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Abstract —    This electrical and computer engineering 
project, dubbed Funetics, combines electrical and computer 

engineering learned aspects including audio file processing 
and RFID sensors. The project plays phonetic audio MP3 
files. Which MP3 to play is determined by RFID cards 

placed on continuously active RFID sensors. Hand crafted 
code was written to pair RFID cards with phonetic sounds, 
read said cards with always active sensors, and play the 

sounds sequentially and repeatedly until the cards are 
removed. 
 Index terms —  Phonemes, RFID, speech, neural network, 

IPA   

I. INTRODUCTION 

Funetics is a fun and innovative design built for many 

different types of users with communication ailments. 

Funetics acts as an Alternative and Augmentative 

Communication method that aims to supplement or 

replace speech. Funetics is essentially a box 6 slots in the 

top, where a user can insert a card that has a unique 

phenome displayed on it. By placing more cards and 

adding the phenomes together, the user will be able to 

create and hear correctly pronounced words. 

We chose to have Funetics implement the International 

Phonetic Alphabet (IPA), the most commonly used 

alphabetic system of phonetic notation. The IPA contains 

over 40 different symbols representing each phonetic 

sound in the English language, but in order to simplify  

the concept, we selected specific key words for Funetics 

users to be able to choose from. These pre-selected words 

will be displayed on sample cards . The sample cards will 

have the word that the user can build spelled in English, 

a picture of what the word means and the IPA spelling of 

that word. This makes is possible for anyone to use our 

device and does not require the user to have any previous 

knowledge of any kind.  

In order to make the interaction with the device fun for 

users a wireless RFID system is utilized. Passive RFID 

cards with known alphanumeric IDs are placed within  

range of six RFID sensors. Those ID numbers are 

processed by the microprocessor. The Atmel atmega328p  

microcontroller is at the core of the self-designed PCB 

board which also contains the majority of the system 

components. The ID numbers are associated with specific 

MP3 files which contain a variety of phonetic sounds as 

well as full words. The MP3 files are stored on an SD 

card. As the program continuously checks the RFID 

sensors for the presence of a card, the program will call 

the necessary files for playback. The files are sent to the 

DAC to be processed and then through the op amp before 

being output through headphones or speakers. 

 

II. HARDWARE COMPONENTS 

 

The primary hardware components of the system can 

be separated into a few different categories, each 

maintaining control over a major step of the overall 

process. The main components are the microprocessor, 

the wireless sensors, the audio chips, and the power 

supply. The primary components are integrated together 

with the main software component being the code on the 

Atmega328p. This section will be used to provide a basic 

introduction to each component. 

A.  Microcontroller 

The core of the project is run by Atmel’s atmega328 

microcontroller. One of the major reasons for this choice 

was due to its use in the popular Arduino Uno platform 

and the associated resources. The 16MHz clock speed, 2 

KB of RAM, and 32 KB of storage were all sufficient for 

the needs of our project. The Arduino IDE, which offered 

a user friendly, albeit simplified, environment that was 

used to program the atmega328. Most importantly, the 

atmeta328 offers 14 Digital I/O pins  which is necessary 

for the projects number of RFID sensors [1]. 

B.  RFID Sensors 

The MFRC522 RFID sensor was chosen primarily for 

its easy integration with the atmega328. By default, the 

522 works over a SPI communication with the 

atmega328 which worked for the needs of this project’s 

design. The practical range of the integrated antenna is 

about 1 centimeter. This wasn’t ideal, but the overall 

design of the project was modified to accommodate this 

distance. The 522 operates on a standard 13.56MHz 

frequency signal and can be used in conjunction with 

many standard passive RFID tags that come in various 

shapes and sizes. 

