

i

Senior Design I
Fall 2017

Auto-Knight: The LIDAR Guided
Autonomous Car

Eduardo Linares - EE
Christian Theriot - CE
Tyler Thompson - EE

Bruce Hardy - EE

Other Contributors

Dr. Yaser Fallah – Principal Investigator & Sponsor
Nitish Gupta – M.Sc. Candidate

Behrad Toghi – Ph.D. Research Fellow

i

Table of Contents
1. Executive Summary.. 1

2. Project Description ... 2

2.1. Project Goals .. 2

2.2. Project Motivation ... 3

2.2.1. Market Analysis.. 3

2.2.1.1. Ridesharing Projects and Partnerships............................... 3

2.2.1.2. Chip Manufacturers Projects/ Partnerships 4

2.3. Improvements to Public Safety .. 4

2.4. Requirement Specifications ... 5

2.4.1. Communication Requirements ... 6

2.4.2. Physical Requirements .. 6

2.4.3. Sensor Requirements .. 7

2.4.4. Power Requirements ... 7

2.4.5. Camera Requirements ... 7

2.4.6. Hardware Requirements .. 8

2.4.7. PCB Requirements .. 8

2.4.8. Software Requirements ... 9

2.5. House of Quality .. 9

3. Research Related to Project Definition 12

3.1. Similar Projects .. 12

3.1.1. MIT RACECAR .. 12

3.1.2. Zheng Wang’s OPEN CV RC Car .. 13

3.2. Relevant Technology .. 13

3.2.1. LiDAR Sensors .. 13

3.2.2. Ultrasonic Sensors ... 15

3.2.3. Infrared Sensors .. 16

3.2.4. Inertial Measurement Unit (IMU) .. 17

3.2.5. Differentials .. 17

3.2.6. PID Controller .. 18

3.3. Parts Selection ... 19

3.3.1. RC Car Selection ... 20

ii

3.3.2. CPU Selection.. 23

3.3.3. Microcontroller Selection .. 26

3.3.4. Sensor Selection .. 32

3.3.5. Stereo Image Sensor ... 35

3.3.6. LiDAR Sensor .. 37

3.3.7. Auxiliary Battery Pack and USB Hub 40

3.3.8. Wireless Router and USB Network Adapter 41

3.3.9. Summary ... 43

4. Project Constraints and Standards ... 46

4.1. Project Standards ... 47

4.1.1. Power Supply Standards ... 47

4.1.2. Wi-Fi DSRC Standard (802.11b).. 48

4.1.3. Frequency Allocation ... 49

4.1.4. Network Security .. 49

4.1.5. Road Safety Standards .. 50

4.1.6. IPC PCB Standards ... 51

4.1.7. Inertial Measurement Unit (IMU) Standard 52

4.1.8. AI and Self-Driving Car Standards 52

4.1.9. Programming Standards .. 53

4.2. Constraints ... 53

4.2.1. Cost Constraints .. 54

4.2.2. Environmental Constraints ... 54

4.2.3. Social Constraints .. 54

4.2.4. Political Constraints ... 54

4.2.5. Ethical Constraints ... 55

4.2.6. Health and Safety Constraints ... 55

4.2.7. Manufacturability Constraints ... 56

4.2.8. Testing Constraints .. 56

4.2.9. Time Constraints .. 57

5. Project Design Details .. 58

5.1. Hardware Design .. 58

5.1.1. Sensors and Calibration ... 61

5.1.2. Infrared Sensor Calibration .. 64

iii

5.2. Software Design ... 67

5.2.1. Localization Algorithms .. 69

5.2.2. ROS ... 78

5.2.3. Mapping ... 83

5.2.4. Collision Detection and Avoidance....................................... 86

5.2.5. Motion Tracking with Optical Flow 87

5.2.6. Object Detection through Histogram of Oriented Gradients . 95

5.3. Vehicle Dynamics and Modeling .. 103

5.3.1. Vehicle Disassembly .. 104

5.3.2. Measuring Motor Speed ... 111

5.3.3. Three-Dimensional Modeling – Initial Proposition 112

5.4. PCB Details ... 128

5.4.1. PCB Manufacturing .. 128

5.4.2. PCB Design Software Selection... 132

5.4.3. PCB Design ... 137

6. Administration ... 139

6.1. Budgeting and Finance ... 141

6.2. Milestones and Timeline .. 142

6.2.1. Senior Design Timeline .. 142

6.2.2. Sponsor Schedule .. 144

7. Appendices ... 145

HYPERLINK "bookmark://_Toc500025891" ... ￼

 146135

 List of Figures

Figure 1- House of Quality ...10

Figure 2- MIT RACECAR from 2016 (Permission Pending on Photo)13
Figure 3- Generic LIDAR Sensor Block Diagram15
Figure 4- Sound Spectrum ...16
Figure 5- Ultrasonic Sensor Block Diagram ...16

Figure 6- IMU Block Diagram ...17
Figure 7- Type of Differentials ..18

Figure 8- Exceed Sunfire Pro ...20

iv

Figure 9- Iron Track Shootout E8XBL ..21
Figure 10- Traxxas Rally Racer ..22
Figure 11- Traxxas Slash 4x4 Platinum ...22
Figure 12- NVIDIA Performance Comparison ..25

Figure 13- Purchased USB Hub, Router, Battery Pack, Stereo Camera,
NVIDIA CPU, Traxxas RC Car and LiDAR ...43
Figure 14- Purchased Arduino Uno, LCD for testing, Ultrasonic Sensor, IR
Sensor, IMU and GPS Shield ...43
Figure 15- PCB Standards ...52

Figure 16- Hardware and Vehicle Interfacing ...59

Figure 17- Wiring Diagram ...61

Figure 18- Sensor 1 Test Results ...64
Figure 19- Sensor 2 Results ...64

Figure 20- JetsonTX2 J21 Header Pinout ..66
Figure 21- Software Flow Diagram ...68

Figure 22- Software Class Diagram ...68
Figure 23- Updated Software Diagram ...69
Figure 24- Steps during a Kalman filter’s measurements70

Figure 25- Example Gaussian Distributions ...71
Figure 26- Gaussian Created by other Gaussians72

Figure 27- 2D Gaussian Distribution ..73

Figure 28- Before (Top) and After (Bottom) Filtering Without Motion75

Figure 29- ROS Publish-Subscribe Framework79
Figure 30- Diagram of Overall Software Architecture and Flow81

Figure 31- ROS Message Definitions ...83
Figure 32- Gazebo Simulated Environment ...84
Figure 33- Gmapping Visualized in RVIZ ...84

Figure 34- Octomap Visualized in RVIZ ...86
Figure 35- Still Shot of Dense Optical Flow Output91

Figure 36- Still Shot of Dense Optical Flow Output in Motion...................91
Figure 37- Dense Optical Flow Program Flowchart92

Figure 38- Still Shot of Dense Optical Flow Output Bounding Box95
Figure 39- Flow Diagram of HOG Pedestrian Detection Program99
Figure 40- Simple HOG Pedestrian Detection Test 1100
Figure 41- Complex HOG Pedestrian Detection Test 1101

Figure 42- Complex HOG Pedestrian Detection Test 2102
Figure 43- Simple HOG Pedestrian Detection Test 2103
Figure 44- Center Differential (left) and Clutch (right)105
Figure 45- Two Springs in Parallel ...105
Figure 46- Two Springs in Parallel on the Shock106

Figure 47- Test Setup for PWM Measurement107

Figure 48- Steering Angle Test Setup ..108

Figure 49- Pulse from Function Generator (blue) vs. Pulse from the Arduino
UNO (yellow) ..109

v

Figure 50- Duty Cycle vs. Steering Angle ..109
Figure 51- Smooth Steering Logic ..110
Figure 52- Smoothing Function ..110
Figure 53- Hall Effect Sensor Testing and Coding111

Figure 54- Installed Hall Effect Sensor ...111
Figure 55: RPM counter flowchart ..112
Figure 56- Component View with C.O.M. ...116
Figure 57- Profile View and Measurements (inches)117
Figure 58- Design Revision, Current Layout ..119

Figure 59- AutoCAD Platform Design ..122

Figure 60- LiDAR Mount Placement ...123

Figure 61- LiDAR Mount...123
Figure 62- Stereo Camera Mount ...124

Figure 63- Antenna Mount..125
Figure 64- AutoCAD Designed Body Mount ...126

Figure 65- USB Hub Bracket Mount ...127
Figure 66- Final fabricated mounts and platform installed to the car127
Figure 67- PCB Circuit Schematic ..138

List of Tables

Table 1: Communication Requirements ... 6

Table 2: Physical Requirements ... 6
Table 3: Sensor Requirements ... 7

Table 4: Power Requirements .. 7
Table 5: Camera Requirements ... 8
Table 6: Hardware Requirements .. 8

Table 7: PCB Requirements ... 9
Table 8: Software Requirements .. 9

Table 9: Effect of PID parameters on system output 19
Table 10: RC Car Specification Analysis .. 23

Table 11: NVIDIA Development Board Analysis 26
Table 12: Texas Instruments Development Board Analysis Error!
Bookmark not defined.
Table 13: Arduino Development Board AnalysisError! Bookmark not
defined.
Table 14: Arduino Sensor Specifications ... 35
Table 15: Stereo Image Sensor Analysis ... 37
Table 16: LiDAR Sensor Analysis .. 40
Table 17: Final Product Selection .. 45
Table 18: Circuit Power Specification ... 47

Table 19: Spectrum Allocations .. 49

Table 20: ISO/IEC Network Security Standards 50
Table 21: Pre-Calibration Data for Sensor 1 62

vi

Table 22: Dijkstra’s Algorithm Steps .. 77
Table 23: List of Message Types ... 82
Table 24: HOG Test Results .. 100
Table 25: Test 2 Parameters .. 101

Table 26: Turning Parameters .. 109
Table 26: Important Values of Components 113
Table 27: Locations of Components in Figure 46 116
Table 28: Center of Mass Calculations .. 117
Table 29: Cost Analysis Table .. 142

Table 30: Senior Design Schedule ... 143

Table 31: Senior Design Schedule ... 144

List of Equations

Equation 1. Distance recorded by LiDAR Sensor 14

Equation 2. Ultrasonic Sensor Distance Calculation 16
Equation 3. Transfer function of PID controller 19
Equation 4. Gaussian Distribution .. 71

Equation 5. New Gaussian Distribution .. 72
Equation 6. Gaussian Movement Update ... 73

Equation 7. SLAM Location Equation ... 78
Equation 8. Revolutions per Second .. 112

1

1. Executive Summary

Every year thousands of people die in preventable car accidents,
and millions are injured. The Auto-Knight team saw the
opportunity to work with Dr. Yaser Fallah and the Networked
Systems Laboratory at UCF to make strides in consumer safety
by designing a small scale preliminary model of a self-driving
vehicle that can communicate with other vehicles. This small
scale model with work as a proof of concept to help raise money
to create a full sized vehicle and also simultaneously learn the
hardware and software necessary to create an autonomous
vehicle.

The vehicle uses an RC car as a base, a LiDAR Sensor, a depth
camera, and 4 ultrasonic sensors to gather data about its
surroundings. The data is processed using an NVIDIA Jetson
TX2 board, and that data is then used in multiple algorithms to
localize the vehicle and create a map of its surroundings. If the
sensors detect that an object is too close, the vehicle stops or
turns to avoid said obstacles. By the end of Senior Design II, at
least 4 of these vehicles will be created and will be able to route
around one another efficiently. The implications of this
achievement are not just increased consumer safety, but also
more efficient routing of vehicles, leading to less time spent on
the road for the average driver.

This report outlines the specific motivations for our team and the
requirements laid out before us by our sponsor. This is
immediately followed by a basic overview of some relevant
technology and a review of all the considered hardware and the
final choices for what hardware was used. After that, standards
and constraints, such as political, economic, and ethical
concerns, are discussed. After that, the calibration and testing of
relevant hardware, a description of all the localization algorithms
used, the OS used for the vehicle, modifications made to the
vehicle, and circuit design for our PCB are described in detail with
results for relevant tests. The final section contains our budget
and our project timelines, which are separated based off our
sponsors required deadlines for our project and the design
courses relevant due dates for the paper, meetings with the
faculty, and other relevant documentation.

2

2. Project Description

With input from our principal sponsor, Dr. Fallah, one of his MS.D
students, Nitish Gupta, and one of his Ph.D research students,
Behrad Toghi, we plan on creating two to five smaller scale
vehicles that utilize wireless communication to navigate around
one another safely.

These cars will then be used by Dr. Fallah in his laboratory to
improve upon the technology. The cars will be small so they can
be tested in Dr. Fallah’s lab, low cost, send highly accurate data
to one another in real time, and have communication ranges and
maximum speeds relative to the final size of the product.

2.1. Project Goals

The goal of our project is to create a vehicle network that will
model concepts of “deep learning” in machine intelligence; that
is, to form a neural network between units in order to react
cooperatively to each other’s motion. By utilizing sensor input,
the vehicles may project a data signal to all receiving units,
simultaneously. Thus, each unit will predict the collective path(s)
to avoid a variety of real world collision scenarios. Examples
include collisions created by one car cutting off another, multiple
cars reaching a 4 way stop and deciding the order they will move
in, and a car parking itself.

LiDAR, Ultrasonic Sonar, and camera sensor inputs paired with
probability algorithms are the operative means of achieving
computer vision. A LiDAR scanner introduces laser range
sensing capabilities to each unit, allowing a multi-planar
representation of the vehicle’s surroundings at each rotation of
the LiDAR mount. By utilizing an infrared camera calibrated to
LiDAR sensitivity, we can receive the signal reflected off of the
surroundings and model the real-time position and orientation of
nearby objects. Ultrasonic sensors may be utilized in addition to
LiDAR for accurate short-range applications. The camera’s
purpose is to recognize pedestrians, stoplights, and other road
signs so the vehicle can follow driving rules.

Methods of communication must be considered to form a viable

3

DSRC (Dedicated Short Range Communication) network.
Outfitting the vehicles with modules capable of broadcasting a
DSRC high-frequency signal 5.9 GHz optimizes the transmission
of signals due to the “unlicensed” nature of this spectrum. In
1999, the Federal Communications Commission designated the
5.9 GHz band to be used exclusively by intelligent transportation
systems; the standard of which is denoted within IEEE 802.11p.

2.2. Project Motivation

Our motivation behind out project has two aspects to it, personal
gain and societal gain. The opportunity to help create a working
prototype of an autonomous vehicle for Dr. Fallah’s research will
provide us with the skills necessary to work on the development
of a commercial model for a traditional automaker or one of their
partners. Furthermore, we could end up pursuing research at a
university for a graduate degree using our knowledge gained
from this project. There is a very clear personal economic gain to
this project. Our project also has the potential to help decrease
the amount of deaths caused by reckless driving every year.

2.2.1. Market Analysis

According to a study released by Intel in June of 2017, the self-
driving vehicle market has the potential to become an 800-billion-
dollar market by 2035 and a 7 trillion dollar market by 2050[58].
Currently a large number of established companies in the auto-
industry are engaged in a rat race to create a fully autonomous
self-driving vehicle. Numerous partnerships have created
between ride sharing companies, chip manufacturers, and auto-
manufacturers to try to create strategic advantages over their
competition.

2.2.1.1. Ridesharing Projects and Partnerships

The utilization of self-driving cars will provide a massive boon to
the ridesharing industry by allowing companies to replace drivers
with their own autonomous vehicles. The potential for this long
term cost savings has led to companies like Uber, Lyft, and
Mobileye to deploy self-driving car prototypes to Arizona for
testing on their roads. Uber has also created a partnership with

4

Volvo and Daimler, and Lyft has generated multiple partnerships
with Drive.AI, Ford, General Motors, Jaguar, nuTonomy, and
Waymo to speed up the creation of a self-driving car fleet [58].

2.2.1.2. Chip Manufacturers Projects/ Partnerships

Recently, companies that traditionally only produced products for
personal computers have entered the self-driving car race. In
2016, NVIDIA, who are known primarily for their popular GPU’s
for gaming, developed a car that could read the steering angles
necessary to drive a car using the NVIDIA DriveTM PX 2 and a
neural network based system called PilotNet. NVIDIA has also
worked with Tesla to develop its auto-pilot features on the Model
3, Model S, and Model X vehicles. NVIDIA is also partnering with
Toyota, Mercedes-Benz, Honda, BMW, and other manufacturers
to provide the hardware for their self-driving vehicles. On October
10th of 2017, NVIDIA also announced a new chip called the
NVIDIA Drive PX Pegasus, which is capable of performing 320
trillion operations per second using four processors. NVIDIA’s
main competition is coming from AMD and Intel, who have
secured their own partnerships with Tesla and Waymo
respectively [59].

2.3. Improvements to Public Safety

In the United States, over 37,000 people die in car accidents
every year. 1,600 of these people are below the age of 15, 2.35
million people are injured, and the overall cost to the U.S is over
230 billion USD every year. Around the world, road crashes are
the leading cause of death between the ages of 15-29. 1.3 million
people are killed every year in car accidents, an average of 3,287
people every day, and 20 to 50 million are injured as a result.
This makes road crashes responsible for 2.2% of all deaths,
making it the ninth leading cause of death around the world. The
overall cost is estimated to exceed 518 billion USD every year[1].

This grim description of the world’s auto accidents shows a great
need for increasingly automated cars capable of preventing
crashes. According to an article published by the Atlantic, self-
driving cars can prevent 90% of accident related fatalities by half
by the middle of the century. This equates to about 30,000 lives
saved using the number of 2013 traffic fatalities in America.

5

Globally, this equates to about 50 million lives saved in half a
century. In comparison, modern vaccines are estimated to save
42,000 lives in America according to the Centers for Disease
Control (CDC)[60]. This project is a step towards creating that
reality.

In general, car manufacturers are adding more and more safety
features that either give the driver more information, like blind
spot detection, or take away control from the driver, like
automatic braking. One feature that has yet to been implemented
in commercial models is short range communication networking.
To increase safety, cars would send each other data about their
relative positions and velocities to ensure they all remain a safe
distance from one another. In the event of an accident, the cars
could communicate with one another and circumnavigate any
debris efficiently. The effects of this feature have incredible
potential to create a better and safer world.

Car related deaths would plummet due to the relayed data
preventing accidents that could have occurred otherwise, less
people would be injured or disabled in accidents, and people
would spend less on repairing their vehicles. Less accidents
would inevitably lead to lower insurance premiums for everyone
as well, making vehicle ownership less of a strain on working
families.

A short range communication network could also decrease travel
times and allow passengers to spend more time at their
destinations and less time getting there and back home.

2.4. Requirement Specifications

The requirements for our project, developed in conjunction with
our sponsors and contributors, are detailed below. The
requirements cover the minimum communication, physical,
sensor, power, printed circuit board (PCB), and software
performance metrics to build a functioning autonomous vehicle
that meets Dr. Fallah’s standards.

6

2.4.1. Communication Requirements

After careful and prolonged discussion with all our sponsors and
contributors, we agreed to the requirements stated in Table 1 for
our vehicle’s communication standards. This is the most
important standard to adhere to because this parameter is what
separates other self-driving car projects from our own and has
the greatest potential to change the standards for self-driving
vehicles.

Table 1: Communication Requirements

Deliverable Specifications

Vehicle to Vehicle Communication
Range

The vehicle to vehicle communication range
must be 30 feet in any direction.

Communication Frequency Signals will be transmitted at a frequency of
5.9GHz

2.4.2. Physical Requirements

After exploring a variety of options for our vehicle’s physical build,
we agreed to the following requirements, with slight leeway given
to the exact size of our base model due to the unknown sizes of
various parts we are adding. A minimum speed of 15 miles an
hour was decided on because anything slower would remove any
concern for latency and not be an accurate model of a real
vehicle. A brushless DC motor was a requirement due to the
increased efficiency and reduced friction, which could potentially
be a fire hazard. A summary of these decisions is shown in Table
2.

Table 2: Physical Requirements

Deliverable Specifications

Chassis Size Chassis will be as close 1/16 scale as
possible. May be changed if necessary to fit

more components.
Speed Requirements The car must be able to move at least 15

miles per hour

Motor The motor must be a brushless DC electric
motor

Motion The car must be capable of steering forward
and turning left or right

7

2.4.3. Sensor Requirements

For our sensor requirements, we were given 3 primary
requirements from our sponsor. We are only required to use two
kinds of sensors, but were provided requirements for infrared
sensors should we choose to use them. This is detailed in Table
3 below.

Table 3: Sensor Requirements

Deliverable Specifications

LiDAR LiDAR must have 360 degree vision and be able to
detect anything within the minimum communication

range of 10 meters

SONAR Sonar sensors must be able to accurately detect
anything within 30 centimeters of the sensor range.

Infrared (optional) If any are used for collision avoidance, Infrared
Sensors must be able to detect anything within 20 cm

of the sensor range.

2.4.4. Power Requirements

For battery requirements, our sponsor wanted to be able to run
experiments for at least 15 minutes. After some discussion, 20
minutes became the new minimum run time to account for
adjusting or fine tuning experimental conditions. The number of
batteries was also limited to 2, with one powering the vehicle and
the other providing power to all sensor related functions. This is
detailed in Table 4 below.

Table 4: Power Requirements

Deliverable Specifications

Battery Life Batteries must be capable of running
the system for at least 20 minutes

before requiring recharging

Number of Batteries No more than 2 batteries can be used
to power the system and motor of the

vehicle. One battery must supply
power to all modules of the system.

2.4.5. Camera Requirements

The requirements for our camera were agreed upon after
discussing the role the camera would play in our project. It will be
our second most important form of data collection because of it’s
use in pedestrian detection and road sign detection, so we

8

agreed to hold it to the same standards as our LiDAR sensor.
This is detailed in Table 5 below.

Table 5: Camera Requirements

Deliverable Specifications

Camera Range The Camera will have a minimum range of
10 meters and will face the front of the
vehicle

2.4.6. Hardware Requirements

For our hardware requirements we agreed that we create a
vehicle with an onboard transceiver for wireless communications,
that the vehicle would have the ability to be driven autonomously
or with a controller, and that that there would be at least 1
microcontroller or processer to process the data, and we have
the option of adding more for vehicle controls or PCB
requirements. This is shown in Table 6.

Table 6: Hardware Requirements

Deliverable Specifications

Modes of Operation The vehicle will be driven
autonomously without use input.

Processors/Microcontrollers At least 1 microcontroller or
processor will process all sensor

data. We may add one more
microcontroller to control the vehicle

and another to implement PCB
functions

2.4.7. PCB Requirements

To meet our Senior Design requirements, the team proposed the
following functions for a PCB that will be added to the vehicle.
The details for our PCB are provided in Table 7.

9

Table 7: PCB Requirements

Deliverable Specifications

LED Turn Signals At least 4 LEDs will be powered by the
PCB and blink according to the state of

the vehicle. States are defined as:
stopped, forward, turning left, and

turning right.

LCD THE LCD will display the current
battery life, the current steering angle,

and the speed of the vehicle in real
time.

Temperature Management The PCB will have a temperature
sensor and fan for regulating heat.

2.4.8. Software Requirements

The final requirements for our project are our software
requirements. The designed software will take input from all
sensors for localization, be able to communicate the processed
data wirelessly, be able to coordinate with other vehicles, and will
be able to avoid collisions with obstacles on its path. This is
summarized in Table 8.

Table 8: Software Requirements

Deliverable Specifications

Processing Data The software will process data from all sensors and data

Size The software will not consume more than 4 GB of
memory

Data Transfer Data will be transferred wirelessly between different
vehicles

Routing Software will implement basic route planning.

2.5. House of Quality

The house of quality, as seen in Figure 1, is a design tool used
to create and organize the marketing and engineering design
requirements and their respective tradeoffs relative to one
another. The 4 rows contain our house of quality’s marketing
requirements. These are the descriptive qualities that potential
customers are drawn to. The columns contain our engineering
requirements, which detail the specific performance metrics of

10

the system. These are created from a developer standpoint to
compliment the marketing requirements.

Figure 1- House of Quality

The marketing requirements we chose for our project are the
cost, reliability, size, and autonomy. Lowering cost will save Dr.
Fallah money that could be used towards other research projects
in his lab. A smaller car will be easier to test inside of his research
lab and generally will reduce costs as well. Should the car be
tested in a different environment, a smaller car will be more
versatile if the new environment is smaller than what was
anticipated. Reliability must be maximized to provide the
research lab with consistent data that can used for analysis and
development of a consumer sized self-driving car prototype.
Autonomy must also be maximized because this is what our
sponsor’s research is primarily focused on.

11

The engineering requirements we chose are the Digital Short-
Range Communication (DSRC) system’s operating distance,
Chassis Size, Battery Life, Control Distance, Stopping Distance,
Program Size, Latency, Straight Away Speed of the Autonomous
Vehicle, and Self Localization. The DSRC system’s
communication distance was chosen as ten meters because any
of the vehicles we design would be able to communicate with
each other from any 2 points in the research lab. The chassis
size was determined to be 1/10 scale so we could have enough
room to mount all of our equipment and sensors, reduce cost,
and have a relatively small vehicle. The battery life was chosen
to be at least 20 minutes because this provides enough time to
test the cars and gather data from them.

Unfortunately, a tradeoff is present because a larger battery will
most likely be necessary to increase the length of time the vehicle
can operate between recharges, meaning our chassis would
need to be larger or we would be more limited for space when
placing our sensors. A larger battery would also distribute heat
differently across the vehicle, meaning more heat protection
might be necessary. The vehicle will be able to be remote
controlled from a minimum of 10 meters because this will
encompass the minimum communication range for the cars. The
stopping distance was chosen to be 25 mm because this is a
stringent condition that would force us to create a more reliable
vehicle. We chose to keep our total program size below 4
gigabytes because we assume latency will increase with program
size, which we want to reduce at all costs because latency will
compromise reliability. The straightaway speed was chosen to be
30 miles per hour because a larger speed could lead to significant
damage to the vehicle if a crash occurs, and the project is very
expensive. The self-localization error was decided to be less than
20 mm to increase reliability. This is important for full size
vehicles because they need to stay within the lanes of the road
to avoid collisions with other cars.

12

3. Research Related to Project
Definition

To construct our project, research into similar projects and
relevant technology was conducted to assist with choosing our
specific components and maximizing our performance within the
budget.

3.1. Similar Projects

In this section we examine similar projects that were the
inspiration for our project. The choice of software algorithms and
hardware was heavily influenced by these projects.

3.1.1. MIT RACECAR

One of the main inspirations for our project was the MIT Rapid
Autonomous Complex-Environment Competing Ackermann-
steering Robot (RACECAR) course videos from 2015. In this
course, students learn to implement a self-driving car that can
navigate a tunnel system it does not have a map of. The students
are divided into 4 teams and then must compete against each
other for the fastest time. The students were given an already
assembled RC Car with an NVIDIA Jetson TK1 board and
various sensors [85]; their only task was programming their
vehicle. This differs greatly from our project, where we will modify
the car ourselves and then program it to work autonomously. We
are also using newer and more powerful hardware for our main
CPU, and our vehicle is also going to be distinctively faster than
the MIT vehicles. The maximum speed of our vehicle will be more
than double that of the MIT cars. A picture of the MIT racecar is
shown in Figure 2.

13

Figure 2- MIT RACECAR from 2016 (Permission Pending on Photo)

3.1.2. Zheng Wang’s OPEN CV RC Car

Zheng Wang’s project incorporated OPEN CV software and a
Raspberry PI B+ model to create a car with computer vision that
could perform in traffic scenarios e.g. stopping at a stop sign and
recognizing the differences between red and green lights [86].
This inspired us to use the OpenCV tech for to simulate traffic
scenarios with our car, but also go a step forward and incorporate
pedestrian detection.

3.2. Relevant Technology

In this section we provide a brief overview of the sensors and
important vehicle components to provide insight into how our
vehicle will collect data and how the vehicle functions
mechanically. Specific choices regarding performance, brand,
and cost will be covered in the next section. These sections may
be referenced in future discussions in the component selection
and the project design

3.2.1. LiDAR Sensors

A LiDAR sensor records when the beam of light was fired and
when the reflected light returns to the sensor. This measurement
is double the time it takes for the light beam to travel from the
object to the sensor [61]. Using this time and the speed of light,
the distance of the measured object can be calculated using
Equation 1.

14

Distance Recorded = (time) * Speed of Light/2

Equation 1. Distance recorded by LiDAR Sensor

LiDAR systems are typically composed of a laser,
scanners/optics, photodetectors/receivers, and a positioning
system. The laser is usually within the 600 to 1000 nanometer
range at lower power levels or at the 1550 nanometer range. The
600 to 1000 nanometer range laser has the benefit of higher
accuracy, but must maintain the lower power level to be eye safe.
The 1550 nanometer laser has the advantage of longer reach
and being invisible to night vision, but also has lower accuracy.
The scanners and optics determine how fast and at what
resolution and range the data can be entered into the system.
Photodetectors are responsible for reading and recording the
data that the laser returns to the LiDAR system.

Photodetectors are usually solid-state devices (e.g. a silicon
photodiode) or photo multipliers. The final component is the
navigation system, which helps the laser determine its
orientation, velocity, and the position of the system when it fires
the laser pulse [62]. Without knowing the angle the laser is fired
at and where it is being fired, the data becomes unreliable for
creating a point cloud. The navigation system is typically
composed of a GPS and an Inertial Measurement Unit (IMU) to
measure position and velocity. A generic LIDAR sensor is shown
in Figure 3.

Generally speaking, LiDAR has two detection methods, coherent
and incoherent detection. Incoherent detection only measures
changes in the received signal’s power. Incoherent detection can
measure changes in phase and frequency, making it useful in
applications where the Doppler Effect can take place. LiDAR also
has two main pulse models called micropulse and high energy
systems. Micropulse models use low energy lasers to gather data
and are safe to the human eye. High energy systems are
commonly used for atmospheric research for measuring cloud
data (e.g. density, height, and pressure).

15

Figure 3- Generic LIDAR Sensor Block Diagram

3.2.2. Ultrasonic Sensors

Ultrasonic sensors are sonar sensors that use sound waves that
are at a frequency above 20,000 hertz (see Figure 4). The reason
this frequency range is used is because the human ear cannot
process these sounds. The speed of sound can vary with
temperature and the medium it travels through. Higher
temperatures increase the speed of sound through a medium
because hotter particles have more energy. Sound travels faster
through liquids than gases due to the relative distance in particles
being much smaller at the expense of needing more energy to
propagate a noticeable sound wave. The same logic applies to
solids and liquids, but even greater energy is necessary to
propagate the sound due to the more powerful chemical bonds
present. Ultrasonic sensors are used to measure distances
within 3 meters of the sensors, and generally have an error of
about 3 centimeters.

16

Figure 4- Sound Spectrum

Ultrasonic sensors have a small electro-acoustic amplifier that
transmits a pulse called a ping. When the ping hits another
object, it is reflected towards the sensor and then hits a tiny
microphone that acts as a receiver. A generalized block diagram
is shown in Figure 5. The distance is then calculated using
Equation 2.

