
i | P a g e  
 

 
 
SigSent 
Autonomous Sentinel and Patrol Robot 

Department of Electrical and Computer Engineering 

University of Central Florida 

 
 
 

Group 11 

Joshua Lee Franco, CpE, EE, ME 

John Millner, CpE, & EE 

Jeff Strange Jr., EE 

Richard Wales, CpE 

 

 

 

 

 

Sponsor: Vision Land Service 

Significant Contributors: Robotics Club, TI Innovation Lab 

  



ii | P a g e  
 

TABLE OF CONTENTS  
1 Executive Summary ..................................................................................... 1 

2 Project Narrative........................................................................................... 2 
2.1.1 Goals and Objectives ............................................................................................... 2 
2.1.2 Requirements Specifications .................................................................................... 3 
2.1.3 House of Quality ...................................................................................................... 5 

3 Design Constraints and Standards ............................................................. 6 

3.1 Design Constraints ................................................................................ 6 
3.1.1 Economic ................................................................................................................ 6 
3.1.2 Environmental ......................................................................................................... 6 
3.1.3 Social ...................................................................................................................... 7 
3.1.4 Political / Ethical ...................................................................................................... 7 
3.1.5 Health & Safety........................................................................................................ 7 
3.1.6 Manufacturability ..................................................................................................... 8 
3.1.7 Sustainability ........................................................................................................... 8 

3.2 Hardware Standards .............................................................................. 8 
3.2.1 Soldering Standards ................................................................................................ 8 
3.2.2 PCB Design Standards ............................................................................................ 9 
3.2.3 IEEE 802.11g ........................................................................................................ 10 
3.2.4 Inter-Integrated Circuit (I2C) Version 6 ................................................................... 10 
3.2.5 Universal Serial Bus (USB) .................................................................................... 11 

3.3 Software Standards ............................................................................. 11 
3.3.1 Programming Languages ....................................................................................... 11 
3.3.2 Naming Conventions ............................................................................................. 12 
3.3.3 Build Environments ................................................................................................ 12 
3.3.4 IEEE 802.11i-2004 ................................................................................................ 13 
3.3.5 National Marine Electronics Association (NMEA) Message .................................... 13 

4 Research and Background information ................................................... 14 

4.1 Similar Projects .................................................................................... 14 
4.1.1 Knightscope........................................................................................................... 14 
4.1.2 ATHLETE (All-Terrain Hex-Legged Extra-Terrestrial Explorer) ............................... 17 

4.2 Software Research .............................................................................. 18 
4.2.1 Operating Systems ................................................................................................ 18 
4.2.2 OpenCV ................................................................................................................ 18 
4.2.3 SLAM .................................................................................................................... 19 
4.2.4 State Machine ....................................................................................................... 19 
4.2.5 ROS ...................................................................................................................... 20 
4.2.6 Intelligent Systems ................................................................................................ 23 
4.2.7 Gazebo Simulation ................................................................................................ 31 

4.3 Hardware Research ............................................................................. 32 
4.3.1 Microcomputer ....................................................................................................... 32 
4.3.2 Microcontroller ....................................................................................................... 36 
4.3.3 GPIO extenders ..................................................................................................... 39 



iii | P a g e  
 

4.3.4 Force/Pressure Sensor .......................................................................................... 41 
4.3.5 Lidar ...................................................................................................................... 43 
4.3.6 Camera .................................................................................................................. 44 
4.3.7 IMU ........................................................................................................................ 49 
4.3.8 GPS ....................................................................................................................... 51 
4.3.9 Servo motors ......................................................................................................... 54 
4.3.10 Motors ................................................................................................................ 59 
4.3.11 Electronic Speed Controller (ESC) ...................................................................... 61 
4.3.12 Fuel Gauge ........................................................................................................ 62 
4.3.13 Battery ............................................................................................................... 62 
4.3.14 Audio Amplifier ................................................................................................... 64 
4.3.15 Speaker ............................................................................................................. 65 
4.3.16 Microphone ........................................................................................................ 66 
4.3.17 Lighting System .................................................................................................. 67 
4.3.18 Power System .................................................................................................... 68 
4.3.19 Signals Protection System .................................................................................. 70 
4.3.20 Base Station ....................................................................................................... 73 
4.3.21 SigSent’s Sensors and Non-Mechanical Parts .................................................... 76 

5 Design .........................................................................................................77 

5.1 Design Summary ..................................................................................77 

5.2 Hardware Design ..................................................................................77 
5.2.1 High Level Hardware Block Diagram ...................................................................... 77 
5.2.2 Hardware Design Overview .................................................................................... 77 
5.2.3 Pi Hat PCB............................................................................................................. 78 
5.2.4 MCU PCB .............................................................................................................. 79 
5.2.5 Servo Regulator PCB ............................................................................................. 79 
5.2.6 IMU Module PCB ................................................................................................... 80 
5.2.7 Battery Fuel Gauge PCB ........................................................................................ 81 

5.3 Modular Layout ....................................................................................81 

5.4 Software Design ...................................................................................82 
5.4.1 High Level Software Block Diagram........................................................................ 82 
5.4.2 Software Design Overview ..................................................................................... 83 
5.4.3 State Machine ........................................................................................................ 89 
5.4.4 Base Station .......................................................................................................... 90 
5.4.5 SPI Communication ............................................................................................... 90 
5.4.6 NEAT ..................................................................................................................... 92 
5.4.7 Kinematics of Movement ........................................................................................ 93 

5.5 Mechanical Design ............................................................................. 109 

6 Prototyping ............................................................................................... 110 

6.1 Schematic ........................................................................................... 110 

6.2 Printed Circuit Boards ....................................................................... 110 
6.2.1 PCB Design Considerations ................................................................................. 110 
6.2.2 Breadboard Test .................................................................................................. 110 
6.2.3 PCB Designs ....................................................................................................... 110 
6.2.4 PCB Fabrication and Assembly ............................................................................ 111 



iv | P a g e  
 

6.3 GUI ...................................................................................................... 111 

6.4 Prototype Expectations ..................................................................... 112 
6.4.1 Potential Hardware Issues ................................................................................... 112 
6.4.2 Potential Software Issues .................................................................................... 113 

7 Testing ...................................................................................................... 115 

7.1 Hardware Testing ............................................................................... 115 
7.1.1 Raspberry Pi 3 Microcomputer Testing ................................................................ 115 
7.1.2 Microcontroller Testing......................................................................................... 115 
7.1.3 Lidar Testing........................................................................................................ 116 
7.1.4 Camera Testing ................................................................................................... 117 
7.1.5 IMU Testing ......................................................................................................... 117 
7.1.6 GPS Testing ........................................................................................................ 117 
7.1.7 Servo motor Testing ............................................................................................ 118 
7.1.8 Motor and ESC Testing........................................................................................ 119 
7.1.9 Battery Testing .................................................................................................... 119 
7.1.10 Speaker and Amplifier Testing ......................................................................... 119 
7.1.11 Microphone Testing ......................................................................................... 119 
7.1.12 Lighting System Testing ................................................................................... 119 
7.1.13 Power System Testing ..................................................................................... 120 
7.1.14 Signal Protection System Testing ..................................................................... 120 
7.1.15 Base Station Testing ........................................................................................ 120 

7.2 Software Testing ................................................................................ 121 
7.2.1 Software Testing Overview .................................................................................. 121 
7.2.2 Simulated Testing ................................................................................................ 121 
7.2.3 Physical Testing .................................................................................................. 121 

7.3 Testing Platform ................................................................................ 122 

7.4 Finished Prototype ............................................................................ 123 

8 Administrative Content ............................................................................ 123 

8.1 Software Tools ................................................................................... 124 
8.1.1 Communication.................................................................................................... 124 
8.1.2 Development ....................................................................................................... 124 
8.1.3 Documentation .................................................................................................... 126 

8.2 Division of Labor ............................................................................... 127 

8.3 Project Milestones ............................................................................. 127 

8.4 Budget and Finance .......................................................................... 129 

8.5 Stretch Goals ..................................................................................... 131 

9 Conclusion ................................................................................................ 133 

Appendix A: References .................................................................................... a 

Appendix B: Permissions .................................................................................. g 
 



v | P a g e  
 

LIST OF FIGURES 
 

Figure 1: House of Quality ....................................................................................5 
Figure 2 NASA Soldering Standard: Lead Height (Public Domain NASA) ............9 
Figure 3 I2C example with one master, three slaves (CC license from 
https://upload.wikimedia.org/wikipedia/commons/3/3e/I2C.svg) .........................11 
Figure 4: Stationary Knightscope K1 set outside of an office building [21] ..........14 
Figure 5: Knightscope K3 in an indoor environment [21] .....................................15 
Figure 6: The Knightscope K5 patrolling a parking lot [21] ..................................16 
Figure 7: The K7 model in an outdoor environment [21] .....................................16 
Figure 8: ATHLETE navigating rough terrain with wheels installed. Courtesy 
NASA/JPL-Caltech. .............................................................................................17 
Figure 9: ROS Key Concepts ..............................................................................20 
Figure 10: Example of a publisher and subscriber relationship in ROS [26] .......21 
Figure 11: Visualization of Multiple Nodes and topics interacting through messages 
in ROS [27]..........................................................................................................21 
Figure 12: Representation of Gmapping and Lidar Data (highlighted in red) [28]
 ............................................................................................................................22 
Figure 13: A Visualization of a SMACH State Machine [30] ................................23 
Figure 14: Supervised and unsupervised classification performed for Dr. Sommer’s 
research on using machine learning for phenotype recognition ..........................26 
Figure 15: Representation of Reinforcement Learning (Under CC license at [36])
 ............................................................................................................................28 
Figure 16: An Example of a Gazebo Simulation [40] ...........................................31 
Figure 17: Representation of Lidar output compared to Image [45] ....................44 
Figure 18: Moment arm for stationary extended position at 1350(degree) position
 ............................................................................................................................56 
Figure 19: Moment arm in 105o degree angle position ........................................57 
Figure 20: Moment arm in 90o degree angle position ..........................................57 
Figure 21: Power Flow Diagram ..........................................................................68 
Figure 22: Example of i2c ESD Protection [47] ...................................................70 
Figure 23: Example of GPIO ESD Protection [47] ...............................................71 
Figure 24: Example of TTL Serial ESD Protection [47] .......................................71 
Figure 25: Example of USB ESD Protection [47] ................................................72 
Figure 26: PMOS FET in Power Path for Reverse Circuit Protection [48] ...........72 
Figure 27: List of Parts with Annotations .............................................................76 
Figure 28: High Level Hardware Block Diagram .................................................77 
Figure 29 Pi Hat Diptrace layout and physical board ..........................................78 
Figure 30 MCU Diptrace layout and physical board ............................................79 
Figure 31 Servo regulator Diptrace layout and physical board ............................80 
Figure 32 IMU Diptrace layout and physical board..............................................81 



vi | P a g e  
 

Figure 33 Fuel gauge Diptrace layout and physical board .................................. 81 
Figure 34 Modular design layout ......................................................................... 82 
Figure 35: High Level Software Block Diagram .................................................. 83 
Figure 36 Singleton example. Public Domain, 
https://commons.wikimedia.org/w/index.php?curid=1484985 ............................. 84 
Figure 37 Sample diagram representing basic Pub-Sub ..................................... 85 
Figure 38 TerrainClassifier Class Diagram ......................................................... 86 
Figure 39 NEAT Class Diagram .......................................................................... 87 
Figure 40 UML Use Case diagram on User, Base Station, SigSent interaction .. 89 
Figure 41: Base Station GUI Diagram................................................................. 90 
Figure 42 Bitmask header example .................................................................... 91 
Figure 43: NEAT ANN Diagram .......................................................................... 92 
Figure 44: Example Generated Neural Network ................................................. 92 
Figure 45: Fitness of the Example Network ........................................................ 93 
Figure 46: Diagram of a single leg of SigSent Robot demonstrating three jointed 
members. ............................................................................................................ 94 
Figure 47: Kinematic diagram of two degree of freedom linkage system ............ 95 
Figure 48: Trigonometric kinematic diagram of two degree of freedom linkage 
system ................................................................................................................ 95 
Figure 49: Representational kinematic diagram for Forward Kinematic Denavit-
Hartenberg parameters definition ....................................................................... 96 
Figure 50: Representational kinematic diagram for Inverse Kinematic Denavit-
Hartenberg parameters ..................................................................................... 101 
Figure 51: 2D planar view of the joints of SigSent’s leg [56]. ............................ 104 
Figure 52:Gait path diagram [57] ...................................................................... 105 
Figure 53: Genetic Algorithm Model [58]........................................................... 107 
Figure 54: Model of GA-Fuzzy Algorithm [59] ................................................... 108 
Figure 55: Rendering of SigSent in Wheeled Mode .......................................... 109 
Figure 56: Rendering of SigSent in Terrain Mode ............................................. 109 
Figure 57 Breadboard test with Raspberry Pi microcomputer connected to GPS 
and IMU sensors ............................................................................................... 110 
Figure 58 Basestation GUI ................................................................................ 111 
Figure 59 Ubuntu MATE low disk space error .................................................. 113 
Figure 60: Screenshot of successful login of SSH over Wifi from a base station 
computer to SigSent's microcomputer .............................................................. 115 
Figure 61: Visualization of Lidar Data in RVIZ .................................................. 116 
Figure 62: Raw Lidar data echo'd from the ROS topic /scan ............................ 116 
Figure 63 Camera test indoors in low-light ........................................................ 117 
Figure 64: Testing output of NMEA GPS data from GPS Unit .......................... 118 
Figure 65: Confirming accuracy of GPS data by placing GPS coordinates into 
Google Maps [60] ............................................................................................. 118 
Figure 66: Picture of Turtlebot equipped with several of our sensors in anticipation 
of testing ........................................................................................................... 122 



vii | P a g e  
 

Figure 67 Finalized SigSent Prototype .............................................................. 123 
Figure 68: Representation of Diptrace’s Schematic Capture and PCB Design 
applications [63] ................................................................................................ 125 
  

LIST OF TABLES 
 

Table 1: Requirement Specifications .....................................................................3 
Table 2 Microcomputer Comparison ...................................................................35 
Table 3: Operating speeds at voltage ranges .....................................................36 
Table 4: Operating speeds at voltage ranges .....................................................37 
Table 5: Comparison of Cameras .......................................................................48 
Table 6: IMU Comparison Table and Score Output ............................................51 
Table 7: GPS Comparison Table and Score Output ...........................................53 
Table 8: Specification Comparison of Servo Motors ...........................................58 
Table 9: Specification Comparison of Motors ......................................................61 
Table 10: Comparison of ESCs Under Consideration .........................................61 
Table 11: Comparison of Gauges Under Consideration ......................................62 
Table 12: Comparison of Battery Chemistries [46] ..............................................63 
Table 13: Estimated Electrical Loads ..................................................................63 
Table 14: Battery Comparison.............................................................................64 
Table 15: Comparison of Amplifiers Under Consideration ..................................64 
Table 16 Comparison of Speakers Under Consideration ....................................65 
Table 17 Microphone Comparison ......................................................................66 
Table 18 Comparison of Light Sources Under Consideration .............................67 
Table 19 Solar Panel Comparison ......................................................................69 
Table 20 Walking SPI messages ........................................................................91 
Table 21 Driving SPI messages ..........................................................................91 
Table 22 Mobility change SPI messages ............................................................92 
Table 23: List of Forward Kinematic Denavit-Hartenberg parameters .................97 
Table 24: List of Inverse Kinematic Denavit-Hartenberg parameters ................ 101 
Table 25 Initial Budget ...................................................................................... 129 
 

 

  



viii | P a g e  
 

LIST OF EQUATIONS 
 

Equation 1: Formula for Microcomputer Comparison Score ............................... 35 
Equation 2: Formula for IMU Comparison Score ................................................ 51 
Equation 3: Score for calculating optimal GPS unit selection ............................. 53 
Equation 4: Score for Servo Motors .................................................................... 58 
Equation 5: Score for Motors .............................................................................. 60 
Equation 6: Estimated SPL at 10 meters from the unit. ...................................... 66 
Equation 7: Foward Kinematic Denavit-Hartenberg Matrices ............................. 98 
Equation 8: Derivation of the T Matrices ............................................................. 98 
Equation 9: Position of the End-Effector in relation to Base Frame .................... 98 
Equation 10: General Transformation matrix for the forward kinematics three-
linkage system .................................................................................................... 99 
Equation 11: Position equations solutions from the Forward kinematics 
implementation ................................................................................................... 99 
Equation 12: Transformation Matrix .................................................................. 100 
Equation 13: Transformation Matrix based on Rotation Elements .................... 100 
Equation 14: Transformation Matrices for each Joint ........................................ 102 
Equation 15: General Solution of Transformation Matrices of each Joint ......... 102 
Equation 16: Partially Solved Transformation Matrix ........................................ 102 
Equation 17: Algebraic Manipulation of Transformation Matrices ..................... 102 
Equation 18: Solution for θ2 .............................................................................. 103 
Equation 19: Partial Solution for θ1 ................................................................... 103 
Equation 20: Solution for θ1 .............................................................................. 103 
Equation 21: Solution for θ1 .............................................................................. 104 
Equation 22: Angle equations solutions from the Inverse kinematics 
implementation ................................................................................................. 104 
 

  



1 | P a g e  
 

1 EXECUTIVE SUMMARY 
The project explores a field of robotics, patrol and sentry duty, which has only 

recently become tractable through modern technological and scientific 
advancements. With its novel hardware platform and intelligent software, SigSent 
can assume a unique role in the field. 

Producing a useful end product required developing new or implementing 
existing solutions for multi-terrain travel, efficient power and time management, 
and simple Human to Robot Interaction (HRI) for both the robot’s supervisor and 
other people encountered during its operation. Improvements in battery storage 
density and computational power have lowered the cost of major components 
driving the design of such a robot.  

SigSent demonstrated a capable platform which could substitute for a human 
in conducting routine patrol and sentry duties. These duties included following 
predefined paths in either smooth or rough terrains, reliably alerting the robot’s 
supervisor to a potential intruder, and instructing a potential intruder on how to 
proceed.  

The security services industry is a prime candidate for growth through human-
robot cooperation. The Three Ds of Robotics: Dull, Dirty, and Dangerous, are 
applicable to security services due to the repetition of tasks, need for assured 
surveillance, and potential for hostile situations.  

This document contains an analysis of the goals for this system, the 
requirements defining those goals, constraints imposed on accomplishment of 
those goals, research investigating avenues for the implementation of this project, 
design decisions which shaped our proposed solution, and the final prototype of 
SigSent. Additionally, possible future work is outlined. 
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2 PROJECT NARRATIVE 
2.1.1 Goals and Objectives 

The goal of SigSent is to prototype a robot capable of intelligently patrolling 
a predefined area and reducing the risk of harm to human sentries. SigSent can 
also enable security professionals to enact a more proactive security policy by 
freeing security guards from repetitive tasks. 

By learning to work in a mixed terrain environment, the robot can effectively 
perform its job as a sentinel irrespective of the landscape in which it is placed.  

With teleoperation functionality, operators can manually control the robot or 
direct it to enter an automatic sentry mode. The SigSent bot can stream a video 
feed of its perspective, enabling remote surveillance. With multiple SigSent units, 
a single operator could surveil a much larger area alone. When in sentry or patrol 
mode, SigSent can also alert the operator upon detecting activity of potential 
interest. This reduces the workload on security guards by freeing them from 
simultaneous supervision of multiple locations throughout the entirety of their shift. 
The SigSent robot should match the speed of an average person jogging so that it 
may pursue an intruder if deemed necessary. SigSent should be able to deter 
trespassers with vocal commands and also be able to record video of trespassers 
or events for later action by law enforcement.  

In conclusion, SigSent should replace the main duties of a security guard 
and allow guards to perform higher-level tasks with less occupational hazard. 
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2.1.2 Requirements Specifications 
 
Table 1: Requirement Specifications 

Specification Value Units Rationale Ref. 

Sentry Robot Specifications 

Weight 25 kg OSHA limit of safe 
weight to lift 

[1] 

Durability 0.5 m Survive a 0.5m fall. 
Internal benchmark to 
reach. 

 

Reliability 1 yrs Based on Life cycle of 
parts (Servo motors, 
motors, etc.) 

 

Availability 75 % Robot will need 25% 
availability for 
maintenance and repair. 

 

Speed Characteristics 

Wheel Top 
speed 

12 mph Average speed of a male 
human running ranges 
from 10 to 15 mph 

[2] 

Rough Terrain 
Top speed 

1 mph ⅓ the normal walking 
speed of a male human. 
Internal benchmark to 
reach. 

 

Battery Life 

Static Monitoring 
Span 

3 hrs To be competitively 
better than our 
competitors, iPatrol, with 
a battery life of 1.5 hours 

[3] 
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Walking 
Lifespan 

(3mph smooth) 

30 mins For basic, reasonable 
operation of the sentry 
bot. Internal benchmark 
to reach 

 

Jogging 
Lifespan 

(6mph smooth) 

10 mins Internal benchmark to 
reach 

 

Running 
Lifespan 

(12mph smooth) 

3 mins Internal benchmark to 
reach 

 

Rough Terrain 
Lifespan 

(1 mph) 

15 mins Internal benchmark to 
reach 

 

Accuracy Specifications 

GPS waypoint 
finding 

5 m Based on standard 
accuracy of smartphone 
GPS modules under 
open sky conditions 

[4] 

Communication 
distance 

32 m Based on the signal 
power limit allowed by 
FCC regulation for WiFi. 

[5] 

[6] 

Bandwidth 5 Mb/s Based on industry 
accepted requirements 
for high definition video 
streaming. 

[7] 

 

2.1.2.1 Movement Specifications 
The robot must have certain movement capabilities to be considered a 

multi-terrain and accessible device. This means the robot must be able to fit in 
common areas to do its functions. To satisfy this requirement the robot must be 
able to pass through a standard door size opening of 36 inches. This also includes 
the ability to travel across different smooth and rough surfaces/terrain.  
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Our definition of a smooth surface is: “Any continuous surface with no more 
than a 10-degree incline/decline”. This definition was created with reference from 
the National Highway Traffic Safety Administration and their road regulations for 
paved highways. The list of example smooth surfaces are tile, asphalt, and carpet. 

Our definition of a rough surface is: “Any non-continuous surface with 
instantaneous raises/lower no greater than 6 inches and a max incline/decline of 
15 degrees”. This definition was created with reference from the creation of the 
smooth surface definition. The list of example rough surfaces are forest, rocks, 
stairs, and sand. 

2.1.2.2 Security Functionality 
Being a sentry bot, this robot will require multiple security capabilities. 

• Robot should be able to transmit full quality video to the base station upon 
request. 

• Robot should be able to detect human movement from 10 meters away. 
• Robot should be able to sound a siren heard at 60 dB from 10 meters away. 
• Robot should be able to reliably operate during night. (at full moon, 0.01 

ftcd, lighting)  
• Robot should be able to be teleoperated from the base station. 
• Robot should be able to have a path programmed into it. 

2.1.3 House of Quality 
Below in Figure 1: House of Quality is our house of quality with demo-able 

technical characteristics and their correlation to the characteristics seen by the 
user as important.  

 
Figure 1: House of Quality 
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3 DESIGN CONSTRAINTS AND STANDARDS 

3.1 DESIGN CONSTRAINTS 
The constraints outlined below guided decisions on the overall design and 

marketing direction of the SigSent project. 

3.1.1 Economic 
In its final marketable configuration, SigSent will be strongly constrained by 

its total annual cost per unit. SigSent’s value proposition is that it can supplement 
the utility of existing security personnel, and multiply their presence through a 
networked set of units. SigSent will only be a successful commercial product if it 
offers comparable surveillance capability as a conventional security guard at 
smaller recurring cost. 

The median pay for a security guard in 2016 was $25,840 [8]. This is 
conceivably the uppermost constraint on the annual price an organization would 
pay per SigSent unit. If a SigSent unit were to cost greater than a guard for the 
same capability, the organization would likely hire the additionally employee 
instead. A SigSent unit’s value should be comparable to that of a full-time security 
guard, since the unit offers additional capabilities that a conventional guard 
doesn’t, such as the ready availability of a unit to record all of its visual and auditory 
observations. Additionally, SigSent units may be able to patrol a larger area than 
a conventional guard in the same time due to their greater speed in drive mode. 
SigSent must also match the scheduling availability of a guard as well, with full-
time guards only working 40 hours out of 168 hours in a week, or ~ 24% availability. 

With multiple SigSent units networked to one basestation, a single operator 
should be able to simultaneously monitor many areas of interest and respond to 
events as appropriate. The displaced cost of the potential additional guards 
enables businesses to afford SigSent units out of their current budgets. 

By 2026, 70,000 more security guards are projected to be employed. These 
additional employees alone would cost $1.75 billion dollars annually [8]. 

3.1.2 Environmental 
Because it is unable to open doors, SigSent is poorly-suited to operation in 

most indoor environments. Facilities with automatic doors could be suitable for 
SigSent’s operation if the doors’ trigger mechanisms were sensitive enough to 
detect the unit and open autonomously. Additionally, remotely-operated doors 
could be either intentionally triggered by a security professional. Networked door 
could communicate with a SigSent unit, enabling the unit to request the doors to 
open autonomously. 

SigSent is not intended for use in environments lacking firm surfaces, such 
as swamps or soft snow. If a unit were to sink into a surface instead of walking 
atop it, it may not be able to remove itself. Additionally, SigSent is not intended for 
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use on slippery surfaces, such as ice, because a unit may lose traction and then 
find itself stuck in isolation. 

SigSent is not intended for use in weather producing poor visibility. Heavy 
rain, snow, or fog would limit an operator’s ability to see the environment 
surrounding a unit and may prevent the unit from successfully completing its 
mission. 

For long-term survivability outdoors, SigSent’s final marketable design will 
need to be waterproof, protecting the electronics housed in its abdomen from 
ingress of water and its sensors from contact with moisture.  

3.1.3 Social 
For SigSent to be generally accepted for use in public spaces, its final 

marketable design will need to appear nonthreatening. This is especially critical in 
retail and hospitality environments where customers or clients should feel 
comfortable and willing to return. 

SigSent’s final marketable design should look intentionally dissimilar from 
insects in order to avoid the uncanny valley which would diminish likability of the 
product to both customers and the general public [9]. Additionally, those suffering 
from entomophobia would be especially distressed by a unit highly similar to an 
insect [10].  

Units should be reasonably quiet in order to prevent disturbing people 
nearby. 

3.1.4 Political / Ethical 
SigSent is not intended to be used as an offensive surveillance tool. 

Customers should be informed accordingly and reminded not to use the device for 
illegal recording activities. 

With SigSent being a product tailored to the defense and security industry, 
it could potentially be subject to export control restrictions. Care would need to be 
taken to ensure relevant governmental agencies approve of foreign sale. 

At least initially, SigSent’s customer base should be carefully examined to 
ensure any potential purchasers would not use the system for illegal or 
objectionable activities. Greater market acceptance may be hindered if any early 
adopter is shown using the system for a negative purpose. 