 

 

 
 



C. Digital-to-Analog Converter 

The MCP4921 is a 12-bit digital to analog converter 

with SPI interface. The Atmega328p uses the DAC_CS 

(chip select), DAC_CLK (data clock), DAC_DI (data), 

and DAC_LATCH (convert the digital to analog) pins to 

send the sample data over. The DAC also has a Vref 

input. This is the reference voltage that it uses to define 

the maximum analog value it can generate. There are two 

low-pass filters connected to the output of the chip. The 

first one is to prevent any digital noise from getting into 

the audio signal. The second low-pass filter connected to 

the output of the DAC and is for filtering out the square 

wave component in the recreated audio wave. While the 

noise is only 1/4096'ths of the signal (about 1.2mV) it's 

still noise and these two components filter out anything 

above 11kHz. The reason the filter cut-off frequency is 

11kHz and not 22kHz is that if you sample at 22kHz you 

will only be able to reproduce frequencies at half that 

rate[3]. 

D.  Operational Amplifier 

The TL072 is a somewhat advanced JFET-input  

operational amplifier. It is an integrated circuit that 

incorporates well matched, high-voltage JFET and 

bipolar transistors. The TL072 has negligible input bias 

currents and is a low-cost part. It has low power 

consumption, which is ideal for our battery power design. 

Output short-circuit protection, low total harmonic 

distortion (0.003%), and high-input impedance are also 

included in the design. 

E.  Quad Bus Buffer 

The SN74AHC125 is a level shifting IC that allows 5V 

and 3V components to work together. The chip will be 

powered with 3.3V and will allow 5V logic to be read on 

the input pins. This component is needed since the SD 

MMC reader runs on 3.3V while the Atmega328p runs 

on 5V. 

F.  Power Supply 

For this project a 7.4V lithium ion battery with built in 

PCB protection to prevent over charging is used. The 

battery is connected to a NCP1117 voltage regulator with 

a fixed output of 5V. A second voltage regulator, the 

LP2985, is used. This regulator will take in the 5V and 

have a fixed output of 3.3V. The components powered by 

5V are the ATmega328p, TL072P and the MCP4921. 

The RFID readers along with the 74125N and SD MMC 

reader are powered by the 3.3V supply. 

 

 

 

 

G. Audio Output System 

There are two options for audio output. The first option 

is to use the 3.5mm stereo jack which gives the most 

power output. The other available audio output option is 

to have the audio output to the PCB integrated speaker 

connection located next to the jack. If both the stereo jack 

and speaker connections have devices connected to them 

there are internal switches in the jack that, when the 

headphones are removed, will output the audio through the 

speaker. 
 

III. SYSTEM DESIGN AND CONCEPTS 

In order to better understand using this device and how 

it works, the following state machine diagram is helpful. 

 

Fig. 2. Funetic audio state machine 

As can be seen in the above diagram, the device system 

is cyclical. In other words, the system is continuously 

active in checking for new/existing RFID cards and 

playing the audio associated with those cards. 

First the RFID sensors detect an input in the form of an 

RFID card placed within range. This can happen at any 

time. The MFRC522 RFID sensors are constantly 

refreshing to take input and check for any changes. Each 

Fig. 1. Power supply schematic 



RFID card has an identification number pre-programmed 

from the factor. These identification numbers are used to 

associate the cards with specific phonetic sounds. It’s 

possible, but highly unlikely, that a card could be missed. 

The read rate for the sensors is less than 1 second. RFID 

cards are read by the sensors continuously from left to 

right. The audio associated for that card will be played 

during the next cycle. If a card is placed down and picked 

back up quick enough it’s possible for the system to not 

read that RFID card. However, that’s not how the device 

is intended for use and it’s not reasonable to assume a 

user will do this expecting it to work. 

The next phase for the system to accomplish is to get 

the MP3 files stored on the SD card. This state is reached 

once all RFID sensors have read sequentially. As 

previously stated, every RFID card has a factory 

programmed alphanumeric identification.  These IDs are 

then directly associated with the file names that 

correspond to the audio file of the phoneme represented 

on the card. A function then retrieves those the audio files 

needed from the SD card and places them in the same 

order as the cards are placed on the sensors. In the event 

a sensor is skipped and does not have a card on it, a 

function accounts for this and removes the blank space 

when the cards are read. 

