
Smart Gloves – Intelligent

Motion-tracking Weightlifting

Gloves and Phone Application

Group 22 - Andrew Smith, Scott Suarez, Jason

Surh, Luis Gamarra

Dept. of Electrical and Computer Engineering

University of Central Florida, Orlando, Florida

32816-2450

Abstract – Smart Gloves, an independently designed and
originally inspired Senior Design project, was created with
one goal in mind: to provide a structured boost to a user’s

weightlifting workouts. Fusing IMU motion tracking and
wireless communication technologies, exercises are monitored
and feedback is provided to users, helping to maximize

workout efficiency, reduce the risk of injury, and boost
motivation. A small glove-mounted PCB, containing an IMU
and Bluetooth-capable microcontroller, wirelessly

communicates with a companion smartphone application
powered by Unity software to track the orientation and
movement of each individual glove given parameters specific

to individual exercises. All hardware was designed to avoid
interference with a user’s range of motion, and the software
was designed to be intuitively usable by weightlifters of all

experience levels.

Index Terms – IMU, Bluetooth, microcontroller, digital

filters, PCB, gyroscope, accelerometer, application, Unity,
iOS, motion tracking

I. INTRODUCTION

Weightlifting is not often seen as an activity requiring a

great deal of thought, with those inexperienced to the sport

incorrectly assuming that repeatedly picking up and putting

down weights involves little to no technicality. In reality,

every individual exercise requires the use of proper form in

order for a weightlifter to maximize the efficiency of the

exercise and reduce the risk of injury. The concept of

“form” can be loosely defined as the correct way to perform

an exercise, including everything from range of motion to

angle of rotation. Proper form is often something that

weightlifters learn through trial and error over long periods

of time and can potentially turn beginners away from

weightlifting. Smart Gloves were designed to provide

assistance with the development of proper form by tracking

the orientation, angular rotation, and linear acceleration of

each glove worn by the user and providing audio feedback

when the movement detected is uncharacteristic of

parameters set for each individual exercise.

In addition to providing basic form tracking, Smart

Gloves and the companion smartphone application help

users better structure their workouts. Individual exercises

are saved on the application, with user-determined

parameters such as number of sets to be performed per

exercise and the number of repetitions per set. This allows

users to plan workouts in advance and track certain

exercises with the simple push of a button on the

application. This, in addition to other features such as rest

timers that users can choose to activate between sets, will

keep users motivated during workouts by taking out much

of the guesswork that goes into planning effective

workouts.

II. HARDWARE DESIGN

A. Overall System Design

Smart Gloves were designed with ease of use in mind; as

an item that users would bring with them into the gym, it

was necessary to avoid designing a device that would

interfere with workouts and be an overall inconvenience to

work out with. As such, several basic hardware

specifications were outlined at the conception of this

project to dictate the overall design and ensure that this goal

was met by our final prototype. Table I, shown below,

displays these specifications.

TABLE I: PRELIMINARY HARDWARE SPECIFICATIONS

Requirement

Specification

Value

1 Small Size < 90 x 90mm

2 Impact Resist. Up to 10kg

3 Sensor Latency < 0.5s

4 Battery Life 2 hours min.

5 Comm. Range 2 meters min.

To meet these specifications listed above, Smart Gloves

hardware was designed to be as simplistic as possible while

still providing all the necessary sensory data and

computational ability for our software. This kept the

physical size of the PCB small enough to avoid interference

with a user’s exercises and minimized current draw from

included major components to maximize battery life. A

simplified block diagram of the system is seen in Fig. 1.

Fig. 1. Simplified block diagram of Smart Gloves Hardware

All blocks in Fig. 1 represent major/notable components

that have been implemented in our PCB design, barring the

User Smartphone for obvious reasons. The three major

digital busses present are the USBD+/- busses from the

micro-USB input to the USB/UART bridge, the UART

busses from the USB/UART bridge to the microcontroller,

and the I2C busses from the microcontroller to the IMU.

The power line circuitry is set up so that while the device

is connected to the micro-USB port, only current from the

micro-USB input will pass through the 3.3V linear

regulator while preventing current from the LIPO battery

from doing so via the p-channel MOSFET. Additionally,

while both connections are made current from the micro-

USB connection will pass through an intelligent LIPO

charge management controller and recharge the LIPO

battery until the charge management controller detects full

charge. After passing through the 3.3V linear regulator,

current will be supplied to all three major digital

components via a 3.3V power bus.

