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Abstract – Every year, construction workers are severely 
injured while working at construction sites. Falls from high 
places are one of the main reasons for construction related 
injuries and death. Since drones are becoming more popular 
within our society, they could be the solution for beter 
construction worker safety. Safe Construction Unmanned 
Aerial Vehicle aims to solve some of the hazardous situations 
that occur on and around construction sites. To achieve this 
goal, this project uses a series of algorithms, a claw 
mechanism, computer vision, and implements various safety 
measures. 

Index Terms - April-tag, Construction, Delivery System, 
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I. INTRODUCTION 

Safe Construction Unmanned Aerial Vehicle (SCUAV) 

seeks to revolutionize the construction industry using 

autonomous drones capable of constructing structures 

within metropolitan areas. Our project addresses the issues 

of safety and cost in the modern construction industry. This 

project implements the use of a drone capable of picking up 

pre-cut Styrofoam blocks no larger than the drone itself 

from a construction material site. The drone assembles 

these Styrofoam blocks to create a three by three by three-

foot structure at the build site.  Used in our project is the 

Pixhawk flight controller which, through various sensors 

such as a gyroscope and GPS, provide stable flight for our 

vehicle. A small robotic claw attached to the bottom of the 

drone works in conjunction with a rangefinder to grasp and 

place Styrofoam blocks.  

To automate the process of construction, an on-board 

computer and camera running computer vision and 

Artificial Intelligence algorithms would be required on the 

drone to recognize the materials that are needed to be pick 

up and assemble a structure. The microcontroller would act 

as a slave to the on-board computer of the drone issuing 

commands to the flight controller during the construction 

process.  

Communication to the drone would be done over Wi-Fi 

or SSH from the on-board computer to the base station. The 

drone’s information, such as its position, its current action 

being performed, and battery life, will be monitored at the 

base station. There will also be a way for manual override 

to take control if for any reason an issue occurs during 

operation. If the connection between the drone and the base 

station fails, the drone will land and safely drop the object 

that it is currently holding. If this project is successful, it 

can change the way engineers build structures and help 

create more innovative uses for drones. 

 

 
 
Fig. 1.  Flight Assembled Architecture by Gramazio Kohler 
Architects, Raffaello D’Andrea, and ETH Zürich [1] 

II. VEHICLE COMPONENTS 

The vehicle is comprised of components that are essential 

for the operation of this project. This section provides a 

brief introduction to the major components used to achieve 

the final product.  

A. Flight Controller 

The Pixhawk flight controller is vehicle’s main 

component and the heart of the drone. This essential 

controller sends signals for flight functionality. Included in 

this device is an Inertial Measurement Unit (IMU) sensor, 

a GPS module, and a barometer. The processor has a 32-bit 

ARM Cortex M4 core with FPU, 168 MHz/256 KB/2 MB 

Flash, and a 32-bit failsafe co-processor. [2] Some other 

features that are important for this device’s functionality are 

the safety switch, the low power battery buzzer, and the 

USB connector. Sections III and V provide more details 

about this component.  

B. On-board Computer 

The on-board computer, Raspberry Pi 3 Model B, is the 

brain of the entire system. All the sensory information is 

transmitted to the device and the computer determines all 

the instructions that need to be carried out. This device has 

a 64-bit ARMv8 Quad Core processor, runs at 1.2 GHz and 

has 1GB of RAM. [3] A Wi-Fi module is necessary for the 

functionality of the Raspberry Pi integration. The operating 



system is Raspbian. The Bluetooth module in the Raspberry 

Pi will also be used in communication between a mobile 

device and the drone in regards of arming, disarming, 

taking off and emergency landing.  