Finally, the audio is played. The MP3 data is 

retrieved from the SD, sent to the DAC via the 

atmega328p microcontroller, amplified, and then output 

through either the 3.5mm audio jack or a speaker (if 

connected to the PCB). The audio files are played in the 

same order as their RFID card counter parts are laid 

onto the device. An additional function will check the 

order of the cards and check them against known words 

is a premade library database. If a match can be made, 

an audio file of the word as a whole will be played after 

the phonetic sounds. Once all audio files have 

completed playing, the process will repeat with the 

latest read sequence of RFID cards. 

IV. HARDWARE DETAIL 

The major hardware components were outlined in the 

second section, Hardware Components, of this 

document. These same components will now be 

discussed in detail. 

A. Atmega328 

The ATmega328 is part of the Atmel AVR 

microcontroller family. It has a data-bus architecture and 

internal registers that are capable of handling 8 parallel 

data signals. The three types of memory that can be 

utilized by the ATmega328 are Flash (32KB), SRAM 

(2KB), and EEPROM (1KB)[1]. 

This MCU is available in a DIP-28 package, meaning  

it has 28 pins. These pins include power and I/O pins. 

Many of the pins are multifunctional this allows the same 

pin to be used in different modes based on how the user 

configures it. This reduces the need for a larger pin count 

since the MCU does not need a separate pin for every 

function. This allows a user’s design to be more flexib le 

since the I/O pins can provide multiple types of 

functionality[1]. 

 

TABLE I 

ARDUINO ATMEGA SPECIFICATIONS 

Clock Speed 16MHz 

RAM 2KB 

Storage 32 KB 

Operating 
Voltage 

1.8-5.5V 

Minimum 
Current 

42 mA 

Digital I/O 
Pins 

14 

PWM Pins 6 

 

B. RFID MFRC522 

Radio-frequency Identification utilizes  

electromagnetic waves to identify objects that are RFID 

tagged. These cards act as identifiers for the object with 

the tag. Some implementations are passive, so they rely 

on energy collected from the interrogating, or reader, 

radio waves of nearby RFID readers in order to send 

information. An Active Reader Passive Tag (ARPT) 

system includes passive tags that are activated by the 

interrogating waves of the active reader. The range of 

passive tags, lack of a power supply, and the small 

amount of storage space are tradeoffs to be considered for 

the upsides of passive RFID tag systems . Passive tags are 

very low cost. The lack of a built-in power supply, the 

small amount of storage, and the simple fact that passive 

tags are sometimes meant to be disposable make for low 

manufacturing costs, which results in a low price point 

for buyers. 



 

Fig. 3. MFRC522 Read/Write mode 

The MFRC522 RFID sensor transmits the full 16-byte 

RFID data word immediately upon receiving it from the 

transponder.  It is transmitted via ISO/IEC 14443 

A/MIFARE at 10Mbit/s when using the SPI 

communication[2]. 

 

Fig. 4. ISO/IEC 14443 A/MIFARE 

V. HARDWARE DESIGN CONCEPT 

With the hardware components detailed the overall 

high level design of the project can be described. In the 

following block diagram it can be seen how the major 

components are integrated as well as the I/O flow. 

 

 

 

Fig. 4. Hardware block diagram showing major components 
and I/O flow. 

 

VI. PRIMARY SOFTWARE CONFIGURATIONS 

    The overall software configurations for this project 

can be split into two major components. It is composed 

of the embedded system, the main functionality, and our 

neural network voice model.  

 

A.  Embedded System  

 

The heart and soul of our project. The embedded 

system is developed in C which controls the entire 

system. The general procedure follows a standard device 

layout that consists of a setup portion and a continuous 

loop portion. 

Initially, our setup begins with turning on all the RFID 

sensors and creating a unique instance class for each one. 

