
Funetics

Maureen Flintz, Edwin Ortiz, Meychele

Chesley, and Daniel Falconer

Dept. of Electrical Engineering and Computer

Science, University of Central Florida,
Orlando, Florida, 32816-2450

Abstract — This electrical and computer engineering
project, dubbed Funetics, combines electrical and computer

engineering learned aspects including audio file processing
and RFID sensors. The project plays phonetic audio MP3
files. Which MP3 to play is determined by RFID cards

placed on continuously active RFID sensors. Hand crafted
code was written to pair RFID cards with phonetic sounds,
read said cards with always active sensors, and play the

sounds sequentially and repeatedly until the cards are
removed.
 Index terms — Phonemes, RFID, speech, neural network,

IPA

I. INTRODUCTION

Funetics is a fun and innovative design built for many

different types of users with communication ailments.

Funetics acts as an Alternative and Augmentative

Communication method that aims to supplement or

replace speech. Funetics is essentially a box 6 slots in the

top, where a user can insert a card that has a unique

phenome displayed on it. By placing more cards and

adding the phenomes together, the user will be able to

create and hear correctly pronounced words.

We chose to have Funetics implement the International

Phonetic Alphabet (IPA), the most commonly used

alphabetic system of phonetic notation. The IPA contains

over 40 different symbols representing each phonetic

sound in the English language, but in order to simplify

the concept, we selected specific key words for Funetics

users to be able to choose from. These pre-selected words

will be displayed on sample cards . The sample cards will

have the word that the user can build spelled in English,

a picture of what the word means and the IPA spelling of

that word. This makes is possible for anyone to use our

device and does not require the user to have any previous

knowledge of any kind.

In order to make the interaction with the device fun for

users a wireless RFID system is utilized. Passive RFID

cards with known alphanumeric IDs are placed within

range of six RFID sensors. Those ID numbers are

processed by the microprocessor. The Atmel atmega328p

microcontroller is at the core of the self-designed PCB

board which also contains the majority of the system

components. The ID numbers are associated with specific

MP3 files which contain a variety of phonetic sounds as

well as full words. The MP3 files are stored on an SD

card. As the program continuously checks the RFID

sensors for the presence of a card, the program will call

the necessary files for playback. The files are sent to the

DAC to be processed and then through the op amp before

being output through headphones or speakers.

II. HARDWARE COMPONENTS

The primary hardware components of the system can

be separated into a few different categories, each

maintaining control over a major step of the overall

process. The main components are the microprocessor,

the wireless sensors, the audio chips, and the power

supply. The primary components are integrated together

with the main software component being the code on the

Atmega328p. This section will be used to provide a basic

introduction to each component.

A. Microcontroller

The core of the project is run by Atmel’s atmega328

microcontroller. One of the major reasons for this choice

was due to its use in the popular Arduino Uno platform

and the associated resources. The 16MHz clock speed, 2

KB of RAM, and 32 KB of storage were all sufficient for

the needs of our project. The Arduino IDE, which offered

a user friendly, albeit simplified, environment that was

used to program the atmega328. Most importantly, the

atmeta328 offers 14 Digital I/O pins which is necessary

for the projects number of RFID sensors [1].

B. RFID Sensors

The MFRC522 RFID sensor was chosen primarily for

its easy integration with the atmega328. By default, the

522 works over a SPI communication with the

atmega328 which worked for the needs of this project’s

design. The practical range of the integrated antenna is

about 1 centimeter. This wasn’t ideal, but the overall

design of the project was modified to accommodate this

distance. The 522 operates on a standard 13.56MHz

frequency signal and can be used in conjunction with

many standard passive RFID tags that come in various

shapes and sizes.

C. Digital-to-Analog Converter

The MCP4921 is a 12-bit digital to analog converter

with SPI interface. The Atmega328p uses the DAC_CS

(chip select), DAC_CLK (data clock), DAC_DI (data),

and DAC_LATCH (convert the digital to analog) pins to

send the sample data over. The DAC also has a Vref

input. This is the reference voltage that it uses to define

the maximum analog value it can generate. There are two

low-pass filters connected to the output of the chip. The

first one is to prevent any digital noise from getting into

the audio signal. The second low-pass filter connected to

the output of the DAC and is for filtering out the square

wave component in the recreated audio wave. While the

noise is only 1/4096'ths of the signal (about 1.2mV) it's

still noise and these two components filter out anything

above 11kHz. The reason the filter cut-off frequency is

11kHz and not 22kHz is that if you sample at 22kHz you

will only be able to reproduce frequencies at half that

rate[3].