C. Vision  

The vision aspect is an essential part of the vehicle’s 

functionality. The OpenMV M7 camera is used as the eyes 

of the UAV. This camera uses machine vision instead of the 

traditional computer vision aspect. Machine vision slightly 

differs from computer vision in the sense that the objects to 

be viewed are already known and almost all observed 

events are predictable. The camera uses an STM32F765VI 

ARM Cortex M7 processor that runs at 216 MHz/ 512 KB 

of RAM/ 2 MB of Flash. The OV7725 image sensor enables 

640x480 grayscale and RGB 565 high definition images 

and videos. [4] The Hardware and Software Interface 

sections shows how this camera is used in this project. 

D. Microcontroller (PCB) 

The microcontroller unit is housed on the Printed Circuit 

Board (PCB).  Connected to the board are the claw and the 

rangefinder. This controller used is the Atmega328 chip. 

This chip is connected to a 16-megahertz crystal oscillator. 

The ATmega328 will drive the claw and rangefinder. The 

data wire of the servo motor connects to a PWM pin on the 

ATmega328 and the rangefinder’s trigger and echo pins 

connect to the analog and digital pins of the 

microcontroller. The claw and the rangefinder both operate 

at 5 volts and are powered from the PCB. To establish 

communication with the Raspberry-pi, the USB to serial 

converter board is connected to the TX and RX pins of the 

microcontroller.  And the SPI pins are used to program the 

ATmega chip. The hardware connections between the 

Atmega328 chip and it supporting devices are seen in 

Figure 2.  

 

 
Fig. 2.  PCB Overview 

 

All these components are integrated together as well as 

the minor components such as the claw and the rangefinder. 

Figure 3 below briefly depicts how all the major 

components interact with each other. A more detailed 

explanation is described in the next sections below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.  System Interaction with Components 

 

III. HARDWARE INTERFACE 

The selection of all the hardware components required 

much given thought for this project to be a success. From 

the size of the drone to the smallest device, all parts are 

essential. Section II, Vehicle Components, outlines the 

specification of each of the major components but Section 

III will dive into more details on why these components are 

important as well as minor details.  

A. Minor Components 

The type of drone structure chosen was a hexacopter. 

This type of frame seems to be a powerful machine capable 

of performing the required mission. The electronic speed 

controllers (ESCs) and motors connected the flight 

controller are brushless. The motors are DC motors. These 

two devices are compatible with the controller and they 

work well when signals are received. The propellers are 

carbon fiber – meaning that they are light, durable, and 

seemed to be favored for powerful machines.  

Lipo batteries are a safe option for this monstrous 

machine. They supply a voltage quality of 11V to the flight 

controller and all of the ESCs. The Raspberry Pi and the 

PCB will be powered via the RPi Powerpack V1.2. This 

light weight power supply fits snuggly onto the Pi and it is 

sufficient enough to power both devices. It lasts up to 9 

hours and supplies a voltage of 5V.  



The safety components that needed to be taken into 

consideration are the safety switch, the low battery buzzer, 

and the RC remote controller. The safety switch is crucial 

for arming and disarming the drone. It signals what stage 

the drone is currently in whether it be in the initializing 

stage, the enabling motors stage, or the drone is ready to be 

armed stage. The low battery buzzer signifies to the user 

when the battery on the drone is low. When the battery is 

low the drone will stop its current mission and land. Manual 

control is performed using the RC controller. The receiver 

is located on the drone and the remote is controlled by the 

user. Manual capabilities will come into play for if there is 

an emergency need to control the drone or if the user wishes 

to have SCUAV’s mission be semi-autonomous.  

The claw apparatus can be seen as both a major and minor 

component of this design. It is used to pick and release the 

Styrofoam blocks when commanded to do so. The 

ultrasonic rangefinder sensor correlates with the claw. It 

signals how close an object is to the drone. Both of these 

devices are configured on the microcontroller located on 

the PCB.  

B. Major Components 

The Raspberry Pi is the mastermind of SCUAV. It is the 

command central for all of the autonomous or semi-

autonomous functionalities. The Pi’s configuration is 

described in greater detail in the Software Interface section. 