Then, we initialize the SD card to allow fast and direct 

file access by using FAT partitions. The SPI 

configuration is set to communicate at 20Mhz so that the 

SD card can send the data stream as fast as possible. This 

is very important as a lower frequency can cause audio 

slowdown or distortion. Once SD communication is 

established, the system will announce a starting up audio 

to indicate we have successfully turned on with no 

problems. The last component of our setup is now to run 

a separate timer that will keep track of how often to 

attempt producing audio of a completed word.  

The main bulk of our functionality now lies in the 

continuous loop. Due to our unique instance classes for 

the sensors, we can easily turn on one at a time so no 

sensor is ever interfering with another. The time delay 

between turning one on and off is so small it is negligible 

while providing the effect of it working simultaneously. 

As each sensor is turned on, it will check if any phonemes 

are present. If one is present, it will enunciate how to say 

that phoneme while storing it to assembly with the other 

presented phonemes.  

After reaching the time duration we previously 

assigned in the setup for our separate timer, all the 

currently presented phonemes will be strung together, 

removing empty spaces, and that string is compared to 

our dictionary of words in our SD card. If it is a real 

English word, the system will pronounce it.  

 



 

Fig. 5. Flow chart representing the embedded system process 
flow. 

B. Neural Network Model 

The voice you hear after the time duration is reached 

from the separate timer, is a computer-generated voice. 

The purpose of using a computer voice was to create the 

mass audio dictionary to contain as many words as 

possible pronounced by the same “voice.” With an audio 

dictionary on board of the embedded system, it allows 

portability, offline “text to speech”, rapid and 

instantaneous access times.  

We created this voice through the use of Python. Using 

Tensorflow, we can input a sample audio file with what 

it is supposed to be and have the network learn. With the 

use of a trained neural network model, we were able to 

input any given string and output a corresponding audio 

file. Upon creating our audio files, we had to configure 

the specifications to fit our designs. All audio is 

converted to 8-bit, 11 kHz or 22 kHz, mono wav files. 

 

Fig 6. Neural network process. The diagram represents the 

layered implementation of training a convolutional neural 

network. 

The audio is then played by creating a Wave class 

instance of the file using a FatReader to extract the wave 

file’s metadata. After filling the buffers, the samples are 

played back.  

C. Software Details 

Assignment of phonemes are unique to specific RFID 

tags that allow us to differentiate between sounds. 

Typically, each sensor only detects new tags. This is 

problematic as our tags will be sitting there so they will 

no longer be new as it cycles through detection again. 

This can be overlooked by constantly overriding the 

sensors to a ready state and clearing the buffer request 

array at the end of each detection cycle. The UID of a tag 

is converted into a single byte char phoneme 

representation that gets concatenated with the file 

extension type. Regardless of empty spaces, phonemes 

get read left to right by keeping track of two arrays with 

two pointers. We will only concatenate strings that are 

not null char. This allows a phoneme to be placed at the 

very first slot and the very last slot and s till return a two-

phoneme word. 

VII. DEVICE HOUSING AND DIMENSIONS 

A. Housing Dimensions 

The primary prototype of Funetics is made from wood. 

The box is approximately 34 inches x 8 inches x 6 inches. 

This large size is required to accommodate the RFID 

sensors and RFID cards. There is about 2 inches between 

each sensor and card placement area. This is required for 

both the placement of the cards to not feel cramped as 

well as provide enough space so that the RFID cards 

aren’t close enough to be picked up by adjacent RFID 

sensors. Given this large size there’s ample room inside 

to contain the PCB, the breakout board for the RFID 

sensors, and the RFID sensors themselves. 



B. Wiring Electronics 

The electronics for the device will be wired together 

inside of the housing using 22-gauge electrical wire with 

different colors to represent different connections. Each 

of the six RFID readers has seven connections that need 

to be wired to a perfboard to accommodate multiple 

connections to the PCB. The majority of the SPI 

communication lines can share a connection, so it was 

decided that a perfboard was the most secure way to 

make the connection to the PCB. The PCB and the 

perfboard are secured to one of the walls in the middle of 

the housing this will allow for shorter connections and 

more organized wiring.  

