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Abstract – Smart Gloves, an independently designed and 
originally inspired Senior Design project, was created with 
one goal in mind: to provide a structured boost to a user’s 

weightlifting workouts.  Fusing IMU motion tracking and 
wireless communication technologies, exercises are monitored 
and feedback is provided to users, helping to maximize 

workout efficiency, reduce the risk of injury, and boost 
motivation.  A small glove-mounted PCB, containing an IMU 
and Bluetooth-capable microcontroller, wirelessly 

communicates with a companion smartphone application 
powered by Unity software to track the orientation and 
movement of each individual glove given parameters specific 

to individual exercises.  All hardware was designed to avoid 
interference with a user’s range of motion, and the software 
was designed to be intuitively usable by weightlifters of all 

experience levels.   
 
Index Terms – IMU, Bluetooth, microcontroller, digital 

filters, PCB, gyroscope, accelerometer, application, Unity, 
iOS, motion tracking 

I. INTRODUCTION 

Weightlifting is not often seen as an activity requiring a 

great deal of thought, with those inexperienced to the sport 

incorrectly assuming that repeatedly picking up and putting 

down weights involves little to no technicality.  In reality, 

every individual exercise requires the use of proper form in 

order for a weightlifter to maximize the efficiency of the 

exercise and reduce the risk of injury.  The concept of 

“form” can be loosely defined as the correct way to perform 

an exercise, including everything from range of motion to 

angle of rotation.  Proper form is often something that 

weightlifters learn through trial and error over long periods 

of time and can potentially turn beginners away from 

weightlifting.  Smart Gloves were designed to provide 

assistance with the development of proper form by tracking 

the orientation, angular rotation, and linear acceleration of 

each glove worn by the user and providing audio feedback 

when the movement detected is uncharacteristic of 

parameters set for each individual exercise.    

In addition to providing basic form tracking, Smart 

Gloves and the companion smartphone application help 

users better structure their workouts.  Individual exercises 

are saved on the application, with user-determined 

parameters such as number of sets to be performed per 

exercise and the number of repetitions per set.  This allows 

users to plan workouts in advance and track certain 

exercises with the simple push of a button on the 

application.  This, in addition to other features such as rest 

timers that users can choose to activate between sets, will 

keep users motivated during workouts by taking out much 

of the guesswork that goes into planning effective 

workouts.   

II. HARDWARE DESIGN 

A. Overall System Design 

Smart Gloves were designed with ease of use in mind; as 

an item that users would bring with them into the gym, it 

was necessary to avoid designing a device that would 

interfere with workouts and be an overall inconvenience to 

work out with.  As such, several basic hardware 

specifications were outlined at the conception of this 

project to dictate the overall design and ensure that this goal 

was met by our final prototype.  Table I, shown below, 

displays these specifications.   

TABLE I: PRELIMINARY HARDWARE SPECIFICATIONS 

Requirement 

 

Specification 

 

Value 

1 Small Size < 90 x 90mm 

2 Impact Resist. Up to 10kg 

3 Sensor Latency < 0.5s 

4 Battery Life 2 hours min. 

5 Comm. Range 2 meters min. 

 

To meet these specifications listed above, Smart Gloves 

hardware was designed to be as simplistic as possible while 

still providing all the necessary sensory data and 

computational ability for our software.  This kept the 

physical size of the PCB small enough to avoid interference 

with a user’s exercises and minimized current draw from 

included major components to maximize battery life.  A 

simplified block diagram of the system is seen in Fig. 1.    



  
 
Fig. 1. Simplified block diagram of Smart Gloves Hardware 
 

All blocks in Fig. 1 represent major/notable components 

that have been implemented in our PCB design, barring the 

User Smartphone for obvious reasons.  The three major 

digital busses present are the USBD+/- busses from the 

micro-USB input to the USB/UART bridge, the UART 

busses from the USB/UART bridge to the microcontroller, 

and the I2C busses from the microcontroller to the IMU.   

The power line circuitry is set up so that while the device 

is connected to the micro-USB port, only current from the 

micro-USB input will pass through the 3.3V linear 

regulator while preventing current from the LIPO battery 

from doing so via the p-channel MOSFET.  Additionally, 

while both connections are made current from the micro-

USB connection will pass through an intelligent LIPO 

charge management controller and recharge the LIPO 

battery until the charge management controller detects full 

charge.  After passing through the 3.3V linear regulator, 

current will be supplied to all three major digital 

components via a 3.3V power bus.   

