim demonstrate the motion of a 
standard vehicle by use of an RC car. By scaling down the size 
a real-world application, one may fine-tune the various aspects 
of the system in a more workable manner. The specifications 
requested by the project sponsors are: a scale size between 1/10 
and 1/8, an above average steering ability, replaceable or 
adjustable coil over suspension, rear-end differential to minimize 
slipping of tires, an aluminum or plexiglass chassis, and the 
availability of spare parts. The selection was narrowed to 4 
vehicles. Table 10 displays the full specification analysis of the 
three cars discussed below. 
 
Exceed RC makes the Sun fire Brushless Pro Off Road Buggy 
(See Figure 8) which comes manufactured with a lightweight 
aluminum alloy chassis, high capacity 3000mAh battery and an 
above average stock shock system. The long travel oil-filled 
shocks are made to handle high impact jumps and rough terrain 
by delivering a quick response. The car comes with quick access 
to the front and rear differentials for fast changes and 
customization. Powered by a brushless 3300KV electric motor 
the car reaches a top speed of almost 50 mph which exceeds our 
attempted straight-away speed. The Sun fire pro not only has the 
aluminum chassis but durable aluminum shock system and 
driveshaft. All motors and gear are fully sealed for guaranteed 
protection on all terrains.  

 
Figure 8- Exceed Sunfire Pro 

 
The Iron Track Shootout E8XBL (See Figure 9) has an 
impressive three-part differential drivetrain for maximum 
efficiency and customization. All differentials and suspension are 
made from hardened ionized materials and filled with silicon oils 
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to increase performance even under excessive use and heat. Its 
stock 2700mAh battery would provide an adequate run time to 
meet our specifications. While the E8BXL has a 2075KV motor 
that is the weakest of the three choices it would still be fast 
enough for all purposes of this project. It has a large adjustable 
big bore shock absorber system that makes for an above 
average handling capability. While both the Exceed Sun Fire and 
Iron Track E8XBL certainly satisfy most of our requirements there 
was a lacking of excess parts and manufacturer support which 
would be needed in an emergency scenario. This realization led 
us to our next choice.  

 
Figure 9- Iron Track Shootout E8XBL 

 
The Traxxas Rally racer was proven to be the best choice when 
compared to its competition and is shown in Figure 10. With a 
single motor powering all 4 wheels and 3-part differential system 
distributing its power Traxxas products have the most similar 
structure to an actual car. The Traxxas is superior in speed, 
versatility, battery life and has a higher availability in spare parts 
and support from the manufacturer. Its superior control system 
supports customizable throttle response, three different control 
modes, a near-zero latency control response, and optional 
wireless control that can be added and integrated with either 
Android or Apple operating systems. Internally this vehicle has 
easy access to components and motors making it an ideal 
candidate for total customization and manipulation of the 
electronics for the purposes of this project. The front and rear 
differentials will provide the least amount of slippage to keep all 
the sensors accurate for data measurement, localization and 
autonomous decision making. 
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Figure 10- Traxxas Rally Racer 

 
The Traxxas Slash 4X4 Platinum addition (shown in Figure 11) is 
well worth the additional investment. It comes stock with 
aluminum upgrades, front and rear sway bars, high volume GTR 
shock system, and a performance-optimized low center of gravity 
chassis. The low center of gravity enables this vehicle to have 
superior traction compared to its rival models. It silicon-filled 
center differential will more accurately model a real-world car for 
the purposes of this project. The battery option for this car 
enables up to a 5800mAh battery to be added for optimum run 
time performance. This car would be the most reliable option and 
would require minimal customization even though the cost is 
higher than the other options. This car does not come stock with 
a battery and gives several options. In an effort to meet our 
requirement of a 20-minute run time the 5800mAh battery 
selection was chosen.  
 

 
Figure 11- Traxxas Slash 4x4 Platinum 

 
The Traxxas may not have the exact chassis material requested, 
but it can be easily modified to suit the project’s specifications. A 
customized aluminum or Plexiglas chassis upgrade may be 
added to the car to increase its resiliency and reliability along with 
aluminum or Plexiglass mounts for the LiDAR, depth camera, 
and other sensors. A new center differential to replace the clutch 
and possibly a reduction gear may also be added to minimize the 
speed of the vehicle to increase its maximum torque so the car 
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will still be able to move fast and accelerate quickly, despite the 
car being loaded down with the relatively heavy equipment 
additions. The addition of a center differential will also allow for 
smoother turning and prevents the wheel from slipping if that 
becomes an issue. Other customizations to the drive train, axles, 
shocks and steering servo may be implemented with the help of 
our contributors to increase the maximum steering angle and 
increase stability due to the additional, unevenly distributed 
weight from the battery, CPU, any additional mounts that created, 
and the camera. Table 10 shows a summation of all the RC cars 
considered with the relevant specification for the project. 

 
Table 10: RC Car Specification Analysis 

    
Specification Sunfire 

Pro 
Iron Track 
E8XBL 

Traxxas 
Rally 
Racer 

Traxxas 
Slash 
Platinum 

Scale 1/10 
 

1/8 1/10 1/10 

Cost $192 
 

$245 $300 $429 

Size L: 15.7 in 
W: 9.8 in 
 

L: 19.2 in 
W: 11.42 in 

L: 21.7 in 
W: 11.7 

L: 22.36 in 
W: 11.65 
in 
 

Motor Brushless 
3300KV 
 

2075KV Brushless 
3500KV 

Brushless 
3500KV 

Suspension Aluminum 
Shocks 

Independent 
and 
Adjustable 

Adjustable 
Oil-filled 
 

Aluminum 
Shocks 

Differential Metal 
Gears 
 

Gear Ratio: 
11.3 
 

Hardened 
Steel 
Bevel, 
LSD 

Hardened 
Steel 
Bevel, 
LSD 

Chassis Not 
Specified 
 

Plastic 
Nylon 

Nylon 
Composite 

Nylon 
Composite 

Spare Parts Yes 
 

Yes Yes Yes 

Battery 3000mAh 
 

3 Cell Li-Po 7-cell 
NiMH 

Optional 

Wheelbase 10.8 in 
 

12.8 in 12.8 in 12.75 in 

Drive 4 Wheel 
Drive 
 

4 Wheel 
Drive 
 

4 Wheel 
Drive 

4 Wheel 
Drive 

  

3.3.2. CPU Selection 
 
The selection of the processing unit is an integral part of this 
project. The central processing unit that is selected will be 
responsible for not only controlling the 4 motors and steering 
servo but for all of the image and sensor processing. The 
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Raspberry Pi or an Arduino board were among the initial choices 
of the group. Since none of the microcontrollers in these 
categories are going to be capable of the intensive amount of 
image processing from our LiDAR and camera, the solution we 
thought was optimal at the time was to have the board 
communicate the sensor data to a computer for processing 
wirelessly. The processed data could then be sent back to the 
vehicle for it to make decisions. This solution, however, would 
only increase the amount of delay between instructions and 
making the autonomous judgements of the vehicle slower and 
less reliable. Furthermore, it would make it impossible to test the 
cars in outdoor environments without a computer. Further 
research was done into different options for development boards 
and microcontrollers.  
 
The discovery of NVIDIA development products was effortless 
since the market for self-driving vehicles and processors strong 
enough to support the amount of data generated are still 
extremely new. NVIDIA is a leading manufacturer of Artificial 
Intelligence Embedded software and development boards, their 
Jetson TX1 and TX2 boards excel in both the fields of robotics 
and image processing [71]. Figure 12 below shows NVIDIA 
Jetson TX2 performance versus an Intel Xeon, the data clearly 
shows the superiority of the NVIDIA product. The NVIDIA Jetson 
series boards were an obvious choice because they operate on 
a Linux platform which is necessary for the ROS robotics 
programming that will be used in the vehicles.  
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Figure 12- NVIDIA Performance Comparison  

 
The clear advantages of the TX2 for this specific application 
became apparent upon further inspection of the board 
specifications. Both boards have header extensions for cameras 
and display, and have interfacing for UART flow control, I2C and 
SPI serial communications. USB 3.0 and 2.0 ports support 
recovery and host modes for programming and deep learning to 
suit the project’s needs. The TX1 and TX2 models use an ARM 
32-bit Quad core processor that has a frequency of 2.3 GHz. 
However, the TX2 has an additional Dual Denver 64-bit CPU that 
has a higher frequency of 2.5 GHz that boasts an internal 
memory cache of 128MB and can convert the ARM instructions 
into its own internal ISA. The dual Denver CPU can perform up 
to seven operations per clock cycle and has an optimized code 
sequencing. Its innovative dynamic code optimization compacts 
and stores frequently used software routines by converting them 
into equivalent micro-routines that can be reused and recalled 
from the cache memory.  
 
The addition of the extra processor with its optimized code 
sequencing improves the power efficiency of the Jetson TX2 
board when compared to the TX1 and its other competition. The 
Jetson TX2 outperforms its predecessor in High Efficiency Video 
Coding, memory, data storage, and it’s Camera Serial Interface. 
The TX2 is not only more efficient at processing camera data, 
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and instructions but it is more power efficient which will increase 
battery life and help meet our specification of a 20-minute run 
time on a single battery charge. The Table 11 below displays a 
more detailed comparison of these specifications.  
 

Table 11: NVIDIA Development Board Analysis 

 
Specification NVIDIA Jetson TX2 NVIDIA Jetson TX1 

CPU Quad ARM A57 and a HMP 
Dual Denver 

 

Quad ARM A57 

Video 
Processing 

Encoding: HEVC 4K x 2K at 
60Hz 

Decoding: 4K x 2K at 60Hz with 
12-bit Support 

Encoding: HEVC 4K x 2K 
at 30Hz 

Decoding: 4K x 2K at 60Hz 
with 10-bit Support 

 
Memory 8 GB / 128-Bit / 59.7 GB per sec 

 
4 GB / 64-Bit / 25.6 GB per 

sec 

Display 2x DSI, 2x DP 1.2 / HDMI 2.0 / 
eDP 1.4 

 

2x DSI, 1x eDP 1.4 / DP 
1.2 / HDMI 

Camera Serial 
Interface 

6 Cameras in 2 Lanes 2.5 Gbps 
per Lane 

 

6 Cameras in 2 Lanes 1.5 
Gbps per Lane 

 
Data Storage 32 GB 

 
16GB 

Serial 
Communication 

CAN, UART, SPI, I2C, I2S, 
GPIOs 

UART, SPI, I2C, I2S, 
GPIOs 

 

3.3.3. Microcontroller Selection 
 
With the NVIDIA development board controlling the autonomous 
movements and processing the data from our stereo camera and 
LiDAR we decided that the inclusion of an additional 
microcontroller to process data from Ultrasonic and Infrared 
distance sensors and an IMU would increase the accuracy of 
movement, object avoidance and the overall reliability of the 
project. For this purpose, we observed microcontrollers from 
Texas Instruments, Raspberry Pi and Arduino, a full analysis of 
the boards discussed in this selected is presented below.  

 
3.3.3.1. Raspberry Pi Model 3 
 
The Raspberry Pi microcontrollers were the first company to 
come to mind during the brainstorming sessions for product 
selection. These computers are a hobbyist favorite because of 
their incredible versatility and virtually limitless applications. They 
are used for applications ranging from home automation to 
complete online media centers and retro-gaming system 
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emulators. Since there is currently only one line of boards 
manufactured by this company we only discuss the most recent 
release. 
  
The new model 3, shown is latest model and naturally the first 
choice from this product line. It has a 64-bit quad core ARM 
processor, however it effective available compatibility is 32-bit 
ARMv7. The board also has built in WIFI which would be an 
added bonus for this project since our vehicles will be 
communicating with one another over a WIFI frequency. While 
this board is indeed powerful it is bulky compared to its 
competition because of its multiple USB and HDMI output ports. 
It also requires 2.5 A power supply and would decrease the 
runtime of the cars significantly. This brings us to our examination 
of TI and Arduino products which as much lighter and more 
power efficient. 

 
3.3.3.2. Texas Instruments (TI) Microcontrollers  
 
Texas Instruments is another company that first comes to mind 
for many electronic and hobby enthusiasts. These boards were 
considered by the group to be a smart option for our 
microcontroller because every member in the group has past 
experience in our courses with this MSP430 development board. 
TI is also a great choice because of their user friendly Integrated 
Development Environment (IDE) that comes equipped with built 
in functions, variety of example codes and has an entire online 
community for any implementation problems we may encounter 
in the near future. A full comparison of all the TI boards presented 
in this section is displayed below in Table 12 
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Table 12: Texas Instruments Development Board Analysis 

 
Specification MSP432P401R exp432F5529LP CC3200 CC3220S 

RAM 
 

64 KB 66 KB 256 KB 256 KB 

Memory 
 

256 KB 512 KB 1 MB 1 MB 

Power 
 

1.6-3.7 VDC 1.8-3.7 VDC 1.8-3.7 VDC 1.8-3.7 
VDC 

 

Serial 
Communication 

 

UART 
I2C 
SPI 

UART 
I2C 
SPI 

 

UART 
I2C 
SPI 

 

UART 
I2C 
SPI 

 

I/O Pins 
 

48 80 27 27 

Size 
 

14 mm x 14mm 14mm x 14mm 58mm x 
94mm 

Not 
Found 

Weight 
 

3.5 oz 3.5 oz 3.5 oz 3.5 oz 

Cost $25 $27 $32 $39 

 
 
The Texas Instruments (TI) MSP432P401R Launch Pad 
Development Kit would be a good fit for the tasks outlined above. 
It has a non-volatile memory of 256 KB, up to 64 KB SRAM with 
a 32-bit ARM Cortex processor with DSP acceleration. This 
controller has an extremely low power-active mode of 80μA/MHz 
and 660 nA standby mode and voltage operation of 1.6-3.7 VDC. 
Along with built in DC-DC converters and multiple 16-bit timers 
this board supports I2C, SPI and UART serial communication, 
allowing it to easily communicate data with our NVIDIA controller. 
This board has up to 48 pins for input and output and all pins 
come equipped with an interrupt enable. The applications of this 
board range from home automation, consumer electronics and 
health and fitness products. 
  
The next board in the TI Line that was examined was the MSP-
EXP430F5529LP Developer Board. Its memory is double that of 
the previous series with 512 KB of non-volatile flash memory and 
66 KB of RAM. This unit has a standby power consumption of 2.1 
μA at an operating voltage of 3 V with a fast wake up time of 3.5 
μs . The highest of the four 16-bit timers in this unit has up to 
seven capture/compare registers and operates on a 32 MHz 
watch crystal for pristine accuracy. Other product features 
include: 12-bit Analog-To-Digital converter, full speed universal 
serial bus, and an enhanced auto baud rate detector for UART 
communication protocol. The main applications of this board is 
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data logging for analog or digital sensing systems which would 
be the exact purpose of a microcontroller for this project. Another 
advantage of the MSP-430F5529LP is the familiarity the design 
team has with the product. Each member knows how to program 
interrupts, use the onboard temperature sensor and LEDs, how 
to use an LCD with microcontroller, and how to change the clock 
speed due to previous classes involving this controller. Each 
member also possesses source code to accomplish all these 
things and more in both the C and assembly languages.  

  
The CC3200 Launch XL was the next candidate from the TI 
microcontroller family. With an ARM Cortex-M4 that runs at 80 
MHz and 256 KB RAM and 1MB of flash memory this board is 
much faster than the two previously examined. The CC3200 is 
more versatile. It supports multiple IDE platforms for 
programming through USB to a computer. Out of the box this 
board boasts an on board WIFI chip, 27 GPIO pins, 4 timers with 
pulse width modulation modes, 8-bit camera interface, on-board 
accelerometer and temperature sensor and advanced low-power 
modes. This is a great controller, but for a small price difference 
there is an upgraded version of this board with better 
specifications and additional features. 
  
The final TI development board that was researched was the 
CC3220S-LAUNCHXL microcontroller. This board is extremely 
like the CC3200 but has integrated WIFI compatibility, which will 
be useful in sending data between our vehicles. This 
development board has two low-power modes, hibernate that 
draws 4.5 μA and Deep-Sleep which draws 135 μA. However, 
the problem with Texas Instrument products is the logic level and 
operating voltage of their products. The standard for TI is 1.8-3.7 
V while the operating voltage of most sensors researched and 
the average peripheral components and LCD screens run on 5 
V. This would require either a logic level converter or power 
regulation creating a larger circuit which should be avoided if 
possible.  

  
3.3.3.3. Arduino Microcontrollers 
 
Arguably the most popular microcontroller manufacturer currently 
on the market, Arduino provides customers with a wide range of 
boards and microcontroller chips to accomplish a variety of goals. 
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These boards are even more versatile than the Texas 
Instruments being that their logic and operational voltages are 
more in the range of most of the sensors and other peripheral 
devices that were researched. Like TI, Arduino also has an 
excellent IDE platform for easy programming and a vast 
community for troubleshooting purposes.  A full comparison of 
the Arduino boards examined can be seen in Table 13 below.  
 

Table 13: Arduino Development Board Analysis 
 

Specification Uno R3 101 Due Mega 
2560 

RAM 
 

2 KB 
 

24 KB 96 KB 8 KB 

Memory 32 KB 196 KB 512 
KB 

256 
KB 

Power 1.8-5V  
 

3.3V  3.3V  5V  

Serial 
Communication 

 

UART 
SPI 
I2C 

UART 
SPI 
I2C 

 

UART 
SPI 
I2C 

(4) 
UART 
SPI 
I2C 

 
I/O Pins 

 
Digital: 

14 
Analog: 

6 
PWM: 6 

 

Digital: 
14 

Analog: 
6 

PWM: 4 

Digital: 
54 

Analog
: 12 

PWM: 
12 

Digital: 
54 

Analog
: 16 

PWM: 
15 

Size 
 

68.6mm 
x 

53.4mm 

68.6mm 
x 

53.4mm 
 

101.52
mm x 
53.3m

m 

101.5
mm x 
53.3m

m 
 

Weight 
 

25 g 45 g 36 g 37 g 
 

Cost $22 $30 $37 $40 

  
The Arduino Uno is a great board for hobbyists of all levels. Part 
of the Arduino 8-bit controller family this board runs at 20 MHz 
and can reach 20 MIPS at that frequency. The Arduino library is 
extensive and has functions for all kinds of sensors and 
peripheral devices, making programming their devices incredibly 
easy for a wide range of applications. The Uno has 6 low-power 
sleep modes, a power-save mode current of 0.75 μA, and an 
active mode current of 0.1mA. The Uno also includes the 
following features: two 8-bit timers, a single 16-bit timer; Digital, 
analog and PWM specific GPIO pins; ADC converter, 
temperature sensor, and on-chip oscillator. 
  
The Arduino 101 is a dual core microcontroller containing a x86 
and 32-bit Arc cores that both clock in at 32 MHz. It uses an intel 
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toolchain that enables parallel processing to accomplish complex 
goals. This board has a 6-axis accelerometer to recognize 
gestures and enables blue tooth connectivity for wireless control 
from blue tooth enabled devices. This board has more GPIO pins 
compared to the Uno and was made in collaboration with Intel. 
Intel created an open source real-time operating system for the 
101 that complies Arduino code using static registers to execute 
a list of commands. The Arduino 101 can have current 
consumption as low at 250 μA and has an operational voltage of 
3.3 VDC.  
 
 
The Arduino Due was made for larger scale projects and is based 
on a 32-bit ARM core with 54 Digital GPIO pins and 12 Analog 
pins. The board operates at 3.3 V and its pins are constrained at 
that voltage which could pose limitations with integrating sensors. 
However, the board has high flash memory, two separate SRAM 
memory banks, relatively low power consumption (800 mA at 3.3 
V) and a clock speed of 84 MHz. The Due has four hardware 
UART ports for serial communication which enable parallel 
processing of different sensor data to the NVIDIA CPU. This 
board can be powered through either a dedicated micro USB 
cable or a barrel power connector. 
  
The Arduino Mega 2560 was designed for more complex projects 
and advanced programming with its superior memory capacity. 
This board was made for robotics applications using a high 
number of sensors with its 54 GPIO pin count. It has 4 UART 
communication ports so a wide range of data can be sent to 
different locations and a 16 MHz crystal oscillator for accurate 
timing. The 101 board achieves a max throughput reaching 1 
MIPS per MHz and its active-mode uses 500 μA making it perfect 
for low-power application. This board would far exceed the needs 
our needs of application since the NVIDIA board will be doing the 
bulk of the data processing. For that reason, we will most likely 
not be choosing to use this for either our PCB or any other sensor 
based application.  
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3.3.4. Sensor Selection  
 
The Microcontroller will process data from platform compatible 
Ultrasonic, Infrared sensors and an Inertial Measurement Unit. 
The sonar and IR sensors will be used to monitor certain ranges 
of distance and set on an interrupt so car can achieve safe 
stopping distances in emergency situations such a collision, short 
stops, or to avoid pedestrian traffic. The IMU will be used to 
obtain additional data on speed to be cross referenced with the 
NVIDIA readings to reduce and possibly eliminate errors in 
sensor data. ROS will subscribe to these sensor topics to help 
create an even more detailed map that will aid in localization, 
mapping, and autonomous decision making. Several sensors for 
each platform are presented and examined below. Availability, 
range, resolution, and price of these sensors will be the main 
determining factors of what board and platform will be used for 
this purpose. The specifications for the sensors chosen are 
displayed below in Table 14. 

 
3.3.4.1. Infrared Sensors (IR) 
 
Infrared sensors have a much lower range than Ultrasonic and 
will be used to detect closer range obstacles that could appear in 
emergency situations. DAOKI makes an Arduino compatible IR 
module specifically made for object avoidance in autonomous car 
applications. Its range is for 1mm to 25mm and uses 15mA 
current draw. Its binary output will trigger an interrupt and be able 
to help stop the car faster than if the object was detected through 
the camera or LiDAR. These sensors are available for purchase 
in a multi-pack from Amazon for an affordable price.  
 
Adafruit's IR sensor is sleeker and has a higher range of close to 
1m. This sensor outputs an analog voltage that corresponds to a 
specific distance (3V for 10cm, 0.4V for 80cm). This sensor would 
be compatible with every platform examined so far because it 
outputs a voltage that could be read by any pin. While having an 
actual value for the distance would be more ideal this sensor 
would consume more power. Another downside is the cost of this 
sensor is equivalent to the cost of 5 of the previous. Most other 
IR sensors have a much higher cost compared to the DAOKI 
sensor multi-pack with not much improvement in detection range 
or resolution. 
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3.3.4.2. Ultrasonic Sensors (Sonar) 
 
For mid-range object detection, we will be using Ultrasonic 
sensors to monitor multiple directions. Since each vehicle will 
require several of these sensors keeping the cost low is crucial 
to stay within our budget. The majority of these sensors use only 
four pins (VCC, GND, Trigger, and Echo) and operate at similar 
ranges and voltages. The Trigger pin releases the sonic pulse at 
intervals and the Echo pin then receives the pulse and using 
Equation 2. 
 
SparkFun makes an Ultrasonic sensor with a range of 2cm to 
400cm and with an operating voltage of 5V. The best price found 
was a pack of 10 of these sensors for $14.99 on Amazon. This 
price best fits our budget and was the main factor in the 
purchasing decision.  

 
3.3.4.3. Inertial Measurement Unit (IMU) 
 
The IMU is an integral part of the robot as it will measure data 
that will aid the self-localization of the car within its environment. 
The NVIDIA could also measure velocity using the stereo camera 
and LiDAR but these values could have some discrepancy due 
to the latency of image processing. Adding an additional sensor 
will be useful to find errors and improve accuracy.  
 