B. System Components

Inertial Measurement Unit – the primary sensor used in

this design is the Bosch BNO055 9-axis Absolute

Orientation Sensor. This MEMS sensor incorporates a

triaxial accelerometer, gyroscope, and magnetometer into a

single package; however, the sensors of primary concern

for our implementation are the accelerometer and

gyroscope. The triaxial accelerometer measures linear

acceleration across 3 axes with use of a 14-bit ADC and

four levels of sensitivity: +/- 2, 4, 8, or 16G. The triaxial

gyroscope incorporates a 16-bit ADC to provide accurate

angular rate measurements across 3 axes with sensitivity

from +/- 125 to 2000 degrees per second. This device

communicates with the microcontroller using I2C

communication protocols. Both SDA and SCL lines are

connected to digital I/O pins on the microcontroller, with

both communication lines powered by the 3.3V power bus

via 10k pull-up resistors.

Microcontroller – the Bluetooth LE-capable

microcontroller used in our design is the nRF52832. This

chip is a 32-bit ARM Cortex-M4F based processor

featuring single-precision floating point operations with a

clock rate of 64 MHz, 512 kB of flash memory, and 64 kB

of RAM. The integration of a Bluetooth transceiver allows

us to save space on our board, and the transceiver itself is a

2.4 GHz radio transmitter compatible with 1Mbps and

2Mbps transmission modes. The maximum throughput

with this connection is 120 bytes every 7.5ms, which is an

acceptable benchmark for our purposes. As previously

mentioned, this microcontroller communicates with the

IMU via I2C protocols and is connected to a configurable

interrupt pin on the IMU. An active low reset pin is

attached to the 3.3V power bus to keep the device running:

if a reset is required this pin can be pulled to ground with a

simple push button on the board. Other simple components,

such as the piezo buzzer and status LEDs, are connected to

the microcontroller with general purpose I/O pins.

USB/UART Bridge – to bridge the gap between the

micro-USB input and microcontroller, we incorporated the

use of the Silicon Labs CP2104 USB-to-UART Bridge.

This device features an integrated USB transceiver that

passes USBD+/- communication signals from the micro-

USB input to the microcontroller via UART protocols and

vice-versa. This is essentially a plug-and-play device, no

external or internal configuration needed, that simplifies the

process of uploading code onto the microcontroller.

3.3V Linear Voltage Regulator – we used the AP2112

3.3V linear voltage regulator to provide power at a steady

3.3V to all major system components. As described earlier,

a p-channel MOSFET determines the input to this device

between the micro-USB input and LIPO battery input.

With maximum output current of 600mA, output accuracy

of +/-1.5%, load regulation of 0.2%/A, and line regulation

of 0.02%/V, this device is plenty reliable enough for our

design implementation.

LIPO Charge Management Controller – the

MCP73831 LIPO charge management controller

intelligently manages the passage of current from the

micro-USB input (while connected) to the LIPO battery

connecter, allowing the battery to charge while both sources

are plugged into the board. The programmable charge

current, which ranges from 15mA to 500mA, is set to

196mA with use of a 5.1k resistor connected between pins

2 and 5 on the device and the regulated output voltage at

pin 3, the battery terminal, is 4.2V. Pin 4 is directly

connected to the 5V bus from the micro-USB input and acts

as the direct input source for the device. Pin 1 is a status

pin connected to an orange LED and 1k resistor, drawing

current when the device is charging and powering the LED

to show its status. When the LIPO battery is fully charged

and reaches an output voltage of 4.2V, the charger ceases

to pass current through and the orange LED is powered off.

1200mAh LIPO Battery – the LIPO battery used in our

design is rated at 1200mAh with a C5 rating. With an

output voltage ranging from 4.2V fully-charged to 3.7V

depleted, this battery possesses a maximum

charge/discharge current of 240mA which works perfectly

with our set 196mA charge current. To calculate the

absolute minimum expected battery life, we first

determined the maximum current draw of all major digital

components and added them together along with a 5mA

overhead. This produced a theoretical maximum current

draw of 50mA, most likely much higher than the actual

current draw during standard operation. Using the

1200mAh rating of the battery and assuming 70%

efficiency, a theoretical minimum battery life of 16.8 hours

was calculated. This number is higher in practice, as our

device does not constantly draw 50mA out of the battery,

and greatly exceeds our initial battery life requirement

specification.