3.1.5 Health & Safety 
SigSent incorporates a high-capacity lithium-ion battery which could pose 

significant risk of harm to those nearby if handled incorrectly. Only appropriate 
chargers should be used with the system to ensure the battery is not overcharged. 

SigSent’s limb joints could pose pinching hazards, and the system should 
not be handled by children. 
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At full speed, SigSent will possess considerable momentum and should not 
be directed into an obstructed path. A collision could incur significant damage to 
the SigSent unit, in addition to causing property damage or bodily harm. 

To preclude any chance of optical damage, SigSent’s LIDAR unit should be 
no greater than a class 1 laser device [11]. 

3.1.6 Manufacturability 
SigSent is designed to leverage digital fabrication practices, enabling 

flexible lead times and manufacturing run scheduling. Fabrication techniques 
include 3D printing and laser cutting. These common techniques minimize 
overhead costs due to underutilized or specialized manufacturing equipment. Each 
unit is also fairly symmetrical, reducing the number of unique design elements, and 
enabling larger quantity production of the appendages. 

Tolerances are not incredibly exacting, enabling high yield production rates 
for fabricated components. 

Scaling SigSent larger would be relatively straightforward, with none of its 
structural components approaching typical limits of a readily-available workshop 
scale cutter or printer. SigSent could likely be scaled twice as large, but at greater 
material cost. 

SigSent may not be able to scale down significantly without major design 
changes due to the demands for abdomen space and due to the relatively poor 
tolerance of the digital fabrication tools on market. 

3.1.7 Sustainability 
SigSent operates on electricity, which can be provided by renewable energy 

sources. SigSent can be manufactured from sustainable plastics and polymers. Its 
battery should be carefully disposed to prevent environmental degradation. If 
possible, the batteries should be recycled. 

3.2 HARDWARE STANDARDS 
In the creation of SigSent, hardware standards used in the industry were 

followed to minimize possible error. These strict standards, set by large, successful 
companies, will force our team to work at the highest quality. 

3.2.1 Soldering Standards  
Soldering is a critical skill required to ensure that all electrical connections 

are electrically connected and have minimal impedance. Equally important for the 
system is that soldering creates a secure mechanical attachment of a component 
onto a PCB.  

To ensure that our soldering techniques and processes are trustworthy, we 
will be loosely following Standard J-STD-001F [12] created by the National 
Aeronautics and Space Administration (NASA). This document goes over various 
soldering materials, supplies, definitions, preheating procedures, reflow 



9 | P a g e  
 

procedures, what defines a good solder connection, and how to verify a proper 
soldering connection.  

Notable sections that will be strictly followed are those in section 4.18: 
Solder Connection which defines and discusses the characteristics of a proper 
solder connection defined by wetting, angle, slope, and surface finish. Also defined 
in the report are the characteristics of an improper solder connection in section: 
4.18.2: Solder Connection Defects which details how to identify bad solder 
connections. In Section 5.1: Wire and Cable Preparation the standard defines how 
to identify bad insulation and when a wire should be deemed unfit for use.  Section 
7.5.7 Flat Gull Wing Leads defines acceptable soldering dimension criteria on 
placement and solder fillet radii.  

 
Figure 2 NASA Soldering Standard: Lead Height (Public Domain NASA) 

3.2.2 PCB Design Standards 
Proper printed circuit board (PCB) design is critical for ensuring that the PCB 

introduces only minimal noise and impedance to the circuits that the PCB holds 
and that the circuits work as expected. Outlined in the standard IPC-221A by the 
Association Connecting Electronics Industries (IPC) [13] these standards cover 
design and fabrication practices related to PCB design. This standard also 
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highlights common problems and solutions that will help the SigSent team create 
a functional board. Key sections of the report that will be followed strictly are found 
in section 3.6.1 Board Layout Design, the entire chapter 6: Electrical Properties, 
and Section 7.2: Heat Dissipation Considerations. Following the standards set 
forth by IPC will better ensure that our circuit boards will work as expected and will 
be considered good craftsmanship.  

3.2.3 IEEE 802.11g 
802.11 Wi-Fi comprises multiple iterations of a standard that has evolved 

over time. The standard used in the implementation of SigSent is 802.11g. The 
802.11g standard for Wi-Fi is an older standard from 2003. It utilizes the 2.4GHz 
band. Its average throughput is 22 Mbit/s with a maximum of 54 Mbit/s for forward 
error correction codes. 802.11g is backward compatible with 802.11b. 802.11g 
was quickly adopted by the market due to its increased speeds at the time of its 
release. We are using this standard as it is integrated with the router we are using 
on-hand. Without budget constraints, a higher fidelity router with a better resolution 
or signal strength could be used [14].  

3.2.4 Inter-Integrated Circuit (I2C) Version 6 
I2C (I-two-C), also known as I2C (I-squared-C), is the communication 

standard we will have to abide by when connecting our various sensors to the 
microcomputer device. I2C stands for Inter-Integrated Circuit. It has multiple 
masters and slaves. It was invented in 1982 by Philips Semiconductor. I2C is used 
for connecting ICs to microcontrollers/computers with a close relative locality. 
There are no licensing fees to use I2C. The only fee that you need to pay is for 
access to slave addresses that NXP (the new name for Philips Semiconductor) 
assigns. I2C is a design where there is a clock (labeled as SCL) and data line 
(SDA) with 7 bits of addressing. The master nodes generate the clock and start 
the communication process. The slaves receive the clock and respond to the 
master’s requests. There can be any number of masters present. Masters and 
slaves can change places at will after a message transmission session has ended 
with a stop signal. The master kicks off the process by sending a start signal with 
the 7-bit address of the slave that it wants to work with. The master then sends a 
bit that specifies what mode it wants to enter with the slave (read/write). The slave 
responds to the master if it is on the bus and received the message. The signal 
that the slave sends is known as the ACK signal (acknowledgement). The bits are 
sent with the most significant bit first. The start of the bit stream is notated by a 
“high-to-low transition of SDA with SCL high” [15]. When the master is reading from 
the slave, it sends an ACK signal after every bit except for the last one, signaling 
that it is done receiving. Multiple messages can also be sent in I2C. A new start bit 
can be sent to signal a new message.  

There are three formats for I2C messages: single message (master to slave), 
single message (slave to master), and combined (master has two reads/writes for 
each one for the slave). These dynamic formats make I2C a welcome solution for 
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peripheral communication. We will primarily be operating under the slave-to-
master single message format, where the microcomputer will request data from 
the sensors. 

 
Figure 3 I2C example with one master, three slaves (CC license from 

https://upload.wikimedia.org/wikipedia/commons/3/3e/I2C.svg) 

3.2.5 Universal Serial Bus (USB) 
SigSent’s design incorporates multiple USB peripherals communicating with 

its microcomputer. In order to troubleshoot potential communication errors, 
understanding the family of USB specifications is necessary. 

The Universal Serial Bus (USB) set of specifications detail the protocol and 
physical hardware enabling interdevice communication [16]. Implementation of the 
specification is ubiquitous, and enables data and power transfer for many 
computer peripherals. The specifications define the physical form factor of 
connectors, parameters for reliable cabling, and the protocol for data transfer.  

USB relies on a star topology with a host servicing multiple endpoint devices. 
USB permits branching hubs relaying host information further down line, allowing 
up to 127 devices to connect to a single host. 

Over time, USB has received revisions increasing its bandwidth, with the 
most recent version, USB 3.2, boasting up to 20 Gb/s of data transfer. Additionally, 
the USB Implementers Forum, the organization governing the specification, has 
developed various different physical interfaces to connect USB devices. USB ports 
and their accompanying connectors come in multiple shapes and sizes as 
appropriate to the device’s form factor. 

3.3 SOFTWARE STANDARDS 
In the software field, standards keep code readable and maintainable. To aid 

in the development of our software components, and expose our team to 
professional-grade development standards, we have outlined the following criteria. 

3.3.1 Programming Languages 
Python was used for the majority of SigSent’s software modules. Python 

allows for quick prototyping and fast iterations due to its simple syntax and 
extensive standard library included in its distribution. ROS has full Python support 
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and NEAT has a Python implementation that we have used in alternative projects 
before. With both the artificial intelligence and robotic system using the same back-
end, they can work together with little alterations. 

The Graphical User Interface (GUI) for the base station unit was built with 
Python and Pyside, a Python wrapper for Qt. Qt is a popular framework for GUI 
development, with an interface designer that features native components for the 
respective OS that it is run on, and a massive amount of documentation available. 
Qt is available for “student/academic purposes, ...[and] internal research projects 
without external distribution” under the GPL and LGPLv3 open source licenses 
[17]. When used commercially, Qt licenses can be fairly expensive. 

Our project’s website was built using a framework more abstracted so that 
development time is not wasted building a comprehensive site that could instead 
be spent on bettering SigSent. Bootstrap templating was used to quickly produce 
a website where the project’s documents and progress can be publicly viewable. 
Python could be used to make a site using the Django framework, however this is 
not necessary, as the powerful templating engine from a dynamic backend 
language will not make much of a difference for a website as basic as ours. 

3.3.2 Naming Conventions 
The naming conventions we use follow the PEP8 Python Style Guide written 

by Python’s creator (and Benevolent Dictator) Guido van Rossum. Classes use 
PascalCasing. Functions and variables are underscore separated like_this. 
PEP8’s style guide is used commonly in other companies and projects as it has 
set itself as a standard for software engineers. We followed this standard to be 
consistent within our own project, and to better fit in with other software teams 
utilizing Python. We also used a linter, Pylint to enforce these design decisions. 
The code will emit warnings and fail to properly build when the code style 
guidelines are not followed. 

ROS has a style guide where they suggest best practices and auto 
formatting techniques to easily set the aesthetic of the C++ portion of the ROS 
code. ROS is fairly popular among professionals and enthusiasts alike. Many 
programmers host their code as open source projects on repository websites for 
other robotics community members to improve upon and utilize in their own works. 
SigSent’s code fit this design criteria to have an equal contribution in the field while 
not disrupting the standard already set in the community. 

3.3.3 Build Environments 
SigSent’s software was built on the Raspberry Pi microcomputer under the 

Ubuntu Mate 16.04 distribution. The Jessie Raspbian distribution is available as 
well, however Ubuntu Mate has more support at this time. ROS officially supports 
this setup. Catkin is the build system made for ROS similar to CMake, with added 
support for distributed sets of packages that ROS projects have. The Python 
scripts unrelated to ROS will not need to be built under a specific regime as they 
are dynamically interpreted by a Python interpreter at runtime. This lowers 
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performance, however the tradeoff for Python’s portability and speedy 
development is worth it. 

The code was developed and tested on Ubuntu 16.04 VM and desktop 
platforms. Programming on an environment other than an ARM Linux distribution 
brings some inconsistencies, however using Python and ROS, there will be no 
issues, as each platform we develop for is officially supported by each module we 
use in development. Python itself has built-in cross platform support. Unit tests and 
frequent testing on our build environment will ensure that our software is always 
functional on our microcomputer. Debugging will be done regularly manually as 
well as automatically with our own build scripts we will use in our development 
pipeline. 

3.3.4 IEEE 802.11i-2004 
In order to ensure the privacy and integrity of communication between a 

SigSent unit and its corresponding base station, WPA2 security was applied to the 
shared Wi-Fi network. IEEE 802.11i-2004 is the technical name for the standard 
implemented by the WPA2 protocol [18]. 802.11i relies on the Advanced 
Encryption Standard (AES). 

In 2004, WPA2 superseded the earlier Wired Equivalent Privacy (WEP) 
mechanism which had been proven insecure by Fluhrer, Mantin, and Shamir [19]. 

WPA2 dictates a handshake procedure between an access point and its 
supplicant which relies on exchanging messages encrypted with a common key, 
but not the key itself. Mutually successful decryption of shared messages confirms 
that both participants know the password and should be trusted. 

3.3.5 National Marine Electronics Association (NMEA) Message 
SigSent relies on the Global Positioning System to help locate itself globally. 

After determining its coordinates, SigSent logs its position according to a 
standardized structure developed by the National Marine Electronics Association 
(NMEA) [20]. All GPS Fix data messages are stored in adherence with the 
following format: 

1. $GPGGA, the sentence identifier for fix data 
2. Time Stamp, in Coordinated Universal Time 
3. Latitude 
4. Longitude 
5. Quality Indicator, a value between 1 and 5 
6. Number of Satellites in view and used in localization 
7. Horizontal Dilution of Precision 
8. Altitude of the antenna 
9. Altitude unit of measure 
10. Geoidal Separation 
11. Age of Correction 
12. Correction Station  
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4 RESEARCH AND BACKGROUND INFORMATION 

4.1 SIMILAR PROJECTS 
Below are two projects that follow our use-case and robot design. 

Knightscope has a product line, all advertised for autonomous sentry work. 
Although their robots do not have a similar build as ours, they seek to solve the 
same patrolling problem. NASA’s ATHLETE robot is detailed due to its similar 
hexapod platform. 

4.1.1 Knightscope 
Knightscope is an up and coming company manufacturing patrol robots that 

are large, functional, and aesthetically pleasing. Their products are being 
distributed in subscription based packages to clients that request demos at their 
location. Knightscope has two models that are releasing and being tested in 2018, 
being the K1 and K7 respectively [21]. 

The K1 model is a stationary product with a large array of sensors at its 
disposal. It is even able to detect weapons and radiation levels. The K1 has a 
weight of 150 lbs and dimensions of 62.4in x 28.8in x 11.2in. Until the product is 
released, this is the limited amount of information provided to the public as of now. 

 
Figure 4: Stationary Knightscope K1 set outside of an office building [21] 

The K3 is a mobile model that can move at up to 3mph. It is meant to be 
used indoors, “patrolling the interiors of businesses like sporting arenas, shopping 
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malls, and warehouses” [21]. Its dimensions are 51in x 24in x 33in and it has a 
weight of 340lbs. The K3 sports a 360-degree high definition video feed that can 
be viewed by anyone with the proper permissions. Two-way audio allows 
communication from security personnel and people nearby the actual robot. 
Messages can be recorded beforehand as well to be played from any fleet of K3 
robots. A thermal camera on the K3 allows thermal imaging on temperature critical 
devices at your location. The K3 can be used to alert the users if a predetermined 
temperature is reached to prevent damage or dangerous scenarios from playing 
out. 

 

Figure 5: Knightscope K3 in an indoor environment [21] 

 The K5 is used to patrol outdoor areas. Knightscope says that it should be 
paired with a human element “to keep areas such as parking lots, corporate 
campuses and hospitals safe autonomously”. The K5 appears to be a more 
durable, robust iteration of the K3. Its dimensions are 62.5in x 33.5in x 36in with a 
weight of 398 lbs. One of the selling points is its intimidating appearance. 
Knightscope compares it to having a marked police car sitting outside your location 
to deter criminals. The K5 can read up to 300 license plates per minute, checking 
for trespassers, blacklisted plates, and to track the usage of parking lots that it is 
supervising. The Knightscope K5 can also detect signals coming from routers and 
mobile devices to be aware of possible security penetrators in the nearby area 
[21]. 
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Figure 6: The Knightscope K5 patrolling a parking lot [21] 

 The final, and arguably most impressive Knightscope model, is the 
unreleased K7. This model has yet to enter a beta deployment, anticipated for 
2018. The K7 is in the shape of a futuristic looking car. Its speed has not been 
announced, however it will most definitely exceed the current maximum speeds of 
the other Knightscope models. The K7 is a multi-terrain robot that has dimensions 
of 57.5in x 63.9in x 116in, weighing 770 lbs [21]. 

 
Figure 7: The K7 model in an outdoor environment [21] 
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4.1.2 ATHLETE (All-Terrain Hex-Legged Extra-Terrestrial Explorer) 
NASA’s ATHLETE rover is a wheeled hexapod platform proposed for use 

during extraterrestrial missions [22]. ATHLETE differs from SigSent in scale and 
form but shares the same principle of integrating motorized wheels with walking 
legs to efficiently navigate mixed-terrain. ATHLETE is 4 meters in diameter, stands 
at 4 meters, and can carry a load of 450 kg on Earth. In contrast with SigSent’s 
combination of wheeled and wheel-less legs, all of ATHLETE’s legs have wheels. 

 
Figure 8: ATHLETE navigating rough terrain with wheels installed. Courtesy NASA/JPL-Caltech. 

 

ATHLETE is designed to operate at up to 10 km / hr on smooth terrain, 
which is 100 times faster than its predecessor rovers on Mars. This would allow 
ATHLETE to survey a much larger area in the same length of time. It also makes 
ATHLETE useful as a cargo transporter in addition to basic observational roles. 

 ATHLETE is also able to perform various missions through the attachment 
of modules to its highly-maneuverable legs, offering a more generally useful 
platform than specialized rovers of the past. 
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4.2 SOFTWARE RESEARCH 
In deciding the entire software platform for SigSent, research was done for 

components at every level of development, starting with the microcomputer 
board’s OS, and ending with the high-level artificial intelligence framework on 
which SigSent learns to act. 

4.2.1 Operating Systems 
The microcomputer and necessary software ran on SigSent added 

constraints to the operating system that was chosen. It had to support each 
framework and library used and be able to be run on a minimal, low-cost 
microcomputer. 

4.2.1.1 Raspbian 
Raspbian is a Linux distribution based on Debian, another popular flavor of 

Linux. Raspbian has been endorsed and provided by the makers of the Raspberry 
Pi (Raspberry Pi Foundation). This OS is directly made for use on the Raspberry 
Pi, meaning it has been stripped down to only contain what the Pi needs and can 
use. It uses a lightweight desktop environment called PIXEL (Pi Improved 
Xwindows Environment Lightweight) for optimized performance on the 
microcomputer. Raspbian is also supported for use with ROS, although with the 
newer tutorials on recent ROS distributions, they recommend that Ubuntu MATE 
is used, due to its more extensive package list for use on the Pi. 

4.2.1.2 Ubuntu MATE 
Ubuntu MATE is a FOSS version of Ubuntu that is able to run on popular 

architectures such as IA-32, x86-64, PowerPC, and ARMv7 (which the Raspberry 
Pi features). Ubuntu MATE was a possible candidate for our main OS that SigSent 
runs due to its support for the ARM architecture. Ubuntu MATE is a fully featured 
OS and has the support of Canonical’s powerful Ubuntu system. Ubuntu MATE 
has better ROS support for newer distributions that Raspbian, and was so chosent 
to serve as our main OS for SigSent. 

4.2.2 OpenCV 
OpenCV is a widely used open source computer vision (hence the name) library. 
It has been ported over to many languages, including Python, the primary 
language used for our project. OpenCV was initially created by Intel to create a 
free framework that developers could read and use to build upon for advanced 
vision infrastructure. It was originally released publicly at the 2000 IEEE 
Conference on Computer Vision and Pattern Recognition. OpenCV has since been 
taken over by a non-profit organization at OpenCV.org. Now, OpenCV contains 
much more than a simple vision-based recognition system. They provide additional 
support for decision tree learning, Naïve Bayes classifiers, artificial neural 
networks, and deep neural networks (used extensively in frameworks such as 
TensorFlow, a deep learning framework made by Google).  

OpenCV is commonly used in facial recognition, gesture recognition, 
robotics, object identification, motion tracking, and augmented reality applications. 
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OpenCV is written in C++. To spread the framework to multiple platforms, 
wrappers have been made in several languages so that developers in almost any 
project can utilize it in some way. Popular languages using OpenCV are Python, 
Java, MATLAB, and C#. OpenCV is also supported on most operating systems, 
including: Windows, Linux, macOS, FreeBSD, NetBSD, OpenBSD, Android, iOS, 
Maemo, and even Blackberry 10.  

 To increase performance, OpenCV has added support for GPU 
acceleration in the image processing pipeline. CUDA support was added so that 
NVIDIA based cards can take advantage of GPU rendering speeds. OpenCL has 
been added as well, which is open source, but not as performant as CUDA in 
graphical applications. With embedded applications, using an NVIDIA board would 
enable higher performance under any vision-based project. 

 OpenCV was used for SigSent to recognize anomalies during its sentry 
routes. There are a myriad of built-in classifiers for object detection already. By 
simply enabling a classifier to detect people or movement, we can simply alert the 
user monitoring the SigSent unit, and highlight the activity on the video feed being 
streamed to the base station computer. The Histogram of Oriented Gradients 
(HOG) detector is used for pedestrian detection as it is already implemented in 
OpenCV. The Raspberry Pi that the SigSent is running off of does not perform the 
computer vision computation. The base station does the actual vision detection on 
the images transmitted from the Raspberry Pi’s ROS node. If a connection to the 
base station is lost, the robot is still be able to capture images, but does not attempt 
realtime CV on them. The Raspberry Pi is powerful, but a microcomputer with 
better hardware, namely a GPU, would be necessary to do local computation. The 
NVIDIA Jetson is a pricier alternative. 

4.2.3 SLAM 
Simultaneous localization and mapping (SLAM) is a process which 

combines mapping an unknown area with localization. First created by R.C. Smith 
and P. Cheeseman in 1986, SLAM combines the creation of topological maps 
created from sensor data and Advanced Monte Carlo Localization (AMCL) to 
create an accurate relative map that is constantly expanded and refined as a robot 
moves around its environment. As the robot moves around sensor data is collected 
and creates a relative “frame” of a map, this frame is then matched with the robots 
last known location through AMCL to determine the robots new position within the 
map and the two maps stitched together to create a seamless map that the robot 
can later use for obstacle avoidance and object-based navigation goals.  

4.2.4 State Machine 
A finite state machine (FSM) is defined as “a mathematical model of 

computation. It is an abstract machine that can be in exactly one of a finite number 
of states at any given time. The FSM can change from one state to another in 
response to some external inputs; the change from one state to another is called 
a transition. An FSM is defined by a list of its states, its initial state, and the 
conditions for each transition.” [23]  FSM’s are often used in robotics as a way to 
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place the robot into a state of operation based on some number of inputs, A state 
might be something as simple as “sleep” or as complex as “search for ‘x’”.    

4.2.5 ROS 
The Robot Operating System (ROS) features new distributions on a 

constant release cycle of “Long Term Support” (LTS) on even numbered years and 
then short-term releases with a shorter lifespan on odd numbered years. LTS 
releases are recommended for mission critical applications. We will be using the 
ROS Kinetic Kame distribution released on May 23rd, 2016 with an End-of-Life 
(EOL) date of April, 2021. 

“…[ROS] is a flexible framework for writing robot software. It is a collection 
of tools, libraries, and conventions that aim to simplify the task of creating complex 
and robust robot behavior across a wide variety of robotic platforms.” [24]. ROS is 
designed around four key concepts, Plumbing, Tools, Capabilities, and 
Ecosystem: [25] 

 
Figure 9: ROS Key Concepts 

 The core usefulness of ROS is that it provides a standardized messaging 
and monitoring system where programs can easily and generically interact with 
other programs allowing for easy communication and modularization between high 
and low-level software’s with each other. This standardized messaging also allows 
for software’s to be genericized from individual hardware’s, where only the low 
level driver wraps a sensors output or a actors input in a ROS compatible message. 
This standardized messaging and monitoring allows for ROS to be very powerful 
by allowing programs to become very modular, and also allows for distributed 
computing natively by design.  

  ROS has a hierarchy where there is a ROS MASTER which is the main 
program that executes and manages all interactions and keeps track of everything 
happening within ROS. Individual programs are called nodes, nodes can be a 
publisher or/and a subscriber which sends or receives messages to/from a topic. 
A topic is a bus of messages and work as an abstracted message handler 
controlled by ROS MASTER. The general process is that you have a PUBLISHER 
which sends a MESSAGE to a TOPIC, a SUBSCRIBER is listening to the TOPIC 
and then receives the MESSAGE.  
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Figure 10: Example of a publisher and subscriber relationship in ROS [26] 

 
Figure 11: Visualization of Multiple Nodes and topics interacting through messages in ROS [27] 

4.2.5.1 Gmapping 
Gmapping is a Package that contains the node that runs SLAM (4.2.3). 

Gmapping uses lidar (4.3.3) data along with camera, IMU (4.3.7) and GPS (4.3.8) 
data to construct a map of its surroundings on the fly. Gmapping enables the robot 
to map its surrounding area and localize itself so that SigSent can quickly 
understand its local area and avoid obstacles and path itself along GPS waypoints.  
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Figure 12: Representation of Gmapping and Lidar Data (highlighted in red) [28] 

4.2.5.2 SMACH 
SMACH or State MACHine, is “…a task-level architecture for rapidly 

creating complex robot behavior. At its core, SMACH is a ROS-independent 
Python library to build hierarchical state machines. SMACH is a new library that 
takes advantage of very old concepts in order to quickly create robust robot 
behavior with maintainable and modular code.” [29]  

SMACH allows for a streamlined and integrated way to create a state 
machine within ROS which efficiently directs SigSent to its short and long term 
goals as well as switch states quickly on the detection of an intruder or human 
controlled teleoperation.  
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Figure 13: A Visualization of a SMACH State Machine [30] 

4.2.6 Intelligent Systems 
Before implementing the artificial intelligence portion of SigSent, extensive 

research was done on the various learning methods available to us. After reviewing 
their advantages and disadvantages, we settled on using reinforcement learning. 
Reinforcement learning is used in a variety of algorithms. We researched some of 
the most popular algorithms and decided to use NEAT (NeuroEvolution of 
Augmenting Topologies) due to its impressive track record and presence at the 
University of Central Florida, as well as prior knowledge of the algorithm’s inner 
workings and extensive work in genetic algorithms by the team’s artificial 
intelligence programmer, Richie Wales. 

4.2.6.1 Learning Methods 
In AI, there are diverse ways a system can artificially “learn” to perform a 

task. Research was done on the three main methods so that the most optimal one 
would be further explored and then used for SigSent’s intelligence platform. 
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4.2.6.1.1 Supervised Learning 
When the desired output is known to the programmer, supervised learning 

is used to push the intelligent system to provide the necessary function that results 
in this output. The output necessary for a given input is sometimes called the 
supervisory signal. Supervised learning is useful when there is a clear behavior 
that should be propagate.  

 The learning takes place on a training set of data. This set is handpicked by 
the programmer. An additional data set is necessary to test the derived function 
after learning. This test set determines how effective the training period was. This 
test set must contain unique elements in it that were not included in the training 
period to provide sufficient evidence of a generally learned behavior. This tests 
how general the learned function has become. The test set needs to be broad 
enough to represent the data fairly as it occurs naturally.  