Distance = (Recorded Time) * Speed of Sound/2

Equation 2. Ultrasonic Sensor Distance Calculation

Figure 5- Ultrasonic Sensor Block Diagram

3.2.3. Infrared Sensors

Infrared sensors function by measuring radiation in the 300 GHz
to 430 THz frequency range. Infrared sensors can exist as either
passive or active sensors. Active sensors transmit infrared light
and then detect the reflected light using a photodiode for
processing [66]. Passive sensors detect the thermal radiation off
of an object. Not all thermal radiation is in the infrared range, but

17

objects near room temperature and on the earth’s surface mainly
emit thermal radiation in this range. These waves are then used
to construct the point cloud based on temperature at different
points, with hotter objects emitting different frequencies in this
range than colder ones. IR sensors are accurate within one
meter.

3.2.4. Inertial Measurement Unit (IMU)

An IMU is an electronic component that has 2 sensors to
measure the angular and linear velocity of whatever it is attached
to. The 2 sensors are a triad of accelerometers and gyroscopes
respectively [64]. The signals produced from these components
are analog signals that are then put through an ADC converter
for processing with a microcontroller using a Kalman Filter
algorithm. A block diagram is shown in Figure 6.

Figure 6- IMU Block Diagram

3.2.5. Differentials

Differentials are a mechanical device located at the bottom of a
car that redistributes the torque from the engine to the wheels on
an axle. This is necessary because when a car is turning, the
inner and outer wheels on an axle travel different distances
around the curve. For the car to make the turn, the outer wheel
must be spinning faster so when the turn is finished, the wheels
are parallel again. Differentials come in different types as well.
Open differentials split the torque between the two wheels, but
encounter issues if one wheel loses traction because the other
wheel will experience a loss of torque to compensate. Any vehicle

18

that is not intended to go off-road uses open differentials (e.g.
sedans, economy cars, and minivans).

A locking differential has a mechanism that makes the angular
speed of the wheels remain equal until it is released. This is
useful for terrains where traction is more difficult to maintain (e.g.
snow or mud). These differentials experience difficulties if they
lock on high traction surfaces like pavement because turning with
wheels spinning at equal speeds can lead to stuttering or
skidding. These differentials are present in off-road vehicles and
some full-size trucks. Limited slip differentials combine the best
of both worlds, and only have their locking mechanism activate
when one wheel begins to slip [65]. These differentials are
present in a small number of sports cars. Figure 7 shows these
three differentials.

In four-wheel drive cars, a center differential is present as well to
distribute torque to the forward and rear differentials. The center
differential will always distribute more torque to the back
differential.

Figure 7- Type of Differentials

3.2.6. PID Controller

Controllers are electronic systems that are designed to improve
the response characteristics of a plant whose transfer function
cannot be changed (e.g. a motor). In control theory, 5 basic types
of controllers exist: Proportional (P), Integral (I), Derivative (D),
Lead, and Lag. In most control systems today, the first 3 kinds of
controllers are combined to create the PID controller. The integral
and derivative controllers are tuned using the values 𝑇𝑖 and 𝑇𝑑 to
create the desired response. Sometimes the constants in the PID

19

transfer function are represented using Ki and Kd. The transfer
function of a PID controller is shown in equation 3 for both forms.

𝐺(𝑠) = 𝐾𝑝(1 +
1

𝑇𝑖𝑠
+ 𝑇𝑑𝑠)

𝐺(𝑠) = 𝐾𝑝(1 +
𝐾𝑖

𝑠
+ 𝐾𝑑𝑠)

𝐾𝑖 =
1

𝐾𝑝𝑇𝑖
 𝐾𝑑 =

𝑇𝑑

𝐾𝑝

Equation 3. Transfer function of PID controller

KP refers to the gain of the proportional controller’s gain. A
higher Kp creates a larger overshoot, a smaller rise time, and
reduces steady state error. Ki increases the settling time and
overshoot of the system, but greatly decreases the steady state
error and decreases the rise time of the system. Kd reduces the
overshoot and the settling time. Kd has no effect on the steady
state error and minimal effect on the rise time. Table 9
summarizes the effects of the components.

Table 9: Effect of PID parameters on system output

PID
Parameter

Rise Time Overshoot Settling
Time

Steady
State
Error

KP Decreases Increase Minimal
effect

Decreases

Ki Decreases

Increases Increases Decreases

KD Minimal
Effect

Decreases Decreases No Effect

3.3. Parts Selection

In this section, a variety of potential components and their
specifications are listed and compared along with their costs to
provide a full cost benefit analysis. Our list of components
includes microcontrollers, CPUs, a variety of different sensors,
RC cars, batteries, and routers. Minor components used for
testing will not be listed, and this list may be changed as the
project progresses due to component failure or need for better
hardware.

20

3.3.1. RC Car Selection

In creating an accurate model of a road vehicle for the purposes
of crash-avoidance testing, one may begin with modifying a pre-
built design to cater the specific project requirements. For the
purposes of this project, we aim demonstrate the motion of a
standard vehicle by use of an RC car. By scaling down the size
a real-world application, one may fine-tune the various aspects
of the system in a more workable manner. The specifications
requested by the project sponsors are: a scale size between 1/10
and 1/8, an above average steering ability, replaceable or
adjustable coil over suspension, rear-end differential to minimize
slipping of tires, an aluminum or plexiglass chassis, and the
availability of spare parts. The selection was narrowed to 4
vehicles. Table 10 displays the full specification analysis of the
three cars discussed below.

Exceed RC makes the Sun fire Brushless Pro Off Road Buggy
(See Figure 8) which comes manufactured with a lightweight
aluminum alloy chassis, high capacity 3000mAh battery and an
above average stock shock system. The long travel oil-filled
shocks are made to handle high impact jumps and rough terrain
by delivering a quick response. The car comes with quick access
to the front and rear differentials for fast changes and
customization. Powered by a brushless 3300KV electric motor
the car reaches a top speed of almost 50 mph which exceeds our
attempted straight-away speed. The Sun fire pro not only has the
aluminum chassis but durable aluminum shock system and
driveshaft. All motors and gear are fully sealed for guaranteed
protection on all terrains.

Figure 8- Exceed Sunfire Pro

The Iron Track Shootout E8XBL (See Figure 9) has an
impressive three-part differential drivetrain for maximum
efficiency and customization. All differentials and suspension are
made from hardened ionized materials and filled with silicon oils

21

to increase performance even under excessive use and heat. Its
stock 2700mAh battery would provide an adequate run time to
meet our specifications. While the E8BXL has a 2075KV motor
that is the weakest of the three choices it would still be fast
enough for all purposes of this project. It has a large adjustable
big bore shock absorber system that makes for an above
average handling capability. While both the Exceed Sun Fire and
Iron Track E8XBL certainly satisfy most of our requirements there
was a lacking of excess parts and manufacturer support which
would be needed in an emergency scenario. This realization led
us to our next choice.

Figure 9- Iron Track Shootout E8XBL

The Traxxas Rally racer was proven to be the best choice when
compared to its competition and is shown in Figure 10. With a
single motor powering all 4 wheels and 3-part differential system
distributing its power Traxxas products have the most similar
structure to an actual car. The Traxxas is superior in speed,
versatility, battery life and has a higher availability in spare parts
and support from the manufacturer. Its superior control system
supports customizable throttle response, three different control
modes, a near-zero latency control response, and optional
wireless control that can be added and integrated with either
Android or Apple operating systems. Internally this vehicle has
easy access to components and motors making it an ideal
candidate for total customization and manipulation of the
electronics for the purposes of this project. The front and rear
differentials will provide the least amount of slippage to keep all
the sensors accurate for data measurement, localization and
autonomous decision making.

22

Figure 10- Traxxas Rally Racer

The Traxxas Slash 4X4 Platinum addition (shown in Figure 11) is
well worth the additional investment. It comes stock with
aluminum upgrades, front and rear sway bars, high volume GTR
shock system, and a performance-optimized low center of gravity
chassis. The low center of gravity enables this vehicle to have
superior traction compared to its rival models. It silicon-filled
center differential will more accurately model a real-world car for
the purposes of this project. The battery option for this car
enables up to a 5800mAh battery to be added for optimum run
time performance. This car would be the most reliable option and
would require minimal customization even though the cost is
higher than the other options. This car does not come stock with
a battery and gives several options. In an effort to meet our
requirement of a 20-minute run time the 5800mAh battery
selection was chosen.

Figure 11- Traxxas Slash 4x4 Platinum

The Traxxas may not have the exact chassis material requested,
but it can be easily modified to suit the project’s specifications. A
customized aluminum or Plexiglas chassis upgrade may be
added to the car to increase its resiliency and reliability along with
aluminum or Plexiglass mounts for the LiDAR, depth camera,
and other sensors. A new center differential to replace the clutch
and possibly a reduction gear may also be added to minimize the
speed of the vehicle to increase its maximum torque so the car

23

will still be able to move fast and accelerate quickly, despite the
car being loaded down with the relatively heavy equipment
additions. The addition of a center differential will also allow for
smoother turning and prevents the wheel from slipping if that
becomes an issue. Other customizations to the drive train, axles,
shocks and steering servo may be implemented with the help of
our contributors to increase the maximum steering angle and
increase stability due to the additional, unevenly distributed
weight from the battery, CPU, any additional mounts that created,
and the camera. Table 10 shows a summation of all the RC cars
considered with the relevant specification for the project.

Table 10: RC Car Specification Analysis

Specification Sunfire

Pro
Iron Track
E8XBL

Traxxas
Rally
Racer

Traxxas
Slash
Platinum

Scale 1/10

1/8 1/10 1/10

Cost $192

$245 $300 $429

Size L: 15.7 in
W: 9.8 in

L: 19.2 in
W: 11.42 in

L: 21.7 in
W: 11.7

L: 22.36 in
W: 11.65
in

Motor Brushless
3300KV

2075KV Brushless
3500KV

Brushless
3500KV

Suspension Aluminum
Shocks

Independent
and
Adjustable

Adjustable
Oil-filled

Aluminum
Shocks

Differential Metal
Gears

Gear Ratio:
11.3

Hardened
Steel
Bevel,
LSD

Hardened
Steel
Bevel,
LSD

Chassis Not
Specified

Plastic
Nylon

Nylon
Composite

Nylon
Composite

Spare Parts Yes

Yes Yes Yes

Battery 3000mAh

3 Cell Li-Po 7-cell
NiMH

Optional

Wheelbase 10.8 in

12.8 in 12.8 in 12.75 in

Drive 4 Wheel
Drive

4 Wheel
Drive

4 Wheel
Drive

4 Wheel
Drive

3.3.2. CPU Selection

The selection of the processing unit is an integral part of this
project. The central processing unit that is selected will be
responsible for not only controlling the 4 motors and steering
servo but for all of the image and sensor processing. The

24

Raspberry Pi or an Arduino board were among the initial choices
of the group. Since none of the microcontrollers in these
categories are going to be capable of the intensive amount of
image processing from our LiDAR and camera, the solution we
thought was optimal at the time was to have the board
communicate the sensor data to a computer for processing
wirelessly. The processed data could then be sent back to the
vehicle for it to make decisions. This solution, however, would
only increase the amount of delay between instructions and
making the autonomous judgements of the vehicle slower and
less reliable. Furthermore, it would make it impossible to test the
cars in outdoor environments without a computer. Further
research was done into different options for development boards
and microcontrollers.

The discovery of NVIDIA development products was effortless
since the market for self-driving vehicles and processors strong
enough to support the amount of data generated are still
extremely new. NVIDIA is a leading manufacturer of Artificial
Intelligence Embedded software and development boards, their
Jetson TX1 and TX2 boards excel in both the fields of robotics
and image processing [71]. Figure 12 below shows NVIDIA
Jetson TX2 performance versus an Intel Xeon, the data clearly
shows the superiority of the NVIDIA product. The NVIDIA Jetson
series boards were an obvious choice because they operate on
a Linux platform which is necessary for the ROS robotics
programming that will be used in the vehicles.

25

Figure 12- NVIDIA Performance Comparison

The clear advantages of the TX2 for this specific application
became apparent upon further inspection of the board
specifications. Both boards have header extensions for cameras
and display, and have interfacing for UART flow control, I2C and
SPI serial communications. USB 3.0 and 2.0 ports support
recovery and host modes for programming and deep learning to
suit the project’s needs. The TX1 and TX2 models use an ARM
32-bit Quad core processor that has a frequency of 2.3 GHz.
However, the TX2 has an additional Dual Denver 64-bit CPU that
has a higher frequency of 2.5 GHz that boasts an internal
memory cache of 128MB and can convert the ARM instructions
into its own internal ISA. The dual Denver CPU can perform up
to seven operations per clock cycle and has an optimized code
sequencing. Its innovative dynamic code optimization compacts
and stores frequently used software routines by converting them
into equivalent micro-routines that can be reused and recalled
from the cache memory.

The addition of the extra processor with its optimized code
sequencing improves the power efficiency of the Jetson TX2
board when compared to the TX1 and its other competition. The
Jetson TX2 outperforms its predecessor in High Efficiency Video
Coding, memory, data storage, and it’s Camera Serial Interface.
The TX2 is not only more efficient at processing camera data,

26

and instructions but it is more power efficient which will increase
battery life and help meet our specification of a 20-minute run
time on a single battery charge. The Table 11 below displays a
more detailed comparison of these specifications.

Table 11: NVIDIA Development Board Analysis

Specification NVIDIA Jetson TX2 NVIDIA Jetson TX1

CPU Quad ARM A57 and a HMP
Dual Denver

Quad ARM A57

Video
Processing

Encoding: HEVC 4K x 2K at
60Hz

Decoding: 4K x 2K at 60Hz with
12-bit Support

Encoding: HEVC 4K x 2K
at 30Hz

Decoding: 4K x 2K at 60Hz
with 10-bit Support

Memory 8 GB / 128-Bit / 59.7 GB per sec

4 GB / 64-Bit / 25.6 GB per

sec

Display 2x DSI, 2x DP 1.2 / HDMI 2.0 /
eDP 1.4

2x DSI, 1x eDP 1.4 / DP
1.2 / HDMI

Camera Serial
Interface

6 Cameras in 2 Lanes 2.5 Gbps
per Lane

6 Cameras in 2 Lanes 1.5
Gbps per Lane

Data Storage 32 GB

16GB

Serial
Communication

CAN, UART, SPI, I2C, I2S,
GPIOs

UART, SPI, I2C, I2S,
GPIOs

3.3.3. Microcontroller Selection

With the NVIDIA development board controlling the autonomous
movements and processing the data from our stereo camera and
LiDAR we decided that the inclusion of an additional
microcontroller to process data from Ultrasonic and Infrared
distance sensors and an IMU would increase the accuracy of
movement, object avoidance and the overall reliability of the
project. For this purpose, we observed microcontrollers from
Texas Instruments, Raspberry Pi and Arduino, a full analysis of
the boards discussed in this selected is presented below.

3.3.3.1. Raspberry Pi Model 3

The Raspberry Pi microcontrollers were the first company to
come to mind during the brainstorming sessions for product
selection. These computers are a hobbyist favorite because of
their incredible versatility and virtually limitless applications. They
are used for applications ranging from home automation to
complete online media centers and retro-gaming system

27

emulators. Since there is currently only one line of boards
manufactured by this company we only discuss the most recent
release.

The new model 3, shown is latest model and naturally the first
choice from this product line. It has a 64-bit quad core ARM
processor, however it effective available compatibility is 32-bit
ARMv7. The board also has built in WIFI which would be an
added bonus for this project since our vehicles will be
communicating with one another over a WIFI frequency. While
this board is indeed powerful it is bulky compared to its
competition because of its multiple USB and HDMI output ports.
It also requires 2.5 A power supply and would decrease the
runtime of the cars significantly. This brings us to our examination
of TI and Arduino products which as much lighter and more
power efficient.

3.3.3.2. Texas Instruments (TI) Microcontrollers

Texas Instruments is another company that first comes to mind
for many electronic and hobby enthusiasts. These boards were
considered by the group to be a smart option for our
microcontroller because every member in the group has past
experience in our courses with this MSP430 development board.
TI is also a great choice because of their user friendly Integrated
Development Environment (IDE) that comes equipped with built
in functions, variety of example codes and has an entire online
community for any implementation problems we may encounter
in the near future. A full comparison of all the TI boards presented
in this section is displayed below in Table 12

28

Table 12: Texas Instruments Development Board Analysis

Specification MSP432P401R exp432F5529LP CC3200 CC3220S

RAM

64 KB 66 KB 256 KB 256 KB

Memory

256 KB 512 KB 1 MB 1 MB

Power

1.6-3.7 VDC 1.8-3.7 VDC 1.8-3.7 VDC 1.8-3.7
VDC

Serial
Communication

UART
I2C
SPI

UART
I2C
SPI

UART
I2C
SPI

UART
I2C
SPI

I/O Pins

48 80 27 27

Size

14 mm x 14mm 14mm x 14mm 58mm x
94mm

Not
Found

Weight

3.5 oz 3.5 oz 3.5 oz 3.5 oz

Cost $25 $27 $32 $39

The Texas Instruments (TI) MSP432P401R Launch Pad
Development Kit would be a good fit for the tasks outlined above.
It has a non-volatile memory of 256 KB, up to 64 KB SRAM with
a 32-bit ARM Cortex processor with DSP acceleration. This
controller has an extremely low power-active mode of 80μA/MHz
and 660 nA standby mode and voltage operation of 1.6-3.7 VDC.
Along with built in DC-DC converters and multiple 16-bit timers
this board supports I2C, SPI and UART serial communication,
allowing it to easily communicate data with our NVIDIA controller.
This board has up to 48 pins for input and output and all pins
come equipped with an interrupt enable. The applications of this
board range from home automation, consumer electronics and
health and fitness products.

The next board in the TI Line that was examined was the MSP-
EXP430F5529LP Developer Board. Its memory is double that of
the previous series with 512 KB of non-volatile flash memory and
66 KB of RAM. This unit has a standby power consumption of 2.1
μA at an operating voltage of 3 V with a fast wake up time of 3.5
μs . The highest of the four 16-bit timers in this unit has up to
seven capture/compare registers and operates on a 32 MHz
watch crystal for pristine accuracy. Other product features
include: 12-bit Analog-To-Digital converter, full speed universal
serial bus, and an enhanced auto baud rate detector for UART
communication protocol. The main applications of this board is

29

data logging for analog or digital sensing systems which would
be the exact purpose of a microcontroller for this project. Another
advantage of the MSP-430F5529LP is the familiarity the design
team has with the product. Each member knows how to program
interrupts, use the onboard temperature sensor and LEDs, how
to use an LCD with microcontroller, and how to change the clock
speed due to previous classes involving this controller. Each
member also possesses source code to accomplish all these
things and more in both the C and assembly languages.

The CC3200 Launch XL was the next candidate from the TI
microcontroller family. With an ARM Cortex-M4 that runs at 80
MHz and 256 KB RAM and 1MB of flash memory this board is
much faster than the two previously examined. The CC3200 is
more versatile. It supports multiple IDE platforms for
programming through USB to a computer. Out of the box this
board boasts an on board WIFI chip, 27 GPIO pins, 4 timers with
pulse width modulation modes, 8-bit camera interface, on-board
accelerometer and temperature sensor and advanced low-power
modes. This is a great controller, but for a small price difference
there is an upgraded version of this board with better
specifications and additional features.

The final TI development board that was researched was the
CC3220S-LAUNCHXL microcontroller. This board is extremely
like the CC3200 but has integrated WIFI compatibility, which will
be useful in sending data between our vehicles. This
development board has two low-power modes, hibernate that
draws 4.5 μA and Deep-Sleep which draws 135 μA. However,
the problem with Texas Instrument products is the logic level and
operating voltage of their products. The standard for TI is 1.8-3.7
V while the operating voltage of most sensors researched and
the average peripheral components and LCD screens run on 5
V. This would require either a logic level converter or power
regulation creating a larger circuit which should be avoided if
possible.

3.3.3.3. Arduino Microcontrollers

Arguably the most popular microcontroller manufacturer currently
on the market, Arduino provides customers with a wide range of
boards and microcontroller chips to accomplish a variety of goals.

30

These boards are even more versatile than the Texas
Instruments being that their logic and operational voltages are
more in the range of most of the sensors and other peripheral
devices that were researched. Like TI, Arduino also has an
excellent IDE platform for easy programming and a vast
community for troubleshooting purposes. A full comparison of
the Arduino boards examined can be seen in Table 13 below.

Table 13: Arduino Development Board Analysis

Specification Uno R3 101 Due Mega
2560

RAM

2 KB

24 KB 96 KB 8 KB

Memory 32 KB 196 KB 512
KB

256
KB

Power 1.8-5V

3.3V 3.3V 5V

Serial
Communication

UART
SPI
I2C

UART
SPI
I2C

UART
SPI
I2C

(4)
UART
SPI
I2C

I/O Pins

Digital:

14
Analog:

6
PWM: 6

Digital:
14

Analog:
6

PWM: 4

Digital:
54

Analog
: 12

PWM:
12

Digital:
54

Analog
: 16

PWM:
15

Size

68.6mm
x

53.4mm

68.6mm
x

53.4mm

101.52
mm x
53.3m

m

101.5
mm x
53.3m

m

Weight

25 g 45 g 36 g 37 g

Cost $22 $30 $37 $40

The Arduino Uno is a great board for hobbyists of all levels. Part
of the Arduino 8-bit controller family this board runs at 20 MHz
and can reach 20 MIPS at that frequency. The Arduino library is
extensive and has functions for all kinds of sensors and
peripheral devices, making programming their devices incredibly
easy for a wide range of applications. The Uno has 6 low-power
sleep modes, a power-save mode current of 0.75 μA, and an
active mode current of 0.1mA. The Uno also includes the
following features: two 8-bit timers, a single 16-bit timer; Digital,
analog and PWM specific GPIO pins; ADC converter,
temperature sensor, and on-chip oscillator.

The Arduino 101 is a dual core microcontroller containing a x86
and 32-bit Arc cores that both clock in at 32 MHz. It uses an intel

31

toolchain that enables parallel processing to accomplish complex
goals. This board has a 6-axis accelerometer to recognize
gestures and enables blue tooth connectivity for wireless control
from blue tooth enabled devices. This board has more GPIO pins
compared to the Uno and was made in collaboration with Intel.
Intel created an open source real-time operating system for the
101 that complies Arduino code using static registers to execute
a list of commands. The Arduino 101 can have current
consumption as low at 250 μA and has an operational voltage of
3.3 VDC.

The Arduino Due was made for larger scale projects and is based
on a 32-bit ARM core with 54 Digital GPIO pins and 12 Analog
pins. The board operates at 3.3 V and its pins are constrained at
that voltage which could pose limitations with integrating sensors.
However, the board has high flash memory, two separate SRAM
memory banks, relatively low power consumption (800 mA at 3.3
V) and a clock speed of 84 MHz. The Due has four hardware
UART ports for serial communication which enable parallel
processing of different sensor data to the NVIDIA CPU. This
board can be powered through either a dedicated micro USB
cable or a barrel power connector.

The Arduino Mega 2560 was designed for more complex projects
and advanced programming with its superior memory capacity.
This board was made for robotics applications using a high
number of sensors with its 54 GPIO pin count. It has 4 UART
communication ports so a wide range of data can be sent to
different locations and a 16 MHz crystal oscillator for accurate
timing. The 101 board achieves a max throughput reaching 1
MIPS per MHz and its active-mode uses 500 μA making it perfect
for low-power application. This board would far exceed the needs
our needs of application since the NVIDIA board will be doing the
bulk of the data processing. For that reason, we will most likely
not be choosing to use this for either our PCB or any other sensor
based application.

32

3.3.4. Sensor Selection

The Microcontroller will process data from platform compatible
Ultrasonic, Infrared sensors and an Inertial Measurement Unit.
The sonar and IR sensors will be used to monitor certain ranges
of distance and set on an interrupt so car can achieve safe
stopping distances in emergency situations such a collision, short
stops, or to avoid pedestrian traffic. The IMU will be used to
obtain additional data on speed to be cross referenced with the
NVIDIA readings to reduce and possibly eliminate errors in
sensor data. ROS will subscribe to these sensor topics to help
create an even more detailed map that will aid in localization,
mapping, and autonomous decision making. Several sensors for
each platform are presented and examined below. Availability,
range, resolution, and price of these sensors will be the main
determining factors of what board and platform will be used for
this purpose. The specifications for the sensors chosen are
displayed below in Table 14.

3.3.4.1. Infrared Sensors (IR)

Infrared sensors have a much lower range than Ultrasonic and
will be used to detect closer range obstacles that could appear in
emergency situations. DAOKI makes an Arduino compatible IR
module specifically made for object avoidance in autonomous car
applications. Its range is for 1mm to 25mm and uses 15mA
current draw. Its binary output will trigger an interrupt and be able
to help stop the car faster than if the object was detected through
the camera or LiDAR. These sensors are available for purchase
in a multi-pack from Amazon for an affordable price.

Adafruit's IR sensor is sleeker and has a higher range of close to
1m. This sensor outputs an analog voltage that corresponds to a
specific distance (3V for 10cm, 0.4V for 80cm). This sensor would
be compatible with every platform examined so far because it
outputs a voltage that could be read by any pin. While having an
actual value for the distance would be more ideal this sensor
would consume more power. Another downside is the cost of this
sensor is equivalent to the cost of 5 of the previous. Most other
IR sensors have a much higher cost compared to the DAOKI
sensor multi-pack with not much improvement in detection range
or resolution.

33

3.3.4.2. Ultrasonic Sensors (Sonar)

For mid-range object detection, we will be using Ultrasonic
sensors to monitor multiple directions. Since each vehicle will
require several of these sensors keeping the cost low is crucial
to stay within our budget. The majority of these sensors use only
four pins (VCC, GND, Trigger, and Echo) and operate at similar
ranges and voltages. The Trigger pin releases the sonic pulse at
intervals and the Echo pin then receives the pulse and using
Equation 2.

SparkFun makes an Ultrasonic sensor with a range of 2cm to
400cm and with an operating voltage of 5V. The best price found
was a pack of 10 of these sensors for $14.99 on Amazon. This
price best fits our budget and was the main factor in the
purchasing decision.

3.3.4.3. Inertial Measurement Unit (IMU)

The IMU is an integral part of the robot as it will measure data
that will aid the self-localization of the car within its environment.
The NVIDIA could also measure velocity using the stereo camera
and LiDAR but these values could have some discrepancy due
to the latency of image processing. Adding an additional sensor
will be useful to find errors and improve accuracy.

Adafruit makes a 3-axis accelerometer that can measure to 16g
with a 57mV/g sensitivity. The sensor uses a supply voltage of 3-
5VDC which would work for a variety of platforms. The price of
this sensor was well within our budget but we found another that
will include angular velocity to our data with a minimal cost
increase.

SparkFun also makes an affordable Arduino compatible IMU
Breakout broad. The 9DoF breakout module contains a 3-axis
accelerometer, 3-axis gyroscope, and 3-axis magnetometer for a
total of 9 degrees of freedom. Its serial communication supports
SPI and I2C that will have the ability to communicate with the
NVIDIA board running our ROS. This board can measure angular
velocity for turning speeds and linear acceleration for speed. The
additional data will aid the car in its autonomous decision making.

34

3.3.4.4. GPS Sensor Module

The GPS module is a valuable component because ROS will be
using it to localize the robot and map its environment as
accurately as possible. The GPS is important to integrate into this
project because it is found in most new models of cars on the
market today, and creating the most accurate model of a full-size
autonomous vehicle that would be sold in the future is the overall
objective of our design.

GPS standards ensure that most modules work very similarly
with little deviation. The main differences from companies like
Adafruit and SparkFun are the logic voltages, and
communication protocol. Since compatibility is of the utmost
importance, the SparkFun GPS module was an obvious choice.
It is compatible with logic voltages ranging from 3.3 to 5VDC and
would work with either Texas Instruments or Arduino
microcontrollers. The module uses the UART serial
communication protocol and would be able to communicate with
both our microcontroller and NVIDIA computer system. Table 14
shows a summary of the sensors we have covered up until this
point.

3.3.4.5. Temperature Sensor and Fan

SparkFun manufactures a great temperature sensor called a
TMP36. This sensor requires a 2.7 to 5.5VDC for power which
will make it compatible with any of the microcontrollers outlined
above. The sensors sensitivity is 1°C to 125°C which will include
the operational temperature constraint of 80 degrees for the
NVIDIA board we are trying to monitor. This temperature range
will also suit the acceptable range of temperatures for our
Auxiliary battery. The sensor will be placed between the battery
and NVIDIA board to monitor the temperature between the two
and within the outer shell of the car as a system.

The sensors output voltage is 10mV per degree Celsius, this
signal will be read by the ATMega IC chip and within the critical
temperature range trigger a 2x2 DC powered fan for cooling. The
sensor only requires 3 GPIO pins, one for power supply, one for
grounding and one data line. These sensors are extremely

35

affordable and because of its versatility in voltage requirements
was chosen for our design. The sensor was purchased in a 3
pack on the amazon website for less than $10 and the 2x2 fan
was purchased from a local RadioShack for $5.

Table 14: Arduino Sensor Specifications

Specification Ultrasonic
Sensor

DAOKI
IR
Module

SparkFun IMU SparkFun
GPS-
14030

Detection
Range

2-400
centimeters

2-30
centimet
ers

± 2, 4, 8, or 16 g

± 245, 500, and
2000 °/s

Not Found

Resolution

1
centimeter

N/A
(Binary
Output)

± 2g - 0.061 mg
± 245 °/s - 8.75
mdps

Not Found

Sensitivity

0.3
centimeter

Not
Found

Not Found Not Found

Power

5 VDC 3-5 VDC 1.9-3 VDC 3.3-5 VDC

Cost $15 for 10 $9 for 5 $25 $13

3.3.5. Stereo Image Sensor

Among the system of sonic and light sensors, each unit will
possess a stereo camera for the purposes of capturing images
and interpreting data in a more familiar way than that of LiDAR or
SONAR. By using a camera with two lenses working in stereo,
this module will enable the system to complement the sensors
with a three-dimensional view of the surrounding area. In creating
machine vision, the goal is to achieve a model that is both
resolute and able to be processed digitally. Typically, digital
optics record and process images in two dimensions; however,
for the purposes of this product, the ability to capture depth is
nearly a necessity for the intelligence in the system’s ability to
localize and predict motion of other objects.

A stereo optical scanner is simply a device that makes use of the
same principles which enable our brains to process the distance
to an object - depth. In a two-dimensional image, one may
attempt to classify objects as either near or far; yet, without a
second reference, these assumptions would not be sufficient for
this project. Using images taken simultaneously from each lens,
a stereo image sensor employs trigonometric methods to
calculate the distances of all points in the field of vision. While the

36

ability to calculate distance from the aforementioned methods is
timeless, the digital technology of stereo optics has existed for
just nearly a decade. More recently, even, is the functionality of
processing the images internally - providing the sensory output
as a full-color representation of a three-dimensional environment.

