
Safe Construction Unmanned

Aerial Vehicle

Alan Hernandez, Baian Elmazry, Nicola

DaSilva, Veronica Love

Dept. of Electrical and Computer Engineering

University of Central Florida, Orlando, Florida,

32816-2450

Abstract – Every year, construction workers are severely
injured while working at construction sites. Falls from high
places are one of the main reasons for construction related
injuries and death. Since drones are becoming more popular
within our society, they could be the solution for beter
construction worker safety. Safe Construction Unmanned
Aerial Vehicle aims to solve some of the hazardous situations
that occur on and around construction sites. To achieve this
goal, this project uses a series of algorithms, a claw
mechanism, computer vision, and implements various safety
measures.

Index Terms - April-tag, Construction, Delivery System,
Machine Vision, Safety, UAV

I. INTRODUCTION

Safe Construction Unmanned Aerial Vehicle (SCUAV)

seeks to revolutionize the construction industry using

autonomous drones capable of constructing structures

within metropolitan areas. Our project addresses the issues

of safety and cost in the modern construction industry. This

project implements the use of a drone capable of picking up

pre-cut Styrofoam blocks no larger than the drone itself

from a construction material site. The drone assembles

these Styrofoam blocks to create a three by three by three-

foot structure at the build site. Used in our project is the

Pixhawk flight controller which, through various sensors

such as a gyroscope and GPS, provide stable flight for our

vehicle. A small robotic claw attached to the bottom of the

drone works in conjunction with a rangefinder to grasp and

place Styrofoam blocks.

To automate the process of construction, an on-board

computer and camera running computer vision and

Artificial Intelligence algorithms would be required on the

drone to recognize the materials that are needed to be pick

up and assemble a structure. The microcontroller would act

as a slave to the on-board computer of the drone issuing

commands to the flight controller during the construction

process.

Communication to the drone would be done over Wi-Fi

or SSH from the on-board computer to the base station. The

drone’s information, such as its position, its current action

being performed, and battery life, will be monitored at the

base station. There will also be a way for manual override

to take control if for any reason an issue occurs during

operation. If the connection between the drone and the base

station fails, the drone will land and safely drop the object

that it is currently holding. If this project is successful, it

can change the way engineers build structures and help

create more innovative uses for drones.

Fig. 1. Flight Assembled Architecture by Gramazio Kohler
Architects, Raffaello D’Andrea, and ETH Zürich [1]

II. VEHICLE COMPONENTS

The vehicle is comprised of components that are essential

for the operation of this project. This section provides a

brief introduction to the major components used to achieve

the final product.

A. Flight Controller

The Pixhawk flight controller is vehicle’s main

component and the heart of the drone. This essential

controller sends signals for flight functionality. Included in

this device is an Inertial Measurement Unit (IMU) sensor,

a GPS module, and a barometer. The processor has a 32-bit

ARM Cortex M4 core with FPU, 168 MHz/256 KB/2 MB

Flash, and a 32-bit failsafe co-processor. [2] Some other

features that are important for this device’s functionality are

the safety switch, the low power battery buzzer, and the

USB connector. Sections III and V provide more details

about this component.

B. On-board Computer

The on-board computer, Raspberry Pi 3 Model B, is the

brain of the entire system. All the sensory information is

transmitted to the device and the computer determines all

the instructions that need to be carried out. This device has

a 64-bit ARMv8 Quad Core processor, runs at 1.2 GHz and

has 1GB of RAM. [3] A Wi-Fi module is necessary for the

functionality of the Raspberry Pi integration. The operating

system is Raspbian. The Bluetooth module in the Raspberry

Pi will also be used in communication between a mobile

device and the drone in regards of arming, disarming,

taking off and emergency landing.