B. System Components 

Inertial Measurement Unit – the primary sensor used in 

this design is the Bosch BNO055 9-axis Absolute 

Orientation Sensor.  This MEMS sensor incorporates a 

triaxial accelerometer, gyroscope, and magnetometer into a 

single package; however, the sensors of primary concern 

for our implementation are the accelerometer and 

gyroscope.  The triaxial accelerometer measures linear 

acceleration across 3 axes with use of a 14-bit ADC and 

four levels of sensitivity: +/- 2, 4, 8, or 16G.  The triaxial 

gyroscope incorporates a 16-bit ADC to provide accurate 

angular rate measurements across 3 axes with sensitivity 

from +/- 125 to 2000 degrees per second.  This device 

communicates with the microcontroller using I2C 

communication protocols.  Both SDA and SCL lines are 

connected to digital I/O pins on the microcontroller, with 

both communication lines powered by the 3.3V power bus 

via 10k pull-up resistors.   

Microcontroller – the Bluetooth LE-capable 

microcontroller used in our design is the nRF52832.  This 

chip is a 32-bit ARM Cortex-M4F based processor 

featuring single-precision floating point operations with a 

clock rate of 64 MHz, 512 kB of flash memory, and 64 kB 

of RAM.  The integration of a Bluetooth transceiver allows 

us to save space on our board, and the transceiver itself is a 

2.4 GHz radio transmitter compatible with 1Mbps and 

2Mbps transmission modes.  The maximum throughput 

with this connection is 120 bytes every 7.5ms, which is an 

acceptable benchmark for our purposes.  As previously 

mentioned, this microcontroller communicates with the 

IMU via I2C protocols and is connected to a configurable 

interrupt pin on the IMU.  An active low reset pin is 

attached to the 3.3V power bus to keep the device running: 

if a reset is required this pin can be pulled to ground with a 

simple push button on the board.  Other simple components, 

such as the piezo buzzer and status LEDs, are connected to 

the microcontroller with general purpose I/O pins.   

USB/UART Bridge – to bridge the gap between the 

micro-USB input and microcontroller, we incorporated the 

use of the Silicon Labs CP2104 USB-to-UART Bridge.  

This device features an integrated USB transceiver that 

passes USBD+/- communication signals from the micro-

USB input to the microcontroller via UART protocols and 

vice-versa.  This is essentially a plug-and-play device, no 

external or internal configuration needed, that simplifies the 

process of uploading code onto the microcontroller.   

3.3V Linear Voltage Regulator – we used the AP2112 

3.3V linear voltage regulator to provide power at a steady 

3.3V to all major system components.  As described earlier, 

a p-channel MOSFET determines the input to this device 

between the micro-USB input and LIPO battery input.  

With maximum output current of 600mA, output accuracy 

of +/-1.5%, load regulation of 0.2%/A, and line regulation 

of 0.02%/V, this device is plenty reliable enough for our 

design implementation.   

LIPO Charge Management Controller – the 

MCP73831 LIPO charge management controller 

intelligently manages the passage of current from the 

micro-USB input (while connected) to the LIPO battery 

connecter, allowing the battery to charge while both sources 



are plugged into the board.  The programmable charge 

current, which ranges from 15mA to 500mA, is set to 

196mA with use of a 5.1k resistor connected between pins 

2 and 5 on the device and the regulated output voltage at 

pin 3, the battery terminal, is 4.2V.   Pin 4 is directly 

connected to the 5V bus from the micro-USB input and acts 

as the direct input source for the device.  Pin 1 is a status 

pin connected to an orange LED and 1k resistor, drawing 

current when the device is charging and powering the LED 

to show its status.  When the LIPO battery is fully charged 

and reaches an output voltage of 4.2V, the charger ceases 

to pass current through and the orange LED is powered off.   

1200mAh LIPO Battery – the LIPO battery used in our 

design is rated at 1200mAh with a C5 rating.  With an 

output voltage ranging from 4.2V fully-charged to 3.7V 

depleted, this battery possesses a maximum 

charge/discharge current of 240mA which works perfectly 

with our set 196mA charge current.  To calculate the 

absolute minimum expected battery life, we first 

determined the maximum current draw of all major digital 

components and added them together along with a 5mA 

overhead.  This produced a theoretical maximum current 

draw of 50mA, most likely much higher than the actual 

current draw during standard operation.  Using the 

1200mAh rating of the battery and assuming 70% 

efficiency, a theoretical minimum battery life of 16.8 hours 

was calculated.  This number is higher in practice, as our 

device does not constantly draw 50mA out of the battery, 

and greatly exceeds our initial battery life requirement 

specification.   