Adafruit makes a 3-axis accelerometer that can measure to 16g 
with a 57mV/g sensitivity. The sensor uses a supply voltage of 3-
5VDC which would work for a variety of platforms. The price of 
this sensor was well within our budget but we found another that 
will include angular velocity to our data with a minimal cost 
increase. 
 
SparkFun also makes an affordable Arduino compatible IMU 
Breakout broad. The 9DoF breakout module contains a 3-axis 
accelerometer, 3-axis gyroscope, and 3-axis magnetometer for a 
total of 9 degrees of freedom. Its serial communication supports 
SPI and I2C that will have the ability to communicate with the 
NVIDIA board running our ROS. This board can measure angular 
velocity for turning speeds and linear acceleration for speed. The 
additional data will aid the car in its autonomous decision making.  
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3.3.4.4. GPS Sensor Module 
 
The GPS module is a valuable component because ROS will be 
using it to localize the robot and map its environment as 
accurately as possible. The GPS is important to integrate into this 
project because it is found in most new models of cars on the 
market today, and creating the most accurate model of a full-size 
autonomous vehicle that would be sold in the future is the overall 
objective of our design. 
 
GPS standards ensure that most modules work very similarly 
with little deviation. The main differences from companies like 
Adafruit and SparkFun are the logic voltages, and 
communication protocol. Since compatibility is of the utmost 
importance, the SparkFun GPS module was an obvious choice. 
It is compatible with logic voltages ranging from 3.3 to 5VDC and 
would work with either Texas Instruments or Arduino 
microcontrollers. The module uses the UART serial 
communication protocol and would be able to communicate with 
both our microcontroller and NVIDIA computer system. Table 14 
shows a summary of the sensors we have covered up until this 
point. 

 
3.3.4.5. Temperature Sensor and Fan 
 
SparkFun manufactures a great temperature sensor called a 
TMP36. This sensor requires a 2.7 to 5.5VDC for power which 
will make it compatible with any of the microcontrollers outlined 
above. The sensors sensitivity is 1°C to 125°C which will include 
the operational temperature constraint of 80 degrees for the 
NVIDIA board we are trying to monitor. This temperature range 
will also suit the acceptable range of temperatures for our 
Auxiliary battery. The sensor will be placed between the battery 
and NVIDIA board to monitor the temperature between the two 
and within the outer shell of the car as a system. 
  
The sensors output voltage is 10mV per degree Celsius, this 
signal will be read by the ATMega IC chip and within the critical 
temperature range trigger a 2x2 DC powered fan for cooling. The 
sensor only requires 3 GPIO pins, one for power supply, one for 
grounding and one data line. These sensors are extremely 
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affordable and because of its versatility in voltage requirements 
was chosen for our design. The sensor was purchased in a 3 
pack on the amazon website for less than $10 and the 2x2 fan 
was purchased from a local RadioShack for $5. 
 

Table 14: Arduino Sensor Specifications 
 

Specification Ultrasonic 
Sensor 

DAOKI 
IR 
Module 

SparkFun  IMU SparkFun 
GPS-
14030 

Detection 
Range 
 

2-400 
centimeters 

2-30 
centimet
ers 

± 2, 4, 8, or 16 g 
 
± 245, 500, and 
2000 °/s 
 

Not Found 

Resolution 
 

1 
centimeter 

N/A 
(Binary 
Output) 

± 2g - 0.061 mg 
± 245 °/s - 8.75 
mdps 
 

Not Found 

Sensitivity 
 

0.3 
centimeter 

Not 
Found 

Not Found Not Found 

Power 
 

5 VDC 3-5 VDC 1.9-3 VDC 3.3-5 VDC 

Cost $15 for 10 $9 for 5 $25 $13 

 

3.3.5. Stereo Image Sensor 
 
Among the system of sonic and light sensors, each unit will 
possess a stereo camera for the purposes of capturing images 
and interpreting data in a more familiar way than that of LiDAR or 
SONAR. By using a camera with two lenses working in stereo, 
this module will enable the system to complement the sensors 
with a three-dimensional view of the surrounding area. In creating 
machine vision, the goal is to achieve a model that is both 
resolute and able to be processed digitally. Typically, digital 
optics record and process images in two dimensions; however, 
for the purposes of this product, the ability to capture depth is 
nearly a necessity for the intelligence in the system’s ability to 
localize and predict motion of other objects. 
  
A stereo optical scanner is simply a device that makes use of the 
same principles which enable our brains to process the distance 
to an object - depth. In a two-dimensional image, one may 
attempt to classify objects as either near or far; yet, without a 
second reference, these assumptions would not be sufficient for 
this project. Using images taken simultaneously from each lens, 
a stereo image sensor employs trigonometric methods to 
calculate the distances of all points in the field of vision. While the 



 
 

36 
 

ability to calculate distance from the aforementioned methods is 
timeless, the digital technology of stereo optics has existed for 
just nearly a decade. More recently, even, is the functionality of 
processing the images internally - providing the sensory output 
as a full-color representation of a three-dimensional environment.  
  
There exist, on the market, multiple devices that achieve three-
dimensional machine vision. Various products were researched 
and compared for optimal functionality. Several factors that were 
considered of importance are as follows: resolution, range, frame 
rate, field of vision, and illumination method. Resolution is clearly 
a significant aspect to sensor quality. The amount of precision 
and clarity of data output per input greatly influences the quality 
of the three-dimensional model; this is of great importance in an 
action scenario for properly determining the spatial coordinates 
of the vehicle’s surroundings. Range, secondly, is integral in the 
efficacy of the system, as a whole. The stereo camera, in itself, 
serves as a supplemental means of sensory input to that of the 
LiDAR scanner; therefore, the range has to be of comparable 
proportions. This range must be large enough to observe objects 
that the two-dimensional LiDAR detects, in order to cohesively 
create the three-dimensional model in parallel with the other 
sensory inputs. Frame rate will ultimately contribute to the data 
refresh rate - a high frame rate ensures that the motion and 
velocities of objects are calculated in a seamless manner. Field 
of vision and illumination method are qualities that vary greatly 
between models of digital stereo vision sensors. The field of view 
must be such that no object of considerable “danger” is frequently 
in a blind spot. For this project, it was determined that horizontal 
field of view is more relevant than vertical.  
  
The sensor that was selected was the ZED stereo camera. For 
comparison purposes, a similar contender, the Structure.IO 
model specifications will be observed. In the following Table 15 
one may note the differences in the products and observe why 
the decision lay with the ZED sensor. The ZED camera 
possessed multiple modes of video recording, one of which 
boasts a fine resolution of 1344x376 megapixels. This will be 
sufficient for object detection to a precise degree. The range of 
20 meters aligned with both the LiDAR range (the range greatly 
exceeds the LiDAR) and the desired environment scale, indoors. 
20 meters would easily capture the span of a typical room or lab 
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for testing capabilities. The frame rate of 100 fps was among the 
top in the market, providing the system with a high frequency of 
image refreshing for motion detection. While other models could 
detect multiple spectrums of light, visible light was deemed 
acceptable for the needs of this project. The wide field of vision 
of 110 degrees (max) arises from the lens quality of the ZED 
camera. Five Volts DC was optimal for the USB hub connection; 
and while other models were able to be processed on multiple 
operating systems, the ZED camera operates on the only 
operating systems in use for this project.  
 

 
Table 15: Stereo Image Sensor Analysis 

 
Specification Sense 3D Sensor Sturctured.IO Stereo 

Camera 

Resolution 
 

1344x376 megapixels 
(max) 

 

640x480 megapixels 

Range 
 

20 meters 3.5 meters 

Frame Rate 
 

100 fps 
 

30/60 fps 

Field of Vision 
 

110 degrees 

Horizontal and vertical 

58 degrees horizontal 
45 degrees vertical 

 

Illumination Method 
 

Visible light Visible light and Infared 

Power 
 

5 VDC 5 VDC 

Hardware 
Requirements 

 

Windows, Linux, ROS Windows, IOS, Linux, 
Android Operating 

Systems 
 

Cost $449 $449 

 

3.3.6. LiDAR Sensor 
 
The primary means of gathering data around each vehicle is by 
use of a sweeping LiDAR module. In machine vision, a LiDAR 
sensor proves extremely practical in gathering precise data on 
the positions of surrounding obstacles and objects. The primary 
advantages to using a sweeping LiDAR sensor compared to a 
camera are the following: creating a 360 degree 3-D map upon 
each revolution, emission of light provides sensor input 
independent of the ambient room lighting, and much less prone 
to interference than that of SONAR or RADAR [27]. Due to the 
usage of lasers, a LiDAR module provides a more reliable and 
precise definition of the world around the machine.  
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This precision is a necessity for the system to visualize in every 
obstacle, regardless of the interference. Much like a human 
driver, influences such as a glare, blind spot, or lack of light often 
result in vehicle collision; through the employment of LiDAR, 
these scenarios can be avoided. Glare and/or interference is 
cancelled through the very spectrum of the light emitted and 
being sensed. The laser LED in the Scanse Sweep module is an 
infrared laser of 905 nm [28]; this falls into the infrared spectrum. 
While an infrared laser and sensor would obviously be sensitive 
to heat, the advantage is that these heat “shadows” are 
stationary, and do not travel with a moving object at ambient 
temperature [27]. Hence, the LiDAR will create a monochromatic 
representation of standard objects while simultaneously being 
very sensitive to warm bodies, clearly a target to avoid. A blind 
spot is another issue we drivers face on the road as our field of 
vision may only be directed in a certain window at one time, 
leaving the opportunity for a myriad of unfortunate 
circumstances. With machine vision using a sweeping LiDAR 
sensor, the system receives a 360-degree input at a set number 
of revolutions per second. This directional range of sensory data 
is unparalleled with any conceivable method of standard vehicle 
operation. Lack of ambient light is yet another hindrance to 
drivers. While there are alternatives to sensing in darkness aside 
from LiDAR, LiDAR proves extremely effective, if not more 
effective, in sensing objects in complete darkness. Again, due to 
the pulsating laser output, LiDAR is able to emit a frequency 
independent of ambient light, or lack-thereof, and sense where 
these emissions reflect. 
 
It is noteworthy to discuss why LiDAR is not the sole sensor in 
project design. While LiDAR is a revolutionary way in which we 
can bypass difficulties in visual sensory data, there are always 
tradeoffs in any system. The aim, here, is to discuss where 
LiDAR falls short and why it should not be the only sensor in 
intelligent vehicle design. LiDAR can be deceived in several 
ways, such as interference from an alternate LiDAR transmitter, 
or the calibration between receiver and transmitter [29]. In the 
Scanse Sweep SEN 14117, fortunately, one may program 
settings to an individual pattern of laser pulses so that these are 
unique to that LiDAR’s receiver. This is not the case in every 
module, and may present a problem for other designs. Similarly, 
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the receiver must be very attuned to the precise rate and pattern 
of emissions, or the data could be greatly skewed. Additionally, 
LiDAR does not function well with non-rigid obstacles such as 
water vapor or any fluid state [28]. The laser may reflect off of the 
individual particles in a fog, thereby confusing the receiver. 
Furthermore, a sweeping LiDAR has a latency when it comes to 
short range detection, necessary in collision avoidance 
scenarios. For these reasons, a SONAR sensor shall be outfitted 
to the vehicle to complement the regions where the LiDAR and 
stereo camera are lacking.  
 
The Scanse Sweep SEN 14117 was chosen to outfit the design 
specifications in terms of an efficient LiDAR module. This product 
exhibited traits that deliver the aforementioned advantages of a 
sweeping LiDAR over other sensor types. Several metrics to 
consider when choosing an appropriate LiDAR sensor for use in 
robotic vehicles are: range of vision (distance), horizontal degree 
of vision, scan frequency, resolution, and cost (cost included here 
due to the expensive nature of LiDAR modules). Range of vision 
is clearly a desirable trait in any visual sensor. While LiDAR 
boasts an increased range compared to a visible light or SONAR 
sensor, it is best to maximize this value as machine intelligence 
takes time to process an object on course for a collision. 
Horizontal degree of vision is certainly a characteristic that 
separates the utility of one LiDAR sensor compared to another; 
a 360-degree field greatly increases the efficacy of any sensor in 
a spatial environment. While not all LiDAR modules are 360-
degree, in the situation of vehicle intelligence, it proved to be a 
feature worth the cost. Rotation frequency is directly related to 
the update rate of data, much like frames per second of a camera 
sensor. A high rotational frequency leads to a sensor transmitting 
a moving model of its surroundings with great accuracy. 
Resolution is, again, a factor which tends to be apparent across 
all sensors. High resolution is sought to provide a clear input at 
minimal means of output. Finally, cost is considerably variant 
among LiDAR scanners; this was sought to be kept minimal while 
a 360-degree rotation was kept as a must-have feature for this 
model. The Scanse Sweep SEN 14117 was compared to various 
other LiDAR sensors. While it is not the premium device on the 
market, it met the needs of this project at a reasonable cost. 
Below, in Table 16, the comparison between the Scanse Sweep 
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SEN 14117 and a similar product, the RPLiDAR A1M8 to see 
why the former was preferred: 

 
Table 16: LiDAR Sensor Analysis 

 
Specification RPLiDAR A1M8 Scanse Sweep SEN 14117 

Resolution 
 

0.019 inches 0.4 inches 

Range 
 

6 meters 40 meters 

Field of Vision 
 

360 degrees 
horizontal 

 

360 degrees horizontal 
 

Rotation Frequency 
 

Up to 10 Hz Up to 1075 Hz 

Power 
 

4.9-5.5 VDC 5 VDC 

Hardware 
Requirements 

 

Intel core i5 or 
equivalent 

Windows, IOS, Linux, Android 
Operating Systems 

 

Cost $199 $349 

 

3.3.7. Auxiliary Battery Pack and USB Hub 
 
To power the NVIDIA and Arduino boards along with our other 
components an auxiliary battery will be need to be added as to 
not interfere with the battery capacity of the RC car decreasing 
the car’s run time. The NVIDIA board will need a 19V power 
supply so portable laptop battery chargers were researched. The 
power bank must have enough capacity to meet our 20-minute 
runtime specification. 
 
The first power bank that was researched was the Lizone Extra 
Pro. It has a battery capacity of 40,000mAh. It has extremely high 
customer ratings and doesn’t seem to have current draw 
limitations like other power banks. The bank has two USB ports 
that support 2.1A charging and one 19V port for laptop charging. 
However, the storage capacity of this power bank may not be 
entirely meet our runtime objectives so other products were 
observed. 
 
MAXOAK sells a 50,000mAh battery pack that should much 
better suit our requirement of a 20-minute runtime. The battery 
pack has two 2.1A 5V USB ports and two 1A 5V USB ports, with 
the addition of these two extra ports it could support a few of our 
sensors as well as our Arduino Board. Included in the outputs is 
a 20V and a 12V output for laptops and notebooks that support 
up to a 4.5A current draw. This device not only has more outputs 
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than the Lizone battery but it rated equally as high and has a 
lower price point. 
 
In order to not only deliver power but data to all components from 
the portable battery and CPU respectively, a USB hub must be 
used. This product must have compatible 3.0 ports to work with 
all devices in this project that will deliver sufficient amperage 
required by our components. The chosen product was an AUKEY 
powered USB hub. This device has 3 charging ports that output 
2.4 A each and 7 USB 3.0 data ports so our microcontroller, 
LiDAR, and Stereo camera can all communicate with our main 
CPU.   

 

3.3.8. Wireless Router and USB Network Adapter 
 
The vehicle-to-vehicle communication will be achieved though 
DSCR communication using a wireless frequency of 5.9 GHz. In 
order to do this the cars will be outfitted with a USB wireless 
adapter that will all communicate with a central wireless router. 
The decrease in the latency of the wireless communication is a 
parameter that cannot be overlooked since the timely 
transmission and receiving of important data will improve the 
reliability of these robots. 
 
Linksys is probably the most widely known and frequently used 
wireless routers. The router from this company that was 
examined was the dual-band E2500. This device has a maximum 
data transfer rate of 300Mbps and works with 2.4 and 5GHz 
frequencies. It is compatible with Windows or Mac operating 
systems and comes equipped with 4 Ethernet ports for 
connectivity. While Linksys is a more notable and preferred brand 
for many users its price is much higher and would negatively 
offset our budget. 
 
TP-Link is a notable manufacturer of wireless internet products 
with affordable price points. They make routers with transmission 
speeds of 300Mbps to 5334Mbps. However, the higher data rate 
routers have an extremely high cost and far exceed the needs of 
this project's communication specifications. The TP-Link TL-
WR940N would be an excellent candidate because it has above 
average data transfer rates and a lower cost compared to routers 
of the same caliber from other manufacturers. The 3 antennas 
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help to increase the robustness of its data transfer signal. 
Compared to the Linksys it is not superior is speeds but it should 
meet the project specifications and help us keep our budget on 
track. 
 
Speed tests from technology sites like tomshardware and 
smallnetbuilder were extensively reviewed for multiple top brands 
of routers within our price range (Linksys, Net Gear, and TP-
Link). The tests revealed that most wireless routers generally do 
not meet their full advertised wireless transfer speeds. Reaching 
the highest speeds possible requires the tinkering of settings. 
With overlapping networks common in buildings and 
neighborhoods changing the wireless channel can improve 
wireless signal strength, bandwidth, and range. Speed tests will 
need to be ran and settings modified to be able to reach the 
highest possible range and data transfer rates defined in our 
requirement specifications. 
 
For the USB network adapter, the first candidate was the TP-Link 
N300. This product would be great for the purposes of our project 
since it has a data transfer rate of up to 300Mbps that is suitable 
for even online gaming purposes. This product is extremely 
compact and lightweight which will help to reduce the overall 
mass of our vehicle and save much needed space for other 
components in our design. It is compatible with Linux Kernal 
2.6.18-3.10.10 which is important because it will be utilized by 
our NVIDIA CPU which operates on a Linux Operating system. 
 
The Diza100 adapter has 802.11ac dual band operation with a 
transfer rate of 433Mbps at 5.8GHz frequency. This definitely 
suits our needs since wireless communication for this project will 
utilize 5.9GHz and our TP-Link Router has make speeds of 
300Mbps. This device is only slightly out of the cost constraint 
but it higher rated than the previous devices with more reviewers. 
This device is also Linux operating system compatible across 
multiple versions. This device has a simple set up with a WPS 
button to automatically search for and connect to a Network and 
a detachable antenna option. 
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3.3.9. Summary 
 
The final selection of parts was a group effort between our senior 
design team and our project sponsors and contributors. 
Decisions were made according to market availability, cost and 
performance. All items purchased had to be approved by our 
primary sponsor Dr. Fallah before they were bought. The item list 
is displayed below in Table 17, and photos of the physical 
components in-hand are shown in the Figures 13 and 14 below. 
 

 
Figure 13- Purchased USB Hub, Router, Battery Pack, Stereo Camera, NVIDIA CPU, 

Traxxas RC Car and LiDAR 
 

 
Figure 14- Purchased Arduino Uno, LCD for testing, Ultrasonic Sensor, IR Sensor, 

IMU and GPS Shield 
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The major investments for this project were the Traxxas Slash 
4x4 Platinum, the Zed Stereo camera and the NVIDIA Jetson 
TX2. The NVIDIA's high-class performance in image processing 
made it possibly the most necessary component of this project. 
With data coming from both a LiDAR and a stereo camera, and 
a dense optical flow coding sequence we needed a computer 
system that would handle all of this data with minimal latency so 
our vehicle can make faster and more decisive autonomous 
movements. NVIDIA also offers an education discount which 
made the selection of this vital piece even easier and helped 
keep the project within the budget.  
 
The next component that was heavily discussed and debated 
was the vehicle. The goal of our project is to model an actual 
autonomous car that would be sold in future markets and acquire 
accurate data that could be applied in the design of a full-size car. 
Traxxas was undoubtedly the best manufacturer researched and 
the Slash platinum is well worth the investment. This RC car is 
the closest to real-world vehicle dynamics that we could find on 
the market. It has superior materials, access to upgrades and 
spare parts, and excellent customer service available to our 
team. The Slash Platinum was over our initial budget constraint 
given by our project sponsors, however, after much discussion 
and with the savings from the NVIDIA student discount it was 
decided to be the best choice to meet the project goals. 
 
The ZED stereo camera will allow the optical flow program in 
sensing pedestrians, signs, traffic signals and other cars while 
also providing a First-Person View (FPV) on the vehicle for 
manual control from significant distance away. On top of the 
benefits previously mentioned this camera will provide the car 
with an additional depth sensing capability to record distances 
from all objects seen within its range. This camera was chosen 
because of its accuracy and its compact size, which is an 
important characteristic is given all of the components we will be 
adding to this vehicle.  
 
Our initial design for the LiDAR sensor was to use a 3D sensor 

and an additional mount to obtain a true 360-degree view (in all 

directions) of the car's surroundings. The mount however, was 

an expensive component and due to time constraints designing 

and manufacturing our own mount was out of the question. The 
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sacrifice of this mount was made so other higher priority 

components could be invested in for the overall benefit of the 

project. Without the mount our LiDAR sensor will still provide a 

sufficient 3-Dimensional model, on a single plane of view, for our 

data.  

Our microcontroller research was extensive, but quite revealing. 

Without it, we would have encountered multiple implementation 

issues in the near future. After sensor research it appeared that 

the majority of them available on the market require 5VDC 

operational and logic high voltages. As discussed above in the 

Microcontroller Selection section this would cause issues with 

Texas Instrument devices and would require additional 

converters which would complicate our design. With a very 

limited budget due to our major investments above the selected 

controller was the Arduino UNO.  

Arduino has significant resources available and the proper logic 

and supply voltages for sensors. In fact, there are many more 

sensors made specifically for Arduino Microcontrollers which will 

reduce possible errors we could encounter. Instead of using the 

full microcontroller on the vehicle we will be incorporating a 

preprogrammed Arduino IC into our Printed Circuit Board (PCB) 

Design. The UNO Rev3 chosen because it has a removable IC 

chip for these purposes as well as a low cost to fit within our 

budget. All sensors were with Arduino compatibility and 

moderate cost were also chosen for exact models. 

 

Once the Arduino microcontroller was selected the appropriate 

and compatible sensors were chosen and purchased. Additional 

sensors requested by project sponsors were Hall sensors to 

measure motor speed to aid localization and autonomous 

decision making. Temperature sensors for the PCB design were 

researched and results yielded similar values for sensitivity and 

dynamic range for many of these sensors available on the 

market. The purchasing decision for these two sensors were 

easy. For the Hall sensor we purchased a model from Traxxas to 

ensure its compatibility and a popular temperature sensor was 

chosen according to online reviews. 
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Table 17: Final Product Selection 

 
Component Selection 

Radio Controlled Car 
 

Traxxas Slash 4x4 Platinum 

RC Car Battery 
 

5600mAh 

Main Processing Unit 
 

NVIDIA Jetson TX2 

Microcontroller 

 

Arduino UNO Rev3 

IR Sensor 
 

DAOKI IR Sensor Pack 

Ultrasonic Sensor 

 

SparkFun Ultrasonic Sensor Pack 

Inertial Measurement Unit SparkFun 9DoF Breakout IMU 

GPS Module 
 

SparkFun GPS-14030 

Stereo Image Sensor 
 

Zed Stereo Camera 

LiDAR Sensor 
 

Scanse SEN14117 

Auxiliary Battery Pack 
 

MAXOAK 50,000mAH 

USB Hub 
 

AUKEY Powered USB Hub 

Wireless Router 
 

TP-Link TL-WR940N 

Wireless USB Network 
Adapters 

 

TP-Link N-300 Adapter 

Temperature Sensor  
 

TMP36 

Hall Sensor  Traxxas RPM Telemetry Sensor 
 

LCD Screen HD44780 Size: 16x2 
 

Additional Arduino 
ICS for PCB 

ATmega328  

 
 

4. Project Constraints and 
Standards  

 
Alongside the engineering requirements, we also must consider 
relevant industry standards for design to provide a quality 
product. Constraints unrelated to our engineering requirements, 
such as ethics, environment, and government policy, will also be 
explored.  
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4.1. Project Standards  
 
There are many standards to consider while developing the NSL 
Self Driving Car. Wireless and wired communication, sensors 
making use of the electromagnetic spectrum, and powered 
electronics all have regulations to ensure proper use and 
standardized operation. There’s also the Department of 
Transportation (DoT) guidelines to take into account in 
pathfinding algorithms such as lane width, speed limits, and 
many more road rules. 
 