Hardware-wise, the Pi takes in all the sensory information 

from the microcontroller, the flight controller, and the 

camera. All the other secondary components are also 

transmitted to this device. Instead of using Universal 

Asynchronous Receiver-Transmitter (UART), the flight 

controller, the PCB, the camera, and RPi Powerpack will be 

plugged into the Pi via USB. USB connections seemed to 

be the most optimal solution for interfacing with each 

device. A USB hub may be needed for this hardware setup. 

An additional requirement for the Pi would be to have a 

portable router available. A local network will be initialized 

for accessing the Pi via Virtual Network Computing 

(VNC). The Pi will connect to it from a laptop, which will 

start the Pi’s program. More about why VNC is crucial will 

be discussed in the next section.  

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.  Middle Frame: Raspberry Pi and PCB 

 

The OpenMV Cam M7 camera will connect to the 

Raspberry Pi, as mentioned before, using one of the USB 

ports located on the Pi. Originally, the I2C communication 

was to be used for the camera to send data to the Pi. 

However, the OpenMV performs poorly as a slave because 

it would have to be in a system call to feed the hardware 

data for a master device to get anything other than zeros. 

[4] USB is a much faster and simpler protocol to use. The 

USB connection will also power the camera allowing it to 

perform its duties. The camera will be located at the bottom 

of the drone, facing downwards. It will be attached to the 

3D printed frame. Its position is at the front of the drone. 

Figure 6 shows the location of the camera’s position on the 

drone. 

 

Pixhawk’s flight controller device can be seen as the 

nerve and the muscle operator of the drone. When it 

receives its instructions from the Raspberry Pi, the 

controller sends signals to the motors via the ESCs on how 

to control the propellers. The IMU sensor in drone 

terminology comprises of a gyroscope, an accelerometer, 

and magnetometer. This sensor is embedded inside of the 

flight controller’s schematic. The sensor keeps the drone 

stable during flight, signals the amount of speed needed to 

keep the drone in the air, report the rotational forces around 

the drone, and signify any changes that are needed to be 

made. The GPS module allows the flight controller to know 

the location of the drone. This information will allow 

SCUAV to navigate along its path. Interestingly, once the 

flight controller is powered on, the GPS locations help to 

signify when the drone is ready to fly since it will be 

flashing green.  

The safety switch is wired directly onto the flight 

controller. It allows for the drone to be ARMED – ready for 

flight or DISARM – deactivate the drone.  As the name 



implies, it guarantees when it is safe to use the drone. The 

RC receiver is also connected directly into the flight 

controller. A binding process needs to take place in order 

for the transmitter to properly communicate with the 

receiver. There is also a small power distribution board 

connected to the controller. The board evenly distributes 

power to all the devices plugged into the flight controller. 

Figure 5 below depicts how the top layer of the drone is laid 

out.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.  Top Frame: Flight Controller Connection 

 

The microcontroller drives all of the components 

connected to the PCB which can be seen Figure 2. The 

absolute maximum current that can be supplied from the 

ATmega328’s IO pins is 200 milliamps [5]. The 

rangefinder draws 15 milliamps and the servo motor may 

draw between 90 to 190 milliamps. The voltage regulator 

on the Arduino Uno limits the current that can be drawn 

between VCC and ground. The current drawn from the IO 

pins of the ATmega328 PCB does not exceed 200 

milliamps, and the power supply to the ATmega 

microcontroller from the battery will have enough current 

to support the current draw of the rangefinder together with 

the servomotor.  

The UART communication between the Raspberry-pi 

and the microcontroller requires the use of a level shifter. 