 The inputs into the function should be minimized to lower the complexity on 
the learning process. Having too many inputs will require optimizations of all of 
those attributes. A common phenomenon is the “curse of dimensionality” [31]. This 
issue refers to having too many dimensions of data to optimize for, where the 
search space grows much too large. With every added dimension, the number of 
enumerations possible for each parameter increases by a multiplicative of each 
additional input. For machine learning, this means you need to have an even 
greater number of training data points such that you fairly represent the desired 
output for a large region of the search space. If you do not have enough data to 
represent each parameter’s changes, the function will not learn how to process 
each variation effectively. The Hughes Phenomenon is a relative of the curse of 
dimensionality specifically targeted towards pattern recognition described by 
Gordon F. Hughes in his paper, “On the Mean Accuracy of Statistical Pattern 
Recognizers” [32]. In his conclusions, he states that there is a maximum 
acceptable complexity associated with a problem domain. In his pattern 
recognition experiment, he found that after some threshold, the increase in input 
dimensionality did not lead to a significant improvement in creating his classifier. 
Hughes presents ideas on how to accurately predict the necessary input size. He 
suggests using statistical techniques, like “Shannons’ information measure” or 
“Kullbacks’ divergence measure” to prune the number of possible input sizes. He 
finishes his paper stating that further work must be done on these ideas to develop 
a better idea on how an optimal search space can be decided. 

 The learning algorithm that is chosen for the task should be problem 
specific. If the data can be easily represented in a specific data structure or 
programmatic manner, the algorithm should be chosen to fit that domain. If the 
hardware that the learning algorithm is taking place on is optimized for a specific 
data representation, that should also be considered. Embedded machines with 
limited memory would have to utilize a method that takes this into account. 
Perhaps the execution time is more important than the space complexity; This 
would lead the programmer to seek an algorithm optimizing for speed by sacrificing 
memory usage. A humorous theorem in mathematics known as the “No free lunch 
theorem” [33] covers this problem. No algorithm will be able to solve every function. 
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There is always a tradeoff associated with it. Because machine learning and 
artificial intelligence has become a more matured field over time, there is no 
shortage in possibilities though. 

 Supervised learning, while effective, is all about curve fitting. Sometimes 
however, there is no “desired” behavior that we hope to elicit. In the case of 
SigSent, we have a type of behavior that we hope to see propagate, however there 
is no exact functionality that we want to impose on the robot’s mechanics. If we 
knew exactly how its movement should be performed for very specific terrain 
environments, the training set could encompass what moving mechanism and 
mobility methods are used for very specific conditions. In the case of our arachnid 
inspired device, the movement type and behavior is complex. The learning 
algorithm finds some optimal, or at the very least, well-performing functionality that 
solves the problem of mixed mobility that we present to it. Instead, we choose a 
learning method that strives to achieve the programmed goal by whatever means 
available to the software/hardware. In this case, an unsupervised learning method 
is used. 

4.2.6.1.2 Unsupervised Learning 
In unsupervised learning, the machine learning algorithm attempts to find a 

function that classifies the given data with no direct comparison between objective, 
desired outputs. The algorithm has no guidance during the training, however it 
must find a way to group the data presented to it. The data is known as being 
“unlabeled”. They are strictly discrete values that have no classification or 
association given to the algorithm. Two popular domains that this style of algorithm 
is used for hope to solve classification and association problems. Clustering 
involves grouping data through some sort of classifier where data points share 
similar attributes. Associations are found through relationships between input 
parameters. 
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Figure 14: Supervised and unsupervised classification performed for Dr. Sommer’s research on using 

machine learning for phenotype recognition 

In the figure above, Dr. Sommer shows how supervised and unsupervised 
learning methods took place on labeled and unlabeled data respectively. In 
subfigures A-C, the colored data points show that they are labeled. In subfigure B, 
the data was classified to some decent sense of accuracy as most of the green 
points are clearly sectioned away from the red. This classifier was done with 
somewhat linearly separable data, as a single divider was able to separate most 
of the data. In subfigure C, using a Gaussian kernel, the data was able to be 
classified more accurately in a circular region. Additional extensions like this to the 
classic classifier allow for more accurate separations of classified regions to more 
accurately model the desired function. Subfigures D-F show data being classified 
under an unsupervised algorithm as they are unlabeled (shown as black data 
points). Subfigure E shows the data being grouped by analyzing the properties of 
the data. This is problem specific and can be as simple or complex as the use case 
it is performed on. In figure F, the grouped data is then classified by the 
unsupervised learning algorithm very easily, as the grouping that was performed 
before has easily separated the data into two distinct groups [34]. 

4.2.6.1.3 Reinforcement Learning 
Like its name suggests, reinforcement learning uses the idea of a reward 

system to reinforce behaviors that are performing as desired. The reward is 
decided by the programmer, but should follow the problem statement closely. In 
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the case of SigSent, this reward could be based on the distance the robot travels, 
the speed of its mobility, and/or the smoothness of the journey. This reward is 
tracked throughout the learning trial, taking sensor data as inputs to decide how 
well the device’s mobility mechanism performed. Reinforcement learning is used 
in a broad range of fields due to its easy extensibility. All the programmer has to 
modify is its reward mechanism and how its data is represented in the learning 
algorithm. Since the desired behavior is not exactly known, but the overall results 
that the programmer seeks is known, simply rewarding functionality that meets 
those requirements can cause any sort of behavior to propagate that meets them. 
This allows the computer to discover methods that were either not thought 
possible, or not initially envisioned. Giving the device that freedom can lead to 
interesting results. Markov Decision Processes (MDPs) are popular in machine 
learning practices.  

Since reinforcement learning hopes to optimize some functionality without 
a direct input/output to compare to, there is a direct trade-off between the 
exploration of the search space and the exploitation of the current knowledge that 
the algorithm has discovered. This dichotomy has been researched heavily in 
learning algorithms to help optimize their performances. The multi-armed bandit 
problem is a prime example of this issue. In casinos, slot machines can be referred 
to as one-armed bandits, given it has a single arm and seeks to steal all of your 
money. The multi-armed bandit problem states, if you are given a slot machine 
with multiple arms that award different payouts and you have a limited amount of 
lever pulls available to you, how do you maximize your gains? You must explore 
the search space by trying out the levers presented to you, figuring out their 
probabilities as best as you can. The problem is, this exploratory period means 
that you are spending lever pulls on sub-optimal machines that will not net you the 
highest gain, but you must do this so you can discover which machine has the best 
reward. After some time, it is in your best interest to commit to the lever that you 
believe has the highest payoff. There are many modified versions of this problem 
and suggested solutions to it as well. The most optimal solution has been proposed 
in the paper, “Asymptotically efficient adaptive allocation rules” [35].  

Depending on the problem and the environment that the agent is operating 
in, the learning agent will be given either complete or partial visibility of its 
surroundings. In the case of an agent implemented completely in software, its 
vision is boundless. There are no physical restrictions on what information is 
provided to it. The only reason to limit its vision would be to lower computation time 
and dimensionality of the domain. In the case of SigSent, and other physical 
implementations, the amount of information given to the device is limited by sensor 
specifications, data latency, and what is actually visible or present in the physical 
environment. The actions of the agent are measured in some sort of time tick 
decided by the programmer and the algorithm. Realistically, there would be some 
sort of loop executed in some discrete time step where the environment’s state is 
passed to the agent, the agent takes some action based on this information, and 
the algorithm/programmer interprets its action to provide the necessary reward to 
promote or discourage the behavior it saw. Depending on the implementation of 
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the algorithm, the agent can attempt to maximize or minimize this reward. If the 
agent continuously performs some action that tends to be a boon to its reward, 
then it will continue to exhibit similar behaviors. It may do something radically 
different to explore more of the search space, but if that change was not helpful, 
the agent can easily fall back on the previous, performant action. This is where the 
exploration versus exploitation problem comes into effect. This search can be 
dynamic as well to offer better search optimizations. In the beginning of the 
learning process, exploration is very important. In a higher order function, there 
can be many hills and valleys in its search space to throw off the algorithm. In a 
hill climbing exercise for optimization, the algorithm should not settle for one simple 
curve with a positive gradient. The top of that hill could be suboptimal, local 
extrema. The exploitative part of the algorithm will continue to climb this hill, 
however in the later stages of the algorithm, exploration should still be possible to 
search for global maxima present in the space. 

 
Figure 15: Representation of Reinforcement Learning (Under CC license at [36]) 

 

4.2.6.2 Reinforcement Learning Implementations 
Of the three learning methodologies, reinforcement learning techniques 

were the natural choice for SigSent. True intelligence stems from the robot making 
the best decisions on its own. If we were to give it training data for very specific 
environments and expect certain mobility responses, we would be better off 
programming detailed sensor thresholds to trigger the mobility changes. The 
learning method would be cumbersome for little additional gains. Furthermore, the 
large input size from SigSent’s sensor array would make the learning process very 
complex. We hope to enable SigSent to adequately learn optimal movement 
techniques by discovering it on its own, undefined by our team. Having a unique 
robot with several limbs, and limbs of different types, defining the proper movement 
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method would be difficult anyway. When dealing with something radically different, 
letting the computer explore the different options available to it will provide a much 
clearer picture on what works and what does not, unbeknownst to us [36]. 

4.2.6.2.1 Q-Learning 
Q-Learning is a policy-based learning algorithm that decides what action 

should be taken to result in the best utility value. An “action-value” function is 
learned by the learning method such that for any inputs, the highest scoring action 
is chosen to be enacted. A major disadvantage to using Q-Learning is that all of 
the states and actions must be known beforehand [37]. Since our robot will be used 
in many different environments, there is no way we can accurately model every 
single possible location as a designed state. Before the learning takes place, an 
exhaustive search of all of the various possible states would need to be found 
experimentally, which is infeasible for SigSent. 

4.2.6.2.2 Genetic Algorithms 
 Genetic Algorithms (GA) take techniques from Darwin’s method of natural 
selection to effectively search through a space for optimal solutions. A population 
of individuals are randomly created initially, where each individual is essentially a 
“solution” to the problem. These individuals are tested in some environment, 
specific to the problem, and have a fitness score assigned to them. The fitness is 
the same reward mechanic in any reinforcement learning mechanism. The most fit 
individuals are then used to generate a new population through crossover and 
mutation operators. Crossover takes parts of two solutions and combines them 
into one. Mutation has a rarer occurrence, selecting pieces of a solution and 
randomly modifying them with no regard for the consequence of the change. This 
mutation is used to increase exploration of the search space. The specific 
operators, and how the individuals are selected for reproduction, are up to the 
implementation of the genetic algorithm. GAs are a way to speed up an exhaustive 
search by adding a sort of “implicit parallelism” by having individuals tackle the 
search space at many different angles (dependent on the size of the population), 
honing in on regions that have high fitness values. 

 Genetic algorithms can fall flat when the search space, or the relationship 
between the inputs and outputs, are not suited for the GA. If the search space 
contains many hills, the GA will have a difficult time trying to find the most optimal 
value as it will get stuck in local optima. The genetic operators (crossover/mutation) 
assume that solutions that are adjacent in the search space have similar fitness 
values such that small movements around those solutions will provide an 
increasing fitness. If there is no such relationship, the GA will be about just as 
effective as a random, exhaustive search throughout the space. Also, as is the 
case with our robot, there is a high order of dimensionality, which causes the 
search space to be absurdly large. Representing the solution in the GA can also 
be a major concern. Binary strings are the easiest items to manipulate in a GA, 
however with all of the sensors and motors utilized by SigSent, these could not be 
easily represented.  
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4.2.6.2.3 Neuroevolution 
Neuroevolution uses a GA to evolve a neural network to solve a problem. 

Neural networks act as black boxes. You pass some inputs to them, they provide 
some hidden computation in the background, and then you retrieve the outputs 
and use them for your problem. Neural networks are able to find meaning from 
complex data that humans can not intuitively find. Neuroevolution provides this 
technique while also evolving the neural network with a GA such that the 
programmer’s involvement in the learning process is very minimal. Normally, you 
must write some sort of methodology to change the weights on the neural network 
(where the topology is constant), or somehow change the structure of the network 
over time. Using a neuroevolution algorithm takes care of this work for you, altering 
the network based on its performance (as it is assigned a fitness). 

4.2.6.3 NEAT 
NEAT (NeuroEvolution of Augmenting Topologies) is a direct 

implementation of neuroevolution by Dr. Kenneth Stanley [38]. He found that 
starting with a minimally structured network and having a GA add complexity over 
time resulted in a simple network that had an optimal performance value. NEAT 
uses speciation to continue with exploration, while also not sacrificing exploitation 
by keeping networks grouped by similar topologies so that if one network structure 
was performing well, others were not discounted for further investigation. There 
are several new versions of NEAT that have been released as extensions for 
different use cases as well, so the community is very active. Dr. Stanley’s lab, the 
Evolutionary Complexity (EPlex) lab, is housed at the University of Central Florida, 
giving us access to possible mentoring opportunities for the project. 

The NEAT module for SigSent was not able to be implemented in its final 
form due to the limitations on robot walking experienced. The servos that were 
selected did not meet their torque requirements as advertised and the material that 
the robot was constructed out of was not strong enough to keep SigSent walking 
correctly without ripping itself apart. To prevent damage to the robot, SigSent had 
its gait and movement functionality demoed while suspended in their on a platform. 
Due to this limitation, SigSent could not gather IMU data to train the NEAT ANN. 
The research and code is still provided for a future implementation of SigSent if 
the reader chooses to do so. 

 SigSent would ideally use NEAT in a training phase in both simulation and 
physical environments. The simulation period will be used to refine the parameters 
for the algorithm as it relates to NEAT’s GA values and the initial neural network’s 
starting structure. The input and output representations need to also be modified 
into some optimal format, which is only known through empirical study. The 
simulations will be done in Gazebo, a test environment created to interface easily 
with ROS. If the tests in Gazebo run well, we will transfer that knowledge over into 
the training phase when working with the actual robot in real location settings. The 
studies done in the simulation may not have a direct application in the physical 
tests, however it gives us a good starting point and also allows us to code up the 
algorithm’s implementation while parts are arriving, and the robot is still being built.  
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 Our inputs into NEAT would be the angular velocity and linear acceleration 
from the IMU as well as the current mode of transportation (0/1). An artificial neural 
network would be trained to be able to classify the terrain type that is currently 
being traveled over depending on the current movement mode and the IMU data 
being supplied. Data would be collected that has the movement type used and 
IMU values labeled as being rough or smooth. After training the classifier to 
correctly identify the terrain, this ANN would be used in operation to tell the 
operator if they are using the correct mobility type for what terrain they are moving 
over. It would alert them to change if necessary. 

4.2.7 Gazebo Simulation 
 To test the robot’s mobility mechanisms in a realistic environment, and 
begin debugging the ROS code before the robot is built, a proper test simulation 
was needed. Gazebo is a popular robot simulation tool that is free to use and 
boasts a well-designed environment to “rapidly test algorithms, design robots, 
perform regression testing, and train AI system using realistic scenarios” [39].  

A model of a robot, designed in the SDF file format, can be imported into 
the simulation, describing every detail of the vehicle needed for simulation. ROS 
is easily integrated with Gazebo to allow for ROS message passing and processing 
within the simulation. The test environment that the robot simulation runs on can 
feature different types of terrain to validate the functionality of the mobility switching 
of the intelligent system. Through the various tests that the simulation is put under, 
the algorithms could be tuned and perfected to meet the criteria of the desired 
product. 

 
Figure 16: An Example of a Gazebo Simulation [40] 

Work on the simulation was done up to creating a base environment in 
Gazebo from a drawn heightmap, however it was pruned from the project as too 
much work to have a fully functional hexapod robot simulated was necessary. The 
goal of the Gazebo simulation was to parallelize the work being done on the 
software and the hardware, but to work on the simulation, the hardware model 
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needed to be completed to be imported into the simulation. Since the actual 
hardware model was a significant portion of the project, too much time was spent 
waiting on its completion and other key software tools were being put on hold. Due 
to this, the simulation was neglected and full attention was given to implementing 
code on the physical robot instead as it became available. 

4.3 HARDWARE RESEARCH 
In addition to the hardware constraints and standards outlined in section 0, 

every piece of hardware involved in the development of SigSent had particular part 
considerations necessitating research to find the best choice in each category. 
Some parts had scores created to evaluate their objective value to our project. 
Other parts have clearly defined specifications that were used to decide which part 
was the most optimal for SigSent. 

4.3.1 Microcomputer 
A microcomputer in the generic sense was chosen over a microcontroller 

due to the complexity of the robot. SigSent has to manage computer vision, LIDAR 
data, SLAM, state machine, control system, wireless communications, and 
diagnostic information constantly in order to properly complete its goal. Completing 
these goals on a microcontroller, while feasible, was determined to not be a time 
efficient solution since an operating system capable of handling multitasking would 
complete much of the juggling required to complete all those tasks simultaneously, 
in the same stroke there are many programs which could be used on an operating 
system (OS), most likely a linux derivative, that will also streamline the 
development of the project within our time scope. Libraries and programs such as 
OpenCV, ROS, i2c-tools, bash, ssh, and python allowed for the SigSent team to 
quickly develop the novel features of our robot while not reinventing the wheel, 
spending precious time developing and testing already heavily standardized 
features and libraries. 

4.3.1.1 Microcomputer under consideration 
The microcomputers defined below were serious considerations due to their 

popularity and computing power. Their strengths and weaknesses are displayed 
in the scoring table: Table 2 Microcomputer Comparison. 

4.3.1.1.1 Raspberry Pi 3 
The Raspberry Pi 3+ was under consideration for this project due to its low 

price, impressive computing power, number of USB ports, and its significant 
community support and documentation. 

4.3.1.1.2 Raspberry Pi Zero W 
The Raspberry Pi Zero W was under consideration for this project due to its 

extremely low price, low power consumption, and the significant community 
support and documentation  
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4.3.1.1.3 Beaglebone Black 
The Beaglebone Black was under consideration for this project due to its 

good community support, and impressive amount of GPIO pins, and its efficient 
use of power.  

4.3.1.1.4 Gumstix DuoVero™ Zephyr COM 
The GimStix DueVero Zephyr COM was under consideration for its 

professional, more industrial design approach outside of the hobby/maker market 
like the above microcomputers. Where the gumstix lacks in other specifications 
and price point, it makes up for in customer service and reliability through tested 
development.   

4.3.1.1.5 Nvidia Jerson MK1 
The Nvidia Jetson MK1 was under consideration for this project on the 

possibility receiving sponsorship for the microcomputer. The Jetson MK1 has one 
of the most powerful GPU’s in the embedded computer market which would enable 
the robot to crunch through the heavy math calculations easily where other 
microcomputers would struggle. 

4.3.1.2 Specifications 
To compare each microcomputer objectively, important specifications were 

decided upon which the highest scoring in total would be decided to be used. 

4.3.1.2.1 Price 
Price is a self-explanatory constraint, as the price of the microcomputer 

increases this relates linearly with the team’s will to implement it due to our limited 
sponsored budget. 

4.3.1.2.2 Frequency 
The faster the clock cycle is on a RISC processor (all microcomputers under 

consideration are ARM based) we could safely assume that the more instructions 
will be executed per second. Being able to crunch those numbers more time 
efficiently means that our robot is not be bottlenecked by the CPU and allows for 
near continuous operation of the robot. 

4.3.1.2.3 Cores 
The more cores there are in the CPU the more threads our robot can run, 

once again allowing for a more continuous, less bottlenecked operation of the 
robot.  

4.3.1.2.4 RAM 
RAM is very important for our robot as processing images through OpenCV 

can be very memory intensive as multiple images need to be loaded, processed, 
and acted upon as soon as possible for our robot to operate functionally, the more 
RAM that is available to us, the lower the risk of SigSent being RAM bottlenecked 
is. 
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4.3.1.2.5 Average Power Consumption 
Power Consumption is of critical importance to the vehicle overall, the less 

power the microcomputer consumes or wastes the longer the vehicle can move, 
patrol, and report. 

4.3.1.2.6 USB, GPIO, I2C, WiFi 
USB Ports, GPIO, I2C, and WIFI functionality are crucially important to the 

vehicle since our sensors require USB and I2C, our simple outputs and simple 
transducers rely on GPIO, and our communication with SigSent’s base station 
relies on WiFi (pending change). A valid board would require all of these features.  
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4.3.1.3 Score 
A score was calculated based on a formula that maximizes the value for 

specifications that are positively valuable and minimizes over specifications that 
undesirable. 

4.3.1.3.1 Formula 
In order to quantifiably determine the relevance of one microcontroller over 

another a simple formula was devised after analyzing the available specifications 
found in the documentation for each of the microcontrollers. 

𝑅𝑒𝑙𝑎𝑣𝑒𝑛𝑐𝑒 =
𝑆𝑝𝑒𝑒𝑑 ∗ 𝐶𝑜𝑟𝑒𝑠 ∗ 𝑅𝐴𝑀 ∗ 𝑈𝑆𝐵	𝑃𝑜𝑟𝑡𝑠 ∗ 𝐺𝑃𝐼𝑂	𝑃𝑖𝑛𝑠

𝐶𝑜𝑠𝑡 ∗ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑃𝑜𝑤𝑒𝑟	𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛  

Equation 1: Formula for Microcomputer Comparison Score 

4.3.1.3.2 Specification Comparison and Score Output 
Table 2 Microcomputer Comparison 

Name 

price 
(USD
) Processor 

Spee
d 
(GHz) 

Core
s 

RA
M 
(kB) 

Avg 
PW
R 
(mW
) 

#US
B 

#GPI
O 

I2
C 

WiF
I 

Scor
e 

rPi 3+ 35 BCM2837 1.2 4 
102
4 5120 4 40 T T 4.39 

rPi 
Zero 
W 10 BCM2835 1 1 512 900 0.5 28 T T 0.8 

BBB 68.75 
AM3358 
Sitara 1 1 512 2500 1 92 T T 0.27 

Zephy
r 200 

OMAP443
0 1 2 

102
4 3960 1.5 70 T T 0.27 

Jetso
n 129 

Quad 
ARM® 
A57/2 MB 
L2 1.9 4 

409
6 4700 1 20 T T 1.03 

 

4.3.1.3.3 Selection Rationale 
Going from the score, and corroborated with group consensus, chose the 

Raspberry Pi 3 Model B. We chose this microcomputer due to its combination of 
low cost, high CPU performance, low power consumption, large amount of USB 
ports, and reputable amount of GPIO pins allowing for easy expandability should 
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the project have required unforeseen changes. The Raspberry Pi 3 also has native 
support for USB, I2C, GPIO, and Wifi, as well as some other nice options such as 
an ethernet port, speaker output, and HDMI output and USB output. And above 
almost all else, the Raspberry Pi organization has a significant amount of 
documentation, support, and community driven forums that aided in quickly being 
able to understand, develop, and troubleshoot any problems or questions that our 
team had about using this specific microcomputer.   

4.3.2 Microcontroller 
A microcontroller was used to complement the microcomputer on the robot. 

The two systems are on two separate discrete boards to reduce load on the system 
and provide a more reliable system that controls the actual robot’s movement. If 
the artificial intelligence and control systems logic were placed on a single board, 
the AI latency could cause the movement scheme to suffer, and vice versa. A 
microcontroller being used to interface with the physical robot needs to be cheap, 
low-power, have enough input and output ports to interface with the necessary 
sensors, and have enough computational power to reduce delays in processing 
the movement of the robot. These three parameters will be discussed for the 
popular architectures and implementations below. 

4.3.2.1 Atmel megaAVR 
Atmel chips are popular for hobbyist projects and for low-power needs. 

Arduino boards which are ubiquitous in the embedded world today use the Atmel 
Atmega IC. This chip can be taken off of the development board and placed in a 
PCB very easily. For prototyping purposes, the chip can remain on the Arduino (or 
third party) board until the PCB has been created and the functionality has been 
verified to be correct. Below are discussions on the major Atmel chips used today. 

4.3.2.1.1 ATmega328 
This Atmel chip is 8-bit with 32KB of ISP flash memory that can “read-while-

write”. It also has 1KB EEPROM, 2KB SRAM, 23 General Purpose Input/Output 
(GPIO) lines, 32 General Purpose Registers (GPRs), three timer/counters, 
internal/external interrupts, USART serial programming, SPI serial port, 6-channel 
10-bit ADC, watchdog timer, and power saving modes. The ATmega328 has an 
operating voltage of 1.8-5.5V. From this operating voltage range, a range of clock 
speeds can be achieved as seen in the table below.  

Table 3: Operating speeds at voltage ranges 

Clock Speed Operating Voltage 
0-4MHz 1.8-5.5V 

0-10MHz 2.7-5.5V 
0-20MHz 4.5-5.5V 

4.3.2.1.2 ATmega1280 
The Atmega1280 is a higher performance Atmel chip that is still low-power. 

It has 128KB ISP flash memory, 8KB SRAM, 4KB EEPROM, 86 GPIO lines, 32 
GPRs, real time counter, six timer/counters, PWM, 4 USARTs, SPI, 16-channel 
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10-bit ADC, and a JTAG interface. The ATmega1280 has a performance of 16 
MIPS at 16 MHz with an operating voltage of 2.7-5.5V. 

Table 4: Operating speeds at voltage ranges 

Clock Speed Operating Voltage 
0-8MHz 2.7-5.5V 

0-16MHz 4.5-5.5V 

4.3.2.1.3 ATmega2560 
The ATmega2560 chip employs a larger 256KB ISP flash memory, 8KB 

SRAM, 4KB EEPROM, 86 GPIO lines, 32 GPRs, six timer/counters, PWM, 4 
USARTs, SPI, 16-channel 10-bit ADC, and a JTAG interface. It has similar 
specifications to the ATmega1280, however has double the flash memory. Its 
operating voltage is a narrower range of 4.5-5.5V with a clock speed ranging from 
0-16MHz. 

4.3.2.2 MSP430 
The MSP430 is produced by Texas Instruments (TI). It is a group of 16-bit 

CPUs that are built for low power and are sold at cheap prices. As noted by the 
different families of chip implementations below, TI follows a naming pattern for 
each group of MSP430 chips. MSP430 signifies that it belongs to that specific 
architecture. The next letter indicates the memory type or its specific application. 
Flash memory chips use a “F” to identify themselves. A “G” is used to denote items 
used for medical instrumentation. One chip that does not follow this naming 
convention though is the MSP430FG2xx family. Below are some popular 
implementations of the MSP430 architecture produced by TI that we researched 
for use as the primary microcontroller in SigSent. 

4.3.2.2.1 MSP430x1xx 
This series of MSP430 chips is very basic, not including an embedded LCD 

controller. They can use flash (1-60KB) or ROM (1-16KB) based memory, and 128 
B -10KB of RAM. They have a performance score of 8 MIPS. They have an 
operating voltage of 1.8-3.6V. The x1xx series includes 14/22/48 GPIO lines, 
10/12-bit SAR (Successive Approximation) ADC. They have several integrated 
peripherals. To name a few key items (and similar ones to the Atmel chips), two 
16-bit timers, a watchdog timer, brown-out reset, USART, 16x16 multiplier, and a 
temperature sensor. These chips have three different operating modes that have 
low levels of current draw. In order from least to greatest current draw: RAM 
retention mode (0.1 μA), real-time clock mode (0.7 μA), and MIPS active (200 μA). 
The x1xx chips have a wake-up time from standby under 6 μs. 