4.1.1. Power Supply Standards 
 
CUI defines standards for power supply safety, detailing which 
components can be used to develop a power supply, what 
classification the power system falls under, and which insulation 
to use for the system [37]. Table 18 outlines the circuit definitions 
according to CUI; according to this table, the Self Driving Car 
system would fall under Extra-Low Voltage. It is critical to 
consider this standard while designing the PCB and other 
electrical components. 

 
Table 18: Circuit Power Specification 

 
Circuit Type Circuit Definition 

Hazardous 
Voltage 

 

Any voltage exceeding 42.2 VAC peak or 60 VDC without a limited current 
circuit 

Extra-Low 
Voltage (ELV) 

A voltage in a secondary circuit not exceeding 42.2 VAC peak or 60 VDC, 
the circuit being separated from hazardous voltage by at least basic 

insulation. 
 

Safety Extra-
Low Voltage 

(SELV) 
Circuit 

 

A secondary circuit that cannot reach a hazardous voltage between any 
two accessible parts under normal operations or a single fault. Under 

fault, ELV limits are satisfied. Limits of 71 VAC and 120 VDC must not be 
exceeded. Must be double-insulated from hazardous voltage. 

Considered safe for operator access. 
Limited 
Current 
Circuits 

 

Circuits may be accessible even though voltages > SELV requirements. 
A limited current circuit is designed to ensure non-hazardous current 
under fault. For frequencies < 1 kHz, steady state current <= 0.7 mA 
peak AC or 2 mA DC. For frequencies >= 1 kHz, the limit is 0.7 mA * 
frequency (kHz) but shall not exceed 70 mA. For accessible parts not 
exceeding 450 VAC peak or 450 VDC, the max circuit capacitance is 0.1 

F. For accessible parts not exceeding 1500 VAC peak or 1500 VDC the 

max stored charge is 45 C and available energy shall not be above 350 
mJ. Must have the same segretation rules as SELV circuits. 

 
In the short-term, the system must be safe and operational for 
the Senior Design showcase and satisfy basic industry 
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standards. In the long-term, if the product is to be generalized for 
market and research, the system must conform to international 
standards. There are several such international product 
conformance marks, or regional safety marks, such as CE 
(European), UL (USA), CSA (US and Canada), GOST-R 
(Russia), PSE mark (Japan), and CCC (China). 

 

4.1.2. Wi-Fi DSRC Standard (802.11b) 
 
The topic of wireless communication, which will be the primary 
method of connecting the network of vehicles, is very involved. 
The main organizations to consider are Institute of Electrical and 
Electronics Engineers (IEEE), International Organization for 
Standardization (ISO), European Telecommunications 
Standards Institute (ETSI), Federal Communications 
Commission (FCC), and the Department of Transportation (DoT). 
 
The two methods of wireless communication currently under 
consideration are standard WI-FI as described by 802.11(b) and 
Dedicated Short-Range Communication (DSRC), which is a 
modification to 802.11.  
 
IEEE defines 802.11b as having a data rate of 11 Mbit/s using 
the same media as the original standard. Interference can be 
experienced in the 2.4 GHz band, which is used by this standard, 
from such products as microwave ovens, Bluetooth devices, and 
phones.  
 
This disadvantage leads us to consider DSRC as a medium of 
wireless communication. In October 1999, FCC dedicated 75 
MHz of the 5.9 GHz band to be used by intelligent transportation 
systems (ITS, which includes but is not limited to self-driving 
technologies).  
 
The bandwidth allows for 1 control channel and 6 service 
channels [38]. In August 2008, ETSI also allocated 30 MHz of the 
5.9 GHz band. The two are incompatible and used in different 
ways, however the allocation is present for use by ITS. DSRC is 
currently promoted by the DoT as the method of wireless 
communication. ISO and the European Committee for 
Standardization (CEN) have several standards related to DSRC 
as listed in Table 18.  
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Each standard in the table addresses a different layer in the OSI 
model of the network implementation of DSRC. Considering the 
physical layer require DSRC be transmitted at 5.9 GHz, a natural 
implementation would be a modified 802.11b system to transmit 
and receive at 5.9 GHz instead of 2.4 GHz [39].  
 
Another method of short-range wireless communication is 
Bluetooth, however the distance of communication over 
Bluetooth is much shorter as compared to Wi-Fi. The highest 
range (100 m) is only possible with a class 1 device [40], which 
requires much more power than Wi-Fi would. DSRC over Wi-Fi 
would allow a communication range of 1000m while satisfying the 
low power requirement of an embedded system [41]. 

 

4.1.3. Frequency Allocation 
 
While a US-specific implementation could use the 9.02-9.28 GHz 
range, or a Japan-specific implementation could use a 7.15-7.25 
GHz range, Table 19 suggests 5.8-5.9 GHz would provide the 
most interoperability internationally. This strengthens the 
decision to use WI-FI as our DSRC medium, because Bluetooth 
only operates at 2.4 GHz.  
  

Table 19: Spectrum Allocations 
 

Region Frequency (GHz) Reference Documents 

ITU-R (ISM 
band) 
 

5.725-5.875 Article 5 of Radio 
Regulations 

Europe 
 

5.795-5.815 
5.855-5.905 
5.905-5.925 
 

ETS 202-663, ETSI; EN 
302-571, ETSI; EN 301-893 
 

North America 
 

9.02-9.28, 
5.85-5.925 
 

FCC 47 CFR 

Japan 
 

7.15-7.25, 
5.77-5.85 

MIC EO Article 49 

 

4.1.4. Network Security 
 
According to the ISO/IEC standard, “the purpose of ISO/IEC 
27033 is to provide detailed guidance on…security aspects of 
system networks and their inter-connections” [42]. ISO outlines 
several sections on maintaining a secure network over various 
architectures and scenarios. Since our project involves the use 
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of a wireless network to allow cars to communicate over a 
distance, we must make sure to follow these standards to ensure 
connection security.  
 
The secure transfer of data across our network will be imperative 
for a safe, reliable, and effective self-driving system. The dangers 
of leaving our network open are far greater than an ordinary 
application over a home or standard public network. Table 20 
outlines the 5 network security standards that will directly affect 
our network. 

 
Table 20: ISO/IEC Network Security Standards 

 
ISO Code Scope of Standard 

ISO/IEC 27033-1:2015 
 

Network Security Overview anc concepts: Provides a 
roadmap and overview of the concepts and management 
guidance for network security. 

ISO/IEC 27033-2:2012 
 

Guidelines for the design and implementation of network 
security: defines how organizations should…plan, design, 
implement, and document network security. 

ISO/IEC 27033-3:2010 
 

Reference networking scenarios – threats, design 
techniques, and control issues: discusses specific threats 
associated with typical network scenarios.  

ISO/IEC 27033-5:2013 
 

Securing communications across networks using Virtual 
Private Networks (VPNs): provides guidelines on 
selection, implementation, and monitoring of network 
security using VPN connections. 

ISO/IEC 27033-6:2016 Securing wireless IP network access: define specific risks, 
design techniques, and control issues, providing basic 
advice for Wi-Fi, Bluetooth, 3G, and other wireless 
networks.  

 

4.1.5. Road Safety Standards 
 
Road safety can be divided into active and passive features. 
Passive safety features are only applied in response to a 
collision. The purpose of these are to ensure the safety of drivers 
and passengers in the case of collisions. Active safety features 
are deployed to avoid collisions, and continuously operate during 
the voyage to ensure the reduction in probability of an accident. 
As such, the fundamental components of the Self-Driving Car: 
Lidar, mapping, routing, classify this project as an Active Safety 
product [43].  
 
Passive features include seat belts, air bags, head rests, 
laminated glass, correctly positioned fuel tanks, fuel pump kill 
switches, and a passenger safety cell. Air bags are currently only 
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regulated by NHTSA to be included for front passengers. Smart 
airbags further increase safety by measuring the passenger’s 
weight and deploying in a way specific to those measurements. 
Vehicle crashworthiness is a regulation whose inception traces 
to the late 1960s; presently all vehicles must pass crash tests 
before being marketed to the public. The law surrounding passive 
protection has a long and conflicted past, including several eras 
of enacting and repealing laws mandating seat belts in future car 
models. By 1998, all car models were to have passive safety 
features in them. However it wasn’t until 2006 that these features 
were further defined to be child-safe [44]. 
 
 

Active features provide a layer of protection that cannot be 
granted with passive features alone.C Classical examples of 
such systems include Antilock Braking System (ABS), Tire 
Pressure Monitoring System (TPMS), Electronic Stability Control 
(ESC), traction control, collision-detection-and-avoidance, cruise 
control, and more recently, various levels of autonomy and 
auxiliary sensors. IPC PCB StandardsConsidering the most 
important feature of this project in terms of electrical design is the 
PCB, our board must conform to the relevant standards. IPC 
provides a list of standards for  
 

Figure 15- PCB Standards  
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the whole process of manufacturing, testing, and distributing 
printed boards. Considering we will be designing our own board 
and utilizing a producer to build our board for us, the relevant IPC 
standards are IPC-2220 series + 7351 (Design & Land Patterns), 
and potentially IPC-A-600 (Acceptability of Printed Boards) [45].  
 
The utility of conforming to these IPC standards are increased 
control over the quality and reliability of the PCB. The benefit of 
ordering the PCB from a manufacturer who conforms to the IPC 
manufacturing standards is ensured reliability, as well as an 
affordable board. Figure 15 indicates which IPC standards are to 
be fulfilled, and by whom. 

Figure 15- PCB Standards  

 

4.1.6. Inertial Measurement Unit (IMU) Standard 
  

IEEE P1780 – Standard for the Specification of Inertial 
Measurement Units (IMU) provides specifications, units, format, 
and terminology for manufacturers and users for IMUs. This 
allows us to select an IMU which fits the specification of our 
project, namely, cost-effective, accurate, and reliable data [46].   

 

4.1.7. AI and Self-Driving Car Standards 
 
NHTSA (U.S. National Highway Traffic Safety Administration) 
lists five “eras of safety” on their automated vehicles website, 
consisting of safety and convenience features, advanced safety 
features, and advanced driver assistance features [47]. 
According to NHTSA, we are currently in the partially automated 
safety era, and by 2025 on, we are projected to implement fully 
automated safety features such as “highway autopilot.” This is 
one of many predictions, however this is a period in history where 
no such definite regulations or standards exist yet. NHTSA 
advises the states to let the DOT alone to regulate these 
technologies, however many (source) states are implementing 
policies on their own.  

 
A recent law in Germany legalized autonomous cars such that 
the auto industry in Germany can adapt to the changing market 
[48]. This makes apparent the fact that this field is still developing 
and thus, a clear set of standards to follow has yet to be 
developed internationally. 
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4.1.8. Programming Standards 
 
Adopting a standard programming style allows a team to create 
code that is modular, adaptable to the project, and interoperable 
with other parts of the project. Thus, the subsequent 
programming style guides outline recommended practices that 
will be employed in a collective “Programming Standard” for our 
team. Using this, implementing the software architecture will be 
efficient and effective.  

 
4.1.8.1. C/C++ Standard 
 
The C standard and the C++99 [49] standard together provide 
the definitive syntax and behavior of C and C++ code, which will 
be used to integrate sensor information, simulation and 
visualization of sensor data, and create real-time route decisions 
and networked behavior. 
 
In addition to the C/C++ standards, which define how the 
languages work, the ROS Cpp style guide [50] will be employed 
due to the reliance on ROS for inter-process communication. 
This style guide defines such nuances as formatting, variable and 
function names, and other language-specific details that will 
further streamline development of the software design.  

 
4.1.8.2. Python Style Guide 
 
Python has a standard defined as PEP 8 [51], and ROS Py [52] 
defines a style guide which will both be followed where Python 
code is necessary. Since ROS allows C++ and Python code to 
work with the same resources, it is preferable that code be 
designed in such a way that neither Python nor C/C++ style 
guides nor standards be violated. 
 

4.2. Constraints  
 
In this section we discuss general constraints that can apply to 
any engineering project. The constraints will be described in 
reference to our specific project, the small-scale model for a self-
driving vehicle and/or the eventual goal of creating a full scale 
self-driving car wherever applicable.  
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4.2.1. Cost Constraints 
 
Our biggest constraint in our project is arguably the cost 
constraint imposed by our sponsor. While our project is 
sponsored and has received funding, numerous pieces of our 
project are incredibly expensive (e.g. One NVIDIA board alone is 
approximately twelve percent of our total budget for the project). 
This has led to us having to purchase cheaper sensors with less 
dynamic features and lower accuracy, especially in the case of 
our LiDAR sensor. Our sponsor also wants multiple of these cars 
constructed, so any design changes that are necessary to one 
are very likely to be needed on the others. This makes our 
project’s budget extremely sensitive to change.  
   

4.2.2. Environmental Constraints 

 
While our project might help self-driving cars achieve more 
efficient routing and reduce pollution from associated 
greenhouse emissions, there are no environmental constraints 
on our specific project. In the future, the research lab may 
integrate solar cells to charge the batteries for our vehicle, but 
this is unlikely due to the additional cost because priority of 
upgrading sensors is much higher.  

 

4.2.3. Social Constraints 
 
While our project does not have social constraints, self-driving 
vehicles in the commercial market do. In a May 2016 survey done 
by AAA, it was found that 75% of respondents feared using self-
driving vehicles if they hadn’t used cars with semi-autonomous 
features like adaptive cruise control. Getting the public to release 
these fears will likely be a long-term side effect of our project, but 
in the interim, it remains a massive constraint to profitability for 
any manufacturer or major player in the industry. One of the 
primary reasons for these fears is covered in the Ethical 
Constraints section.  

 

4.2.4. Political Constraints 
 
Once again, our project is not specifically affected by public 
policy, but the self-driving vehicles that our project wishes to 
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emulate are. Only about 35 cities worldwide actually have self-
driving cars being tested on their roads, and less than 20 more 
are considering allowing them to drive on their roads for testing. 
The main reasons for this are lack of regulatory oversight in 
regards to self-driving vehicles, lack of human and financial 
resources to appropriately manage a project, and interference 
from state or federal governments. However, Congress is 
currently considering passing a new set of rules regarding self-
driving cars to provide a consistent set of standards for testing.   
 
Another political constraint that might be overlooked is lobbying 
and the effects of that self-driving vehicles can have on certain 
industries. Right now, the U.S employs more than 3.5 million 
truckers. Eventually, these trucks will also become self-driving, 
and this could lead to massive dis-employment of a fairly large 
staple of the working middle class. This creates an incentive for 
truckers and their unions to want to limit this technology to protect 
themselves. Depending on how many lose their jobs, 
unemployment could also spike to dangerous levels and create 
political and economic instability in a worst case scenario. Public 
policy is going to need to play a very big role in stabilizing and re-
tooling these displaced workers.  

 

4.2.5. Ethical Constraints 
 
While the primary purpose of a self-driving vehicle is to reduce 
accidents, there may be a time where environments may create 
a situation where an accident is unavoidable. The biggest ethical 
concern with self-driving cars is determining what action the car 
should take in that scenario. Should the car prioritize the life and 
safety or the driver, possible passengers, other drivers, property, 
or pedestrians in an emergency situation? This is an area where 
lawmakers may want to get involved to help provide a consistent 
ethical standard and also prevent lawsuits from victims or their 
family in accidents involving cars making these sort of decisions. 
  

4.2.6. Health and Safety Constraints 
 
The primary purpose of our project is to improve public safety, 
thus making this one of, if not the most important design 
constraint. Cars moving on a highway are moving likely moving 
close to 70 miles an hour, making latency a huge safety issue. A 
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latency of 1 second has the potential to cause catastrophes at 
these speeds. If our project is to model a car as realistically as 
possible we must minimize our latency.  
 
Another concern related to sensors are the conditions a self-
driving vehicle is present in. Weather conditions such as rain, 
temperature, snow, or humidity can affect sensor range and 
accuracy. Our project will mainly be tested indoors, but 
eventually our sponsor will want to collect more real world data 
in real conditions. If our vehicle design is used, additional sensors 
for measuring weather conditions and temperature and the 
incorporation of these measurements into our software will likely 
be required to maintain the accuracy of all the original sensors.  
 
The strength of our network security. The possibility of someone 
being able to hack a car by accessing its controls via Wi-Fi is a 
massive concern. Malicious hacking could lead to forced crashes 
to hurt people, or routing vehicles into dangerous places where 
the passengers or cargo could be taken hostage. It’s very unlikely 
that this iteration of the project will focus heavily on security, but 
improvements upon security will definitely need to be taken to 
create a better prototype for a full-sized vehicle.    

 

4.2.7. Manufacturability Constraints 
 
Our manufacturing constraints are mainly related to both 
accounting and time costs. The need to modify our vehicles to 
improve the specifications increases our time cost by forcing us 
to calculate what parts need to be changed, how or what should 
replace them, waiting on the arrival or construction of the new 
parts, and then physically deconstructing our vehicle and making 
the modifications. Accounting costs are accrued when we order 
said new parts or manufacture them via 3D printing. Both these 
costs will apply mainly to obtaining and modifying Plexiglas or 
aluminum for our mounts, unless the UCF innovation lab can 
provide us with free laser cutting with a very short turnaround 
time.  

 

4.2.8. Testing Constraints 
 
The main testing constraints will be related to how early we can 
modify the car and calibrate our sensors. We will have until the 
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senior design showcase to do this, but calibrating multiple IR, 
Ultrasonic, and LiDAR along with successfully changing out our 
vehicles gears and differentials will prove to be a time-consuming 
task.  
 
Another disadvantage we have is that we cannot test our wireless 
communication network until we have at least 2 of our cars fully 
modified with the appropriate sensors and vehicle parts. We will 
very likely not be ordering more parts to create more vehicles 
until we can confirm our prototype works. The wait on the parts 
can vary from a few days to a few weeks, which creates some 
artificial deadline date weeks before the showcase so we can 
properly modify our cars and test the wireless communication 
protocol in the desired testing environment and make tweaks as 
necessary. 
 
While not as significant as the other constraints, the testing 
environment provides another constraint. The floor of our 
sponsor’s lab is carpet which possesses a much lower coefficient 
of friction compared to paved roads. This will require additional 
modifications to our car to ensure the wheels do not slip as a 
result of the lack of traction. While slippage might not cause 
physical damage to the car in most scenarios, it can distort the 
accuracy of the car’s localization algorithm. Testing in an outside 
environment can be done, but the conditions are much less 
controlled and outsiders can possibly interfere. The high price of 
a single vehicle makes this very unlikely due to the risk involved.  

 

4.2.9. Time Constraints 
 
The next most important constraint next to cost is time. At 
numerous points in the other constraints we have mentioned that 
time is lost due to having to deal with other constraints on our 
design or to meet certain requirements. Unlike money, we cannot 
obtain more time to work on this project and still complete the 
project due to the design showcase having a fixed date. This 
makes time our most important resource. To help maximize the 
projects efficiency, 2 other undergraduate engineers, Yannick 
Roberts and Billy Blanchard, to help with the implementation of 
our project’s software. Furthermore we have two graduate 
students, Nitish Gupta and Behrad Tohgi, providing us with 
guidance in relation to the localization, routing, sensor 
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calibration, vehicle dynamics, Robot Operating System (ROS), 
and overall design. 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

5.  Project Design Details  
 
In this section, we provide the details behind the design of our 
software and software and how we integrated different pieces of 
hardware and software together to create a working prototype. 

 

5.1. Hardware Design 
 
This section’s focus specifically focuses on our hardware 
connections of our design. Responsibilities for the preliminary 
hardware interface is described in Figure 16 below. Each 
engineer on the team was assigned to research and configure 
the necessary hardware and learn the relevant software, if any, 
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to configure it. The Figure 17 below shows the electrical 
connections of the project and is explained in detail. 

 
Figure 16- Hardware and Vehicle Interfacing 

 
The MakOak battery bank supplies the USB Hub and the NVIDIA 
board with necessary voltage and current requirements specified 
by the manufacturers. The battery bank has a 20V 3A output for 
laptops that will connect to our NVIDIA CPU and another 12V 
2.5A power output that will be used by our USB Hub. The Traxxas 
battery pack will only power the driving and servo motors. The 
NVIDIA board comes with a 19V 4.74A power supply for a total 
of 90W however, the acceptable power range is +9 to +15 V at 
around 60W when connecting USB devices. The USB Hub 
comes with a 12V 4A power adapter, the USB charging ports 
output 5V and 2.4A, and the USB 2.0 data ports are intended for 
data transfer to the host however if a component has low current 
draw they will be able to use these ports for power and data 
transfer. The Traxxas battery has voltage of 7.2VDC and a 
capacity of 5500mAh to supply the motor, these values will be 



 
 

60 
 

important for measuring the charge on the battery on our PCB 
design.  
 
The Scanse LiDAR sensor requires 5VDC and draws a maximum 
current of 650mA and the Zed Stereo Camera also uses 5VDC 
and has a current draw of 380mA. From these values outlined by 
the component’s technical specifications both of these sensors 
are compatible with the USB Hub’s data ports for both power and 
data sharing to the NVIDIA board. The Arduino board requires a 
customized USB to barrel power connector to supply the 
controller with suitable power that will be connected to the USB 
Hub for power. An additional micro USB to USB-A cable will be 
used to transmit data between the Arduino and NVIDIA boards. 
The PCB was designed to use a 5VDC USB power cable and a 
current draw of less than 1A. 

  
The USB Hub has multiple USB 3.0 data ports. These will 
communicate to the NVIDIA board data from our LiDAR, and 
Stereo Camera for visualization and localization purposes. Ultra-
sonic and Hall sensors will utilize a fraction of the 40 GPIO on the 
NVIDIA to be stored and used for localization data.  The USB 
Hub relays data from the NVIDIA computer to the PCB board to 
determine drive states and other localization data for display. The 
display will be achieved through LED lights to simulate front rear 
and direction status in an effort to simulate standards for road 
vehicles.  
 
The Traxxas battery will be connected through a conversion 
circuit to the PCB board for battery level management. The hopes 
are to manage battery levels and eventually have the robot 
making driving decisions in regards to the battery level data. The 
LCD will display the battery level as well as data supplied from 
the NVIDIA for heading, average speed, and errors in the 
programing. The USB Network adapter will connect directly to the 
NVIDIA board to deliver the strongest Internet connectivity.  
 