There exist, on the market, multiple devices that achieve three-
dimensional machine vision. Various products were researched
and compared for optimal functionality. Several factors that were
considered of importance are as follows: resolution, range, frame
rate, field of vision, and illumination method. Resolution is clearly
a significant aspect to sensor quality. The amount of precision
and clarity of data output per input greatly influences the quality
of the three-dimensional model; this is of great importance in an
action scenario for properly determining the spatial coordinates
of the vehicle’s surroundings. Range, secondly, is integral in the
efficacy of the system, as a whole. The stereo camera, in itself,
serves as a supplemental means of sensory input to that of the
LiDAR scanner; therefore, the range has to be of comparable
proportions. This range must be large enough to observe objects
that the two-dimensional LiDAR detects, in order to cohesively
create the three-dimensional model in parallel with the other
sensory inputs. Frame rate will ultimately contribute to the data
refresh rate - a high frame rate ensures that the motion and
velocities of objects are calculated in a seamless manner. Field
of vision and illumination method are qualities that vary greatly
between models of digital stereo vision sensors. The field of view
must be such that no object of considerable “danger” is frequently
in a blind spot. For this project, it was determined that horizontal
field of view is more relevant than vertical.

The sensor that was selected was the ZED stereo camera. For
comparison purposes, a similar contender, the Structure.IO
model specifications will be observed. In the following Table 15
one may note the differences in the products and observe why
the decision lay with the ZED sensor. The ZED camera
possessed multiple modes of video recording, one of which
boasts a fine resolution of 1344x376 megapixels. This will be
sufficient for object detection to a precise degree. The range of
20 meters aligned with both the LiDAR range (the range greatly
exceeds the LiDAR) and the desired environment scale, indoors.
20 meters would easily capture the span of a typical room or lab

37

for testing capabilities. The frame rate of 100 fps was among the
top in the market, providing the system with a high frequency of
image refreshing for motion detection. While other models could
detect multiple spectrums of light, visible light was deemed
acceptable for the needs of this project. The wide field of vision
of 110 degrees (max) arises from the lens quality of the ZED
camera. Five Volts DC was optimal for the USB hub connection;
and while other models were able to be processed on multiple
operating systems, the ZED camera operates on the only
operating systems in use for this project.

Table 15: Stereo Image Sensor Analysis

Specification Sense 3D Sensor Sturctured.IO Stereo

Camera

Resolution

1344x376 megapixels
(max)

640x480 megapixels

Range

20 meters 3.5 meters

Frame Rate

100 fps

30/60 fps

Field of Vision

110 degrees

Horizontal and vertical

58 degrees horizontal
45 degrees vertical

Illumination Method

Visible light Visible light and Infared

Power

5 VDC 5 VDC

Hardware
Requirements

Windows, Linux, ROS Windows, IOS, Linux,
Android Operating

Systems

Cost $449 $449

3.3.6. LiDAR Sensor

The primary means of gathering data around each vehicle is by
use of a sweeping LiDAR module. In machine vision, a LiDAR
sensor proves extremely practical in gathering precise data on
the positions of surrounding obstacles and objects. The primary
advantages to using a sweeping LiDAR sensor compared to a
camera are the following: creating a 360 degree 3-D map upon
each revolution, emission of light provides sensor input
independent of the ambient room lighting, and much less prone
to interference than that of SONAR or RADAR [27]. Due to the
usage of lasers, a LiDAR module provides a more reliable and
precise definition of the world around the machine.

38

This precision is a necessity for the system to visualize in every
obstacle, regardless of the interference. Much like a human
driver, influences such as a glare, blind spot, or lack of light often
result in vehicle collision; through the employment of LiDAR,
these scenarios can be avoided. Glare and/or interference is
cancelled through the very spectrum of the light emitted and
being sensed. The laser LED in the Scanse Sweep module is an
infrared laser of 905 nm [28]; this falls into the infrared spectrum.
While an infrared laser and sensor would obviously be sensitive
to heat, the advantage is that these heat “shadows” are
stationary, and do not travel with a moving object at ambient
temperature [27]. Hence, the LiDAR will create a monochromatic
representation of standard objects while simultaneously being
very sensitive to warm bodies, clearly a target to avoid. A blind
spot is another issue we drivers face on the road as our field of
vision may only be directed in a certain window at one time,
leaving the opportunity for a myriad of unfortunate
circumstances. With machine vision using a sweeping LiDAR
sensor, the system receives a 360-degree input at a set number
of revolutions per second. This directional range of sensory data
is unparalleled with any conceivable method of standard vehicle
operation. Lack of ambient light is yet another hindrance to
drivers. While there are alternatives to sensing in darkness aside
from LiDAR, LiDAR proves extremely effective, if not more
effective, in sensing objects in complete darkness. Again, due to
the pulsating laser output, LiDAR is able to emit a frequency
independent of ambient light, or lack-thereof, and sense where
these emissions reflect.

It is noteworthy to discuss why LiDAR is not the sole sensor in
project design. While LiDAR is a revolutionary way in which we
can bypass difficulties in visual sensory data, there are always
tradeoffs in any system. The aim, here, is to discuss where
LiDAR falls short and why it should not be the only sensor in
intelligent vehicle design. LiDAR can be deceived in several
ways, such as interference from an alternate LiDAR transmitter,
or the calibration between receiver and transmitter [29]. In the
Scanse Sweep SEN 14117, fortunately, one may program
settings to an individual pattern of laser pulses so that these are
unique to that LiDAR’s receiver. This is not the case in every
module, and may present a problem for other designs. Similarly,

39

the receiver must be very attuned to the precise rate and pattern
of emissions, or the data could be greatly skewed. Additionally,
LiDAR does not function well with non-rigid obstacles such as
water vapor or any fluid state [28]. The laser may reflect off of the
individual particles in a fog, thereby confusing the receiver.
Furthermore, a sweeping LiDAR has a latency when it comes to
short range detection, necessary in collision avoidance
scenarios. For these reasons, a SONAR sensor shall be outfitted
to the vehicle to complement the regions where the LiDAR and
stereo camera are lacking.

The Scanse Sweep SEN 14117 was chosen to outfit the design
specifications in terms of an efficient LiDAR module. This product
exhibited traits that deliver the aforementioned advantages of a
sweeping LiDAR over other sensor types. Several metrics to
consider when choosing an appropriate LiDAR sensor for use in
robotic vehicles are: range of vision (distance), horizontal degree
of vision, scan frequency, resolution, and cost (cost included here
due to the expensive nature of LiDAR modules). Range of vision
is clearly a desirable trait in any visual sensor. While LiDAR
boasts an increased range compared to a visible light or SONAR
sensor, it is best to maximize this value as machine intelligence
takes time to process an object on course for a collision.
Horizontal degree of vision is certainly a characteristic that
separates the utility of one LiDAR sensor compared to another;
a 360-degree field greatly increases the efficacy of any sensor in
a spatial environment. While not all LiDAR modules are 360-
degree, in the situation of vehicle intelligence, it proved to be a
feature worth the cost. Rotation frequency is directly related to
the update rate of data, much like frames per second of a camera
sensor. A high rotational frequency leads to a sensor transmitting
a moving model of its surroundings with great accuracy.
Resolution is, again, a factor which tends to be apparent across
all sensors. High resolution is sought to provide a clear input at
minimal means of output. Finally, cost is considerably variant
among LiDAR scanners; this was sought to be kept minimal while
a 360-degree rotation was kept as a must-have feature for this
model. The Scanse Sweep SEN 14117 was compared to various
other LiDAR sensors. While it is not the premium device on the
market, it met the needs of this project at a reasonable cost.
Below, in Table 16, the comparison between the Scanse Sweep

40

SEN 14117 and a similar product, the RPLiDAR A1M8 to see
why the former was preferred:

Table 16: LiDAR Sensor Analysis

Specification RPLiDAR A1M8 Scanse Sweep SEN 14117

Resolution

0.019 inches 0.4 inches

Range

6 meters 40 meters

Field of Vision

360 degrees
horizontal

360 degrees horizontal

Rotation Frequency

Up to 10 Hz Up to 1075 Hz

Power

4.9-5.5 VDC 5 VDC

Hardware
Requirements

Intel core i5 or
equivalent

Windows, IOS, Linux, Android
Operating Systems

Cost $199 $349

3.3.7. Auxiliary Battery Pack and USB Hub

To power the NVIDIA and Arduino boards along with our other
components an auxiliary battery will be need to be added as to
not interfere with the battery capacity of the RC car decreasing
the car’s run time. The NVIDIA board will need a 19V power
supply so portable laptop battery chargers were researched. The
power bank must have enough capacity to meet our 20-minute
runtime specification.

The first power bank that was researched was the Lizone Extra
Pro. It has a battery capacity of 40,000mAh. It has extremely high
customer ratings and doesn’t seem to have current draw
limitations like other power banks. The bank has two USB ports
that support 2.1A charging and one 19V port for laptop charging.
However, the storage capacity of this power bank may not be
entirely meet our runtime objectives so other products were
observed.

MAXOAK sells a 50,000mAh battery pack that should much
better suit our requirement of a 20-minute runtime. The battery
pack has two 2.1A 5V USB ports and two 1A 5V USB ports, with
the addition of these two extra ports it could support a few of our
sensors as well as our Arduino Board. Included in the outputs is
a 20V and a 12V output for laptops and notebooks that support
up to a 4.5A current draw. This device not only has more outputs

41

than the Lizone battery but it rated equally as high and has a
lower price point.

In order to not only deliver power but data to all components from
the portable battery and CPU respectively, a USB hub must be
used. This product must have compatible 3.0 ports to work with
all devices in this project that will deliver sufficient amperage
required by our components. The chosen product was an AUKEY
powered USB hub. This device has 3 charging ports that output
2.4 A each and 7 USB 3.0 data ports so our microcontroller,
LiDAR, and Stereo camera can all communicate with our main
CPU.

3.3.8. Wireless Router and USB Network Adapter

The vehicle-to-vehicle communication will be achieved though
DSCR communication using a wireless frequency of 5.9 GHz. In
order to do this the cars will be outfitted with a USB wireless
adapter that will all communicate with a central wireless router.
The decrease in the latency of the wireless communication is a
parameter that cannot be overlooked since the timely
transmission and receiving of important data will improve the
reliability of these robots.

Linksys is probably the most widely known and frequently used
wireless routers. The router from this company that was
examined was the dual-band E2500. This device has a maximum
data transfer rate of 300Mbps and works with 2.4 and 5GHz
frequencies. It is compatible with Windows or Mac operating
systems and comes equipped with 4 Ethernet ports for
connectivity. While Linksys is a more notable and preferred brand
for many users its price is much higher and would negatively
offset our budget.

TP-Link is a notable manufacturer of wireless internet products
with affordable price points. They make routers with transmission
speeds of 300Mbps to 5334Mbps. However, the higher data rate
routers have an extremely high cost and far exceed the needs of
this project's communication specifications. The TP-Link TL-
WR940N would be an excellent candidate because it has above
average data transfer rates and a lower cost compared to routers
of the same caliber from other manufacturers. The 3 antennas

42

help to increase the robustness of its data transfer signal.
Compared to the Linksys it is not superior is speeds but it should
meet the project specifications and help us keep our budget on
track.

Speed tests from technology sites like tomshardware and
smallnetbuilder were extensively reviewed for multiple top brands
of routers within our price range (Linksys, Net Gear, and TP-
Link). The tests revealed that most wireless routers generally do
not meet their full advertised wireless transfer speeds. Reaching
the highest speeds possible requires the tinkering of settings.
With overlapping networks common in buildings and
neighborhoods changing the wireless channel can improve
wireless signal strength, bandwidth, and range. Speed tests will
need to be ran and settings modified to be able to reach the
highest possible range and data transfer rates defined in our
requirement specifications.

For the USB network adapter, the first candidate was the TP-Link
N300. This product would be great for the purposes of our project
since it has a data transfer rate of up to 300Mbps that is suitable
for even online gaming purposes. This product is extremely
compact and lightweight which will help to reduce the overall
mass of our vehicle and save much needed space for other
components in our design. It is compatible with Linux Kernal
2.6.18-3.10.10 which is important because it will be utilized by
our NVIDIA CPU which operates on a Linux Operating system.

The Diza100 adapter has 802.11ac dual band operation with a
transfer rate of 433Mbps at 5.8GHz frequency. This definitely
suits our needs since wireless communication for this project will
utilize 5.9GHz and our TP-Link Router has make speeds of
300Mbps. This device is only slightly out of the cost constraint
but it higher rated than the previous devices with more reviewers.
This device is also Linux operating system compatible across
multiple versions. This device has a simple set up with a WPS
button to automatically search for and connect to a Network and
a detachable antenna option.

43

3.3.9. Summary

The final selection of parts was a group effort between our senior
design team and our project sponsors and contributors.
Decisions were made according to market availability, cost and
performance. All items purchased had to be approved by our
primary sponsor Dr. Fallah before they were bought. The item list
is displayed below in Table 17, and photos of the physical
components in-hand are shown in the Figures 13 and 14 below.

Figure 13- Purchased USB Hub, Router, Battery Pack, Stereo Camera, NVIDIA CPU,

Traxxas RC Car and LiDAR

Figure 14- Purchased Arduino Uno, LCD for testing, Ultrasonic Sensor, IR Sensor,

IMU and GPS Shield

44

The major investments for this project were the Traxxas Slash
4x4 Platinum, the Zed Stereo camera and the NVIDIA Jetson
TX2. The NVIDIA's high-class performance in image processing
made it possibly the most necessary component of this project.
With data coming from both a LiDAR and a stereo camera, and
a dense optical flow coding sequence we needed a computer
system that would handle all of this data with minimal latency so
our vehicle can make faster and more decisive autonomous
movements. NVIDIA also offers an education discount which
made the selection of this vital piece even easier and helped
keep the project within the budget.

The next component that was heavily discussed and debated
was the vehicle. The goal of our project is to model an actual
autonomous car that would be sold in future markets and acquire
accurate data that could be applied in the design of a full-size car.
Traxxas was undoubtedly the best manufacturer researched and
the Slash platinum is well worth the investment. This RC car is
the closest to real-world vehicle dynamics that we could find on
the market. It has superior materials, access to upgrades and
spare parts, and excellent customer service available to our
team. The Slash Platinum was over our initial budget constraint
given by our project sponsors, however, after much discussion
and with the savings from the NVIDIA student discount it was
decided to be the best choice to meet the project goals.

The ZED stereo camera will allow the optical flow program in
sensing pedestrians, signs, traffic signals and other cars while
also providing a First-Person View (FPV) on the vehicle for
manual control from significant distance away. On top of the
benefits previously mentioned this camera will provide the car
with an additional depth sensing capability to record distances
from all objects seen within its range. This camera was chosen
because of its accuracy and its compact size, which is an
important characteristic is given all of the components we will be
adding to this vehicle.

Our initial design for the LiDAR sensor was to use a 3D sensor

and an additional mount to obtain a true 360-degree view (in all

directions) of the car's surroundings. The mount however, was

an expensive component and due to time constraints designing

and manufacturing our own mount was out of the question. The

45

sacrifice of this mount was made so other higher priority

components could be invested in for the overall benefit of the

project. Without the mount our LiDAR sensor will still provide a

sufficient 3-Dimensional model, on a single plane of view, for our

data.

Our microcontroller research was extensive, but quite revealing.

Without it, we would have encountered multiple implementation

issues in the near future. After sensor research it appeared that

the majority of them available on the market require 5VDC

operational and logic high voltages. As discussed above in the

Microcontroller Selection section this would cause issues with

Texas Instrument devices and would require additional

converters which would complicate our design. With a very

limited budget due to our major investments above the selected

controller was the Arduino UNO.

Arduino has significant resources available and the proper logic

and supply voltages for sensors. In fact, there are many more

sensors made specifically for Arduino Microcontrollers which will

reduce possible errors we could encounter. Instead of using the

full microcontroller on the vehicle we will be incorporating a

preprogrammed Arduino IC into our Printed Circuit Board (PCB)

Design. The UNO Rev3 chosen because it has a removable IC

chip for these purposes as well as a low cost to fit within our

budget. All sensors were with Arduino compatibility and

moderate cost were also chosen for exact models.

Once the Arduino microcontroller was selected the appropriate

and compatible sensors were chosen and purchased. Additional

sensors requested by project sponsors were Hall sensors to

measure motor speed to aid localization and autonomous

decision making. Temperature sensors for the PCB design were

researched and results yielded similar values for sensitivity and

dynamic range for many of these sensors available on the

market. The purchasing decision for these two sensors were

easy. For the Hall sensor we purchased a model from Traxxas to

ensure its compatibility and a popular temperature sensor was

chosen according to online reviews.

46

Table 17: Final Product Selection

Component Selection

Radio Controlled Car

Traxxas Slash 4x4 Platinum

RC Car Battery

5600mAh

Main Processing Unit

NVIDIA Jetson TX2

Microcontroller

Arduino UNO Rev3

IR Sensor

DAOKI IR Sensor Pack

Ultrasonic Sensor

SparkFun Ultrasonic Sensor Pack

Inertial Measurement Unit SparkFun 9DoF Breakout IMU

GPS Module

SparkFun GPS-14030

Stereo Image Sensor

Zed Stereo Camera

LiDAR Sensor

Scanse SEN14117

Auxiliary Battery Pack

MAXOAK 50,000mAH

USB Hub

AUKEY Powered USB Hub

Wireless Router

TP-Link TL-WR940N

Wireless USB Network
Adapters

TP-Link N-300 Adapter

Temperature Sensor

TMP36

Hall Sensor Traxxas RPM Telemetry Sensor

LCD Screen HD44780 Size: 16x2

Additional Arduino
ICS for PCB

ATmega328

4. Project Constraints and
Standards

Alongside the engineering requirements, we also must consider
relevant industry standards for design to provide a quality
product. Constraints unrelated to our engineering requirements,
such as ethics, environment, and government policy, will also be
explored.

47

4.1. Project Standards

There are many standards to consider while developing the NSL
Self Driving Car. Wireless and wired communication, sensors
making use of the electromagnetic spectrum, and powered
electronics all have regulations to ensure proper use and
standardized operation. There’s also the Department of
Transportation (DoT) guidelines to take into account in
pathfinding algorithms such as lane width, speed limits, and
many more road rules.

4.1.1. Power Supply Standards

CUI defines standards for power supply safety, detailing which
components can be used to develop a power supply, what
classification the power system falls under, and which insulation
to use for the system [37]. Table 18 outlines the circuit definitions
according to CUI; according to this table, the Self Driving Car
system would fall under Extra-Low Voltage. It is critical to
consider this standard while designing the PCB and other
electrical components.

Table 18: Circuit Power Specification

Circuit Type Circuit Definition

Hazardous
Voltage

Any voltage exceeding 42.2 VAC peak or 60 VDC without a limited current
circuit

Extra-Low
Voltage (ELV)

A voltage in a secondary circuit not exceeding 42.2 VAC peak or 60 VDC,
the circuit being separated from hazardous voltage by at least basic

insulation.

Safety Extra-
Low Voltage

(SELV)
Circuit

A secondary circuit that cannot reach a hazardous voltage between any
two accessible parts under normal operations or a single fault. Under

fault, ELV limits are satisfied. Limits of 71 VAC and 120 VDC must not be
exceeded. Must be double-insulated from hazardous voltage.

Considered safe for operator access.
Limited
Current
Circuits

Circuits may be accessible even though voltages > SELV requirements.
A limited current circuit is designed to ensure non-hazardous current
under fault. For frequencies < 1 kHz, steady state current <= 0.7 mA
peak AC or 2 mA DC. For frequencies >= 1 kHz, the limit is 0.7 mA *
frequency (kHz) but shall not exceed 70 mA. For accessible parts not
exceeding 450 VAC peak or 450 VDC, the max circuit capacitance is 0.1

F. For accessible parts not exceeding 1500 VAC peak or 1500 VDC the

max stored charge is 45 C and available energy shall not be above 350
mJ. Must have the same segretation rules as SELV circuits.

In the short-term, the system must be safe and operational for
the Senior Design showcase and satisfy basic industry

48

standards. In the long-term, if the product is to be generalized for
market and research, the system must conform to international
standards. There are several such international product
conformance marks, or regional safety marks, such as CE
(European), UL (USA), CSA (US and Canada), GOST-R
(Russia), PSE mark (Japan), and CCC (China).

4.1.2. Wi-Fi DSRC Standard (802.11b)

The topic of wireless communication, which will be the primary
method of connecting the network of vehicles, is very involved.
The main organizations to consider are Institute of Electrical and
Electronics Engineers (IEEE), International Organization for
Standardization (ISO), European Telecommunications
Standards Institute (ETSI), Federal Communications
Commission (FCC), and the Department of Transportation (DoT).

The two methods of wireless communication currently under
consideration are standard WI-FI as described by 802.11(b) and
Dedicated Short-Range Communication (DSRC), which is a
modification to 802.11.

IEEE defines 802.11b as having a data rate of 11 Mbit/s using
the same media as the original standard. Interference can be
experienced in the 2.4 GHz band, which is used by this standard,
from such products as microwave ovens, Bluetooth devices, and
phones.

This disadvantage leads us to consider DSRC as a medium of
wireless communication. In October 1999, FCC dedicated 75
MHz of the 5.9 GHz band to be used by intelligent transportation
systems (ITS, which includes but is not limited to self-driving
technologies).

The bandwidth allows for 1 control channel and 6 service
channels [38]. In August 2008, ETSI also allocated 30 MHz of the
5.9 GHz band. The two are incompatible and used in different
ways, however the allocation is present for use by ITS. DSRC is
currently promoted by the DoT as the method of wireless
communication. ISO and the European Committee for
Standardization (CEN) have several standards related to DSRC
as listed in Table 18.

49

Each standard in the table addresses a different layer in the OSI
model of the network implementation of DSRC. Considering the
physical layer require DSRC be transmitted at 5.9 GHz, a natural
implementation would be a modified 802.11b system to transmit
and receive at 5.9 GHz instead of 2.4 GHz [39].

Another method of short-range wireless communication is
Bluetooth, however the distance of communication over
Bluetooth is much shorter as compared to Wi-Fi. The highest
range (100 m) is only possible with a class 1 device [40], which
requires much more power than Wi-Fi would. DSRC over Wi-Fi
would allow a communication range of 1000m while satisfying the
low power requirement of an embedded system [41].

4.1.3. Frequency Allocation

While a US-specific implementation could use the 9.02-9.28 GHz
range, or a Japan-specific implementation could use a 7.15-7.25
GHz range, Table 19 suggests 5.8-5.9 GHz would provide the
most interoperability internationally. This strengthens the
decision to use WI-FI as our DSRC medium, because Bluetooth
only operates at 2.4 GHz.

Table 19: Spectrum Allocations

Region Frequency (GHz) Reference Documents

ITU-R (ISM
band)

5.725-5.875 Article 5 of Radio
Regulations

Europe

5.795-5.815
5.855-5.905
5.905-5.925

ETS 202-663, ETSI; EN
302-571, ETSI; EN 301-893

North America

9.02-9.28,
5.85-5.925

FCC 47 CFR

Japan

7.15-7.25,
5.77-5.85

MIC EO Article 49

4.1.4. Network Security

According to the ISO/IEC standard, “the purpose of ISO/IEC
27033 is to provide detailed guidance on…security aspects of
system networks and their inter-connections” [42]. ISO outlines
several sections on maintaining a secure network over various
architectures and scenarios. Since our project involves the use

50

of a wireless network to allow cars to communicate over a
distance, we must make sure to follow these standards to ensure
connection security.

The secure transfer of data across our network will be imperative
for a safe, reliable, and effective self-driving system. The dangers
of leaving our network open are far greater than an ordinary
application over a home or standard public network. Table 20
outlines the 5 network security standards that will directly affect
our network.

Table 20: ISO/IEC Network Security Standards

ISO Code Scope of Standard

ISO/IEC 27033-1:2015

Network Security Overview anc concepts: Provides a
roadmap and overview of the concepts and management
guidance for network security.

ISO/IEC 27033-2:2012

Guidelines for the design and implementation of network
security: defines how organizations should…plan, design,
implement, and document network security.

ISO/IEC 27033-3:2010

Reference networking scenarios – threats, design
techniques, and control issues: discusses specific threats
associated with typical network scenarios.

ISO/IEC 27033-5:2013

Securing communications across networks using Virtual
Private Networks (VPNs): provides guidelines on
selection, implementation, and monitoring of network
security using VPN connections.

ISO/IEC 27033-6:2016 Securing wireless IP network access: define specific risks,
design techniques, and control issues, providing basic
advice for Wi-Fi, Bluetooth, 3G, and other wireless
networks.

4.1.5. Road Safety Standards

Road safety can be divided into active and passive features.
Passive safety features are only applied in response to a
collision. The purpose of these are to ensure the safety of drivers
and passengers in the case of collisions. Active safety features
are deployed to avoid collisions, and continuously operate during
the voyage to ensure the reduction in probability of an accident.
As such, the fundamental components of the Self-Driving Car:
Lidar, mapping, routing, classify this project as an Active Safety
product [43].

Passive features include seat belts, air bags, head rests,
laminated glass, correctly positioned fuel tanks, fuel pump kill
switches, and a passenger safety cell. Air bags are currently only

51

regulated by NHTSA to be included for front passengers. Smart
airbags further increase safety by measuring the passenger’s
weight and deploying in a way specific to those measurements.
Vehicle crashworthiness is a regulation whose inception traces
to the late 1960s; presently all vehicles must pass crash tests
before being marketed to the public. The law surrounding passive
protection has a long and conflicted past, including several eras
of enacting and repealing laws mandating seat belts in future car
models. By 1998, all car models were to have passive safety
features in them. However it wasn’t until 2006 that these features
were further defined to be child-safe [44].

Active features provide a layer of protection that cannot be
granted with passive features alone.C Classical examples of
such systems include Antilock Braking System (ABS), Tire
Pressure Monitoring System (TPMS), Electronic Stability Control
(ESC), traction control, collision-detection-and-avoidance, cruise
control, and more recently, various levels of autonomy and
auxiliary sensors. IPC PCB StandardsConsidering the most
important feature of this project in terms of electrical design is the
PCB, our board must conform to the relevant standards. IPC
provides a list of standards for

Figure 15- PCB Standards

52

the whole process of manufacturing, testing, and distributing
printed boards. Considering we will be designing our own board
and utilizing a producer to build our board for us, the relevant IPC
standards are IPC-2220 series + 7351 (Design & Land Patterns),
and potentially IPC-A-600 (Acceptability of Printed Boards) [45].

The utility of conforming to these IPC standards are increased
control over the quality and reliability of the PCB. The benefit of
ordering the PCB from a manufacturer who conforms to the IPC
manufacturing standards is ensured reliability, as well as an
affordable board. Figure 15 indicates which IPC standards are to
be fulfilled, and by whom.

Figure 15- PCB Standards

4.1.6. Inertial Measurement Unit (IMU) Standard

IEEE P1780 – Standard for the Specification of Inertial
Measurement Units (IMU) provides specifications, units, format,
and terminology for manufacturers and users for IMUs. This
allows us to select an IMU which fits the specification of our
project, namely, cost-effective, accurate, and reliable data [46].

4.1.7. AI and Self-Driving Car Standards

NHTSA (U.S. National Highway Traffic Safety Administration)
lists five “eras of safety” on their automated vehicles website,
consisting of safety and convenience features, advanced safety
features, and advanced driver assistance features [47].
According to NHTSA, we are currently in the partially automated
safety era, and by 2025 on, we are projected to implement fully
automated safety features such as “highway autopilot.” This is
one of many predictions, however this is a period in history where
no such definite regulations or standards exist yet. NHTSA
advises the states to let the DOT alone to regulate these
technologies, however many (source) states are implementing
policies on their own.

A recent law in Germany legalized autonomous cars such that
the auto industry in Germany can adapt to the changing market
[48]. This makes apparent the fact that this field is still developing
and thus, a clear set of standards to follow has yet to be
developed internationally.

53

4.1.8. Programming Standards

Adopting a standard programming style allows a team to create
code that is modular, adaptable to the project, and interoperable
with other parts of the project. Thus, the subsequent
programming style guides outline recommended practices that
will be employed in a collective “Programming Standard” for our
team. Using this, implementing the software architecture will be
efficient and effective.

4.1.8.1. C/C++ Standard

The C standard and the C++99 [49] standard together provide
the definitive syntax and behavior of C and C++ code, which will
be used to integrate sensor information, simulation and
visualization of sensor data, and create real-time route decisions
and networked behavior.

In addition to the C/C++ standards, which define how the
languages work, the ROS Cpp style guide [50] will be employed
due to the reliance on ROS for inter-process communication.
This style guide defines such nuances as formatting, variable and
function names, and other language-specific details that will
further streamline development of the software design.

4.1.8.2. Python Style Guide

Python has a standard defined as PEP 8 [51], and ROS Py [52]
defines a style guide which will both be followed where Python
code is necessary. Since ROS allows C++ and Python code to
work with the same resources, it is preferable that code be
designed in such a way that neither Python nor C/C++ style
guides nor standards be violated.

4.2. Constraints

In this section we discuss general constraints that can apply to
any engineering project. The constraints will be described in
reference to our specific project, the small-scale model for a self-
driving vehicle and/or the eventual goal of creating a full scale
self-driving car wherever applicable.

54

4.2.1. Cost Constraints

Our biggest constraint in our project is arguably the cost
constraint imposed by our sponsor. While our project is
sponsored and has received funding, numerous pieces of our
project are incredibly expensive (e.g. One NVIDIA board alone is
approximately twelve percent of our total budget for the project).
This has led to us having to purchase cheaper sensors with less
dynamic features and lower accuracy, especially in the case of
our LiDAR sensor. Our sponsor also wants multiple of these cars
constructed, so any design changes that are necessary to one
are very likely to be needed on the others. This makes our
project’s budget extremely sensitive to change.

4.2.2. Environmental Constraints

While our project might help self-driving cars achieve more
efficient routing and reduce pollution from associated
greenhouse emissions, there are no environmental constraints
on our specific project. In the future, the research lab may
integrate solar cells to charge the batteries for our vehicle, but
this is unlikely due to the additional cost because priority of
upgrading sensors is much higher.

4.2.3. Social Constraints

While our project does not have social constraints, self-driving
vehicles in the commercial market do. In a May 2016 survey done
by AAA, it was found that 75% of respondents feared using self-
driving vehicles if they hadn’t used cars with semi-autonomous
features like adaptive cruise control. Getting the public to release
these fears will likely be a long-term side effect of our project, but
in the interim, it remains a massive constraint to profitability for
any manufacturer or major player in the industry. One of the
primary reasons for these fears is covered in the Ethical
Constraints section.

4.2.4. Political Constraints

Once again, our project is not specifically affected by public
policy, but the self-driving vehicles that our project wishes to

55

emulate are. Only about 35 cities worldwide actually have self-
driving cars being tested on their roads, and less than 20 more
are considering allowing them to drive on their roads for testing.
The main reasons for this are lack of regulatory oversight in
regards to self-driving vehicles, lack of human and financial
resources to appropriately manage a project, and interference
from state or federal governments. However, Congress is
currently considering passing a new set of rules regarding self-
driving cars to provide a consistent set of standards for testing.