D. Operational Amplifier

The TL072 is a somewhat advanced JFET-input

operational amplifier. It is an integrated circuit that

incorporates well matched, high-voltage JFET and

bipolar transistors. The TL072 has negligible input bias

currents and is a low-cost part. It has low power

consumption, which is ideal for our battery power design.

Output short-circuit protection, low total harmonic

distortion (0.003%), and high-input impedance are also

included in the design.

E. Quad Bus Buffer

The SN74AHC125 is a level shifting IC that allows 5V

and 3V components to work together. The chip will be

powered with 3.3V and will allow 5V logic to be read on

the input pins. This component is needed since the SD

MMC reader runs on 3.3V while the Atmega328p runs

on 5V.

F. Power Supply

For this project a 7.4V lithium ion battery with built in

PCB protection to prevent over charging is used. The

battery is connected to a NCP1117 voltage regulator with

a fixed output of 5V. A second voltage regulator, the

LP2985, is used. This regulator will take in the 5V and

have a fixed output of 3.3V. The components powered by

5V are the ATmega328p, TL072P and the MCP4921.

The RFID readers along with the 74125N and SD MMC

reader are powered by the 3.3V supply.

G. Audio Output System

There are two options for audio output. The first option

is to use the 3.5mm stereo jack which gives the most

power output. The other available audio output option is

to have the audio output to the PCB integrated speaker

connection located next to the jack. If both the stereo jack

and speaker connections have devices connected to them

there are internal switches in the jack that, when the

headphones are removed, will output the audio through the

speaker.

III. SYSTEM DESIGN AND CONCEPTS

In order to better understand using this device and how

it works, the following state machine diagram is helpful.

Fig. 2. Funetic audio state machine

As can be seen in the above diagram, the device system

is cyclical. In other words, the system is continuously

active in checking for new/existing RFID cards and

playing the audio associated with those cards.

First the RFID sensors detect an input in the form of an

RFID card placed within range. This can happen at any

time. The MFRC522 RFID sensors are constantly

refreshing to take input and check for any changes. Each

Fig. 1. Power supply schematic

RFID card has an identification number pre-programmed

from the factor. These identification numbers are used to

associate the cards with specific phonetic sounds. It’s

possible, but highly unlikely, that a card could be missed.

The read rate for the sensors is less than 1 second. RFID

cards are read by the sensors continuously from left to

right. The audio associated for that card will be played

during the next cycle. If a card is placed down and picked

back up quick enough it’s possible for the system to not

read that RFID card. However, that’s not how the device

is intended for use and it’s not reasonable to assume a

user will do this expecting it to work.

The next phase for the system to accomplish is to get

the MP3 files stored on the SD card. This state is reached

once all RFID sensors have read sequentially. As

previously stated, every RFID card has a factory

programmed alphanumeric identification. These IDs are

then directly associated with the file names that

correspond to the audio file of the phoneme represented

on the card. A function then retrieves those the audio files

needed from the SD card and places them in the same

order as the cards are placed on the sensors. In the event

a sensor is skipped and does not have a card on it, a

function accounts for this and removes the blank space

when the cards are read.

Finally, the audio is played. The MP3 data is

retrieved from the SD, sent to the DAC via the

atmega328p microcontroller, amplified, and then output

through either the 3.5mm audio jack or a speaker (if

connected to the PCB). The audio files are played in the

same order as their RFID card counter parts are laid

onto the device. An additional function will check the

order of the cards and check them against known words

is a premade library database. If a match can be made,

an audio file of the word as a whole will be played after

the phonetic sounds. Once all audio files have

completed playing, the process will repeat with the

latest read sequence of RFID cards.

IV. HARDWARE DETAIL

The major hardware components were outlined in the

second section, Hardware Components, of this

document. These same components will now be

discussed in detail.

A. Atmega328

The ATmega328 is part of the Atmel AVR

microcontroller family. It has a data-bus architecture and

internal registers that are capable of handling 8 parallel

data signals. The three types of memory that can be

utilized by the ATmega328 are Flash (32KB), SRAM

(2KB), and EEPROM (1KB)[1].

This MCU is available in a DIP-28 package, meaning

it has 28 pins. These pins include power and I/O pins.

Many of the pins are multifunctional this allows the same

pin to be used in different modes based on how the user

configures it. This reduces the need for a larger pin count

since the MCU does not need a separate pin for every

function. This allows a user’s design to be more flexib le

since the I/O pins can provide multiple types of

functionality[1].