Miscellaneous Components – a standard micro-USB 

surface-mounted connector and a 2-pin surface-mounted 

LIPO connector were both used as power source inputs on 

this device.  For glove-based audio feedback for users, a 

simple piezo buzzer was implemented via direct connection 

to a dedicated analog output pin on the microcontroller.   

C. Board Design 

Our board was meticulously designed to meet the 

specifications that were originally set in place for Smart 

Gloves hardware.  The final design iteration of our board in 

EagleCAD, which reflects the final layout of our physical 

boards, can be seen in Fig. 2.   

Two of these boards were fabricated, with one for each 

of the user’s hands.  The boards were designed with 

dimensions of 34mm x 67mm to fall within our original 

specification of 90mm x 90mm.  These dimensions almost 

perfectly align with our chosen LIPO battery, which 

measures 62.2mm x 35.5mm.  To package both the board 

and battery together, a simple 3D-printed housing was 

designed.  This housing, measuring 39mm x 72mm, 

contains a top plate with 3mm mounting holes on each 

corner that the PCB is attached to and a hollowed-out 

bottom plate that the battery fits snuggly inside of.  The top 

plate is attached to the bottom plate via clear packing tape, 

encasing the battery inside while leaving a hole for the 

battery wires to reach around to connect with the PCB on 

top.  Leaving the PCB exposed on top of the casing was an 

intentional design choice, as we wanted it to be visible for 

all project demonstrations and presentations.  An actual 

consumer version of this device would fully encase the PCB 

to provide full protection.   

 

Fig. 2. Final Smart Gloves board layout, as seen in EagleCAD 
 

The circuitry on the board was intuitively designed to 

take up minimal space, with components in similar 

subsystem groupings located as close as possible to reduce 

trace length.  For example, referencing Fig. 2, almost all 

power regulation components/circuitry is located on the left 

third of the board, including both power source inputs and 

all regulation components such as the 3.3V linear regulator 

and charge management controller.  Almost all digital 

components are located on the right half of the board, 

including the IMU and microcontroller.  To determine 

minimum trace width, we calculated the minimum trace 

width necessary for the LIPO charging current, which at 

196mA is the maximum current that would be passing 

through our board.  Given standard trace parameters from 

IPC-2221, the required trace width for that current would 

be 1.67mils (thousandths of an inch).  This trace width size 

is much too small for standard board manufacturers 

however, and as such we decided to use standardized trace 

widths ranging from 10mils to 16mils which would be 

plenty large enough for the charging current of 196mA and 

the maximum standard operation current of 50mA that was 

discussed earlier.  For all major power buses, trace widths 

of 16mils were used to provide more than enough overhead 

for all current to pass through.  Trace widths for digital 

buses such as the I2C and UART buses ranged from 10mils 

to 12mils, more than enough for low-current digital signals 

to propagate.   

One major design decision that simplified our board 

layout was the use of ground planes instead of manually 



tying all component to a grounded source.  Both the top and 

bottom layers were set as ground planes and connected at 

regular intervals with vias to ensure even grounding across 

the board.  Any sections of the ground plane on the top layer 

that happened to be cut off from the rest of the plane by 

traces was properly grounded using vias to connect them to 

the bottom ground layer.  Test points were implemented 

across the board at all major power and digital signal buses 

to provide ample room to properly diagnose and test any 

signals that might have behaved unexpectedly.  Test points 

were also used for the flashing of the microcontroller; rather 

than incorporating a bulky JTAG connector into our design, 

the necessary pins were broken out as test points that wires 

were soldered to.  Upon receiving our completed/populated 

boards, we realized that we had neglected to break out one 

of the necessary JTAG pins (SWO) on the microcontroller 

as a test point, but this was simply fixed by directly 

soldering a 30-guage wire onto the microcontroller pin 

itself.  This was the only design flaw present in our board, 

otherwise it has functioned exactly as expected with no 

major problems or necessary reworks.   