The Arduino Uno board will connect to the servo motor for 
steering and the driving motor control unit through 3-pin DuPont 
connectors that contain data, power and ground wires. The Hall 
sensor, used to determine the rpm of the motor for localization 
data will be read by the Arduino board to adjust speed and 
heading through a similar connector. Data and directions will be 
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transmitted to the other vehicles through the Internet connection 
and DSRC control that utilizes one of the USB ports on the 
NVIDIA CPU. The car will also have a second control mode using 
a host computer that is connected to the same wireless network 
from a distance by writing codes to the NVIDIA control unit. 
 
The flowchart below in Figure 17 shows the hardwired 
connections between components in our design for power and 
data transmission. Customized cables will be made using 
DuPont, USB 2.0 and USB 3.0 solder-type connectors and 
cables. All cables had to be purchased carefully to adhere to 
voltage and current requirements of the attached components. 
After the testing is complete all wires will be covered by heat 
shrink tubing for protection and to improve the overall aesthetics 
of the vehicle for the design showcase.  
 

 
Figure 17- Wiring Diagram 

 

5.1.1. Sensors and Calibration 
 
Due to the nature of our project, sensor accuracy is a priority for 
optimizing the accuracy of our model. To counter the error initially 
present in our sensors, we tested the initial error and devised a 
testing scheme for each type of sensor.  
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5.1.1.1. Ultrasonic Sensor 
 
Our tests were conducted on a small using an Arduino Uno, a 
dictionary, the HC-SR04, and a ruler. The ruler was placed in a 
straight line away from the center of sensor the transmitter. The 
book was shifted back by one centimeter every measurement, 
and the data would be sent to the Arduino and ROS. From there 
we could determine what the error between the position that the 
sensor measured and actual position. 
 
This setup is extremely simplistic, and also has faults as a result. 
Slightly pivoting the book could provide massive error because 
of the angle that the sound waves bounce back towards the 
receiver. Slight shifts of the ruler would put the surface off center 
and introduce small amounts of error. We could also only 
measure a maximum of 30 centimeters accurately due to the 
length of the ruler, but in order to prevent the ruler from moving, 
we placed objects behind it to fasten it into place. Pre-calibration 
results can be seen in Table 21. 
 

Table 21: Pre-Calibration Data for Sensor 1 
 

Distance 
(cm) 

Mean 
(cm) 

% Error  Absolute 
Error (cm) 

3 4.15 38.33 1.15 

4 5.364 34.1 1.364 
5 6.506 30.12 1.506 

6 7.857 30.95 1.857 

7 8.452 20.74 1.452 
8 10.41 30.12 2.41 

9 12.09 34.33 3.09 

10 12.84 28.4 2.84 

11 14.74 34 3.74 
12 16 33.33 4 

13 17.2 32.31 4.2 

14 20.39 45.64 6.39 

15 21.609 44.06 6.609 
16 23.45 46.56 7.45 

17 24.22 42.47 7.22 

18 49.4 174.44 31.4 

19 50.69 166.79 31.69 
20 28.3 41.5 8.3 

 
 
We decided to only calibrate for the first sensor, and then use 
that calibration for sensor 2 to check if it would create consistent 
results across sensors. If it did, we would test our calibration on 
the next two sensors when we received the opportunity and 
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continue moving forward. Otherwise, we would repeat this test 
again for the other 3 sensors.  

 
5.1.1.2. Calibration and Code 
 
ROS provides a pub-sub (Publisher and Subscriber) framework 
to send the ultrasonic data recorded by the sensor and capture 
that data via a USB connection to the UNO board. The standard 
Arduino ultrasonic code was modified to publish the distance 
data as a float over the "/ultrasound" topic.  
 
From here, the ideal approach would be to create a subscriber 
which would receive the published values and would be able to 
process those values accordingly – finding average mean, 
maxima, and minima. However, there were issues creating such 
a program, thus a simple data scrubber was written in C++. ROS 
allows you to display the data being transferred on a topic, thus 
the scrubber would take this data and filter out the "range: [float]" 
value semi-automatically. Thus, the operator would have to have 
two terminals, one running "rostopic echo /ultrasound/range" and 
another running the scrubber. They would then have to copy the 
data from the ROStopic terminal into the scrubber, which would 
then display the minimum, average mean, and maximum of the 
data. 
 
It was noted at this point that temperature affects the speed of 
sound, which would significantly affect recordings. Thus, a 
calculation correction was applied to the code, and all 
subsequent calculations included this correction. This data was 
then recorded in a spreadsheet containing the actual distance, 
the mean recorded distance, the difference between these two 
values, and the average error. Distance was varied between 3 
cm and 23 cm, taking intermediate recordings (for example 
8.5cm and 10.5cm) when the change in error increased 
significantly after increasing distance. Average error ranged 
between 20.7% (at 7 cm) up to 174% (at 18 cm) and back to 43% 
(at 23 cm). 
 
From this data, lookup tables were created as float arrays in the 
sensor code. The distance was corrected by dividing it by (1 + 
error), error being one of the values of average error previously 
mentioned. It was originally intended to apply the appropriate 
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error according to the lookup table, however it was noticed that 
the code effectively only used the first or second recording (I.e. 
for 3 cm or 4cm, respectively) at every distance. 
 
For the second sensor, the code was modified to present the 
distance before the error adjustment in order to find its error 
measurements for 3cm. This error was already slightly lower than 
the previous sensor, however applying the error adjustment to 
the code allowed the second sensor to be as accurate as the first 
sensor.  

 
5.1.1.3. Testing Post-Calibration 
 
After recalibrating using our code, we plotted the absolute and 
percent error for each sensor. Absolute error peaks less than 1.5 
centimeters for each sensor, and percent error below 10% for 
each sensor. The results are displayed in Figures 18 and 19. 
 

 
Figure 18- Sensor 1 Test Results 

 
 

 
Figure 19- Sensor 2 Results 

 

5.1.2. Infrared Sensor Calibration 
 
Unlike the HC-SR04 Ultrasonic Sonar, the DOAKI infrared 
sensors are digital and can only tell the use if they detect an 
object or if they don’t detect an object. No distance data can be 
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drawn from the sensor. The sensor, can however, have its range 
adjusted by using a screwdriver to adjust the settings on the 
sensor’s potentiometer. Unfortunately, the sensor is also prone 
to becoming oversensitive and declaring that there is always an 
object in the path even when there is nothing in the sensor’s 
maximum theoretical range.   
 
After carefully tuning the potentiometer for one of our sensors, 
we found it had a maximum range of 5 centimeters before it 
became oversensitive and always return a high signal even if 
there was no object in its range. We repeated this same process 
on another sensor and received a maximum range of 9 
centimeters. Due to the unsatisfactory performance relative to 
what was advertised, we will not be incorporating these into our 
design.  
 

5.1.3. GPIO Configuration 
 
Our original plan was to use the J21 [88] GPIO pins on the Jetson 
TX2 for serial communication with the arduino, the ultrasonic 
sensors, and the hall RPM sensors. However, it was determined 
that many of these pins are used elsewhere in the Jetson for 
processes such as video and audio interrupts. Thus, preliminarily 
we decided to connect the arduino to the Jetson via the USB 
serial hub and free up the remaining five usable GPIO pins for 
ultrasonic and hall sensors. 
 
Pictured below in Figure 20, four available pins are 29, 31, 33, 
and 37. Two of these will be used for all ultrasonic sensors, 
limiting the ability to detect which sensor is detecting collision.   
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Figure 20- JetsonTX2 J21 Header Pinout 

 
In the future, it would prove helpful to be able to disable these 
pins for their original purposes in order to use them for our needs. 
We are unable to do this at this time because the documentation 
for the TX2 is still very sparse and not as detailed as that for the 
TX1 or the TK1. Also, the TXx series has less available pins in 
general than the TK1, thus it might be useful to downgrade to the 
TK1 in the future. 
 

5.1.4. Serial Communication 
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The Jetson communicates to the Arduino via the serial-USB 
connection. In order to test this connection, a C++ program was 
written on the Jetson to send bytes to the Arduino via the 
/dev/ttyACM0 device in Linux. The Arduino was then set to apply 
speed to the motor to show the successful connection and 
reception of data from the Jetson.  
 
This demonstrated that moving the serial communication from 
the GPIO pins was a viable option and thus we decided to 
establish a protocol for controlling the Arduino via the Jetson. 
Two bytes would be used to determine the motor speed and 
servo angle. These bytes would be converted to their integer 
values and then their respective servos would be set to these 
integer values. The Arduino would then await the next two bytes 
from the Jetson. 
 
Thus, the Arduino becomes a mere actuator, which applies the 
values desired by the Jetson. Therefore all the planning, routing, 
speed, and angle calculations would be handled by the Jetson, 
as opposed to leaving speed and angle calculations to the 
Arduino. This protocol would allow faster communication to the 
Arduino, free up any latency on the USB hub, and   

 

5.2. Software Design 
 
Figure 21 outlines the general software flow from initialization 
until power off. The logic is simple and generic at this stage, partly 
due to being the first software drawing, and partly as a way to 
show the overall structure of the software. The green boxes 
represent end and terminal states, the blue boxes represent a 
process or method, and the orange parallelograms represent 
transitions between states. The specifics of localization, object 
detection, and software architecture will be detailed below.  
 
Figure 22 gives insight into how the hardware is modelled in 
software. The actual software relationships will be displayed in 
Figure 23. The actual class diagram as a result of using ROS is 
much simpler due to the specifics of multiprocessing and 
networking being taken care of by open-source algorithms. 
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Figure 21- Software Flow Diagram 

 

 
Figure 22- Software Class Diagram 

 

• A double-bar indicates only one instance of the connected 
class is present. 

• The triangle with one line over it indicates at least one 
instance is present. 

• The white triangle points to the base class for inheritance. 
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Figure 23- Updated Software Diagram 

 

Since ROS simplifies the transmission of data within a robot, the 
process of manipulating the Wi-Fi connection between robots 
and the process of transmitting data between robots is also 
simplified. Therefore, the "Information" class is redundant 
considering each class or program can store its own data 
variables and transmit them appropriately.  
 
Each class in Figure 22 includes its own version of "publish" 
and/or "subscribe," which is critical to linking it to ROS and by 
extension, to other classes. Data is simplified from a class down 
to the relevant data types for the class. For example, the Sensor 
only requires a float value (for ultrasonic and distance 
recordings), while the Router requires the robot it belongs to, and 
other visible Routers.  
 
The starkest update from integrating the software with ROS is 
that the relationships between classes aren't handled explicitly 
by linking the two classes, rather the relationships are resolved 
within the operating system itself. For example, even though 
Router includes the robot it belongs to, this would be 
implemented by using some unique identifier in the Robot class, 
which is passed to its own router via a pub-sub (shorthand for 
publish/subscribe). 

 

5.2.1. Localization Algorithms  
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In order to produce a self-driving vehicle with mapping 
capabilities, the use of localization algorithms became a 
necessity. Numerous algorithms exist, and this section will detail 
which algorithms we will implement in and why. Considerations 
for each algorithm were complexity, simplicity to program, exact 
function of the program, and if different algorithms performing the 
same function can compensate for inaccuracies in another under 
different scenarios.   
5.2.1.1. Kalman Filter 
 
The Kalman filter is a set of equations that provides an efficient 
recursive estimate to what state a process is in while providing a 
minimal mean squared error even with sensor error and external 
influences affecting the system. The filter is also capable of 
processing future states even when the modeled system’s 
functions are not necessarily known. Kalman Filters are also 
used in a variety of fields unrelated to vehicle localization, like 
statistical analysis and econometrics. 
 
The Kalman filter in a self-driving car will measure the position 
and the velocity of a car. Updates to the equations, which will we 
will go into detail later, will be made during each step shown in 
Figure 24. 
 

 
Figure 24- Steps during a Kalman filter’s measurements 

 

During the measurement steps, the Kalman filter only cares 
about 2 things: The new measurements and previous belief of 
where the vehicle is located. During the motions step (sometimes 
called predictions step because velocity is measured through 
changes in distance), only the velocity inferred from previous 
measurements and the previous beliefs are necessary. This 
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keeps the computational power of a Kalman filter extremely low 
relative to other algorithms, making it extremely advantageous 
for localization.  

 
5.2.1.1.1. Probabilistic Origins of Kalman Filter 
 
The Kalman Filter’s origins lie in probabilistic theory. It is 
assumed that the variables that comprise the system’s state are 
Gaussian distributions. A Gaussian distribution is a probabilistic 
distribution that is unimodal, centered on a mean value that 
represents the most certain point, and have a variance that 
represents how uncertain the mean value is.  Gaussian 
distributions are defined by the equation shown below. The 
shape of the Gaussian distribution is determined by the 
exponential and the term outside the exponential normalizes the 
values produced by the equation.   
 

𝐹(𝑥|𝜇, 𝜎) =
1

√2𝜋𝜎2
𝑒

−(𝑥−𝜇)2

2𝜎2  

 
Equation 4. Gaussian Distribution 

 
Two examples of Gaussian distributions centered at zero with 
different variances are shown in Figure 25. The red Gaussian 
distribution has a higher variance, and has more uncertainty of 
where the real value is as a result. An ideal Gaussian distribution 
has a variance as low as possible around the mean value.   
 

 
Figure 25- Example Gaussian Distributions 
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When a Kalman Filter receives new measurements, it simulates 
them as Gaussian distributions as well. The ensuing Gaussian 
will always have a lower variance than either the prior distribution 
or the new measurement. The new distribution will also have a 
different mean value. The calculations for the new variance and 
new mean are shown below in Equation 6. An example of the 
new Gaussian is shown in Figure 26. 
 

𝜇𝑛𝑒𝑤 =
𝜎1

2𝜇2 + 𝜎2
2𝜇1

𝜎1
2 + 𝜎2

2  

 

𝜎𝑛𝑒𝑤
2 =

1
1

𝜎1
2 +

1

𝜎2
2

 

 
Equation 5. New Gaussian Distribution 

 
 

 
Figure 26- Gaussian Created by other Gaussians 

 
By taking these different Gaussian measurements, the Gaussian 
becomes less uncertain. Note that this only applies to 
measurements and that the examples given are for a one 
dimensional system. A multidimensional Gaussian will have a D 
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x 1 matrix of means and a D x D matrix of variances will be 
defined by a contour, as shown in Figure 27.  

 
Figure 27- 2D Gaussian Distribution 

 
In the case of a self-driving vehicle, motions will create 
uncertainty in position and increase the mean value of the 
Gaussian distribution. Motions are also modeled as Gaussian 
distributions, and the resulting Gaussian distribution after a 
movement can be summarized by Equation 6.  
 

𝜇𝑛𝑒𝑤 = 𝜇𝑜𝑙𝑑 + 𝜇𝑚𝑜𝑡𝑖𝑜𝑛 
 

𝜎𝑛𝑒𝑤 = 𝜎𝑜𝑙𝑑 + 𝜎𝑚𝑜𝑡𝑖𝑜𝑛 
 

Equation 6. Gaussian Movement Update 

 
5.2.1.1.2. Implementation of Kalman Filter 
 
In the real world, two forms of the Kalman Filter can be created 
for localization: the Unscented Kalman Filter (UKF) and the 
Extended Kalman Filter (EKF). The reason the linear 
transformation cannot be used is because the algorithm’s will 
create small errors that will slowly accumulate and eventually 
become significant if the calculated covariance becomes too 
small, indicating a large certainty that the location is known, then 
these errors will become massive and lead to improper state 
estimation.  
 
 Among the two mentioned variants, the Unscented Kalman Filter 
has proven to be the best one because it maintains the same 
complexity as its counterpart, works for non-linear systems, and 
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approximates the true mean and covariance to the 3rd order 
Taylor Series approximation as opposed to the first order with the 
EKF.  It does so by taking numerous sigma points  
 
The Unscented Kalman Filter is based around the idea that it is 
easier to approximate a probability distribution than it is for a 
random non-linear function or transformation of a function.   
 
5.2.1.2. Particle Filter 
 
Another localization algorithm we will be using will be the particle 
filter. Particle filters use a set of guesses for position and 
orientation (“particles”) alongside measurements from sensors 
and odometer data to implicitly localize itself given a map of the 
location.  
 
“Particles” are re-distributed across the environment after every 
motion. Sensor data is used to determine the location of 
landmarks. “Particles” that are more likely to represent the 
current state of the vehicle are then given a weight, with higher 
weights being more accurate states. The weights are then 
normalized so the sum of the weights is equal to 1, and the 
particles are resampled so the highest weighted ones have the 
most likely chance of recurring. Eventually, only the particles that 
represent the state closest to the true state of the vehicle.  
 
The Particle Filter excels in area the Unscented Kalman Filter 
does not. It works better than the Unscented Kalman Filter with 
non-Gaussian noise. It is a multimodal distribution that can keep 
track of where multiple objects are. Occlusions, or an object 
blocking or obstructing another, do not affect the Particle Filter, 
unlike the Unscented Kalman Filter. The Unscented Kalman 
Filter would have a corrupted entry for its measurement step, and 
in the absence of a way to detect an occlusion, would lead to a 
massive error.  
 
The Particle Filter does have its disadvantages: mainly related to 
computing power and filter degeneracy. The amount of particles 
needed to measure a system increases exponentially with every 
dimension added, so computing power and memory need to 
increase to match these as well. If an observation model is too 
accurate e.g. high probability, but very low variance for a 



 
 

75 
 

measurement, the weights of the accurate particles can be 
reduced to near zero and then be removed during resampling. If 
the particles are resampled without new measurements, the 
particle filter can assume that vehicle is in a false location. An 
example of this is that two rooms can be identical to one another, 
but a particle filter can incorrectly make an assumption that the 
vehicle is in one room that it actually is not in. See Figure 28 for 
a visualization of this scenario. 
 

 

 
 

Figure 28- Before (Top) and After (Bottom) Filtering Without Motion 

 
Despite these issues, we’ve decided to use the Particle Filter 
alongside the UKF due to its strengths. The Particle Filter is 
immune to errors that can occur in the Kalman Filter, and should 
one filter fail, the other could still be used for localization.   

 
5.2.1.3. A* Search Algorithm 
 
One of the most famous search algorithms is Dijkstra’s shortest 
path algorithm, which was then expanded to create A*, another 
algorithm which will be employed in this project. Table 22 
describes the steps of the Dijkstra’s algorithm, which is used to 
find the shortest path between two nodes. 

 
 

The purpose of using infinity as a tentative distance is to signify 
unvisited nodes, such that the algorithm will not visit them if there 
is another node with a better (smaller) distance between the initial 
and current node. Each subsequent node is updated with the 
sum of all distances of previous nodes. Also, tentative shortest 
paths might also be updated with smaller values, if a shorter path 
is found. Once the destination node is reached, the path can be 
traced back usually via backtracking algorithms or an array in a 
dynamic programming implementation.  
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The advantage of this algorithm is that it will always find the 
shortest path between two nodes, assuming such a path exists. 
The disadvantage of this algorithm is that it is inefficient given a 
sufficiently large topology. Since this project requires pathfinding 
in a real context, the topology can become large and nearly 
infinite, given the structure of roads and the fact that new roads 
can be added at any moment.  
 
One way to make the algorithm more efficient would be to 
implement a priority queue such that the minimum-distance 
nodes are selected with less processing time. Also, the 
neighboring nodes would be added concurrently to checking 
which one is closest to the current node. Thus, instead of working 
with all of the possible nodes, only the most relevant ones are in 
the priority queue. This would be relatively more efficient than the 
standard algorithm, however it would still be wholly inefficient 
with an infinite graph. 
 
For infinite graphs, a modified “uniform-cost” search algorithm is 
created when, instead of adding all nodes to the graph, nodes 
are only added when discovered to be in the shortest path. Thus, 
a path from the initial location to a set of target locations can be 
achieved on an infinite graph, otherwise it would be 
inconceivable with a limited memory constraint.  
 
A* searches all possible paths for the one which incurs the 
smallest “cost,” which can be defined uniquely for the application, 
and considers the one that appear to most quickly lead to the 
solution. It selects which of its paths to expand towards the goal 
using a heuristic function which estimates the cost remaining to 
reach the goal. Thus the path which it will select will minimize this 
function, as that will lead to the shortest remaining path. The 
heuristic function takes into account the cost of the path from the 
beginning to the current node, added to the estimation of the 
remaining cost of the path to reach the goal. 
 
The requirement of A* is that the heuristic is “admissible,” or that 
the cost to the nearest goal is never overestimated. A more 
efficient version requires the heuristic also be “monotone.” The 
function is monotone when the heuristic of one of the vertices is 
less than or equal to the distance of the edge plus the heuristic 
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of the other vertex. Thus, no negative costs are allowed and a 
vertex will never be considered more than once. However, setting 
the heuristic of all nodes to 0 would be a special case of A* which 
can also be viewed as Dikjstra’s algorithm. Another special case 
would be a heuristic in which earlier nodes have higher values 
than later nodes; this would be a depth-first search. 
 
A* will always optimally return the shortest path given if and only 
if it uses an admissible heuristic, and only if it considers one 
search problem (point A to point B rather than Point A to point C 
via point B). While an admissible heuristic always returns the 
shortest path, A* must consider all equally viable paths up to the 
terminal node. There is a method called “bounded relaxation” in 
which a less optimal variant of the algorithm is used to conserve   
 

Table 22: Dijkstra’s Algorithm Steps 

 
Step Explanation 

1. Define Initial 
Node 

 

Assign a tentative distance to every node in the graph (zero for 
the initial location, infinity everywhere else) 

2. Define 
Unvisited 
Nodes 

Set the initial node as current; marke all other nodes unvisited. 
Create a set of all unvisited nodes. 

3. Update 
Neighboring 
Nodes 

Consider all the neighbors of the current node. If the distance to 
the neighboring node is less than its tentative value, update it to 
the smaller distance. 

4. Mark Current 
Node as 
Visited 

Mark the current node as visited and remove it from the 
unvisited set.  

5. Terminate for 
Final or 
Unreachable 
Node  

If the destination node has been visited or the smallest distance 
between the two nodes is infinity (i.e. unreachable path), stop 
the algorithm. 

6. Update the 
Current Node 
and Continue 

Select the unvisited node with the smallest tentative distance as 
the current node, go back to step 3. 

 
5.2.1.4. Simultaneous Localization and Mapping 
 
Simultaneous Localization and Mapping, also known as SLAM, 
is a necessary component for the project. The Particle Filter only 
works if the vehicle has a map of the area it is travelling in. SLAM 
uses the measurements taken by sensors of landmarks and 
exact motions to create a map in real time. These distances are 
saved in an N x N matrix called Omega (𝜔), where N is the 
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number of motions and landmarks, and an N x 1 vector called 
Xi (𝜉) that is updated with each movement. Using the inverse of 
the Omega matrix and the Xi matrix, the vehicle’s heading and 
location alongside the location of the landmarks will be stored in 
a new matrix called mu (𝜇). This is shown in Equation 7.  
 

[𝜇] = [𝜔]−1[𝜉] 
 

Equation 7. Graph SLAM Location Equation 
 

The advantage of Graph SLAM is that even in cases of incorrect 
measurements of sensors, Equation 7 will produce the most 
accurate answer based on these measurements due to the 
constraints for the algorithm including movement as well.  

 

5.2.2. ROS 
 

ROS (Robot Operating System) provides "libraries and tools to 
[developers] create robot applications" [56]. ROS is a framework 
that runs on the Linux OS, providing several distributions 
developed specifically for each version of Linux. In our 
development system, we use Ubuntu Linux 14.04 LTS, and thus 
the appropriate ROS distribution is nicknamed "Indigo." 