Miscellaneous Components – a standard micro-USB

surface-mounted connector and a 2-pin surface-mounted

LIPO connector were both used as power source inputs on

this device. For glove-based audio feedback for users, a

simple piezo buzzer was implemented via direct connection

to a dedicated analog output pin on the microcontroller.

C. Board Design

Our board was meticulously designed to meet the

specifications that were originally set in place for Smart

Gloves hardware. The final design iteration of our board in

EagleCAD, which reflects the final layout of our physical

boards, can be seen in Fig. 2.

Two of these boards were fabricated, with one for each

of the user’s hands. The boards were designed with

dimensions of 34mm x 67mm to fall within our original

specification of 90mm x 90mm. These dimensions almost

perfectly align with our chosen LIPO battery, which

measures 62.2mm x 35.5mm. To package both the board

and battery together, a simple 3D-printed housing was

designed. This housing, measuring 39mm x 72mm,

contains a top plate with 3mm mounting holes on each

corner that the PCB is attached to and a hollowed-out

bottom plate that the battery fits snuggly inside of. The top

plate is attached to the bottom plate via clear packing tape,

encasing the battery inside while leaving a hole for the

battery wires to reach around to connect with the PCB on

top. Leaving the PCB exposed on top of the casing was an

intentional design choice, as we wanted it to be visible for

all project demonstrations and presentations. An actual

consumer version of this device would fully encase the PCB

to provide full protection.

Fig. 2. Final Smart Gloves board layout, as seen in EagleCAD

The circuitry on the board was intuitively designed to

take up minimal space, with components in similar

subsystem groupings located as close as possible to reduce

trace length. For example, referencing Fig. 2, almost all

power regulation components/circuitry is located on the left

third of the board, including both power source inputs and

all regulation components such as the 3.3V linear regulator

and charge management controller. Almost all digital

components are located on the right half of the board,

including the IMU and microcontroller. To determine

minimum trace width, we calculated the minimum trace

width necessary for the LIPO charging current, which at

196mA is the maximum current that would be passing

through our board. Given standard trace parameters from

IPC-2221, the required trace width for that current would

be 1.67mils (thousandths of an inch). This trace width size

is much too small for standard board manufacturers

however, and as such we decided to use standardized trace

widths ranging from 10mils to 16mils which would be

plenty large enough for the charging current of 196mA and

the maximum standard operation current of 50mA that was

discussed earlier. For all major power buses, trace widths

of 16mils were used to provide more than enough overhead

for all current to pass through. Trace widths for digital

buses such as the I2C and UART buses ranged from 10mils

to 12mils, more than enough for low-current digital signals

to propagate.

One major design decision that simplified our board

layout was the use of ground planes instead of manually

tying all component to a grounded source. Both the top and

bottom layers were set as ground planes and connected at

regular intervals with vias to ensure even grounding across

the board. Any sections of the ground plane on the top layer

that happened to be cut off from the rest of the plane by

traces was properly grounded using vias to connect them to

the bottom ground layer. Test points were implemented

across the board at all major power and digital signal buses

to provide ample room to properly diagnose and test any

signals that might have behaved unexpectedly. Test points

were also used for the flashing of the microcontroller; rather

than incorporating a bulky JTAG connector into our design,

the necessary pins were broken out as test points that wires

were soldered to. Upon receiving our completed/populated

boards, we realized that we had neglected to break out one

of the necessary JTAG pins (SWO) on the microcontroller

as a test point, but this was simply fixed by directly

soldering a 30-guage wire onto the microcontroller pin

itself. This was the only design flaw present in our board,

otherwise it has functioned exactly as expected with no

major problems or necessary reworks.

III. HARDWARE-SOFTWARE INTERFACE

The main communication channel for our board is over

Bluetooth Low Energy through the microcontroller. There

are two classes of devices in a Bluetooth connection. A

central device (master) and a peripheral device (slave). A

device classed as central can connect to multiple devices

simultaneously and the slaves align themselves to the

master clock intervals. A slave can only connect to a single

device at time and is usually a peripheral (mouse, keyboard,

ect). Each side communicates with the other during a

connection interval at a minimum of 7.5 millisecond

intervals called a connection interval. Deciding to use this

technology would therefore guarantee a maximum of 133

updates per second in the ideal case. However, every

platform isn’t supported equally. For example, iOS 9.2 and

iPhone 6, the smallest connection interval supported is 15

milliseconds while Android supports the standard

minimum of 7.5 milliseconds. Due to this latency it is ideal

that the majority of the actual leg work when it comes to

data integration is done on the microcontroller.