4.3.2.2.2 MSP430F2xx 
The F2xx series adds more performance at a lower power usage than the 

x1xx series. It includes a very-low power oscillator (called the VLO). The F2xx 
chips feature 1-120KB of flash, 128B-8KB of RAM, 10/11/16/24/32/48 GPIO lines, 
10/12-bit SAR ADC, and 16/24-bit Sigma Delta ADC. In addition to the peripherals 
from the x1xx series of chips, the F2xx family has I2C support and operational 
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amplifiers. Its power modes from least to greatest current draw are: RAM retention 
(0.1 μA), standby using the VLO (0.3 μA), real-time clock (0.7 μA), MIPS active 
(220 μA). These chips have a wake-up from standby time under 1 μs. 

4.3.2.2.3 MSP430G2xx 
The G2xx series are considered “Ultra-Low Power”. They feature the same 

16 MIPS performance, VLO, 1.8-3.6V, and I2C in a smaller package, with less 
GPIO pins. The power modes are similar to the F2xx series, except the VLO mode 
draws 0.4 μA instead of 0.3 μA. The device specifications are as follows: 0.5-56 
KB flash, 128 B – 4 KB RAM, 10/16/24/32 GPIO lines, and 10-bit SAR ADC. The 
differing peripherals are: three 16-bit timers (one higher than the other series) and 
capacitive touch I/O. 

4.3.2.2.4 MSP430x3xx 
The x3xx series includes an LCD controller, increasing its portability. 

EEPROM memory was not included in this series, instead using one-time 
programmable EPROM. They operate from 2.5-5.5 V. The x3xx specifications 
include: 2 – 32 KB ROM, 512 B – 1 KB RAM, 14/40 GPIO lines, 14-bit SAR ADC, 
and an integrated LCD. Their power modes are: RAM retention (0.1 μA), real-time 
clock (0.9 μA), and MIPS active (160 μA), and a wake-up time of under 6 μs. 

4.3.2.2.5 MSP430x4xx 
This series is said to be “ideal for low power metering and medical 

applications” [41]. It has a low operating voltage of 1.8-3.6V. These chips include 
Frequency Locked Loop (FLL) and Supply Voltage Supervisor (SVS) for better 
clock synchronization. Its specifications are: 4 – 120 KB flash/ROM, 256 B – 8 KB 
RAM, 14/32/48/56/68/72/80 GPIO lines, 10 – 12-bit SAR ADC, and 16-bit Sigma 
Delta ADC. The x4xx chips have a CPU speed of 8 MIPS. Its unique peripherals 
unavailable in the aforementioned series are a 32x32 multiplier, ESP430, and 
SCAN_IF.  

4.3.2.2.6 MSP430x5xx 
The x5xx series chips have a higher maximum clock rate of 25 MHz while 

still operating with low-power constraints and putting out 25 MIPS. It has an 
operating voltage of 1.8 – 3.6V. Its specifications are: up to 512 KB flash, up to 66 
KB RAM, 10/12-bit SAR ADC, 29/31/47/48/63/67/74/87 GPIO lines, high resolution 
PWM, and a backup battery switch among other similar peripherals from its sister 
families. Its power modes are: RAM retention (0.1 μA), real-time clock (2.5 μA), 
and MIPS active (165 μA). The wake-up time is less than 5 μs. 

4.3.2.2.7 MSP430x6xx 
The x6xx series chips can also run up to 25MHz with 25 MIPS. It operates 

at 1.8 – 3.6V as well. It features a special power management module for better 
power consumption and the USB integrated in it. Its specifications are: up to 512 
KB flash, up to 66 KB RAM, 12-bit SAR ADC, 74 GPIO lines, USB, LCD, power 
management module, and real-time clock (RTC). Its power modes are: RAM 
retention (0.1 μA), real-time clock mode (2.5 μA), and MIPS active (165 μA). It has 
a wake-up time of under 5 μs. 
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4.3.2.2.8 RF SoC (CC430) 
The RF SoC board integrates an RF transceiver at under 1 GHz, with a 1.8 

– 3.6V. Its specifications are: 20MHz, up to 32 KB flash, up to 4 KB RAM, 12-bit 
SAR ADC, 30/44 GPIO lines, and peripherals similar to the previous models (LCD, 
power management module, RTC, etc.). The power modes are: RAM retention (1 
μA), real-time clock (1.7 μA), MIPS active (180 μA). 

4.3.2.2.9 FRAM Series 
This series of chips features memory access speeds that are 100 times 

faster than the traditional flash memory times. FRAM does not require power for 
writes, so if power is lost, writes can still be finished. FRAM can be written over 
100 trillion cycles. EEPROM is not needed because of this resilience. Its 
specifications are: 8 – 24 MHz speed, 4 – 128 KB FRAM, 0.5 – 2 KB RAM, 10 or 
12-bit SAR ADC, 17 – 83 GPIO lines. It features peripherals rom its lower level 
sister series and also a new Extended Scan Interface, AES (Advanced Encryption 
Standard), and IR modulation. Its power modes are: RAM retention (.320 μA), real-
time clock (0.35 μA), and MIPS active (82 μA). 

4.3.2.2.10 Low Voltage Series 
There are two microcontrollers in the Low Voltage Series. They are the 

MSP430C09X and MSP430L092. Their low operating voltage range is 0.9 – 1.65V. 
Its specifications are: 4 MHz speed, 1 – 2 KB ROM, 2 KB SRAM, 8-bit SAR ADC, 
11 GPIO lines, two 16-bit timers, SVS, comparator, and the other basic peripherals 
available to all MSP430 implementations. Its power modes are: RAM retention (1 
μA), real-time clock (1.7 μA), and MIPS active (180 μA). 

4.3.2.3 Selection Rationale 
From the microcontrollers to consider and their features enumerated in 

4.3.2.1 & 4.3.2.2, the best choice for our microcontroller, considering the different 
characteristics of memory on the chips, GPIO, PWM outputs, USART pins, and 
I2C pins available, as well as the critical feature of ease of use and integration into 
the project with the microcomputer selection in mind, then the choice was clearly 
the ATmega328 chip. This has enough output ports and memory to handle the 
code size needed without providing too much over head on the project for this sub-
system. The availability to integrate the Arduino framework into the project also 
made for a very easy way integrate the sub-system into the other systems with the 
needed outputs and inputs. 

This microcontroller allowed us to quickly, cheapy, and easily integrate a 
controls sub-system onto our robot and allowed more time and money to focus on 
developing new and novel concepts that this robot is attempting to accomplish 
without reinventing the microcontroller system since the Arduino framework has 
become ubiquitous in the amateur hobbyist community. 

4.3.3 GPIO extenders 
Since SigSent has numerous input and output devices connected to the 

microcontroller it is a wise decision to make use of a GPIO extender/extension. 
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This would be an IC chip that would interface with the microcontroller over some 
communication protocol and handle commanding a portion of the outputs. This 
frees up the GPIO pins on the microcontroller allowing for less computation or 
processing by the microcontroller and more focus on commanding of the I/O 
devices. 

4.3.3.1 Pulse width modulation extender 
The majority of the I/O devices that interface with the microcontroller are the 

servo motors that drive the movement of the system. This can really hinder our 
performance as the microcontroller is much slower in comparison to the clock 
speeds that the microcomputer runs at. This means efficiency and latency is of the 
utmost of importance when new commands from the microcomputer are being sent 
to the microcontroller. To ensure a clean command of the 18 servo motors, a pulse 
width modulation (PWM) extension integrated circuit (IC) is used. This frees up 
commands and allows for more inputs if they are necessary. 

4.3.3.1.1 PCA9685 
This is a 16 channel LED controller, with each channel having a 4096-step 

PWM brightness control. The PCA9685 has a programmable frequency output 
from 24Hz to 1526Hz. This chip uses I2C as a communication protocol. The 
PCA9685 has an operating voltage of 2.3-5.5V with inputs and outputs being 5.5V 
tolerant. This chip has a driving current capability of up to 25mA. This IC also a 
fast-mode that allows it to 1MHz on the I2C bus. It also has the option for an 
external clock input that will accept up to 50MHz, instead of the internal 25MHz 
oscillator, allowing for synchronization of multiple devices. 

4.3.3.1.2 TLC5940 
This is a 16 channel LED driver, with each channel having a 4096-step 

grayscale PWM brightness control. It uses serial communication and has a data 
transfer rate of 30MHz. The TLC5940 has an operating voltage of 3-5.5V. This chip 
has a driving current capability of up to 60mA on less than 3.6V and up to 120mA 
on greater than 3.6V. This IC also has thermal protection in the form of an error 
flag that is thrown out the error handling pin. This does need a clock signal to shift 
incoming serial data for output. 

4.3.3.1.3 TLC5947 
This is a 24 channel LED driver, with each channel having a 4096-step 

grayscale PWM brightness control. It uses serial communication and has a data 
transfer rate of 30MHz. The TLC5947 has an operating voltage of 3-5.5V. his has 
a driving current capability of up to 30mA. This IC also has thermal protection in 
the form of an automatic shutdown at over temperatures and restarts under normal 
temperatures again. This does need a clock signal to shift incoming serial data for 
output. This chip has an internal oscillator of 4MHz. 
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4.3.3.1.4 SN3218 
This is an 18 channel LED driver, with each channel having a 256-step 

PWM brightness control. This chip uses I2C as a communication protocol with a 
maximum clock frequency of 400kHz. The SN3218 has an operating voltage of 
2.7-5.5V. his has a driving current capability of up to 23mA. This IC also has 
thermal protection in the form of an error flag that is thrown out the error handling 
pin. 

4.3.3.2 Selection Rationale 
From the pulse width modulation extenders to consider and their features 

enumerated in 4.3.3.1, the best choice for our pulse width modulation extenders, 
considering the distinctive characteristics of number of available channels, step 
size, output frequencies, communication protocols, operating voltage and output 
current for each channel, then the choice was clearly the TLC5947 chip. This has 
enough output ports channels to handle the amount of servo motors needed 
without providing too much overhead on the project for this sub-system. While this 
has the largest number of channels from the chips put under comparison, it does 
have enough channels for all the leg movements on SigSent while leaving some 
available to add a pan and tilt to the camera onboard if need be. Also with this 
amount of PWM outputs all control commands can be sent to this single chip from 
the microcontroller allowing for slimming of code sizes and the need for only one 
command to be sent to this board to begin movements of the servo motors. 

This pulse width modulation extender allowed us to quickly, cheapy, and 
easily integrate extended output to the controls sub-system for the microcontroller 
onto our robot and allowed us more time and money to focus on developing new 
and novel concepts that this robot is attempting to accomplish without reinventing 
the output capabilities for microcontrollers or having a niche microcontroller with 
extended PWM capabilities but risk the ease of use and integration into the system 
for it. 

4.3.4 Force/Pressure Sensor 
In order for SigSent to have an active suspension system, the system would 

need to know whether it is touching the ground or not and if it is, how planted or 
hard is the leg pressing into the ground. This would give a relatively accurate 
reading from all the legs to be able to tell if SigSent has a good stance/footing at 
the current moment.  

This especially becomes vital when the system is traversing over rough 
terrain that is bumpy in nature. SigSent needs some feedback as to whether it is 
touching the ground and if it is currently holding itself up on the current legs that 
are touching the ground or is off balance and is about to become unstable. The 
plan for the force/pressure sensor would be to place it on the end effectors of the 
two middle legs and also in between the bearing and the holder that the motors 
are mounted to. This would give an accurate reading on the end effectors and their 
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contribution to stability as well as the other four legs. This coupled with the inertia 
measurement unit reading would show what the system needs to do to remain 
stable or to actively stabilize itself from a position. Due to the proposed 
locations/placements of the force sensors, it is a requirement that the force sensors 
are as thin/flat as possible, above most other specification, to not hinder the design 
or the solutions to the kinematics equations by adding size to the end effector, etc.  

4.3.4.1 Force Sensors under consideration 
The following force sensors are those that have properties viable to our 

project and will be objectively compared such that the best option under our 
constraints is chosen for use in SigSent’s development. 

4.3.4.1.1 SingleTact Capacitor force sensors 
This force sensor is capable of measuring up to 100lbs of force while being 

0.35mm thick. This force sensor is capable of being three times more sensitive 
than a resistive force sensor. The sensing area of this sensor is 8mm or 15mm in 
diameter. It has an I2C interface making it easy to set up with microcontrollers. The 
SingleTact can also operate in temperatures up to 200oC with a temperature 
sensitivity of 0.2%/oC. This sensor has a repeatability performance of less than 
±2.5%, response time of less than 1 millisecond, and drift of less than 2% per 
logarithmic time scale. This is only an analog sensor and would require an 
amplifying circuit and analog to digital converter to properly measure the reading 
from the force sensor. This product family does have an accompanying electronic 
circuit that amplifies and outputs it as a voltage signal or converts the signal to an 
I2C signal for direct reading of the measurement. 

4.3.4.1.2 Interlink electronics FSR 400 Series 
This force sensor is capable of measuring up to approximately 5lbs of force 

while being 0.3mm thick. The sensing area of this sensor is 5 to 13mm in diameter. 
The FlexiForce can also operate in temperatures up to 85oC. This force sensor is 
also flexible and relatively easy to implement only needing an op amp circuit to get 
the output. This sensor has a repeatability performance of less than ± 2%, 
response time of less than 3 microseconds. This is only an analog sensor and 
would require an amplifying circuit and analog to digital converter to properly 
measure the reading from the force sensor. 

4.3.4.1.3 Tekscan FlexiForce ESS301 
This force sensor is capable of measuring up to 100lbs of force while being 

0.203mm thick. The sensing area of this sensor is 9.53mm in diameter. The 
FlexiForce can also operate in temperatures up to 85oC with a relative humidity of 
up to 95%. This force sensor is also flexible and relatively easy to implement only 
needing an op amp circuit to get the output. This sensor has a repeatability 
performance of less than ±2.5%, response time of less than 5 microseconds, and 
drift of less than 3.8% per logarithmic time scale. This is only an analog sensor 
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and would require an amplifying circuit and analog to digital converter to properly 
measure the reading from the force sensor.  

4.3.4.2 Selection Rationale 
From the force sensors to consider and their features enumerated in 

4.3.4.14.3.3.1, the best choice for our force sensor, considering the distinctive 
characteristics of capable weight able to be measured, sensor size, sensor 
thickness, communication protocol, operating temperature and humidity, and 
sensor measurement repeatability, then the choice is clearly the SingleTact 
Capcaitor Force sensors. This force sensor, while very similar to the other force 
sensors, has one clear advantage of coming with the amplification circuit already 
set up and ready to output data. As well as the added advantage of the ability of 
outputting I2C data directly to a microcontroller. This would save a lot of overhead 
and possible wasted hours calibrating the amplification circuitry to try and get a 
readable and reliable output. 

This force sensor would allow us to quickly and easily integrate a feedback 
input for the controls sub-system to the microcontroller onto our robot and allow us 
more time to focus on developing new and novel concepts that this robot is 
attempting to accomplish without reinventing the amplification circuits needed for 
the proper outputs. Due to limited budgeting and higher priorities in sensors or 
actuators, this sensor was tabled for a later date to integrate into the controls sub-
system with the microcontroller, if time and money allowed for it. 

4.3.5 Lidar  
Lidar or Light Imaging, Detection, And Ranging or LIght raDAR is a 

“surveying method that measures distance to a target by illuminating that target 
with a pulsed laser light, and measuring the reflected pulses with a sensor. 
Differences in laser return times and wavelengths can then be used to make digital 
3D-representations of the target.” [42]. In our robot we used a 2D lidar supplied by 
the Robotics Club at the University of Central Florida [43]. This Lidar is a Hokuyo 
UTM-30LX lidar which is capable of seeing 30 meters in day or night with a 270* 
view. The Lidar outputs a long vector of measurements in millimeters for each 
individual point, having a data point once every .25* for a total of 1440 steps per 
full revolution of the laser assembly. [44] This data could be easily represented as 
an absolute depth data that can be input into Gmapping (4.2.5.1)  
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Figure 17: Representation of Lidar output compared to Image [45] 

4.3.6 Camera 
To facilitate the computer vision in SigSent, a camera that is versatile 

independent on the time of day, has a resolution that is high enough for performant 
image classification, and meets our pricing standards was chosen. 

4.3.6.1 CCD v CMOS 
There is an important distinction to be noted between CCD and CMOS 

based camera sensors, while CMOS has become popular in consumer cameras 
due to its very low price and small size, it is at the price of a significantly higher 
noise in image quality. CCS, while an order of magnitude more expensive than 
CMOS sensors has a much lower noise, creating significantly more reliable images 
that will lead to less errors in the robot’s computer vision. 

4.3.6.2 Day Vision versus Night Vision 
Since SigSent is designed to be operated during both daytime and nighttime 

operations, care must be taken into how SigSent’s cameras will take in light both 
during the daytime, where the Sun could easily wash out images, and the nighttime 
where there could be very minimal lighting. This allows for three options for the 
robot to operate in both daytime and nighttime operations without human 
intervention. The first is to have a normal camera and equip the robot with a 
powerful light to flood the area in front of the camera with enough light for the robot 
to gain enough data to determine if there is a human out of place - however this 
makes the robot's position very easily known and the robot easier to avoid. The 
second is to have an IR camera that can detect IR wavelengths, giving the camera 
a form of night vision, however this means that the cameras would be at a 
disadvantage during daytimes as some colors would be washed out due to the sun 
broadcasting IR light. The third option is to have a camera similar to the prior option 
but with an automated IR-CUT filter that could operate during the daytime, allowing 
the camera to filter out IR light during daytime and remove that filter during 
nighttime allowing the camera to detect the IR light again. Each camera has some 
combination of these features and each could theoretically be modified to work in 
both day or night (by adding or removing an IR-CUT filter) or adding a flashlight, 
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depending on the features and their determined usefulness one of the above 
options had to be chosen. 

4.3.6.3 Cameras Under Consideration 
The following cameras are those that we considered due to their 

compatibility and performance. 

4.3.6.3.1 Raspberry Pi Cameras 
As the Raspberry Pi serves as our robot’s microcomputer, cameras 

designed to work with the hardware are important to distinguish. 

4.3.6.3.1.1  Infrared 500W Focus Adjustable Night Vision Camera 
Module  -  BLACK 

This CMOS cameras has a dubious claim of having a 500 watt IR LED to 
light its surrounding, capability of detecting IR light, and a significant lack of 
documentation. This camera coming with an IR led built in is a significant feature 
which reduces the amount of modification needed for the camera to operate at 
night, however the lack of documentation for this camera significantly increases 
the risk of this product being unreliable and hard to integrate into the system. 

4.3.6.3.1.2  Raspberry Pi Infrared Camera Module (NoIR) V2 
This is a CMOS camera developed by Raspberry Pi and thus has workable 

amount of documentation associated with it as well as a more trustable brand to 
trust in. This camera uses the Sony IMX 219 PQ CMOS sensor with its IR Blocking 
filter removed allowing it to see at night when IR led’s are present, however with 
the IR filter removed images during the daytime may be washed out, requiring the 
team to modify a IR filter to cover the lens during daytime operations. This camera 
has a high resolution and a high FPS as well as automatic exposure control, 
automatic white balance and automatic black level calibration allowing for us to 
easily retrieve more color accurate and more up-to-date images from the sensor. 
This camera however lacks an option to adjust focus which means that the camera 
may be blurry if an object of interest is too close or too far away from the camera.  

4.3.6.3.1.3  Raspberry Pi Camera Module w/ Adjustable Focus and Night Vision 
This CMOS camera developed by Waveshare comes with an adjustable 

focus an am Omnivision OV5647 sensor with its IR filter removed. This sensor can 
capture 720p images at 60FPS or 640p images at 90FPS which is ideal so that we 
are always processing the most up to date images for SigSent. This camera also 
comes equipped with IR LED’s to help see at night, however there is no IR-CUT 
filter on it so we would need to modify that filter on to prevent images being washed 
out during the daytime. 

4.3.6.3.1.4  Raspberry Pi Camera Module w/ Fisheye Lens and Night Vision 
This CMOS Camera with the same sensor as in 4.3.6.3.1.3. Is fitted with a 

fisheye lens with its IR filter removed. However this camera is not equipped with 
IR leds. These LED’s will need to be mounted with the camera, and the an IR filter 
installed to activate during daytime operations. The Fisheye lens will be very useful 
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as it will allow the robot to see more of its surroundings while moving less, 
conserving overall system energy. 

4.3.6.3.1.5  Raspberry Pi Camera Module w/ IR Cut Filter 
This CMOS Camera with the same sensor as in 4.3.6.3.1.3. Is fitted with an 

IR-CUT filter that we can use to automatically switch between nighttime and 
daytime activity without need for modification or human interaction. This camera 
also includes IR LEDs allowing for the camera to see during night without 
additional LEDs needing to be installed. 

4.3.6.3.2 BlackBird 2 3D FPV Camera 
This 3D camera created by FPV3DCAM uses a custom onboard IC that can 

send 680p images at 60hz in a variety of standard 3D formats. This camera has 
an impressive field of view and a high signal to noise ration for a CMOS sensor 
(45db). The camera also uses low power at 1.8W. According to the camera's 
documentation, we may need to install a heatsink on the camera to prevent 
overheating. This camera has an IR filter installed by default and does not appear 
to be modifiable, therefore for this camera to operate at night we would have to 
install a large flood light on the vehicle.  

4.3.6.3.3 Pixy CMUcam5 Image Sensor 
The Pixy CMUcam5 has a large community support and uses the 

Omnivision OV9715 CMOS sensor, outputting 720p at 30fps or 640p at 60fps. 
What distinguishes this camera from the others is that it has an onboard 
microcontroller which can handle basic image recognition, outsourcing some of the 
computational power from the microcomputer controlling the robot to within the 
camera module itself. This camera comes with a significant amount of 
documentation and community support reducing risk if there is an error or problem 
with the board or in our attempts to integrate it into our system. This camera does 
come with a non-modifiable IR filter installed, so in order for this camera to 
accomplish SigSent’s goals, we would need to install a large flood light on the 
vehicle. 

4.3.6.3.4 Logitech C920 
The Logitech C920 is a COTS web camera designed for video calling, while 

this camera is not specifically the best choice for this project on paper, this camera 
has by far the easiest implementation since it uses generic USB drivers that work 
immediately with Linux being used on our microcomputer. Another benefit of the 
Logitech C920 is that the camera has a significant amount of community support 
both in the general market and in the hobbyist fields. 

4.3.6.3.5 FLIR Point Gray: Firefly MV 0.3 MP Color USB 2.0 (Aptina MT9V022) 
This CCD camera is a professional grade camera designed specifically for 

computer vision in an industrial environment. It captures images at 752x480 at 
60FPS and uses a standardized CS-mount lens allowing for a custom (yet pricey) 
ideal lens to be selected in the future. This camera will be able to sense IR 
wavelengths since there is no internal IR filter built into it. However, it would require 
IR LEDs to illuminate an object of interest and an IR-CUT filter added for daytime 
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and nighttime operation. This camera has by far the best documentation and 
sensor sensitivity compared to the other sensors in folds and uses, like the 
Logitech c920 in 4.3.6.3.4. A generic USB driver that is easy to integrate into a 
Linux environment on SigSent’s microcomputer. 

4.3.6.4 Specifications 
The important specifications encompassed by a computer vision camera 

are outlined below to be compared among each candidate camera. 

4.3.6.4.1 Price 
Price is a self-explanatory constraint, as the price of the camera increases 

this relates linearly with the team’s will to implement it due to our limited sponsored 
budget. 

4.3.6.4.2 Image Quality 
Image Quality is an almost qualitative measurement between these 

cameras since there is a significant variability between each of the camera’s 
reported specification and how they choose to both measure (or not measure) 
them. Due to this image quality is an amalgamation of the resolution, the number 
of megapixels, the Signal to Noise Ratio, Field of View, and focal length of each 
camera. Unfortunately, assigning some number to the above would never be an 
accurate representation.  

4.3.6.4.3 Frames Per Second 
Frames per second is a crucially important specification because this both 

determines how quickly our cameras are able to capture a situation but also can 
help make up for poorer image quality. The higher the FPS is, the more likely we 
should choose that camera. 

4.3.6.4.4 Night Vision 
Since the goal of SigSent is to be able to effectively work in both nighttime 

and daytime environments, it is important to weight into the decision on whether or 
not the camera has the ability to natively see IR light (the easiest/cheapest way to 
achieve night vision). If the cameras can see IR light then the camera will need a 
way to block IR light during the daytime to prevent the camera’s images being 
washed out by the sun, while if the camera cannot see IR, the robot will need to 
have a flood light installed on it so that that visible wavelengths can be seen at 
night. 

4.3.6.5 Results 
The results obtained below helped determine which camera was chosen for 

the SigSent. They are outlined in tabular form to be easily compared. 
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4.3.6.5.1 Comparison 
Table 5: Comparison of Cameras 

Name 
Cost 
(USD) Resolution Megapixel 

S/N 
(db) 

Frame 
Rate 

IR 
(bool) 

Docs 
(bool) 

PiCam IR Adj 
w/ LED 18.67 NA 5 NA NA T F 

PiCam IR Adj 
Official 24.99 720 5 44.56 60 T T 

PiCam IR Adj 21.59 1080 5 36 30-120 T F 

PiCam IR 
Fisheye 32.99 1080 5 36 30-121 T F 

PiCam IR Adj 
Cut w/ LED 27.99 1080 5 36 30-122 T F 

Blackbird 2 3D 179 
3d = 
680*512 NA 45 60 F T 

Pixy 
CMUcam5 67 1280x800 NA 39 50 F T 

Logitech C920 55.68 1920x1080 3 NA 30 F T 

Firefly 275 752x480 0.3 52 60 T T 

 

4.3.6.5.2 Selection Rationale 
 From the cameras to consider and their features enumerated in 4.3.6.3 and 
in the comparisons in the table aboe, the best choice for our camera, considering 
price, image quality, frames per second, signal to noise ration, modifications to 
work in night and day, and the amount of documentation/support for each product 
there is a decently clear winning of 4.3.6.3.1.5 (PiCam IR Adj Cut w/ LED) which 
has an IR-Cut filter and LEDs already installed, uses the Raspberry Pi dedicated 
camera point, and the well documented Omnivision OV5647 sensor. This sensor 
has the modest price of $26.29 and requires the fewest modifications to work with 
our scenario while capitalizing on Raspberry Pi’s hardware (decided in 4.3.1.3.3) 
and all the documentation and community support that is associated with 
Raspberry Pi. This Camera allowed us to quickly, cheapy, and easily integrate 
vision onto our robot and allowed us more time and money to focus on developing 
new and novel concepts that this robot is attempting to accomplish without 
reinventing the wheel on already established technology.  
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4.3.6.5.3 Prototype Changes 
While assembling all of the hardware for SigSent, the Raspberry Pi was 

swapped out for a newer model that did not support the kernel module for the 
PiCam we selected. For our prototype build, we instead went with the integrated 
camera on the Playstation Eye which was being used for its microphone. This 
meant we did not have to purchase a new component and did not add anymore 
weight to the build. Future builds should use the PiCam if possible for the 
integrated selectable IR filter. 

4.3.7 IMU 
An IMU is used to detect the rotational acceleration of the SigSent robot 

and also keeping track of the vehicle’s orientation. Various IMU units are detailed 
below to be compared and scored such that the most optimal was selected for the 
SigSent. 