III. HARDWARE-SOFTWARE INTERFACE 

The main communication channel for our board is over 

Bluetooth Low Energy through the microcontroller. There 

are two classes of devices in a Bluetooth connection. A 

central device (master) and a peripheral device (slave). A 

device classed as central can connect to multiple devices 

simultaneously and the slaves align themselves to the 

master clock intervals. A slave can only connect to a single 

device at time and is usually a peripheral (mouse, keyboard, 

ect). Each side communicates with the other during a 

connection interval at a minimum of 7.5 millisecond 

intervals called a connection interval. Deciding to use this 

technology would therefore guarantee a maximum of 133 

updates per second in the ideal case. However, every 

platform isn’t supported equally. For example, iOS 9.2 and 

iPhone 6, the smallest connection interval supported is 15 

milliseconds while Android supports the standard 

minimum of 7.5 milliseconds. Due to this latency it is ideal 

that the majority of the actual leg work when it comes to 

data integration is done on the microcontroller.  

Due to our design choices with Unity being our target 

platform some of our original intentions with Bluetooth 

were forced to be left by the wayside to accommodate for 

interaction with Unity. For example, we had originally 

anticipated higher throughput with Bluetooth 

communication by way of a more frequent sampling period 

however the unity libraries we were using to deploy the 

application abstracted out the Bluetooth protocols and set 

them all on single thread. This meant that we could only 

request a new sample manually once the callback for the 

last was called so queueing consistent communication 

proved to be less optimized than was anticipated with a 

native application.  Another limitation from interaction 

with unity was with respect to actual data throughput. We 

had anticipated a 80-byte channel for each connection 

interval through initial prototyping however we were 

restrained to 20 bytes on the Unity application as that was 

the limit for a single characteristic in Bluetooth low energy.  

To communicate with the Bluetooth sensor on the 

microcontroller the NRF52 actually has a custom Bluetooth 

stack already on-chip with accessor functions that have 

been nested into the Arduino environment through 

Adafruit’s libraries. This allows us to quickly do things like 

Bluetooth configuration and set up scan for devices, so the 

actual communication side of things had been taken care of 

for the most part. We just needed to properly integrate it 

with our project by maintaining separate threads for the 

Bluetooth communication, BNO sensor readings and Piezo 

buzzer. We also had to package up the data and scale it 

properly since we were limited to 20 bytes as mentioned 

earlier. This meant scaling our Euler angles from degrees to 

16 bit integers which didn’t affect any precision or 

significant information loss since the BNO stores this data 

in 16 bit registers.  

A communication message from the microcontroller 

consisted of a total 19 Byte message sent every connection 

interval regardless of a BNO update or not. Although for 

every interval we would have an update from the BNO as 

the sampling frequency we were using to sample from the 

BNO was around 100Hz which was higher than the 15ms 

minimum connection interval from communication with 

the phone application. Of these 19 bytes the first 

accommodated for the message flag. As of typing this we 

only have one which we are sending over which is the byte 

0x4F or the letter ‘O’. We utilized this as an identifier on 

the receiving end to ensure the message information we 

were about to take in was a valid set characteristic in the 

form we expect before deserializing the message. The 

following 6 bytes were the relative orientation of the sensor 

stored in degrees as an unsigned integer (scaled by 100). 

The final 12 bytes were the raw acceleration values read in 

from the IMU relative to the xyz of the sensor with gravity 

factored out. 

TABLE 2: EXAMPLE OUTPUT COMMUNICATION  

Message Orientation Acceleration 

Flag H P R X Y Z 

1B 2 B 2B 2B 4B 4B 4B 

 

The communication inbound to the microcontroller was 

simplified as we only expected one message from the 



application. If we received the byte 0x42 or ‘B’ from the 

application, we turned the buzzer on for a preset interval of 

300 milliseconds. We chose 300 milliseconds because 

according to studies it takes approximately 280 

milliseconds for an average person to respond to an 

auditory stimulus [1]. This would provide the user with 

enough time to react and correct their form and not waste 

the Bluetooth pipeline by unnecessarily continuously 

sending redundant data. On the phone application side of 

things, we would refresh the message every 200 

milliseconds so the buzzer would not stop if the user had 

still not corrected their form. 

To communicate with the BNO we are utilizing I2C 

communication abstracted out with Adafruit libraries. 

Thankfully this means we utilize general function calls to 

request the data and set calibration values to the BNO. 

Which saved development time on initial configuration and 

prototyping.  