TABLE I

ARDUINO ATMEGA SPECIFICATIONS

Clock Speed 16MHz

RAM 2KB

Storage 32 KB

Operating
Voltage

1.8-5.5V

Minimum
Current

42 mA

Digital I/O
Pins

14

PWM Pins 6

B. RFID MFRC522

Radio-frequency Identification utilizes

electromagnetic waves to identify objects that are RFID

tagged. These cards act as identifiers for the object with

the tag. Some implementations are passive, so they rely

on energy collected from the interrogating, or reader,

radio waves of nearby RFID readers in order to send

information. An Active Reader Passive Tag (ARPT)

system includes passive tags that are activated by the

interrogating waves of the active reader. The range of

passive tags, lack of a power supply, and the small

amount of storage space are tradeoffs to be considered for

the upsides of passive RFID tag systems . Passive tags are

very low cost. The lack of a built-in power supply, the

small amount of storage, and the simple fact that passive

tags are sometimes meant to be disposable make for low

manufacturing costs, which results in a low price point

for buyers.

Fig. 3. MFRC522 Read/Write mode

The MFRC522 RFID sensor transmits the full 16-byte

RFID data word immediately upon receiving it from the

transponder. It is transmitted via ISO/IEC 14443

A/MIFARE at 10Mbit/s when using the SPI

communication[2].

Fig. 4. ISO/IEC 14443 A/MIFARE

V. HARDWARE DESIGN CONCEPT

With the hardware components detailed the overall

high level design of the project can be described. In the

following block diagram it can be seen how the major

components are integrated as well as the I/O flow.

Fig. 4. Hardware block diagram showing major components
and I/O flow.

VI. PRIMARY SOFTWARE CONFIGURATIONS

 The overall software configurations for this project

can be split into two major components. It is composed

of the embedded system, the main functionality, and our

neural network voice model.

A. Embedded System

The heart and soul of our project. The embedded

system is developed in C which controls the entire

system. The general procedure follows a standard device

layout that consists of a setup portion and a continuous

loop portion.

Initially, our setup begins with turning on all the RFID

sensors and creating a unique instance class for each one.

Then, we initialize the SD card to allow fast and direct

file access by using FAT partitions. The SPI

configuration is set to communicate at 20Mhz so that the

SD card can send the data stream as fast as possible. This

is very important as a lower frequency can cause audio

slowdown or distortion. Once SD communication is

established, the system will announce a starting up audio

to indicate we have successfully turned on with no

problems. The last component of our setup is now to run

a separate timer that will keep track of how often to

attempt producing audio of a completed word.

The main bulk of our functionality now lies in the

continuous loop. Due to our unique instance classes for

the sensors, we can easily turn on one at a time so no

sensor is ever interfering with another. The time delay

between turning one on and off is so small it is negligible

while providing the effect of it working simultaneously.

As each sensor is turned on, it will check if any phonemes

are present. If one is present, it will enunciate how to say

that phoneme while storing it to assembly with the other

presented phonemes.

After reaching the time duration we previously

assigned in the setup for our separate timer, all the

currently presented phonemes will be strung together,

removing empty spaces, and that string is compared to

our dictionary of words in our SD card. If it is a real

English word, the system will pronounce it.

Fig. 5. Flow chart representing the embedded system process
flow.

B. Neural Network Model

The voice you hear after the time duration is reached

from the separate timer, is a computer-generated voice.

The purpose of using a computer voice was to create the

mass audio dictionary to contain as many words as

possible pronounced by the same “voice.” With an audio

dictionary on board of the embedded system, it allows

portability, offline “text to speech”, rapid and

instantaneous access times.

We created this voice through the use of Python. Using

Tensorflow, we can input a sample audio file with what

it is supposed to be and have the network learn. With the

use of a trained neural network model, we were able to

input any given string and output a corresponding audio

file. Upon creating our audio files, we had to configure

the specifications to fit our designs. All audio is

converted to 8-bit, 11 kHz or 22 kHz, mono wav files.

Fig 6. Neural network process. The diagram represents the

layered implementation of training a convolutional neural

network.

The audio is then played by creating a Wave class

instance of the file using a FatReader to extract the wave

file’s metadata. After filling the buffers, the samples are

played back.

C. Software Details

Assignment of phonemes are unique to specific RFID

tags that allow us to differentiate between sounds.

Typically, each sensor only detects new tags. This is

problematic as our tags will be sitting there so they will

no longer be new as it cycles through detection again.