C. Vision

The vision aspect is an essential part of the vehicle’s

functionality. The OpenMV M7 camera is used as the eyes

of the UAV. This camera uses machine vision instead of the

traditional computer vision aspect. Machine vision slightly

differs from computer vision in the sense that the objects to

be viewed are already known and almost all observed

events are predictable. The camera uses an STM32F765VI

ARM Cortex M7 processor that runs at 216 MHz/ 512 KB

of RAM/ 2 MB of Flash. The OV7725 image sensor enables

640x480 grayscale and RGB 565 high definition images

and videos. [4] The Hardware and Software Interface

sections shows how this camera is used in this project.

D. Microcontroller (PCB)

The microcontroller unit is housed on the Printed Circuit

Board (PCB). Connected to the board are the claw and the

rangefinder. This controller used is the Atmega328 chip.

This chip is connected to a 16-megahertz crystal oscillator.

The ATmega328 will drive the claw and rangefinder. The

data wire of the servo motor connects to a PWM pin on the

ATmega328 and the rangefinder’s trigger and echo pins

connect to the analog and digital pins of the

microcontroller. The claw and the rangefinder both operate

at 5 volts and are powered from the PCB. To establish

communication with the Raspberry-pi, the USB to serial

converter board is connected to the TX and RX pins of the

microcontroller. And the SPI pins are used to program the

ATmega chip. The hardware connections between the

Atmega328 chip and it supporting devices are seen in

Figure 2.

Fig. 2. PCB Overview

All these components are integrated together as well as

the minor components such as the claw and the rangefinder.

Figure 3 below briefly depicts how all the major

components interact with each other. A more detailed

explanation is described in the next sections below.

Fig. 3. System Interaction with Components

III. HARDWARE INTERFACE

The selection of all the hardware components required

much given thought for this project to be a success. From

the size of the drone to the smallest device, all parts are

essential. Section II, Vehicle Components, outlines the

specification of each of the major components but Section

III will dive into more details on why these components are

important as well as minor details.

A. Minor Components

The type of drone structure chosen was a hexacopter.

This type of frame seems to be a powerful machine capable

of performing the required mission. The electronic speed

controllers (ESCs) and motors connected the flight

controller are brushless. The motors are DC motors. These

two devices are compatible with the controller and they

work well when signals are received. The propellers are

carbon fiber – meaning that they are light, durable, and

seemed to be favored for powerful machines.

Lipo batteries are a safe option for this monstrous

machine. They supply a voltage quality of 11V to the flight

controller and all of the ESCs. The Raspberry Pi and the

PCB will be powered via the RPi Powerpack V1.2. This

light weight power supply fits snuggly onto the Pi and it is

sufficient enough to power both devices. It lasts up to 9

hours and supplies a voltage of 5V.

The safety components that needed to be taken into

consideration are the safety switch, the low battery buzzer,

and the RC remote controller. The safety switch is crucial

for arming and disarming the drone. It signals what stage

the drone is currently in whether it be in the initializing

stage, the enabling motors stage, or the drone is ready to be

armed stage. The low battery buzzer signifies to the user

when the battery on the drone is low. When the battery is

low the drone will stop its current mission and land. Manual

control is performed using the RC controller. The receiver

is located on the drone and the remote is controlled by the

user. Manual capabilities will come into play for if there is

an emergency need to control the drone or if the user wishes

to have SCUAV’s mission be semi-autonomous.

The claw apparatus can be seen as both a major and minor

component of this design. It is used to pick and release the

Styrofoam blocks when commanded to do so. The

ultrasonic rangefinder sensor correlates with the claw. It

signals how close an object is to the drone. Both of these

devices are configured on the microcontroller located on

the PCB.

B. Major Components

The Raspberry Pi is the mastermind of SCUAV. It is the

command central for all of the autonomous or semi-

autonomous functionalities. The Pi’s configuration is

described in greater detail in the Software Interface section.