Due to our design choices with Unity being our target

platform some of our original intentions with Bluetooth

were forced to be left by the wayside to accommodate for

interaction with Unity. For example, we had originally

anticipated higher throughput with Bluetooth

communication by way of a more frequent sampling period

however the unity libraries we were using to deploy the

application abstracted out the Bluetooth protocols and set

them all on single thread. This meant that we could only

request a new sample manually once the callback for the

last was called so queueing consistent communication

proved to be less optimized than was anticipated with a

native application. Another limitation from interaction

with unity was with respect to actual data throughput. We

had anticipated a 80-byte channel for each connection

interval through initial prototyping however we were

restrained to 20 bytes on the Unity application as that was

the limit for a single characteristic in Bluetooth low energy.

To communicate with the Bluetooth sensor on the

microcontroller the NRF52 actually has a custom Bluetooth

stack already on-chip with accessor functions that have

been nested into the Arduino environment through

Adafruit’s libraries. This allows us to quickly do things like

Bluetooth configuration and set up scan for devices, so the

actual communication side of things had been taken care of

for the most part. We just needed to properly integrate it

with our project by maintaining separate threads for the

Bluetooth communication, BNO sensor readings and Piezo

buzzer. We also had to package up the data and scale it

properly since we were limited to 20 bytes as mentioned

earlier. This meant scaling our Euler angles from degrees to

16 bit integers which didn’t affect any precision or

significant information loss since the BNO stores this data

in 16 bit registers.

A communication message from the microcontroller

consisted of a total 19 Byte message sent every connection

interval regardless of a BNO update or not. Although for

every interval we would have an update from the BNO as

the sampling frequency we were using to sample from the

BNO was around 100Hz which was higher than the 15ms

minimum connection interval from communication with

the phone application. Of these 19 bytes the first

accommodated for the message flag. As of typing this we

only have one which we are sending over which is the byte

0x4F or the letter ‘O’. We utilized this as an identifier on

the receiving end to ensure the message information we

were about to take in was a valid set characteristic in the

form we expect before deserializing the message. The

following 6 bytes were the relative orientation of the sensor

stored in degrees as an unsigned integer (scaled by 100).

The final 12 bytes were the raw acceleration values read in

from the IMU relative to the xyz of the sensor with gravity

factored out.

TABLE 2: EXAMPLE OUTPUT COMMUNICATION

Message Orientation Acceleration

Flag H P R X Y Z

1B 2 B 2B 2B 4B 4B 4B

The communication inbound to the microcontroller was

simplified as we only expected one message from the

application. If we received the byte 0x42 or ‘B’ from the

application, we turned the buzzer on for a preset interval of

300 milliseconds. We chose 300 milliseconds because

according to studies it takes approximately 280

milliseconds for an average person to respond to an

auditory stimulus [1]. This would provide the user with

enough time to react and correct their form and not waste

the Bluetooth pipeline by unnecessarily continuously

sending redundant data. On the phone application side of

things, we would refresh the message every 200

milliseconds so the buzzer would not stop if the user had

still not corrected their form.

To communicate with the BNO we are utilizing I2C

communication abstracted out with Adafruit libraries.

Thankfully this means we utilize general function calls to

request the data and set calibration values to the BNO.

Which saved development time on initial configuration and

prototyping.

The BNO has several useful features including a

Gyroscope, Magnetometer, and Accelerometer. For our

purposes we do not require use of the magnetometer as the

calculations for the exercise we utilize are relative to the

gloves and not absolute. Although it’s worth noting that in

the future it might be worth considering identifying the

users gloves in relation to each other. As such, for our

purposes we set the magnetometer to off and solely utilize

the Accelerometer and Gyroscope.

The BNO has several operation modes we attempted to

utilize where it attempts to fuse outputs together to produce

a more accurate measurement. However, the fused output

proved unreliable for our case as the Euler angles the BNO

put out fluctuated greatly along the extremes of the

rotational axis. While this output would do fine for the case

of aircraft where the user doesn’t expect rotation beyond 45

degrees, for our purposes it was unreliable as the user’s

orientation can vary greatly over the course of an exercise.