Another political constraint that might be overlooked is lobbying
and the effects of that self-driving vehicles can have on certain
industries. Right now, the U.S employs more than 3.5 million
truckers. Eventually, these trucks will also become self-driving,
and this could lead to massive dis-employment of a fairly large
staple of the working middle class. This creates an incentive for
truckers and their unions to want to limit this technology to protect
themselves. Depending on how many lose their jobs,
unemployment could also spike to dangerous levels and create
political and economic instability in a worst case scenario. Public
policy is going to need to play a very big role in stabilizing and re-
tooling these displaced workers.

4.2.5. Ethical Constraints

While the primary purpose of a self-driving vehicle is to reduce
accidents, there may be a time where environments may create
a situation where an accident is unavoidable. The biggest ethical
concern with self-driving cars is determining what action the car
should take in that scenario. Should the car prioritize the life and
safety or the driver, possible passengers, other drivers, property,
or pedestrians in an emergency situation? This is an area where
lawmakers may want to get involved to help provide a consistent
ethical standard and also prevent lawsuits from victims or their
family in accidents involving cars making these sort of decisions.

4.2.6. Health and Safety Constraints

The primary purpose of our project is to improve public safety,
thus making this one of, if not the most important design
constraint. Cars moving on a highway are moving likely moving
close to 70 miles an hour, making latency a huge safety issue. A

56

latency of 1 second has the potential to cause catastrophes at
these speeds. If our project is to model a car as realistically as
possible we must minimize our latency.

Another concern related to sensors are the conditions a self-
driving vehicle is present in. Weather conditions such as rain,
temperature, snow, or humidity can affect sensor range and
accuracy. Our project will mainly be tested indoors, but
eventually our sponsor will want to collect more real world data
in real conditions. If our vehicle design is used, additional sensors
for measuring weather conditions and temperature and the
incorporation of these measurements into our software will likely
be required to maintain the accuracy of all the original sensors.

The strength of our network security. The possibility of someone
being able to hack a car by accessing its controls via Wi-Fi is a
massive concern. Malicious hacking could lead to forced crashes
to hurt people, or routing vehicles into dangerous places where
the passengers or cargo could be taken hostage. It’s very unlikely
that this iteration of the project will focus heavily on security, but
improvements upon security will definitely need to be taken to
create a better prototype for a full-sized vehicle.

4.2.7. Manufacturability Constraints

Our manufacturing constraints are mainly related to both
accounting and time costs. The need to modify our vehicles to
improve the specifications increases our time cost by forcing us
to calculate what parts need to be changed, how or what should
replace them, waiting on the arrival or construction of the new
parts, and then physically deconstructing our vehicle and making
the modifications. Accounting costs are accrued when we order
said new parts or manufacture them via 3D printing. Both these
costs will apply mainly to obtaining and modifying Plexiglas or
aluminum for our mounts, unless the UCF innovation lab can
provide us with free laser cutting with a very short turnaround
time.

4.2.8. Testing Constraints

The main testing constraints will be related to how early we can
modify the car and calibrate our sensors. We will have until the

57

senior design showcase to do this, but calibrating multiple IR,
Ultrasonic, and LiDAR along with successfully changing out our
vehicles gears and differentials will prove to be a time-consuming
task.

Another disadvantage we have is that we cannot test our wireless
communication network until we have at least 2 of our cars fully
modified with the appropriate sensors and vehicle parts. We will
very likely not be ordering more parts to create more vehicles
until we can confirm our prototype works. The wait on the parts
can vary from a few days to a few weeks, which creates some
artificial deadline date weeks before the showcase so we can
properly modify our cars and test the wireless communication
protocol in the desired testing environment and make tweaks as
necessary.

While not as significant as the other constraints, the testing
environment provides another constraint. The floor of our
sponsor’s lab is carpet which possesses a much lower coefficient
of friction compared to paved roads. This will require additional
modifications to our car to ensure the wheels do not slip as a
result of the lack of traction. While slippage might not cause
physical damage to the car in most scenarios, it can distort the
accuracy of the car’s localization algorithm. Testing in an outside
environment can be done, but the conditions are much less
controlled and outsiders can possibly interfere. The high price of
a single vehicle makes this very unlikely due to the risk involved.

4.2.9. Time Constraints

The next most important constraint next to cost is time. At
numerous points in the other constraints we have mentioned that
time is lost due to having to deal with other constraints on our
design or to meet certain requirements. Unlike money, we cannot
obtain more time to work on this project and still complete the
project due to the design showcase having a fixed date. This
makes time our most important resource. To help maximize the
projects efficiency, 2 other undergraduate engineers, Yannick
Roberts and Billy Blanchard, to help with the implementation of
our project’s software. Furthermore we have two graduate
students, Nitish Gupta and Behrad Tohgi, providing us with
guidance in relation to the localization, routing, sensor

58

calibration, vehicle dynamics, Robot Operating System (ROS),
and overall design.

5. Project Design Details

In this section, we provide the details behind the design of our
software and software and how we integrated different pieces of
hardware and software together to create a working prototype.

5.1. Hardware Design

This section’s focus specifically focuses on our hardware
connections of our design. Responsibilities for the preliminary
hardware interface is described in Figure 16 below. Each
engineer on the team was assigned to research and configure
the necessary hardware and learn the relevant software, if any,

59

to configure it. The Figure 17 below shows the electrical
connections of the project and is explained in detail.

Figure 16- Hardware and Vehicle Interfacing

The MakOak battery bank supplies the USB Hub and the NVIDIA
board with necessary voltage and current requirements specified
by the manufacturers. The battery bank has a 20V 3A output for
laptops that will connect to our NVIDIA CPU and another 12V
2.5A power output that will be used by our USB Hub. The Traxxas
battery pack will only power the driving and servo motors. The
NVIDIA board comes with a 19V 4.74A power supply for a total
of 90W however, the acceptable power range is +9 to +15 V at
around 60W when connecting USB devices. The USB Hub
comes with a 12V 4A power adapter, the USB charging ports
output 5V and 2.4A, and the USB 2.0 data ports are intended for
data transfer to the host however if a component has low current
draw they will be able to use these ports for power and data
transfer. The Traxxas battery has voltage of 7.2VDC and a
capacity of 5500mAh to supply the motor, these values will be

60

important for measuring the charge on the battery on our PCB
design.

The Scanse LiDAR sensor requires 5VDC and draws a maximum
current of 650mA and the Zed Stereo Camera also uses 5VDC
and has a current draw of 380mA. From these values outlined by
the component’s technical specifications both of these sensors
are compatible with the USB Hub’s data ports for both power and
data sharing to the NVIDIA board. The Arduino board requires a
customized USB to barrel power connector to supply the
controller with suitable power that will be connected to the USB
Hub for power. An additional micro USB to USB-A cable will be
used to transmit data between the Arduino and NVIDIA boards.
The PCB was designed to use a 5VDC USB power cable and a
current draw of less than 1A.

The USB Hub has multiple USB 3.0 data ports. These will
communicate to the NVIDIA board data from our LiDAR, and
Stereo Camera for visualization and localization purposes. Ultra-
sonic and Hall sensors will utilize a fraction of the 40 GPIO on the
NVIDIA to be stored and used for localization data. The USB
Hub relays data from the NVIDIA computer to the PCB board to
determine drive states and other localization data for display. The
display will be achieved through LED lights to simulate front rear
and direction status in an effort to simulate standards for road
vehicles.

The Traxxas battery will be connected through a conversion
circuit to the PCB board for battery level management. The hopes
are to manage battery levels and eventually have the robot
making driving decisions in regards to the battery level data. The
LCD will display the battery level as well as data supplied from
the NVIDIA for heading, average speed, and errors in the
programing. The USB Network adapter will connect directly to the
NVIDIA board to deliver the strongest Internet connectivity.

The Arduino Uno board will connect to the servo motor for
steering and the driving motor control unit through 3-pin DuPont
connectors that contain data, power and ground wires. The Hall
sensor, used to determine the rpm of the motor for localization
data will be read by the Arduino board to adjust speed and
heading through a similar connector. Data and directions will be

61

transmitted to the other vehicles through the Internet connection
and DSRC control that utilizes one of the USB ports on the
NVIDIA CPU. The car will also have a second control mode using
a host computer that is connected to the same wireless network
from a distance by writing codes to the NVIDIA control unit.

The flowchart below in Figure 17 shows the hardwired
connections between components in our design for power and
data transmission. Customized cables will be made using
DuPont, USB 2.0 and USB 3.0 solder-type connectors and
cables. All cables had to be purchased carefully to adhere to
voltage and current requirements of the attached components.
After the testing is complete all wires will be covered by heat
shrink tubing for protection and to improve the overall aesthetics
of the vehicle for the design showcase.

Figure 17- Wiring Diagram

5.1.1. Sensors and Calibration

Due to the nature of our project, sensor accuracy is a priority for
optimizing the accuracy of our model. To counter the error initially
present in our sensors, we tested the initial error and devised a
testing scheme for each type of sensor.

62

5.1.1.1. Ultrasonic Sensor

Our tests were conducted on a small using an Arduino Uno, a
dictionary, the HC-SR04, and a ruler. The ruler was placed in a
straight line away from the center of sensor the transmitter. The
book was shifted back by one centimeter every measurement,
and the data would be sent to the Arduino and ROS. From there
we could determine what the error between the position that the
sensor measured and actual position.

This setup is extremely simplistic, and also has faults as a result.
Slightly pivoting the book could provide massive error because
of the angle that the sound waves bounce back towards the
receiver. Slight shifts of the ruler would put the surface off center
and introduce small amounts of error. We could also only
measure a maximum of 30 centimeters accurately due to the
length of the ruler, but in order to prevent the ruler from moving,
we placed objects behind it to fasten it into place. Pre-calibration
results can be seen in Table 21.

Table 21: Pre-Calibration Data for Sensor 1

Distance
(cm)

Mean
(cm)

% Error Absolute
Error (cm)

3 4.15 38.33 1.15

4 5.364 34.1 1.364
5 6.506 30.12 1.506

6 7.857 30.95 1.857

7 8.452 20.74 1.452
8 10.41 30.12 2.41

9 12.09 34.33 3.09

10 12.84 28.4 2.84

11 14.74 34 3.74
12 16 33.33 4

13 17.2 32.31 4.2

14 20.39 45.64 6.39

15 21.609 44.06 6.609
16 23.45 46.56 7.45

17 24.22 42.47 7.22

18 49.4 174.44 31.4

19 50.69 166.79 31.69
20 28.3 41.5 8.3

We decided to only calibrate for the first sensor, and then use
that calibration for sensor 2 to check if it would create consistent
results across sensors. If it did, we would test our calibration on
the next two sensors when we received the opportunity and

63

continue moving forward. Otherwise, we would repeat this test
again for the other 3 sensors.

5.1.1.2. Calibration and Code

ROS provides a pub-sub (Publisher and Subscriber) framework
to send the ultrasonic data recorded by the sensor and capture
that data via a USB connection to the UNO board. The standard
Arduino ultrasonic code was modified to publish the distance
data as a float over the "/ultrasound" topic.

From here, the ideal approach would be to create a subscriber
which would receive the published values and would be able to
process those values accordingly – finding average mean,
maxima, and minima. However, there were issues creating such
a program, thus a simple data scrubber was written in C++. ROS
allows you to display the data being transferred on a topic, thus
the scrubber would take this data and filter out the "range: [float]"
value semi-automatically. Thus, the operator would have to have
two terminals, one running "rostopic echo /ultrasound/range" and
another running the scrubber. They would then have to copy the
data from the ROStopic terminal into the scrubber, which would
then display the minimum, average mean, and maximum of the
data.

It was noted at this point that temperature affects the speed of
sound, which would significantly affect recordings. Thus, a
calculation correction was applied to the code, and all
subsequent calculations included this correction. This data was
then recorded in a spreadsheet containing the actual distance,
the mean recorded distance, the difference between these two
values, and the average error. Distance was varied between 3
cm and 23 cm, taking intermediate recordings (for example
8.5cm and 10.5cm) when the change in error increased
significantly after increasing distance. Average error ranged
between 20.7% (at 7 cm) up to 174% (at 18 cm) and back to 43%
(at 23 cm).

From this data, lookup tables were created as float arrays in the
sensor code. The distance was corrected by dividing it by (1 +
error), error being one of the values of average error previously
mentioned. It was originally intended to apply the appropriate

64

error according to the lookup table, however it was noticed that
the code effectively only used the first or second recording (I.e.
for 3 cm or 4cm, respectively) at every distance.

For the second sensor, the code was modified to present the
distance before the error adjustment in order to find its error
measurements for 3cm. This error was already slightly lower than
the previous sensor, however applying the error adjustment to
the code allowed the second sensor to be as accurate as the first
sensor.

5.1.1.3. Testing Post-Calibration

After recalibrating using our code, we plotted the absolute and
percent error for each sensor. Absolute error peaks less than 1.5
centimeters for each sensor, and percent error below 10% for
each sensor. The results are displayed in Figures 18 and 19.

Figure 18- Sensor 1 Test Results

Figure 19- Sensor 2 Results

5.1.2. Infrared Sensor Calibration

Unlike the HC-SR04 Ultrasonic Sonar, the DOAKI infrared
sensors are digital and can only tell the use if they detect an
object or if they don’t detect an object. No distance data can be

65

drawn from the sensor. The sensor, can however, have its range
adjusted by using a screwdriver to adjust the settings on the
sensor’s potentiometer. Unfortunately, the sensor is also prone
to becoming oversensitive and declaring that there is always an
object in the path even when there is nothing in the sensor’s
maximum theoretical range.

After carefully tuning the potentiometer for one of our sensors,
we found it had a maximum range of 5 centimeters before it
became oversensitive and always return a high signal even if
there was no object in its range. We repeated this same process
on another sensor and received a maximum range of 9
centimeters. Due to the unsatisfactory performance relative to
what was advertised, we will not be incorporating these into our
design.

5.1.3. GPIO Configuration

Our original plan was to use the J21 [88] GPIO pins on the Jetson
TX2 for serial communication with the arduino, the ultrasonic
sensors, and the hall RPM sensors. However, it was determined
that many of these pins are used elsewhere in the Jetson for
processes such as video and audio interrupts. Thus, preliminarily
we decided to connect the arduino to the Jetson via the USB
serial hub and free up the remaining five usable GPIO pins for
ultrasonic and hall sensors.

Pictured below in Figure 20, four available pins are 29, 31, 33,
and 37. Two of these will be used for all ultrasonic sensors,
limiting the ability to detect which sensor is detecting collision.

66

Figure 20- JetsonTX2 J21 Header Pinout

In the future, it would prove helpful to be able to disable these
pins for their original purposes in order to use them for our needs.
We are unable to do this at this time because the documentation
for the TX2 is still very sparse and not as detailed as that for the
TX1 or the TK1. Also, the TXx series has less available pins in
general than the TK1, thus it might be useful to downgrade to the
TK1 in the future.

5.1.4. Serial Communication

67

The Jetson communicates to the Arduino via the serial-USB
connection. In order to test this connection, a C++ program was
written on the Jetson to send bytes to the Arduino via the
/dev/ttyACM0 device in Linux. The Arduino was then set to apply
speed to the motor to show the successful connection and
reception of data from the Jetson.

This demonstrated that moving the serial communication from
the GPIO pins was a viable option and thus we decided to
establish a protocol for controlling the Arduino via the Jetson.
Two bytes would be used to determine the motor speed and
servo angle. These bytes would be converted to their integer
values and then their respective servos would be set to these
integer values. The Arduino would then await the next two bytes
from the Jetson.

Thus, the Arduino becomes a mere actuator, which applies the
values desired by the Jetson. Therefore all the planning, routing,
speed, and angle calculations would be handled by the Jetson,
as opposed to leaving speed and angle calculations to the
Arduino. This protocol would allow faster communication to the
Arduino, free up any latency on the USB hub, and

5.2. Software Design

Figure 21 outlines the general software flow from initialization
until power off. The logic is simple and generic at this stage, partly
due to being the first software drawing, and partly as a way to
show the overall structure of the software. The green boxes
represent end and terminal states, the blue boxes represent a
process or method, and the orange parallelograms represent
transitions between states. The specifics of localization, object
detection, and software architecture will be detailed below.

Figure 22 gives insight into how the hardware is modelled in
software. The actual software relationships will be displayed in
Figure 23. The actual class diagram as a result of using ROS is
much simpler due to the specifics of multiprocessing and
networking being taken care of by open-source algorithms.

68

Figure 21- Software Flow Diagram

Figure 22- Software Class Diagram

• A double-bar indicates only one instance of the connected
class is present.

• The triangle with one line over it indicates at least one
instance is present.

• The white triangle points to the base class for inheritance.

69

Figure 23- Updated Software Diagram

Since ROS simplifies the transmission of data within a robot, the
process of manipulating the Wi-Fi connection between robots
and the process of transmitting data between robots is also
simplified. Therefore, the "Information" class is redundant
considering each class or program can store its own data
variables and transmit them appropriately.

Each class in Figure 22 includes its own version of "publish"
and/or "subscribe," which is critical to linking it to ROS and by
extension, to other classes. Data is simplified from a class down
to the relevant data types for the class. For example, the Sensor
only requires a float value (for ultrasonic and distance
recordings), while the Router requires the robot it belongs to, and
other visible Routers.

The starkest update from integrating the software with ROS is
that the relationships between classes aren't handled explicitly
by linking the two classes, rather the relationships are resolved
within the operating system itself. For example, even though
Router includes the robot it belongs to, this would be
implemented by using some unique identifier in the Robot class,
which is passed to its own router via a pub-sub (shorthand for
publish/subscribe).

5.2.1. Localization Algorithms

70

In order to produce a self-driving vehicle with mapping
capabilities, the use of localization algorithms became a
necessity. Numerous algorithms exist, and this section will detail
which algorithms we will implement in and why. Considerations
for each algorithm were complexity, simplicity to program, exact
function of the program, and if different algorithms performing the
same function can compensate for inaccuracies in another under
different scenarios.
5.2.1.1. Kalman Filter

The Kalman filter is a set of equations that provides an efficient
recursive estimate to what state a process is in while providing a
minimal mean squared error even with sensor error and external
influences affecting the system. The filter is also capable of
processing future states even when the modeled system’s
functions are not necessarily known. Kalman Filters are also
used in a variety of fields unrelated to vehicle localization, like
statistical analysis and econometrics.

The Kalman filter in a self-driving car will measure the position
and the velocity of a car. Updates to the equations, which will we
will go into detail later, will be made during each step shown in
Figure 24.

Figure 24- Steps during a Kalman filter’s measurements

During the measurement steps, the Kalman filter only cares
about 2 things: The new measurements and previous belief of
where the vehicle is located. During the motions step (sometimes
called predictions step because velocity is measured through
changes in distance), only the velocity inferred from previous
measurements and the previous beliefs are necessary. This

71

keeps the computational power of a Kalman filter extremely low
relative to other algorithms, making it extremely advantageous
for localization.

5.2.1.1.1. Probabilistic Origins of Kalman Filter

The Kalman Filter’s origins lie in probabilistic theory. It is
assumed that the variables that comprise the system’s state are
Gaussian distributions. A Gaussian distribution is a probabilistic
distribution that is unimodal, centered on a mean value that
represents the most certain point, and have a variance that
represents how uncertain the mean value is. Gaussian
distributions are defined by the equation shown below. The
shape of the Gaussian distribution is determined by the
exponential and the term outside the exponential normalizes the
values produced by the equation.

𝐹(𝑥|𝜇, 𝜎) =
1

√2𝜋𝜎2
𝑒

−(𝑥−𝜇)2

2𝜎2

Equation 4. Gaussian Distribution

Two examples of Gaussian distributions centered at zero with
different variances are shown in Figure 25. The red Gaussian
distribution has a higher variance, and has more uncertainty of
where the real value is as a result. An ideal Gaussian distribution
has a variance as low as possible around the mean value.

Figure 25- Example Gaussian Distributions

72

When a Kalman Filter receives new measurements, it simulates
them as Gaussian distributions as well. The ensuing Gaussian
will always have a lower variance than either the prior distribution
or the new measurement. The new distribution will also have a
different mean value. The calculations for the new variance and
new mean are shown below in Equation 6. An example of the
new Gaussian is shown in Figure 26.

𝜇𝑛𝑒𝑤 =
𝜎1

2𝜇2 + 𝜎2
2𝜇1

𝜎1
2 + 𝜎2

2

𝜎𝑛𝑒𝑤
2 =

1
1

𝜎1
2 +

1

𝜎2
2

Equation 5. New Gaussian Distribution

Figure 26- Gaussian Created by other Gaussians

By taking these different Gaussian measurements, the Gaussian
becomes less uncertain. Note that this only applies to
measurements and that the examples given are for a one
dimensional system. A multidimensional Gaussian will have a D

73

x 1 matrix of means and a D x D matrix of variances will be
defined by a contour, as shown in Figure 27.

Figure 27- 2D Gaussian Distribution

In the case of a self-driving vehicle, motions will create
uncertainty in position and increase the mean value of the
Gaussian distribution. Motions are also modeled as Gaussian
distributions, and the resulting Gaussian distribution after a
movement can be summarized by Equation 6.

𝜇𝑛𝑒𝑤 = 𝜇𝑜𝑙𝑑 + 𝜇𝑚𝑜𝑡𝑖𝑜𝑛

𝜎𝑛𝑒𝑤 = 𝜎𝑜𝑙𝑑 + 𝜎𝑚𝑜𝑡𝑖𝑜𝑛

Equation 6. Gaussian Movement Update

5.2.1.1.2. Implementation of Kalman Filter

In the real world, two forms of the Kalman Filter can be created
for localization: the Unscented Kalman Filter (UKF) and the
Extended Kalman Filter (EKF). The reason the linear
transformation cannot be used is because the algorithm’s will
create small errors that will slowly accumulate and eventually
become significant if the calculated covariance becomes too
small, indicating a large certainty that the location is known, then
these errors will become massive and lead to improper state
estimation.

 Among the two mentioned variants, the Unscented Kalman Filter
has proven to be the best one because it maintains the same
complexity as its counterpart, works for non-linear systems, and

74

approximates the true mean and covariance to the 3rd order
Taylor Series approximation as opposed to the first order with the
EKF. It does so by taking numerous sigma points

The Unscented Kalman Filter is based around the idea that it is
easier to approximate a probability distribution than it is for a
random non-linear function or transformation of a function.

5.2.1.2. Particle Filter

Another localization algorithm we will be using will be the particle
filter. Particle filters use a set of guesses for position and
orientation (“particles”) alongside measurements from sensors
and odometer data to implicitly localize itself given a map of the
location.

“Particles” are re-distributed across the environment after every
motion. Sensor data is used to determine the location of
landmarks. “Particles” that are more likely to represent the
current state of the vehicle are then given a weight, with higher
weights being more accurate states. The weights are then
normalized so the sum of the weights is equal to 1, and the
particles are resampled so the highest weighted ones have the
most likely chance of recurring. Eventually, only the particles that
represent the state closest to the true state of the vehicle.

The Particle Filter excels in area the Unscented Kalman Filter
does not. It works better than the Unscented Kalman Filter with
non-Gaussian noise. It is a multimodal distribution that can keep
track of where multiple objects are. Occlusions, or an object
blocking or obstructing another, do not affect the Particle Filter,
unlike the Unscented Kalman Filter. The Unscented Kalman
Filter would have a corrupted entry for its measurement step, and
in the absence of a way to detect an occlusion, would lead to a
massive error.

The Particle Filter does have its disadvantages: mainly related to
computing power and filter degeneracy. The amount of particles
needed to measure a system increases exponentially with every
dimension added, so computing power and memory need to
increase to match these as well. If an observation model is too
accurate e.g. high probability, but very low variance for a

75

measurement, the weights of the accurate particles can be
reduced to near zero and then be removed during resampling. If
the particles are resampled without new measurements, the
particle filter can assume that vehicle is in a false location. An
example of this is that two rooms can be identical to one another,
but a particle filter can incorrectly make an assumption that the
vehicle is in one room that it actually is not in. See Figure 28 for
a visualization of this scenario.

Figure 28- Before (Top) and After (Bottom) Filtering Without Motion

Despite these issues, we’ve decided to use the Particle Filter
alongside the UKF due to its strengths. The Particle Filter is
immune to errors that can occur in the Kalman Filter, and should
one filter fail, the other could still be used for localization.

5.2.1.3. A* Search Algorithm

One of the most famous search algorithms is Dijkstra’s shortest
path algorithm, which was then expanded to create A*, another
algorithm which will be employed in this project. Table 22
describes the steps of the Dijkstra’s algorithm, which is used to
find the shortest path between two nodes.

The purpose of using infinity as a tentative distance is to signify
unvisited nodes, such that the algorithm will not visit them if there
is another node with a better (smaller) distance between the initial
and current node. Each subsequent node is updated with the
sum of all distances of previous nodes. Also, tentative shortest
paths might also be updated with smaller values, if a shorter path
is found. Once the destination node is reached, the path can be
traced back usually via backtracking algorithms or an array in a
dynamic programming implementation.

76

The advantage of this algorithm is that it will always find the
shortest path between two nodes, assuming such a path exists.
The disadvantage of this algorithm is that it is inefficient given a
sufficiently large topology. Since this project requires pathfinding
in a real context, the topology can become large and nearly
infinite, given the structure of roads and the fact that new roads
can be added at any moment.

One way to make the algorithm more efficient would be to
implement a priority queue such that the minimum-distance
nodes are selected with less processing time. Also, the
neighboring nodes would be added concurrently to checking
which one is closest to the current node. Thus, instead of working
with all of the possible nodes, only the most relevant ones are in
the priority queue. This would be relatively more efficient than the
standard algorithm, however it would still be wholly inefficient
with an infinite graph.

For infinite graphs, a modified “uniform-cost” search algorithm is
created when, instead of adding all nodes to the graph, nodes
are only added when discovered to be in the shortest path. Thus,
a path from the initial location to a set of target locations can be
achieved on an infinite graph, otherwise it would be
inconceivable with a limited memory constraint.

A* searches all possible paths for the one which incurs the
smallest “cost,” which can be defined uniquely for the application,
and considers the one that appear to most quickly lead to the
solution. It selects which of its paths to expand towards the goal
using a heuristic function which estimates the cost remaining to
reach the goal. Thus the path which it will select will minimize this
function, as that will lead to the shortest remaining path. The
heuristic function takes into account the cost of the path from the
beginning to the current node, added to the estimation of the
remaining cost of the path to reach the goal.

The requirement of A* is that the heuristic is “admissible,” or that
the cost to the nearest goal is never overestimated. A more
efficient version requires the heuristic also be “monotone.” The
function is monotone when the heuristic of one of the vertices is
less than or equal to the distance of the edge plus the heuristic

77

of the other vertex. Thus, no negative costs are allowed and a
vertex will never be considered more than once. However, setting
the heuristic of all nodes to 0 would be a special case of A* which
can also be viewed as Dikjstra’s algorithm. Another special case
would be a heuristic in which earlier nodes have higher values
than later nodes; this would be a depth-first search.

A* will always optimally return the shortest path given if and only
if it uses an admissible heuristic, and only if it considers one
search problem (point A to point B rather than Point A to point C
via point B). While an admissible heuristic always returns the
shortest path, A* must consider all equally viable paths up to the
terminal node. There is a method called “bounded relaxation” in
which a less optimal variant of the algorithm is used to conserve

Table 22: Dijkstra’s Algorithm Steps

Step Explanation

1. Define Initial
Node

Assign a tentative distance to every node in the graph (zero for
the initial location, infinity everywhere else)

2. Define
Unvisited
Nodes

Set the initial node as current; marke all other nodes unvisited.
Create a set of all unvisited nodes.

3. Update
Neighboring
Nodes

Consider all the neighbors of the current node. If the distance to
the neighboring node is less than its tentative value, update it to
the smaller distance.

4. Mark Current
Node as
Visited

Mark the current node as visited and remove it from the
unvisited set.

5. Terminate for
Final or
Unreachable
Node

If the destination node has been visited or the smallest distance
between the two nodes is infinity (i.e. unreachable path), stop
the algorithm.

6. Update the
Current Node
and Continue

Select the unvisited node with the smallest tentative distance as
the current node, go back to step 3.

5.2.1.4. Simultaneous Localization and Mapping

Simultaneous Localization and Mapping, also known as SLAM,
is a necessary component for the project. The Particle Filter only
works if the vehicle has a map of the area it is travelling in. SLAM
uses the measurements taken by sensors of landmarks and
exact motions to create a map in real time. These distances are
saved in an N x N matrix called Omega (𝜔), where N is the

78

number of motions and landmarks, and an N x 1 vector called
Xi (𝜉) that is updated with each movement. Using the inverse of
the Omega matrix and the Xi matrix, the vehicle’s heading and
location alongside the location of the landmarks will be stored in
a new matrix called mu (𝜇). This is shown in Equation 7.

[𝜇] = [𝜔]−1[𝜉]

Equation 7. Graph SLAM Location Equation

The advantage of Graph SLAM is that even in cases of incorrect
measurements of sensors, Equation 7 will produce the most
accurate answer based on these measurements due to the
constraints for the algorithm including movement as well.

5.2.2. ROS

ROS (Robot Operating System) provides "libraries and tools to
[developers] create robot applications" [56]. ROS is a framework
that runs on the Linux OS, providing several distributions
developed specifically for each version of Linux. In our
development system, we use Ubuntu Linux 14.04 LTS, and thus
the appropriate ROS distribution is nicknamed "Indigo."

5.2.2.1. General Architecture

Included in ROS are pre-developed libraries to simulate robot
configurations, environments, sensor data, as well as integrating
real-world sensor data to visualization software to allow for
development of a robot system. ROS implements a publisher-
subscriber framework, meaning that there is a "master" thread
which ensures that programs can publish data and subscribe to
receive said data from "topics." As long as the ROS master
program is running, programs can publish and subscribe as
many topics as they need to accomplish their specific tasks.

Custom topics can also be created to send user-specified data to
and from applications. This will prove useful for our purposes
because instrumentation and data collection will be able to send
and receive data on their own respective topics without
interference from the other. This will ensure a streamlined flow of
information from sensors, to a set of processing threads to
capture the data, to another set of processing threads to localize,

79

plan, and route the vehicles, and even another thread to facilitate
networked communication of this data.

As can be seen in Figure 29, the publish-subscribe concept is
very simple yet powerful. The publish-subscribe architecture as
well as the topic implementation allows for the modularization of
the processing tasks that need to be created. Thus if an updated
graphics card is to be purchased, the processing task is the only
one which will have to be updated as a result.

The data collection, routing, and localizing tasks will be otherwise
unaffected and will be able to continue running while the
processing task is updated. The same is true if more sensors are
to be added, or the type of sensor is to be modified. In this case,
only the sensor task will have to be changed. This will reduce the
amount of maintenance required for the project, and thus save
time and energy which can be directed elsewhere.

Another result of the modularization of ROS is that heavy
processing tasks can run in parallel with other heavy processing
tasks (robot vision processing in parallel with a complex routing
algorithm, for example) as well as networking algorithms. Data
can be transferred between the cars while they continue to sense
their surroundings. This is critical because a non-multiprocessing
paradigm would mean that the car could potentially stall or
otherwise be blinded in the middle of a networking event. Thus,
the publish-subscribe framework ensures the safety and time-
sensitivity constraints inherent in this project.