Hardware-wise, the Pi takes in all the sensory information

from the microcontroller, the flight controller, and the

camera. All the other secondary components are also

transmitted to this device. Instead of using Universal

Asynchronous Receiver-Transmitter (UART), the flight

controller, the PCB, the camera, and RPi Powerpack will be

plugged into the Pi via USB. USB connections seemed to

be the most optimal solution for interfacing with each

device. A USB hub may be needed for this hardware setup.

An additional requirement for the Pi would be to have a

portable router available. A local network will be initialized

for accessing the Pi via Virtual Network Computing

(VNC). The Pi will connect to it from a laptop, which will

start the Pi’s program. More about why VNC is crucial will

be discussed in the next section.

Fig. 4. Middle Frame: Raspberry Pi and PCB

The OpenMV Cam M7 camera will connect to the

Raspberry Pi, as mentioned before, using one of the USB

ports located on the Pi. Originally, the I2C communication

was to be used for the camera to send data to the Pi.

However, the OpenMV performs poorly as a slave because

it would have to be in a system call to feed the hardware

data for a master device to get anything other than zeros.

[4] USB is a much faster and simpler protocol to use. The

USB connection will also power the camera allowing it to

perform its duties. The camera will be located at the bottom

of the drone, facing downwards. It will be attached to the

3D printed frame. Its position is at the front of the drone.

Figure 6 shows the location of the camera’s position on the

drone.

Pixhawk’s flight controller device can be seen as the

nerve and the muscle operator of the drone. When it

receives its instructions from the Raspberry Pi, the

controller sends signals to the motors via the ESCs on how

to control the propellers. The IMU sensor in drone

terminology comprises of a gyroscope, an accelerometer,

and magnetometer. This sensor is embedded inside of the

flight controller’s schematic. The sensor keeps the drone

stable during flight, signals the amount of speed needed to

keep the drone in the air, report the rotational forces around

the drone, and signify any changes that are needed to be

made. The GPS module allows the flight controller to know

the location of the drone. This information will allow

SCUAV to navigate along its path. Interestingly, once the

flight controller is powered on, the GPS locations help to

signify when the drone is ready to fly since it will be

flashing green.

The safety switch is wired directly onto the flight

controller. It allows for the drone to be ARMED – ready for

flight or DISARM – deactivate the drone. As the name

implies, it guarantees when it is safe to use the drone. The

RC receiver is also connected directly into the flight

controller. A binding process needs to take place in order

for the transmitter to properly communicate with the

receiver. There is also a small power distribution board

connected to the controller. The board evenly distributes

power to all the devices plugged into the flight controller.

Figure 5 below depicts how the top layer of the drone is laid

out.

Fig. 5. Top Frame: Flight Controller Connection

The microcontroller drives all of the components

connected to the PCB which can be seen Figure 2. The

absolute maximum current that can be supplied from the

ATmega328’s IO pins is 200 milliamps [5]. The

rangefinder draws 15 milliamps and the servo motor may

draw between 90 to 190 milliamps. The voltage regulator

on the Arduino Uno limits the current that can be drawn

between VCC and ground. The current drawn from the IO

pins of the ATmega328 PCB does not exceed 200

milliamps, and the power supply to the ATmega

microcontroller from the battery will have enough current

to support the current draw of the rangefinder together with

the servomotor.

The UART communication between the Raspberry-pi

and the microcontroller requires the use of a level shifter.

The RX and TX lines of the Raspberry-pi and the

ATmega328 operate at different voltages, the former

operates at 3.3 volts and the later at 5 volts. Level shifting

is performed through a FTDI chip external to the PCB. The

FTDI chip converts USB from the Raspberry-Pi to UART

operating at 5V, which can be directly connected to the RX

and TX lines of the ATmega chip. The RX line from the

FTDI connects to the TX GPIO of the microcontroller and

the TX line from the FTDI connects to the RX GPIO of the

microcontroller. Along with this, the grounds between the

Raspberry-pi and the ATmega328 needs to be connected.