The BNO has several useful features including a 

Gyroscope, Magnetometer, and Accelerometer. For our 

purposes we do not require use of the magnetometer as the 

calculations for the exercise we utilize are relative to the 

gloves and not absolute. Although it’s worth noting that in 

the future it might be worth considering identifying the 

users gloves in relation to each other. As such, for our 

purposes we set the magnetometer to off and solely utilize 

the Accelerometer and Gyroscope.  

The BNO has several operation modes we attempted to 

utilize where it attempts to fuse outputs together to produce 

a more accurate measurement. However, the fused output 

proved unreliable for our case as the Euler angles the BNO 

put out fluctuated greatly along the extremes of the 

rotational axis. While this output would do fine for the case 

of aircraft where the user doesn’t expect rotation beyond 45 

degrees, for our purposes it was unreliable as the user’s 

orientation can vary greatly over the course of an exercise. 

We had also originally planned to integrate the 

accelerometer data to attempt to track positional data with 

the gloves, however the accelerometer output proved 

unreliable for meaningful integration.  Therefore, we 

decided to still utilize the accelerometer data for repetition 

counting as an additional feature and to integrate the 

gyroscope data which is updated at 100Hz in 

degrees/second to track rotational data. The integration of 

the gyroscope data proved mostly reliable for our purposes.  

IV. SOFTWARE DESIGN AND DATA PROCESSING 

A. Microcontroller Software Flow 

Upon initial startup the microcontroller sets up the BNO 

and Bluetooth units for communication by first configuring 

the Bluetooth into peripheral mode with our UART profile 

enabled. The BNO is then enabled by setting the 

magnetometer off and attempting to restore the calibration 

data to gloves from a file saved on the microcontroller. If 

the file is not found the microcontroller will enter a 

calibration mode where it will expect the user to rotate the 

device along each axis until each active subunit 

(accelerometer and gyroscope) is calibrated. Once 

calibrated this information is stored on chip so future 

calibration is not necessary. Although it is worth noting that 

regardless of this calibration activity the BNO continuously 

calibrates during operation attempting to improve 

measurement accuracy. This continuous calibration, which 

includes factoring out the gravity vector from the 

accelerometer, is perhaps why the accelerometer data is so 

noisy due to incomplete elimination of the gravity vector as 

the device is rotated. 

Once the BNO and Bluetooth units have been setup the 

unit enters a normal operation mode where we have three 

continuous threads running. These are for Bluetooth, BNO 

data fetching, and Piezo buzzer response respectively. The 

Bluetooth thread will remain inactive until the unit manages 

to maintain a connection with a central device. Once 

connected this thread will package up data from the BNO 

and send it over to the Bluetooth as well as respond to any 

messages received from the phone application such as 

setting up the timer for piezo buzzer. 

The BNO thread will, once called, retrieve and store a 

accelerometer sample from the BNO then call an update 

function for the integration of the gyroscope data. We 

utilize the Trapezoidal rule [2] to integrate the gyroscope 

data from the BNO and dynamically update the period 

every 100 samples to maintain accuracy. We confirmed that 

we have received approximately 100 samples every second 

which matches up nicely with the BNO’s 100Hz refresh 

rate so sample loss is minimized.  

The piezo buzzer simply checks to see if the Bluetooth 

thread has setup the timer for it to go off. If the timer is 

greater than zero the microcontroller will configure the 

PWM (pulse width modulation) to output to the 

microcontroller until enough time has elapsed. After the 

timer drops below zero the microcontroller will stop 

outputting to the speaker. 

B. Boundary Checking 

The sensors on the Bosch BNO 5055 detect orientation 

in a range of 0-359 degrees. To determine if the sensor is 

currently in bounds, a simple check is done to see if the 

current orientation is within the boundary offset. When the 

exercise first begins, the current orientation is sampled and 

that becomes the reference orientation. The result is that the 

exercise tracking is then done relative to this reference 

orientation. As for determining if any subsequent 



orientation lies inside the boundaries, we need to do a little 

math. 
There is an interesting challenge that arises when 

checking if we are in bounds and the boundary offset 

crosses over the 0/360 degree threshold.  An example being 

a reference angle of 350 degrees (represented by a solid 

line) and a boundary offset of 20 degrees (the boundaries 

represented by the dotted lines). These parameters make a 

lower boundary of 330 degrees and an upper boundary of 

10 degrees. The following example illustrates the problem 

and our solution. 

 
Fig. 3.  Boundary Checking Diagram 

 

It is difficult to do a mathematical comparison to see if 

the current orientation is between 330 degrees and 10 

degrees as the value comparison isn’t straight forward. 