This can be overlooked by constantly overriding the

sensors to a ready state and clearing the buffer request

array at the end of each detection cycle. The UID of a tag

is converted into a single byte char phoneme

representation that gets concatenated with the file

extension type. Regardless of empty spaces, phonemes

get read left to right by keeping track of two arrays with

two pointers. We will only concatenate strings that are

not null char. This allows a phoneme to be placed at the

very first slot and the very last slot and s till return a two-

phoneme word.

VII. DEVICE HOUSING AND DIMENSIONS

A. Housing Dimensions

The primary prototype of Funetics is made from wood.

The box is approximately 34 inches x 8 inches x 6 inches.

This large size is required to accommodate the RFID

sensors and RFID cards. There is about 2 inches between

each sensor and card placement area. This is required for

both the placement of the cards to not feel cramped as

well as provide enough space so that the RFID cards

aren’t close enough to be picked up by adjacent RFID

sensors. Given this large size there’s ample room inside

to contain the PCB, the breakout board for the RFID

sensors, and the RFID sensors themselves.

B. Wiring Electronics

The electronics for the device will be wired together

inside of the housing using 22-gauge electrical wire with

different colors to represent different connections. Each

of the six RFID readers has seven connections that need

to be wired to a perfboard to accommodate multiple

connections to the PCB. The majority of the SPI

communication lines can share a connection, so it was

decided that a perfboard was the most secure way to

make the connection to the PCB. The PCB and the

perfboard are secured to one of the walls in the middle of

the housing this will allow for shorter connections and

more organized wiring.

VIII. BOARD DESIGN

The system design, with exception of the RFID

sensors, is implemented on a 2-layer printed circuit

board. The PCB schematic was designed using the

EagleCAD PCB design software. After testing all the

applicable components using a combination of breakout

boards and a breadboard, the design was then reproduced

virtually and sent off to be made. OSHPark was the

company that fabricated the PCB.

IX. DEVICE SAFETY REQUIREMENTS

For a device that is meant to be used and interacted

with by other people it’s paramount that Funetics be safe

to use by all. The word “Fun” is in the title after. In order

for Funetics to be fun it needs to be safe. As a device

that’s meant to be a child educational tool one must be

aware of any possible dangers. The basic function of

Funetics is to playback audio for others to listen to. There

are physical limitations to the intensity of sound that the

human ear is capable of withstanding without damage

and that level must be kept in mind during development.

For the human ear, lengthy exposure to sound levels at

85 dB or above can cause damage. This device is meant

to be used in a teaching environment, so if it is possible

for Funetics to get louder than 85 dB a warning will be

included with the device.

X. ADMINISTRATIVE

A. Group Dynamics

The project tasks were distributed between the two

CpEs, Edwin and Meychele, and two EEs, Maureen and

Daniel. The two CpE students focused on choosing and

implementing a microcontroller and designing software

for the project. The two EE students focused on choosing

and implementing the hardware aspects of the project

including the sensors, DAC/Op Amp, and power supply,

as well as the task of designing the PCB.

B. Budget and Finances

The project is not sponsored and is funded by the group.

The cost has been split between the four group members.

The cost of this project in the final stages was

approximately $450. Some parts we were able to receive

at no cost. Keeping the cost as low as possible is

important since the project was not sponsored.

XI. FUTURE PLANS FOR FUNETICS

Due to our time and cost restraints, our current project is

scaled down to a limited availability of phonemes. The

information publicly available to train a neural network

to pronounce phonemes is so sparse that creating it would

require many samples and time to produce quality up to

par as its full word variant. Additionally, we have only

included a small set of phonemes in which you can

attempt to construct words with. This greatly reduces the

amount of variety a user could try and create. Ideally

beyond the scope of senior design, it would be beneficial

to continue implementing all the phonemes and create a

full set dictionary to allow usage of full speech.

Futhermore, Funetics could be implemented to

incorporate the same functionality but in different

languages since the IPA should be able to use to construct

any combination of sound therefor any word in any

language. It would just be a matter of creating the IPA

transcriptions for the specific language.

Fig. 8. Printed circuit board layout

XII. DIFFICULTIES

A. Hardware

 From start to finish, stable connection between

components was a constant slow down giving us a variety

of issues. Whether we used a perfboard, a bread board, or

any method to connect our wires and components, we

never had a connection where we could turn it on and

confidently say it will work. If one wire was loose or not

fully connected, then the entire set up would be affected.