We had also originally planned to integrate the

accelerometer data to attempt to track positional data with

the gloves, however the accelerometer output proved

unreliable for meaningful integration. Therefore, we

decided to still utilize the accelerometer data for repetition

counting as an additional feature and to integrate the

gyroscope data which is updated at 100Hz in

degrees/second to track rotational data. The integration of

the gyroscope data proved mostly reliable for our purposes.

IV. SOFTWARE DESIGN AND DATA PROCESSING

A. Microcontroller Software Flow

Upon initial startup the microcontroller sets up the BNO

and Bluetooth units for communication by first configuring

the Bluetooth into peripheral mode with our UART profile

enabled. The BNO is then enabled by setting the

magnetometer off and attempting to restore the calibration

data to gloves from a file saved on the microcontroller. If

the file is not found the microcontroller will enter a

calibration mode where it will expect the user to rotate the

device along each axis until each active subunit

(accelerometer and gyroscope) is calibrated. Once

calibrated this information is stored on chip so future

calibration is not necessary. Although it is worth noting that

regardless of this calibration activity the BNO continuously

calibrates during operation attempting to improve

measurement accuracy. This continuous calibration, which

includes factoring out the gravity vector from the

accelerometer, is perhaps why the accelerometer data is so

noisy due to incomplete elimination of the gravity vector as

the device is rotated.

Once the BNO and Bluetooth units have been setup the

unit enters a normal operation mode where we have three

continuous threads running. These are for Bluetooth, BNO

data fetching, and Piezo buzzer response respectively. The

Bluetooth thread will remain inactive until the unit manages

to maintain a connection with a central device. Once

connected this thread will package up data from the BNO

and send it over to the Bluetooth as well as respond to any

messages received from the phone application such as

setting up the timer for piezo buzzer.

The BNO thread will, once called, retrieve and store a

accelerometer sample from the BNO then call an update

function for the integration of the gyroscope data. We

utilize the Trapezoidal rule [2] to integrate the gyroscope

data from the BNO and dynamically update the period

every 100 samples to maintain accuracy. We confirmed that

we have received approximately 100 samples every second

which matches up nicely with the BNO’s 100Hz refresh

rate so sample loss is minimized.

The piezo buzzer simply checks to see if the Bluetooth

thread has setup the timer for it to go off. If the timer is

greater than zero the microcontroller will configure the

PWM (pulse width modulation) to output to the

microcontroller until enough time has elapsed. After the

timer drops below zero the microcontroller will stop

outputting to the speaker.

B. Boundary Checking

The sensors on the Bosch BNO 5055 detect orientation

in a range of 0-359 degrees. To determine if the sensor is

currently in bounds, a simple check is done to see if the

current orientation is within the boundary offset. When the

exercise first begins, the current orientation is sampled and

that becomes the reference orientation. The result is that the

exercise tracking is then done relative to this reference

orientation. As for determining if any subsequent

orientation lies inside the boundaries, we need to do a little

math.
There is an interesting challenge that arises when

checking if we are in bounds and the boundary offset

crosses over the 0/360 degree threshold. An example being

a reference angle of 350 degrees (represented by a solid

line) and a boundary offset of 20 degrees (the boundaries

represented by the dotted lines). These parameters make a

lower boundary of 330 degrees and an upper boundary of

10 degrees. The following example illustrates the problem

and our solution.

Fig. 3. Boundary Checking Diagram

It is difficult to do a mathematical comparison to see if

the current orientation is between 330 degrees and 10

degrees as the value comparison isn’t straight forward.

Numerically, 330 is a greater value than 10. But in our

situation, 330 degrees is the lower boundary. To get around

this issue, we compare the current orientation with the

reference orientation to see the difference between them is

greater than the boundary offset.
To do this, we take the maximum value of the reference

orientation and the current orientation and call it High. In a

similar vein, we take the minimum value of the reference

orientation and current orientation and call it Low. From

here we need to have some temporary values called A, B,

and C.

𝐴 = 𝐻𝑖𝑔ℎ − 𝐿𝑜𝑤 (1)
𝐵 = 360 − 𝐻𝑖𝑔ℎ + 𝐿𝑜𝑤 (2)
𝐶 = min(𝐴, 𝐵) (3)

 Values A and B would keep track of how many degrees

we have traveled since locking in our reference orientation.

Value C would be the minimum values of A and B. We are

looking for the smallest travel distance from the reference

orientation as this leads to the proper mathematical

comparison with the boundary offset. If the value of C is

less than the boundary offset, we are in bounds. If the value

of C is greater than the boundary offset, then we are outside

of the boundaries specified for the exercise.