Figure 29- ROS Publish-Subscribe Framework

Publishers and subscribers are both implemented using callback
functions which are referenced in the ROS-provided "publish"

80

and "subscribe" functions which are run in the main function
(C++). This allows for user-defined code to be run every time data
is able to be sent or received. ROS also allows for a stack of data
to be accumulated between calls.

Two programs included in ROS that will be used extensively
throughout this project in accordance with other ROS-defined
and user-defined classes are 'Gazebo' and 'RVIZ.' Gazebo is a
3D robot simulator which includes physics simulation in a Linux
environment. RVIZ provides a 3D environment in which to
visualize sensor data that is being sent throughout several data
topics. Therefore, a 3D model of the robot will be created in
Gazebo, including sensors in their respective locations. Then,
this will be sent through topics specific to gazebo and RVIZ,
which will be visualized in RVIZ.

Simulating the robot(s) in gazebo and RVIZ allow us to develop
the localizing, routing, mapping, and intercommunication
algorithms with the full consequences of the algorithm, including
collisions, losing the robot at a far distance, or any other anomaly.
Once the features are fully developed and the anomalies aren't
damaging the simulated robots, it can be ported to the physical
hardware and tested in the lab. This saves money and time
considering the hardware is preserved as much as possible, and
the number of tests that can be run in a simulation are orders of
magnitude greater than what can be run on a physical model.

Figure 30 shows the overall software architecture design for this
project. It takes into account every aspect of the project, from the
fact that the algorithms should work similarly for both simulated
and real environments, as well as the different mapping
techniques employed.

81

Figure 30- Diagram of Overall Software Architecture and Flow

Since ROS handles the intercommunication of these parts, it is
helpful to conceptualize them as communicating directly with one
another. As such, the sensor data is conceptualized into their
respective sensor topics and sent simultaneously to the
localization and visualization sections. There, processing is done
to map and synchronize the network of vehicles together, as well
as visualize this process on a universal access point, such as a
computer on which RVIZ runs.

A navigation process then takes the localization information and
computes the next steps to be taken by the vehicle, and sends it
back to the controller to move, accelerate or decelerate, stop, or
turn.

5.2.2.2. ROS Topics

ROS allows threads to talk to each other along what is called a
“topic.” This includes the data that is sent as well as information
about the types of data that is sent. There are topics for every
part of the project including sensors, navigation, and
visualization. Table 23 outlines some relevant message types

82

that will be used as well as the purpose and functionality of those
messages.

Table 23: List of Message Types

Message Name Relevant Component

sensor_msgs/Range Ultrasonic, IR sensors; used for the range value which is
the distance in cm between the sensor and the point
detected.

sensor_msgs//LaserScan LIDAR, Kinect sensors; used for an array of ranges
between a minimum and maximum azimuth (min azimuth
of 0 and max azimuth of 360 degrees for LIDAR).

sensor_msgs/Image Z-Camera; used to store images, both for depth and a
stream of actual camera data.

nav_msgs/Odometry Position and Velocity in free space; used to keep track of
the location and speed of the vehicle, both for itself and
other vehicles in the network.

visualization_msgs/MarkerArray Map visualization; used to display the 3D occupancy grid
in RVIZ.

These topics are defined below in Figure 31, including the
relevant variable definitions for each message. For Range, the
radiation type is an enumerator which determines whether it is an
Ultrasound or Infrared sensor. Any range that is outside of the
bounds of min and max range are to be discarded. This is used
to calibrate the ultrasonic sensor and for detecting distances
using ultrasonic.

The Image message includes data specific to the camera which
sends it, thus a normal RGB camera would provide pixels
representing the image. However a depth camera’s data field
includes the depth of the image.

LaserScan uses the same basic algorithm of discarding any
ranges outside of the bounds of min and max range. This is used
for LIDAR scans, where angle_min and angle_max can be set to
ignore any scans outside of the desired ranges. This can be used
to only process scans in front of the vehicle, or coordinating other
directed scans.

Odometry will be the main message that shares the position and
velocity of the vehicle over the network. It consists of a “pose”
and “twist” along with a covariance coefficient to be used with
probabilistic algorithms. Pose consists of a builtin-type for
position and rotation, while Twist contains velocity and angular
velocity.

83

Figure 31- ROS Message Definitions

5.2.3. Mapping

Mapping is a technique used to keep track of the world around
the vehicle. This map keeps track of information about the
environment that can be used to localize the vehicle, keep track
of obstacles and walls, or find unique landmarks. Maps can be
used in conjunction with Particle Filters, Kalman Filters, or other
techniques in order to accomplish these greater tasks with higher
accuracy.

Two types of maps that are implemented in ROS are gmapping
and octomaps. Figure 32 shows a test setup in gazebo using the
built-in simulation named Turtlebot. This will be used later to
compare the fidelity of the mapped environment with the real
environment.

84

Figure 32- Gazebo Simulated Environment

5.2.3.1. GMap

Gmapping implements a Rao-Blackwellized particle filter to learn
grid maps from laser range data [72]. This can be used in ROS
in conjunction with either simulated or physical hardware to
navigate the environment. Figure 33 shows the result of
gmapping the gazebo environment. It can be seen that the
resulting map is two-dimensional, with the borders of the objects
depicted as black outlines, unmapped areas in grey, and the floor
mapped as white.

Figure 33- Gmapping Visualized in RVIZ

85

While populating the gmap, the robot was navigated around the
map using teleoperation. The speed had to be slow due to the
settings of the application, as well as the load of visualizing the
map in realtime. However the underlying particle filter behavior
was apparent as the robot’s position would move as the map was
updating rather than as a direct result of teleoperating. It can be
seen that the outlines of the objects aren’t completely discreet,
and in fact do update as the robot observes more features of the
environment. The outline of the cylinder, for example, can be
seen to not be perfectly circular, as a result of seeing it in the
scan while moving. It can also be seen that the trashcan (just to
the left of the cylinder) also has intermittent outlines, as a result
of updating its border while moving and rotating.

While the result of this map is crude, it can be used with relatively
high probability to detect and avoid the general vicinity of objects.
The latency of the system however, might pose a challenge.
Tests will have to be made using gmapping using the Jetson in
order to determine the satisfication of the functional requirement
of latency.

One major advantage of this type of mapping is that the whole
map has the same probability of position so any algorithm ran
using this map is as accurate as the map itself. Given the
designers of this package ensure it is very efficient and with
reasonable certainty, pathfinding and routing can be done very
efficiently using this technique.

5.2.3.2. Octomap

Octomap implements a 3D occupancy grid based on octree [73].
Octomap is able to map completely arbitrary 3D environments as
well as free space. The map is also updatable using different
sensors, employing a probabilistic approach to filter out sensor
noise or dynamic environment changes, e.g. dynamic objects.
One key feature that can be exploited by this project is that
multiple cars can contribute to the same map at any time. The
map is dynamically expanded as needed, and as such could be
expanded indefinitely. There are also different resolutions such
that there can be one controlling server hosting the high-level

86

map, which can then send smaller sections with higher resolution
to individual cars.

This has obvious application to the networked aspect of this
project, and can also be applied to simulated or physical
hardware using ROS. Figure 34 shows the result of mapping the
same gazebo environment depicted in Figure 33 using octomap.
It can be seen that the octomap is three-dimensional, with the
borders of objects colorized to show height. It’s also apparent that
the general shape of objects are preserved via small squares to
approximate all sides of objects, including the cylinder and boxes
at different angles. It’s also shown that the map can only depict
what is seen by the sensors of the vehicle, so the interior of the
cylinder and garbage can appear to be hollow only because the
sensor have no information of that region. However because it
cannot be accessed due to the collisions of the borders, that
region can be left empty to preserve processing power.

Figure 34- Octomap Visualized in RVIZ

The latency of this mapping technique was notably faster than
gmapping, and thus would be a better decision for quicker
collision detection information. The 3D aspect as well as the
collaborative aspect of this technique make it yet a stronger
candidate to be a dedicated collision detection map.

5.2.4. Collision Detection and Avoidance

Either used in conjunction or separately, the two mapping
techniques can be used to generate maps of objects in the

87

vehicle’s surroundings. These maps can be used to detect and
avoid collisions based on the vehicle’s current position in the
map. Since multiple vehicles are able to update the same map,
they will be able to model any surrounding vehicles and use that
along with synced positions of neighboring vehicles to help each
other localize themselves.

5.2.5. Motion Tracking with Optical Flow

In the ongoing developments of robot vision and machine
learning, the process of tracking motion remains to be an
extremely influential attribute to the success of the system. For
autonomous vehicles, the ability to track another object’s motion
is essential for localization purposes and predictions of path and
velocity of surrounding objects in motion. One method of
implementing this concept is by using optical flow programming
to a visual sensor such as a camera.

While there exist many different schemes and strategies to
implement motion tacking, in the following sections, we will
explore the OpenCV platform and subsequent libraries used. At
this stage of testing, the requirements have yet to be refined to fit
the final product; this program will serve as a basis on which to
build towards autonomous vehicle purposes. The Optical Flow
Initial Test Specification Requirements are as follows:

o Dense optical flow live-tracking via camera input
o Output window of red-blue-green representation of

motion
o Stationary objects shall be omitted from output
o Bounding box shall target the object in motion
o Bounding box shall be displayed in foreground
o Code written in Python language

5.2.5.1. OpenCV Platform and Theory

Optical flow is the procedure in which a program compares the
pixels between two consecutive images and makes various
assertions relative to the change in position of each pixel [29]. By
forming a bounded grid of pixels, the program should be able to
both recognize particular objects by use of a database and track
them by performing various calculations of the pixel differential.

88

For this particular project, OpenCV was the primary resource of
the logic needed for our robot vision requirements.

OpenCV (Open Source Computer Vision Library) [30] stands as
a major contributor to computer vision and machine learning,
boasting grand database function libraries and algorithms.
Fortunately, there exist OpenCV Python libraries for nearly every
functional task that a machine vision system needs to perform. In
this project, the initial installation of Python and OpenCV was
required for testing. After doing so, importing the desired libraries
to obtain the algorithmic functions was necessary to test the
effectiveness of the OpenCV library. A laptop with an in-house
webcam served as the intiail test setup for experiments with
optical flow, motion tracking, and object recognition. The
following sections will denote specific OpenCV functions used for
these purposes, as these are powerful means to produce a
functional visual output stream. All of the code used in this
experiment was written in Python 3, but should be functional in
Python 2 if hardware cannot support the newest version.

5.2.5.2. Dense Optical Flow Test

The testing phase began with a specific category of optical flow
called Dense Optical Flow. Dense Optical Flow differs from other
forms of optical flow in that the output target is solely the result of
motion; this means that all objects not-in-motion will be omitted
from the output similar to a “don’t care” condition, visualized as a
black backdrop. Other variations of optical flow are designed to
deliver outputs of vision in parallel with motion differential data,
this was undesirable as the aim is to isolate moving objects.
OpenCV Dense Optical Flow uses the Lewis-Kanade algorithm
set to provide the user with a color-coded visualization of motion
where a specific color indicates the characteristic of the motion;
hue (shade) represents direction, while value (brightness)
represents magnitude/velocity [31]. Creating a Dense Optical
Flow test program required installing “cv2”, “numpy”, and
“matplotlib” libraries. The program then accessed the laptop’s
camera to obtain a standard image of the room using the
cv2.VideoCapture() and .read() Python functions in OpenCV
3.3.0. This provides a continuous data flow to arrays within the
function, one may dedicate a variable to store this information for
further calling, here named “cap”.

89

Once the program is granted access to the built-in camera, it
begins to store the data in the format suited for the Lewis-Kinade
method of motion tracking. An initial variable, “frame1” is
obtained from the previously mentioned .read() function; this is
where the program stores one of the frames for future
comparison purposes. A variable named “pvrs” is defined as the
grayscale image of the capture by using the function
cv2.cvtColor(..., cv2.COLOR_BGR2GRAY). “pvrs” serves as the
first of two images being compared. It also is necessary to have
a grayscale version of the image for implementation of the
algorithms, the argument COLOR_BGR2GRAY indicates that
the variable array is being transformed from a blue-green-red
image to a grayscale. The program then creates an array of
zeros, here named “hsv” identical to that of frame1. This is done
through the “numpy” function np.zeros_like(). The variable “hsv”
stands for hue-saturation-value. The array is sliced and the
second (1th) element set to 255 for maximum saturation. The
program then enters an infinite “while loop” for continuous
operation with the dynamics of motion tracking all contained
within the loop. Entering the loop, a second variable “frame2” is
created which reads the data from the camera, again. Because
of the latency between the few lines of capture commands, these
two frames are not identical, but differ by an extremely small
amount of time. A variable “next” is defined as the conversion of
the second capture to grayscale, much alike the variable “prvs”.

In this stage, the program begins using statistical processes.
Another variable named “flow” is defined as the output from a
“cv2” function calcOpticalFlowFarneback(). Various integer
values are necessary to be placed within the function - these are
not mentioned here due to their precise and standard nature in
the probabilistic determination of an object in the frame. The
inner-workings of this function are very complicated, and the
output is not an image but an array of numerical data; therefore,
these values must be converted back to a usable format to view
the output image. To do so, we define two more variable “mag”
and “ang” to transform the data into polar vector coordinates. The
array “hsv” is loaded with these polar values into sliced elements
of hue and value. The array “hsv” is fed back into the
cv2.cvtColor(..., cv2.COLOR_HSV2BGR) function to transform
the image back to standard color for viewing ease. To display an

90

image window of the output from the algorithm, the cv2.imshow()
function was used. This function creates a window with a label,
takes in one variable array, here called “bgr”. The cv2.waitkey()
function is used to complement the output image window; it is
necessary to set a certain, yet arbitrary value, otherwise the
program may freeze at. At the end of the while loop, we set “prvs”
equal to “next”; this updates the second frame to the first frame,
allowing the program to obtain another fresh image to compare
to the ever-changing “prvs”. Finally, the while loop is exited and
two more functions: cap.release() and cv2.destroyAllWindows()
are employed to terminate the program without error. The result,
if done correctly, should be similar to the still shot show below in
Figure 34:

In Fig. 35, one can observe the various color-coded aspects of
motion. The contours of the image are highlighted due to the
backdrop being a significantly different color (a white wall). Due
to the pixelated differential of my outline to the backdrop, this is
considered to be a change. One may notice that elements of hair
and skin are blacked-out, for there is little relative change
between pixel colors. While the backdrop possessed various
items such as room decorations, these are a constant black due
to the fact that although they are different coloration values, there
is no change between them in the two frames being compared.
To better visualize how magnitude and direction of motion are
captured, refer below to the image in Figure 36. Here, the image
underwent more drastic motion unlike that of Figure 35 where it
was relatively still. As the object turns, certain elements of the
contour are highlighted while others remain a constant color. This
demonstrates how the output of the Lewis-Kinade method and
the calcOpticalFlowFarneback() function provide the user with an
image that reflects not only motion in general, but the differences
between motion. Certain areas of the image were changing faster
than others, or in a different direction. Turning, the green/yellow
areas are highlighted to show a horizontal position shift. The
white/light blue area of hair is highlighted in that way to show a
vertical change in position. The intensity of each region indicates
how fast it is moving relative to black (no velocity). It is simple to
see why this particular process is very useful in dealing with
computer vision scenarios - the differential output allows for
predictions to be made with the vector components of position

91

change i.e. directional velocity. The entire process is shown as a
block diagram in Figure 37.

Figure 35- Still Shot of Dense Optical Flow Output

Figure 36- Still Shot of Dense Optical Flow Output in Motion

92

Figure 37- Dense Optical Flow Program Flowchart

5.2.5.3. Bounding Box Test Using Image Centroid

As mentioned in the previous section, it was desired for the
program to output a “bounding box” around the object in motion.
A bounding box is a rectangle or square in the foreground of the
image that follows a desired target. This bounding box should be
unaffected by the processes and functions of optical flow output
configuration; the rectangle should exist as an overlay without
undergoing any manipulation. For this requirement, the optical
flow data was transformed and fed into a separate code block to
process the information in parallel with the standard dense
optical flow procedures.

There exist many possibilities and metrics to targeting a specific
object. In the initial testing, this was done with the whole image.
In doing so, it is considered there be only one object in motion in
the field of vision that is of concern, as the densest region of
colored pixels will be considered the target. While this may prove
advantageous in certain scenarios, the final autonomous system
shall require multiple bounding boxes if one is to consider real
world conditions. However, for the purposes of primary
development, the centroid/moment method of threshold
comparison was utilized.

93

To create a bounding box of static proportions (unchanging width
and height), one must manipulate the information within the main
while loop of the program. The .calcOpticalFlowFarneback()
function must already have been called, as the goal is to target
the object in motion and not a specific object in the image.
Logically, here, the bounding box will take the image data from
the function after it has been transformed into a usable image by
transforming the data into polar vectors. Ergo, the variable “bgr”
will be used as the primary means of input, as it is defined
originally as the usable image data after optical flow procedures.
At the point of use, this image data is the blue-red-green
representation of motion that is seen in Figures 33 and 34. This
variable is sufficient to use as it subtracts all pixels that are not in
motion.

The methods of “drawing” a bounding box upon an existing image
are developed by first finding the contours of that image. Not only
does contouring assist in this task, but may prove useful in a
variety of detection requirements such as “drawing” the outline of
motion, or path. The OpenCV contouring process is most
efficiently computed in grayscale; therefore, the first objective for
a bounding box is to convert the image as such, by using the
cv2.cvtColor(...,cv2.COLOR_BGR2GRAY) function.

A new variable “gray” was defined as the output of this function,
the other input argument being “bgr”. Secondly, a variable called
“thresh” is defined; this will be the threshold of the image. A
threshold image is an output that further subtracts various
elements from the input. For example, thresholding an image of
an apple on a table by isolating the red color would result in an
output of solely the apple as the threshold, or limit to the output.
The variable “thresh” was defined as the output from the OpenCV
function cv2.threshold().

Arguments to the function included the input, “gray”, certain
grayscale color values, as well as the method of thresholding
cv2.THRESH_TRUNC. Three variables are then defined to be
the simultaneous outputs of the function cv2.findContours(),
which takes input “thresh” as well as two methods, here,
cv2.RETR_EXTERNAL, and cv2.CHAIN_APPROX_SIMPLE.
The former argument is used in order to subtract the possibility

94

of contouring more than one object, and the latter argument is
used for the purposes of limiting the contour to four points. By
using these methods, we will compute only the necessary
contours of the “brg” image data [32]. While this function requires
writing to three variables, the first of which "im2" shall be called
upon later; the other two variables are of arbitrary definition and
represent the contour data and the hierarchy data. "im2" now
serves as the image of the contours found from the "brg" dense
optical flow image.

The program will now utilize methods of centroid approximation
to find the center of the contours defined by the aforementioned
processes. We define a variable array “M” to take outputs from
the OpenCV function cv2.moments(), feeding “im2” as input. This
moments function will create an array of pixel value density. Once
obtained, the centroid is located by dividing the array “M” by its
first 0th elements. These are denoted as “cx” and “cy”. Finally,
use of the function cv2.rectangle() will draw the box onto the input
argument,“bgr”, around “cx” and “cy” found from the contour
centroid. Further arguments of the cv2.rectangle() function
include setting the box's width and height to be of 150 pixels from
each centroid, to possess a green color (0,255,0), as well as to
be a thickness of 3 pixels. The whole code block should exist
before the imshow() function, as the bounding box will be
included in the final output. The final test output combining the
dense optical flow and bounding box overlay is as shown in
Figure 37 below:

95

Figure 38- Still Shot of Dense Optical Flow Output Bounding Box

While the image in Figure 38 is unable to be seen with a still shot,
the box continually followed the illuminated moving object.
Further considerations of improvement include a bounding box
that disappears with at minimal movement as well as bounding
more than one object simultaneously.

5.2.6. Object Detection through Histogram of
Oriented Gradients

A key function in machine vision intelligence is the ability to detect
and identify objects. If a robotic system is able to distinguish, for
example, a pedestrian from a collective image – it introduces a
grand opportunity for the system to react specifically to various
scenarios. This feature is popularly achieved by the use of a
“histogram of oriented gradients”. This concept involves
separating an image into parts and analyzing each “block” piece-
by-piece in order to detect a specific object through a probabilistic
nature. It is easy to envision why this plays a very important role
for autonomous vehicle design. Modern autonomous vehicles
must be able to distinguish a multitude of objects and have the
ability to process a response to the behavior and location of each
object. For the purposes of this project, histogram of oriented
gradients or “HOG” will be integrated into the software for simple
object detection. While detecting motion through dense optical
flow is crucial, it is also highly beneficial to the overall intelligence

96

of the system to process object detection in parallel with optical
flow.

5.2.6.1. Histograms of Oriented Gradients Processes

The method behind object detection in HOG is a clever means to
separate a desired grouping of pixels out of an image and
classifying it as an object. The full image is considered as an
input; it is then processed so that pertinent information is
extracted and the rest is considered extraneous. This is done by
applying a horizontal and vertical gradient to the image in
overlapping blocks. The image is divided into subsections with a
specified cell width of x and y pixel dimensions; the blocks will
overlap such that the difference between sections may be
detected as a gradient [83]. The number of blocks used to form
the gradient is coincident with the size of the image; therefore, it
is common practice to resize the image in accordance with the
type of object one is detecting. Additional divisions do not
necessarily imply a more accurate result, the objective is to apply
the appropriate amount of divisions to where a difference in pixels
is apparent between adjacent blocks.

Before any computational processes on the input image are
performed, there must be a database to obtain a reference for
what object the program is attempting to identify. This is done by
creating a reference library of sample images containing the
desired object and samples lacking the object. In practice, it is
more beneficial for the number of negative samples to outweigh
the positive for more reliable detection [84].

Returning to the image processing, a “sliding window” technique
is applied where the program will test each block and record the
RGB values of the pixels. This value is represented as a
normalized vector. The result will be a vectorially-represented
visual difference between each cell. This process is implemented
over the sample library as well, and the resulting vector fields of
each reference image are compared to the test image.
Comparing the vector fields of the test image to the reference
images allows the program to normalize the histogram,
(probabilistic weight within a region), and determine that a
specific object is present within the image. By this cellular
method, it also allows the program to determine where the object

97

is located within the full image, making it a simple process to then
bound the object’s contour with a bounding box.

5.2.6.2. Open CV Pedestrian Detection

As discussed in the “Motion Tracking with Dense Optical Flow”
section, OpenCV is a veritable resource in image processing.
Python language was used to apply the HOG functionality to
detect objects in a stream of video. Unlike motion tracking with
dense optical flow, the image was not altered – instead, an RGB
image stream must be kept intact to properly visualize the object
as it is. The “cv2” library contains a histogram descriptor for
pedestrian detection, used here as the initial test for object
tracking. The Python program is relatively simple for pedestrian
detection, as the libraries and functions have already been
formed. For the purposes of testing, there existed certain
specifications this program was designed to achieve. These are
bulleted below:

o Utilization of histogram of oriented gradient
o Detection of an upright humanoid object
o Capture of multiple objects in a single frame
o Bounding of each object
o Visual verification
o Program implemented in Python language

The program was tested on laptop with an in-house camera. The
program begins by importing the appropriate libraries, (numpy,
imutils, and cv2), and defining the histogram of oriented
gradients. The variable “hog” is created and set to the function
cv2.HOGDescriptor(). It is then fed to a function in which the
pedestrian detection library and methods are specific to the
desired pedestrian object,
hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDet
ector()).
Following the initialization of the HOG, the program enters an
infinite “while” loop to run indefinitely. Once the loop is entered,
the program captures an individual image with the .read()
function. The image is resized both for proper gradient cell
application and increased processing speed; the image is resized
to a square with side length of 500 pixels. This new resized image
is defined as the variable “img”. Next, the variable “hog” is fed

98

into the function .detectMultiScale(…); the contents of the
function within the parentheses include the resized image as well
as several parameters for proper cell division and window sliding.
The output of this function is assigned to two variables named
“rects” and “weights”, where “rects” contains the location data of
each object detected and “weights” contains the probabilistic
data of how close the match is.

Next, the program will enter a phase in which it will draw a
bounding box around the “rects” localization data. An array is
created with the np.array() function which houses the dimensions
of “rects” in x-y coordinate plane. The variable “pick” is assigned
to the output of the function non_max_suppression(…); the
parameters within this function include the input, “rects” as well
as probabilistic and threshold variables which will allow
overlapping of bounding boxes. This step will enable the program
to output more than one bounding box at a single instant with the
ability of the boxes to overlap; a larger overlap increases the
likelihood that a box will appear around a certain gradient
contour, or “pick” an object. The program then enters another
“for” loop, initializing secondary x-y coordinates for the actual
bounding box. The cv2.rectangle() function is used, here, to cycle
through the variable “pick” and draw a green bounding box with
a line thickness of 2 pixels. For more information on rectangle
drawing parameters in Python, please refer to the “motion
tracking with dense optical flow” section. Once the bounding box
has been computed and drawn, the program displays the output
image with the cv2.imshow() function. A “waitkey” is used for
proper execution, as well as the .release() and
.destroyAllWindows() functions for proper termination of the
program. A summary of this process is shown in Figure 39.

99

Figure 39- Flow Diagram of HOG Pedestrian Detection Program

5.2.6.3. Pedestrian Detection Testing and Output

As the program was ran, it became clear that this complicated
procedure requires certain alignment with the exact type of
environment one is operating in. For example, the sensitivity of
detection is adjusted by altering both the number of cell divisions
and image size; furthermore, the overlapping threshold in
bounding the objects can be manipulated to allow or deny a
bounding box to be applied at a certain likelihood of an object. It
was also found that the speed of the program was sub-standard
for the employment in an actual moving vehicle scenario. This is
likely due to the visual verification process – that is, in the testing
phase where one must create a visual aid to accurately display
the program’s behavior. In a real-world scenario, this data would
not need to be rendered visually, but simply fed to the processor
responsible for object localization.

5.2.6.4. Pedestrian Detection Test 1

The following figures display the output of the program ran at the
following parameters found in Table 24.

100

Table 24: HOG Test Results

Parameter Value Description

WinStride 4,4 Sliding window
area of 4x4 cells

Padding 32,32 Image divided into
32x32 cells

Scale 1.05 Perform sliding
window method to

multiple image
scales up to 5% of

original

Width 500 Original image side
length resized to

500 pixels (square)

overlapThresh 0.85 85% overlap in
object bounding

As one can observe in Figure 40, the program was able to detect
two, upright, humanoid shapes while ignoring the triangle. This is
the simplest application of the HOG concept as it is very easy for
the program to distinguish the gradient difference of a dark
silhouette on a white background. The program was then tested
with a more complex image:

Figure 40- Simple HOG Pedestrian Detection Test 1

In Figure 41, (faces omitted for privacy), the image contained
many different opportunities for error. The increased number of
pedestrian objects added to the complexity of the image.
Furthermore, the pedestrians were not fully visible, they were
overlapping, and the multitude of color in the image makes for an
uneven gradient. However, one can still observe that the program
performed relatively well. To the left and middle, the pedestrians
are ignored which should have been detected; however, the

101

pedestrians on the right and lower-middle were detected with
higher accuracy due to a better-defined outline and color
differential.

Figure 41- Complex HOG Pedestrian Detection Test 1

5.2.6.5. Pedestrian Test 2

The following figures display the output of the program ran at the
following parameters found in Table 25. Various metrics were
altered to test the effects on accuracy and tolerance. While the
type of image being detected influences the results greatly,
tuning these metrics individually allowed for an observation of
how each could benefit or harm the desired response.

Table 25: Test 2 Parameters

Parameter Value Description

WinStride 4,4 Sliding window area of
4x4cells

Padding 64,64 Image divided into 64x64
cells

Scale 1.05 Perform sliding window
method to multiple image
scales up to 5% of original

Width 400 Original image side length
resized to 400 pixels

(square)

OverlapThresh .95 95% overlap in object
bounding

In Figure 42, an increase in the number of bounding boxes from
test 1 can be seen. This is due to the image being separated into
64x64 cells instead of 32x32. The overlap threshold is

102

responsible for the larger boxes, as it now has a higher tolerance
and aims to remove redundant boxes. Image rendering was
faster, seeing as the image was scaled smaller. This can be seen
as an improvement from test 1 in complex imagery. However,
results were not as positive for simplified cases.

 Figure 42- Complex HOG Pedestrian Detection Test 2

In Figure 43, the program is now too sensitive for simple fields of
vision. Where it had ignored the triangle in test 1, the triangle is
now erroneously considered a pedestrian due to the threshold
tolerance increase. Additionally, the left humanoid was double
counted – not necessarily a decrease in effectiveness, but
inaccurate. It is clear from these results that the parameters
should be balanced in such a way to provide consistent results
depending on the environment. It should also be noted that the
program latency was much too high when the sliding window was
set to 2x2 or lower. Increasing scale drastically increased the
latency between operations with decreased sensitivity. Image
resizing to 1000 pixels resulted in approximately twice the
latency, but improved accuracy. It appears that the ratio of
cellular padding determines the sensitivity, while image resizing
and overlap threshold should be tuned for redundancy and
accuracy.

Further considerations for improving this system are to “retrain”
the HOG detection for a specific environment. This is commonly
done by updating the reference library with positive and negative
data from past test results, allowing the process to adapt to a
certain environment [84]. One could also consider a dynamic
library for reference images e.g. urban vs rural. This would

103

involve a more complicated means of image processing to
determine which environment the reference point exists in.

Additional applications of HOG detection in autonomous vehicle
operation may involve the detection of common objects on the
road such as: other vehicles, road signs, turn signals, lane
boundaries, and many others. If one is to supply the HOG
descriptor with a large sample set, the program should be able to
detect nearly anything - within the constraint of processing
speed.

It can be surmised from the test output data that there exist clear
limitations to HOG pedestrian detection. If the program is to
operate effectively, there must a clear distinction between object
and background. The objects should not have a significant
amount of overlap and should not be crowded into one area.
While these ideal conditions are obviously not the case from a
moving vehicle reference point, it stands to assume HOG
detection is a viable method of recognizing and isolating a
pedestrian or local object from the field of vision.

Figure 43- Simple HOG Pedestrian Detection Test 2

5.3. Vehicle Dynamics and Modeling

In this section we cover testing done on our vehicles components
and any modifications made to the vehicle base, such as
differential and spring replacement, and any information obtained
from the vehicle operations, such as steering angle range and
motor speed. Not every modification may be implemented by our

104

team due to time constraints, but will be implemented by our
contributors in Dr. Fallah’s research lab.

5.3.1. Vehicle Disassembly

To improve the performance of the vehicle, the Traxxas Slash
4X4 Platinum was disassembled to determine what mechanical
pieces would needed to be replaced. Tests on numerous
components, such as hall sensors, the brushless motor, and the
servo, were conducted to find the signals necessary to control
the vehicle and improve performance.

5.3.1.1. Differential Replacement

After disassembling the vehicle, the contributors came to the
decision to remove the clutch on the limited slip differential that
attached to the front and rear axles. Referring to the section on
differentials, a limited slip differential would cause the wheels to
lock if they tried to move at different speeds. Since we cannot us
the measurement of the RPM’s on a slipping wheel to calculate
turning distance, this could lead to issues in localization. The best
way to avoid this issue was to replace the clutch with a center
differential so the wheels can move at different angular velocities.
An additional benefit to this change is that it will makine turning
smoother in the process. A photo of the clutch and center
differential is shown in Figure 44.