The RX and TX lines of the Raspberry-pi and the 

ATmega328 operate at different voltages, the former 

operates at 3.3 volts and the later at 5 volts. Level shifting 

is performed through a FTDI chip external to the PCB. The 

FTDI chip converts USB from the Raspberry-Pi to UART 

operating at 5V, which can be directly connected to the RX 

and TX lines of the ATmega chip. The RX line from the 

FTDI connects to the TX GPIO of the microcontroller and 

the TX line from the FTDI connects to the RX GPIO of the 

microcontroller. Along with this, the grounds between the 

Raspberry-pi and the ATmega328 needs to be connected.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Fig. 6.  Bottom Frame: 3D Print Frame 

 

IV. SOFTWARE INTERFACE 

The software interface is an essential part of the drone’s 

functionality. The programming language mostly used for 

this project is Python, but some of Arduino’s language – 

which is C/C++, was used to program the microcontroller 

on the PCB. The section is split into primary and secondary 

programs. The autonomous functionalities and computer 

vision will use OpenMV and DroneKit libraries.  

 

A. Primary Program 

The main program for this system begins with the 

Raspberry Pi. With the use of DroneKit API, a series of 

parameters are initialized when the program first begins. 

Some of these parameters include a set altitude, an 

adjustable speed, flight modes, and emergency steps. 

A connection between the Pi and the flight controller is 

established once the battery is plugged in and the program 

is initiated. Also, a network must be established in order for 

the Raspberry-Pi to execute any commands. A big issue 

encountered during testing is UCF’s IP address is private 

and does not allow users to access it, which makes wi-fi 

very difficult to obtain for the Raspberry-Pi. We can 

establish a network by enabling a mobile hotspot with our 

phone. Using GPS signals, the home location or base station 

position is saved as a programming requirement. Preflight 

checks are performed and reports a status back to the 

Raspberry Pi. If the status is positive, the drone is ready to 

be ARMED. If the status is negative, the issue is printed to 

the screen and requests the user to fix the highlighted issue. 

The drone is now ready for take-off once a positive status 

is issued. A Bluetooth connection also needs to be 



established for accessing any requests made from the phone 

via the Bluetooth Application installed. 

A series of steps are now flowed to ensure a successful 

mission. These steps are mentioned below: 

1) The Take-Off command is launched.  

2) Reach target altitude and set the vehicle mode to 

Loiter. 

3) Search for April-tag 1 using the camera’s 

algorithm.  

4) Once the Materials Site (April-tag 1) has been 

spotted, navigate towards it using GPS 

coordinates.  

5) Find the first block tag required and head towards 

it by using the Euclidean distance of the block and 

drone’s location.  

6) When the drone is directly above the block, begin 

the claw and rangefinder sequence.  

7) Once the block is grabbed, increase the altitude to 

the desirable flying height and search for April-tag 

2 (Build Site).  

8) Locate the designated tag spot for the block being 

currently held and position drone for the placing 

sequence. 

9) After block is placed, fly back to Tag 1 and grab 

another block and place it at Tag 2. Continue this 

sequence until all the blocks are gone from the 

Materials Site.  

10) When all of the blocks are accounted for, return 

back to the home base. This will be labeled with 

April-tag 3. 

 

The motors are spun at the required speed to lift the drone 

off the floor once Step 1 is completed. In Step 2, the drone 

must reach its required altitude in order for the camera to 

search for the correct April-tag. An April-tag as shown in 

Figure 7 is a visual fiducial system similar to QR codes that 

can be used for a variety of functions including robotics, 

camera calibration and more.  

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 7.  Examples of April-tags [4] 

 

April-tags are robust to lighting conditions and view angle, 

which makes it simpler and efficient to complete the 

building process. The April-tag should be located a few 

meters away from the home base. The camera should not 

be able to see the home base’s April-tag, for it should be 

placed behind the drone’s view. Each April-tag belongs to 

a tag family and encodes an ID number. With the ID 

number, the camera can differentiate which April-tag to be 

used in the building process. April-tag 1 is the Materials 

Site. Once the drone is at the Materials Site, it will hover 

until the camera spots the first block tag. When the correct 

block is found, the drone will navigate towards it by 

determining the Euclidean distance using the Pythagorean 

formula since GPS will lack accuracy.  

The distance must reach a value of 0 and this will signify 

that the drone is directly above the block. Once it is 

centered, the drone will finally be able to descend to reach 

for the block. It is similar to using visual servoing.  