VIII. BOARD DESIGN 

The system design, with exception of the RFID 

sensors, is implemented on a 2-layer printed circuit  

board. The PCB schematic was designed using the 

EagleCAD PCB design software. After testing all the 

applicable components using a combination of breakout 

boards and a breadboard, the design was then reproduced 

virtually and sent off to be made. OSHPark was the 

company that fabricated the PCB.  

 

IX. DEVICE SAFETY REQUIREMENTS 

For a device that is meant to be used and interacted 

with by other people it’s paramount that Funetics be safe 

to use by all. The word “Fun” is in the title after. In order 

for Funetics to be fun it needs to be safe. As a device 

that’s meant to be a child educational tool one must be 

aware of any possible dangers. The basic function of 

Funetics is to playback audio for others to listen to. There 

are physical limitations to the intensity of sound that the 

human ear is capable of withstanding without damage 

and that level must be kept in mind during development. 

For the human ear, lengthy exposure to sound levels at 

85 dB or above can cause damage. This device is meant 

to be used in a teaching environment, so if it is possible 

for Funetics to get louder than 85 dB a warning will be 

included with the device. 

X. ADMINISTRATIVE 

A. Group Dynamics 

The project tasks were distributed between the two 

CpEs, Edwin and Meychele, and two EEs, Maureen and 

Daniel. The two CpE students focused on choosing and 

implementing a microcontroller and designing software 

for the project. The two EE students focused on choosing 

and implementing the hardware aspects of the project 

including the sensors, DAC/Op Amp, and power supply, 

as well as the task of designing the PCB. 
 

B. Budget and Finances 

The project is not sponsored and is funded by the group. 

The cost has been split between the four group members. 

The cost of this project in the final stages was 

approximately $450. Some parts we were able to receive 

at no cost. Keeping the cost as low as possible is 

important since the project was not sponsored. 

XI. FUTURE PLANS FOR FUNETICS 

Due to our time and cost restraints, our current project is 

scaled down to a limited availability of phonemes. The 

information publicly available to train a neural network 

to pronounce phonemes is so sparse that creating it would 

require many samples and time to produce quality up to 

par as its full word variant. Additionally, we have only 

included a small set of phonemes in which you can 

attempt to construct words with. This greatly reduces the 

amount of variety a user could try and create. Ideally 

beyond the scope of senior design, it would be beneficial 

to continue implementing all the phonemes and create a 

full set dictionary to allow usage of full speech. 

Futhermore, Funetics could be implemented to 

incorporate the same functionality but in different 

languages since the IPA should be able to use to construct 

any combination of sound therefor any word in any 

language. It would just be a matter of creating the IPA 

transcriptions for the specific language.  

Fig. 8. Printed circuit board layout 



XII. DIFFICULTIES 

A. Hardware 

 From start to finish, stable connection between 

components was a constant slow down giving us a variety 

of issues. Whether we used a perfboard, a bread board, or 

any method to connect our wires and components, we 

never had a connection where we could turn it on and 

confidently say it will work. If one wire was loose or not 

fully connected, then the entire set up would be affected. 

It was obviously most noticeable that there was a wire 

connectivity problem when the software was running 

slower than expected. We would dissemble the whole 

thing and put it all back together because trying to pin 

point which wire was causing an issue would have taken 

the same time, if not longer. The circuit may not have 

been working for us initially, but then dissembling the 

entire circuit and putting it back together the same exact  

way would allow it to work again.  

 Additionally, the SD card was tremendously reliant  

on a stable connection. The component to read our SD 

card was the most sensitive part of our project. We would 

run into errors with initialization or we would be unable 

to read files out of the SD cards often. 

 Getting up to 6 RFID sensors to all work properly was 

challenging as well. There were numerous times where 

we were unable to get all 6 working and considered 

downscaling to a lower number of sensors. We theorized 

the number of sensors might have been causing an 

overflow of too much communication between the slave 

lines and microprocessor.  

 Similarity to the sensors, the SPI line being 

overloaded was causing a slowdown. Pulling out data 

from the SD card was going slower than desired due to 

so many components and interactions going on and 

constant rapid calculations.  