105

Figure 44- Center Differential (left) and Clutch (right)

5.3.1.2. Springs

After loading the weight of the battery, NVIDIA Jetson-TX2, and
the ZED camera, the springs on the vehicle’s front shocks were
not stiff enough to prevent bouncing. Research was done to find
springs from Traxxas or other companies that cater to hobbyists,
but the price range and shipping times were absurd for what we
were asking for. Instead, it was decided that a second spring
would be placed in parallel with the original. Two springs in
parallel function the way that two capacitors in parallel do (see
Figure 45).

Figure 45- Two Springs in Parallel

106

In the case of the capacitors, the overall capacitance increases
to the value of the two capacitances added together. In the case
of the springs, the spring stiffness increases to the value of the
two spring stiffness’s added together. A picture of the two springs
in parallel on the vehicle is shown in Figure 46. The new springs
were obtained in an Ace Hardware and then were cut in half, and
each half was placed on the inside of one of the front shocks.
This removed the bouncing issues entirely and will be done to
every vehicle constructed by the senior design team.

Figure 46- Two Springs in Parallel on the Shock

5.3.1.3. Servo Testing

To determine our steering angles, we performed tests using a
function generator and the Arduino UNO to find the range of
pulse width’s that controlled the servo angle without damaging
the servo. After we determined our steering angle range, we
programmed the Arduino UNO to implement changes in wheel
speed. The goals of our tests were as follows:

o What frequency should we run our pulses so we get the
largest range of control via duty cycle?

o What is the range of our steering angles?
o How can we get our UNO board to create the necessary

pulses and pulse widths?
o How can we change the speed the wheels change its

angles at?

107

o How do we make the change in wheel speed independent
of distance between 2 different steering angles?

5.3.1.3.1. Determining Pulse Widths

To determine our necessary pulse-width range, we began by
attaching our servo’s control wire to a function generator running
a pulse at 50 Hz, the positive voltage wire to a 5 V DC source,
and the ground wire to the ground of the servo. The grounds are
connected through a breadboard. This configuration is shown in
Figure 47 below.

Figure 47- Test Setup for PWM Measurement

We began by placing the duty cycle at 50%, and then turned on
the servo. We saw the servo try to extend past its maximum
range and immediately powered off the generator. We then
lowered our duty cycle consistently until we found ourselves in
the middle of the working range. We then increased and
decreased our duty cycles slowly to find the range of our servo.
Using this setup, we determined that pulses ranging between
1100 microseconds and 1900 microseconds provided the full
range of motion for the servo.
5.3.1.3.2. Determining Steering Angle

After determining our PWM range, we decided to attach a ruler
to the outer front wheel of the vehicle. We adjusted the PWM
through the entire range of motion in equal intervals of 0.01% at
a frequency of 50 Hz and took photos after each change to
capture the entire range of motion. We then used Photoshop’s
ruler tool to find the steering angle of related to each pulse width.
The test setup is show in Figure 48. Our final Steering angle

108

range was determined to be approximately 22 degrees to the left
and 24 degrees to the right. We are expecting about 1 degree of
error due to our method of measurement, so we assume we have
23 degrees on the right and left side.

Figure 48- Steering Angle Test Setup

5.3.1.3.3. Determining PWM Frequency

After determining our steering angle and range, we tried
numerous ways to change the PWM frequency of the Arduino
output pins. We discovered methods involving using delays, but
due to the extra memory consumed by the code, the inability to
use dividers, and the amount of variables we needed to pass to
a function to implement a variable pulse width, we decided to use
the standard 50 Hz signal that is output when using the
Servo.write command in Arduino’s Servo library.

While the difference in pulse quality was minimal (see Figure 49),
we encountered issues when trying to run the servo using the
servo library. We received a much smaller range of total points
than expected and a lower quality pulse. Arduino’s servo library
is supposed to be able to adjust for different pulse widths, but
adjusting our range to match the range we had calculated led to
a smaller range than the default one. Instead of having 180 points
like we originally thought we would, we were left with a total of
53. These 53 points, however, gave a mostly linear response for
our steering angle. A graph of steering angle and duty cycles
created by the Servo.write command is shown in Figure 50.
Table 26 shows the final results of our testing to this point.

109

Figure 49- Pulse from Function Generator (blue) vs. Pulse from the Arduino UNO
(yellow)

Figure 50- Duty Cycle vs. Steering Angle

Table 26: Turning Parameters

Parameter Measurements

Frequency of Control Signal 50 Hz

Duty Cycle Range 5.5%-9.5%

Steering Angle Range 46 degrees

110

5.3.1.3.4. Changing Steering Angle Speed

After obtaining our range of motion and the input range for our
vehicle, the next step became to implement code to allow for
variable changes in steering angle e.g. changing 10 degrees in 1
millisecond or 10 degrees in 10 milliseconds. Figure 51 below
shows the logic which was developed to achieve this. Figure 52
shows the logic implemented in the smoothing function which is
used to prevent jerking motions resulting from linear servo
movements.

Figure 51- Smooth Steering Logic

Figure 52- Smoothing Function

111

5.3.2. Measuring Motor Speed

The next step in setting up our vehicle was to determine the
speed of our motor. Using this data, we approximated our wheel
speeds using the gear ratios between the spur gear, center
differentials, and front and back differentials to obtain speed
assuming the wheels do not slip. In order to measure motor
speed, we decided to use Traxxas’ Hall Effect sensor, which was
specifically designed for the Traxxas Slash 4X4. The sensor
testing consisted of measurement of voltages and writing a code
to detect the movement of a magnet attached to the spinning
motor gears. The testing setup is shown in Figure 53. The sensor
is placed in a small compartment near the spur-gear. It can be
seen surrounded by a red rectangle in Figure 54.

Figure 53- Hall Effect Sensor Testing and Coding

Figure 54- Installed Hall Effect Sensor

The magnet was then placed in front of the sensor to find the
output voltage. The output voltage measured was about 0.004 V,

112

which was too low to be usable. To circumvent this issue, a 1 kilo-
ohm pull-up resistor was connected between the magnet and the
sensor to raise the output voltage to boost the voltage above 3.3
V so it could be detected as “on” by the Arduino UNO or the
Jetson board. When the magnet is introduced, the voltage goes
back down to 0.04 mV. The output of the sensor was then
attached to digital pin 2 of the Arduino, and whenever a “0” is
detected, the Arduino updates a counter called revolutions. After
100 revolutions are detected, the code then calculates
revolutions per minute using Equation 8, where the time is
measured in milliseconds using the millis() function in the Arduino
library. The program flow is described in Figure 55.

𝑅𝑃𝑀 =
100

𝑚𝑖𝑙𝑙𝑖𝑠()

Equation 8. Revolutions per Second

Figure 55: RPM counter flowchart

5.3.3. Three-Dimensional Modeling – Initial
Proposition

Prior to assembling any product, one must achieve a
visualization of any and all components and how they are to be
fit together for the most efficient design. In terms of autonomous
vehicle design, each outfitted sensory or computational
component must be modeled to-scale to adhere to the project’s

113

special requirements. In addition to location, the relative weight
of each object must be considered as to not offset the vehicle’s
center of mass. The following document contains the first
proposed model of all components adhering to the basic RC
vehicle chassis.

To produce a visual three-dimensional model of the, AutoCAD
2016 software was utilized. The vehicle chassis was traced from
an image and rasterized as accurately as possible for the current
visualization requirements. Once the chassis was converted to a
three-dimensional scale, each component was created one-by-
one and added to the chassis. Multiple levels were introduced
above the chassis, as to consider the range of vision of sensor
inputs as well as special crowding. The requirements for a
successful representation are as follows:

o Three-dimensional visual rendering of the vehicle

depicting all major components
o To-scale representation of components added to

chassis
o Relative weight considered of each component to

center of mass of vehicle
o Three-dimensional representation of new center of

mass

5.3.3.1. Data Collection

The initial step taken in this task was to take to required
measurements of all components. In Table 26, one may observe
all dimensions to be modeled. Weights were also considered for
center of mass computation. In terms of processing and sensory
units, The NVIDIA Jetson Launchpad’s dimensions and weight
were considered; however, the UNO microcontroller, GPS-
14030, SparkFun 9DoF IMU, DAOKI 5 PCS IR sensor, WYPH
Ultrasonic sensors, and the printed circuit board were all
approximated. These dimensions and weight were considered
negligible compared to that of components that occupied much
more space or were too difficult to model with exact
specifications. They were, however, still modeled from
assumption.

Table 26: Important Values of Components

114

Parts / Components Dimensions (inches) Weight

Traxxas Chassis 22.0 x 8.0 x 3.30 2.28 kg

Aux Battery 8.0 x 5.52 x 1.25 1.26 kg

USB Hub 6.60 x 2.0 x 0.75 0.5 kg

NVIDIA Jetson 8.75 x 8.25 x 4.75 1.54 kg

WIFI Router 7.0 x 4.50 x 1.50 0.3 kg

Stereo Camera 1.25 x 6.75 x 1.20 0.16 kg

Scanse Lidar 2.50 x 2.50 x 2.40 0.2 kg

5.3.3.2. Model Design

Multiple factors had to be considered with the initial design:
spatial occupancy, center of mass, sensor field of vision, and
reserved space for interconnectivity between components. All
components considered, the model was rearranged multiple
times before coming to the initial proposal. Two additional tiers in
the vertical z direction were introduced, the material and exact
dimensions of which are unknown at this phase. Support beams
for these tiers are envisioned to be mounted on the lateral
bumpers of the chassis as well as towards the anterior chassis
point. Cylinders and suspension mechanisms were best modeled
from tracing the image of the chassis, but should not be taken as
absolute at this phase.

The vehicle engine and several other stock components were
best approximated from this image as well. Center of mass was
approximated using the “massprop” command in AutoCAD. This
command is designed to approximate the center of mass relevant
to the origin. In this case, the origin was placed at the center of
the anterior bumper, and at the vertical z-axis of the center of the
wheel. The center of mass was aimed to be lower on the z-axis
and as close to the original x-y axis as the original chassis.
Center of mass is a key factor to consider for the prevention of
vehicle slipping or becoming too top heavy and rotating on its
side. Therefore, the heaviest objects were placed in such a way
to counteract the overall displacement. The NVIDIA Jetson board
was first placed directly on the chassis surface, as it is a very
heavy and spatially cumbersome object. The NVIDIA board
occupied nearly every bit of space on the chassis surface,
leading to all other large components to be mounted above it.
The second heaviest object, the auxiliary battery pack, was
considered next; it was placed in such a way to not introduce
positive (z-axis) pitch to the anterior. This positive pitch would

115

increase the likelihood of slipping as the anterior wheels would
not have as much weight on the surface. The USB hub had to be
placed in a manner to allow a good amount of access from all
directions, as multiple components would be connecting to it.
Working upward, it was of importance to allow all sensors to have
an unobstructed view. This involved the stereo camera mounted
in the anterior direction, and the LiDAR mounted at the top-most
region of the design. Infrared was placed at the top anterior and
SONAR was placed lower to the ground in both anterior and
posterior regions. Finally, the additional boards such as the PCB,
IMU, and the GPS module were placed in a way to allow
connectivity and to avoid crowding / overheating.

Connectivity and subsequent wiring between components and
modules had to be considered. By utilizing multiple levels, one
may envision the connections adhering the surfaces of the tiers
both on top and underneath. Because the NVIDIA board’s grand
special occupancy prevents wiring on the top of the chassis, the
support rods to these multiple tiers were designed hollow to allow
protected wiring between levels. Space was reserved around the
edges of each tier and between modules to allow convenient
wiring paths.

Future alterations to this concept design may arise from several
factors. For example, upon constructing the physical model, it
may be apparent that the center of mass needs to be altered for
a desired motion characteristic, such as being able to turn at
faster speeds or sharper angles. Sensors may need to be added
for proper functionality, or existing sensors may require a
different location. Additionally, it may be the case that
components are altered entirely due to an insufficient provision
to the system, or to a better option as far as special and weight
metrics are concerned. Most likely, wiring and connectivity will
become the culprit to repositioning components to allow a secure
connection to its power source and data destination. In the
following section, one may consider several figures to better
visualize this design.

5.3.3.3. Initial Model Visualization

In Figure 56, the model of what has been described in the
previous section can be seen. The “concept” view in AutoCAD

116

was used to visually render each component as a solid while
displaying the outline. Table 27 details the different components.
Note that the SONAR sensors are not visible here. Center of
Mass is depicted by the cross of two, thin cylinders. The WIFI
router was chosen to be placed upside-down to avoid the
antennae obstructing the view of the LiDAR scanner. It was
considered that this configuration would have no consequences
of significant proportions in data transmission.

Figure 56- Component View with C.O.M.

Table 27: Locations of Components in Figure 46

Point Component

1 LiDAR

2 GPS / IMU / PCB / UNO
3 WIFI Router

4 USB Hub

5 NVIDIA CPU

6 Stereo Camera
7 Aux Battery

8 IR Sensor

In Figure 57, the “X-RAY” view was rendered in AutoCAD. This
allows one to better visualize the placement of components. One
may also observe various measurements in the y-z axis. The
center of mass in the x axis was 0.8 inches away from axis, and
considered to be nearly negligible. With the addition of the tiers
and components, however, the y and z centroid were greatly
altered. However, because of inaccuracy of the NVIDIA Jetson

117

board component model as well as the chassis, one may imagine
that the true z-axis centroid is lower to the ground.

Figure 57- Profile View and Measurements (inches)

It can clearly be seen that the total height of the system greatly
increased in order to house all components. This must be taken
in consideration as a negative tradeoff, and may require
alterations in the future to avoid tipping scenarios. Height of the
lower tier was modeled to be approximated a quarter inch and
the second tier to be an eighth of an inch; however, these may
prove unsuitable in practice. The following Table 28 describes
each distance for clarification purposes:

Table 28: Center of Mass Calculations

Measurements Dimension

11.5 Total height from ground

5.5 Height of z-axis centroid

3.3 Wheel height from ground

2.3 Top of chassis from ground

5.5 Top of first tier from chassis
6.8 Top of second tier from chassis

5.3.3.4. Model Design Revision – Current Layout

118

Upon physically interacting with the Traxxas 4x4 Slash vehicle
chassis, it became clear that the initial design would not be the
optimal solution. Several factors contributed to the necessity of
changing the schematic almost entirely. First, the Traxxas kit
included a thin, see-through, plastic body in the shape of an
actual vehicle. This was not initially considered as an option, and
was kept in the design for aesthetic and protective purposes.
Because of this body inclusion, a multitude of spatial constraints
were introduced, mainly height. Holes were cut into the body to
allow the stereo camera and LiDAR to have an unobstructed
view. Furthermore, the vehicle’s actual shape and contours were
not accurately represented from the images used to create the
initial proposal. Shock placement, bumper shape, wheels and
suspension were able to be modeled more accurately and as a
result, changed the layout significantly. Lastly, it became clear
that the rear bumper was sturdy enough to support multiple
items.

With the aforementioned considerations, the design changed
drastically. The multiple tiers were reduced to one platform and a
rear “fin”. This platform was envisioned to be bolted to the chassis
suspension while the fin would be attached via a hinge and lay at
an angle, supported by the rear bumper. The hardware was
reduced as much as possible: the casing for the USB hub was
removed, the NVIDIA Jetson board was taken off of its mount
while leaving the vertical spacers, the front cover of the auxiliary
battery was removed, and the rear body mount rods were
removed from the chassis to provide spacing for the auxiliary
battery. Lastly, the WIFI router was removed entirely; it shall be
locally present in the area to pick up the signal, however two
antennae and a small transceiver shall be the only devices
mounted directly to the vehicle. The infrared sensor,
unfortunately, did not operate to the desired efficacy and shall
remain out of the design, tentatively. The printed circuit board
shall be fixed onto the auxiliary battery along with the GPS
module.

This new configuration proved advantageous in multiple ways.
First, the center of gravity could now be kept lower to avoid
tipping and slipping. The streamlined fashion of the new model
not only looked more professional, but also served better in the
dynamics of the moving system. The body now served as a

119

housing to all components, this removes the likelihood of damage
to the valuable sensors in a collision scenario. Clearly, tradeoffs
are always present between designs; by using a minimalistic,
one-tier approach, a variety of individual mounts and platforms
needed to be precisely designed in order to properly integrate
and support all components. These designs are discussed in the
following section. The current model can be seen in Figure 58,
please note that not every component is visible.

Figure 58- Design Revision, Current Layout

5.3.3.4.1. Supportive Structure Design

To design the current (revised) model, it was necessary to outfit
the chassis with supportive structures for all sensory and
hardware components. This is done in order to both protect and
to allow all methods of sensory and computational power to
operate independently, while abiding by spatial and temperature
constraints. To accomplish the desired configuration, many
additional designs would be required.

Upon initial observation of the chassis, it became clear that many
structures would be required in order to properly brace all
additional components. AutoCAD software was found to be the
most applicable method of design in which to cater to specific

120

requirements. Objects were either laser cut or 3D printed in order
to adhere to the very specific dimensions and to avoid the
necessity of adhesives. All constructs were created in the UCF
T.I. Innovation Laboratory and designed to uniquely fit the needs
of this project.

The methods of the AutoCAD technique shall not be discussed,
as they of preference to the designer. However, it is worth noting
that the process of design involved precise measurements and
modeling to-scale. Grid snapping and mirror functions in
AutoCAD were utilized to ensure a symmetric and accurate
product. Two-dimensional designs were used for objects that
were laser cut, while three-dimensional models were used for all
others. It was importance to consider the orientation of the object
when 3D printing, as the structural integrity could be
compromised if printed from an arbitrary start point. For the more
complex designs, such as the LiDAR mount, a mold was printed
simultaneously around the design to ensure that the structure did
not collapse during the fabrication process. Resolution of the 3D
printer had to be taken into consideration, as well as object
shape. Below is a list of our requirements for our mounts:

o Platform mount must be bolted to chassis
o All cables and wiring must not be obstructed by mounts
o All volumes kept under five cubic inches in 3D printing
o No adhesives to keep any mounts together

5.3.3.4.2. Platform and Mount Design

The initial, and possibly the most important, design was that of
the platform. This platform would serve the purpose of mounting
the main computational hardware such at the NVIDIA Jetson
board. It also served sufficient space to allow mounting of the
USB hub and the Arduino UNO board. Several revisions of this
mount were necessary to obtain the proper spacing. The platform
was the only mount to adhere directly to the chassis. For this
reason, the design specifics needed to fit with the bolt
placements already in place with the Traxxas RC chassis
product. Multiple factors also came into play when designing the
platform: spacing availability for pulling cable, grills for heat
convection, and avoiding the wheels at maximum displacement
in all three axial directions.

121

The initial templates were cut into wood of 3/16” thickness. While
this material served the structural requirements, it was surmised
that better options were present. The final material was chosen
to be Plexiglas for a balance of rigidity, flexibility, and heat
conduction. In addition to these factors, Plexiglas was deemed a
proper fit for the simple reason of the ability to see through the
substrate. This visibility factor provides the designer with a great
convenience of being able to see what is happening throughout
the system’s levels. The thickness of the Plexiglas was chosen
to be 5mm to provide stability and ease of laser cutting. Two-
dimensional laser cutting was chosen as the most accurate
method for this design.

Through a sequence of adjustments, the final product was
accepted to adhere to the requirements. Radial anterior edges
were introduced as to not collide with the tires if the vehicle were
to experience maximum compression of the suspensions
system. A ventilation grill was placed between the top-mounted
Jetson board and the Arduino board, mounted underneath. The
rear fin was eventually mounted with a hinge to the rear of the
platform.

A rear “fin” was designed in order to support the bottom of the
auxiliary battery, as it lay at an angle from the rear bumper. This
fin generally followed the shape of the rear bumper to keep from
protruding too much, laterally. A hinge was used to fasten the fin
to the rear of the platform. Ventilation grills were placed down the
fin to allow heat convection from the auxiliary battery. Perhaps
the primary purpose of the fin, however, is to allow the battery to
be secured via straps. Without fastening the battery, it would
have the ability to slide which is extremely undesirable in a
collision or turning scenario – considering the heavy weight of the
object. By designing “buckles”, one may envision that a strap be
fed through the buckle on each end of the fin and tightened
around the battery to prevent any slipping. The fin was mounted
directly to the rear bumper by drilling holes in the material.

Holes were placed in platform for the shocks have ample room
through critical moments (6) and the back of the platform
extended for a front strap to secure the battery-pack. The rear fin
(7) will be secured to the back bumper and will also have a strap

122

for the battery. Additional openings, in the front and rear, for the
cables to run through (4), holes for the ventilation of heat (5), and
holes for battery straps to loop through (8) were added to the
platform design. When placing the ventilation holes, we had to
avoid the areas where the mounting of hardware would take
place. The NVIDIA CPU (2) will be mounted to the top of the
platform while the Arduino UNO (1) and USB HUB (3) will be
secured to the underside. The current design is shown below in
Figure 59.

Figure 59- AutoCAD Platform Design

The LiDAR camera needed to be positioned in such a way that it
would have an unobstructed field of view while being immune to
vibration. While all vibration is unavoidable, the mount needed to
possess a minimum torque moment around the axes of rotation.
In addition to these factors, the mount’s dimensions were
designed very precisely to fit underneath the auxiliary battery
while jutting forward, toward the anterior of the vehicle and the
hole cut for the LiDAR to protrude through the roof of the body.
The placement of this mount is shown in Figure 60.

To minimize the torque moment as vibrations travelled through
the mount, arches were put in place in three positions. The first
arch will support the neck of the mount. The top surface of the
mount was created with a rounded edge to better fit the circular
nature of the LiDAR camera. By fastening the neck to the center
of the top surface at an angle, two more arches were included to
prevent the top surface from bending. Further considerations
may include creating arms to fasten the top surface to any
existing bolts on the NVIDIA Jetson board or to the platform itself.

123

Wiring was also taken into consideration, as the LiDAR camera’s
wires needed to feed through the mount itself. The neck of the
mount was designed to have a hole as well to feed cables
through to the auxiliary battery. The base was designed to have
a width and length to support bolts to the platform mount. Volume
considerations were kept less than five cubic inches to save on
materials in 3D printing. One may observe the LiDAR mount in
the following Figure 61.

Figure 60- LiDAR Mount Placement

Figure 61- LiDAR Mount

The stereo camera was chosen to be placed at the front-most
region of the vehicle to avoid interference with LiDAR vision. By
cutting a hole in the anterior of the body, the camera would fit
easily through. Originally, it was intended that an angular

124

connection be fastened to the platform mount; however, it was
then discovered that by utilizing a convenient “hole” in the
Traxxas bumper, one could fit a mount vertically from the
bumper. This particular piece of the bumper is an intermediary
piece from the chassis, and therefore does not exhibit bending in
a collision scenario. Because of this trait, the camera could be
safely mounted from this point.

To fit in this long, rounded hole, the mount needed to be designed
with great precision in the x and y plane. To avoid sanding or an
inaccurate measurement, it was decided that tapering the neck
would allow the mount to fit tightly within the hole. The “head” of
the mount draped over the hole to define the maximum boundary
and to avoid sliding through the hole. Once the mount was fit into
the hole, bolts were drilled into the sides to ensure a permanent
placement. Further considerations may include an additional
piece extending laterally to accommodate any tilt that the long
stereo camera might experience. Figure 62, shown below,
depicts this camera mount:

Figure 62- Stereo Camera Mount

For the placement of the antennae for the devices to
communicate with one another, it was determined that they best
be positioned toward the rear of the vehicle. This serves various
purposes in both collision scenarios and the avoidance of
obstructing camera or LiDAR fields of vision. This mount was to

125

be designed at an angle to adhere to the rear bumper, which
tends to an angle of about forty degrees.

Two cylinder-shaped supports were designed to protrude from
the base in order to house each antenna as it was screwed in.
Holes were measured with precision and consideration taken to
allow the thin cables from each antenna to pass through the base
of this mount. The mount itself was to be bolted directly to the
rear bumper by use of drilling through the material. For aesthetic
purposes, the UCF Knight’s logo was traced and etched into the
base of the mount. It was mirrored on the mount in the hopes of
an LED light being placed behind the mount itself to shine the
“Pegasus” onto the floor as the car drives. This mount is depicted
in Figure 63:

Figure 63- Antenna Mount

In placing the battery as an overlay above the NVIDIA Jetson
board, it required that the stock body mounts in the rear be
removed. These mounts are intended to support the clear, plastic
body and secure it to the chassis. A new body mount had to be
constructed to properly fasten the body in both the front and the
rear. These designs mimicked closely Traxxas’ design; simply, a
thin cylinder with a small hole for a metal clip. This cylinder will
protrude through the top of the body until the body meets the
conical brace. The protruding portion has a 2mm hole for the
stock metal clip to prevent the body from sliding, but also allow it
to be removed. A base was designed for this rod mount, as it
would be bolted directly to the platform. This design is shown in
Figure 64 below.

126

Figure 64- AutoCAD Designed Body Mount

As the product was assembled with the aforementioned

structural support mounts, it became evident that the USB hub

would no longer be able to remain in the initial position. This issue

was mainly due to the connectivity factor of nearly all other

modules to this destination. USB cables are inherently bulky, and

therefore needed ample room to avoid damaging the cable.

Furthermore, rearranging these cables at any point was an

arduous task due to the spatial constraint. The optimal location

for the USB hub was found to be on the lateral edge of the

Plexiglas platform; thus, a mount was needed. While this

particular design is not very complex, the dimensions were very

sensitive to the USB hub's surroundings. An "L" bracket was

considered for purchase, but for the goal of accuracy and

professionalism, the bracket was designed to be a 3D print, and

is shown in the Figure 65.

127

Figure 65- USB Hub Bracket Mount

All mounts were 3D printed, attached to the laser-cut platform
and the car's front and rear bumpers. The implementation of
these mounts was seamless due to the attention to detail and
drawing to scale during the design process on AutoCAD
software. The primary mounts can be seen in Figure 66 below
(USB mount and body mount not shown). The antenna mount
can be seen on the far left and above it the rear fin. The platform
can be seen and above it the LiDAR mount. On the right hand
side the stereo camera mount can be observed attached to the
front bumper.

Figure 66- Final fabricated mounts and platform installed to the car

5.3.4. SSH Connection

In order to progress to the self-driving car, the Jetson must be
removed from the ethernet connection to the wall. To achieve
this, SSH was setup to connect to the Jetson via a terminal

128

through an ad-hoc network. This would allow the car to be
controlled from a remote computer which could act as a central
computer to connect several cars together.

This was achieved by installing openssh server on the Jetson and
host computer, then setting up the ad-hoc router to forward on
port 22 (ssh) in order to connect to the Jetson via its IP address.

5.3.5. Remote Connection

While SSH would be sufficient for controlling the Jetson via the
terminal, it would also prove useful to be able to have full control
of the Jetson using a remote connection. The built-in program
“Remmina” will be used to connect to the Jetson.

Doing this gives full control over the car by a remote desktop,
which will be useful for running tests and updating the software
without having to connect it to a screen via an HDMI cable.

5.4. PCB Details

PCB design is a vital tool for Electrical Engineering students to
master and the one of the purposes of senior design is to help
students develop this skill. In an effort to build these skills, meet
our Senior Design requirements, and further improve this project
for our sponsors, we will design and assemble a Printed Circuit
Board to perform a variety of beneficial advantages. This section
will cover software, the basics of the manufacturing process, and
specifications.

5.4.1. PCB Manufacturing Process

With the assigned task of designing and ordering a printed circuit
board one can see that the process is not a simple one. Previous
sections have covered the software that goes into the design but
how exactly are these PCBs made? This section will provide
insight into the chemical Etching process by which printed circuit
boards are manufactured.

Etching is the terminology used for the purposeful subtraction of
undesired copper from a prefabricated laminate material. The
copper material is used as the electrical traces on the board by

129

which the electrical signals are able to travel between
components. The copper is first applied to a nonconductive
laminate material, phenolic cotton paper, epoxy and many other
materials can be used for the base laminate. The copper then is
covered by a mask that obstructs the etchant’s ability to remove
or etch away the copper material. Common acids that are used
in this process are ammonium persulfate and ferric chloride. The
mask is comes from a specific design file and exported to
machines for application. The files can be made using software
available from a variety of companies on the market as long as
they are compatible with the manufacturer of your PCB. There
are also many options for the application process of the masks.

One way is by screening the copper covered laminate base
material with tin and lead which does not react with the acid
leaving bare copper to chemically react and disappear. Another
process available is to use an advanced printer called a plotter.
The plotter printers administer photoreactive ink on two different
layers. The first layer is for the etching process and uses black
ink to denote the circuit traces and keep them from being etched
away. The second surface layer is a solder mask that will be
discussed in detail in the following paragraphs. These two layers
work harmoniously to perfectly map out a printed circuit board
design for a more streamlined manufacturing process.

The mask is then removed by using a wire brush to scratch away
the thin layers of tin and lead. After the mask is removed the
drilling process can begin. Drilling holes in the PCB must be done
using a drill capable of high RPMs and typically uses tungsten
carbide coated drill-bits or laser cutting as to not completely
destroy the copper traces. With the size of these holes and the
high possibility of error automated drills are used to increase
accuracy. The types of through-holes are just one way to mount
components to the circuit board, in recent years surface mount
integrated circuits and transistors have been developed. These
components are much smaller and attached to small contact
pads through soldering instead of punching through the board
material.

After pads or through holes for components are applied
measures must also be taken to keep the copper from oxidizing
and to increase its conductivity for the mounting of components.

130

To accomplish this solder, silver, nickel or gold can be coated on
top of the copper traces, however any anti-corrosive metal will
work just as fine. To keep areas on the board clear that are not
meant for solder and to avoid the shorting of components by
excessive application of solder resistant coating can often be
applied. This resistive material is called a solder mask and is
achieved through photo-sensitive coating. The layer is applied
and put under light to become reactive. Once it is dry it is rinsed
and the areas where the coating is undesired are carefully
scrubbed and rinsed again.

The final processing steps include the addition of text, insignia or
important instructions to the board through printing or silk
screening. After this step the board is coated and cured and
ready for testing. There are many ways to electrically test these
boards but by far one of the best is called a "Flying Probe test",
which applies incredibly fast mechanical probes to examine the
performance of all net and bus systems. Another method is bare
board testing which employs resistive or capacitive theory to
measure inaccuracies. The capacitive method is done by
charging net traces and validating using probes. The resistive
approach to bare board testing follows the principal that metal
elements have low resistivity, and to confirm this meters are used
to check expected resistance versus the measured values. The
resistivity of a metal is dependent on: its length, thickness and
chemical properties; all of these values are known from the
design files and using software can be calculated for each
branch, net or bus of circuit traces.

5.4.2. PCB Manufacturer Selection

The selection of a PCB manufacturer will determine the overall
effectiveness of our board and could impact our timeline.
Selection will be based on price and turnaround time for the
manufacturer to build and ship us our PCB. All manufacturers will
be based in the United States to decrease shipping costs, and
more importantly, save time. Overseas manufacturers will take
approximately 2 months to ship via boat from Asia, which is
dangerous if an error occurs in our design and we need to
purchase a new one. The manufacturers considered were
recommended by various other ECE and EE students in senior
design 2 who had already received their PCB’s.