The claw and rangefinder sequence consists of receiving 

instructions from the Pi. Figure 11 gives a quick overview 

of how this sequence works and it is described in detail in 

the Secondary Program section. Parametric conditions will 

be given and once they are met, it will signify that the drone 

has indeed collected a block within the claw’s teeth.  Now 

that the block is being held, the drone will increase its 

altitude again and search for the Build Site. Once the Build 

Site has been spotted the drone will navigate towards it but 

using the GPS coordinate system. At the Build Site, the 

drone will be set to the Loiter mode again and the camera 

will search for the correct location to place the block on its 

corresponding block position. Adjustments to the drone’s 

flight will be made so that the dropping sequence can be 

initiated. When the block is released, the drone will 

navigate back to the Materials Site. There it will restart the 

picking up block sequence and fly back to the Build Site to 

perform the placing sequence. This will continue until 

every block is picked up and placed in the desirable 

location. Once all the blocks are placed, the drone will fly 

back to Home Base (April-tag 3). The mission is now 

complete. Figure 8 shows a layout of how the mission is to 

be performed.  
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Fig. 8.  SCUAV’s Mission Flow 

 

B. Secondary Program 

The ATmega328 microcontroller code consists of 

commands for the claw and rangefinder operations. UART 

communication is also established with the microcontroller 

and the Raspberry-pi.  

The rangefinder used in our project is the HC-SR04. This 

device emits ultrasound waves at 40 kHz. Ultrasound waves 

are those above 20 kilohertz and inaudible to humans. The 

rangefinder consists of a power, ground, echo, and trigger 

pin. The trigger pin emits ultrasonic sound wave in eight 40 

kilohertz bursts. To initiate the bursts, the trigger pin must 

be held high for 10 microseconds. Once the waves are 

emitted, the timer begins counting. When the sound wave 

is interrupted by an object, it will bounce back and be 

received by the echo pin. The timer is then stopped, and the 

echo pin will be held high for the same amount of time that 

the sound wave traveled [6]. The timing for the rangefinder 

can be seen in Figure 9.  

 

 
Fig. 9.  Rangefinder Timing Diagram [micropik] 

 

Based on the timing for the rangefinder, correctly 

obtaining object distances involved the following 

commands: 

 

digitalWrite (trigPin, HIGH); 
digitalWrite (trigPin, LOW); 
pulseIn (echoPin, HIGH); 

 
Fig. 10.  Rangefinder Commands 

 

The distance an object is away from the rangefinder can 

be calculated from the total time a sound wave travels. This 

is the time from when the trigger pin emits the sounds 

waves to when they are received back by the echo pin. The 

distance away an object is can be calculated from the 

following equation: 

 

𝑑 = (𝑡 ∗ 0.034)/2  (2) 

 

Where d is the distance away an object is away in 

centimeters and t is the total time the sound wave traveled 

in microseconds. 343.5 meters per second is the speed of 

sound waves. The speed of sound converted to centimeters 

per microsecond is 0.034. The distance traveled by the 

sound wave is divided in half to obtain the distance to the 

object. 

A standard servo motor drives the claw to open and close 

the claw. To initiate the commands for the claw, a pin for 

the servo data line. An angle variable is used to set the angle 

of the claw opening and closing. The val variable is used to 

set what command the Pi signals. The Pi signals when to 

open and close the claw. Close_claw function sets the angle 

to 100 degrees and writes this angle to the servo’s data pin. 

Open_claw function sets the angle 15 degrees and write the 

angle to the servo when the command is issued. 

The Raspberry-pi determines when to close and open the 

claw based on input information received from the camera 

and rangefinder. The camera will detect an April tag that 

indicates the drone is at the correct location to pick up a 

block. This is the first requirement for the Raspberry-pi to 

initiate the closing of the claw. The second requirement 

ensures the drone is the claw is correct vertical distance 

from the block. This information is obtained from the 

rangefinder. Figure 11 illustrates a flow chart of how the 

synchronization of the claw, rangefinder, and Raspberry Pi 

works. 