4.3.7.1 IMU’s under consideration 
The IMU’s that were researched below were under consideration for use in 

SigSent. There specifications were then found and compared. 

4.3.7.1.1 MPU-9250 
This IMU excels in power efficiency and a very high refresh rate. This IMU 

has an average sensor stability in its price range but at its high refresh rate this 
IMU shines above others.  

4.3.7.1.2 LSM9DS1TR 
 This IMU has one of the best gyroscope sensors within its price range, and 
very detailed documentation, however with its refresh rate being far below average 
even with its price range this sensor is almost nonviable.   

4.3.7.1.3 Sparton AHRS-8 
 This is a complete Attitude and heading reference system (AHRS) unit with 
extremely accurate sensors, however its price makes this sensor cost prohibitive, 
however the company that makes these sensors has been known to sponsor 
projects.  

4.3.7.1.4 VectorNav VN-100 
 The VectorNav VN-100 boast an extremely high refresh rate of 400hz and 
sensors comparable or even better than the AHRS-8, however once again its price 
makes this sensor cost prohibitive, however the company that makes these 
sensors has been known to sponsor projects.  

4.3.7.2 Specs 
Specifications important in choosing an IMU for SigSent’s use are detailed 

below such that each different unit can be objectively compared so that the best 
use-case for our project would be chosen that meets our demands and fits within 
our constraints. 
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4.3.7.2.1 Price 
Price is a self-explanatory constraint, as the price of the IMU increases this 

relates linearly with the team’s will to implement it due to our limited sponsored 
budget.  

4.3.7.2.2 Degrees of Freedom 
 IMU’s are incredibly important for autonomous navigation and control 
systems since they measure vital information such as absolute heading, 
acceleration in the 3 linear dimensions and acceleration in the 3 rotational 
dimensions. This totals to 9 degrees of freedom (absolute X,Y,Z rotational 
directions from the magnetometer, the X,Y,Z linear accelerations, and roll, pitch, 
and yaw with the gyroscope.) Additionally there can sometimes be an added 10th 
degree of freedom in the implementation of an absolute or relative altimeter. For 
our platform to operate as expected we will need the 9 degrees of freedom to keep 
our vehicle autonomous and functioning appropriately.  

4.3.7.2.3 Average Power Consumption 
Power consumption is of utmost importance within the project as a whole 

since the less powered used overall increases the overall lifetime of the robot on 
a singular charge. 

4.3.7.2.4 Accelerometer Stability Scale Factor 
 Accelerometer Stability Scale Factor (SSF) is a quantifiable way to measure 
the accuracy of a Accelerometer by way of measuring the ratio of the sensors 
output compared to the input (placing the sensor under various linear G Forces), 
as the input and output is changed the linearity of this is measured as SSF.  

4.3.7.2.5 Gyroscope Stability Scale Factor 
 GyroScope Stability Scale Factor (SSF) is a quantifiable way to measure 
the accuracy of a gyroscope by way of measuring the ratio of the sensors output 
compared to the input (placing the sensor under various rotational G Forces), as 
the input and output is changed the linearity of this is measured as SSF.  

4.3.7.2.6 Refresh Rate 
 Refresh rate for the IMU is critical to the usefulness of an IMU as the more 
measurements that the IMU is able to produce, the more data we can provide to 
our sensor integration algorithm (potentially a Kalman Filter) with the GPS to get 
more and more accurate results that will help our navigation and path planning 
algorithms. 

4.3.7.3 Scores 
The scores were calculated such that the positive value of refresh rate 

boosted the unit’s score, and the undesirable specifications would lower a unit’s 
score. Based on the final values, the highest performing unit was chosen for use 
in the project. 
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4.3.7.3.1 Formula 
 In order to quantifiably determine the relevance of one GPS Unit over 
another a simple formula was devised after analyzing the available specifications 
found in the documentation for each of the microcontrollers. 
 

Equation 2: Formula for IMU Comparison Score 

𝑅𝑒𝑙𝑎𝑣𝑒𝑛𝑐𝑒

=
𝑅𝑒𝑓𝑟𝑒𝑠ℎ	𝑅𝑎𝑡𝑒C

𝐶𝑜𝑠𝑡 ∗ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑃𝑜𝑤𝑒𝑟	𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 ∗ 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑜𝑚𝑒𝑡𝑒𝑟	𝑆𝑆𝐹 ∗ 𝐺𝑦𝑟𝑜𝑠𝑐𝑜𝑝𝑒	𝑆𝑆𝐹 	

4.3.7.3.2 Specification Comparison and Score Results 
Table 6: IMU Comparison Table and Score Output 

Name Cost 
DO
F 

Comm 
protoc
ol 

Voltag
e 

AVG 
Powe
r 

Gyr
o 
SSF 

Acceleromet
er SSF 

Sampl
e Rate 

Overa
ll 
Score 

MPU-9250 
10.6
3 9 i2c 3.3 3.7 16.4 0.061 200 

1016.
6 

LSM9DS1T
R 6.33 9 i2c 3.3 4.6 8.75 0.061 80 

411.7
9 

AHRS-8 1350 10 USB 5 82.5 0.18 0.023 100 21.69 

VN-100 800 10 USB 3.3 45 0.16 0.04 400 
694.4
4 

4.3.7.3.3 Selection Rationale 
From the consensus of the score and the team, the MPU-9250 is the best 

option for SigSent based on its excellent refresh to cost, terrific power efficiency 
and acceptable sensor errors.  

4.3.8 GPS 
A GPS is necessary to keep track of the absolute position of the SigSent 

vehicle as it navigates its route. Research had to be done on hardware that would 
provide the best performance under the constraints allotted to us. 

4.3.8.1 GPS’s under consideration 
The GPS units below were possible considerations for use in the SigSent 

vehicle. They have their specifications described below to be objectively 
compared. 

4.3.8.1.1 SkyTraq Venus638FLPx  
 This GPS unit has the best GPS refresh rate of all GPS units under 
consideration at 20hz. That refresh rate is key because of inherent flaws to the 
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IMU the GPS having a fast refresh rate means that navigation and mapping errors 
will be reduced significantly. This sensor however has a lower sensitivity at -165dB 
meaning that obstructions in the way such as buildings or atmospheric events will 
have an impact on performance.  

4.3.8.1.2 LocoSys LS20031 
 This sensor has lackluster documentation and a higher cost but with the 
benefit of using less power than the SkyTraq Venus638FLPx.   

4.3.8.1.3 Maestro A2135-H 
 This GPS unit has a significant amount of documentation, and has the 
lowest price by far while also having the highest sensitivity of the bunch. However, 
it has a below average refresh rate of only 5hz and uses the SPI bus while most 
sensors are using either I2C or USB.  

4.3.8.1.4 Linx RXM-GNSS-TM-B 
 This GPS unit uses a UART interface and has a respectable refresh time 
with a high sensitivity receiver like in the SkyTraq Venus638FLPx.  

4.3.8.2 Specifications 
The specifications below encompass the necessary items we value in the 

performance of the SigSent vehicle. Each of the GPS units that were under 
consideration have had their details listed out such that the specifications below 
could be easily compared between each one. 

4.3.8.2.1 Price 
Price is a self-explanatory constraint, as the price of the GPS increases this 

relates linearly with the team’s will to implement it due to our limited sponsored 
budget.  

4.3.8.2.2 Refresh Rate 
 The Refresh rate of a GPS unit is how often it is able to contact, calculate, 
and send out a stable GPS coordinate. This is a critical specification because as 
the refresh increases the inaccuracies inherently introduced to our navigation and 
path planning by the IMU are reduced significantly.  

4.3.8.2.3 Average Power Consumption 
 Power consumption is of utmost importance within the project as a whole 
since the less powered used overall increases the overall lifetime of the robot on 
a singular charge. 

4.3.8.2.4 Sensitivity 
 Sensitivity is another critical specification, this is the ability of the GPS unit 
to properly detect and receive the packets of information coming from the GPS 
satellites around Earth. Measured in decibels, a single unit increase in the positive 
direction is equivalent to a significant increase in sensitivity.  
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4.3.8.2.5 Accuracy 
 Accuracy is a measurement of average tolerance for the GPS device 
measured in meters. Accuracy says: given a GPS coordinate the true position of 
the device is within the accuracy given. For all of the GPS units under 
consideration, the accuracy is given as 2.5m, this is a fairly standard unit and is 
more of a limitation of the satellites than of the sensors.   

4.3.8.3 Scores 
To choose the best fitting GPS, they were scored positively based mostly 

on their refresh rate, as well as their sensitivity, and had their scores negatively 
affected by their cost, power consumption, and accuracy error. 

4.3.8.3.1 Formula 
In order to quantifiably determine the relevance of one GPS Unit over 

another a simple formula was devised after analyzing the available specifications 
found in the documentation for each of the microcontrollers. 

Equation 3: Score for calculating optimal GPS unit selection 

𝑆𝑐𝑜𝑟𝑒 =
𝑅𝑒𝑓𝑟𝑒𝑠ℎ	𝑅𝑎𝑡𝑒C ∗ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦	𝑎𝑠	𝑎	𝑙𝑖𝑛𝑒𝑎𝑟	𝑟𝑎𝑡𝑖𝑜
𝐶𝑜𝑠𝑡 ∗ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑃𝑜𝑤𝑒𝑟	𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 ∗ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	

 
Table 7: GPS Comparison Table and Score Output 

4.3.8.3.2 Specification Comparison and Score Results 

Name Cost Refresh Voltage Power Comm Sensitivity 
(Linear 
Ratio) Accuracy 

Total 
Score 

Venus638FLPx 49.95 20 3.3 60 I2C -165 562.34 2.5 30.02 

LS20031 60 5 3.3 41 TTL -165 562.34 2.5 2.29 

A2135-H 20.9 5 3.3 31 SPI -163 707.95 2.5 10.93 
Linx RXM-
GNSS-TM-B 34.33 10 3.3 30 UART -165 562.34 2.5 21.84 
 

4.3.8.3.3 Selection Rationale 
From the Score which sums up that the Venus638FLPx is the best option 

due to its extremely high refresh rate alone. The Venus638FLPx despite its higher 
power consumption, slightly lower sensitivity, and slightly higher price is the best 
decision for the team because a high refresh rate for the GPS will ensure that our 
robot can more accurately keep track of its position and accurately follow a GPS 
weight point and map its surroundings. 

After significant tested after selecting the Venus638FLPx we learned that it 
may have been niave for us to have placed such a high weight on refresh time and 
instead to have more heavily weighted or considered the device’s sensitivity as 
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SigSent had significant trouble gaining an accurate GPS lock, especially indoors, 
and struggled meeting its 2.5m accuracy outdoor, sometimes being as inaccurate 
as over 10m. A more accurate system with higher sensitivity, or one that has DPGS 
or some version of a ground based GPS would yield significantly better and more 
reliable results.  

4.3.9 Servo motors 
Servo motors will be in control of the legs of SigSent. Precisely a set of three 

servo motors will be used to operate the movements of each leg with control 
signals sent to it by the main processor in SigSent’s architecture. Various servo 
motor units are detailed below to be compared and scored such that the most 
optimal is selected for the control SigSent. 

4.3.9.1 Servo motors Under Consideration 
The servos motors that were researched below were under consideration 

for use in SigSent. There specifications were then found and compared. 

4.3.9.1.1 HS-755HB Servo 
This servo motor is priced at $27.99 – 47.99, depending on the features 

included at the time of purchase (if increased rotation or continuous rotation is 
wanted). The operating voltage of this is 4.8-6.0V with the stall torque being 183oz-
in(13.2kg-cm) at the max voltage of 6.0V. This servo motor has a speed of 0.23sec 
per 60o at the max voltage of 6.0V. Lastly the gear material of the servo motor is 
made up of Karbonite, with the weight being 3.88oz (110g) 

4.3.9.1.2 HS-755MG Servo 
This servo motor is priced at $39.99 – 59.99, depending on the features 

included at the time of purchase (if increased rotation or continuous rotation is 
wanted). The operating voltage of this is 4.8-6.0V with the stall torque being 200oz-
in(14kg-cm) at the max voltage of 6.0V. This servo motor has a speed of 0.23sec 
per 60o at the max voltage of 6.0V. Lastly, the gear material of the servo motor is 
made up of metal, with the weight being 4.12oz (117g). 

4.3.9.1.3 HS-765HB Servo  
This servo motor is priced at $39.99 – 59.99, depending on the features 

included at the time of purchase (if increased rotation or continuous rotation is 
wanted). The operating voltage of this is 4.8-6.0V with the stall torque being 
183.31oz-in(13.2kg-cm) at the max voltage of 6.0V. This servo motor has a speed 
of 0.23sec per 60o at the max voltage of 6.0V. Lastly, the gear material of the servo 
motor is made up of Karbonite, with the weight being 3.6oz (102g). 

4.3.9.1.4 HS-5646WP Servo 
This servo motor is priced at $54.99 – 74.99, depending on the features 

included at the time of purchase (if increased rotation or continuous rotation is 
wanted). The operating voltage of this is 6.0-7.4V with the stall torque being 179oz-
in(12.9kg-cm) at the max voltage of 7.4V. This servo motor has a speed of 0.18sec 
per 60o at the max voltage of 7.4V. Lastly, the gear material of the servo motor is 
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made up of three Metal Gears and one Nylon Gear, with the weight being 2.15oz 
(61g). 

4.3.9.1.5 D645MW Servo 
This servo motor is priced at $39.99 – 59.99, depending on the features 

included at the time of purchase (if increased rotation or continuous rotation is 
wanted). The operating voltage of this is 4.8-7.4V with the stall torque being 
180.1oz-in(12.9kg-cm) at the max voltage of 7.4V. This servo motor has a speed 
of 0.17sec per 60o at the max voltage of 7.4V. Lastly, the gear material of the servo 
motor is made up of metal, with the weight being 2.11oz (60g). 

4.3.9.1.6 S9470SV Servo 
This servo motor is priced at $99.99, depending on the features included at 

the time of purchase (if increased rotation or continuous rotation is wanted). The 
operating voltage of this is 6.0-7.4V with the stall torque being 191.7oz-in(13.8kg-
cm) at the max voltage of 7.4V. This servo motor has a speed of 0.09sec per 60o 
at the max voltage of 7.4V. Lastly, the gear material of the servo motor is made up 
of metal, with the weight being 1.90oz (54g). 

4.3.9.1.7 HS-8330SH Servo 
This servo motor is priced at $89.99, depending on the features included at 

the time of purchase (if increased rotation oranime continuous rotation is wanted). 
The operating voltage of this is 6.0-7.4V with the stall torque being 180.53oz-
in(13kg-cm) at the max voltage of 7.4V. This servo motor has a speed of 0.07sec 
per 60o at the max voltage of 7.4V. Lastly, the gear material of the servo motor is 
made up of steel, with the weight being 2.32oz (66g) 

4.3.9.1.8 DynaMixel AX-12A 
This servo motor is priced at $44.99, depending on the features included at 

the time of purchase (if increased rotation or continuous rotation is wanted). The 
operating voltage of this is 9.0-12V with the stall torque being 212.41 oz-in(15.296 
kg-cm) at the max voltage of 12.0V. This servo motor has a speed of 0.07sec per 
60o at the max voltage of 12.0V. Lastly, the gear material of the servo motor is 
made up of steel, with the weight being 1.88oz (54.6g) 

4.3.9.1.9 DynaMixel AX-18A  
This servo motor is priced at $94.89, depending on the features included at 

the time of purchase (if increased rotation or continuous rotation is wanted). The 
operating voltage of this is 9.0-12V with the stall torque being 254.90oz-in(18.355 
kg-cm) at the max voltage of 12.0V. This servo motor has a speed of 0.07sec per 
60o at the max voltage of 12.0V. Lastly, the gear material of the servo motor is 
made up of steel, with the weight being 1.88oz (54.6g) 

4.3.9.2 Specifications 
The specifications below encompass general constraints on servo motors. 

The price, operating voltage, torque performance at these voltages, and speed are 
all items to consider in comparing the servos. 
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4.3.9.2.1 Price 
Price is a self-explanatory constraint, as the price of the servo increases 

this relates linearly with the team’s will to implement it due to our limited sponsored 
budget.  

4.3.9.2.2 Max Voltage 
The maximum voltage of the servos is an important consideration, ideally 

the servos would be able to be run directly off the batteries, which are 4s (12V-
16.8v) however that is not the industry standard, most consumers off the shelf 
(COTS) servos are between 4.8V-6V with some capable of going up to 7.4V. With 
this consideration in fact, we want to choose a servo with a higher voltage because 
that will lead to less losses when regulating the DC power of the batteries down to 
the voltage required by the servo.  

4.3.9.2.3 Torque at Max Voltage 
The toque at max voltage is the critical spec for the servos as a large 

amount of torque will be required to properly move the legs of SigSent, the higher 
the torque the better, we choose to compare the torque at max voltage over the 
minimum voltage since the voltage being sent to the servos will be regulated, and 
regulated at the maximum compatible voltage the servos can take. This also allows 
us to more accurately anticipate the amount of torque that the servos can provide 
as torque varies with voltage.  

4.3.9.2.3.1 Minimum Required Torque  
Due to the design of the legs of the robot, SigSent will have a critical 

requirement of minimum required torque in order for the hexapod legs to carry the 
weight of the robot in a stationary position but also in an active suspension or 
walking configuration. To calculate the stationary position a free body diagram 
needs to be constructed to calculate the moment arm from the main body to the 
joints of the legs on sig sent. As seen below in Figure 18 & Figure 19 & Figure 20: 

 
Figure 18: Moment arm for stationary extended position at 1350(degree) position 
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Figure 19: Moment arm in 105o degree angle position 

 
Figure 20: Moment arm in 90o degree angle position 

 

Since a model of the current mechanical design has already be created 
pulling the measurements from the design configuration to calculate the toque on 
the joints created from the robot’s body/weight. From this it was determined in the 
standard stationary configuration shown in Figure 18: Moment arm for stationary 
extended position at 1350(degree) position that the minimum torque needed for 
movement of the body is 217.75 oz-in with an approximation of total weight of the 
system at 4kg. This makes the leg configuration shown in Figure 18 to be not viable 
as this leaves no margin of safety for the servo motors to operate. Thus, making a 
need for a different leg configuration, this make the configuration in Figure 19: 
Moment arm in 105o degree angle position more viable as the required torque for 
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this position is 157.087 oz-in. This leaves a margin of safety of approximately 35% 
making the configuration very feasible. The last configuration in Figure 20: Moment 
arm in 90o degree angle position makes a required torque of 122.75oz-in. This 
leaves a margin of safety of approximately 73%, which allows SigSent to have a 
range of motion within its minimum required torque for certain configurations. 

4.3.9.2.4 Speed at Max Voltage 
The speed at max voltage is a measurement of the amount of time it takes 

for a servo to move 60 degrees under no load, we need the speed of the servos to 
be as high as possible so that the legs can move in a quick and responsive fashion 
to properly support SigSent and the various multi-terrain environments that it must 
operate in.  

4.3.9.2.5 Weight 
Since the servos are within the legs, the servo weight must be a minimum 

to reduce the amount of torque required for the servos to push and pull while in 
walking mode or in suspension during driving.  

4.3.9.3 Scores 
The scores below give a positive weight to better torque and speed. A 

negative weight is given to cost and weight of each servo. 

4.3.9.3.1 Formula 
In order to quantifiably determine the relevance of one motor over another 

a simple formula was devised after analyzing the available specifications found in 
the documentation for each of the motors. 

Equation 4: Score for Servo Motors 

𝑆𝑐𝑜𝑟𝑒 =
𝑇𝑜𝑟𝑞𝑢𝑒 ∗ 𝑆𝑝𝑒𝑒𝑑
𝐶𝑜𝑠𝑡 ∗ 𝑊𝑒𝑖𝑔ℎ𝑡  

4.3.9.3.2 Comparison and Score Results 
Table 8: Specification Comparison of Servo Motors 

Description Weight Stall 
Torque 

Speed Price Score 

HS-755HB  3.88oz (110g) 183 0.23 $28.00 $0.00 
HS-765HB 3.6oz (102g)  183 0.23 $40.00 $0.00 
HS-755MG 4.12oz (117g)  200 0.23 $40.00 $0.00 

HS-5646WP  2.15oz (61g) 179 0.18 $55.00 $0.27 
D645MW  2.11oz (60g) 180 0.17 $40.00 $0.36 
S9470SV 1.90 oz. (54g) 191.7 0.09 $100.00 $0.09 

HS-8330SH 2.32oz (66g)  180 0.07 $90.00 $0.06 
DynaMixel AX-12A 2.32oz (66g)  180 0.1695 $45.00 $0.29 
DynaMixel AX-18A 2.32oz (66g)  180 0.1031 $95.00 $0.08 
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4.3.9.3.3 Selection Rationale 
From the servo motors to consider and their features enumerated in 4.3.9.1, 

the best choice for our servo motors, considering the distinctive characteristics of 
weight, stall torque, speed, and price, then the choice is the DynaMixel AX-12A. 
This component needed major consideration and comparison as it is a critical 
requirement for the hexapod to even move its legs in a walking configuration let 
alone standing upright under its own weight. The weight of this servo compared to 
its stall torque puts it in a league above most others. The final reasoning was that 
DynaMixel sells these servo motors in bulk orders allowing for a massive price 
reduction that fall within our projected budget without putting that component at its 
limits of pricing. 

This servo motor will allow us to quickly, cheapy, and easily create and 
integrate the controls sub-system for the microcontroller onto our robot and allow 
us more time and money to focus on developing new and novel concepts that this 
robot is attempting to accomplish without reinventing or redesigning the whole leg 
system and its movement scheme. 

4.3.10 Motors 
The Motors act as SigSent’s end effector and source that powers the rotation of 
the wheels moving SigSent forwardly while in driving mode efficiently. Motor 
selection is important to both minimize weight and maximize speed.  

4.3.10.1 Motors Under Consideration 
• AX-4114C 330KV 
• 4114-320KV Turnigy Multistar 
• Turnigy Aerodrive SK3 - 4250-410KV 
• Turnigy Aerodrive SK3 - 4250-350KV 
• Quanum MT Series 4012 400KV 

4.3.10.2 Specifications 
The specifications below encompass the necessary items we value in the 

performance of the SigSent vehicle. Each of the motor units that were under 
consideration have had their details listed out such that the specifications below 
could be easily compared between each one. 

4.3.10.2.1 Price 
Price is a self-explanatory constraint, as the price of the motor increases 

this relates linearly with the team’s will to implement it due to our limited sponsored 
budget.  

4.3.10.2.2 Max Voltage 
The maximum voltage the motors is an important consideration to take note 

of as it will impact both the amount of power the motors can output, the resultant 
RPM of the wheel, and the choice of battery and ESC. The choice was made to 
have a motor voltage to be compatible with a 4S battery (12-16.8) as that was 
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considered a viable compromise between power efficiency, the RPM needed to 
spin the wheels (as a function of kV) without needed a gear ratio.  

4.3.10.2.3 KV 
KV is a measurement of torque that relates to the number of windings within 

the number, generally speaking the lower the KV the higher the torque, the lower 
the RPM the motor can produce. To reduce simplicity SigSent is intended to have 
the wheel directly attached to the motor in a 1:1 gearing ratio, so a motor that has 
a low KV (and thus high torque) is necessary. KV also relates to RPM per volt 
under no load. Since SigSent is intended to be able to run at 15mph in wheeled 
mode, we set a very liberal safety factor of finding the RPM at 25 MPH to account 
for when the vehicle is under load, with our wheels at a 2” diameter the motor 
would need to spin at roughly 4000 RPM, with the motor running at worst case 12V 
and best case 16.8V, we would need a KV rating of around between 300-400.  

4.3.10.2.4 Max Current 
The maximum current that the motor can handle is important to consider to 

ensure that the motor will not stall when attempting to move the vehicle, and for 
calculating the current rating required for the ESC, and the C rating for the battery 
along with general infrastructure requirements such as wire gauge to supply the 
power and trace widths through a PCB.  

4.3.10.2.5 Weight 
Since the motors are at the ends of the legs, the motor weight must be a 

minimum to reduce the amount of torque required for the servos to push and pull 
while in walking mode or in suspension during driving.  

4.3.10.3 Scores 
To determine the best motor to be used for SigSent, the max current of each 

one positively increased a motor’s score while the cost and weight negatively 
affected its score. 

4.3.10.3.1 Formula 
In order to quantifiably determine the relevance of one motor over another 

a simple formula was devised after analyzing the available specifications found in 
the documentation for each of the motors. Since kV and voltage must be those 
values, they more filter out incompatible motors rather than effect the score of any 
motor over another.  

Equation 5: Score for Motors 

𝑆𝑐𝑜𝑟𝑒 =
𝑀𝑎𝑥	𝐶𝑢𝑟𝑟𝑒𝑛𝑡
𝐶𝑜𝑠𝑡 ∗ 𝑊𝑒𝑖𝑔ℎ𝑡 
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4.3.10.3.1.1 Comparison and Score Results 
Table 9: Specification Comparison of Motors 

Description Weight Kv Max 
current 

Price Score 

AX-4114C 330KV 180 330 28 16.6 9.37 
4114-320KV Turnigy 

Multistar 
217 320 30 25.8 5.37 

Turnigy Aerodrive SK3 - 
4250-410KV 

415 410 55 36.8 3.6 

Turnigy Aerodrive SK3 - 
4250-350KV 

423 350 53 36.9 3.39 

Quanum MT Series 4012 
400KV 

266 400 16 20 3.01 

 

4.3.10.3.2 Selection Rationale 
Based off of the overall score and the low mass of the motor and low cost, 

we have chosen to use the AX-4114C 330KV. This motor will give us the necessary 
torque required to move the vehicle at the speeds we need it to with some 
additional overhead while being very cost effective.   

4.3.11 Electronic Speed Controller (ESC) 
SigSent utilizes ESCs to drive its motorized wheels at precisely controlled 

speeds. Differential drive of the wheels enables steering of the unit and is 
accomplished through setting the various wheels to rotate at dissimilar speeds. 

4.3.11.1 ESC Requirements 
• Each speed controller needed to be able to supply a constant output of 28 

amps to enable the full power range of the motor it’s driving. 
• Needs to be able to handle a 4s lipoly voltage input. 

4.3.11.2 ESCs Under Consideration 
• Turnigy MultiStar 32bit 30A Race Spec ESC 2~4S Naked 
• Turnigy K-Force 30A Brushless ESC 
• Hobby King 30A ESC 3A UBEC 

Table 10: Comparison of ESCs Under Consideration 

Part # MultiStar K-Force Hobby King 
# of Cells 2 – 4 2 – 6  2 – 4 
Size 28 x 14 x 5 mm 59 x 24 x 7mm 54 x 26 x 11mm 
Weight 9 g 38 g 32 g 

4.3.11.3 ESC Selection 
The Turnigy MultiStar 30A Race Spec ESC iwas the most appropriate 

choice for SigSent’s speed controllers due to its small size and low weight. The 
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size and weight advantage stems from the ESC’s exclusion of a battery elimination 
circuit, which is unnecessary with a 5V power supply already present on SigSent. 
Additionally, the ESC can be purchased without any connectors installed, allowing 
easier adaptation for use in SigSent.  