 
5.2.2.1. General Architecture 
 
Included in ROS are pre-developed libraries to simulate robot 
configurations, environments, sensor data, as well as integrating 
real-world sensor data to visualization software to allow for 
development of a robot system. ROS implements a publisher-
subscriber framework, meaning that there is a "master" thread 
which ensures that programs can publish data and subscribe to 
receive said data from "topics." As long as the ROS master 
program is running, programs can publish and subscribe as 
many topics as they need to accomplish their specific tasks. 
 
Custom topics can also be created to send user-specified data to 
and from applications. This will prove useful for our purposes 
because instrumentation and data collection will be able to send 
and receive data on their own respective topics without 
interference from the other. This will ensure a streamlined flow of 
information from sensors, to a set of processing threads to 
capture the data, to another set of processing threads to localize, 
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plan, and route the vehicles, and even another thread to facilitate 
networked communication of this data. 
 
As can be seen in Figure 29, the publish-subscribe concept is 
very simple yet powerful. The publish-subscribe architecture as 
well as the topic implementation allows for the modularization of 
the processing tasks that need to be created. Thus if an updated 
graphics card is to be purchased, the processing task is the only 
one which will have to be updated as a result.  
 
The data collection, routing, and localizing tasks will be otherwise 
unaffected and will be able to continue running while the 
processing task is updated. The same is true if more sensors are 
to be added, or the type of sensor is to be modified. In this case, 
only the sensor task will have to be changed. This will reduce the 
amount of maintenance required for the project, and thus save 
time and energy which can be directed elsewhere. 
 
Another result of the modularization of ROS is that heavy 
processing tasks can run in parallel with other heavy processing 
tasks (robot vision processing in parallel with a complex routing 
algorithm, for example) as well as networking algorithms. Data 
can be transferred between the cars while they continue to sense 
their surroundings. This is critical because a non-multiprocessing 
paradigm would mean that the car could potentially stall or 
otherwise be blinded in the middle of a networking event. Thus, 
the publish-subscribe framework ensures the safety and time-
sensitivity constraints inherent in this project. 

 
Figure 29- ROS Publish-Subscribe Framework 

 
Publishers and subscribers are both implemented using callback 
functions which are referenced in the ROS-provided "publish" 
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and "subscribe" functions which are run in the main function 
(C++). This allows for user-defined code to be run every time data 
is able to be sent or received. ROS also allows for a stack of data 
to be accumulated between calls.   
 
Two programs included in ROS that will be used extensively 
throughout this project in accordance with other ROS-defined 
and user-defined classes are 'Gazebo' and 'RVIZ.' Gazebo is a 
3D robot simulator which includes physics simulation in a Linux 
environment. RVIZ provides a 3D environment in which to 
visualize sensor data that is being sent throughout several data 
topics. Therefore, a 3D model of the robot will be created in 
Gazebo, including sensors in their respective locations. Then, 
this will be sent through topics specific to gazebo and RVIZ, 
which will be visualized in RVIZ. 
 
Simulating the robot(s) in gazebo and RVIZ allow us to develop 
the localizing, routing, mapping, and intercommunication 
algorithms with the full consequences of the algorithm, including 
collisions, losing the robot at a far distance, or any other anomaly. 
Once the features are fully developed and the anomalies aren't 
damaging the simulated robots, it can be ported to the physical 
hardware and tested in the lab. This saves money and time 
considering the hardware is preserved as much as possible, and 
the number of tests that can be run in a simulation are orders of 
magnitude greater than what can be run on a physical model. 
 
Figure 30 shows the overall software architecture design for this 
project. It takes into account every aspect of the project, from the 
fact that the algorithms should work similarly for both simulated 
and real environments, as well as the different mapping 
techniques employed.  
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Figure 30- Diagram of Overall Software Architecture and Flow 

 

Since ROS handles the intercommunication of these parts, it is 
helpful to conceptualize them as communicating directly with one 
another. As such, the sensor data is conceptualized into their 
respective sensor topics and sent simultaneously to the 
localization and visualization sections. There, processing is done 
to map and synchronize the network of vehicles together, as well 
as visualize this process on a universal access point, such as a 
computer on which RVIZ runs. 
 
A navigation process then takes the localization information and 
computes the next steps to be taken by the vehicle, and sends it 
back to the controller to move, accelerate or decelerate, stop, or 
turn. 

 
5.2.2.2. ROS Topics 
 
ROS allows threads to talk to each other along what is called a 
“topic.” This includes the data that is sent as well as information 
about the types of data that is sent. There are topics for every 
part of the project including sensors, navigation, and 
visualization. Table 23 outlines some relevant message types 
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that will be used as well as the purpose and functionality of those 
messages.  
 

Table 23: List of Message Types 
 

Message Name Relevant Component 

sensor_msgs/Range Ultrasonic, IR sensors; used for the range value which is 
the distance in cm between the sensor and the point 
detected. 

sensor_msgs//LaserScan LIDAR, Kinect sensors; used for an array of ranges 
between a minimum and maximum azimuth (min azimuth 
of 0 and max azimuth of 360 degrees for LIDAR). 

sensor_msgs/Image Z-Camera; used to store images, both for depth and a 
stream of actual camera data. 

nav_msgs/Odometry Position and Velocity in free space; used to keep track of 
the location and speed of the vehicle, both for itself and 
other vehicles in the network. 

visualization_msgs/MarkerArray Map visualization; used to display the 3D occupancy grid 
in RVIZ. 

 
These topics are defined below in Figure 31, including the 
relevant variable definitions for each message. For Range, the 
radiation type is an enumerator which determines whether it is an 
Ultrasound or Infrared sensor. Any range that is outside of the 
bounds of min and max range are to be discarded. This is used 
to calibrate the ultrasonic sensor and for detecting distances 
using ultrasonic. 
 
The Image message includes data specific to the camera which 
sends it, thus a normal RGB camera would provide pixels 
representing the image. However a depth camera’s data field 
includes the depth of the image.  
 
LaserScan uses the same basic algorithm of discarding any 
ranges outside of the bounds of min and max range. This is used 
for LIDAR scans, where angle_min and angle_max can be set to 
ignore any scans outside of the desired ranges. This can be used 
to only process scans in front of the vehicle, or coordinating other 
directed scans. 
 
Odometry will be the main message that shares the position and 
velocity of the vehicle over the network. It consists of a “pose” 
and “twist” along with a covariance coefficient to be used with 
probabilistic algorithms. Pose consists of a builtin-type for 
position and rotation, while Twist contains velocity and angular 
velocity.   
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Figure 31- ROS Message Definitions 

 

5.2.3. Mapping 
 
Mapping is a technique used to keep track of the world around 
the vehicle. This map keeps track of information about the 
environment that can be used to localize the vehicle, keep track 
of obstacles and walls, or find unique landmarks. Maps can be 
used in conjunction with Particle Filters, Kalman Filters, or other 
techniques in order to accomplish these greater tasks with higher 
accuracy. 
 
Two types of maps that are implemented in ROS are gmapping 
and octomaps. Figure 32 shows a test setup in gazebo using the 
built-in simulation named Turtlebot. This will be used later to 
compare the fidelity of the mapped environment with the real 
environment. 
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Figure 32- Gazebo Simulated Environment 

5.2.3.1. GMap 
 
Gmapping implements a Rao-Blackwellized particle filter to learn 
grid maps from laser range data [72]. This can be used in ROS 
in conjunction with either simulated or physical hardware to 
navigate the environment. Figure 33 shows the result of 
gmapping the gazebo environment. It can be seen that the 
resulting map is two-dimensional, with the borders of the objects 
depicted as black outlines, unmapped areas in grey, and the floor 
mapped as white.  
 

 
Figure 33- Gmapping Visualized in RVIZ 
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While populating the gmap, the robot was navigated around the 
map using teleoperation. The speed had to be slow due to the 
settings of the application, as well as the load of visualizing the 
map in realtime. However the underlying particle filter behavior 
was apparent as the robot’s position would move as the map was 
updating rather than as a direct result of teleoperating. It can be 
seen that the outlines of the objects aren’t completely discreet, 
and in fact do update as the robot observes more features of the 
environment. The outline of the cylinder, for example, can be 
seen to not be perfectly circular, as a result of seeing it in the 
scan while moving. It can also be seen that the trashcan (just to 
the left of the cylinder) also has intermittent outlines, as a result 
of updating its border while moving and rotating. 
 
While the result of this map is crude, it can be used with relatively 
high probability to detect and avoid the general vicinity of objects. 
The latency of the system however, might pose a challenge. 
Tests will have to be made using gmapping using the Jetson in 
order to determine the satisfication of the functional requirement 
of latency.  
 
One major advantage of this type of mapping is that the whole 
map has the same probability of position so any algorithm ran 
using this map is as accurate as the map itself. Given the 
designers of this package ensure it is very efficient and with 
reasonable certainty, pathfinding and routing can be done very 
efficiently using this technique. 

 
5.2.3.2. Octomap 
 
Octomap implements a 3D occupancy grid based on octree [73]. 
Octomap is able to map completely arbitrary 3D environments as 
well as free space. The map is also updatable using different 
sensors, employing a probabilistic approach to filter out sensor 
noise or dynamic environment changes, e.g. dynamic objects. 
One key feature that can be exploited by this project is that 
multiple cars can contribute to the same map at any time. The 
map is dynamically expanded as needed, and as such could be 
expanded indefinitely. There are also different resolutions such 
that there can be one controlling server hosting the high-level 
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map, which can then send smaller sections with higher resolution 
to individual cars.  
 
This has obvious application to the networked aspect of this 
project, and can also be applied to simulated or physical 
hardware using ROS. Figure 34 shows the result of mapping the 
same gazebo environment depicted in Figure 33 using octomap. 
It can be seen that the octomap is three-dimensional, with the 
borders of objects colorized to show height. It’s also apparent that 
the general shape of objects are preserved via small squares to 
approximate all sides of objects, including the cylinder and boxes 
at different angles. It’s also shown that the map can only depict 
what is seen by the sensors of the vehicle, so the interior of the 
cylinder and garbage can appear to be hollow only because the 
sensor have no information of that region. However because it 
cannot be accessed due to the collisions of the borders, that 
region can be left empty to preserve processing power. 
 

 
Figure 34- Octomap Visualized in RVIZ 

 

The latency of this mapping technique was notably faster than 
gmapping, and thus would be a better decision for quicker 
collision detection information. The 3D aspect as well as the 
collaborative aspect of this technique make it yet a stronger 
candidate to be a dedicated collision detection map. 

 

5.2.4. Collision Detection and Avoidance 
 
Either used in conjunction or separately, the two mapping 
techniques can be used to generate maps of objects in the 
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vehicle’s surroundings. These maps can be used to detect and 
avoid collisions based on the vehicle’s current position in the 
map. Since multiple vehicles are able to update the same map, 
they will be able to model any surrounding vehicles and use that 
along with synced positions of neighboring vehicles to help each 
other localize themselves.  

 

5.2.5. Motion Tracking with Optical Flow 
 
In the ongoing developments of robot vision and machine 
learning, the process of tracking motion remains to be an 
extremely influential attribute to the success of the system. For 
autonomous vehicles, the ability to track another object’s motion 
is essential for localization purposes and predictions of path and 
velocity of surrounding objects in motion. One method of 
implementing this concept is by using optical flow programming 
to a visual sensor such as a camera. 
  
While there exist many different schemes and strategies to 
implement motion tacking, in the following sections, we will 
explore the OpenCV platform and subsequent libraries used. At 
this stage of testing, the requirements have yet to be refined to fit 
the final product; this program will serve as a basis on which to 
build towards autonomous vehicle purposes. The Optical Flow 
Initial Test Specification Requirements are as follows: 
 

o Dense optical flow live-tracking via camera input 
o Output window of red-blue-green representation of 

motion 
o Stationary objects shall be omitted from output 
o Bounding box shall target the object in motion 
o Bounding box shall be displayed in foreground 
o Code written in Python language      

 
5.2.5.1. OpenCV Platform and Theory 
 
Optical flow is the procedure in which a program compares the 
pixels between two consecutive images and makes various 
assertions relative to the change in position of each pixel [29]. By 
forming a bounded grid of pixels, the program should be able to 
both recognize particular objects by use of a database and track 
them by performing various calculations of the pixel differential. 
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For this particular project, OpenCV was the primary resource of 
the logic needed for our robot vision requirements. 
 
OpenCV (Open Source Computer Vision Library) [30] stands as 
a major contributor to computer vision and machine learning, 
boasting grand database function libraries and algorithms. 
Fortunately, there exist OpenCV Python libraries for nearly every 
functional task that a machine vision system needs to perform. In 
this project, the initial installation of Python and OpenCV was 
required for testing. After doing so, importing the desired libraries 
to obtain the algorithmic functions was necessary to test the 
effectiveness of the OpenCV library. A laptop with an in-house 
webcam served as the intiail test setup for experiments with 
optical flow, motion tracking, and object recognition. The 
following sections will denote specific OpenCV functions used for 
these purposes, as these are powerful means to produce a 
functional visual output stream. All of the code used in this 
experiment was written in Python 3, but should be functional in 
Python 2 if hardware cannot support the newest version. 

 
5.2.5.2. Dense Optical Flow Test 
 
The testing phase began with a specific category of optical flow 
called Dense Optical Flow. Dense Optical Flow differs from other 
forms of optical flow in that the output target is solely the result of 
motion; this means that all objects not-in-motion will be omitted 
from the output similar to a “don’t care” condition, visualized as a 
black backdrop. Other variations of optical flow are designed to 
deliver outputs of vision in parallel with motion differential data, 
this was undesirable as the aim is to isolate moving objects. 
OpenCV Dense Optical Flow uses the Lewis-Kanade algorithm 
set to provide the user with a color-coded visualization of motion 
where a specific color indicates the characteristic of the motion; 
hue (shade) represents direction, while value (brightness) 
represents magnitude/velocity [31]. Creating a Dense Optical 
Flow test program required installing “cv2”, “numpy”, and 
“matplotlib” libraries. The program then accessed the laptop’s 
camera to obtain a standard image of the room using the 
cv2.VideoCapture() and .read() Python functions in OpenCV 
3.3.0. This provides a continuous data flow to arrays within the 
function, one may dedicate a variable to store this information for 
further calling, here named “cap”.  
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Once the program is granted access to the built-in camera, it 
begins to store the data in the format suited for the Lewis-Kinade 
method of motion tracking. An initial variable, “frame1” is 
obtained from the previously mentioned .read() function; this is 
where the program stores one of the frames for future 
comparison purposes. A variable named “pvrs” is defined as the 
grayscale image of the capture by using the function 
cv2.cvtColor(..., cv2.COLOR_BGR2GRAY). “pvrs” serves as the 
first of two images being compared. It also is necessary to have 
a grayscale version of the image for implementation of the 
algorithms, the argument COLOR_BGR2GRAY indicates that 
the variable array is being transformed from a blue-green-red 
image to a grayscale. The program then creates an array of 
zeros, here named “hsv” identical to that of frame1. This is done 
through the “numpy” function np.zeros_like(). The variable “hsv” 
stands for hue-saturation-value. The array is sliced and the 
second (1th) element set to 255 for maximum saturation. The 
program then enters an infinite “while loop” for continuous 
operation with the dynamics of motion tracking all contained 
within the loop. Entering the loop, a second variable “frame2” is 
created which reads the data from the camera, again. Because 
of the latency between the few lines of capture commands, these 
two frames are not identical, but differ by an extremely small 
amount of time. A variable “next” is defined as the conversion of 
the second capture to grayscale, much alike the variable “prvs”.  

 
In this stage, the program begins using statistical processes. 
Another variable named “flow” is defined as the output from a 
“cv2” function calcOpticalFlowFarneback(). Various integer 
values are necessary to be placed within the function - these are 
not mentioned here due to their precise and standard nature in 
the probabilistic determination of an object in the frame. The 
inner-workings of this function are very complicated, and the 
output is not an image but an array of numerical data; therefore, 
these values must be converted back to a usable format to view 
the output image. To do so, we define two more variable “mag” 
and “ang” to transform the data into polar vector coordinates. The 
array “hsv” is loaded with these polar values into sliced elements 
of hue and value. The array “hsv” is fed back into the 
cv2.cvtColor(..., cv2.COLOR_HSV2BGR) function to transform 
the image back to standard color for viewing ease. To display an 
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image window of the output from the algorithm, the cv2.imshow() 
function was used. This function creates a window with a label, 
takes in one variable array, here called “bgr”. The cv2.waitkey() 
function is used to complement the output image window; it is 
necessary to set a certain, yet arbitrary value, otherwise the 
program may freeze at. At the end of the while loop, we set “prvs” 
equal to “next”; this updates the second frame to the first frame, 
allowing the program to obtain another fresh image to compare 
to the ever-changing “prvs”. Finally, the while loop is exited and 
two more functions: cap.release() and cv2.destroyAllWindows() 
are employed to terminate the program without error. The result, 
if done correctly, should be similar to the still shot show below in 
Figure 34: 
 
In Fig. 35, one can observe the various color-coded aspects of 
motion. The contours of the image are highlighted due to the 
backdrop being a significantly different color (a white wall). Due 
to the pixelated differential of my outline to the backdrop, this is 
considered to be a change. One may notice that elements of hair 
and skin are blacked-out, for there is little relative change 
between pixel colors. While the backdrop possessed various 
items such as room decorations, these are a constant black due 
to the fact that although they are different coloration values, there 
is no change between them in the two frames being compared. 
To better visualize how magnitude and direction of motion are 
captured, refer below to the image in Figure 36. Here, the image 
underwent more drastic motion unlike that of Figure 35 where it 
was relatively still. As the object turns, certain elements of the 
contour are highlighted while others remain a constant color. This 
demonstrates how the output of the Lewis-Kinade method and 
the calcOpticalFlowFarneback() function provide the user with an 
image that reflects not only motion in general, but the differences 
between motion. Certain areas of the image were changing faster 
than others, or in a different direction. Turning, the green/yellow 
areas are highlighted to show a horizontal position shift. The 
white/light blue area of hair is highlighted in that way to show a 
vertical change in position. The intensity of each region indicates 
how fast it is moving relative to black (no velocity). It is simple to 
see why this particular process is very useful in dealing with 
computer vision scenarios - the differential output allows for 
predictions to be made with the vector components of position 
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change i.e. directional velocity. The entire process is shown as a 
block diagram in Figure 37. 

 
Figure 35- Still Shot of Dense Optical Flow Output 

 

 
Figure 36- Still Shot of Dense Optical Flow Output in Motion 
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Figure 37- Dense Optical Flow Program Flowchart 

 
 

5.2.5.3. Bounding Box Test Using Image Centroid  
 
As mentioned in the previous section, it was desired for the 
program to output a “bounding box” around the object in motion. 
A bounding box is a rectangle or square in the foreground of the 
image that follows a desired target. This bounding box should be 
unaffected by the processes and functions of optical flow output 
configuration; the rectangle should exist as an overlay without 
undergoing any manipulation. For this requirement, the optical 
flow data was transformed and fed into a separate code block to 
process the information in parallel with the standard dense 
optical flow procedures.  
 
There exist many possibilities and metrics to targeting a specific 
object. In the initial testing, this was done with the whole image. 
In doing so, it is considered there be only one object in motion in 
the field of vision that is of concern, as the densest region of 
colored pixels will be considered the target. While this may prove 
advantageous in certain scenarios, the final autonomous system 
shall require multiple bounding boxes if one is to consider real 
world conditions. However, for the purposes of primary 
development, the centroid/moment method of threshold 
comparison was utilized.  
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To create a bounding box of static proportions (unchanging width 
and height), one must manipulate the information within the main 
while loop of the program. The .calcOpticalFlowFarneback() 
function must already have been called, as the goal is to target 
the object in motion and not a specific object in the image. 
Logically, here, the bounding box will take the image data from 
the function after it has been transformed into a usable image by 
transforming the data into polar vectors. Ergo, the variable “bgr” 
will be used as the primary means of input, as it is defined 
originally as the usable image data after optical flow procedures. 
At the point of use, this image data is the blue-red-green 
representation of motion that is seen in Figures 33 and 34. This 
variable is sufficient to use as it subtracts all pixels that are not in 
motion. 
  
The methods of “drawing” a bounding box upon an existing image 
are developed by first finding the contours of that image. Not only 
does contouring assist in this task, but may prove useful in a 
variety of detection requirements such as “drawing” the outline of 
motion, or path. The OpenCV contouring process is most 
efficiently computed in grayscale; therefore, the first objective for 
a bounding box is to convert the image as such, by using the 
cv2.cvtColor(...,cv2.COLOR_BGR2GRAY) function.  
 
A new variable “gray” was defined as the output of this function, 
the other input argument being “bgr”. Secondly, a variable called 
“thresh” is defined; this will be the threshold of the image. A 
threshold image is an output that further subtracts various 
elements from the input. For example, thresholding an image of 
an apple on a table by isolating the red color would result in an 
output of solely the apple as the threshold, or limit to the output. 
The variable “thresh” was defined as the output from the OpenCV 
function cv2.threshold().  
 
Arguments to the function included the input, “gray”, certain 
grayscale color values, as well as the method of thresholding 
cv2.THRESH_TRUNC. Three variables are then defined to be 
the simultaneous outputs of the function cv2.findContours(), 
which takes input “thresh” as well as two methods, here, 
cv2.RETR_EXTERNAL, and cv2.CHAIN_APPROX_SIMPLE. 
The former argument is used in order to subtract the possibility 
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of contouring more than one object, and the latter argument is 
used for the purposes of limiting the contour to four points. By 
using these methods, we will compute only the necessary 
contours of the “brg” image data [32]. While this function requires 
writing to three variables, the first of which "im2" shall be called 
upon later; the other two variables are of arbitrary definition and 
represent the contour data and the hierarchy data.  "im2" now 
serves as the image of the contours found from the "brg" dense 
optical flow image.  
 
The program will now utilize methods of centroid approximation 
to find the center of the contours defined by the aforementioned 
processes. We define a variable array “M” to take outputs from 
the OpenCV function cv2.moments(), feeding “im2” as input. This 
moments function will create an array of pixel value density. Once 
obtained, the centroid is located by dividing the array “M” by its 
first 0th elements. These are denoted as “cx” and “cy”. Finally, 
use of the function cv2.rectangle() will draw the box onto the input 
argument,“bgr”, around “cx” and “cy” found from the contour 
centroid. Further arguments of the cv2.rectangle() function 
include setting the box's width and height to be of 150 pixels from 
each centroid, to possess a green color (0,255,0), as well as to 
be a thickness of 3 pixels.  The whole code block should exist 
before the imshow() function, as the bounding box will be 
included in the final output. The final test output combining the 
dense optical flow and bounding box overlay is as shown in 
Figure 37 below:  
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Figure 38- Still Shot of Dense Optical Flow Output Bounding Box 

 

While the image in Figure 38 is unable to be seen with a still shot, 
the box continually followed the illuminated moving object. 
Further considerations of improvement include a bounding box 
that disappears with at minimal movement as well as bounding 
more than one object simultaneously.  

 

5.2.6. Object Detection through Histogram of 
Oriented Gradients  

 
A key function in machine vision intelligence is the ability to detect 
and identify objects. If a robotic system is able to distinguish, for 
example, a pedestrian from a collective image – it introduces a 
grand opportunity for the system to react specifically to various 
scenarios. This feature is popularly achieved by the use of a 
“histogram of oriented gradients”. This concept involves 
separating an image into parts and analyzing each “block” piece-
by-piece in order to detect a specific object through a probabilistic 
nature. It is easy to envision why this plays a very important role 
for autonomous vehicle design. Modern autonomous vehicles 
must be able to distinguish a multitude of objects and have the 
ability to process a response to the behavior and location of each 
object. For the purposes of this project, histogram of oriented 
gradients or “HOG” will be integrated into the software for simple 
object detection. While detecting motion through dense optical 
flow is crucial, it is also highly beneficial to the overall intelligence 
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of the system to process object detection in parallel with optical 
flow.  