131

5.4.2.1. 4PCB

The first recommended manufacturer we looked into was 4PCB.
This company is based in the United States and by choosing
them we would decrease our shipping cost and time. They also
provide a wide variety of advanced circuit board design methods
such as laser or bit drilled micro-vias, cavity boards, addition of
heavy copper (up to 20oz of copper), boards with up to 40 layers,
microwave and RF boards. The reliability of this company can be
seen by its list of clientele which includes companies within the
medical, military and commercial sectors of business. The
company also provides PCB Artist, a free software for designing
printed circuit boards, which will ensure compatible files types
with all their machines.

A standard PCB order from 4PCB allow for up to 10 layers, FR-4
laminate, Lead free HAL layering, up to 2oz outer copper weight,
and a size of 5 x 5 mils which can be finished and shipped within
5 days. However a custom PCB package includes access to
more materials in laminate, and solder layers, higher dimensions
of design, up to 40 layers and many other benefits but depending
on the level of complexity these design can have a 4 week design
and shipping process. This company uses the bare board and
flying probe electrical testing mentioned above for PCB orders to
ensure functionality. Among these electrical tests is a massive
list of other electrical tests available for checking current flow,
impedance, continuity, electrical leakage, field-effects, and
shorts. 4PCB also provides customers with a great online order-
tracking system so expected shipping dates can be counted upon
and monitored.

5.4.2.2. OSH Park

The second recommended manufacturer was Osh Park. One of
OSH Park’s biggest selling points is free shipping anywhere in
the world from the United States, and a clear set of design rules
they use for printing and producing PCBs. They provide 2 and 4
layer PCB’s at varying costs based on shipping times and layers.
All OSH Park PCB’s come with a purple mask over the bare
copper and an ENIG finish.

132

The most expedited turnaround time for a 2 layer board has a
cost of $10 per square inch and takes only 5 business days to
ship. The board maintains a 63 millimeter thickness and has a
copper weight of 1 oz. The minimum design standards for a 2-
layer PCB are a 6 mil trace clearance, a 6 mil trace width, a 10

mil drill size, and a 5 mil annular ring.

The boards can also be made with 4 layers and have easier
design constraints concerning annular ring size, trace width, and
trace clearance at $10 per square inch. OSH Park 4 layer boards
also have a FR408 Substrate. Unfortunately, the PCB’s have a
minimum turnaround time of 9 calendar days, and can take up to
a month depending on the chosen service.

5.4.2.3. PCB Manufacturer Summary

In consideration of our budget and time constraints a decision for
the circuit board manufacturer was discussed by between group
members. It was decided that heightened cost for decreased
development time would be a more ideal trade off due to possible
redesigns, damage or errors that could occur in the next phase
of this project.

The group decided that 4PCB would be the best option for this
part of the project. Their attention to detail and wide range of
available services sets them apart from other services. Their
extensive electrical testing procedures will ensure the reliability
and functionality of our design and will decrease the likelihood of
a future resdesign. 4PCB has options for 24 hour design which
will suit our needs, and because our PCB will not require
advanced manufacturing techniques we will be able to choose
this expedited option. The comparative cost of 4PCB versus
other options was not higher, especially because we will not
require complex design methods. The PCB design will be
discussed and an initial prototype will be shown in a later section.

5.4.3. PCB Design Software Selection

In an effort to model the PCB accurately and make design
process go as smooth as possible multiple programs available
were researched. Important parameters that were examined and

133

considered were costs of manufacturing and software, customer
reviews, and software features.

5.4.3.1. EAGLE

EAGLE is an acronym that stands for Easily Applicable Graphical
Layout Editor that was developed by CADsoft computer GmbH
that was bought by Autodesk in 2016. EAGLE is an electronic
design automation software useful for designing circuit
schematics and printed circuit board design.

EAGLE has some great features that make it easy to use for
beginners and even professionals. One such tool that we would
find useful is called auto-routing, this feature automatically
connects traces on a PCB design for connections specified by
the circuit schematic created by the user. This program multiple
files types for layout files, and drill files that are used by most
PCB fabrication companies. Even if a company does not
specifically use EAGLE (.BRD) file types this program is so
widely used that companies who do not have conversion
software that accepts this file type.

This program uses multiple windows and a menu system for the
creation and editing of files and can be controlled through mouse,
keyboard or the use of an embedded coding window. EAGLE
makes their software available to students for free, which is a
huge positive and will play into the decision. The free student
version allows a PCB of 4 square-meters to be made with up to
6 layers, this is a value of up to $700 a year.

Other features include checks and failsafe programming to make
sure there are no fatal errors in your design, and real-time
changes, so if a change is made to a schematic the PCB layout
will reflect changes as soon as they are made. The PCB design
software has intuitive alignment tools and obstacle avoidance
trace routing so moving components about is made easy and will
never interfere or cross paths. Also included within this software
is the ability to design 3-Dimensional renderings of your finished
PCB with components on board.

The online community for EAGLE supplies video and other
tutorial materials for beginners, this support would be extremely

134

valuable to our team. Other valuable resources provided by this
program are the libraries of the companies that use EAGLE to
design their products. For this purposes of this project the
Arduino, SparkFun and Adafruit libraries will provide valuable
schematics and insight in the integration of these products into
our PCB design. However, John Teel a circuit design software
reviewer describes eagle as difficult to use and recommended
days to weeks of learning before one can become proficient
enough to design. Other reviewers online do agree that EAGLE
can be quite difficult and frustrating however through use of
online tools like youtube tutorials this program can be learned
decently fast.

5.4.3.2. Altium

The first version of Altium was first created in 1985 and continues
to be a user favorite in PCB design software. Altium extends to
many different market places from automotive, aerospace and
defense, and life sciences, to consumer electronics. Perhaps the
top rated software in the field with hopes becoming an industry
leader by 2020, this top of the line software does not come
without a steep price of near seven-thousand dollars. Some of
the tools included in this package are Altium Designers,
CircuitStudio, CircuitMaker, and NEXUS amoung other programs
for embedded software, data management and integration
services. The programs relevant to this project will be discussed
in detail below.

Altium Designer is a complete schematic and layout program
packed with features the company hopes will bring back
innovation and make Engineer’s jobs feel less mundane. One
such feature is a Unified environment that connects schematics,
PCB layout and documentation that promotes a seamless
exchange of information between all the various components of
the design process. Intelligent auto-routing features help to
reduce error and assistance programs to help your design be the
best that it can be. Other features include: integrated tasking pin
mapper, streamlined design rule editor, component placement
system, among many other useful tools.

CircuitStudio is Altium’s professional PCB design software made
for entry level users. This program from Altium has a much lower

135

price point of almost $700. User reviews say that is extremely
easy to use and intuitive. This program will import EAGLE files to
enable users to easily switch over to a newer software.
CircuitStudio comes equipped with tutorials in the program to
help beginners quickly becomes proficient circuit designers.
Features included in this program are: Component creation and
finding equivalent replacement components, XSPICE simulation,
Multi-Sheet Design structures, Pin Swaping, Creation of unique
board shapes, and generation of outputs.

Altium does have a free, community ran and open source
program called CircuitMaker with no limitations. CircuitMaker
allows for full PCB design with 16 signals and 16 layers with no
restrictions on PCB size that can be made. This program is
community based so users can get help from hobbyists and
professionals with their design concerns. With expansive
component libraries this program searching by company and
model number for desired parts or even the creation of your own
is incredibly easy.

Other features of this program are Push-N-Shove Routing,
Topological AutoRouter, DRC/DFM Validated Outputs, and the
ability to import designs from other tools. User reviews seem to
reflect highly on this free Altium program, from tinkerers to
Engineers it is agreed that this program is fresh and much need
in the EDA community. This program seems to be an excellent fit
for our budget and with community sourced data and resources
available it would help reduce possible errors and improve our
overall design and efficiency.

The sponsors of the project requested that we use a well-known
and reliable software for the design of our board so for this part
of the project the final decision is to use the EAGLE software.
The availability of tutorials and resources from other online
communities will aid our team in maneuvering this often-complex
software. The versatility of EAGLE output files will also enable us
to shop around for the most cost-effective producer to
manufacture our design.

5.4.2.3. KiCad EDA

136

KiCad is a free, cross-platform open source Electronics Design
Automation Suite that was originally developed in 1992 by Jean-
Pierre Charras. KiCad now utilizes help from developers at the
European Organization for Nuclear Research, otherwise known
as CERN to create more advanced tools for its software design.
Other contributors to the success of KiCad include Raspberry Pi,
Arduino, and Digi-Key.

KiCad has many component libraries available and for a project
where something cannot be found the software can import files
from more popular programs like EAGLE. KiCad’s schematic
capture tool is called Eeschema, and boasts that it is limitless and
easy to use by breaking up large schematics in hierarchical sub-
sheets. The schematic software has Electronic Rules Check
(ERC), and component symbols that are coupled with footprints
for the PCB design layout tools. Eeschema allows for the export
of schematics from popular programs like Pspice, and Cadstar.
KiCad brags that its libraries are extensive and constantly
updated to account for the newest trends and products.

The PCB design of KiCad is managed by something that they
called PcbNew. Similar to Eagle this software automatically
avoids obstacles and pushes other traces out of the way when
you are drawing new traces between components. Length tuning
in PcbNew allows users to trim the length of traces and shrink the
circuits to increase overall speed of the design. PcbNew supports
32 copper and technical layers of PCB design and a maximum
size of 2.14 square-meters all with nanometers of precision. User
reviews say that KiCad is easier to use than EAGLE but still has
some negative attributes. Recurring user complaints are that the
component list is small, and when making a new component in
the program it must be done twice which can be time consuming.

Other problems reviewers remarked on was the outdated user
interface that feels outdated and menu options that are out of
place or not organized intuitively. The downside to free software
is that there is little or slow maintenance done, users complain
that the stable version is extremely old and when downloading
updates code can be dysfunctional for weeks sometimes if it is
being modified by KiCad software technicians. This all taken into
account we move to another program.

137

5.4.4. PCB Design

Ideas for the functionality of our design came from discussions
with our Senior Design advisors, project sponsors and
brainstorming sessions within our group itself. Our PCB Design
as stated in the Requirement Specifications will include the
following features:

• LCD Display for data display (Speed, Direction, Heading, and
Car battery level)

• Battery Level Sensing Circuit

• LEDs for headlight, taillight and turning signal simulation

• Additional LEDs for car state management

• Temperature Sensor and Fan to monitor and regulate heat

The PCB will utilize an ATmega328P Integrated Circuits (IC) that
will be pre-programmed using the Arduino UNO Rev3
development microcontroller. A 16 x 2 LCD array will be used to
display the data listed above in an effort to show imperative data
during the testing phases. The LCD will require a voltage
regulator to supply a dedicated 5VDC to utilize the full brightness
of the backlight and also to display all of the data. In initial testing
of the LCD data display would only happen with a dedicated 5V
supply. To avoid any possible issues from maximum current
draining, voltage drops or power surging in a failure situation the
regulator will be a necessary component to maintain integrity of
the supply voltage.

IC pins will be used to drive the LEDs, control the temperature
through a sensor and turn on a 2 x 2 fan. The PCB board will
receive the cars autonomous driving state (forward, back, left
turn and right turn) from the NVIDIA controller and reflect these
states on the headlights and taillights. When the car is in a
forward driving state the front LEDs will go high, when the car is
stopped all the LEDs will light up, when the car is turning in either
direction the LEDs on that direction will blink similar to turning
signals seen on the road. This will help to indicate errors in the
drive state of the car for maintenance, will make our vehicle
function aesthetically to a real-world car on the road and the
programming could be applied to a full-size car project in the
future.

138

The temperature sensor will be located on the opposite side of
where the NVIDIA CPU built-in fan is located. Regulating heat
will be vital to the protection and functionality of our components.
If the temperature sensor is reading outside the acceptable
operating range of the NVIDIA or the portable battery pack (for
the NVIDIA over 80 degrees Celsius) then a fan will be triggered
on. An additional temperature sensor will be placed near the car's
battery pack to ensure that it is functioning correctly. The PCB
will be placed on the ar end of the car, to shield the PCB from
heat a heat sink will be installed. To power our PCB, we will be
using the 5V supplied by our USB hub via a customized power
cable that will connect to the female barrel power connector
soldered to the board. This type of power connector will be easier
solder than a micro or mini USB female power connector.

For the car battery voltage monitor, the output voltage of the car's
battery will be divided using a resistor network to a more
manageable level. This small voltage will be read by the Arduino
Board and through a code calculate the car battery voltage and
send that data to the LCD display. If the battery falls below
necessary levels and needs to be charged the LCD will display a
prompt to the user through the display. The schematic for this
circuit is shown in Figure 67.

Figure 67- PCB Circuit Schematic

139

6. Administration

While meeting the engineering requirements set by our sponsor
is the primary goal of this project, the steps necessary to achieve
this must be laid out and then systematically completed as fast
as possible. In this section, we discuss the schedules we created,
generalized specialties and responsibilities that were developed
as the project went on, and the schedule for the senior design
course to track documentation, and one for tasks our sponsor
has laid out for us. We also cover the budget we has to perform
under to achieve our end goal.

6.1. Generalized Responsibilities

As the project progressed and the team learned more about the
little intricacies and nuances of the project, each team member
decided to take on a specialized role based on prior experience
and the needs of our sponsor. In this section we detail the
responsibilities of each design team member

6.1.1. Bruce Hardy

 Bruce's main area of experience is in circuit design and because

of this took on the responsibility of the Printed Circuit Board

design and hardware design. In an effort to learn more about the

various components being connected Bruce also became

responsible for product research and ordering. The selection of

the products enabled Bruce to ensure the cross compatibility of

these components for a unified and working model.

Constraints that had to be considered were, logic voltages,

supply voltages, power consumption, current draw, size, data

and image processing statistics, reliability, dynamic ranges,

among many other specifications. The ordering of products had

to be done before the end of the semester so the time line for

research and purchasing of products had to fit within that window.

140

Other products that needed to be ordered was heat shrink tubing,

custom power connectors, customized DuPoint connectors for

organized and correct data connections between components.

In addition to product research and ordering Bruce assisted Tyler

in the design process of the mounting hardware, offering ideas

and taking measurements. Bruce was the person who ensured

the prompt CNC laser cutting and 3-Dimensional printing of the

platform and sensor mounts respectively. This was and will

continue to be important due to the high volume of students from

all areas in the school utilizing the Texas Instruments Innovation

lab within the Engineering building.

6.1.2. Tyler Thompson

Having experience in AutoCAD design and electronics, Tyler's
contribution was aligned with the electromechanical aspect of the
project. As the needs for hardware mounts of very specific
dimensions arose while building the car, 3D printed models and
laser-cut platforms were deemed a better design than store-
bought parts.

In addition to drafting and fabrication, OpenCV computer vision
programs were Tyler's responsibility. Various programs were
written for object-oriented detection software using Histogram of
Oriented Gradients as well as Dense Optical Flow for motion
detection.

6.1.3. Christian Theriot

Christian’s main responsibilities involved software design and
integrating software with hardware. Nitish directed him to learn
ROS, which proved useful in designing a simple overall software
architecture. When the Jetson TX2 arrived, he was also assigned
to learn how to use it and integrate ROS on its Linux environment,
considering he had prior experience with Linux and ROS.

When it was discovered that the GPIO interface on the Jetson
would be involved, Christian advised our sponsors to use the
USB-serial connection in the meantime. Considering the lack of
documentation for the TX2, this decision saved time for the whole

141

team to focus on designing the PCB and integrating ROS to
communicate on the seral port.

6.1.4. Eduardo Linares

Eduardo’s main responsibilities in this project were a combination
of administrative, mechanics, localization, and sensor testing.
Localization responsibilities developed as a result of his
knowledge of localization. When Dr. Fallah and Nitish first spoke
with the team, they gave avenues for learning localization
algorithims like the Kalman Filter and Particle Filter through
numerous websites, like Udacity. Eduardo took on this
responsibility because other programming responsibilities
concerning ROS and OpenCV were being given to Tyler and
Christian, respectively.

In terms of mechanical design and sensor testing, Eduardo led
the testing of the hall sensors and steering controls alongside
Bruce and Christian. He developed the preliminary Arduino code
for measuring motor RPMs and changing the steering angle. All
testing setups pictured in the document were also designed by
him concerning steering, ultrasonic sensors, and hall sensor
implementation. All spring modifications were researched and
implemented by him as well.

Administrative responsibilities included the formatting and final
editing of the document and making sure the schedule was
adhered to by all members. Coordinating research topics and
designating tasks was also facilitated by him alongside the
sponsor.

6.2. Budgeting and Finance

The primary goal is to design the vehicle at a cost of no greater
than $2500 per car and to build at least two vehicles before the
project showcase. The cost analysis is displayed below in Table
29.

Our budget only contains the preliminary major components we
identified to build the final product. Other sensors may be
purchased for testing purposes, but not necessarily included in
the final design. If the additional cost of these sensors becomes

142

significant, a second table will be added specifying what was
used as test equipment, and the sensors that are used in the final
design will be added to the first table.

Table 29: Cost Analysis Table

Item Cost

Traxxas Slash 4x4 Platinum $429

Traxxas Battery Pack and Charger $99

NVIDIA Jetson TX2 Development Board $299
Elegoo UNO R3 ATmega328p Board $11

ZED 2K Stereo Camera $449

(10) WYPH Ultrasonic Module $15

(5) DAOKI IR Module $5
GPS Module $13

LIDAR Scanse Sweep Sensor $349

SparkFun 9DoF IMU Breakout $25

TP-Link N450 Wireless Router $30
(10) Ethernet Cable $13

7 Port USB Hub $27

50,000mAh Auxiliary Battery Pack $136

0.22in 18 inx24 in Plexiglass sheet $25

6.3. Milestones and Timeline

Due to the large amount of responsibilities that we have been
given by both our sponsors and the requirements for the senior
design course, multiple separate schedules were created for
ease of viewing and to separate the requirements of our course
and our sponsors. The senior design timeline focuses on paper
submissions and required meetings with Dr. Richie and Dr. Wei.
The sponsor timeline focuses on tasks to make the vehicle
functional.

6.3.1. Senior Design Timeline

The following schedule in Table 30 lists the dates for the Senior
Design timeline and the team’s ideal approach to meeting these
deadlines efficiently. The schedule details the paper deadlines
for the senior design course, internal deadlines set by the group,
and the required meetings with Dr. Lei Wei and Dr. Samuel
Richie. Other meetings may occur but not necessarily appear on
the schedule because they may occur as a result of issues with
paper formatting of the paper.

Each paper deadline at least 2 days in advance to provide proper
time to compile, edit, and format the work done by the senior

143

design time. The team also established internal deadlines
between due dates to keep pace and prevent the project from
falling off schedule.

Part orders are slated to occur before the end of the semester,
but due to the sponsor deadlines, are very likely to be finished
before the end of October or very early November. The final PCB
design is slated for the end of the semester tentatively and covers
the design of the circuit schematic, not the physical PCB itself.
The physical PCB will be designed between semesters to allow
for a more focused approach and to prevent other school-related
stresses from interfering.

Table 30: Senior Design Schedule

Deliverable Due Date Estimated Time to Completion Steps to Complete

Divide and
Conquer
7-10
Pages

9/22/2017 4 hours (meetings)

10 hours (writing)

-Write preliminary document
-Review preliminary draft with
Dr. Fallah and Nitish
-Re-write document to
incorporate criticisms from Dr.
Fallah, Behrad, and Nitish

144

Updated
Divide and
Conquer

10/6/2017 2 hours (meetings)

2 hours(writing)

-Review Standards with Dr.
Fallah, Behrad, and Nitish based
on our meeting with Dr. Wei and
Dr. Richie

-Finalize division of labor for the
project

20 Page
Internal
Report

10/13/2017 20 hours per person -Each group member produces
5 pages of new research on
hardware or software
implementation of an
autonomous vehicle.

40 Page
Internal
Report

10/20/2017 20 hours per person -Each person provides 5 pages
of new research

60 Page
Internal
Report

11/1/2017 20 hours per person -Each person produces an
additional 5 pages of research.
-Eduardo edits all research into
the senior design format.

60 Page
Report

11/3/2017 20 hours per person -Each person provides 5 pages
of new research

60 Page
Meeting
with Dr.
Richie

11/7/2017 Approximately half an hour total -Meet with Dr. Richie to discuss
any errors in formatting,
unnecessary documentation,
provide an update on the project
progress, and other issues.

100 Page
Report

11/17/2017 40 hours per person -Each person provides 10 pages
of new research

Final 120
Page
Report

12/4/2017 20 hours per person -Each person provides 5 pages
of new research

Part
Orders

End of Fall 1 hour -Verify that parts are ordered
and in the lab before the end of
Fall.

PCB
design

End of Fall 10 hours -Design PCB based on sponsor
input and order at start of spring
semester

6.3.2. Sponsor Schedule

Table 31 details the schedule created by Dr. Fallah’s lab team,
the senior design team, and the volunteers for project
implementation. Deliverables are placed in the order they were
assigned, but their due dates vary due to complexity and need
for teamwork among group members. Every deliverable was also
accompanied with a report whose data was incorporated into this
document.

Table 31: Senior Design Schedule

Deliverable Due Date Estimated Time to Completion Steps to Complete

145

Research RC
Cars for Base

9/30/2017 10 hours (Bruce and Tyler) -Find 4 models with a large
enough chassis to hold all the

parts.

Learn
Localization
Algorithms

11/1/2017 40 hours (Eduardo) -Complete all 6 modules for “AI
for Self Driving Cars” on

Udacity.com

Configure
Ultrasonic

Sensors using
Arduino and
visualize in

ROS

10/24/201
7

10 hours (Christian and
Eduardo)

-Create test setup for sensors
-Create calibration algorithm

based on initial tests.
-Adjust the code so the data is

sent to ROS

Complete
AutoCAD

model of the
vehicle

10/13/201
7

10 hours (Tyler) -Find vehicle dimensions and
dimensions of all the parts on

the car.
-Construct car in AutoCAD so

the sensors do not interfere with
one another.

-Calculate Center of Mass of
vehicle

Optical Flow 11/6//2017 20 hours (Tyler) -Produce demo for optical flow.

Calculate
Reduction Gear

Ratio

11/1/2017 3 hours (Eduardo) -Find gear ratio of differential
and transmission

-Calculate gear ratio to achieve
desired top speed

Servo Testing 11/15/201
7

10 hours (Eduardo and
Christian)

-Find range of Pulse Widths
-Find range of Steering Angle

-Determine how to slow change
in steering angle

Mounts 11/17/201
7

10 hours (Bruce and Tyler) -Create Mounts in autoCAD
based on vehicle size

-Laser cut wood to verify the
pieces fit

-Once pieces have been
adjusted and approved by
sponsors, cut mounts in
plexiglass and aluminum

Wires and
Cable

Connectors

11/17/210
7

2 hours (Bruce and Eduardo) -Determine necessary wire
connectors needed to interface
sensors with microcontroller or

NVIDIA board.
-Get heat shrink for wires

Basic
Movement

11/20/201
7

10 hours (Christian) -Determine a method of
communicating between the

Jetson and Arduino
-Control the motor and servo via

programming the Jetson

Running Car
Demo for
Sponsor

12/10/201
7

N/A -Summation of all other tasks
before it.

7. Appendices

146

This section contains all citations referenced in the text, all
approved and pending permissions given for images, and all
code/datasheet references.

7.1. References

[1]"Road Crash Statistics", Asirt.org, 2017. [Online]. Available:
http://asirt.org/initiatives/informing-road-users/road-safety-facts/road-crash-
statistics. [Accessed: 01- Oct- 2017].
[2] Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal,
P., . . . Zieba, K. (2016, April 25). End to End Learning for Self Driving
Cars[Scholarly project]. In NVIDIA.com. Retrieved September 20, 2017, from
http://images.NVIDIA.com/content/tegra/automotive/images/2016/solutions/p
df/end-to-end-dl-using-px.pdf
[3] Kontzer, T. (2016, April 13). Volvo 'Drive Me' Project to Make Self-Driving
Cars Synonymous with Safety | NVIDIA Blog. Retrieved September 20, 2017,
from https://blogs.NVIDIA.com/blog/2016/04/06/volvo-safety-self-driving/
[4] Novet, J. (2017, September 22). Tesla and AMD are working on an A.I.
chip for self-driving cars, source says. Retrieved September 22, 2017, from
https://www.cnbc.com/2017/09/20/tesla-building-an-ai-chip-for-its-cars-with-
amd.html
[5] Marshall, A. (2017, September 21). With Intel's Chips, Google Could At
Last Deliver Self-Driving Cars. Retrieved September 22, 2017, from
https://www.wired.com/story/waymo-and-intel-self-driving/
[6]"NVIDIA Jetson Modules and Developer Kits for Embedded Systems
Development", NVIDIA.com, 2017. [Online]. Available:
http://www.NVIDIA.com/object/embedded-systems-dev-kits-
modules.html#section5. [Accessed: 30- Sep- 2017].
[7]H. Mujtaba, "NVIDIA's 64-Bit Denver CPU Architecture Details Unveiled -
Dual Custom ARMv8 Cores Clocked at 2.50 GHz", Wccftech, 2017. [Online].
Available: http://wccftech.com/NVIDIAs-64bit-denver-cpu-architecture-
details-unveiled-dual-custom-armv8-cores-clocked-250-ghz/. [Accessed: 31-
Sep- 2017].
[8]"Rally VXL: 1/10 Scale Brushless Rally Racer with TQi Traxxas Link
Enabled 2.4GHz Radio System | Traxxas", Traxxas.com, 2017. [Online].
Available: https://traxxas.com/products/models/electric/74076-
1rally?t=gallery. [Accessed: 15- Sep- 2017].
[9]"Slash 4X4 Platinum: 1/10 Scale 4WD Electric Short Course Truck with Low
CG chassis | Traxxas", Traxxas.com, 2017. [Online]. Available:
https://traxxas.com/products/models/electric/6804Rslash4x4platinum.
[Accessed: 19- Sep- 2017].
[10]"Exceed RC SunFire Car", Exceedrc.com, 2017. [Online]. Available:
http://www.exceedrc.com/exrcsucar.html. [Accessed: 14- Sep- 2017].
[11]"Iron Track Shootout E8XBL 1:8 Scale ARTR 4WD Brushless Buggy (Red)
RC Remote Control Radio Car", Nitrorcx.com, 2017. [Online]. Available:
http://www.nitrorcx.com/16c222-red-artr.html. [Accessed: 15- Sep- 2017].
[12]"Arduino Infrared Collision Avoidance", rhydolabz.com, 2017. [Online].
Available:

http://asirt.org/initiatives/informing-road-users/road-safety-facts/road-crash-statistics
http://asirt.org/initiatives/informing-road-users/road-safety-facts/road-crash-statistics
http://images.nvidia.com/content/tegra/automotive/images/2016/solutions/pdf/end-to-end-dl-using-px.pdf
http://images.nvidia.com/content/tegra/automotive/images/2016/solutions/pdf/end-to-end-dl-using-px.pdf
https://blogs.nvidia.com/blog/2016/04/06/volvo-safety-self-driving/
https://www.cnbc.com/2017/09/20/tesla-building-an-ai-chip-for-its-cars-with-amd.html
https://www.cnbc.com/2017/09/20/tesla-building-an-ai-chip-for-its-cars-with-amd.html
https://www.wired.com/story/waymo-and-intel-self-driving/
http://www.nvidia.com/object/embedded-systems-dev-kits-modules.html
http://www.nvidia.com/object/embedded-systems-dev-kits-modules.html
http://wccftech.com/nvidias-64bit-denver-cpu-architecture-details-unveiled-dual-custom-armv8-cores-clocked-250-ghz/
http://wccftech.com/nvidias-64bit-denver-cpu-architecture-details-unveiled-dual-custom-armv8-cores-clocked-250-ghz/
https://traxxas.com/products/models/electric/74076-1rally?t=gallery
https://traxxas.com/products/models/electric/74076-1rally?t=gallery
https://traxxas.com/products/models/electric/6804Rslash4x4platinum
http://www.exceedrc.com/exrcsucar.html
http://www.nitrorcx.com/16c222-red-artr.html

147

http://www.rhydolabz.com/documents/26/IR_line_obstacle_detection.pdf.
[Accessed: 20- Oct- 2017].
[13]"iNEMO inertial module: 3D accelerometer, 3D gyroscope, 3D
magnetometer", SparkFun.com, 2017. [Online]. Available:
https://cdn.sparkfun.com/assets/learn_tutorials/3/7/3/LSM9DS1_Datasheet.p
df. [Accessed: 21- Oct- 2017].
[14]A. Industries, "Raspberry Pi 3 - Model B - ARMv8 with 1G RAM ID: 3055
- $35.00 : Adafruit Industries, Unique & fun DIY electronics and kits",
Adafruit.com, 2017. [Online]. Available:
https://www.adafruit.com/product/3055. [Accessed: 17- Oct- 2017].
[15]"MSP432P401R, MSP432P401M", ti.com, 2017. [Online]. Available:
http://www.ti.com/lit/ds/slas826g/slas826g.pdf. [Accessed: 10- Oct- 2017].
[16]"MSP430F552x, MSP430F551x Mixed-Signal Microcontrollers", ti.com,
2017. [Online]. Available: http://www.ti.com/lit/ds/symlink/msp430f5529.pdf.
[Accessed: 15- Oct- 2017].
[17]"CC3220 SimpleLink™ Wi-Fi® Wireless and Internet-of-Things Solution,
a Single-Chip Wireless MCU", ti.com, 2017. [Online]. Available:
http://www.ti.com/lit/ds/swas035a/swas035a.pdf. [Accessed: 19- Oct- 2017].
[18]"ATMEL 8-BIT MICROCONTROLLER WITH 4/8/16/32KBYTES IN-
SYSTEM PROGRAMMABLE FLASH DATASHEET", Atmel.com, 2017.
[Online]. Available: http://www.atmel.com/images/Atmel-8271-8-bit-AVR-
Microcontroller-ATmega48A-48PA-88A-88PA-168A-168PA-328-
328P_datasheet_Complete.pdf. [Accessed: 27- Oct- 2017].
[19]"8-bit Microcontroller with 16/32K bytes of ISP Flash and USB Controller
DATASHEET", microchip.com, 2017. [Online]. Available:
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7766-8-bit-AVR-
ATmega16U4-32U4_Datasheet.pdf. [Accessed: 20- Oct- 2017].
[20]"Arduino Leonardo with Headers", Store.arduino.cc, 2017. [Online].
Available: https://store.arduino.cc/usa/arduino-leonardo-with-headers.
[Accessed: 19- Oct- 2017].
[21]"Arduino Mega 2560 Rev3", Store.arduino.cc, 2017. [Online]. Available:
https://store.arduino.cc/usa/arduino-mega-2560-rev3. [Accessed: 15- Oct-
2017].
[22]"Slash 4X4 Platinum: 1/10 Scale 4WD Electric Short Course Truck with
Low CG chassis | Traxxas", Traxxas.com, 2017. [Online]. Available:
https://traxxas.com/products/models/electric/6804Rslash4x4platinum.
[Accessed: 19- Sep- 2017].
[23]"Structure Sensor Support Center | What are the Structure Sensor's
technical specifications?", Structure.io, 2017. [Online]. Available:
https://structure.io/support/what-are-the-structure-sensors-technical-
specifications. [Accessed: 22- Oct- 2017].
[24]"Detailed Specs", Content.etilize.com, 2017. [Online]. Available:
http://content.etilize.com/Detailed-Specs/EN/1033980952.html. [Accessed:
27- Oct- 2017].
[25]B. Templton, "Cameras or Lasers?", Templetons.com, 2017. [Online].
Available: http://www.templetons.com/brad/robocars/cameras-lasers.html.
[Accessed: 14- Oct- 2017].
[26]"Scanse User Manual And Technical Specifications", scanse.io, 2017.
[Online]. Available:
https://s3.amazonaws.com/scanse/Sweep_user_manual.pdf. [Accessed: 20-
Oct- 2017].