C. State Machines

A state machine is a device that can be in one of a set of

stable conditions depending on its previous condition and

on the present values of its inputs. For Smart Gloves,

everything from the stages of the exercise to the motion

tracking of the hands are implemented and tracked using

states.

The hands are tracked by determining if the hands are

moving in an upward or downward motion with relation to

the user. The various stages of the exercises are Pre, Set Up,

In Progress, Rest, and Finish. Depending on user input

during the exercises, the states of the various state machines

are changed accordingly.

D. Repetition Counting

The repetition counting of the gloves are done through a

combination of acceleration thresholds and the state

machine tied to the motion of the gloves. If the sign of

acceleration changes and the magnitude breaches a certain

threshold, then we can change the motion state of the gloves

from upward to downward and vice versa. Once the sign of

acceleration changes as the hand motion return to its

original position, then we increment the repetition counter.

V. COMPANION MOBILE APPLICATION

In order to provide the user with an interface to customize

their experience with the Smart Gloves, a companion

mobile application was created. The mobile application was

designed to be intuitive and easy to use. Users are able to

select exercises to track, edit exercises and their metrics,

and also connect and disconnect their Smart Gloves. The

mobile application is an important part of the user

experience as it provides the user with insights on what the

Smart Gloves are tracking.

A. Mobile Application Design

Throughout gathering requirements for the application

and coming up with solutions on tracking data from the

Smart Gloves, the decision to begin development with the

Unity game engine was made.

Unity allows the development of cross platform

applications. This means that the application can be built to

run in Android and iOS devices. The programming

language used to develop the companion app was C# (C

Sharp). C# is an object-oriented programming language

that allows the use of classes to model objects along with

four of its main features – encapsulation, abstraction,

inheritance, and polymorphism. Along with object-oriented

features, the Model-View-Controller (MVC) design pattern

was used. This design pattern is used to separate the

concerns of the application. A model represents an object

carrying data. In the case of the Smart Gloves, an example

of a model would be the exercise list. This list is an object

that carries the name of the exercise, the number of sets,

start timer, rest timer, and goal reps. Since the app contains

multiple pages, there are multiple views the make it up.

There is the home page, settings page, edit exercise page,

and many other pages. Views contains UI elements that

users can interact with. The elements can be buttons, text

fields, labels, and pictures. Lastly, there is the controller.

The controller acts on both the model and the view.

Controllers control the data that flows through the models

and updates the views when data changes. The use of this

design pattern was not intentional in the beginning but as

more features were added to the application, using the

MVC design pattern showed to be a great organizational

tool and great way to structure the application’s code.

B. Applied Background Knowledge

Skills and knowledge acquired through required courses

were applied to the development of the Smart Gloves

companion application. Fundamental concepts such as

variables and constants were used to help facilitate the

manipulation of data. Alongside variables and constants,

control flow statements such as for loops, if-else statements

and switch statements were used. Switch statements

showed to be a great tool to use along with enumerations.

Enums, short for enumerations, is a data type that consists

of a set of named values. Enums were used to correctly

figure out in which stage of the exercise the user is in. These

stages can be setup, in progress, rest, and finish. Apart from

exercise stages, enums were also used for correctly setting

the exercise the user is working on. Through the use of

switch statements, the correct parameters can be set

allowing for cleaner and readable code. Data structures also

showed to be extremely helpful to group and organize

related data. Arrays and hash tables are the main data

structures used. Though fundamental, these data structures

provide great runtime. Furthermore, methods were written

to decrease the level of code repetition while maintaining

the responsibility of each method to be specific and simple.

Doing so follows the separation of concerns principle.

Following this design principle gave the benefit of

simplifying development and code maintenance. In the

cases where debugging and troubleshooting were needed,

separation of concerns made it very clear and simple. The

use of design patterns and best practices learned throughout

the different computer science courses helped save a lot of

time and decreased the number of bugs that were

encountered.

C. Mobile Application Details

When the application is started, the user is introduced to

the home page. The home page contains our Smart Gloves

logo, along with three buttons used for navigation. The

three buttons are Select Exercise, Edit Exercise, and

Settings.