Fig. 6. Bottom Frame: 3D Print Frame

IV. SOFTWARE INTERFACE

The software interface is an essential part of the drone’s

functionality. The programming language mostly used for

this project is Python, but some of Arduino’s language –

which is C/C++, was used to program the microcontroller

on the PCB. The section is split into primary and secondary

programs. The autonomous functionalities and computer

vision will use OpenMV and DroneKit libraries.

A. Primary Program

The main program for this system begins with the

Raspberry Pi. With the use of DroneKit API, a series of

parameters are initialized when the program first begins.

Some of these parameters include a set altitude, an

adjustable speed, flight modes, and emergency steps.

A connection between the Pi and the flight controller is

established once the battery is plugged in and the program

is initiated. Also, a network must be established in order for

the Raspberry-Pi to execute any commands. A big issue

encountered during testing is UCF’s IP address is private

and does not allow users to access it, which makes wi-fi

very difficult to obtain for the Raspberry-Pi. We can

establish a network by enabling a mobile hotspot with our

phone. Using GPS signals, the home location or base station

position is saved as a programming requirement. Preflight

checks are performed and reports a status back to the

Raspberry Pi. If the status is positive, the drone is ready to

be ARMED. If the status is negative, the issue is printed to

the screen and requests the user to fix the highlighted issue.

The drone is now ready for take-off once a positive status

is issued. A Bluetooth connection also needs to be

established for accessing any requests made from the phone

via the Bluetooth Application installed.

A series of steps are now flowed to ensure a successful

mission. These steps are mentioned below:

1) The Take-Off command is launched.

2) Reach target altitude and set the vehicle mode to

Loiter.

3) Search for April-tag 1 using the camera’s

algorithm.

4) Once the Materials Site (April-tag 1) has been

spotted, navigate towards it using GPS

coordinates.

5) Find the first block tag required and head towards

it by using the Euclidean distance of the block and

drone’s location.

6) When the drone is directly above the block, begin

the claw and rangefinder sequence.

7) Once the block is grabbed, increase the altitude to

the desirable flying height and search for April-tag

2 (Build Site).

8) Locate the designated tag spot for the block being

currently held and position drone for the placing

sequence.

9) After block is placed, fly back to Tag 1 and grab

another block and place it at Tag 2. Continue this

sequence until all the blocks are gone from the

Materials Site.

10) When all of the blocks are accounted for, return

back to the home base. This will be labeled with

April-tag 3.

The motors are spun at the required speed to lift the drone

off the floor once Step 1 is completed. In Step 2, the drone

must reach its required altitude in order for the camera to

search for the correct April-tag. An April-tag as shown in

Figure 7 is a visual fiducial system similar to QR codes that

can be used for a variety of functions including robotics,

camera calibration and more.

Fig. 7. Examples of April-tags [4]

April-tags are robust to lighting conditions and view angle,

which makes it simpler and efficient to complete the

building process. The April-tag should be located a few

meters away from the home base. The camera should not

be able to see the home base’s April-tag, for it should be

placed behind the drone’s view. Each April-tag belongs to

a tag family and encodes an ID number. With the ID

number, the camera can differentiate which April-tag to be

used in the building process. April-tag 1 is the Materials

Site. Once the drone is at the Materials Site, it will hover

until the camera spots the first block tag. When the correct

block is found, the drone will navigate towards it by

determining the Euclidean distance using the Pythagorean

formula since GPS will lack accuracy.

The distance must reach a value of 0 and this will signify

that the drone is directly above the block. Once it is

centered, the drone will finally be able to descend to reach

for the block. It is similar to using visual servoing.