Numerically, 330 is a greater value than 10. But in our 

situation, 330 degrees is the lower boundary. To get around 

this issue, we compare the current orientation with the 

reference orientation to see the difference between them is 

greater than the boundary offset.  
To do this, we take the maximum value of the reference 

orientation and the current orientation and call it High. In a 

similar vein, we take the minimum value of the reference 

orientation and current orientation and call it Low. From 

here we need to have some temporary values called A, B, 

and C. 

 

𝐴 = 𝐻𝑖𝑔ℎ − 𝐿𝑜𝑤    (1) 
𝐵 = 360 − 𝐻𝑖𝑔ℎ + 𝐿𝑜𝑤   (2) 
𝐶 = min(𝐴, 𝐵)    (3) 

 
 Values A and B would keep track of how many degrees 

we have traveled since locking in our reference orientation. 

Value C would be the minimum values of A and B. We are 

looking for the smallest travel distance from the reference 

orientation as this leads to the proper mathematical 

comparison with the boundary offset.  If the value of C is 

less than the boundary offset, we are in bounds. If the value 

of C is greater than the boundary offset, then we are outside 

of the boundaries specified for the exercise. 

C. State Machines 

A state machine is a device that can be in one of a set of 

stable conditions depending on its previous condition and 

on the present values of its inputs. For Smart Gloves, 

everything from the stages of the exercise to the motion 

tracking of the hands are implemented and tracked using 

states. 

The hands are tracked by determining if the hands are 

moving in an upward or downward motion with relation to 

the user. The various stages of the exercises are Pre, Set Up, 

In Progress, Rest, and Finish. Depending on user input 

during the exercises, the states of the various state machines 

are changed accordingly. 

D. Repetition Counting 

The repetition counting of the gloves are done through a 

combination of acceleration thresholds and the state 

machine tied to the motion of the gloves. If the sign of 

acceleration changes and the magnitude breaches a certain 

threshold, then we can change the motion state of the gloves 

from upward to downward and vice versa. Once the sign of 

acceleration changes as the hand motion return to its 

original position, then we increment the repetition counter. 

V. COMPANION MOBILE APPLICATION 

In order to provide the user with an interface to customize 

their experience with the Smart Gloves, a companion 

mobile application was created. The mobile application was 

designed to be intuitive and easy to use. Users are able to 

select exercises to track, edit exercises and their metrics, 

and also connect and disconnect their Smart Gloves. The 

mobile application is an important part of the user 

experience as it provides the user with insights on what the 

Smart Gloves are tracking.  

A. Mobile Application Design 

Throughout gathering requirements for the application 

and coming up with solutions on tracking data from the 

Smart Gloves, the decision to begin development with the 

Unity game engine was made. 

Unity allows the development of cross platform 

applications. This means that the application can be built to 

run in Android and iOS devices. The programming 

language used to develop the companion app was C# (C 

Sharp). C# is an object-oriented programming language 

that allows the use of classes to model objects along with 



four of its main features – encapsulation, abstraction, 

inheritance, and polymorphism. Along with object-oriented 

features, the Model-View-Controller (MVC) design pattern 

was used. This design pattern is used to separate the 

concerns of the application. A model represents an object 

carrying data. In the case of the Smart Gloves, an example 

of a model would be the exercise list. This list is an object 

that carries the name of the exercise, the number of sets, 

start timer, rest timer, and goal reps. Since the app contains 

multiple pages, there are multiple views the make it up. 

There is the home page, settings page, edit exercise page, 

and many other pages. Views contains UI elements that 

users can interact with. The elements can be buttons, text 

fields, labels, and pictures.  Lastly, there is the controller. 

The controller acts on both the model and the view. 

Controllers control the data that flows through the models 

and updates the views when data changes. The use of this 

design pattern was not intentional in the beginning but as 

more features were added to the application, using the 

MVC design pattern showed to be a great organizational 

tool and great way to structure the application’s code. 

B. Applied Background Knowledge  

Skills and knowledge acquired through required courses 

were applied to the development of the Smart Gloves 

companion application. Fundamental concepts such as 

variables and constants were used to help facilitate the 

manipulation of data. Alongside variables and constants, 

control flow statements such as for loops, if-else statements 

and switch statements were used. Switch statements 

showed to be a great tool to use along with enumerations. 