 Both the sensor and SD speed/communication 

problem was solved by adjusting the frequency and clock 

rates.  

 

B. Software 

 Reading the SD card and collecting the input from the 

sensors were so slow that it could take nearly 30 seconds 

just to read and hear the pronunciation of one phoneme. 

In the software end, we had to configure the frequency at 

which the clock and SPI were going on to make sure we 

could produce speeds at an optimal rate. The SPI 

communication is set to run at maximum speed at 

20MHz, while the clock runs at a maximum of 16MHz. 

Despite this speed ups, the audio still gave us problem on 

playback. To compensate for this delay, we had to reduce 

the frequency at which audio played. Originally, we 

would have liked to keep the highest bit rate and 

frequency as possible to produce the highest quality 

output for users to hear. But the best quality we could 

produce while keeping the clearest crisp pronunciation 

was to set the configurations to 8 bit and 11kHz for audio 

that is played in correlation to phonemes and string 

construction. When audio is played during the set-up 

portion before entering the main loop, audio can be 

played up to 16kHz.  

XIII. CONCLUSION 

We designed Funetics to be a hands-on interactive 

learning device. This device should provide the users 

with a fun way to learn the correct phonetic pronunciation 

of English words. Not only has Funetics challenged us 

technically, we were also challenged creatively, building 

something that can help others in a new and unique way. 

This project has been a great way to apply and expand 

our knowledge.  

 

BIOGRAPHIES  

MAUREEN FLINTZ is a 28-year 

old Electrical Engineering  

student. She is currently 

employed as a circuit board 

technician. She wants to pursue 

a career in test engineering. 
 

 

 

Daniel Falconer is a 27-year-

old Electrical Engineering  

student. He starts an internship 

at an engineering consulting 

agency this summer and 

dreams of one day becoming a 

full-time consumer electronics 

journalist. 

 



Edwin Ortiz is a fourth year 

student who will obtain his 

Bachelor of Science degree in 

Computer Engineering at 

University of Central Florida 

at the end of the semester, 

Spring 2018. After years of 

experience working for many 

companies related to software 

engineering and development  

he hopes to one day start his own business improving 

quality of life through innovation and invention. 

 

Meychele Chesley is a senior 

in Computer Engineering at the 

University of Central Florida. 

She has worked at a circuit 

board manufacturing company 

for some time and wants to use 

her hardware background to 

create innovative software 

solutions in the future.  

ACKNOWLEDGEMENTS 

The team would like to kindly thank the following 

people for their assistance, guidance, and support 

throughout our time at UCF and during Senior Design 1 

and Senior Design 2; Dr. Samuel Richie, Dr. Lei Wei, 

Dr. Reza Abdolvand, Dr. Nazanin Rahnavard, Dr. 

Vikram Kapoor, William Shaw and Ruben Leon. 

REFERENCES 

 

[1]Y. Tawil, "Understanding Arduino UNO Hardware 

Design", Allaboutcircuits.com, 2016. [Online]. 

Available: https://www.allaboutcircuits.com/technical-

articles/understanding-arduino-uno-hardware-design/. 

[Accessed: 27- Oct- 2017]. 

[2] "MFRC522 Datasheet, PDF - Alldatasheet", 

Alldatasheet.com, 2017. [Online]. Available: 

http://alldatasheet.com/view.jsp?Searchword=MF
RC522. [Accessed: 12- Nov- 2017]. 

[3] "12-Bit DAC with SPI™ Interface", 

Ww1.microchip.com, 2007. [Online]. Available: 

http://ww1.microchip.com/downloads/en/device
doc/21897b.pdf. [Accessed: 12- Nov- 2017]. 

[4] ” Quadruple bus buffers with 3-state outputs”, 

[Online]. Available: 

http://www.ti.com/lit/ds/sdls044a/sdls044a.pdf. 
[Accessed: 12-Jan-2017] 

 

 

 

http://www.ti.com/lit/ds/sdls044a/sdls044a.pdf