Fig. 4 Mobile Application Context Diagram

The Select Exercise button takes the user to the Select

Exercise page where they are able to select the exercise they

wish to complete. The See All Exercises button creates a

drop-down list that the user can interact with and select the

desired exercise. Once the user selects the exercise, the user

is taken to the Exercise Page where the current stage of the

exercise routine is shown. Alongside it is the timer that will

count down on the rest and start timer and also count up on

the time to measure how long the user takes to complete the

exercise. This page also consists of a left and right cube.

Each correlating to the left and right sensor on the gloves.

These cubes are programmed to provide a visual

representation of the glove’s movements. Next follow the

goal statistics. These goal stats display the metrics the user

set to achieve when following a particular exercise. As

described before these metrics are number of sets, rest

timer, start timer, and reps per set. Lastly, is the current

statistics section. This section displays the current set the

user is in while also displaying the current number of reps

for the particular set. None of these text field are editable

by the user. The current statistics fields are updated data

retrieved from the gloves while the goal statistics can be

updated through the Edit Exercises page.

With that being said, the next option available in the

home page is the Edit Exercise page. Like the Select

Exercise page, the Edit Exercise page contains a See All

Exercises button that displays a drop down with all the

available exercises to be edited. After the user selects an

exercise, the View Exercise Details page is shown. This

page contains the exercise name, the number of sets, start

timer, rest timer, and goal reps. These fields can all be

edited and stored by tapping on the save button. It is

important to note that only integer values are to be entered

in all text fields except for exercise name, which can be

consisted of characters and numbers. To guard the user

from errors, an error message is displayed while also

highlighting the field with incorrect data. The values

entered in this page become the goal metrics the user will

want to achieve and will be displayed in the Exercise page.

Lastly, the Settings page contains a Pair Sensors button.

This setting displays which glove is connected to the app.

It also allows to sound the buzzer to provide feedback that

the glove is indeed connected. For troubleshooting

purposes, the modify button provides the user with detailed

data such as x, y, and z axis orientation collected from the

sensors. This allows to troubleshoot if the sensors need to

be calibrated.

To conclude, each page contains a unique background

image that relates to exercising and weight training. These

images were used to theme the application and give a more

personal look. The images used in the app are all free to use

from the Unsplash website. Linked in the resources section,

all the photos in the Unsplash website are free to use and do

not require permission from or require providing credit to

the photographer. These is explained in further detail in the

license page of their website. Along with background

images, the pages in the application contain black

translucent buttons with white text. These colors were

chosen since they contrast well with the colors in the

background images. Lastly, all the main screens of the

application contain a small info section that displays the

current connection status of the gloves. This was designed

to provide the user with quick feedback on whether the

gloves are connected and therefore take action if needed.

VI. CONCLUSION

All aspects of hardware and software design mentioned

in the previous sections of this report merge together to

form a cohesive final prototype of our originally

conceptualized Smart Gloves. With further development,

this idea could potentially become a fully-fledged product

that would provide a structured boost to user workouts of

all varieties.

Luis Gamarra Jimenez is a

senior computer engineering

student at the University of

Central Florida, currently working

as a part time Software Engineer at

Disney. Upon graduation, he will

be start a full-time position with

Disney focusing on mobile

development and testing.

Andrew Smith is a senior

electrical engineering student at

the University of Central Florida.

Upon graduation, he will be

starting a job with Harris

Corporation in Melbourne, FL as a

part of the Space and Intelligence

Systems Division.

Jason Surh is a senior computer

engineering student at the

University of Central Florida.

During his time in college, he

interned at Lockheed Martin as a

Software Developer. After

graduation, he will start a job as a

Program Manager for the Xbox

division of Microsoft in Seattle.

Scott Suarez is a senior Computer

and Electrical Engineering student

at the University of Central Florida.

During his time in college, he

interned at Voith Hydro as a

Software Dev. After graduation, he

will start a job as a Software

Developer for Bing Ads.

VII. REFERENCES

[1] -Aditya Jain, Ramta Bansal, Avnish Kumar, and KD Singh,
A comparative study of visual and auditory reaction times,
Int J Appl Basic Med Res, 2015

[2] - Bourne, M. (2015). Trapezoidal Rule. [online] Intmath.com.
http://www.intmath.com/integration/5-trapezoidal-rule.php
[Accessed 18 Feb. 2018].

[3] - License, Unsplash. [online] https://unsplash.com/license
 [Accessed 01 April 2018].
[4] - Unity Technologies. (2017) Unity User Manual. [online]

https://docs.unity3d.com/Manual/index.html [Accessed 19
March 2018]