It was obviously most noticeable that there was a wire

connectivity problem when the software was running

slower than expected. We would dissemble the whole

thing and put it all back together because trying to pin

point which wire was causing an issue would have taken

the same time, if not longer. The circuit may not have

been working for us initially, but then dissembling the

entire circuit and putting it back together the same exact

way would allow it to work again.

 Additionally, the SD card was tremendously reliant

on a stable connection. The component to read our SD

card was the most sensitive part of our project. We would

run into errors with initialization or we would be unable

to read files out of the SD cards often.

 Getting up to 6 RFID sensors to all work properly was

challenging as well. There were numerous times where

we were unable to get all 6 working and considered

downscaling to a lower number of sensors. We theorized

the number of sensors might have been causing an

overflow of too much communication between the slave

lines and microprocessor.

 Similarity to the sensors, the SPI line being

overloaded was causing a slowdown. Pulling out data

from the SD card was going slower than desired due to

so many components and interactions going on and

constant rapid calculations.

 Both the sensor and SD speed/communication

problem was solved by adjusting the frequency and clock

rates.

B. Software

 Reading the SD card and collecting the input from the

sensors were so slow that it could take nearly 30 seconds

just to read and hear the pronunciation of one phoneme.

In the software end, we had to configure the frequency at

which the clock and SPI were going on to make sure we

could produce speeds at an optimal rate. The SPI

communication is set to run at maximum speed at

20MHz, while the clock runs at a maximum of 16MHz.

Despite this speed ups, the audio still gave us problem on

playback. To compensate for this delay, we had to reduce

the frequency at which audio played. Originally, we

would have liked to keep the highest bit rate and

frequency as possible to produce the highest quality

output for users to hear. But the best quality we could

produce while keeping the clearest crisp pronunciation

was to set the configurations to 8 bit and 11kHz for audio

that is played in correlation to phonemes and string

construction. When audio is played during the set-up

portion before entering the main loop, audio can be

played up to 16kHz.

XIII. CONCLUSION

We designed Funetics to be a hands-on interactive

learning device. This device should provide the users

with a fun way to learn the correct phonetic pronunciation

of English words. Not only has Funetics challenged us

technically, we were also challenged creatively, building

something that can help others in a new and unique way.

This project has been a great way to apply and expand

our knowledge.

BIOGRAPHIES

MAUREEN FLINTZ is a 28-year

old Electrical Engineering

student. She is currently

employed as a circuit board

technician. She wants to pursue

a career in test engineering.

Daniel Falconer is a 27-year-

old Electrical Engineering

student. He starts an internship

at an engineering consulting

agency this summer and

dreams of one day becoming a

full-time consumer electronics

journalist.

Edwin Ortiz is a fourth year

student who will obtain his

Bachelor of Science degree in

Computer Engineering at

University of Central Florida

at the end of the semester,

Spring 2018. After years of

experience working for many

companies related to software

engineering and development

he hopes to one day start his own business improving

quality of life through innovation and invention.

Meychele Chesley is a senior

in Computer Engineering at the

University of Central Florida.

She has worked at a circuit

board manufacturing company

for some time and wants to use

her hardware background to

create innovative software

solutions in the future.

ACKNOWLEDGEMENTS

The team would like to kindly thank the following

people for their assistance, guidance, and support

throughout our time at UCF and during Senior Design 1

and Senior Design 2; Dr. Samuel Richie, Dr. Lei Wei,

Dr. Reza Abdolvand, Dr. Nazanin Rahnavard, Dr.

Vikram Kapoor, William Shaw and Ruben Leon.

REFERENCES

[1]Y. Tawil, "Understanding Arduino UNO Hardware

Design", Allaboutcircuits.com, 2016. [Online].

Available: https://www.allaboutcircuits.com/technical-

articles/understanding-arduino-uno-hardware-design/.

[Accessed: 27- Oct- 2017].

[2] "MFRC522 Datasheet, PDF - Alldatasheet",

Alldatasheet.com, 2017. [Online]. Available:

http://alldatasheet.com/view.jsp?Searchword=MF
RC522. [Accessed: 12- Nov- 2017].

[3] "12-Bit DAC with SPI™ Interface",

Ww1.microchip.com, 2007. [Online]. Available:

http://ww1.microchip.com/downloads/en/device
doc/21897b.pdf. [Accessed: 12- Nov- 2017].

[4] ” Quadruple bus buffers with 3-state outputs”,

[Online]. Available:

http://www.ti.com/lit/ds/sdls044a/sdls044a.pdf.
[Accessed: 12-Jan-2017]

http://www.ti.com/lit/ds/sdls044a/sdls044a.pdf