4.3.12 Fuel Gauge 
The fuel gauge is used to determine the remaining battery charge available 

for the robot so that the user operating the unit will know its limits on distance to 
travel and available remaining surveillance times. 

4.3.12.1 Fuel Gauge Requirements 
• Communicate with the microcomputer via I2C. 
• Accurately measure a 4s LiPoly battery. 

4.3.12.2 Gauges under consideration 
• TI BQ34Z100-G1 
• LT LTC2943 
• Maxim Integrated MAX17205 

 
Table 11: Comparison of Gauges Under Consideration 

Part # BQ34Z100-G1 LTC2943 MAX17205 
Communication 
Protocol 

I2C, HDQ I2C, SMBus I2C 

Quiescent 
Current 

145 µA 80 µA 25 µA 

Voltage Input 3 – 65 V 3.6 – 20 V 4.2 – 20 V 
Packaging 14-Pin TSSOP 8-lead DFN 14 TDFN-EP or 15 

WLP 

4.3.12.3 Fuel Gauge Selection 
The Maxim Integrated MAX17205 was initially selected as the most 

appropriate fuel gauge for SigSent due to its low quiescent current and ease of 
use. It boasts the lowest supply current while active, and unlike the BQ34Z100-
G1, requires no additional voltage regulators. 

During the design of the fuel gauge PCB, the LTC2943 was instead 
incorporated due to prior experience and comfort which enabled a quicker design 
time. 

4.3.13 Battery 
SigSent’s mobile operation is enabled by a high-capacity battery. It needs 

to have a large enough capacity to meet the operating time requirements specified. 
Below are different battery types, estimated loads from our whole system, and 
specific batteries we considered for use. One battery was chosen after objectively 
comparing them all together. 
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4.3.13.1 Battery Chemistries Under Consideration 
• Nickel-Metal Hydride (NiMH) 
• Lithium-Ion 
• Lithium Polymer (Lipo) 

Table 12: Comparison of Battery Chemistries [46] 

Chemistry NiMH Lithium Ion Lipo 
Nominal Cell 
Voltage 

1.25 V 3.6 V 3.6 V 

Gravimetric 
Energy Density 

60 – 120 110 – 160 100-130 

Discharge Rate 0.5 C 1 C 1 C 
Cycle Life 300 – 500 500 – 1000 300 – 500 
Charging Rate 0.5 C 0.5 C 0.5 C 

 

Lithium based batteries are most appropriate for SigSent due to their significantly 
higher energy density. 

4.3.13.2 Estimated Electrical Loads 
Table 13: Estimated Electrical Loads 

Part Typical 
Current 
Draw (A) 

Max 
Current 
Draw 

Typical 
Operating 
Voltage 
(V) 

Typical 
Power 
Draw 
(W) 

Qty Duty 
Cycle 
(% of 
hour) 

Typical 
Hourly 
Energy 
(WH) 

Servo 0.5 1.5 12 6 18 25 27 
Motor 14 28 14.8 207.2 4 25 207.2 
Microcomputer 1.5 2.5 5 12.5 1 100 12.5 
Microcontroller 0.2 0.5 5 1 1 100 1 
IMU 0.004  3.3 0.02 1 100 0.02 
GPS 0.068  3.3 0.2 1 100 0.2 
Speaker/Amplifier 1 1.6 5 5 1 5 0.25 
Lidar 0.7 1 12 8.4 1 100 10 
Light Source 0.9  14.8 10 1 100 10 

 

4.3.13.3 Battery Requirements 
• Must be able to supply 100 A of current continuously to support the highest 

power mode. 
• Must be able to fit inside SigSent’s abdomen. 
• Must have a relatively high energy density and specific energy. 
• Must be a single pack battery solution to maximize energy density and 

minimize power system complexity. 
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4.3.13.4 Batteries Under Consideration 
• MultiStar 912700006-0 
• L&E Battery LND3S956 
• Turnigy 9171001348-0 

Table 14: Battery Comparison 

Part # 912700006-0 LND3S956 9171001348-0 
Capacity 10000 mAh 9500 mAh 6400 mAh 
Nominal Voltage 14.8 V 11.1 V 11.1 V 
Dimensions 160 x 65 x 36mm 155.0 x 44.5 x 41.0 mm 135 x 45 x 42 mm 
Weight 804g 588g 485g 
Discharge Rate 10 C / 100 A 65 C / 617.5 A 30 C / 192 A 
Energy Capacity 148 W 105 W 71 W 
Charging Rate 1 C 1 C 2 C 

4.3.13.5 Battery Selection 
The MultiStar High Capacity 10000mAh 4S Lipo pack (912700006-0) is the 

most appropriate battery for SigSent due to its impressive specific energy, energy 
density, and relatively low cost. Although its discharge rate is significantly lower 
than that of the LND3S956 and 9171001348-0, the MultiStar can supply sufficient 
current at an ample margin, and at a higher voltage. 

4.3.14 Audio Amplifier 
The audio amplifier was intended to boost the signal of the microcomputer’s 

audio output and directly power the unit’s speakers. 

4.3.14.1 Amplifier Requirements 
• Needs to integrate with SigSent’s microcontroller. If discrete audio outputs 

are not included in the microcontroller, functionality can be achieved with a 
USB Audio Adapter: https://www.adafruit.com/product/1475 

• Needs to be relatively power-efficient, using a Class-D amplifier. 

• Needs to provide 8 watts output to a 4 Ohm impedance load. 

• Needs to output sound with minimal harmonic distortion to ensure 
comprehension of vocal commands provided through the speaker. 

4.3.14.2 Amplifiers Under Consideration 
• TI TAS5411-Q1 
• Rohm Semiconductor BD28412MUV 
• Maxim Integrated MAX9736B 

 
Table 15: Comparison of Amplifiers Under Consideration 

Part # TAS5411-Q1 BD28412MUV MAX9736B 
Power Output 8 W @ 4 W 2x 8 W @ 8 W 12 W @ 4 W 
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Voltage Supply 4.5 – 18 V 4.5 – 13 V 8 – 28 V 
Quiescent 
Current 

16 mA 32 45 mA 

I/O I2C Boolean Boolean 

4.3.14.3 Amplifier Selection 
The TAS5411-Q1 was determined to be the most appropriate amplifier for 

SigSent with its minimal quiescent current draw and design-friendly I2C control 
architecture. 

During the design stages of SigSent, an off the shelf USB speaker was 
chosen for use instead of a component speaker. This eliminated the need for an 
audio amplifier. 

4.3.15 Speaker 
A speaker is used to relay commands from SigSent’s operator to individuals 

that the unit encounters. Additionally, the speaker can be used to play a siren to 
deter trespassers or animals. 

4.3.15.1 Speaker Requirements 
• Suitable for environmental exposure. Water resistant, 0º C - 50º C in high 

humidity. 

• Responsive across the voiceband (300 hz - 3.4 khz). 

• Relatively small so that it may be mounted on top of SigSent and directed 
in its field of view. 

• High efficiency so that the need for power amplification is minimized. 

4.3.15.2 Speakers Under Consideration 
• PUI Inc.’s AS07104PO-WR-R 
• PUI Inc.’s AS07708PS-2-WR-R 
• PUI Inc.’s AS06608PS-WR-R 

Table 16 Comparison of Speakers Under Consideration 

Part # AS07104PO-WR-
R 

AS07708PS-2-
WR-R 

AS06608PS-WR-
R 

Frequency 
Response 

100Hz~20kHz 250Hz~10kHz 230Hz~12kHz 

Dimensions 2.795" L x 1.614" 
W x 0.984" H 

3.032" L x 3.032" 
W x 1.063" H 

2.610" L x 2.610" 
W x 1.142" H 

Sensitivity 86.00 dBa @ 1W 
/ 1 m ~= 92.00 

dBa @ 1W / 0.5m 

90.00 dBa @ 1W / 
0.5 m 

95.00 dBa @ 1W / 
0.5 m 

Rated Power 3 W @ 4 Ohm 4 W @ 8 Ohm 4 W @ 8 Ohm 
Environmental 
Envelope 

-20º C ~ 60º C, 
Water resistant 

-40º C ~ 85º C, 
Water resistant 

-20º C ~ 50º C, 
Water resistant 
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4.3.15.3 Speaker Selection 
The AS07708PS-2-WR-R is the most appropriate speaker for SigSent due 

to its sufficient frequency response, suitable form factor, sensitivity, and rated 
power. It’s considerable environmental testing provides the most confidence for its 
long-term reliability during operation outdoors. 

Equation 6: Estimated SPL at 10 meters from the unit. 

𝑆𝑃𝐿@MNO = 90 + 10(log4) − 	20 \log
0.5
10	_ ≈ 70𝑑𝐵	

With an appropriately matched amplifier powering the speaker at its rated 
wattage, the speaker should output sound at 70 dB, well above the required 60 
dB. 

For the prototype build completed, we swapped out the desired 
AS07708PS-2-WR-R with an actual USB speaker to reduce the number of PCBs 
we needed to create and to minimize potential error. The USHONK USB Mini 
Speaker was used in its place as it had seamless integration into the Raspberry 
Pi’s workflow in Ubuntu MATE.  

4.3.16 Microphone 
A microphone is used for communicating vocal responses through the 

SigSent robot. The human operator can speak into their microphone at their base 
station which will then be projected from the robot’s attached speaker. Audio can 
also be transmitted from the robot to the base station by a microphone mounted 
on the vehicle so that the operator can communicate with agents nearby the robot. 

4.3.16.1 Microphone Requirements 
• Needs to integrate with SigSent’s microcomputer. 
• Needs to minimize background noise in order to hear a subject’s speech 

outdoors. 
• Needs to survive outdoor environmental use. 
• Needs to be relatively small. 

4.3.16.2 Microphones Under Consideration 
• MicW iShotgun 
• PlayStation Eye 
• Rode VideoMic Me 

Table 17 Microphone Comparison 

Part # iShotgun PlayStation Eye VideoMic Me 
Frequency 
Response 

100Hz~18kHz ? 100 Hz – 20 kHz 

Dimensions 136 l x 8 d mm 80 x 56 x 65 38 x 21 x 80 mm 
Sensitivity -42 dB ? -33 dB 
Cost $200 $7 $60 
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4.3.16.3 Microphone Selection 
The PlayStation Eye’s incorporated microphone array is the most 

appropriate device for SigSent based on testimony of users utilizing the device for 
similar project goals. The device is appropriately sized, easily integrated through 
its USB connection, and designed for speech recognition.  

4.3.17 Lighting System 
The lighting system is used to provide adequate lighting for the SigSent’s 

vision-based operations at night. It was mounted on the robot to light up the area 
around the robot. The computer vision modules rely on visibility, and the human 
operating the unit will need enough light to get a proper image from the robot to 
view the area it is surveilling. 

4.3.17.1 Requirements 
• Suitable for exposure to the expected area of operation, meaning at least 

IP67 certified with an operating temperatures of 0º C - 50º C. 
• DC powered. 
• Efficient. 
• Light weight. 
• Appreciably bright to light the area in front of SigSent for acceptable color 

vision from the camera 

4.3.17.2 Light Sources Under Consideration 
• superbrightleds.com AUX-6W-RE120 

• superbrightleds.com AUX-20W-Dx 

• superbrightleds.com WL-17W-RE60 
Table 18 Comparison of Light Sources Under Consideration 

Part # AUX-6W-RE120 AUX-20W-Dx WL-17W-RE60 
Dimensions 3.67” L x 0.92” W 

x 2.05” H 
3.95” L x 2.1” W x 
2.39” H 

6.3” L x 2.2” W x 
1.78” H 

Weight 0.27 kg 0.43 kg 0.41 kg 
Brightness (L) 725 1800 1300 
Beam Angle 120º 60º 60º 
Power (W) 6 20 13 
Environmental 
Envelope 

IP67 IP68 IP67, -40º C ~ 56º 
C 

4.3.17.3 Selection 
For a light source mounted on the front facing surface of SigSent’s 

abdomen, the WL-17W-RE60 light bar is most appropriate, with relatively good 
power efficiency, an appropriate beam angle which isn’t dispersing the light too 
much and sufficient environmental protection. 
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4.3.18 Power System 
Figure 21: Power Flow Diagram 

 

4.3.18.1 Solar Panels 
A solar panel was  explored as a potential candidate to provide an extended 

period of life for the SigSent robot while it undergoes outside surveillance during 
the day. The solar panel would need to take weight and power into account to 
provide any significant benefit to the SigSent’s operation. 

4.3.18.1.1 Potential Options 
• DFRobot FIT0333 
• Seeed Technology Co. 3W Solar Panel 138*160 

4.3.18.1.2 Requirements 
• Surface area smaller than the robot’s abdomen, where it’ll be mounted. If 

As many units as possible will be arranged to fit on the surface. 
• Suitable for area of operations temperature range. 
• Relatively efficient. 
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4.3.18.1.3 Comparison Table 
Table 19 Solar Panel Comparison 

Part # FIT0333 3W Solar Panel 138*160 
Environmental 
Envelope 

-40º C ~ 80º C, 
“Performance: corrosion, 
moisture” 

"Robust sealing for out 
door applications” 

Dimensions 6.500" L x 1.496" W x 
0.020" H 

5.43” L x 6.3” W x 0.060” 
H 

Power Density 60 W / m2 135 W / m2 

4.3.18.1.4 Selection 
The 3W Solar Panel would be the more suitable option for our purposes 

because of its significantly higher power density, which will enable it to provide 
more energy to SigSent throughout the day. 

In order to reduce design complexity, cost, and weight, the solar charging 
system was not implemented. 

4.3.18.2 Solar Charger 
If a solar panel were included in SigSent’s final design, a solar charger 

would have been necessary to handle the charge produced by the solar panel, and 
distribute the current produced between the battery and spontaneous load.  

4.3.18.2.1 Requirements 
• Needs to be able to charge a 4 cell LiPo battery. 
• Needs to be able to handle at least 3 W of solar power. 

4.3.18.3 3.3 V Regulator 
• Needs to provide at least 100 mA of current. 
• Needs to have mild ripple. 
• Needs to accept at least 16.8 V input. 

4.3.18.4 5 V Regulator 
• Needs to provide at least 30 A of current. 
• Needs to have at most mild ripple. 
• Needs to accept at least 16.8 V input.  
• Needs to be highly-efficient to minimize heat dissipation 

4.3.18.5 12 V Regulator 
• Needs to provide at least 20 A of current. 
• Needs to have at most mild ripple. 
• Needs to accept at least 16.8 V input. 

4.3.18.6 Light Switching Transistor 
• Needs to be able to switch at least 2 A at 16.8 V or more. 
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4.3.19 Signals Protection System 
A signals protection system is wanted, especially on any signals going into 

or coming out of the Raspberry Pi since the GPIO pins are very sensitive to 
transients and overvoltage’s. Since this platform is a prototype where lots of 
manual interactions will be going on, chance of an ESD event or a miss-wiring are 
high which means that the protection PCB will be significantly useful in 
safeguarding our project.  

To protect SigSent from ESD events and transients a very common and 
well-respected system is to use Zener clamp diodes in a way specified by NXP for 
i2c:  

 
Figure 22: Example of i2c ESD Protection [47] 

To protect general GPIO Ports from ESD and overvoltage events is to use 
normal Zener diodes in a pair for bi-directional communication:  
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Figure 23: Example of GPIO ESD Protection [47] 

To Protect our TTL Serial buses, NXP Recommends similar Zener Clamping 
Diodes explained in the below diagram:  

 
Figure 24: Example of TTL Serial ESD Protection [47] 
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And Finally to protect our USB Lines from ESD Events, NXP Recommends the 
following array of Zenner clamping diodes.  

 
Figure 25: Example of USB ESD Protection [47] 

Beyond ESD Protection it is important to protect the power lines of our 
devices to prevent things such as miss-wiring the boards or plugging in a power 
source in the wrong direction. A common a method to efficiently prevent reverse 
polarity events is to use a PMOS connection like described in the figure below 
created by Texas Instruments: 

 
Figure 26: PMOS FET in Power Path for Reverse Circuit Protection [48] 
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To Prevent an overcurrent situation, fuses will strategically and minimally be 
placed on all power buses to prevent an overcurrent event either damaging the 
battery, destroying sub systems, or causing an electrical fire.  

4.3.20 Base Station 
The base station computer will encompass the hardware necessary to 

communicate with the SigSent unit. Any item necessary in the remote operation of 
the robot by the user will be listed below with its relevant requirements and final 
selections. 

4.3.20.1 Laptop 
The laptop is where the GUI program will be run that communicates with 

the SigSent robot. The program is not computationally expensive. It allows for a 
connection to the robot over Wi-Fi, a video feed from the robot, remote operation 
through a joystick, and debugging over the air. The actual computation and 
calculations performed for the operation of the robot’s autonomous intelligent 
systems and control systems are all being done on the actual robot’s 
microcomputer, not the base station laptop. 

4.3.20.1.1 Requirements 
• Bright enough screen to be easily visible outdoors so that the operator can 

stay close to SigSent if necessary. 
• Man portable so that a user can easily bring it with them to the area of 

operation. 
• Can reliably run ROS Kinetic Kame and rqt, the software used to 

communicate instructions to SigSent. 
• Can connect to the same Wi-Fi network as SigSent. 
• Enough battery life on one charge to last as long as SigSent does on one 

charge, so that SigSent isn’t left stranded because its controller is unable to 
communicate instructions to it. 

• Contains a USB port compatible with the joystick. 
• Outputs headset audio and receives microphone input. 

4.3.20.1.2 Selection 
A Lenovo ThinkPad laptop on hand will be utilized as the base station. It 

meets the requirements listed above and will reduce the cost of the unit for our 
development. 

4.3.20.2 Headset 
A headset is necessary for listening and communicating through the 

SigSent robot. The base station allows for the user to listen to audio being received 
by the robot’s speaker. The microphone on the headset will be used as an audio 
input into the base station GUI program that will be outputted from the SigSent 
speakers so that vocal responses can be projected from the robot. 
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4.3.20.2.1 Requirements 
• Ergonomic and comfortable to wear outdoors for an extended period of 

time. 
• Contains a microphone so that the operator may communicate vocal 

commands over SigSent’s speaker. 

4.3.20.2.2 Selection 
Basic iPhone headphones were used on a Macbook Pro running Ubuntu 

16.04 in a VM to communicate with SigSent over ROS audio_common packages 
that were responsible for relaying audio between the two machines. 

4.3.20.3 Joystick 
A joystick is used to facilitate the remote operation procedures through the 

base station GUI program. The joystick brings an intuitive method of moving the 
robot by the human operator. By simply tilting the joystick, the robot will move 
accordingly, as controlled by its control system and AI intelligent system. 

4.3.20.3.1 Requirements 
• Ergonomic so the robot can operate by the same user daily without strain 

from repeated use. 
• Intuitive operation and translation of control inputs into XY motion so that 

operators can begin using SigSent with minimal training. 
• Interfaces with the base station via USB cable. 

4.3.20.3.2 Selection 
A joystick on hand, the Logitech Extreme 3D Pro Joystick will be used. It 

contains more than enough usability for our project with multiple axes of rotation 
(pitch, yaw, roll). 

4.3.20.4 Router 
In order to communicate with the SigSent unit at distances greater than 

possible with an ad-hoc network from the basestation, a wireless router can be 
connected to the base station laptop. A router on hand, a Linksys WRT54GC, was 
initially utilized to minimize project cost. To maximize range and throughput of the 
router, it should utilize its fastest available protocol, 802.11g, and a channel on the 
2.4 GHz band. Power for the router will be provided through a USB cable from the 
base station’s laptop. With this configuration, bandwidth should be sufficient to 
support streaming of video, audio, and diagnostics, estimated to be approximately 
5 Mb/s [7]. The router will utilize WPA2 Personal (AES) security to ensure 
confidentiality and integrity of communication between the base station laptop and 
SigSent unit. 

The router was swapped out with the Tenda AC1200 near the end of the 
SigSent development period. The Tenda featured longer range and the ability to 
easily bridge its connection from the UCF Guest network. This allowed SigSent to 
have network access anywhere on campus that the UCF Guest network was 
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available. One of the machines on the network simply had to authenticate the 
Guest settings and each machine connected to the bridged network would have a 
connection from there on out. This bridging capability was not initially accounted 
for as we intended on wiring the router to a nearby ethernet port, but it came in 
handy upon discovering the functionality a few days prior to finishing the project. 
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4.3.21  SigSent’s Sensors and Non-Mechanical Parts 

 
Figure 27: List of Parts with Annotations 
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5 DESIGN 

5.1 DESIGN SUMMARY 
After researching the potential parts for consideration in section 4, each 

sensor and individual component was objectively scored/compared such that the 
most fitting option under our design constraints was chosen. These modules will 
be used in the design of SigSent. Below are high level overviews on the hardware 
and software in block diagrams that denote each module and its division of labor 
among each team member according to their individual specifications. The 
hardware schematics are designed and discussed below in their respective PCB 
sections. The software design decisions are discussed and followed by UML class 
diagrams and use case diagrams to scaffold out the individual, complex modules 
for SigSent’s code. 

5.2 HARDWARE DESIGN 
Because of the immense amount of components involved in SigSent’s 

operation, the hardware design includes schematics on the integration of each 
sensor and its supporting hardware in the robot. The design of each schematic 
follows our design constraints and standards previously mentioned, and the 
schematics include each relevant component that was selected in our hardware 
research. 

5.2.1 High Level Hardware Block Diagram 

 
Figure 28: High Level Hardware Block Diagram 

5.2.2 Hardware Design Overview 
Hardware Design is split into five main section: wheels, legs, power source, 

main sensors, and base station.  
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 The Wheels and Legs sections closely mirror each other, in the motor 
section, we have four high torque brushless motors each connected to an 
Electronic Speed Controller (ESC) which inputs a PWM and outputs the proper 
phasing required to drive the DC brushless motor, and with the servo we input a 
PWM signal and the servo motor then rotates to a predefined angle attached to 
that PWM value. There is also a current sensor monitoring the amount of current 
going to the motor or servo motor to detect whether or not the motor or servo motor 
is completing its desired task. Both the PWM signal and the current sensor output 
are converted into an I2C Signal which passes through protection circuitry and 
goes to the microcomputer which will input and output data to and from the motors 
and servo motors. 

In the power source section, we have the battery which sends data through 
a Fuel Gauge which then outputs the status of the battery (voltage, current, 
coulombs consumed) through the I2C interface, passing through I2C protection 
circuitry and then to the microcomputer which uses the battery data to send alerts 
or modify its path to be more energy efficient focused.  

For the main sensors section, we have a USB hub connected to the 
microcomputer which connects most of the sensors together such as the camera, 
lidar, the wireless network, IMU, and GPS.  

The base station section is separate from the robot and acts as a control 
point for the robot’s supervisor to access, control, or receive alerts from the robot 
- the base station stays in near continuous communication with the robot through 
a wireless connection. 

5.2.3 Pi Hat PCB 

 
Figure 29 Pi Hat Diptrace layout and physical board 

The Pi Hat as shown in Figure 29 is a custom circuit board that directly connects 
onto the Raspberry Pi’s main stack connector. The purpose of the board is to 
create an easy to use “unifying” board where all sensors and devices are 
connected that need to interact with the Raspberry Pi. Inside the board contains 
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an EEPROM that identifies the board connected to the Pi as an official PiHat [49] 
as defined in the Raspberry Pi Documentation. There is reverse voltage protection 
on all input power lines to ensure that devices downstream of the hat are protected 
against a mis-pinned cable or bad power supply.  There are low capacitance ESD 
protections on all signal lines going to the pi to prevent any ESD events, which 
could be common on a prototype project such as this. The device also has several 
test points designed to work well with oscilloscope probes – specifically on the I2C 
nets to help diagnose any communication troubles. The decision was also made 
to expose an extra 8 GPIO pins from the Pi for future proofing or backups in the 
event the scope or understanding of the project changed once the board had been 
made. Partly because of the design of this board, there we’re no sensors or other 
devices lost from ESD events, and even after a slight change which required an 
extra GPIO pin, this board was still able to be easily and effectively used.  

5.2.4 MCU PCB 
The MCU PCB allows for direct communication to the transportation layer 

from the sensor layer. This board features an ATmega2560, headers to connect 
to the Raspberry PI over SPI, for ICSP to program the MCU via another Arduino 
Mega, and to connect to the motor ESCs. The PCB features all of the additional 
hardware needed for the ATmega chip, like the 16MHz oscillator crystal. A reset 
button is also implemented for ease of use.  

 
Figure 30 MCU Diptrace layout and physical board 

5.2.5 Servo Regulator PCB 
The Servo Regulator PCB shown below provides a stable 12V output for 

the 3 servomotors of a corresponding leg. Each of SigSent’s six leg necessitated 
a separate regulator board. The boards also passed the serial command line from 
the microcontroller through to the servomotors of the leg. Input power is provided 
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by the battery, and reverse voltage protection is provided by an N-channel 
MOSFET, the AO4411, and overcurrent protection is provided by a 7.5A fuse. 

The regulator is a buck converter incorporating TI’s LM25116 controller. 
Two MOSFETs, the n-channel IRF8714TRPBF and the n-channel CSD18542KTT 
were used to switch output current. 

The regulator design was developed through the use of TI’s WEBENCH 
software. 

 

 
Figure 31 Servo regulator Diptrace layout and physical board 

5.2.6 IMU Module PCB 
The IMU module PCB covers the connection between the IMU and the 

microcomputer such that its values can be read by the intelligent systems software 
modules to aid in the terrain classification based on the vehicle’s orientation and 
angular acceleration (movement due to rough terrain). 
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Figure 32 IMU Diptrace layout and physical board 

5.2.7 Battery Fuel Gauge PCB 
An LTC2943 fuel gauge IC is used to monitor SigSent’s battery, measuring 

its voltage, calculating its current draw, and estimating its remaining charge. 
Electrical measurements are made across a 300µW shunt resistor. Measurements 
are communicated to the Raspberry Pi through I2C, which can be toggled by an 
included TCA9617B level-translator. 

 
Figure 33 Fuel gauge Diptrace layout and physical board 

5.3 MODULAR LAYOUT 
SigSent’s hardware layout was done modularly such that each layer would 

have its own role in operation and could be easily maintained. Additionally, the top 
sensor layer is easily removable, secured by Velcro, allowing the user to move the 
brains of the robot to any unit that they would like. The power distribution layer sits 
below the sensor layer and is responsible for connecting the regulator boards and 
the devices to the bus bars adjacent to the battery. The locomotion layer holds the 
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hardware that moves SigSent. The MCU board sits here where it is then connected 
to the servo daisy chain as well as the four ESCs. 

 
Figure 34 Modular design layout 

5.4 SOFTWARE DESIGN 
SigSent’s software will be organized modularly for each discrete system. The 

high-level planning of the software is discussed with accompanying block 
diagrams, and UML for class diagrams and use case diagrams. The software is 
designed with the highest usability and maintainability in mind. Design principles 
and architectures are compared and selected based on their strengths for SigSent. 