Enums, short for enumerations, is a data type that consists 

of a set of named values. Enums were used to correctly 

figure out in which stage of the exercise the user is in. These 

stages can be setup, in progress, rest, and finish. Apart from 

exercise stages, enums were also used for correctly setting 

the exercise the user is working on. Through the use of 

switch statements, the correct parameters can be set 

allowing for cleaner and readable code. Data structures also 

showed to be extremely helpful to group and organize 

related data. Arrays and hash tables are the main data 

structures used. Though fundamental, these data structures 

provide great runtime. Furthermore, methods were written 

to decrease the level of code repetition while maintaining 

the responsibility of each method to be specific and simple. 

Doing so follows the separation of concerns principle. 

Following this design principle gave the benefit of 

simplifying development and code maintenance. In the 

cases where debugging and troubleshooting were needed, 

separation of concerns made it very clear and simple. The 

use of design patterns and best practices learned throughout 

the different computer science courses helped save a lot of 

time and decreased the number of bugs that were 

encountered. 

C. Mobile Application Details 

When the application is started, the user is introduced to 

the home page. The home page contains our Smart Gloves 

logo, along with three buttons used for navigation. The 

three buttons are Select Exercise, Edit Exercise, and 

Settings. 

Fig. 4  Mobile Application Context Diagram 
 

The Select Exercise button takes the user to the Select 

Exercise page where they are able to select the exercise they 

wish to complete. The See All Exercises button creates a 

drop-down list that the user can interact with and select the 

desired exercise. Once the user selects the exercise, the user 

is taken to the Exercise Page where the current stage of the 

exercise routine is shown. Alongside it is the timer that will 

count down on the rest and start timer and also count up on 

the time to measure how long the user takes to complete the 

exercise. This page also consists of a left and right cube. 

Each correlating to the left and right sensor on the gloves. 

These cubes are programmed to provide a visual 

representation of the glove’s movements. Next follow the 

goal statistics. These goal stats display the metrics the user 

set to achieve when following a particular exercise. As 

described before these metrics are number of sets, rest 

timer, start timer, and reps per set. Lastly, is the current 

statistics section. This section displays the current set the 

user is in while also displaying the current number of reps 

for the particular set. None of these text field are editable 

by the user. The current statistics fields are updated data 

retrieved from the gloves while the goal statistics can be 

updated through the Edit Exercises page.  

With that being said, the next option available in the 

home page is the Edit Exercise page. Like the Select 

Exercise page, the Edit Exercise page contains a See All 

Exercises button that displays a drop down with all the 

available exercises to be edited. After the user selects an 



exercise, the View Exercise Details page is shown. This 

page contains the exercise name, the number of sets, start 

timer, rest timer, and goal reps. These fields can all be 

edited and stored by tapping on the save button. It is 

important to note that only integer values are to be entered 

in all text fields except for exercise name, which can be 

consisted of characters and numbers. To guard the user 

from errors, an error message is displayed while also 

highlighting the field with incorrect data. The values 

entered in this page become the goal metrics the user will 

want to achieve and will be displayed in the Exercise page. 

Lastly, the Settings page contains a Pair Sensors button. 

This setting displays which glove is connected to the app. 

It also allows to sound the buzzer to provide feedback that 

the glove is indeed connected. For troubleshooting 

purposes, the modify button provides the user with detailed 

data such as x, y, and z axis orientation collected from the 

sensors. This allows to troubleshoot if the sensors need to 

be calibrated.  

To conclude, each page contains a unique background 

image that relates to exercising and weight training. These 

images were used to theme the application and give a more 

personal look. The images used in the app are all free to use 

from the Unsplash website. Linked in the resources section, 

all the photos in the Unsplash website are free to use and do 

not require permission from or require providing credit to 

the photographer. These is explained in further detail in the 

license page of their website. Along with background 

images, the pages in the application contain black 

translucent buttons with white text. These colors were 

chosen since they contrast well with the colors in the 

background images. Lastly, all the main screens of the 

application contain a small info section that displays the 

current connection status of the gloves. This was designed 

to provide the user with quick feedback on whether the 

gloves are connected and therefore take action if needed. 

VI. CONCLUSION 

All aspects of hardware and software design mentioned 

in the previous sections of this report merge together to 

form a cohesive final prototype of our originally 

conceptualized Smart Gloves.  With further development, 

this idea could potentially become a fully-fledged product 

that would provide a structured boost to user workouts of 

all varieties.   
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