The claw and rangefinder sequence consists of receiving

instructions from the Pi. Figure 11 gives a quick overview

of how this sequence works and it is described in detail in

the Secondary Program section. Parametric conditions will

be given and once they are met, it will signify that the drone

has indeed collected a block within the claw’s teeth. Now

that the block is being held, the drone will increase its

altitude again and search for the Build Site. Once the Build

Site has been spotted the drone will navigate towards it but

using the GPS coordinate system. At the Build Site, the

drone will be set to the Loiter mode again and the camera

will search for the correct location to place the block on its

corresponding block position. Adjustments to the drone’s

flight will be made so that the dropping sequence can be

initiated. When the block is released, the drone will

navigate back to the Materials Site. There it will restart the

picking up block sequence and fly back to the Build Site to

perform the placing sequence. This will continue until

every block is picked up and placed in the desirable

location. Once all the blocks are placed, the drone will fly

back to Home Base (April-tag 3). The mission is now

complete. Figure 8 shows a layout of how the mission is to

be performed.

(1)

Fig. 8. SCUAV’s Mission Flow

B. Secondary Program

The ATmega328 microcontroller code consists of

commands for the claw and rangefinder operations. UART

communication is also established with the microcontroller

and the Raspberry-pi.

The rangefinder used in our project is the HC-SR04. This

device emits ultrasound waves at 40 kHz. Ultrasound waves

are those above 20 kilohertz and inaudible to humans. The

rangefinder consists of a power, ground, echo, and trigger

pin. The trigger pin emits ultrasonic sound wave in eight 40

kilohertz bursts. To initiate the bursts, the trigger pin must

be held high for 10 microseconds. Once the waves are

emitted, the timer begins counting. When the sound wave

is interrupted by an object, it will bounce back and be

received by the echo pin. The timer is then stopped, and the

echo pin will be held high for the same amount of time that

the sound wave traveled [6]. The timing for the rangefinder

can be seen in Figure 9.

Fig. 9. Rangefinder Timing Diagram [micropik]

Based on the timing for the rangefinder, correctly

obtaining object distances involved the following

commands:

digitalWrite (trigPin, HIGH);
digitalWrite (trigPin, LOW);
pulseIn (echoPin, HIGH);

Fig. 10. Rangefinder Commands

The distance an object is away from the rangefinder can

be calculated from the total time a sound wave travels. This

is the time from when the trigger pin emits the sounds

waves to when they are received back by the echo pin. The

distance away an object is can be calculated from the

following equation:

𝑑 = (𝑡 ∗ 0.034)/2 (2)

Where d is the distance away an object is away in

centimeters and t is the total time the sound wave traveled

in microseconds. 343.5 meters per second is the speed of

sound waves. The speed of sound converted to centimeters

per microsecond is 0.034. The distance traveled by the

sound wave is divided in half to obtain the distance to the

object.

A standard servo motor drives the claw to open and close

the claw. To initiate the commands for the claw, a pin for

the servo data line. An angle variable is used to set the angle

of the claw opening and closing. The val variable is used to

set what command the Pi signals. The Pi signals when to

open and close the claw. Close_claw function sets the angle

to 100 degrees and writes this angle to the servo’s data pin.

Open_claw function sets the angle 15 degrees and write the

angle to the servo when the command is issued.

The Raspberry-pi determines when to close and open the

claw based on input information received from the camera

and rangefinder. The camera will detect an April tag that

indicates the drone is at the correct location to pick up a

block. This is the first requirement for the Raspberry-pi to

initiate the closing of the claw. The second requirement

ensures the drone is the claw is correct vertical distance

from the block. This information is obtained from the

rangefinder. Figure 11 illustrates a flow chart of how the

synchronization of the claw, rangefinder, and Raspberry Pi

works.

Fig. 11. Claw, Rangefinder, and Raspberry Pi Flowchart

The code is uploaded onto the microcontroller by using

the Arduino Uno as an In-circuit Serial Programmer, or ISP.