5.4.1 High Level Software Block Diagram 
The software block diagram in Figure 35: High Level Software Block 

Diagram displays the modular design of the software. The division of labor is also 
visible by the colors denoted in each block. 



83 | P a g e  
 

 
Figure 35: High Level Software Block Diagram 

5.4.2 Software Design Overview 
The software encompasses the code for the autonomous performances on 

the robot. The design processes for development are discussed below. Each 
development procedure was chosen for the most streamlined development 
process. 

5.4.2.1 Design Methodologies 
Our team used the Scrum framework for agile software development. It is 

used commonly in small teams of rapid development cycles. While developing, 
daily 15-minute meetings are conducted where each developer discusses their 
progress from the day prior as well as what tasks they plan to tackle on that current 
day. Every two weeks, a sprint planning meeting is conducted so that a new set of 
tasks can be allotted for the two-week development cycle. These sprints are 
exactly as they sound, a fast, brief time span, where each developer takes a task 
from the remaining list of those allotted and tries to complete them all before the 
end of the two-week period. A Scrum Master, who acts as the manager of sorts, 
keeps the group on track and focuses on improving the team’s velocity over the 
development time. At the sprint planning meeting, a retrospective is performed on 
the previous two weeks where the Scrum Master will help guide the team in a 
discussion on the main events of the sprint. If the velocity of the team was low, the 
team must figure out why that occurred and what can be changed to improve that 
in the future. The sprint retrospective can then be demonstrated to the product 



84 | P a g e  
 

owner or stakeholder if necessary, however for our time, that will not be needed. 
Although there will only even be a couple programmers working on a part of the 
project at once, having a design methodology outlined will keep the team on track 
and will also expose everyone to a real software engineering environment and 
show how useful agile methodologies are in the workplace [50].  

5.4.2.2 Technology 
The intelligent system technologies used in SigSent’s software backbone 

will consist of the artificial intelligence software suite provided by NEAT’s 
neuroevolution on an artificial neural network, as well as the terrain classification 
used to define the nearby landscape that the robot is navigating across. OpenCV 
will be used as well in the stack to provide detection of movement of intruders to 
alert the user monitoring the SigSent robot. ROS will be used to manage the control 
signals to and from the robot’s sensors and motors. The High-Level Software Block 
Diagram in 0 demonstrates how each technology is associated with the other 
significant modules to our project. There are some extensions viewable in the block 
diagram that are not essential to the project at this time. The Path Planner module 
will be used for future work. It relies on the success of the control systems and 
NEAT AI modules and can only be integrated when they are fully functional. 

5.4.2.3 Architecture 
The software architecture follows a singleton design pattern for each 

intelligent system. The NEAT system is managed by a single overarching class 
that will do the evolutionary computation work as well as communicate with the 
ROS modules. In Singleton’s, if a reference does not exist, it is created and 
returned to the user. If a single static reference already has been created, then a 
new one is not created; The single reference is returned instead. By following the 
singleton design pattern, we ensure that only one single reference to the ANN will 
be used everywhere in the code. Singletons are necessary when the programmer 
must enforce this idea. Design patterns like this can strictly followed by forcing it 
upon the code rather than on the developers and users. The machine learning 
system that handles the terrain classification will also feature a singleton for the 
same advantages. 

 
Figure 36 Singleton example. Public Domain, https://commons.wikimedia.org/w/index.php?curid=1484985 
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The publish-subscribe (also informally called pub-sub) model is used 
heavily as well as it pertains to ROS. In ROS, there are nodes that publish topics 
that others can subscribe to. In this case, data from SigSent’s sensors and 
intelligent systems can be easily passed between fragments of code by simply 
“subscribing” to the whichever information is needed by that node/class. The 
publish-subscribe design pattern is very scalable. In the case that new, more 
intelligent systems are provided, or additional data inputs are necessary, new 
nodes in the dependency/usage graph can be added. There can also be additional 
complexity in how the data is used and filtered by the subscribers. If many nodes 
need to strip the sensor data to a new, parsed format, a new node can be added 
that performs that filtering and then publishes this new data for others to take 
advantage of. 

 
Figure 37 Sample diagram representing basic Pub-Sub 

5.4.2.4 Class Diagrams 
Class diagrams help visualize a lower level of the program’s structure (while 

still at some high level of abstraction). In the planning stages of software 
development, it is important to plan out what classes will be necessary and how 
they will be managed. Inheritance and OOP concepts like polymorphism can be 
discussed in this stage such that the program can be developed in the most 
readable/usable manner. Below are the two intelligent systems modules with plans 
for their possible methods and instance variables. 

5.4.2.4.1 Terrain Classifier Class Diagram 
The terrain classification system was intended to be much simpler than the 

neuroevolution performed in the mobility mechanism decision process. A simple 
Artificial Neural Network (ANN) is created and trained against a test set of data 
(sample or artificially created data mimicking that from the LIDAR unit and camera) 
with outputs for what type of terrain those inputs should be classified as. By running 
a backpropagation algorithm, described in a former research section, the ANN has 
its weights updated such that training set of data passed to the train_classifier 
method is accurately classified. Backpropagation updates the ANN’s weights by 
calling the update_weight method in the ANN’s data structure class. After training 
the classifier, the classify_terrain method should be able to precisely decide what 
terrain is being imaged by the inputted LIDAR and camera data. These inputs are 
passed to the ANN housed within this class where the output is given by the 
compute_output method. The main classifier class must take the int output from 
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this method and choose one of the enum values for TerrainType, whichever one 
corresponds to the ANN’s output.  

For SigSent, this approach was not taken in its prototype build, however its 
layout is displayed below. 

 

 
Figure 38 TerrainClassifier Class Diagram 

5.4.2.4.2 NEATManager Class Diagram 
The NEATManager class is used to communicate between the ROS 

backbone and with the multi-terrain NEAT classifier. There are three main ways to 
run the manager, as a training session with a provided list of sample data (like 
when being run OFF of the robot, in a simulation), with live data streamed from 
ROS containing information about what is happening at discrete ticks in real time, 
or as a normal run where one-time step’s input is sent and run through the ANN, 
with a single output being returned to enable or disable to multi-terrain setting. The 
ROS nodes responsible for this knowledge transfer will carry sensor data and 
mobility classifications to and from the NEATManager.  

There are also useful methods for outputting data on the current 
feedforward ANN that exists in the manager. The ANN can be outputted as an svg 
image, displaying the nodes and weighted connections in a graph. The average 
speciation of the last training session can be shown as well. This will display how 
significantly different network topologies propagated throughout the search so that 
we can decide if the search space was properly explored to find the current best 
network. The statistics of the latest training session can be viewed as well. The 
output_stats method can be used to display this information, regarding best 
fitness values discovered, at what iteration they were found in, and training rates 
for the improved learning that took place over time. This can be helpful in seeing if 
the training was effective in improving over time, if suboptimal (local maxima) 
solutions were found and escaped from, and depending on the concavity of the 
fitness scores, whether our number of generations in training the NEAT ANN was 
long enough. If the fitness was still continuously improving, training time can be 
added such that we do not finish running the session until some horizontal 
asymptote is found and the fitness has leveled off. Positive concavity would show 
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that the fitness is increasing more over time and that there is still a lot of hill 
climbing for the intelligent system to complete to find the best-fit ANN topology and 
weight combination. 

Due to the items outlined above in 4.2.6.3, the NEAT code discussed was 
not implemented, but is still referenced here for future work. 

 

 
Figure 39 NEAT Class Diagram 

5.4.2.5 Use Case Diagrams 
UML Use Case diagrams are a high-level representation on who will interact 

with the software (known as actors) and which features they will be able to access 
and enable within the program’s bounds. The interactions between the human 
user, base station controller, and the SigSent robot are noted below. In most UML 
use case diagrams, relationships for “include” and “extend” are shown in the actor 
associations. Since our actors have many single actions with little association 
necessary to denote, our use case diagram showing each module’s abilities and 
program responsibilities does not include this extraneous relationship [51].  

The user’s actions are displayed as what steps they can take through the 
GUI program to interact with the base station, and through that, the SigSent robot. 
Their first action necessary to work with the robot is to launch the base station 
program (assuming that the base station is turned on and fully operational through 
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testing). The user can speak into their microphone and listen from their speaker 
with the headset peripheral to use the audio communication capabilities. The user 
can also use the GUI to view the camera feed from the robot. This is the user’s 
main source of sentry abilities. They will be able to do surveillance remotely with 
the robot in this manner. 

The base station program is responsible for being the effective middle man 
medium through which the user communicates with the robot. The base station is 
connected to the robot through Wi-Fi from which it gains the necessary statistics 
and diagnostics from the robot’s sensors. These diagnostics are shown visually in 
the GUI mockup in the prototyping section 0. The diagnostics include information 
on remaining battery life, IMU values, terrain classification by the terrain classifier 
class shown above in its class diagram in section 5.4.2.4.1. The base station will 
transfer the joystick inputs coming from the joystick to the robot to be used in 
moving the unit according to the direction of the joystick.  

Finally, the SigSent robot has its own level of interaction with its features. 
Each action it is associated with is related with its high-level feature list described 
from the requirements and objectives. The SigSent robot will send audio using its 
local microphone mounted on the robot to the base station. The audio will be sent 
over the Wi-Fi connection it has established with the base station. The robot will 
output audio from the user’s microphone on the base station headset via the 
robot’s speakers. The robot will be moved through the TeleOp feature whenever 
the user is using their joystick and enabled the TeleOp mode, rather than the 
Sentry mode, in the base station’s GUI program. Only when these conditionals are 
made true will the robot be moveable from the base station’s joystick commands. 
The robot’s sensor information is sent to the base station in real-time for active 
debugging and for ease of use. Without information like the battery life, the user 
would not be able to effectively operate the robot without worrying about the robot 
becoming stranded or failing while at work in a mission critical situation. The 
SigSent robot will be sending raw values for its sensors to the base station to lower 
the computational load on the robot’s microcomputer and microcontroller operating 
environment. The base station GUI program will handle any necessary sanitization 
of inputs and beautifying the outputs to be as readable as possible. Finally, the 
SigSent unit will be changing its mobility mechanism dependent on the NEAT 
artificial intelligence module in the intelligent systems section. This is the main, 
sophisticated operation of the robot featured in SigSent. 

While these actions associated with each operating actor seems minimal, 
the infrastructure supporting each miniscule action contains significant overhead 
in discrete calculations and CPU computation, and code supporting it all. The class 
diagrams outline the software’s high-level plan as “code” while the use case 
diagrams note what each system’s level of interaction is and their possible actions 
they may take. 
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Figure 40 UML Use Case diagram on User, Base Station, SigSent interaction 

 

5.4.3 State Machine 
SigSent has three main states: Sentry State, Patrol (Walk Path) State, and 

Interface State. There are also be several other meta states such as Alert, and 
Status.  

In Sentry State, SigSent stays motionless in a designated spot and stands 
watch while processing camera and lidar data looking for anomalies and unknown 
behavior. Upon detection of any unknown behavior the state will exit and change 
to the alert state. 

In the Patrol (Walk Path) State, SigSent walks along a preprogrammed path 
(a set of GPS waypoints previously programmed) and sends those goals to the 
path planner which determines the ideal path for SigSent to take depending on 
priority between time, energy, and risk to robot. Once the path planner determines 
the ideal path it will send a vector to the Active Suspension Program which will 
then calculate the ideal values to send to its motors and suspension system based 
on various sensor data and the output of a NEAT ANN trained to determine which 
terrain mode the robot should use.  Upon detection of any unknown behavior the 
state will exit and change to the alert state. 
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In Interface State, SigSent can send status and telemetry to the base station 
containing information such as battery percentage, live streaming the camera on 
SigSent, and viewing the current state of the NEAT ANN. In Interface State the 
robot can also be programmed with a new GPS waypoint path, teleoperated, or 
have the operator's voice transferred to output on the robot’s speaker. 

the Alert State is only entered when either the sentry or patrol state detect 
a human presence. When this happens, the robot will send an “ALERT” signal to 
the base station where the base station will be alerted to the unknown behavior. 

The Status state is only entered when the robot has been placed in a 
situation that the robot deems needs human intervention but is not an alert. Things 
such as low battery, stuck in terrain, or otherwise unknown or diagnostic mode. In 
this state GPS beacons are sent to the base station to better help humans find the 
robot.  

5.4.4 Base Station 

 
Figure 41: Base Station GUI Diagram 

A base station is used to communicate with and remotely operate the robot. 
Alerts and warnings from the robot encompassing low battery levels and motion 
detection will always appear on the main screen of the GUI. The GUI is accessed 
by a single administrator log-in manually created when setting up the system to 
prevent prying eyes. The user can selectively view the status of the vehicle 
(including battery levels, raw sensor data, and the current CPU load), watch a 
streamed video feed from the robot’s camera, and remotely control the robot with 
a Logitech Flight Stick (Extreme 3D Pro Joystick). The TeleOp control also allows 
for the user to speak into a microphone at the base station that will then project the 
audio from the robot’s attached speaker. 

5.4.5 SPI Communication 
The Raspberry Pi communicates with the MCU over SPI. A header byte 

message is sent that details what commands will follow. The header is necessary 
so that the MCU knows what bitmasks to use to parse the bytes.  
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Figure 42 Bitmask header example 

 As shown in Figure 42 Bitmask header example, the byte will have two of 
its eight bits set to a value of 1 to signify what kind of message will be following the 
header. Two of the most significant bits were left unused for future proofing our 
design. This allows us to add another possible command in the future without 
changing our existing message structure while also keeping a hamming distance 
of four among the entire code set of the three different message types. 

 The hamming distance should be maximized to preserve functionality in the 
case of errors in the data transmission. Although errors are not anticipated in a 
wired SPI network as we are using, errors should be minimized to avoid damaging 
the robot or nearby pedestrians if an incorrect command is parsed and run. With a 
hamming distance of four, an error of three bits can be detected and avoided. A 
one bit error could be corrected, though correction was not necessary for our 
application [52]. 

 The messages that follow use a similar convention, using set bitmasks to 
define some command while also maximizing the hamming distance among the 
set. The tables below outline what each command’s message sequence 
contained. 

Table 20 Walking SPI messages 

Walk Header (Byte one) 00001100 
Forward (Byte two) 00000000 
Left (Byte two) 00001111 
Right (Byte two) 11110000 

 
Table 21 Driving SPI messages 

Drive Header (Byte one) 00000011 
Forward (Byte two) 00000000 
Left (Byte two) 00001111 
Right (Byte two) 11110000 
Backward (Byte two) 11111111 
Speed (Byte three) 00000000 -> 11111111 (Range) 
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Table 22 Mobility change SPI messages 

Change Mode Header (Byte one) 00110000 
Enter Driving Mode (Byte two) 00000000 
Enter Walking Mode (Byte two) 11111111 

 

5.4.6 NEAT 

 
Figure 43: NEAT ANN Diagram 

 Using the NeuroEvolution of Augmenting Topologies (NEAT) library, the 
robot could learn to alternate between mobility types based on the environment it 
is traversing. Throughout the learning phase, NEAT will create Artificial Neural 
Networks (ANNs) that a Genetic Algorithm (GA) will use and score based on their 
performances. Each ANN is used in a test environment where sensor values are 
passed as inputs into the network to receive some desired output values. A camera 
and LIDAR will be used to identify what kind of terrain the robot is moving over, 
which is then sent as an input into the network. The IMU will pass its rotational 
acceleration values as a second input. The output is a binary value of what type of 
mobility mechanism to engage. The best ANNs are used to create a new 
population of networks, using popular genetic operators from biology, including 
crossover and mutation. Crossover occurs more frequently, moving values from 
performant networks to create successful offspring. Mutation continues to add 
diversity to the population so that NEAT properly explores the domain’s search 
space.  

 
Figure 44: Example Generated Neural Network 
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In the example above, the gray squares are the input nodes and the blue 
circles are the output nodes. This minimal example was performed in a command-
line environment using a 2D grid as the environment, where a robot is an object 
on the map (with a location designated by its x and y coordinate on the grid) and 
has access via “sensors” to its four neighboring cells in each compass direction in 
a non-toroidal map. The four neighboring cells are inputs into the ANN. Four of the 
five outputs correspond to the future direction the robot will be headed in, where 
the node with the highest output value decides what direction the robot takes. The 
final output node chooses what mobility type the robot will enter prior to moving. If 
the robot attempts to move onto a cell labeled as being a “rocky” environment, it 
must have the proper mobility mechanism engaged before it can actually move 
onto the new cell. A fitness score is assigned based on how far the robot travels, 
as well as how many unique cells it visits. Based on this fitness, this ANN can be 
compared to the performances of the other ANNs in the GA’s population to decide 
on what network topologies will continue to proliferate and what search directions 
should be pruned. 

As shown in the graph to the right Figure 45: Fitness of the Example 
Network, the average fitness is steadily growing while the best seen fitness value 
makes jumps whenever a new, well-performing ANN is discovered. A better ANN 
results in a better “brain” controlling the robot. Higher fitness values can be 
achieved by modifying the NEAT parameters to be more optimal for this specific 
use case. The generation limit should be increased until the fitness levels off at an 
acceptable value. Additional time should also be considered to account for the GA 
struggling to break away from suboptimal extrema. 

 
Figure 45: Fitness of the Example Network 

5.4.7 Kinematics of Movement 
In order for the robot to know how to walk, an algorithm is needed so the 

robot can figure out how to move its legs. The robot can’t just flop its legs around 
in a random fashion as this would not guarantee a stable movement for the main 
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body of the robot. It also can’t have hard coded movements for its legs as this 
would not allow for a robust and adaptive mode of mobility, and would spell disaster 
as the robot would hit rough terrain with heights and obstacles unknown and 
inevitably fall over. The way to solve this is with kinematics of movement/rotation. 
With techniques in this field, a model and algorithm for an individual leg, then for 
the chassis with all the legs can be created. This would be converted into code for 
the on-board computer to handle the desired movements. This algorithm will then 
be tested and validated in Gazebo until it is tuned for the Ideal movement scheme 
for the robot.  

These models and algorithms of the kinematic system of the robot will be 
created using two concepts called forward kinematics and inverse kinematics.  

5.4.7.1 General Set-Up 
Our robot’s system is comprised of six legs, each with three degrees of 

freedom. This ends with a total of 18 degrees of freedom for our system. To start 
the calculations, we need to simplify the system down to its non-
redundant/irreducible state. That is one leg with three joints or three degrees of 
freedom as shown in the figure below: Figure 46: Diagram of a single leg of SigSent 
Robot demonstrating three jointed members. 

 

 
Figure 46: Diagram of a single leg of SigSent Robot demonstrating three jointed members. 

To simplify it even further we can look at the outer two joints of the leg 
excluding the joint connecting directly to the chassis, which makes for a problem 
with only two degrees of freedom as shown in the figure below: Figure 47: 
Kinematic diagram of two degree of freedom linkage system [53]. The paper 
reference for the figures below were modeling a robotic arm but the it still applies 
to our robot leg if you think of the first joint as the origin instead of the base of the 
system.  
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Figure 47: Kinematic diagram of two degree of freedom linkage system 

This system can now be reduced down to a representation linkage system with 
linkage members as lines and joints as connecting nodes. From there the simple 
linkage dimensions can be derived from simple geometry and trigonometry in an 
XY cartesian coordinate system or even a radial/circular coordinate system. From 
this we are able to visually see and represent the end point or the robot’s end 
effector for the linkage system as point, P. We also label all measurements such 
as the lengths of the linkages, l, and angles of the of the linkages with respect to 
our frame of reference and relating the subsequent dimensions of all linkage’s end 
effects that cause the position of the final end effector.  This is shown in the figure 
below: Figure 48: Trigonometric kinematic diagram of two degree of freedom 
linkage system [53].  

 
Figure 48: Trigonometric kinematic diagram of two degree of freedom linkage system 

Our reasoning for this simplification is that the joint that we are excluding 
only deals with rotation in a purely z-axis motion, while the other two joints dictate 
the extension of our legs and where they will fall on the ground. Thus, making it 
that these two joints are responsible for the contact with the ground to ensure a 
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firm foot hold and in the end balance of the overall system, the excluded joint ends 
up contributing more to the directional movement of the system. While these 
assumptions previously stated for the simplification do hold true in the case 
presented, they will not always hold true when moving the robot over rough and 
rugged terrain, but for the fundamental derivations we will be looking at the 
simplified two degree of freedom model to start. This model allows us to solve for 
our scenario via trigonometry. 

A common method that is used represent and solve for these linkage 
measurements is the Denavit-Hartenberg parameters. “These are four parameters 
that are associated with a particular convention for attaching reference frames to 
linkages of a spatial kinematic chain. [54]” The four parameters that define the 
Denavit-Hartenberg model are the link length (ai), link angle(αi), link offset(di), and 
joint angle(θi). These four parameters relate the next link to the current link with 
their respective frames of reference. This is shown in the below figure: Figure 49: 
Representational kinematic diagram for Forward Kinematic Denavit-Hartenberg 
parameters definition [55]. 

 

Figure 49: Representational kinematic diagram for Forward Kinematic Denavit-Hartenberg parameters 
definition 

These parameters can be simplified for our scenario down to the joint angle 
and the link length. This only holds true since the axis of rotation for the joints are 
parallel for this scenario.  

Both Forward and Inverse kinematics solutions can be solved for using either a 
trigonometry or Denavit-Hartenberg parameters. 
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5.4.7.2 Forward/Direct Kinematics 
One of the techniques used that is to create the control algorithms in each 

of the legs and joints of SigSent is forward or direct kinematics. This 
implementation and derivation will be discussed below for a simplified version of 
the leg (two-linkage system) and then the true arm (three-linkage system) for 
algorithm simplification in certain case and scenarios for the rough terrain 
movement. 

5.4.7.2.1.1 Forward Kinematics Two-Linkage Implementation 
The concept of forward kinematics is very similar to most problems solved 

in math courses and the one people will be most familiar with. Forward kinematics 
is a solution to the model of a system given all the inputs of that system. So given 
the system from the general setup section, if we wanted to know where the end 
effector of our leg would land then we would simply need to give the system some 
inputs for the length of the linkages and angles of rotation provided by the servo 
motors once they are calibrated and the final coordinate of the end effector for the 
system can be solved for as the desired next position. From this desired position 
in space, we can solve for the resulting heights and widths of the linkages and 
determine from the boundary condition discussed before to verify if this desired 
position is possible given our environment and current position or if our joints will 
end up reaching a limiting angle of rotation.  

This the forward kinematics algorithm for movement is simple and 
straightforward but if the system doesn’t have quite a few sensors available on 
them a lot of the resulting effects on the system's stability of the desired next 
position will remain unknown unless tested. Additional if the wrong inputs are 
chosen and calculated to cause an issue with the system then a whole new set of 
inputs will have to be selected and the end effector recalculated. This has the 
potential to pull a lot of resources from the on-board computer and could end up 
delaying other system responses, if the operations take too long to solve for a 
viable solution. This makes higher degrees of freedom models too costly to control.  

 This method will be a good for and implemented for solving the simple and 
quick movements over a relatively smooth or flat surface but would not do so well 
for us under rough terrain that requires precise placement of footing for the stability 
of the system. 

 The derivations for the two-arm linkage system starts with the derivation of 
the Denavit-Hartenberg parameters. Shown above in the general set-up section. 

Table 23: List of Forward Kinematic Denavit-Hartenberg parameters 

Link 𝜃c  𝛼ceM 𝑎ceM 𝑑c  
1 𝜃M 0 𝑎M 0 
2 𝜃C 0 𝑎C 0 
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From this the matrices that define the system can be created. With the 
shorthand notation of ci & si being equal to cos θi & sin θi respectively, θ1 + θ2 by θ12, 
and cos(θ1 + θ2) as c12, we obtain the matrices shown below [55]. 

 

𝐴M = 	 f

𝑐M −𝑠M 0 𝑎M𝑐M
𝑠M 𝑐M 0 𝑎M𝑠M
0
0

0
0

1 0
1 1

g 

𝐴C = 	 f

𝑐C −𝑠C 0 𝑎C𝑐C
𝑠C 𝑐C 0 𝑎C𝑠C
0
0

0
0

1 0
0 1

g 

Equation 7: Foward Kinematic Denavit-Hartenberg Matrices 

This then leads to the derivation of the T matrices which yields:  

 

𝑇MN = 𝐴M 

𝑇CN = 𝐴M𝐴C = 	 f

𝑐MC −𝑠MC 0 𝑎M𝑐M + 𝑎C𝑐MC
𝑠MC 𝑐MC 0 𝑎M𝑠M + 𝑎C𝑠MC
0
0

0
0

1 0
0 1

g 

 
Equation 8: Derivation of the T Matrices 

From these matrices the position of the end-effector in relation to the base 
frame is given by the first two elements in the last column of T20. This is shown 
below [55]. 

𝑥 = 	𝑎M𝑐M + 𝑎C𝑐MC 

𝑦 =	𝑎M𝑠M + 𝑎C𝑠MC 
Equation 9: Position of the End-Effector in relation to Base Frame 
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5.4.7.2.2 Forward Kinematics Three-Linkage Implementation 
Similarly, to the derivation above in the inverse kinematic for the two-linkage 

system, we can solve for the three-linkage system of the whole leg. For this we will 
use the Denavit-Hartenberg parameters again this time with the values for alpha 
and d not equal to zero since the axis orientation from the first joint to the second 
aren’t parallel. Thus, ending up with this general form of a transformation matrix 
from linkage I to linkage i-1 [56]. 

𝑇CN = 	 f

𝑐𝑜𝑠𝜃c −𝑠𝑖𝑛𝜃c𝑐𝑜𝑠𝛼c 𝑠𝑖𝑛𝜃c𝑠𝑖𝑛𝛼c 𝑎c𝑐𝑜𝑠𝛼c
𝑠𝑖𝑛𝜃c 𝑐𝑜𝑠𝜃c𝑐𝑜𝑠𝛼c −𝑐𝑜𝑠𝜃c𝑐𝑜𝑠𝛼c 𝑎c𝑠𝑖𝑛𝜃c
0
0

𝑠𝑖𝑛𝛼c
0

𝑐𝑜𝑠𝛼c 𝑑c
0 1

g 

Equation 10: General Transformation matrix for the forward kinematics three-linkage system 

The resulting coordinates for the end effector can be solved for which 
results in the equations below. [56]. 

𝑥 = 	𝑐𝑜𝑠𝜃M(𝐿M + 𝐿C𝑐𝑜𝑠𝜃C + 𝐿hcos	(𝜃C − 𝜃h)) 
𝑦 = 	𝑠𝑖𝑛𝜃M(𝐿M + 𝐿C𝑐𝑜𝑠𝜃C + 𝐿hcos	(𝜃C − 𝜃h)) 

𝑧 = 	𝑑M + 𝐿C𝑠𝑖𝑛𝜃C + 𝐿hsin(𝜃C − 𝜃h) 
Equation 11: Position equations solutions from the Forward kinematics implementation 

From this derivation the position equations (x, y, z) for the end effector has 
been solved for. This allows us to put in values for the linkage lengths and angles 
of the servo motors to get a resulting position. These equations will be a step 
toward the gait generation method. 