 
5.2.6.1. Histograms of Oriented Gradients Processes  
 
The method behind object detection in HOG is a clever means to 
separate a desired grouping of pixels out of an image and 
classifying it as an object. The full image is considered as an 
input; it is then processed so that pertinent information is 
extracted and the rest is considered extraneous. This is done by 
applying a horizontal and vertical gradient to the image in 
overlapping blocks. The image is divided into subsections with a 
specified cell width of x and y pixel dimensions; the blocks will 
overlap such that the difference between sections may be 
detected as a gradient [83]. The number of blocks used to form 
the gradient is coincident with the size of the image; therefore, it 
is common practice to resize the image in accordance with the 
type of object one is detecting. Additional divisions do not 
necessarily imply a more accurate result, the objective is to apply 
the appropriate amount of divisions to where a difference in pixels 
is apparent between adjacent blocks.  
 
Before any computational processes on the input image are 
performed, there must be a database to obtain a reference for 
what object the program is attempting to identify. This is done by 
creating a reference library of sample images containing the 
desired object and samples lacking the object. In practice, it is 
more beneficial for the number of negative samples to outweigh 
the positive for more reliable detection [84]. 
 
Returning to the image processing, a “sliding window” technique 
is applied where the program will test each block and record the 
RGB values of the pixels. This value is represented as a 
normalized vector. The result will be a vectorially-represented 
visual difference between each cell. This process is implemented 
over the sample library as well, and the resulting vector fields of 
each reference image are compared to the test image. 
Comparing the vector fields of the test image to the reference 
images allows the program to normalize the histogram, 
(probabilistic weight within a region), and determine that a 
specific object is present within the image. By this cellular 
method, it also allows the program to determine where the object 
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is located within the full image, making it a simple process to then 
bound the object’s contour with a bounding box.  

 
5.2.6.2. Open CV Pedestrian Detection 
 
As discussed in the “Motion Tracking with Dense Optical Flow” 
section, OpenCV is a veritable resource in image processing. 
Python language was used to apply the HOG functionality to 
detect objects in a stream of video. Unlike motion tracking with 
dense optical flow, the image was not altered – instead, an RGB 
image stream must be kept intact to properly visualize the object 
as it is. The “cv2” library contains a histogram descriptor for 
pedestrian detection, used here as the initial test for object 
tracking. The Python program is relatively simple for pedestrian 
detection, as the libraries and functions have already been 
formed. For the purposes of testing, there existed certain 
specifications this program was designed to achieve. These are 
bulleted below: 
 

o Utilization of histogram of oriented gradient 
o Detection of an upright humanoid object 
o Capture of multiple objects in a single frame 
o Bounding of each object 
o Visual verification  
o Program implemented in Python language 

 
The program was tested on laptop with an in-house camera. The 
program begins by importing the appropriate libraries, (numpy, 
imutils, and cv2), and defining the histogram of oriented 
gradients. The variable “hog” is created and set to the function 
cv2.HOGDescriptor(). It is then fed to a function in which the 
pedestrian detection library and methods are specific to the 
desired pedestrian object, 
hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDet
ector()). 
Following the initialization of the HOG, the program enters an 
infinite “while” loop to run indefinitely. Once the loop is entered, 
the program captures an individual image with the .read() 
function. The image is resized both for proper gradient cell 
application and increased processing speed; the image is resized 
to a square with side length of 500 pixels. This new resized image 
is defined as the variable “img”. Next, the variable “hog” is fed 
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into the function .detectMultiScale(…); the contents of the 
function within the parentheses include the resized image as well 
as several parameters for proper cell division and window sliding. 
The output of this function is assigned to two variables named 
“rects” and “weights”, where “rects” contains the location data of 
each object detected and “weights” contains the probabilistic 
data of how close the match is.  
 
Next, the program will enter a phase in which it will draw a 
bounding box around the “rects” localization data. An array is 
created with the np.array() function which houses the dimensions 
of “rects” in x-y coordinate plane. The variable “pick” is assigned 
to the output of the function non_max_suppression(…); the 
parameters within this function include the input, “rects” as well 
as probabilistic and threshold variables which will allow 
overlapping of bounding boxes. This step will enable the program 
to output more than one bounding box at a single instant with the 
ability of the boxes to overlap; a larger overlap increases the 
likelihood that a box will appear around a certain gradient 
contour, or “pick” an object. The program then enters another 
“for” loop, initializing secondary x-y coordinates for the actual 
bounding box. The cv2.rectangle() function is used, here, to cycle 
through the variable “pick” and draw a green bounding box with 
a line thickness of 2 pixels. For more information on rectangle 
drawing parameters in Python, please refer to the “motion 
tracking with dense optical flow” section. Once the bounding box 
has been computed and drawn, the program displays the output 
image with the cv2.imshow() function. A “waitkey” is used for 
proper execution, as well as the .release() and 
.destroyAllWindows() functions for proper termination of the 
program. A summary of this process is shown in Figure 39.  
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Figure 39- Flow Diagram of HOG Pedestrian Detection Program 

5.2.6.3. Pedestrian Detection Testing and Output 
 
As the program was ran, it became clear that this complicated 
procedure requires certain alignment with the exact type of 
environment one is operating in. For example, the sensitivity of 
detection is adjusted by altering both the number of cell divisions 
and image size; furthermore, the overlapping threshold in 
bounding the objects can be manipulated to allow or deny a 
bounding box to be applied at a certain likelihood of an object. It 
was also found that the speed of the program was sub-standard 
for the employment in an actual moving vehicle scenario. This is 
likely due to the visual verification process – that is, in the testing 
phase where one must create a visual aid to accurately display 
the program’s behavior. In a real-world scenario, this data would 
not need to be rendered visually, but simply fed to the processor 
responsible for object localization.  

 
5.2.6.4. Pedestrian Detection Test 1 
 
The following figures display the output of the program ran at the 
following parameters found in Table 24.  
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Table 24: HOG Test Results 
 

Parameter Value Description 

WinStride 4,4 Sliding window 
area of 4x4 cells 

Padding 32,32 Image divided into 
32x32 cells 

Scale 1.05 Perform sliding 
window method to 

multiple image 
scales up to 5% of 

original 

Width 500 Original image side 
length resized to 

500 pixels (square) 

overlapThresh 0.85 85% overlap in 
object bounding 

 
As one can observe in Figure 40, the program was able to detect 
two, upright, humanoid shapes while ignoring the triangle. This is 
the simplest application of the HOG concept as it is very easy for 
the program to distinguish the gradient difference of a dark 
silhouette on a white background. The program was then tested 
with a more complex image: 
 

 
Figure 40- Simple HOG Pedestrian Detection Test 1 

 
In Figure 41, (faces omitted for privacy), the image contained 
many different opportunities for error. The increased number of 
pedestrian objects added to the complexity of the image. 
Furthermore, the pedestrians were not fully visible, they were 
overlapping, and the multitude of color in the image makes for an 
uneven gradient. However, one can still observe that the program 
performed relatively well. To the left and middle, the pedestrians 
are ignored which should have been detected; however, the 
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pedestrians on the right and lower-middle were detected with 
higher accuracy due to a better-defined outline and color 
differential.  

 

 
Figure 41- Complex HOG Pedestrian Detection Test 1 

 
5.2.6.5. Pedestrian Test 2 
 
The following figures display the output of the program ran at the 
following parameters found in Table 25. Various metrics were 
altered to test the effects on accuracy and tolerance. While the 
type of image being detected influences the results greatly, 
tuning these metrics individually allowed for an observation of 
how each could benefit or harm the desired response.  
 

Table 25: Test 2 Parameters 
 

Parameter Value Description 

WinStride 4,4 Sliding window area of 
4x4cells 

Padding 64,64 Image divided into 64x64 
cells 

Scale 1.05 Perform sliding window 
method to multiple image 
scales up to 5% of original 

Width 400 Original image side length 
resized to 400 pixels 

(square) 

OverlapThresh .95 95% overlap in object 
bounding 

 
In Figure 42, an increase in the number of bounding boxes from 
test 1 can be seen. This is due to the image being separated into 
64x64 cells instead of 32x32. The overlap threshold is 
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responsible for the larger boxes, as it now has a higher tolerance 
and aims to remove redundant boxes. Image rendering was 
faster, seeing as the image was scaled smaller. This can be seen 
as an improvement from test 1 in complex imagery. However, 
results were not as positive for simplified cases. 
 

 
 Figure 42- Complex HOG Pedestrian Detection Test 2 

 

In Figure 43, the program is now too sensitive for simple fields of 
vision. Where it had ignored the triangle in test 1, the triangle is 
now erroneously considered a pedestrian due to the threshold 
tolerance increase. Additionally, the left humanoid was double 
counted – not necessarily a decrease in effectiveness, but 
inaccurate. It is clear from these results that the parameters 
should be balanced in such a way to provide consistent results 
depending on the environment. It should also be noted that the 
program latency was much too high when the sliding window was 
set to 2x2 or lower. Increasing scale drastically increased the 
latency between operations with decreased sensitivity. Image 
resizing to 1000 pixels resulted in approximately twice the 
latency, but improved accuracy. It appears that the ratio of 
cellular padding determines the sensitivity, while image resizing 
and overlap threshold should be tuned for redundancy and 
accuracy.  
 
Further considerations for improving this system are to “retrain” 
the HOG detection for a specific environment. This is commonly 
done by updating the reference library with positive and negative 
data from past test results, allowing the process to adapt to a 
certain environment [84]. One could also consider a dynamic 
library for reference images e.g. urban vs rural. This would 
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involve a more complicated means of image processing to 
determine which environment the reference point exists in.  

 
Additional applications of HOG detection in autonomous vehicle 
operation may involve the detection of common objects on the 
road such as: other vehicles, road signs, turn signals, lane 
boundaries, and many others. If one is to supply the HOG 
descriptor with a large sample set, the program should be able to 
detect nearly anything - within the constraint of processing 
speed. 
 
It can be surmised from the test output data that there exist clear 
limitations to HOG pedestrian detection. If the program is to 
operate effectively, there must a clear distinction between object 
and background. The objects should not have a significant 
amount of overlap and should not be crowded into one area. 
While these ideal conditions are obviously not the case from a 
moving vehicle reference point, it stands to assume HOG 
detection is a viable method of recognizing and isolating a 
pedestrian or local object from the field of vision. 
 

 
Figure 43- Simple HOG Pedestrian Detection Test 2 

 

5.3. Vehicle Dynamics and Modeling 
 
In this section we cover testing done on our vehicles components 
and any modifications made to the vehicle base, such as 
differential and spring replacement, and any information obtained 
from the vehicle operations, such as steering angle range and 
motor speed. Not every modification may be implemented by our 
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team due to time constraints, but will be implemented by our 
contributors in Dr. Fallah’s research lab. 
 

5.3.1. Vehicle Disassembly  
 
To improve the performance of the vehicle, the Traxxas Slash 
4X4 Platinum was disassembled to determine what mechanical 
pieces would needed to be replaced.  Tests on numerous 
components, such as hall sensors, the brushless motor, and the 
servo, were conducted to find the signals necessary to control 
the vehicle and improve performance.  

 
5.3.1.1. Differential Replacement 
 
After disassembling the vehicle, the contributors came to the 
decision to remove the clutch on the limited slip differential that 
attached to the front and rear axles. Referring to the section on 
differentials, a limited slip differential would cause the wheels to 
lock if they tried to move at different speeds. Since we cannot us 
the measurement of the RPM’s on a slipping wheel to calculate 
turning distance, this could lead to issues in localization. The best 
way to avoid this issue was to replace the clutch with a center 
differential so the wheels can move at different angular velocities. 
An additional benefit to this change is that it will makine turning 
smoother in the process. A photo of the clutch and center 
differential is shown in Figure 44. 
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Figure 44- Center Differential (left) and Clutch (right)  

 
5.3.1.2. Springs  
 
After loading the weight of the battery, NVIDIA Jetson-TX2, and 
the ZED camera, the springs on the vehicle’s front shocks were 
not stiff enough to prevent bouncing. Research was done to find 
springs from Traxxas or other companies that cater to hobbyists, 
but the price range and shipping times were absurd for what we 
were asking for. Instead, it was decided that a second spring 
would be placed in parallel with the original. Two springs in 
parallel function the way that two capacitors in parallel do (see 
Figure 45).  
 

 
Figure 45- Two Springs in Parallel 

 



 
 

106 
 

In the case of the capacitors, the overall capacitance increases 
to the value of the two capacitances added together. In the case 
of the springs, the spring stiffness increases to the value of the 
two spring stiffness’s added together. A picture of the two springs 
in parallel on the vehicle is shown in Figure 46. The new springs 
were obtained in an Ace Hardware and then were cut in half, and 
each half was placed on the inside of one of the front shocks. 
This removed the bouncing issues entirely and will be done to 
every vehicle constructed by the senior design team.      
 

 
Figure 46- Two Springs in Parallel on the Shock 

5.3.1.3. Servo Testing 
 

To determine our steering angles, we performed tests using a 
function generator and the Arduino UNO to find the range of 
pulse width’s that controlled the servo angle without damaging 
the servo. After we determined our steering angle range, we 
programmed the Arduino UNO to implement changes in wheel 
speed. The goals of our tests were as follows: 
 

o What frequency should we run our pulses so we get the 
largest range of control via duty cycle? 

o What is the range of our steering angles? 
o How can we get our UNO board to create the necessary 

pulses and pulse widths? 
o How can we change the speed the wheels change its 

angles at? 
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o How do we make the change in wheel speed independent 
of distance between 2 different steering angles? 

 
5.3.1.3.1. Determining Pulse Widths  
 
To determine our necessary pulse-width range, we began by 
attaching our servo’s control wire to a function generator running 
a pulse at 50 Hz, the positive voltage wire to a 5 V DC source, 
and the ground wire to the ground of the servo. The grounds are 
connected through a breadboard. This configuration is shown in 
Figure 47 below.  

 
Figure 47- Test Setup for PWM Measurement   

 

We began by placing the duty cycle at 50%, and then turned on 
the servo. We saw the servo try to extend past its maximum 
range and immediately powered off the generator. We then 
lowered our duty cycle consistently until we found ourselves in 
the middle of the working range. We then increased and 
decreased our duty cycles slowly to find the range of our servo. 
Using this setup, we determined that pulses ranging between 
1100 microseconds and 1900 microseconds provided the full 
range of motion for the servo. 
5.3.1.3.2. Determining Steering Angle  
 
After determining our PWM range, we decided to attach a ruler 
to the outer front wheel of the vehicle. We adjusted the PWM 
through the entire range of motion in equal intervals of 0.01% at 
a frequency of 50 Hz and took photos after each change to 
capture the entire range of motion. We then used Photoshop’s 
ruler tool to find the steering angle of related to each pulse width. 
The test setup is show in Figure 48. Our final Steering angle 
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range was determined to be approximately 22 degrees to the left 
and 24 degrees to the right. We are expecting about 1 degree of 
error due to our method of measurement, so we assume we have 
23 degrees on the right and left side.  
 

   
 

Figure 48- Steering Angle Test Setup 

 
5.3.1.3.3. Determining PWM Frequency  
 
After determining our steering angle and range, we tried 
numerous ways to change the PWM frequency of the Arduino 
output pins. We discovered methods involving using delays, but 
due to the extra memory consumed by the code, the inability to 
use dividers, and the amount of variables we needed to pass to 
a function to implement a variable pulse width, we decided to use 
the standard 50 Hz signal that is output when using the 
Servo.write command in Arduino’s Servo library.  
 
While the difference in pulse quality was minimal (see Figure 49), 
we encountered issues when trying to run the servo using the 
servo library. We received a much smaller range of total points 
than expected and a lower quality pulse. Arduino’s servo library 
is supposed to be able to adjust for different pulse widths, but 
adjusting our range to match the range we had calculated led to 
a smaller range than the default one. Instead of having 180 points 
like we originally thought we would, we were left with a total of 
53. These 53 points, however, gave a mostly linear response for 
our steering angle. A graph of steering angle and duty cycles 
created by the Servo.write command is shown in Figure 50.  
Table 26 shows the final results of our testing to this point.  
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Figure 49- Pulse from Function Generator (blue) vs. Pulse from the Arduino UNO 
(yellow) 

 

 
 

Figure 50- Duty Cycle vs. Steering Angle 

 
Table 26: Turning Parameters 

   
Parameter Measurements 

Frequency of Control Signal 50 Hz 

Duty Cycle Range 5.5%-9.5% 

Steering Angle Range 46 degrees 
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5.3.1.3.4. Changing Steering Angle Speed 
 
After obtaining our range of motion and the input range for our 
vehicle, the next step became to implement code to allow for 
variable changes in steering angle e.g. changing 10 degrees in 1 
millisecond or 10 degrees in 10 milliseconds. Figure 51 below 
shows the logic which was developed to achieve this. Figure 52 
shows the logic implemented in the smoothing function which is 
used to prevent jerking motions resulting from linear servo 
movements. 
 

 
Figure 51- Smooth Steering Logic 

 
 

 
Figure 52- Smoothing Function 
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5.3.2. Measuring Motor Speed 
 
The next step in setting up our vehicle was to determine the 
speed of our motor. Using this data, we approximated our wheel 
speeds using the gear ratios between the spur gear, center 
differentials, and front and back differentials to obtain speed 
assuming the wheels do not slip. In order to measure motor 
speed, we decided to use Traxxas’ Hall Effect sensor, which was 
specifically designed for the Traxxas Slash 4X4. The sensor 
testing consisted of measurement of voltages and writing a code 
to detect the movement of a magnet attached to the spinning 
motor gears. The testing setup is shown in Figure 53. The sensor 
is placed in a small compartment near the spur-gear. It can be 
seen surrounded by a red rectangle in Figure 54. 
 

 
Figure 53- Hall Effect Sensor Testing and Coding 

 

 
Figure 54- Installed Hall Effect Sensor  

 
The magnet was then placed in front of the sensor to find the 
output voltage. The output voltage measured was about 0.004 V, 
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which was too low to be usable. To circumvent this issue, a 1 kilo-
ohm pull-up resistor was connected between the magnet and the 
sensor to raise the output voltage to boost the voltage above 3.3 
V so it could be detected as “on” by the Arduino UNO or the 
Jetson board. When the magnet is introduced, the voltage goes 
back down to 0.04 mV. The output of the sensor was then 
attached to digital pin 2 of the Arduino, and whenever a “0” is 
detected, the Arduino updates a counter called revolutions. After 
100 revolutions are detected, the code then calculates 
revolutions per minute using Equation 8, where the time is 
measured in milliseconds using the millis() function in the Arduino 
library. The program flow is described in Figure 55.  
 

𝑅𝑃𝑀 =
100

𝑚𝑖𝑙𝑙𝑖𝑠()
 

 
Equation 8. Revolutions per Second  

 
 

 
Figure 55: RPM counter flowchart 

    

5.3.3. Three-Dimensional Modeling – Initial 
Proposition 

 
Prior to assembling any product, one must achieve a 
visualization of any and all components and how they are to be 
fit together for the most efficient design. In terms of autonomous 
vehicle design, each outfitted sensory or computational 
component must be modeled to-scale to adhere to the project’s 
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special requirements. In addition to location, the relative weight 
of each object must be considered as to not offset the vehicle’s 
center of mass. The following document contains the first 
proposed model of all components adhering to the basic RC 
vehicle chassis.  
 
To produce a visual three-dimensional model of the, AutoCAD 
2016 software was utilized. The vehicle chassis was traced from 
an image and rasterized as accurately as possible for the current 
visualization requirements. Once the chassis was converted to a 
three-dimensional scale, each component was created one-by-
one and added to the chassis. Multiple levels were introduced 
above the chassis, as to consider the range of vision of sensor 
inputs as well as special crowding. The requirements for a 
successful representation are as follows: 

 
o Three-dimensional visual rendering of the vehicle 

depicting all major components 
o To-scale representation of components added to 

chassis 
o Relative weight considered of each component to 

center of mass of vehicle 
o Three-dimensional representation of new center of 

mass 
 

5.3.3.1. Data Collection 
 
The initial step taken in this task was to take to required 
measurements of all components. In Table 26, one may observe 
all dimensions to be modeled. Weights were also considered for 
center of mass computation. In terms of processing and sensory 
units, The NVIDIA Jetson Launchpad’s dimensions and weight 
were considered; however, the UNO microcontroller, GPS-
14030, SparkFun 9DoF IMU, DAOKI 5 PCS IR sensor, WYPH 
Ultrasonic sensors, and the printed circuit board were all 
approximated. These dimensions and weight were considered 
negligible compared to that of components that occupied much 
more space or were too difficult to model with exact 
specifications. They were, however, still modeled from 
assumption.  

 
Table 26: Important Values of Components 
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Parts / Components Dimensions (inches) Weight 

Traxxas Chassis 22.0 x 8.0 x 3.30 2.28 kg 

Aux Battery 8.0 x 5.52 x 1.25 1.26 kg 

USB Hub 6.60 x 2.0 x 0.75 0.5 kg 

NVIDIA Jetson 8.75 x 8.25 x 4.75 1.54 kg 

WIFI Router 7.0 x 4.50 x 1.50 0.3 kg 

Stereo Camera 1.25 x 6.75 x 1.20 0.16 kg 

Scanse Lidar 2.50 x 2.50 x 2.40 0.2 kg 

 
5.3.3.2. Model Design 
 
Multiple factors had to be considered with the initial design: 
spatial occupancy, center of mass, sensor field of vision, and 
reserved space for interconnectivity between components.  All 
components considered, the model was rearranged multiple 
times before coming to the initial proposal. Two additional tiers in 
the vertical z direction were introduced, the material and exact 
dimensions of which are unknown at this phase. Support beams 
for these tiers are envisioned to be mounted on the lateral 
bumpers of the chassis as well as towards the anterior chassis 
point. Cylinders and suspension mechanisms were best modeled 
from tracing the image of the chassis, but should not be taken as 
absolute at this phase.  
 
The vehicle engine and several other stock components were 
best approximated from this image as well. Center of mass was 
approximated using the “massprop” command in AutoCAD. This 
command is designed to approximate the center of mass relevant 
to the origin. In this case, the origin was placed at the center of 
the anterior bumper, and at the vertical z-axis of the center of the 
wheel. The center of mass was aimed to be lower on the z-axis 
and as close to the original x-y axis as the original chassis. 
Center of mass is a key factor to consider for the prevention of 
vehicle slipping or becoming too top heavy and rotating on its 
side. Therefore, the heaviest objects were placed in such a way 
to counteract the overall displacement. The NVIDIA Jetson board 
was first placed directly on the chassis surface, as it is a very 
heavy and spatially cumbersome object. The NVIDIA board 
occupied nearly every bit of space on the chassis surface, 
leading to all other large components to be mounted above it. 
The second heaviest object, the auxiliary battery pack, was 
considered next; it was placed in such a way to not introduce 
positive (z-axis) pitch to the anterior. This positive pitch would 
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increase the likelihood of slipping as the anterior wheels would 
not have as much weight on the surface. The USB hub had to be 
placed in a manner to allow a good amount of access from all 
directions, as multiple components would be connecting to it. 
Working upward, it was of importance to allow all sensors to have 
an unobstructed view. This involved the stereo camera mounted 
in the anterior direction, and the LiDAR mounted at the top-most 
region of the design. Infrared was placed at the top anterior and 
SONAR was placed lower to the ground in both anterior and 
posterior regions. Finally, the additional boards such as the PCB, 
IMU, and the GPS module were placed in a way to allow 
connectivity and to avoid crowding / overheating.  
 