After configuring the Arduino Uno as an ISP, the code to

be uploaded onto the PCB’s ATmega328 chip is

programmed onto the Arduino Uno. The program is then

transferred from the Arduino Uno to the PCB by connecting

the SPI pins and grounds. After the PCB is programmed

and before it is connected to the drone’s battery power

supply, there is a break in power. The Atmega328 is a non-

volatile device and will retain its program despite a break

in power.

C. Bluetooth Interface

Originally, users would be to control SCUAV’s process

through a web application designed using React framework

in JavaScript. However, based on time constraints and the

complexity of the project, it was simpler to use the built-in

Bluetooth module from the Raspberry-Pi to communicate

with a mobile device. The user will then be able to control

the drone from his or her phone. Our team downloaded the

Bluetooth Electronics applications from the Google Play

Store. [8] The application allows users to connect their

phone to another device and control it with any button you

can choose from. A Python script is then created to connect

our phone to the Raspberry-Pi. The entire program is halted

until the user is connected to Bluetooth. Once connected,

the Bluetooth dispatcher is executed and integrates the

drone’s functionalities depending on which button is

pressed. The green button will arm the drone, the blue

button will disarm the drone, the up-arrow button will take

off, the down-arrow button will land the drone, and finally

the red button will end the program and the disconnect from

Bluetooth.

D. Emergency Software Plan

Fly drones can be a very dangerous ordeal, especially in

the surroundings in which this project will be demonstrated.

Some of the cases to consider are low battery, claw did not

grab block, and if the drone decides to malfunction. Safety

is SCUAV’s number one priority.

Case 1, Low Battery, should be consider because it will

help to prevent unnecessary damage to the drone and limit

the chance of a flying object situation. If the case were to

occur, the drone will signal when the low battery

percentage has been achieved. The user will be able to see

this, and a beeping noise should be indicated. Once this

signal is issued, the vehicle mode will be set to “RTL” -

which stands for Return to Home and if a block is being

currently held, it will be released immediately before the

drone returns to Home Base.

Case 2, Missed Block, is considered because if drone

misses the block, it will think that it is currently carrying a

block and proceed to continue its path. This may cause a

break in the algorithm and crash the drone in an unsafe way.

To prevent this from happening, a flag will be set to see if

the angle of the claw is reached for holding an object.

Case 3, Manual Override, is extremely crucial because as

mentioned before safety is our number one priority. If the

drone does not follow the algorithm and goes off the path,

the user will be alerted immediately. The override flag will

be issued, and drone will hover in its current position until

the user has control of the drone using the remote controller.

V. CONCLUSION

SCUAV has potential in revolutionizing the construction

and drone industry, as well as enhancing safety procedures

when working in hazardous areas. To achieve our project

goal, challenges involving weight distribution, system

communication, and compatibility were overcome. The

Concerns involving the vehicles weight distribution arose

because of the numerous components necessary for our

drone. These issues were resolved to ensure steady vehicle

takeoff and flight. The SCUAV project relies heavily on

software and computer vision. The causes for some of the

software communication issues involved various

components sending data to one device and private

networks. Our group also overcame the compatibility issues

between the types of batteries, flight controllers and

propellers used for the vehicle. The drone has been tested

autonomously and manually in an outdoor environment.

The Senior Design course has been both challenging and

enriching. The knowledge and skills gained in the

classroom have equipped for achieving our project goals.

Both technical and interpersonal abilities were developed

during the course.

ACKNOWLEDGEMENT

The authors wish to acknowledge the assistance of Dr. Gita

Sukthankar, Mr. Saif Ghassan, and Mr. Fred Cass.

REFERENCES

[1] B. Hobson, “Building Architecture with Drones,” Dezeen and
MINI Frontiers, (03-Mar-2015). [Online]. Available:
https://www.dezeen.com/2015/03/03/movie-drones-
building-architecture-ammar-mirjan-gramazio-kohler/
[Accessed: 13-Apr-2018].