 
Fig. 11.  Claw, Rangefinder, and Raspberry Pi Flowchart  

 

The code is uploaded onto the microcontroller by using 

the Arduino Uno as an In-circuit Serial Programmer, or ISP. 

After configuring the Arduino Uno as an ISP, the code to 

be uploaded onto the PCB’s ATmega328 chip is 

programmed onto the Arduino Uno.  The program is then 

transferred from the Arduino Uno to the PCB by connecting 

the SPI pins and grounds. After the PCB is programmed 

and before it is connected to the drone’s battery power 

supply, there is a break in power. The Atmega328 is a non-

volatile device and will retain its program despite a break 

in power.   

C. Bluetooth Interface 

Originally, users would be to control SCUAV’s process 

through a web application designed using React framework 

in JavaScript. However, based on time constraints and the 

complexity of the project, it was simpler to use the built-in 

Bluetooth module from the Raspberry-Pi to communicate 

with a mobile device. The user will then be able to control 

the drone from his or her phone. Our team downloaded the 

Bluetooth Electronics applications from the Google Play 

Store. [8] The application allows users to connect their 

phone to another device and control it with any button you 

can choose from. A Python script is then created to connect 

our phone to the Raspberry-Pi. The entire program is halted 

until the user is connected to Bluetooth. Once connected, 

the Bluetooth dispatcher is executed and integrates the 

drone’s functionalities depending on which button is 

pressed. The green button will arm the drone, the blue 

button will disarm the drone, the up-arrow button will take 

off, the down-arrow button will land the drone, and finally 

the red button will end the program and the disconnect from 

Bluetooth.  

D. Emergency Software Plan 

Fly drones can be a very dangerous ordeal, especially in 

the surroundings in which this project will be demonstrated. 

Some of the cases to consider are low battery, claw did not 

grab block, and if the drone decides to malfunction. Safety 

is SCUAV’s number one priority. 

Case 1, Low Battery, should be consider because it will 

help to prevent unnecessary damage to the drone and limit 

the chance of a flying object situation. If the case were to 

occur, the drone will signal when the low battery 

percentage has been achieved. The user will be able to see 

this, and a beeping noise should be indicated. Once this 

signal is issued, the vehicle mode will be set to “RTL” - 

which stands for Return to Home and if a block is being 

currently held, it will be released immediately before the 

drone returns to Home Base. 

Case 2, Missed Block, is considered because if drone 

misses the block, it will think that it is currently carrying a 

block and proceed to continue its path. This may cause a 

break in the algorithm and crash the drone in an unsafe way. 

To prevent this from happening, a flag will be set to see if 

the angle of the claw is reached for holding an object.  

Case 3, Manual Override, is extremely crucial because as 

mentioned before safety is our number one priority. If the 

drone does not follow the algorithm and goes off the path, 

the user will be alerted immediately. The override flag will 

be issued, and drone will hover in its current position until 

the user has control of the drone using the remote controller. 

 

V. CONCLUSION 

SCUAV has potential in revolutionizing the construction 

and drone industry, as well as enhancing safety procedures 

when working in hazardous areas.  To achieve our project 

goal, challenges involving weight distribution, system 

communication, and compatibility were overcome. The 

Concerns involving the vehicles weight distribution arose 

because of the numerous components necessary for our 

drone. These issues were resolved to ensure steady vehicle 

takeoff and flight. The SCUAV project relies heavily on 

software and computer vision. The causes for some of the 

software communication issues involved various 

components sending data to one device and private 

networks. Our group also overcame the compatibility issues 

between the types of batteries, flight controllers and 

propellers used for the vehicle. The drone has been tested 

autonomously and manually in an outdoor environment. 



The Senior Design course has been both challenging and 

enriching. The knowledge and skills gained in the 

classroom have equipped for achieving our project goals. 

Both technical and interpersonal abilities were developed 

during the course.    
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