Connectivity and subsequent wiring between components and 
modules had to be considered. By utilizing multiple levels, one 
may envision the connections adhering the surfaces of the tiers 
both on top and underneath. Because the NVIDIA board’s grand 
special occupancy prevents wiring on the top of the chassis, the 
support rods to these multiple tiers were designed hollow to allow 
protected wiring between levels. Space was reserved around the 
edges of each tier and between modules to allow convenient 
wiring paths.  
 
Future alterations to this concept design may arise from several 
factors. For example, upon constructing the physical model, it 
may be apparent that the center of mass needs to be altered for 
a desired motion characteristic, such as being able to turn at 
faster speeds or sharper angles. Sensors may need to be added 
for proper functionality, or existing sensors may require a 
different location. Additionally, it may be the case that 
components are altered entirely due to an insufficient provision 
to the system, or to a better option as far as special and weight 
metrics are concerned. Most likely, wiring and connectivity will 
become the culprit to repositioning components to allow a secure 
connection to its power source and data destination. In the 
following section, one may consider several figures to better 
visualize this design.  
 
5.3.3.3. Initial Model Visualization 
 
In Figure 56, the model of what has been described in the 
previous section can be seen. The “concept” view in AutoCAD 
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was used to visually render each component as a solid while 
displaying the outline. Table 27 details the different components. 
Note that the SONAR sensors are not visible here. Center of 
Mass is depicted by the cross of two, thin cylinders. The WIFI 
router was chosen to be placed upside-down to avoid the 
antennae obstructing the view of the LiDAR scanner. It was 
considered that this configuration would have no consequences 
of significant proportions in data transmission.   
 

 
Figure 56- Component View with C.O.M. 

 
Table 27: Locations of Components in Figure 46 

 
Point Component 

1 LiDAR 

2 GPS / IMU / PCB / UNO 
3 WIFI Router 

4 USB Hub 

5 NVIDIA CPU 

6 Stereo Camera 
7 Aux Battery 

8 IR Sensor 

 
In Figure 57, the “X-RAY” view was rendered in AutoCAD. This 
allows one to better visualize the placement of components. One 
may also observe various measurements in the y-z axis. The 
center of mass in the x axis was 0.8 inches away from axis, and 
considered to be nearly negligible. With the addition of the tiers 
and components, however, the y and z centroid were greatly 
altered. However, because of inaccuracy of the NVIDIA Jetson 
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board component model as well as the chassis, one may imagine 
that the true z-axis centroid is lower to the ground.  

  
Figure 57- Profile View and Measurements (inches) 

 
It can clearly be seen that the total height of the system greatly 
increased in order to house all components. This must be taken 
in consideration as a negative tradeoff, and may require 
alterations in the future to avoid tipping scenarios. Height of the 
lower tier was modeled to be approximated a quarter inch and 
the second tier to be an eighth of an inch; however, these may 
prove unsuitable in practice. The following Table 28 describes 
each distance for clarification purposes: 
 

Table 28: Center of Mass Calculations 
 

Measurements Dimension 

11.5 Total height from ground 
 

5.5 Height of z-axis centroid 
 

3.3 Wheel height from ground 
 

2.3 Top of chassis from ground 
 

5.5 Top of first tier from chassis 
6.8 Top of second tier from chassis 

 
5.3.3.4. Model Design Revision – Current Layout 
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Upon physically interacting with the Traxxas 4x4 Slash vehicle 
chassis, it became clear that the initial design would not be the 
optimal solution. Several factors contributed to the necessity of 
changing the schematic almost entirely. First, the Traxxas kit 
included a thin, see-through, plastic body in the shape of an 
actual vehicle. This was not initially considered as an option, and 
was kept in the design for aesthetic and protective purposes. 
Because of this body inclusion, a multitude of spatial constraints 
were introduced, mainly height. Holes were cut into the body to 
allow the stereo camera and LiDAR to have an unobstructed 
view. Furthermore, the vehicle’s actual shape and contours were 
not accurately represented from the images used to create the 
initial proposal. Shock placement, bumper shape, wheels and 
suspension were able to be modeled more accurately and as a 
result, changed the layout significantly. Lastly, it became clear 
that the rear bumper was sturdy enough to support multiple 
items.  
 
With the aforementioned considerations, the design changed 
drastically. The multiple tiers were reduced to one platform and a 
rear “fin”. This platform was envisioned to be bolted to the chassis 
suspension while the fin would be attached via a hinge and lay at 
an angle, supported by the rear bumper. The hardware was 
reduced as much as possible: the casing for the USB hub was 
removed, the NVIDIA Jetson board was taken off of its mount 
while leaving the vertical spacers, the front cover of the auxiliary 
battery was removed, and the rear body mount rods were 
removed from the chassis to provide spacing for the auxiliary 
battery. Lastly, the WIFI router was removed entirely; it shall be 
locally present in the area to pick up the signal, however two 
antennae and a small transceiver shall be the only devices 
mounted directly to the vehicle. The infrared sensor, 
unfortunately, did not operate to the desired efficacy and shall 
remain out of the design, tentatively. The printed circuit board 
shall be fixed onto the auxiliary battery along with the GPS 
module.  
 
This new configuration proved advantageous in multiple ways. 
First, the center of gravity could now be kept lower to avoid 
tipping and slipping. The streamlined fashion of the new model 
not only looked more professional, but also served better in the 
dynamics of the moving system. The body now served as a 
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housing to all components, this removes the likelihood of damage 
to the valuable sensors in a collision scenario. Clearly, tradeoffs 
are always present between designs; by using a minimalistic, 
one-tier approach, a variety of individual mounts and platforms 
needed to be precisely designed in order to properly integrate 
and support all components. These designs are discussed in the 
following section. The current model can be seen in Figure 58, 
please note that not every component is visible. 

 

 
Figure 58- Design Revision, Current Layout 

 
5.3.3.4.1. Supportive Structure Design  

 
To design the current (revised) model, it was necessary to outfit 
the chassis with supportive structures for all sensory and 
hardware components. This is done in order to both protect and 
to allow all methods of sensory and computational power to 
operate independently, while abiding by spatial and temperature 
constraints. To accomplish the desired configuration, many 
additional designs would be required.  
 
Upon initial observation of the chassis, it became clear that many 
structures would be required in order to properly brace all 
additional components. AutoCAD software was found to be the 
most applicable method of design in which to cater to specific 
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requirements. Objects were either laser cut or 3D printed in order 
to adhere to the very specific dimensions and to avoid the 
necessity of adhesives. All constructs were created in the UCF 
T.I. Innovation Laboratory and designed to uniquely fit the needs 
of this project.   
 
The methods of the AutoCAD technique shall not be discussed, 
as they of preference to the designer. However, it is worth noting 
that the process of design involved precise measurements and 
modeling to-scale. Grid snapping and mirror functions in 
AutoCAD were utilized to ensure a symmetric and accurate 
product. Two-dimensional designs were used for objects that 
were laser cut, while three-dimensional models were used for all 
others. It was importance to consider the orientation of the object 
when 3D printing, as the structural integrity could be 
compromised if printed from an arbitrary start point. For the more 
complex designs, such as the LiDAR mount, a mold was printed 
simultaneously around the design to ensure that the structure did 
not collapse during the fabrication process. Resolution of the 3D 
printer had to be taken into consideration, as well as object 
shape. Below is a list of our requirements for our mounts: 

 
o Platform mount must be bolted to chassis 
o All cables and wiring must not be obstructed by mounts 
o All volumes kept under five cubic inches in 3D printing 
o No adhesives to keep any mounts together 
 

5.3.3.4.2. Platform and Mount Design 
 

The initial, and possibly the most important, design was that of 
the platform. This platform would serve the purpose of mounting 
the main computational hardware such at the NVIDIA Jetson 
board. It also served sufficient space to allow mounting of the 
USB hub and the Arduino UNO board. Several revisions of this 
mount were necessary to obtain the proper spacing. The platform 
was the only mount to adhere directly to the chassis. For this 
reason, the design specifics needed to fit with the bolt 
placements already in place with the Traxxas RC chassis 
product. Multiple factors also came into play when designing the 
platform: spacing availability for pulling cable, grills for heat 
convection, and avoiding the wheels at maximum displacement 
in all three axial directions.  
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The initial templates were cut into wood of 3/16” thickness. While 
this material served the structural requirements, it was surmised 
that better options were present. The final material was chosen 
to be Plexiglas for a balance of rigidity, flexibility, and heat 
conduction. In addition to these factors, Plexiglas was deemed a 
proper fit for the simple reason of the ability to see through the 
substrate. This visibility factor provides the designer with a great 
convenience of being able to see what is happening throughout 
the system’s levels. The thickness of the Plexiglas was chosen 
to be 5mm to provide stability and ease of laser cutting. Two-
dimensional laser cutting was chosen as the most accurate 
method for this design. 

 
Through a sequence of adjustments, the final product was 
accepted to adhere to the requirements. Radial anterior edges 
were introduced as to not collide with the tires if the vehicle were 
to experience maximum compression of the suspensions 
system. A ventilation grill was placed between the top-mounted 
Jetson board and the Arduino board, mounted underneath. The 
rear fin was eventually mounted with a hinge to the rear of the 
platform.  
 
A rear “fin” was designed in order to support the bottom of the 
auxiliary battery, as it lay at an angle from the rear bumper. This 
fin generally followed the shape of the rear bumper to keep from 
protruding too much, laterally. A hinge was used to fasten the fin 
to the rear of the platform. Ventilation grills were placed down the 
fin to allow heat convection from the auxiliary battery. Perhaps 
the primary purpose of the fin, however, is to allow the battery to 
be secured via straps. Without fastening the battery, it would 
have the ability to slide which is extremely undesirable in a 
collision or turning scenario – considering the heavy weight of the 
object. By designing “buckles”, one may envision that a strap be 
fed through the buckle on each end of the fin and tightened 
around the battery to prevent any slipping. The fin was mounted 
directly to the rear bumper by drilling holes in the material.   
 
Holes were placed in platform for the shocks have ample room 
through critical moments (6) and the back of the platform 
extended for a front strap to secure the battery-pack. The rear fin 
(7) will be secured to the back bumper and will also have a strap 
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for the battery. Additional openings, in the front and rear, for the 
cables to run through (4), holes for the ventilation of heat (5), and 
holes for battery straps to loop through (8) were added to the 
platform design. When placing the ventilation holes, we had to 
avoid the areas where the mounting of hardware would take 
place. The NVIDIA CPU (2) will be mounted to the top of the 
platform while the Arduino UNO (1) and USB HUB (3) will be 
secured to the underside. The current design is shown below in 
Figure 59. 
 

 
Figure 59- AutoCAD Platform Design 

 

The LiDAR camera needed to be positioned in such a way that it 
would have an unobstructed field of view while being immune to 
vibration. While all vibration is unavoidable, the mount needed to 
possess a minimum torque moment around the axes of rotation. 
In addition to these factors, the mount’s dimensions were 
designed very precisely to fit underneath the auxiliary battery 
while jutting forward, toward the anterior of the vehicle and the 
hole cut for the LiDAR to protrude through the roof of the body. 
The placement of this mount is shown in Figure 60. 
 
To minimize the torque moment as vibrations travelled through 
the mount, arches were put in place in three positions. The first 
arch will support the neck of the mount. The top surface of the 
mount was created with a rounded edge to better fit the circular 
nature of the LiDAR camera. By fastening the neck to the center 
of the top surface at an angle, two more arches were included to 
prevent the top surface from bending. Further considerations 
may include creating arms to fasten the top surface to any 
existing bolts on the NVIDIA Jetson board or to the platform itself.  
 



 
 

123 
 

Wiring was also taken into consideration, as the LiDAR camera’s 
wires needed to feed through the mount itself. The neck of the 
mount was designed to have a hole as well to feed cables 
through to the auxiliary battery. The base was designed to have 
a width and length to support bolts to the platform mount. Volume 
considerations were kept less than five cubic inches to save on 
materials in 3D printing. One may observe the LiDAR mount in 
the following Figure 61. 
 

 
Figure 60- LiDAR Mount Placement 

 

 
Figure 61- LiDAR Mount 

 

The stereo camera was chosen to be placed at the front-most 
region of the vehicle to avoid interference with LiDAR vision. By 
cutting a hole in the anterior of the body, the camera would fit 
easily through. Originally, it was intended that an angular 
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connection be fastened to the platform mount; however, it was 
then discovered that by utilizing a convenient “hole” in the 
Traxxas bumper, one could fit a mount vertically from the 
bumper. This particular piece of the bumper is an intermediary 
piece from the chassis, and therefore does not exhibit bending in 
a collision scenario. Because of this trait, the camera could be 
safely mounted from this point. 
  
To fit in this long, rounded hole, the mount needed to be designed 
with great precision in the x and y plane. To avoid sanding or an 
inaccurate measurement, it was decided that tapering the neck 
would allow the mount to fit tightly within the hole. The “head” of 
the mount draped over the hole to define the maximum boundary 
and to avoid sliding through the hole. Once the mount was fit into 
the hole, bolts were drilled into the sides to ensure a permanent 
placement. Further considerations may include an additional 
piece extending laterally to accommodate any tilt that the long 
stereo camera might experience. Figure 62, shown below, 
depicts this camera mount:  

 

 
Figure 62- Stereo Camera Mount 

 
For the placement of the antennae for the devices to 
communicate with one another, it was determined that they best 
be positioned toward the rear of the vehicle. This serves various 
purposes in both collision scenarios and the avoidance of 
obstructing camera or LiDAR fields of vision. This mount was to 
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be designed at an angle to adhere to the rear bumper, which 
tends to an angle of about forty degrees.  
 
Two cylinder-shaped supports were designed to protrude from 
the base in order to house each antenna as it was screwed in. 
Holes were measured with precision and consideration taken to 
allow the thin cables from each antenna to pass through the base 
of this mount. The mount itself was to be bolted directly to the 
rear bumper by use of drilling through the material. For aesthetic 
purposes, the UCF Knight’s logo was traced and etched into the 
base of the mount. It was mirrored on the mount in the hopes of 
an LED light being placed behind the mount itself to shine the 
“Pegasus” onto the floor as the car drives. This mount is depicted 
in Figure 63: 

                                                                                   

 
Figure 63- Antenna Mount 

 
In placing the battery as an overlay above the NVIDIA Jetson 
board, it required that the stock body mounts in the rear be 
removed. These mounts are intended to support the clear, plastic 
body and secure it to the chassis. A new body mount had to be 
constructed to properly fasten the body in both the front and the 
rear. These designs mimicked closely Traxxas’ design; simply, a 
thin cylinder with a small hole for a metal clip. This cylinder will 
protrude through the top of the body until the body meets the 
conical brace. The protruding portion has a 2mm hole for the 
stock metal clip to prevent the body from sliding, but also allow it 
to be removed. A base was designed for this rod mount, as it 
would be bolted directly to the platform. This design is shown in 
Figure 64 below. 
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Figure 64- AutoCAD Designed Body Mount 

 
As the product was assembled with the aforementioned 

structural support mounts, it became evident that the USB hub 

would no longer be able to remain in the initial position. This issue 

was mainly due to the connectivity factor of nearly all other 

modules to this destination. USB cables are inherently bulky, and 

therefore needed ample room to avoid damaging the cable. 

Furthermore, rearranging these cables at any point was an 

arduous task due to the spatial constraint. The optimal location 

for the USB hub was found to be on the lateral edge of the 

Plexiglas platform; thus, a mount was needed. While this 

particular design is not very complex, the dimensions were very 

sensitive to the USB hub's surroundings. An "L" bracket was 

considered for purchase, but for the goal of accuracy and 

professionalism, the bracket was designed to be a 3D print, and 

is shown in the Figure 65.  
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Figure 65- USB Hub Bracket Mount 

 

All mounts were 3D printed, attached to the laser-cut platform 
and the car's front and rear bumpers. The implementation of 
these mounts was seamless due to the attention to detail and 
drawing to scale during the design process on AutoCAD 
software. The primary mounts can be seen in Figure 66 below 
(USB mount and body mount not shown). The antenna mount 
can be seen on the far left and above it the rear fin. The platform 
can be seen and above it the LiDAR mount. On the right hand 
side the stereo camera mount can be observed attached to the 
front bumper.  
 

 
Figure 66- Final fabricated mounts and platform installed to the car 

5.3.4. SSH Connection 
 
In order to progress to the self-driving car, the Jetson must be 
removed from the ethernet connection to the wall. To achieve 
this, SSH was setup to connect to the Jetson via a terminal 
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through an ad-hoc network. This would allow the car to be 
controlled from a remote computer which could act as a central 
computer to connect several cars together.  
 
This was achieved by installing openssh server on the Jetson and 
host computer, then setting up the ad-hoc router to forward on 
port 22 (ssh) in order to connect to the Jetson via its IP address. 
 

5.3.5. Remote Connection 
 
While SSH would be sufficient for controlling the Jetson via the 
terminal, it would also prove useful to be able to have full control 
of the Jetson using a remote connection. The built-in program 
“Remmina” will be used to connect to the Jetson. 
 
Doing this gives full control over the car by a remote desktop, 
which will be useful for running tests and updating the software 
without having to connect it to a screen via an HDMI cable.  

 

5.4. PCB Details 
 
PCB design is a vital tool for Electrical Engineering students to 
master and the one of the purposes of senior design is to help 
students develop this skill. In an effort to build these skills, meet 
our Senior Design requirements, and further improve this project 
for our sponsors, we will design and assemble a Printed Circuit 
Board to perform a variety of beneficial advantages. This section 
will cover software, the basics of the manufacturing process, and 
specifications.  

 

5.4.1. PCB Manufacturing Process 
 
With the assigned task of designing and ordering a printed circuit 
board one can see that the process is not a simple one. Previous 
sections have covered the software that goes into the design but 
how exactly are these PCBs made? This section will provide 
insight into the chemical Etching process by which printed circuit 
boards are manufactured.   
 
Etching is the terminology used for the purposeful subtraction of 
undesired copper from a prefabricated laminate material. The 
copper material is used as the electrical traces on the board by 
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which the electrical signals are able to travel between 
components. The copper is first applied to a nonconductive 
laminate material, phenolic cotton paper, epoxy and many other 
materials can be used for the base laminate. The copper then is 
covered by a mask that obstructs the etchant’s ability to remove 
or etch away the copper material. Common acids that are used 
in this process are ammonium persulfate and ferric chloride. The 
mask is comes from a specific design file and exported to 
machines for application. The files can be made using software 
available from a variety of companies on the market as long as 
they are compatible with the manufacturer of your PCB. There 
are also many options for the application process of the masks.  
 
One way is by screening the copper covered laminate base 
material with tin and lead which does not react with the acid 
leaving bare copper to chemically react and disappear.  Another 
process available is to use an advanced printer called a plotter. 
The plotter printers administer photoreactive ink on two different 
layers. The first layer is for the etching process and uses black 
ink to denote the circuit traces and keep them from being etched 
away. The second surface layer is a solder mask that will be 
discussed in detail in the following paragraphs. These two layers 
work harmoniously to perfectly map out a printed circuit board 
design for a more streamlined manufacturing process.  
 
The mask is then removed by using a wire brush to scratch away 
the thin layers of tin and lead. After the mask is removed the 
drilling process can begin. Drilling holes in the PCB must be done 
using a drill capable of high RPMs and typically uses tungsten 
carbide coated drill-bits or laser cutting as to not completely 
destroy the copper traces. With the size of these holes and the 
high possibility of error automated drills are used to increase 
accuracy. The types of through-holes are just one way to mount 
components to the circuit board, in recent years surface mount 
integrated circuits and transistors have been developed. These 
components are much smaller and attached to small contact 
pads through soldering instead of punching through the board 
material.   
 
After pads or through holes for components are applied 
measures must also be taken to keep the copper from oxidizing 
and to increase its conductivity for the mounting of components. 
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To accomplish this solder, silver, nickel or gold can be coated on 
top of the copper traces, however any anti-corrosive metal will 
work just as fine. To keep areas on the board clear that are not 
meant for solder and to avoid the shorting of components by 
excessive application of solder resistant coating can often be 
applied. This resistive material is called a solder mask and is 
achieved through photo-sensitive coating. The layer is applied 
and put under light to become reactive. Once it is dry it is rinsed 
and the areas where the coating is undesired are carefully 
scrubbed and rinsed again.  
 
The final processing steps include the addition of text, insignia or 
important instructions to the board through printing or silk 
screening. After this step the board is coated and cured and 
ready for testing. There are many ways to electrically test these 
boards but by far one of the best is called a "Flying Probe test", 
which applies incredibly fast mechanical probes to examine the 
performance of all net and bus systems. Another method is bare 
board testing which employs resistive or capacitive theory to 
measure inaccuracies. The capacitive method is done by 
charging net traces and validating using probes. The resistive 
approach to bare board testing follows the principal that metal 
elements have low resistivity, and to confirm this meters are used 
to check expected resistance versus the measured values. The 
resistivity of a metal is dependent on: its length, thickness and 
chemical properties; all of these values are known from the 
design files and using software can be calculated for each 
branch, net or bus of circuit traces.   
 

5.4.2. PCB Manufacturer Selection  
 
The selection of a PCB manufacturer will determine the overall 
effectiveness of our board and could impact our timeline. 
Selection will be based on price and turnaround time for the 
manufacturer to build and ship us our PCB. All manufacturers will 
be based in the United States to decrease shipping costs, and 
more importantly, save time. Overseas manufacturers will take 
approximately 2 months to ship via boat from Asia, which is 
dangerous if an error occurs in our design and we need to 
purchase a new one. The manufacturers considered were 
recommended by various other ECE and EE students in senior 
design 2 who had already received their PCB’s.   
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5.4.2.1. 4PCB 
 
The first recommended manufacturer we looked into was 4PCB. 
This company is based in the United States and by choosing 
them we would decrease our shipping cost and time. They also 
provide a wide variety of advanced circuit board design methods 
such as laser or bit drilled micro-vias, cavity boards, addition of 
heavy copper (up to 20oz of copper), boards with up to 40 layers, 
microwave and RF boards. The reliability of this company can be 
seen by its list of clientele which includes companies within the 
medical, military and commercial sectors of business. The 
company also provides PCB Artist, a free software for designing 
printed circuit boards, which will ensure compatible files types 
with all their machines.  
 
A standard PCB order from 4PCB allow for up to 10 layers, FR-4 
laminate, Lead free HAL layering, up to 2oz outer copper weight, 
and a size of 5 x 5 mils which can be finished and shipped within 
5 days. However a custom PCB package includes access to 
more materials in laminate, and solder layers, higher dimensions 
of design, up to 40 layers and many other benefits but depending 
on the level of complexity these design can have a 4 week design 
and shipping process. This company uses the bare board and 
flying probe electrical testing mentioned above for PCB orders to 
ensure functionality. Among these electrical tests is a massive 
list of other electrical tests available for checking current flow, 
impedance, continuity, electrical leakage, field-effects, and 
shorts. 4PCB also provides customers with a great online order-
tracking system so expected shipping dates can be counted upon 
and monitored.  