http://www.rhydolabz.com/documents/26/IR_line_obstacle_detection.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/3/7/3/LSM9DS1_Datasheet.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/3/7/3/LSM9DS1_Datasheet.pdf
https://www.adafruit.com/product/3055
http://www.ti.com/lit/ds/slas826g/slas826g.pdf
http://www.ti.com/lit/ds/symlink/msp430f5529.pdf
http://www.ti.com/lit/ds/swas035a/swas035a.pdf
http://www.atmel.com/images/Atmel-8271-8-bit-AVR-Microcontroller-ATmega48A-48PA-88A-88PA-168A-168PA-328-328P_datasheet_Complete.pdf
http://www.atmel.com/images/Atmel-8271-8-bit-AVR-Microcontroller-ATmega48A-48PA-88A-88PA-168A-168PA-328-328P_datasheet_Complete.pdf
http://www.atmel.com/images/Atmel-8271-8-bit-AVR-Microcontroller-ATmega48A-48PA-88A-88PA-168A-168PA-328-328P_datasheet_Complete.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7766-8-bit-AVR-ATmega16U4-32U4_Datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7766-8-bit-AVR-ATmega16U4-32U4_Datasheet.pdf
https://store.arduino.cc/usa/arduino-leonardo-with-headers
https://store.arduino.cc/usa/arduino-mega-2560-rev3
https://traxxas.com/products/models/electric/6804Rslash4x4platinum
https://structure.io/support/what-are-the-structure-sensors-technical-specifications
https://structure.io/support/what-are-the-structure-sensors-technical-specifications
http://content.etilize.com/Detailed-Specs/EN/1033980952.html
http://www.templetons.com/brad/robocars/cameras-lasers.html
https://s3.amazonaws.com/scanse/Sweep_user_manual.pdf

148

[27]"RPLidar A1M8 - 360 Degree Laser Scanner Development Kit",
Robotshop.com, 2017. [Online]. Available:
http://www.robotshop.com/en/rplidar-a1m8-360-degree-laser-scanner-
development-
kit.html?gclid=CjwKCAjwgvfOBRB7EiwAeP7ehnnCKpjsZxnq3qsmpdY93fyz
_ws0_yWQSRPF2DZms8Rvkxjqo1w60xoCUE8QAvD_BwE. [Accessed: 25-
Oct- 2017].
[28]"LIDAR vs RADAR Comparison. Which System is Better for Automotive?",
Archer-soft.com, 2017. [Online]. Available: http://www.archer-
soft.com/en/blog/lidar-vs-radar-comparison-which-system-better-automotive.
[Accessed: 16- Oct- 2017].
[29]J. Hariyono, V. Hoang and K. Jo, "Moving Object Localization Using
Optical Flow for Pedestrian Detection from a Moving Vehicle",
https://www.ncbi.nlm.nih.gov/, 2014. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4121190/. [Accessed: 29-
Oct- 2017].
[30]"OpenCV library", Opencv.org, 2017. [Online]. Available:
https://opencv.org/. [Accessed: 20- Oct- 2017].
[31]"OpenCV: Optical Flow", Docs.opencv.org, 2016. [Online]. Available:
https://docs.opencv.org/3.2.0/d7/d8b/tutorial_py_lucas_kanade.html.
[Accessed: 21- Oct- 2017].
[32]"OpenCV: Contours : Getting Started", Docs.opencv.org, 2017. [Online].
Available:
https://docs.opencv.org/3.3.0/d4/d73/tutorial_py_contours_begin.html.
[Accessed: 21- Oct- 2017].
[33]L. Router, "Linksys E2500 N600 Dual-Band Wi-Fi Router", Linksys, 2017.
[Online]. Available: https://www.linksys.com/us/p/E2500-
NP/?gclid=EAIaIQobChMIqtXLx8OM1wIVxbjACh0D_AmjEAYYAiABEgLMFv
D_BwE#product-features. [Accessed: 25- Oct- 2017].
[34]"TL-WR940N | 450Mbps Wireless N Router | TP-Link", Tp-link.com, 2017.
[Online]. Available: http://www.tp-link.com/us/products/details/cat-9_TL-
WR940N.html. [Accessed: 25- Oct- 2017].
[35]"Lizone Extra Pro External Battery Charger with Aluminum Unibody for
Laptop and Smartphones – 40000mAH Black", Amazon.com, 2017. [Online].
Available: https://www.amazon.com/Lizone-External-Battery-Aluminum-
Smartphones/dp/B00HLDSNKI/ref=sr_1_17?s=electronics&ie=UTF8&qid=15
08961307&sr=1-
17&keywords=portable+laptop+charger&refinements=p_36%3A10000-
99999999#HLCXComparisonWidget_feature_div. [Accessed: 25- Oct- 2017].
[36]"MAXOAK 50000mAh 6 Port(5/12/20v) Portable Charger External Battery
Power Bank for Laptop & Notebook", Amazon.com, 2017. [Online]. Available:
https://www.amazon.com/MAXOAK-50000mAh-Portable-External-Notebook-
Most/dp/B00YP823NA/ref=sr_1_1_sspa?ie=UTF8&qid=1508961683&sr=8-
1-
spons&keywords=maxoak+50000mah+6+port+5+12+20v+portable+charger
&psc=1. [Accessed: 25- Oct- 2017].
[37]"Power Supply Safety Standards, Agencies and Marks." CUI INC.
http://www.cui.com/catalog/resource/power-supply-safety-standards-
agencies-and-marks.pdf

http://www.robotshop.com/en/rplidar-a1m8-360-degree-laser-scanner-development-kit.html?gclid=CjwKCAjwgvfOBRB7EiwAeP7ehnnCKpjsZxnq3qsmpdY93fyz_ws0_yWQSRPF2DZms8Rvkxjqo1w60xoCUE8QAvD_BwE
http://www.robotshop.com/en/rplidar-a1m8-360-degree-laser-scanner-development-kit.html?gclid=CjwKCAjwgvfOBRB7EiwAeP7ehnnCKpjsZxnq3qsmpdY93fyz_ws0_yWQSRPF2DZms8Rvkxjqo1w60xoCUE8QAvD_BwE
http://www.robotshop.com/en/rplidar-a1m8-360-degree-laser-scanner-development-kit.html?gclid=CjwKCAjwgvfOBRB7EiwAeP7ehnnCKpjsZxnq3qsmpdY93fyz_ws0_yWQSRPF2DZms8Rvkxjqo1w60xoCUE8QAvD_BwE
http://www.robotshop.com/en/rplidar-a1m8-360-degree-laser-scanner-development-kit.html?gclid=CjwKCAjwgvfOBRB7EiwAeP7ehnnCKpjsZxnq3qsmpdY93fyz_ws0_yWQSRPF2DZms8Rvkxjqo1w60xoCUE8QAvD_BwE
http://www.archer-soft.com/en/blog/lidar-vs-radar-comparison-which-system-better-automotive
http://www.archer-soft.com/en/blog/lidar-vs-radar-comparison-which-system-better-automotive
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4121190/
https://opencv.org/
https://docs.opencv.org/3.2.0/d7/d8b/tutorial_py_lucas_kanade.html
https://www.linksys.com/us/p/E2500-NP/?gclid=EAIaIQobChMIqtXLx8OM1wIVxbjACh0D_AmjEAYYAiABEgLMFvD_BwE
https://www.linksys.com/us/p/E2500-NP/?gclid=EAIaIQobChMIqtXLx8OM1wIVxbjACh0D_AmjEAYYAiABEgLMFvD_BwE
https://www.linksys.com/us/p/E2500-NP/?gclid=EAIaIQobChMIqtXLx8OM1wIVxbjACh0D_AmjEAYYAiABEgLMFvD_BwE
http://www.tp-link.com/us/products/details/cat-9_TL-WR940N.html
http://www.tp-link.com/us/products/details/cat-9_TL-WR940N.html
https://www.amazon.com/Lizone-External-Battery-Aluminum-Smartphones/dp/B00HLDSNKI/ref=sr_1_17?s=electronics&ie=UTF8&qid=1508961307&sr=1-17&keywords=portable+laptop+charger&refinements=p_36%3A10000-99999999
https://www.amazon.com/Lizone-External-Battery-Aluminum-Smartphones/dp/B00HLDSNKI/ref=sr_1_17?s=electronics&ie=UTF8&qid=1508961307&sr=1-17&keywords=portable+laptop+charger&refinements=p_36%3A10000-99999999
https://www.amazon.com/Lizone-External-Battery-Aluminum-Smartphones/dp/B00HLDSNKI/ref=sr_1_17?s=electronics&ie=UTF8&qid=1508961307&sr=1-17&keywords=portable+laptop+charger&refinements=p_36%3A10000-99999999
https://www.amazon.com/Lizone-External-Battery-Aluminum-Smartphones/dp/B00HLDSNKI/ref=sr_1_17?s=electronics&ie=UTF8&qid=1508961307&sr=1-17&keywords=portable+laptop+charger&refinements=p_36%3A10000-99999999
https://www.amazon.com/Lizone-External-Battery-Aluminum-Smartphones/dp/B00HLDSNKI/ref=sr_1_17?s=electronics&ie=UTF8&qid=1508961307&sr=1-17&keywords=portable+laptop+charger&refinements=p_36%3A10000-99999999
https://www.amazon.com/MAXOAK-50000mAh-Portable-External-Notebook-Most/dp/B00YP823NA/ref=sr_1_1_sspa?ie=UTF8&qid=1508961683&sr=8-1-spons&keywords=maxoak+50000mah+6+port+5+12+20v+portable+charger&psc=1
https://www.amazon.com/MAXOAK-50000mAh-Portable-External-Notebook-Most/dp/B00YP823NA/ref=sr_1_1_sspa?ie=UTF8&qid=1508961683&sr=8-1-spons&keywords=maxoak+50000mah+6+port+5+12+20v+portable+charger&psc=1
https://www.amazon.com/MAXOAK-50000mAh-Portable-External-Notebook-Most/dp/B00YP823NA/ref=sr_1_1_sspa?ie=UTF8&qid=1508961683&sr=8-1-spons&keywords=maxoak+50000mah+6+port+5+12+20v+portable+charger&psc=1
https://www.amazon.com/MAXOAK-50000mAh-Portable-External-Notebook-Most/dp/B00YP823NA/ref=sr_1_1_sspa?ie=UTF8&qid=1508961683&sr=8-1-spons&keywords=maxoak+50000mah+6+port+5+12+20v+portable+charger&psc=1
https://www.amazon.com/MAXOAK-50000mAh-Portable-External-Notebook-Most/dp/B00YP823NA/ref=sr_1_1_sspa?ie=UTF8&qid=1508961683&sr=8-1-spons&keywords=maxoak+50000mah+6+port+5+12+20v+portable+charger&psc=1
http://www.cui.com/catalog/resource/power-supply-safety-standards-agencies-and-marks.pdf
http://www.cui.com/catalog/resource/power-supply-safety-standards-agencies-and-marks.pdf

149

[38]Li, Yunxin (Jeff). "An Overview of the DSRC/WAVE Technology."
http://www.v2x.ir/Admin%5CFiles%5CeventAttachments%5CAn%20Overvie
w%20of%20the%20DSRCWAVE%20Technology-Yunxin%20Li_172.pdf
[39]Dedicated Short-Range Communications (DSRC) Standards in the United
States - IEEE Journals & Magazine,
http://ieeexplore.ieee.org/document/5888501/.
[40]“Security Laboratory.” Dispelling Common Bluetooth Misconceptions,
www.sans.edu/cyber-research/security-laboratory/article/bluetooth.
[41]Ma, Xiaomin, et al. “Performance and Reliability of DSRC Vehicular Safety
Communication: A Formal Analysis.” EURASIP Journal on Wireless
Communications and Networking, Springer International Publishing, 18 Jan.
2009, https://jwcn-
eurasipjournals.springeropen.com/articles/10.1155/2009/969164.
[42]IsecT Ltd. “ISO/IEC 27033:2010+ Information Technology — Security
Techniques — Network Security.” ISO/IEC 27033 IT Network Security
Standard, www.iso27001security.com/html/27033.html.
[43]Liščák, Štefan, et. al. "Safety Requirements for Road Vehicles."
http://pernerscontacts.upce.cz/33_2013/Liscak.pdf
[44]Hamid, Haroon H. "The NHTSA's Evaluation of Automobile Safety
Systems: Active or Passive?"
http://lawecommons.luc.edu/cgi/viewcontent.cgi?article=1161&context=lclr
[45]"IPC Standards." IPC.
http://www.ipc.org/4.0_Knowledge/4.1_Standards/OEM-Standards/IPC-
OEM-Stds-A4-English-1111-ONLINE.pdf
[46]“1780 - Standard for the Specification of Inertial Measurement Units
(IMU).” IEEE SA - 1780 - Standard for the Specification of Inertial
Measurement Units (IMU),
https://standards.ieee.org/develop/project/1780.html.
[47]“Automated Vehicles for Safety.” NHTSA, 18 Oct. 2017,
www.nhtsa.gov/technology-innovation/automated-vehicles.
[48]Christiaan Hetzner Automotive News EuropeMay 15, 2017 11:11 CET.
“German Industry Welcomes Self-Driving Vehicles Law.” Automotive News,
16 May 2017,
http://europe.autonews.com/article/20170515/ANE/170519866/german-
industry-welcomes-self-driving-vehicles-law.
[49]ISO/IEC 9899:1999, C99 Standard http://www.open-
std.org/jtc1/sc22/wg14/www/docs/n1124.pdf
[50]“Wiki.” Ros.org, http://wiki.ros.org/CppStyleGuide.
[51]Python.org. (2017). PEP 8 – Style Guide for Python Code.
https://www.Python.org/dev/peps/pep-0008/
[52]“Wiki.” Ros.org, http://wiki.ros.org/PyStyleGuide.
[53]Etherington, Darrell. “Department of Transportation Releases New Self-
Driving Vehicle Guidelines.” TechCrunch, TechCrunch, 12 Sept. 2017,
http://techcrunch.com/2017/09/12/department-of-transportation-release-new-
self-driving-vehicle-guidelines/.
[54]"Automated Driving." SAE International.
https://www.sae.org/misc/pdfs/automated_driving.pdf
[55]Specification of the Bluetooth System.
https://www.inf.ethz.ch/personal/hvogt/proj/btmp3/Datasheets/Bluetooth_11_
Specifications_Book.pdf
[56] "Wiki." Ros.og, http://wiki.ros.org

http://www.v2x.ir/Admin%5CFiles%5CeventAttachments%5CAn%20Overview%20of%20the%20DSRCWAVE%20Technology-Yunxin%20Li_172.pdf
http://www.v2x.ir/Admin%5CFiles%5CeventAttachments%5CAn%20Overview%20of%20the%20DSRCWAVE%20Technology-Yunxin%20Li_172.pdf
http://ieeexplore.ieee.org/document/5888501/
http://www.sans.edu/cyber-research/security-laboratory/article/bluetooth
https://jwcn-eurasipjournals.springeropen.com/articles/10.1155/2009/969164
https://jwcn-eurasipjournals.springeropen.com/articles/10.1155/2009/969164
http://www.iso27001security.com/html/27033.html
http://pernerscontacts.upce.cz/33_2013/Liscak.pdf
http://lawecommons.luc.edu/cgi/viewcontent.cgi?article=1161&context=lclr
http://www.ipc.org/4.0_Knowledge/4.1_Standards/OEM-Standards/IPC-OEM-Stds-A4-English-1111-ONLINE.pdf
http://www.ipc.org/4.0_Knowledge/4.1_Standards/OEM-Standards/IPC-OEM-Stds-A4-English-1111-ONLINE.pdf
https://standards.ieee.org/develop/project/1780.html
http://www.nhtsa.gov/technology-innovation/automated-vehicles
http://europe.autonews.com/article/20170515/ANE/170519866/german-industry-welcomes-self-driving-vehicles-law
http://europe.autonews.com/article/20170515/ANE/170519866/german-industry-welcomes-self-driving-vehicles-law
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf
http://wiki.ros.org/CppStyleGuide
https://www.python.org/dev/peps/pep-0008/
http://wiki.ros.org/PyStyleGuide
http://techcrunch.com/2017/09/12/department-of-transportation-release-new-self-driving-vehicle-guidelines/
http://techcrunch.com/2017/09/12/department-of-transportation-release-new-self-driving-vehicle-guidelines/
https://www.sae.org/misc/pdfs/automated_driving.pdf
https://www.inf.ethz.ch/personal/hvogt/proj/btmp3/Datasheets/Bluetooth_11_Specifications_Book.pdf
https://www.inf.ethz.ch/personal/hvogt/proj/btmp3/Datasheets/Bluetooth_11_Specifications_Book.pdf
http://wiki.ros.org/

150

[57] The Verge. (2017). Intel predicts a $7 trillion self-driving future. [online]
Available at: https://www.theverge.com/2017/6/1/15725516/intel-7-trillion-
dollar-self-driving-autonomous-cars [Accessed 10 Oct. 2017].
[58] Recode. (2017). Ford’s partnership with Lyft finally gives it a clear plan
for self-driving cars. [online] Available at:
https://www.recode.net/2017/9/27/16374060/lyft-ford-self-driving-cars-
partnership [Accessed 8 Oct. 2017].
[59]"Waymo and Intel Collaborate on Self-Driving Car Technology | Intel
Newsroom", Intel Newsroom, 2017. [Online]. Available:
https://newsroom.intel.com/editorials/waymo-intel-announce-collaboration-
driverless-car-technology/. [Accessed: 01- Nov- 2017].
[60] A. LaFrance, "Driverless Cars Could Save Tens of Millions of Lives This
Century", The Atlantic, 2017. [Online]. Available:
https://www.theatlantic.com/technology/archive/2015/09/self-driving-cars-
could-save-300000-lives-per-decade-in-
america/407956/?utm_source=SFTwitter. [Accessed: 01- Nov- 2017].
[61]Lidar-uk.com, 2017. [Online]. Available: http://www.lidar-uk.com/how-
lidar-works/. [Accessed: 01- Nov- 2017].
[62]"Merits of Coherent Detection Optical Transmission", 100G Optical
Components, Coherent, PIC, DWDM, 2017. [Online]. Available:
https://www.neophotonics.com/merits-coherent-detection-optical-
transmission/. [Accessed: 01- Nov- 2017].
[63] "Basic Sonar System (Active)", Fas.org, 2017. [Online]. Available:
https://fas.org/man/dod-101/navy/docs/es310/asw_sys/asw_sys.htm.
[Accessed: 01- Nov- 2017].
[64]"Inertial Measurement Unit (IMU)", Ssl.umd.edu, 2017. [Online]. Available:
http://www.ssl.umd.edu/projects/RangerNBV/thesis/2-4-1.htm. [Accessed:
01- Nov- 2017].
[65]M. Martin, "How to Care for Your Car's Differential", Popular Mechanics,
2017. [Online]. Available: http://www.popularmechanics.com/cars/how-
to/g1140/how-to-care-for-your-cars-differential/. [Accessed: 01- Nov- 2017].
[66]"IR Sensor Circuit and Working with Applications", ElProCus - Electronic
Projects for Engineering Students, 2017. [Online]. Available:
https://www.elprocus.com/infrared-ir-sensor-circuit-and-working/. [Accessed:
01- Nov- 2017].
[67]Amazon.com. (2017). Diza100 Wireless Network Adapter. [online]
Available at: https://www.amazon.com/Wireless-High-gain-Complies-
Standard-
Supports/dp/B075M5NQ8F/ref=sr_1_10?ie=UTF8&qid=1510159657&sr=8-
10&keywords=wireless%2Bnetwork%2Badapter%2Blinux&th=1 [Accessed
8 Nov. 2017].
[68]Amazon.com. (2017). TP-Link N300. [online] Available at:
https://www.amazon.com/gp/product/B0088TKTY2/ref=s9u_simh_gw_i2?ie
=UTF8&fpl=fresh&pd_rd_i=B008IFXQFU&pd_rd_r=df2286db-c4a1-11e7-
9821-
4b13dd402765&pd_rd_w=dxEKZ&pd_rd_wg=DSyA6&pf_rd_m=ATVPDKIK
X0DER&pf_rd_s=&pf_rd_r=VMJEPJRMNKMKEK6ZS2EZ&pf_rd_t=36701&
pf_rd_p=1cf9d009-399c-49e1-901a-7b8786e59436&pf_rd_i=desktop&th=1
[Accessed 8 Nov. 2017].
[69] Store.arduino.cc. (2017). Arduino Due. [online] Available at:
https://store.arduino.cc/usa/arduino-due [Accessed 1 Nov. 2017].

https://www.amazon.com/Wireless-High-gain-Complies-Standard-Supports/dp/B075M5NQ8F/ref=sr_1_10?ie=UTF8&qid=1510159657&sr=8-10&keywords=wireless%2Bnetwork%2Badapter%2Blinux&th=1
https://www.amazon.com/Wireless-High-gain-Complies-Standard-Supports/dp/B075M5NQ8F/ref=sr_1_10?ie=UTF8&qid=1510159657&sr=8-10&keywords=wireless%2Bnetwork%2Badapter%2Blinux&th=1
https://www.amazon.com/Wireless-High-gain-Complies-Standard-Supports/dp/B075M5NQ8F/ref=sr_1_10?ie=UTF8&qid=1510159657&sr=8-10&keywords=wireless%2Bnetwork%2Badapter%2Blinux&th=1
https://www.amazon.com/Wireless-High-gain-Complies-Standard-Supports/dp/B075M5NQ8F/ref=sr_1_10?ie=UTF8&qid=1510159657&sr=8-10&keywords=wireless%2Bnetwork%2Badapter%2Blinux&th=1
https://www.amazon.com/gp/product/B0088TKTY2/ref=s9u_simh_gw_i2?ie=UTF8&fpl=fresh&pd_rd_i=B008IFXQFU&pd_rd_r=df2286db-c4a1-11e7-9821-4b13dd402765&pd_rd_w=dxEKZ&pd_rd_wg=DSyA6&pf_rd_m=ATVPDKIKX0DER&pf_rd_s=&pf_rd_r=VMJEPJRMNKMKEK6ZS2EZ&pf_rd_t=36701&pf_rd_p=1cf9d009-399c-49e1-901a-7b8786e59436&pf_rd_i=desktop&th=1
https://www.amazon.com/gp/product/B0088TKTY2/ref=s9u_simh_gw_i2?ie=UTF8&fpl=fresh&pd_rd_i=B008IFXQFU&pd_rd_r=df2286db-c4a1-11e7-9821-4b13dd402765&pd_rd_w=dxEKZ&pd_rd_wg=DSyA6&pf_rd_m=ATVPDKIKX0DER&pf_rd_s=&pf_rd_r=VMJEPJRMNKMKEK6ZS2EZ&pf_rd_t=36701&pf_rd_p=1cf9d009-399c-49e1-901a-7b8786e59436&pf_rd_i=desktop&th=1
https://www.amazon.com/gp/product/B0088TKTY2/ref=s9u_simh_gw_i2?ie=UTF8&fpl=fresh&pd_rd_i=B008IFXQFU&pd_rd_r=df2286db-c4a1-11e7-9821-4b13dd402765&pd_rd_w=dxEKZ&pd_rd_wg=DSyA6&pf_rd_m=ATVPDKIKX0DER&pf_rd_s=&pf_rd_r=VMJEPJRMNKMKEK6ZS2EZ&pf_rd_t=36701&pf_rd_p=1cf9d009-399c-49e1-901a-7b8786e59436&pf_rd_i=desktop&th=1
https://www.amazon.com/gp/product/B0088TKTY2/ref=s9u_simh_gw_i2?ie=UTF8&fpl=fresh&pd_rd_i=B008IFXQFU&pd_rd_r=df2286db-c4a1-11e7-9821-4b13dd402765&pd_rd_w=dxEKZ&pd_rd_wg=DSyA6&pf_rd_m=ATVPDKIKX0DER&pf_rd_s=&pf_rd_r=VMJEPJRMNKMKEK6ZS2EZ&pf_rd_t=36701&pf_rd_p=1cf9d009-399c-49e1-901a-7b8786e59436&pf_rd_i=desktop&th=1
https://www.amazon.com/gp/product/B0088TKTY2/ref=s9u_simh_gw_i2?ie=UTF8&fpl=fresh&pd_rd_i=B008IFXQFU&pd_rd_r=df2286db-c4a1-11e7-9821-4b13dd402765&pd_rd_w=dxEKZ&pd_rd_wg=DSyA6&pf_rd_m=ATVPDKIKX0DER&pf_rd_s=&pf_rd_r=VMJEPJRMNKMKEK6ZS2EZ&pf_rd_t=36701&pf_rd_p=1cf9d009-399c-49e1-901a-7b8786e59436&pf_rd_i=desktop&th=1
https://www.amazon.com/gp/product/B0088TKTY2/ref=s9u_simh_gw_i2?ie=UTF8&fpl=fresh&pd_rd_i=B008IFXQFU&pd_rd_r=df2286db-c4a1-11e7-9821-4b13dd402765&pd_rd_w=dxEKZ&pd_rd_wg=DSyA6&pf_rd_m=ATVPDKIKX0DER&pf_rd_s=&pf_rd_r=VMJEPJRMNKMKEK6ZS2EZ&pf_rd_t=36701&pf_rd_p=1cf9d009-399c-49e1-901a-7b8786e59436&pf_rd_i=desktop&th=1
https://store.arduino.cc/usa/arduino-due

151

[70] Ti.com. (2017). CC3220 SimpleLink™ Wi-Fi® Wireless and Internet-of-
Things Solution, a Single-Chip Wireless MCU. [online] Available at:
http://www.ti.com/lit/ds/swas035a/swas035a.pdf [Accessed 1 Nov. 2017].
[71] Franklin, D. and →, V. (2017). NVIDIA Jetson TX2 Delivers Twice the
Intelligence to the Edge. [online] Parallel Forall. Available at:
https://devblogs.NVIDIA.com/parallelforall/jetson-tx2-delivers-twice-
intelligence-edge/ [Accessed 11 Nov. 2017].
[72]"OpenSLAM.org", Openslam.org, 2017. [Online]. Available:
http://openslam.org/gmapping.html. [Accessed: 11- Nov- 2017].
[73] A. Kai M. Wurm, "OctoMap - 3D occupancy mapping",
Octomap.github.io, 2017. [Online]. Available: https://octomap.github.io/.
[Accessed: 11- Nov- 2017].
[74] A. Hornung,. K.M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard,
"OctoMap: An Efficient Probabilistic 3D Mapping Framework Based on
Octrees" in Autonomous Robots, 2013; DOI: 10.1007/s10514-012-9321-0
[75] Autodesk.com. (2017). PCB Design & Schematic Software | EAGLE |

Autodesk. [online] Available at:
https://www.autodesk.com/products/eagle/overview [Accessed 11 Nov.
2017].
[76] Kicad-pcb.org. (2017). KiCad EDA. [online] Available at: http://kicad-

pcb.org/ [Accessed 11 Nov. 2017].
[77] "KiCad Reviews", Pcbshopper.com, 2017. [Online]. Available:

https://pcbshopper.com/kicad-reviews/. [Accessed: 12- Nov- 2017].
[78] "PCB Design Software | Innovation For PCB Design | Altium",

Altium.com, 2017. [Online]. Available: http://www.altium.com/. [Accessed: 12-
Nov- 2017].
[79] "Explore | CircuitStudio", Circuitstudio.com, 2017. [Online]. Available:

http://www.circuitstudio.com/explore. [Accessed: 12- Nov- 2017].
[80] Teel, J. (2017). PCB Design Software – Which One is Best?. [online]

PREDICTABLE DESIGNS. Available at: http://predictabledesigns.com/pcb-
design-software-which-one-is-best/ [Accessed 11 Nov. 2017].
[81] "Free PCB Design Software | CircuitMaker", Circuitmaker.com, 2017.
[Online]. Available: https://circuitmaker.com/#why_circuitmaker. [Accessed:
12- Nov- 2017].
[82] "DipTrace - Schematic and PCB Design Software", Diptrace.com, 2017.
[Online]. Available: https://diptrace.com/. [Accessed: 12- Nov- 2017].
[83] Mallick, S. (2017). Histogram of Oriented Gradients | Learn OpenCV.
[online] Learnopencv.com. Available at:
https://www.learnopencv.com/histogram-of-oriented-gradients/ [Accessed 13
Nov. 2017].
[84] Rosebrock, A. (2017). Histogram of Oriented Gradients and Object
Detection - PyImageSearch. [online] PyImageSearch. Available at:
https://www.pyimagesearch.com/2014/11/10/histogram-oriented-gradients-
object-detection/ [Accessed 13 Nov. 2017].
[85] The Official NVIDIA Blog. (2017). MIT Students Build Robotic Racecars
with Jetson TK1 | NVIDIA Blog. [online] Available at:
https://blogs.NVIDIA.com/blog/2015/10/07/robot-racecars-jetson/ [Accessed
17 Nov. 2017].
[86]"Self Driving RC Car", Zheng Wang, 2017. [Online]. Available:
https://zhengludwig.wordpress.com/projects/self-driving-rc-car/. [Accessed:
17- Nov- 2017].

http://www.ti.com/lit/ds/swas035a/swas035a.pdf
https://www.autodesk.com/products/eagle/overview
http://kicad-pcb.org/
http://kicad-pcb.org/
https://pcbshopper.com/kicad-reviews/
http://www.altium.com/
http://www.circuitstudio.com/explore
http://predictabledesigns.com/pcb-design-software-which-one-is-best/
http://predictabledesigns.com/pcb-design-software-which-one-is-best/

152

[87] JetsonHacks. (2017). MIT RACECAR Walkthrough - NVIDIA Jetson TK1
- JetsonHacks. [online] Available at:
http://www.jetsonhacks.com/2015/10/06/mit-racecar-walkthrough-NVIDIA-
jetson-tk1/ [Accessed 17 Nov. 2017].
[88] "NVIDIA Jetson TX2 J21 Header Pinout - JetsonHacks", JetsonHacks,
2017. [Online]. Available: http://www.jetsonhacks.com/nvidia-jetson-tx2-j21-
header-pinout/. [Accessed: 03- Dec- 2017].

7.2. Permissions

153

154