[2] ArduPilot Dev Team, “Pixhawk Overview,” Pixhawk
Overview - Copter documentation, (2016). [Online].
Available at: http://ardupilot.org/copter/docs/common-
pixhawk-overview.html. [Accessed: 13-Apr-2018].

[3] Raspberry Pi Foundation, “Raspberry Pi 3 Model B,”
Raspberry Pi. [Online]. Available:
https://www.raspberrypi.org/products/raspberry-pi-3-
model-b/ . [Accessed: 13-Apr-2018].

[4] K. W. Agyeman and I. Abdalkader , “OpenMV Cam M7,”
OpenMV, (2017). [Online]. Available:
https://openmv.io/products/openmv-cam-m7.[Accessed: 13-
Apr-2018].

[5] Ww1.microchip.com. (2018). [online] Available at:
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel
-42735-8-bit-AVR-Microcontroller-ATmega328-
328P_Datasheet.pdf [Accessed 13 Apr. 2018].

[6] HowToMechatronics. Ultrasonic Sensor HC-SR04 and
Arduino Tutorial. (2018). [online] Available at:
https://howtomechatronics.com/tutorials/arduino/ultrasonic-
sensor-hc-sr04/ [Accessed 13 Apr. 2018].

[7] Micropik.com. (2018). [online] Available at:
http://www.micropik.com/PDF/HCSR04.pdf [Accessed 13
Apr. 2018].

[8] Keuwl.com. Bluetooth Electronics. (2018). [online] Available
at: http://www.keuwl.com/apps/bluetoothelectronics/
[Accessed 13 Apr. 2018].

ENGINEERS

Alan Hernandez is a 24-year-old

graduating Computer Engineering

student. He is responsible for the

calibration of drone, manual flight

testing, initial research into DroneKit,

and assembling devices and other

components to the project. Alan

recently interned at Droplit.io. He will

be pursuing a potential career in the

Software Engineering field.

Baian Elmazry is a 22-year-old

graduating Computer Engineering

student. He is responsible for

handling the computer vision

integration of the drone as well as

developing the drone’s pathfinding

algorithms. He recently interned at

a small startup sofitU and will

pursue a career in Robotics and

Software Engineering. Baian

eventually will pursue a graduate degree, focusing on

Machine Learning.

Nicola DaSilva is a 23-year-old

graduating Computer Engineering

student. She was responsible for

designing the 3D printed frame,

some of the software integration,

and hardware layout of drone

components. She is pursuing a

career in the Software Engineering

field. Nicola also plans to obtain her

Master’s in the field of Robotics or Cyber Security, in the

near future.

Veronica Love is a 21-year-old

graduating Electrical

Engineering student. She

managed the distribution of

power for the project and the

design of the PCB. She has been

a participant of the College

Work Experience Program with

Lockheed Martin since June

2016. After graduating she will be working for Direct Beam

Incorporated. She will also be pursuing her Master’s in

Electrical Engineering with a focus in Electromagnetics

and Optics.

https://www.dezeen.com/2015/03/03/movie-drones-building-architecture-ammar-mirjan-gramazio-kohler/
https://www.dezeen.com/2015/03/03/movie-drones-building-architecture-ammar-mirjan-gramazio-kohler/
http://ardupilot.org/copter/docs/common-pixhawk-overview.html
http://ardupilot.org/copter/docs/common-pixhawk-overview.html
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://openmv.io/products/openmv-cam-m7
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42735-8-bit-AVR-Microcontroller-ATmega328-328P_Datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42735-8-bit-AVR-Microcontroller-ATmega328-328P_Datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42735-8-bit-AVR-Microcontroller-ATmega328-328P_Datasheet.pdf
https://howtomechatronics.com/tutorials/arduino/ultrasonic-sensor-hc-sr04/
https://howtomechatronics.com/tutorials/arduino/ultrasonic-sensor-hc-sr04/
http://www.micropik.com/PDF/HCSR04.pdf
http://www.keuwl.com/apps/bluetoothelectronics/