 
5.4.2.2. OSH Park 
 
The second recommended manufacturer was Osh Park. One of 
OSH Park’s biggest selling points is free shipping anywhere in 
the world from the United States, and a clear set of design rules 
they use for printing and producing PCBs. They provide 2 and 4 
layer PCB’s at varying costs based on shipping times and layers. 
All OSH Park PCB’s come with a purple mask over the bare 
copper and an ENIG finish.   
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The most expedited turnaround time for a 2 layer board has a 
cost of $10 per square inch and takes only 5 business days to 
ship. The board maintains a 63 millimeter thickness and has a 
copper weight of 1 oz. The minimum design standards for a 2-
layer PCB are a 6 mil trace clearance, a 6 mil trace width, a 10 

mil drill size, and a 5 mil annular ring.  
 
The boards can also be made with 4 layers and have easier 
design constraints concerning annular ring size, trace width, and 
trace clearance at $10 per square inch. OSH Park 4 layer boards 
also have a FR408 Substrate. Unfortunately, the PCB’s have a 
minimum turnaround time of 9 calendar days, and can take up to 
a month depending on the chosen service. 
 
5.4.2.3. PCB Manufacturer Summary 
 
In consideration of our budget and time constraints a decision for 
the circuit board manufacturer was discussed by between group 
members. It was decided that heightened cost for decreased 
development time would be a more ideal trade off due to possible 
redesigns, damage or errors that could occur in the next phase 
of this project.  
 
The group decided that 4PCB would be the best option for this 
part of the project. Their attention to detail and wide range of 
available services sets them apart from other services. Their 
extensive electrical testing procedures will ensure the reliability 
and functionality of our design and will decrease the likelihood of 
a future resdesign. 4PCB has options for 24 hour design which 
will suit our needs, and because our PCB will not require 
advanced manufacturing techniques we will be able to choose 
this expedited option. The comparative cost of 4PCB versus 
other options was not higher, especially because we will not 
require complex design methods. The PCB design will be 
discussed and an initial prototype will be shown in a later section. 
 

5.4.3. PCB Design Software Selection 
 
In an effort to model the PCB accurately and make design 
process go as smooth as possible multiple programs available 
were researched. Important parameters that were examined and 
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considered were costs of manufacturing and software, customer 
reviews, and software features. 
  
5.4.3.1. EAGLE 
 
EAGLE is an acronym that stands for Easily Applicable Graphical 
Layout Editor that was developed by CADsoft computer GmbH 
that was bought by Autodesk in 2016. EAGLE is an electronic 
design automation software useful for designing circuit 
schematics and printed circuit board design.  
 
EAGLE has some great features that make it easy to use for 
beginners and even professionals. One such tool that we would 
find useful is called auto-routing, this feature automatically 
connects traces on a PCB design for connections specified by 
the circuit schematic created by the user. This program multiple 
files types for layout files, and drill files that are used by most 
PCB fabrication companies. Even if a company does not 
specifically use EAGLE (.BRD) file types this program is so 
widely used that companies who do not have conversion 
software that accepts this file type.  
 
This program uses multiple windows and a menu system for the 
creation and editing of files and can be controlled through mouse, 
keyboard or the use of an embedded coding window. EAGLE 
makes their software available to students for free, which is a 
huge positive and will play into the decision. The free student 
version allows a PCB of 4 square-meters to be made with up to 
6 layers, this is a value of up to $700 a year.  
 
Other features include checks and failsafe programming to make 
sure there are no fatal errors in your design, and real-time 
changes, so if a change is made to a schematic the PCB layout 
will reflect changes as soon as they are made. The PCB design 
software has intuitive alignment tools and obstacle avoidance 
trace routing so moving components about is made easy and will 
never interfere or cross paths. Also included within this software 
is the ability to design 3-Dimensional renderings of your finished 
PCB with components on board.  
 
The online community for EAGLE supplies video and other 
tutorial materials for beginners, this support would be extremely 
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valuable to our team. Other valuable resources provided by this 
program are the libraries of the companies that use EAGLE to 
design their products. For this purposes of this project the 
Arduino, SparkFun and Adafruit libraries will provide valuable 
schematics and insight in the integration of these products into 
our PCB design. However, John Teel a circuit design software 
reviewer describes eagle as difficult to use and recommended 
days to weeks of learning before one can become proficient 
enough to design. Other reviewers online do agree that EAGLE 
can be quite difficult and frustrating however through use of 
online tools like youtube tutorials this program can be learned 
decently fast. 
 
5.4.3.2. Altium 
 
The first version of Altium was first created in 1985 and continues 
to be a user favorite in PCB design software. Altium extends to 
many different market places from automotive, aerospace and 
defense, and life sciences, to consumer electronics. Perhaps the 
top rated software in the field with hopes becoming an industry 
leader by 2020,  this top of the line software does not come 
without a steep price of near seven-thousand dollars. Some of 
the tools included in this package are Altium Designers, 
CircuitStudio, CircuitMaker, and NEXUS amoung other programs 
for embedded software, data management and integration 
services. The programs relevant to this project will be discussed 
in detail below.  
 
Altium Designer is a complete schematic and layout program 
packed with features the company hopes will bring back 
innovation and make Engineer’s jobs feel less mundane. One 
such feature is a Unified environment that connects schematics, 
PCB layout and documentation that promotes a seamless 
exchange of information between all the various components of 
the design process. Intelligent auto-routing features help to 
reduce error and assistance programs to help your design be the 
best that it can be. Other features include: integrated tasking pin 
mapper, streamlined design rule editor, component placement 
system, among many other useful tools.    
 
CircuitStudio is Altium’s professional PCB design software made 
for entry level users. This program from Altium has a much lower 
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price point of almost $700. User reviews say that is extremely 
easy to use and intuitive. This program will import EAGLE files to 
enable users to easily switch over to a newer software. 
CircuitStudio comes equipped with tutorials in the program to 
help beginners quickly becomes proficient circuit designers. 
Features included in this program are: Component creation and 
finding equivalent replacement components, XSPICE simulation, 
Multi-Sheet Design structures, Pin Swaping, Creation of unique 
board shapes, and generation of outputs.  
 
Altium does have a free, community ran and open source 
program called CircuitMaker with no limitations. CircuitMaker 
allows for full PCB design with 16 signals and 16 layers with no 
restrictions on PCB size that can be made. This program is 
community based so users can get help from hobbyists and 
professionals with their design concerns. With expansive 
component libraries this program searching by company and 
model number for desired parts or even the creation of your own 
is incredibly easy.  
 
Other features of this program are Push-N-Shove Routing, 
Topological AutoRouter, DRC/DFM Validated Outputs, and the 
ability to import designs from other tools. User reviews seem to 
reflect highly on this free Altium program, from tinkerers to 
Engineers it is agreed that this program is fresh and much need 
in the EDA community. This program seems to be an excellent fit 
for our budget and with community sourced data and resources 
available it would help reduce possible errors and improve our 
overall design and efficiency.  
 
The sponsors of the project requested that we use a well-known 
and reliable software for the design of our board so for this part 
of the project the final decision is to use the EAGLE software. 
The availability of tutorials and resources from other online 
communities will aid our team in maneuvering this often-complex 
software. The versatility of EAGLE output files will also enable us 
to shop around for the most cost-effective producer to 
manufacture our design.  
 
5.4.2.3. KiCad EDA 
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KiCad is a free, cross-platform open source Electronics Design 
Automation Suite that was originally developed in 1992 by Jean-
Pierre Charras. KiCad now utilizes help from developers at the 
European Organization for Nuclear Research, otherwise known 
as CERN to create more advanced tools for its software design. 
Other contributors to the success of KiCad include Raspberry Pi, 
Arduino, and Digi-Key.   
 
KiCad has many component libraries available and for a project 
where something cannot be found the software can import files 
from more popular programs like EAGLE. KiCad’s schematic 
capture tool is called Eeschema, and boasts that it is limitless and 
easy to use by breaking up large schematics in hierarchical sub-
sheets.  The schematic software has Electronic Rules Check 
(ERC), and component symbols that are coupled with footprints 
for the PCB design layout tools. Eeschema allows for the export 
of schematics from popular programs like Pspice, and Cadstar. 
KiCad brags that its libraries are extensive and constantly 
updated to account for the newest trends and products.  
 
The PCB design of KiCad is managed by something that they 
called PcbNew. Similar to Eagle this software automatically 
avoids obstacles and pushes other traces out of the way when 
you are drawing new traces between components. Length tuning 
in PcbNew allows users to trim the length of traces and shrink the 
circuits to increase overall speed of the design. PcbNew supports 
32 copper and technical layers of PCB design and a maximum 
size of 2.14 square-meters all with nanometers of precision. User 
reviews say that KiCad is easier to use than EAGLE but still has 
some negative attributes. Recurring user complaints are that the 
component list is small, and when making a new component in 
the program it must be done twice which can be time consuming.  
 
Other problems reviewers remarked on was the outdated user 
interface that feels outdated and menu options that are out of 
place or not organized intuitively. The downside to free software 
is that there is little or slow maintenance done, users complain 
that the stable version is extremely old and when downloading 
updates code can be dysfunctional for weeks sometimes if it is 
being modified by KiCad software technicians. This all taken into 
account we move to another program.  
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5.4.4. PCB Design 
 
Ideas for the functionality of our design came from discussions 
with our Senior Design advisors, project sponsors and 
brainstorming sessions within our group itself. Our PCB Design 
as stated in the Requirement Specifications will include the 
following features: 
 

• LCD Display for data display (Speed, Direction, Heading, and 
Car battery level)  

• Battery Level Sensing Circuit 

• LEDs for headlight, taillight and turning signal simulation  

• Additional LEDs for car state management  

• Temperature Sensor and Fan to monitor and regulate heat 
 
The PCB will utilize an ATmega328P Integrated Circuits (IC) that 
will be pre-programmed using the Arduino UNO Rev3 
development microcontroller. A 16 x 2 LCD array will be used to 
display the data listed above in an effort to show imperative data 
during the testing phases. The LCD will require a voltage 
regulator to supply a dedicated 5VDC to utilize the full brightness 
of the backlight and also to display all of the data. In initial testing 
of the LCD data display would only happen with a dedicated 5V 
supply. To avoid any possible issues from maximum current 
draining, voltage drops or power surging in a failure situation the 
regulator will be a necessary component to maintain integrity of 
the supply voltage.  
 
IC pins will be used to drive the LEDs, control the temperature 
through a sensor and turn on a 2 x 2 fan. The PCB board will 
receive the cars autonomous driving state (forward, back, left 
turn and right turn) from the NVIDIA controller and reflect these 
states on the headlights and taillights. When the car is in a 
forward driving state the front LEDs will go high, when the car is 
stopped all the LEDs will light up, when the car is turning in either 
direction the LEDs on that direction will blink similar to turning 
signals seen on the road. This will help to indicate errors in the 
drive state of the car for maintenance, will make our vehicle 
function aesthetically to a real-world car on the road and the 
programming could be applied to a full-size car project in the 
future. 
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The temperature sensor will be located on the opposite side of 
where the NVIDIA CPU built-in fan is located. Regulating heat 
will be vital to the protection and functionality of our components. 
If the temperature sensor is reading outside the acceptable 
operating range of the NVIDIA or the portable battery pack (for 
the NVIDIA over 80 degrees Celsius) then a fan will be triggered 
on. An additional temperature sensor will be placed near the car's 
battery pack to ensure that it is functioning correctly. The PCB 
will be placed on the ar end of the car, to shield the PCB from 
heat a heat sink will be installed. To power our PCB, we will be 
using the 5V supplied by our USB hub via a customized power 
cable that will connect to the female barrel power connector 
soldered to the board. This type of power connector will be easier 
solder than a micro or mini USB female power connector.  
 
For the car battery voltage monitor, the output voltage of the car's 
battery will be divided using a resistor network to a more 
manageable level. This small voltage will be read by the Arduino 
Board and through a code calculate the car battery voltage and 
send that data to the LCD display. If the battery falls below 
necessary levels and needs to be charged the LCD will display a 
prompt to the user through the display. The schematic for this 
circuit is shown in Figure 67. 
 

 
Figure 67- PCB Circuit Schematic 
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6.  Administration 
 

While meeting the engineering requirements set by our sponsor 
is the primary goal of this project, the steps necessary to achieve 
this must be laid out and then systematically completed as fast 
as possible. In this section, we discuss the schedules we created, 
generalized specialties and responsibilities that were developed 
as the project went on, and the schedule for the senior design 
course to track documentation, and one for tasks our sponsor 
has laid out for us. We also cover the budget we has to perform 
under to achieve our end goal.  
 

6.1. Generalized Responsibilities  
 
As the project progressed and the team learned more about the 
little intricacies and nuances of the project, each team member 
decided to take on a specialized role based on prior experience 
and the needs of our sponsor. In this section we detail the 
responsibilities of each design team member 
 

6.1.1. Bruce Hardy 
 
 Bruce's main area of experience is in circuit design and because 

of this took on the responsibility of the Printed Circuit Board 

design and hardware design. In an effort to learn more about the 

various components being connected Bruce also became 

responsible for product research and ordering. The selection of 

the products enabled Bruce to ensure the cross compatibility of 

these components for a unified and working model.  

 

Constraints that had to be considered were, logic voltages, 

supply voltages, power consumption, current draw, size, data 

and image processing statistics, reliability, dynamic ranges, 

among many other specifications. The ordering of products had 

to be done before the end of the semester so the time line for 

research and purchasing of products had to fit within that window. 
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Other products that needed to be ordered was heat shrink tubing, 

custom power connectors, customized DuPoint connectors for 

organized and correct data connections between components. 

 

In addition to product research and ordering Bruce assisted Tyler 

in the design process of the mounting hardware, offering ideas 

and taking measurements. Bruce was the person who ensured 

the prompt CNC laser cutting and 3-Dimensional printing of the 

platform and sensor mounts respectively. This was and will 

continue to be important due to the high volume of students from 

all areas in the school utilizing the Texas Instruments Innovation 

lab within the Engineering building.  

 

6.1.2. Tyler Thompson 
 
Having experience in AutoCAD design and electronics, Tyler's 
contribution was aligned with the electromechanical aspect of the 
project. As the needs for hardware mounts of very specific 
dimensions arose while building the car, 3D printed models and 
laser-cut platforms were deemed a better design than store-
bought parts.  
 
In addition to drafting and fabrication, OpenCV computer vision 
programs were Tyler's responsibility. Various programs were 
written for object-oriented detection software using Histogram of 
Oriented Gradients as well as Dense Optical Flow for motion 
detection.  
 

6.1.3. Christian Theriot 
 
Christian’s main responsibilities involved software design and 
integrating software with hardware. Nitish directed him to learn 
ROS, which proved useful in designing a simple overall software 
architecture. When the Jetson TX2 arrived, he was also assigned 
to learn how to use it and integrate ROS on its Linux environment, 
considering he had prior experience with Linux and ROS.  
 
When it was discovered that the GPIO interface on the Jetson 
would be involved, Christian advised our sponsors to use the 
USB-serial connection in the meantime. Considering the lack of 
documentation for the TX2, this decision saved time for the whole 
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team to focus on designing the PCB and integrating ROS to 
communicate on the seral port.  
 

6.1.4. Eduardo Linares 
 
Eduardo’s main responsibilities in this project were a combination 
of administrative, mechanics, localization, and sensor testing. 
Localization responsibilities developed as a result of his 
knowledge of localization. When Dr. Fallah and Nitish first spoke 
with the team, they gave avenues for learning localization 
algorithims like the Kalman Filter and Particle Filter through 
numerous websites, like Udacity. Eduardo took on this 
responsibility because other programming responsibilities 
concerning ROS and OpenCV were being given to Tyler and 
Christian, respectively.  
 
In terms of mechanical design and sensor testing, Eduardo led 
the testing of the hall sensors and steering controls alongside 
Bruce and Christian. He developed the preliminary Arduino code 
for measuring motor RPMs and changing the steering angle. All 
testing setups pictured in the document were also designed by 
him concerning steering, ultrasonic sensors, and hall sensor 
implementation. All spring modifications were researched and 
implemented by him as well. 
 
Administrative responsibilities included the formatting and final 
editing of the document and making sure the schedule was 
adhered to by all members. Coordinating research topics and 
designating tasks was also facilitated by him alongside the 
sponsor.       
 

6.2. Budgeting and Finance 
 
The primary goal is to design the vehicle at a cost of no greater 
than $2500 per car and to build at least two vehicles before the 
project showcase. The cost analysis is displayed below in Table 
29. 
 
Our budget only contains the preliminary major components we 
identified to build the final product. Other sensors may be 
purchased for testing purposes, but not necessarily included in 
the final design. If the additional cost of these sensors becomes 
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significant, a second table will be added specifying what was 
used as test equipment, and the sensors that are used in the final 
design will be added to the first table.  

 
Table 29: Cost Analysis Table 

 
Item Cost 

Traxxas Slash 4x4 Platinum $429 

Traxxas Battery Pack and Charger $99 

NVIDIA Jetson TX2 Development Board $299 
Elegoo UNO R3 ATmega328p Board $11 

ZED 2K Stereo Camera $449 

(10) WYPH Ultrasonic Module $15 

(5) DAOKI IR Module $5 
GPS Module $13 

LIDAR Scanse Sweep Sensor $349 

SparkFun 9DoF IMU Breakout $25 

TP-Link N450 Wireless Router $30 
(10) Ethernet Cable $13 

7 Port USB Hub $27 

50,000mAh Auxiliary Battery Pack $136 

0.22in 18 inx24 in Plexiglass sheet  $25 

 

6.3. Milestones and Timeline 
 

Due to the large amount of responsibilities that we have been 
given by both our sponsors and the requirements for the senior 
design course, multiple separate schedules were created for 
ease of viewing and to separate the requirements of our course 
and our sponsors. The senior design timeline focuses on paper 
submissions and required meetings with Dr. Richie and Dr. Wei. 
The sponsor timeline focuses on tasks to make the vehicle 
functional.  

 

6.3.1. Senior Design Timeline 
 
The following schedule in Table 30 lists the dates for the Senior 
Design timeline and the team’s ideal approach to meeting these 
deadlines efficiently. The schedule details the paper deadlines 
for the senior design course, internal deadlines set by the group, 
and the required meetings with Dr. Lei Wei and Dr. Samuel 
Richie. Other meetings may occur but not necessarily appear on 
the schedule because they may occur as a result of issues with 
paper formatting of the paper.  
 
Each paper deadline at least 2 days in advance to provide proper 
time to compile, edit, and format the work done by the senior 
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design time. The team also established internal deadlines 
between due dates to keep pace and prevent the project from 
falling off schedule. 
 
Part orders are slated to occur before the end of the semester, 
but due to the sponsor deadlines, are very likely to be finished 
before the end of October or very early November. The final PCB 
design is slated for the end of the semester tentatively and covers 
the design of the circuit schematic, not the physical PCB itself. 
The physical PCB will be designed between semesters to allow 
for a more focused approach and to prevent other school-related 
stresses from interfering.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 30: Senior Design Schedule 

  
Deliverable Due Date Estimated Time to Completion Steps to Complete 

Divide and 
Conquer 
7-10 
Pages 

9/22/2017 4 hours (meetings) 
 

10 hours (writing) 

-Write preliminary document  
-Review preliminary draft with 
Dr.  Fallah and Nitish 
-Re-write document to 
incorporate criticisms from Dr. 
Fallah, Behrad, and Nitish  
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Updated 
Divide and 
Conquer 

10/6/2017 2 hours (meetings) 
 
2 hours(writing) 

-Review Standards with Dr. 
Fallah, Behrad, and Nitish based 
on our meeting with Dr. Wei and 
Dr. Richie 
 
-Finalize division of labor for the 
project 

20 Page 
Internal 
Report 

10/13/2017 20 hours per person -Each group member produces 
5 pages of new research on 
hardware or software 
implementation of an 
autonomous vehicle. 

40 Page 
Internal 
Report 

10/20/2017 20 hours per person -Each person provides 5 pages 
of new research  

60 Page 
Internal 
Report  

11/1/2017 20 hours per person -Each person produces an 
additional 5 pages of research. 
-Eduardo edits all research into 
the senior design format.  

60 Page 
Report 

11/3/2017 20 hours per person -Each person provides 5 pages 
of new research  

60 Page 
Meeting 
with Dr. 
Richie 

11/7/2017 Approximately half an hour total -Meet with Dr. Richie to discuss 
any errors in formatting, 
unnecessary documentation, 
provide an update on the project 
progress, and other issues. 

100 Page 
Report 

11/17/2017 40 hours per person -Each person provides 10 pages 
of new research  

Final 120 
Page 
Report 

12/4/2017 20 hours per person -Each person provides 5 pages 
of new research  

Part 
Orders 

End of Fall 1 hour -Verify that parts are ordered 
and in the lab before the end of 
Fall.  

PCB 
design 

End of Fall  10 hours -Design PCB based on sponsor 
input and order at start of spring 
semester 

 

6.3.2. Sponsor Schedule 
 
Table 31 details the schedule created by Dr. Fallah’s lab team, 
the senior design team, and the volunteers for project 
implementation. Deliverables are placed in the order they were 
assigned, but their due dates vary due to complexity and need 
for teamwork among group members. Every deliverable was also 
accompanied with a report whose data was incorporated into this 
document.  

 
 
 
 
 

Table 31: Senior Design Schedule 

 
Deliverable Due Date Estimated Time to Completion Steps to Complete 



 
 

145 
 

Research RC 
Cars for Base 

9/30/2017 10 hours (Bruce and Tyler) -Find 4 models with a large 
enough chassis to hold all the 

parts. 

Learn 
Localization 
Algorithms 

11/1/2017 40 hours (Eduardo) -Complete all 6 modules for “AI 
for Self Driving Cars” on 

Udacity.com 
 

Configure 
Ultrasonic 

Sensors using 
Arduino and 
visualize in 

ROS 

10/24/201
7 

10 hours (Christian and 
Eduardo) 

-Create test setup for sensors 
-Create calibration algorithm 

based on initial tests. 
-Adjust the code so the data is 

sent to ROS 

Complete 
AutoCAD 

model of the 
vehicle 

10/13/201
7 

10 hours (Tyler) -Find vehicle dimensions and 
dimensions of all the parts on 

the car. 
-Construct car in AutoCAD so 

the sensors do not interfere with 
one another. 

-Calculate Center of Mass of 
vehicle 

Optical Flow 11/6//2017 20 hours (Tyler) -Produce demo for optical flow. 

Calculate 
Reduction Gear 

Ratio 

11/1/2017 3 hours (Eduardo) -Find gear ratio of differential 
and transmission 

-Calculate gear ratio to achieve 
desired top speed 

Servo Testing 11/15/201
7 

10 hours (Eduardo and 
Christian) 

-Find range of Pulse Widths 
-Find range of Steering Angle 

-Determine how to slow change 
in steering angle 

Mounts  11/17/201
7 

10 hours  (Bruce and Tyler) -Create Mounts in autoCAD 
based on vehicle size 

-Laser cut wood to verify the 
pieces fit 

-Once pieces have been 
adjusted and approved by 
sponsors, cut mounts in 
plexiglass and aluminum  

Wires and 
Cable 

Connectors 

11/17/210
7 

2 hours (Bruce and Eduardo) -Determine necessary wire 
connectors needed to interface 
sensors with microcontroller or 

NVIDIA board.  
-Get heat shrink for wires 

Basic 
Movement 

11/20/201
7 

10 hours (Christian) -Determine a method of 
communicating between the 

Jetson and Arduino 
-Control the motor and servo via 

programming the Jetson 

Running Car 
Demo for 
Sponsor 

12/10/201
7 

N/A -Summation of all other tasks 
before it.  
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This section contains all citations referenced in the text, all 
approved and pending permissions given for images, and all 
code/datasheet references. 
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