5.4.7.3 Inverse Kinematics 
One of the other techniques that is used to create the control algorithms in 

each of the legs and joints of SigSent is inverse kinematics. This implementation 
and derivation will be discussed below for a simplified version of the leg (two-
linkage system) and then the true arm (three-linkage system) for algorithm 
simplification in certain case and scenarios for the rough terrain movement. 

5.4.7.3.1.1 Inverse Kinematics Two-Linkage Implementation 
The concept of inverse kinematics is the opposite of forward kinematics. We 

need to solve for the inputs/angles of the joints of the system that would result in 
a desired end effector position. While it is more versatile and popular in a lot of 
applications, can be quite difficult to solve and may not even have a solution or a 
unique one either. The solution can be solved analytically but some cases require 
a numerical solution as the equations might not be directly solvable. This make 
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boundary conditions, initial inputs, and the very dimensions/structure of the linkage 
system is very important to include to the derivation and solution.  

 While it is costly to compute via this method it can deal with higher degrees 
of freedom and give precise desired movement once finally solved. This method 
will be a good for and implemented for solving the complex movement needed for 
traversing over rough uneven terrain. A simple distance sensor is needed to find 
approximate distance from the robot chassis to the ground and then the equations 
can be solved to get the desired position of the robot's legs that would keep stability 
in the system. 

The derivations for the two-arm linkage system starts with the derivation of 
the Denavit-Hartenberg parameters to solve for the known general solution of the 
system. This equation relates the base frame of reference to the frame of reference 
of the end effector. This transformation matrix can be described by the 
multiplication of the reference frames of every joint down to the end effector in 
series [53]. 

𝑇nop	nqqnrstu
vwxn = 𝑇MN ∗ 𝑇CM ∗ … ∗ 𝑇ooeM  
Equation 12: Transformation Matrix 

The base transformation matrix can also be defined as the matrix 
representing the rotation elements of the system as well as the position of the end 
effector. Shown below [53]. 

𝑇nop	nqqnrstu
vwxn = 	 z

𝑟MM 𝑟MC 𝑟Mh 𝑝{
𝑟CM 𝑟CC 𝑟Ch 𝑝|
𝑟hM
0

𝑟hC
0

𝑟hh 𝑝}
0 1

~ 

Equation 13: Transformation Matrix based on Rotation Elements 

Definition of the Denavit-Hartenberg parameters are shown below in the 
figure and table below: Figure 50: Representational kinematic diagram for Inverse 
Kinematic Denavit-Hartenberg parameters and Table 24: List of Inverse Kinematic 
Denavit-Hartenberg parameters [53]. 
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Figure 50: Representational kinematic diagram for Inverse Kinematic Denavit-Hartenberg parameters 

 
Table 24: List of Inverse Kinematic Denavit-Hartenberg parameters 

Link 𝜃c  𝛼ceM 𝑎ceM 𝑑c  
1 𝜃M 0 0 0 
2 𝜃C 0 𝑙M 0 
3 0 0 𝑙C 0 

 

From this, the linkage transformation matrices that define the system can 
be created. With the shorthand notation of cθi & sθi being equal to cos θi & sin θi 
respectively, we obtain the matrices shown below [53]. 

𝑇MN = 	 f

𝑐𝜃M −𝑠𝜃M 0 0
𝑠𝜃M 𝑐𝜃M 0 0
0
0

0
0

1 0
0 1

g 

𝑇CM = 	 f

𝑐𝜃M −𝑠𝜃C 0 𝑙M
𝑠𝜃C 𝑐𝜃C 0 0
0
0

0
0

1 0
0 1

g 
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𝑇hC = 	 f
1 0 0 𝑙C
0 1 0 0
0
0

0
0

1 0
0 1

g 

Equation 14: Transformation Matrices for each Joint 

From a general solution described above and simple matrix manipulation 
we can obtain the equation shown below [53]. 

 

𝑇MN eM ∗ 𝑇hN = 𝑇CM ∗ 𝑇hC  
Equation 15: General Solution of Transformation Matrices of each Joint 

After the multiplication of the defined matrices we obtain the partial solved 
equation of [53].: 

 

f
. . . 𝑐𝜃M𝑝{ + 𝑠𝜃M𝑝|
. . . −𝑠𝜃M𝑝{ + 𝑐𝜃M𝑝|
.
.
.
.

. 𝑝}

. 1

g = f

. . . 𝑙C𝑐𝜃C + 𝑙M

. . . 𝑙C𝑠𝜃C

.
0

.
0

. 0
0 1

g 

Equation 16: Partially Solved Transformation Matrix 

This will result in solutions for θ1 & θ2. Starting with θ2 we can square both 
matrices and set the elements [1,4] and [2,4] of both matrices equal to each other. 
After some simple algebraic manipulation, a solution for θ2 arises shown below 
[53]. 

 

 

 
Equation 17: Algebraic Manipulation of Transformation Matrices 
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For θ2 we can derive a solution from Table 2 in Reference [53]. This leads 
to a solution of: 

 

𝜃C = 𝐴𝑡𝑎𝑛2�∓�1− �
𝑝{C + 𝑝|C − 𝑙MC − 𝑙CC

2𝑙M𝑙C
�
C

,
𝑝{C + 𝑝|C − 𝑙MC − 𝑙CC

2𝑙M𝑙C
� 

Equation 18: Solution for θ2 

For θ1 we can use elements [2,4] of both matrices and set them equal to 
each other [53]. 

 
Equation 19: Partial Solution for θ1 

We can then derive a solution from Table 2 in Reference [53]. This leads to 
a solution of:  

𝜃M = 𝐴𝑡𝑎𝑛2(𝑝|, 𝑝{)

∓ 𝐴𝑡𝑎𝑛2(�𝑝|C + 𝑝{ − (𝑙C𝑐𝜃C + 𝑙M)C, 𝑙C𝑐𝜃C + 𝑙M 

Equation 20: Solution for θ1 

With the two joint angles solved for we have a completed solution for the 
inverse kinematic algorithm for our legs. As stated above we the inverse kinematic 
solution will need boundary/limiting condition to avoid unwanted behavior in the 
leg movements as this derivation leads to multiple solutions for our desired 
positions. 

5.4.7.3.1.2 Inverse Kinematics Three-Linkage Implementation 
Similarly, to the derivation above in the inverse kinematic for the two-linkage 

system, we can solve for the three-linkage system of the whole leg. For this we will 
use the Denavit-Hartenberg parameters again this time with the values for alpha 
and d not equal to zero since the axis orientation from the first joint to the second 
aren’t parallel. Through basic trigonometry some angle values can be solved given 
the figure shown below [56]. 
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Figure 51: 2D planar view of the joints of SigSent’s leg [56]. 

𝜃M = 𝑎𝑡𝑎𝑛2(𝑦M, 𝑥M) 
Equation 21: Solution for θ1 

 With use of a transformation matrix to convert the end effector coordinates 
to the coxa frame. A solution for the remaining angles was derived. [56] 

𝜑M = 𝑎𝑡𝑎𝑛2(𝑦h, 𝑥h) 

𝜃C = 𝜑C = 𝑎𝑐𝑜𝑠 �
𝐿CC + 𝑎C − 𝐿hC

2𝐿C𝑎
� + 	𝑎𝑡𝑎𝑛2(𝑦h, 𝑥h) 

Where 𝑎 = 	�𝑥hC + 𝑦hC from law of cosines 

𝜑h = 	𝑎𝑐𝑜𝑠 �
𝐿CC + 𝐿hC − 𝑎C

2𝐿C𝐿h
� 

𝜃h = 𝜋 − 𝜑h 
Equation 22: Angle equations solutions from the Inverse kinematics implementation 

From this derivation the angle equations for the joints of the leg have been 
solved for. This allows us to put in a desired coordinate for the leg to move to and 
the required servo angles to achieve that coordinate can be solved for. These 
equations are will be a step toward the gait generation method, just as the forward 
kinematics solution would be. 

5.4.7.4 Gait Generation 
One of the concepts that is used to create the control algorithms of 

movement for each of the legs and joints of SigSent is Gait Generation. The 
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different possible techniques that will be used in an effort to generate the different 
gaits will be discussed below. 

5.4.7.4.1 What is Gait? 
In reference to SigSent, gait refers to the style or manner that the hexapod 

will walk, this inherently refers to the line of motion in 3D space the legs make for 
the hexapod to move in any direction as shown in Figure 52:Gait path diagram 
below [57]. Gait usually is designed to emulate insectoids already in nature to 
attempt to maintain efficiency and natural looking movements. They are usually 
modeled after sinusoidal wave forms to attempt to match a natural arching curve 
in the stride forward. There are multiple methods to solve and model for gait, those 
are the attempts made to find the best method and solution to a gait generator for 
SigSent. 

 
Figure 52:Gait path diagram [57] 

5.4.7.4.2 Gait Generation via Kinematics modeling 
This method involves modeling the exact path the legs will take to perform 

its gait. This is usually done path planning with a polynomial function of sorts to 
create a known value that the leg is desired to reach. Then the path is broken up 
into important key frames that the legs must reach. The values of the key frames 
are then put through the forward or inverse kinematic equations to get the 
subsequent values needed for the servo motors to reach the desired values.  

In order to generate the commands needed to reach the key frames that 
are defined the kinematics modeling of forward and inverse kinematics must be 
already done as to find the coordinate locations of the desired configuration or joint 
angles must be definable or solvable. This method involves a more brute force 
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technique in order to generate the desired gaits of the hexapod’s legs. While this 
is the case, this method still does provide appropriate solutions for the gaits. 

5.4.7.4.3 Gait Generation via Neural Networks 
This method of gait generation follows the same principle that is defined in 

the sections 4.2.6.2 about reinforcement learning & 5.4.6 about NEAT. A random 
set of gaits will be generated and populate the system. The gaits will then be tested 
in simulation and given fitness values based on the performance of the different 
gaits. From the results, based on known outputs or targets the weights for the 
Neural Networks are recalculated in either a forward or back propagation fashion 
and the new gaits are tested on the system for a new set of outputs. 

5.4.7.4.4 Gait Generation via Genetic Algorithm 
Once the kinematic models of the system are derived and defined, the set-

up for the Genetic algorithm can take way. Gait, for this method, can be defined as 
a sequence of consequent steps where every following step is a derivative of the 
state of legs from the previous step. The state of each leg can be defined in terms 
of three angles from the three joints [58]. These three joints are put into a 
vector/matrix format to represent each leg and its current state. Each step of the 
system can then be modeled as the six states of the legs or 18 angles values in 
total. A gait can then be seen as the number of states/steps that it takes to 
complete the motion and repeat all over again. So, gait is a vector holding N 
number of steps. Each step holds 18 state values that define the position of the 
servo motor at that consequent step. The genetic algorithm is used in an attempt 
to find the optimal values for the states to have a walking mechanism that follows 
the modeled used for the ideal gait.  

The genetic algorithm starts with a random generation and population of 
gaits. The gait’s performance is then tested and simulated, then based on its 
performance from criteria we determine we can assign it a fitness value. This is 
done until the most optimal gaits for this generation are produced. Then 
“offspring”/children for the next generation of gaits are produced from those optimal 
gaits of the previous generation/parents in an attempt to find a stable optimal 
generation better than the previous generation. This process of testing, simulation, 
and reproducing is repeated until the most optimal gaits for our design is produced. 
This process model can be seen in the Figure 53: Genetic Algorithm Model below. 
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Figure 53: Genetic Algorithm Model [58] 

This method will be modeled following the paper: “Adaptive Gait Generation 
for Hexapod Robot using Genetic Algorithm” [58], that was published in the IEEE 
international conference paper on Power Electronics, Intelligent Control and 
Energy Systems.  

5.4.7.4.5 Gait Generation via fuzzy algorithms 
Once the kinematic models of the system are derived and defined, the set-

up for the fuzzy algorithm can take place. Fuzzy logic is method that closely 
emulates the thinking process of natural human brains. It is also a way of mapping 
the input states to the output states of the defined system. This is done with 
computers by creating in-between values to the 0 and 1 or false and true paradigm 
that is implemented with systems. So, in the case of SigSent, instead of exact 
coordinates/joint angles generated or desired by the system, states of distance 
defined as very near (VN), near (N), far (F), and very far (VF) are created. Similarly, 
five different fuzzy values are assigned for both angle and deviation, namely left 
(LT), ahead left (AL), ahead (A), ahead right (AR), and right (R) [59]. This process 
of fuzzy logic definitions in turn is creating regions of position for the hexapod to 
follow. This creates a scenario where the hexapod robot can “understand” if it is 
accomplishing the goal of, for example, moving forward. 

This “fuzzy algorithm” is then created with the foundation of fuzzy logic 
implemented on the different states of the legs on the hexapod robot and genetic 
population and modification of generations from Genetic algorithms. The model for 
this algorithm can be see below in Figure 54: Model of GA-Fuzzy Algorithm. From 
this figure it can be seen that the input is made up of states of the environment that 
are known and states of the robot that are known as well. This gets processed 
through the Fuzzy Logic Controller and produces an output. These outputs are 
then put through a genetic algorithm to process crossover and mutate to create 
the next generation of gaits and paths. The system is ran again until the tuning 
from the genetic algorithm has converged on an optimal gait and path  
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Figure 54: Model of GA-Fuzzy Algorithm [59] 

This method, in all, creates optimal path and gaits generated by using fuzzy 
logic controllers and generic algorithms to find optimized fuzzy logic controllers that 
are then used to maneuver and manipulate the hexapod robot in test-case 
scenarios [59].  

This method will be modeled following the paper: “Optimal path and gait 
generations simultaneously of a six-legged robot using a GA-fuzzy approach” [59], 
that was published in the Elsevier journal on Rob0tics and Autonomous Systems 
[59]. 

5.4.7.5 Open-Source Kinematic Tools 
For basic simulation and testing there is a forum of community of creators 

around the Trossen Robotics that have some test programs and open source 
calculation tables to help with certain types of hexapods and crawling robots. 
MatLab’s community based forum also has quite a few tools available to the public 
from Mathworks themselves and from community creators that are sharing their 
projects with everyone else. The fundamental understanding of kinematics is 
necessary for navigation of these tools that are available to the community. These 
tools though only help with simple derivation of some kinematic characteristics for 
the robot. 

For final, simulation, testing, and verification Gazebo should be used. This 
would put the algorithm through a test of various conditions to verify if the algorithm 
produced is sufficient to control the robot’s movements. 
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5.5 MECHANICAL DESIGN  
The mechanical design of SigSent is based on the hexapod robot design found 

common in many commercially available multi-terrain robots today with the 
addition of motorized wheels to four of its six legs. This allows SigSent to use its 
hexapod movement method across rough terrain or move through smoother 
surfaces efficiently in a traditional wheeled configuration.  

 
Figure 55: Rendering of SigSent in Wheeled Mode 

 
Figure 56: Rendering of SigSent in Terrain Mode 
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6 PROTOTYPING 

6.1 SCHEMATIC 
Schematics are produced for each module’s PCB layout to plan out the 

overall design of the circuit. 

6.2 PRINTED CIRCUIT BOARDS 
SigSent features several printed circuit boards to accomplish the level 

functionality of the robot including system protection, signals transfer, and power 
transfer as well as a platform for some sensors and actors. Below are the designed 
printed circuit boards including figures and some rational of the design for that 
specific board.  

6.2.1 PCB Design Considerations 
While designing the PCB boards, special consideration was made to keep 

decoupling capacitors and charge pump capacitors as close to the IC’s they were 
operating on as possible to reduce impedance.  

6.2.2 Breadboard Test 
Before proceeding with the final PCB design, a test was done with the 

components on a breadboard to verify that the microcomputer was working 
correctly with the sensors that it will be interfacing with in the PCB. The results 
from testing the sensors for valid output are shown in sections 7.1.5 and 7.1.6. 

 
Figure 57 Breadboard test with Raspberry Pi microcomputer connected to GPS and IMU sensors 

6.2.3 PCB Designs 
Each PCB is specified and shown in 5.2 with its Diptrace layout and physical 

assembly boards. 
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6.2.4 PCB Fabrication and Assembly 
OSH park and JLCPCB were used to fabricate the PCBs. To assemble the 

boards, the boards will be soldered on location within the Robotics Club at UCF 
laboratory. Techniques to create proper solder bonds will use a combination of 
hand soldering and hot-air reflow soldering depending on the specific package 
being soldered.  

6.3 GUI 

 
Figure 58 Basestation GUI 

The graphical user interface (GUI) features a live video feed, streaming from 
the SigSent robot. The GPS location is featured on an interactive map applet. 
There are buttons that the operator will use to interact with the robot. A radio button 
section is used to switch between the sentry and TeleOp movement modes of the 
robot. The battery level of the robot is shown as well to give a better idea on the 
estimated time remaining for operation. The GUI was developed with an 
educational/open-source Qt license with Python. 

The top-left image view is a camera feed coming from the SigSent robot. 
Underneath the video feed are radio buttons for changing the operating mode of 
the robot. Sentry mode and TeleOp mode are the two main operations for SigSent. 
In Sentry mode, the robot will remain in a single position as an active video input. 
In TeleOp mode, the operator will be controlling the robot with their joystick that is 
plugged into the base station. 

The map view on the top right will be using the GPS signal from the SigSent 
to give a fairly accurate location of the robot. A marker is placed to display the 
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robot among the map’s visual representation. Since the battery level is related to 
its travel, the estimated remaining battery life is displayed in a filled bar below the 
map. This information comes from the robot’s “fuel gauge” sensors. Based on the 
remaining battery life and the location of the robot, the user will know how much 
farther they can travel without stranding their unit. 

To aid in debugging the intelligent systems, a table is displayed underneath 
both visuals that display the terrain classification, IMU values, and the final NEAT 
output from the artificial neural network. Seeing the SigSent sensor values and 
intelligent systems output will ensure that the system is functioning correctly. 
Without a visual aid for this, it is hard to be sure that the system is being used at 
all, especially if the mobility mechanism is not switching (either due to a hardware 
failure or due to the ANN simply not outputting a new value as its been trained). 

The GUI program will be built with a Python module, PyInstaller, that will allow 
it to be compiled into a native executable for Windows, macOS, and Linux 
operating systems. This means that changing base stations to communicate with 
the robot will be a painless process if the desired computer is not on-hand. The 
base station’s computational requirements are not very heavy, so any computer 
should be usable for this process. 

6.4 PROTOTYPE EXPECTATIONS 
The prototypes for the hardware and software components were made to test 

components and to demo component and code functionality. The prototypes were 
used to ensure that the hardware and software is functioning so that the real 
integration testing on the physical system could be put into place. Below are issues 
that could occur with the prototyping and some consistent errors that were 
experienced. 

6.4.1 Potential Hardware Issues 
There are several potential issues to worry about as far as the hardware is 

concerned. There are the obvious faults such as poor design of the circuit boards, 
designing boards that introduce impedance or create unacceptable EMI, the same 
thing holds for improper wiring. Improper Soldering could create intermittent 
problems that could be hard to diagnose – it will be very important to properly 
inspect each solder joint and ensure to check solder joints again if intermittent 
issues appear during testing and application. Other issues that might arise are 
overheating issues as the leg subassemblies each consume a considerable 
amount of power and could generate enough heat to potentially damage some 
control components in Florida’s hot weather, especially since the robot operates 
outside. Beyond design issues for hardware there is the human to consider, we as 
imperfect being can cause significant problems even in a well-designed system 
(that does not account for human interaction). Proper case to ESD harden 
sensitive circuitry such as the GPIO pins on the Raspberry Pi, and to properly and 
visibly label the connectors that go into SigSent will be very important. Beyond 
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things that will be interacted in normal operation, proper labeling and color code 
standards will need to be enforced uniformly throughout the construction of the 
vehicle to prevent human errors such as miss wiring a connector or plugging a 
connector into the wrong port. With proper design and training these issues should 
be minimized but will still always be an ever-present risk.  

6.4.2 Potential Software Issues 
Potential software issues included the obvious bugs that could be present 

in the code leading to faults. Running unit tests attempts to capture these errors 
before running everything in production. Every sensor and communication device 
needs to be set to use a constant address space or IP address identifier such that 
the code can be statically coded and work every time. 

A common error that was occurring in Ubuntu MATE with the Raspberry Pi 
was a disk space error as the microcomputer was running low on available 
memory. Initially, an 8GB SD card was used in the Pi. After running into numerous 
disk space issues, it was upgraded to a 64GB card. All of the necessary libraries 
and frameworks being used (ROS, OpenCV, NEAT, etc.) required several 
gigabytes of storage each. Since most of the space needed to run SigSent is 
allocated before runtime, there should not be a high risk of reaching a disk space 
error in operation. 

 
Figure 59 Ubuntu MATE low disk space error 

A potential issue in the intelligent systems module pertains to how well it is 
trained. If the robot is trained with a terrain type and is then placed in an 
environment radically different from its training data, it will not perform optimally. 
In some situations, the operating location can change quickly without warning, 
especially in some critical application where there is no time to retrain the robot 
(e.g. military applications). In this case, the robot would not operate correctly and 
could possibly cause harm to the people relying on the successful function of the 
robot. To avoid this issue as best as possible, the robot should be trained in a 
variety of locations. Since Florida, the host location of SigSent, is not varied in 
terrain types, small demoable environments should be recreated for small-scale 
training sessions. These should be sufficient for our operations, however for 
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something more significant, extensive testing and training would need to be 
performed in real locations that closely resemble those of the places the robot will 
be actively used in. 
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7 TESTING 

7.1 HARDWARE TESTING 
The hardware components that were selected and purchased for use were 

tested according to their procedures listed below. Images corroborating the 
successful tests’ results accompany the procedures’ outlines. 

7.1.1 Raspberry Pi 3 Microcomputer Testing 
The Raspberry Pi 3 will be tested for being operational. It will be assumed 

to be working as intended if boot-up and an SSH connection has been established. 
Its complete functionality will be decided by the correct operation and 
communication between its sensors and miscellaneous connected components.  

To further test the Raspberry Pi, we conducted a test of SSH using a local 
network and what will be our base computer. This is a simple test and allows for 
us to work remotely on SigSent without having to directly plug into the vehicle. This 
also allows for the vehicle to roam wirelessly while we monitor the vehicle through 
SSH without becoming tangled or unplugged as the robot moves around.  

 
Figure 60: Screenshot of successful login of SSH over Wifi from a base station computer to SigSent's 
microcomputer 

7.1.2 Microcontroller Testing 
The microcontroller was assumed to be operating correctly based on its 

working functionality in integration with the robot’s control systems. Signals will be 
sent to each joint’s respective servo to move in 10-degree angle increments. If 
each motor is correctly accessed and moved with the necessary measured 
precision, the microcontroller was marked as testing successfully. 
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7.1.3 Lidar Testing 
To test the lidar, which using serial communication through the ACM0 

protocol we used a ROS node called URG_NODE which is specifically designed 
to interact with the Hokuyo brand of lidar sensors including our UTM-30LX. 
URG_NODE reads in the sensor data and reformats it into the standardized ROS 
message named laser_scan in the topic /scan. From there we both visualize and 
confirm the relative accuracy of the Lidar data in RVIZ compared to what we are 
seeing and we can view the raw data by echo’ing the rostopic /scan in the 
Command Line Interface (CLI).  

 
Figure 61: Visualization of Lidar Data in RVIZ 

 
Figure 62: Raw Lidar data echo'd from the ROS topic /scan 
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7.1.4 Camera Testing 
The camera was connected to the Raspberry Pi and a basic image was 

captured indoors in a low-light environment. Even with suboptimal conditions for 
lighting, the image was still captured at an acceptable quality. SigSent will be 
operating outside. As such, daytime sunlight will provide more than enough lighting 
for basic sentry operations and surveillance capture. During its nightly patrols, the 
powerful LED light bar mounted on the robot will illuminate the area in front of the 
camera’s field of view. Below, in Figure 63 Camera test indoors in low-light, clear 
colors, contrast, and sufficient optical quality are seen. Highlights are overblown in 
the ceiling lights, however this is normal for a low-light scenario to compensate for 
the poor illumination throughout the laboratory room. The camera adjusts its 
exposure settings as such to provide an average normal exposure that is viewable 
in bright and dimly lit environments. The tests provided showcase that the camera 
will be acceptable for the minimal computer vision computations we will be doing 
for terrain classification and basic human/anomaly detection. 

 
Figure 63 Camera test indoors in low-light 

 

7.1.5 IMU Testing 
IMU Testing for the MPU-9250 was conducted by hooking up the sensor 

and reading its values through serial in Linux and confirming that they changed 
logically as we moved and rotated the sensor around. Once we have the robot fully 
assembled more in-depth tests can be made, however to simply confirm that the 
sensor is outputting data in the expected fashion this test was proved successful.  

7.1.6 GPS Testing 
GPS Testing for the Venus 638FLPL was conducted at UCF’s Partnership 

II and III campus. The testing process was to bring the GPS unit outside hooked 
up the Raspberry Pi 3 through a TTL serial feed. The GPS outputs a constant 
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stream of NMEA GPS data which we then parsed into to standard GPS 
coordinates, which we then fed into Google Maps to confirm that the GPS points 
were accurate. We found that the GPS points were very accurate outside and 
confirmed its location on Google Maps to well within the specified 2.5 meters of 
stated accuracy. We also found that indoors the GPS did not perform well and 
often was not able to contact enough satellites to output a valid GPS point. Since 
the vehicle will be outside this is considered a non-issue, but may present 
problems during presentations and demos if conducted indoors.  

 
Figure 64: Testing output of NMEA GPS data from GPS Unit 

 
Figure 65: Confirming accuracy of GPS data by placing GPS coordinates into Google Maps [60] 

7.1.7 Servo motor Testing 
The servo motor characteristics of stall torque, stall current and weight will 

be measured and tested. To test the stall torque characteristic of the servo motor 
a known weight on a cantilever at a set(adjustable) and known distance will be put 
on the servo motor. The servo motor will then be commanded to rotate with 
increasing distances applied to the weight up to create increasing torques on the 
servo motor. This will be done until the known stall torque has been reached or a 
smaller stall torque has been reached. The stall current will be measured and 
tested during the testing of the stall torque by actively measuring the current 
applied to the servo motor at the time of testing. A fuse, or emergency stop will be 
implemented to ensure no damage to the servo motor when stall has been 
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reached. The weight of the servo motor will also be measured to ensure the proper 
product within design has been obtained. 

7.1.8 Motor and ESC Testing 
A tachometer will be used to measure the RPM of the motor to determine if 

it meets the specifications required by the robot and as notated in its datasheet. 
The motors will be run using their standard operating voltage. If the motors reach 
the necessary speed, the testing will be determined as successful. 

7.1.9 Battery Testing 
The battery’s capacity will be tested by measuring the time it takes for the 

battery to “die” while under a predefined load. The battery will be charged until the 
voltage across its terminals reads 16.8 V with a multimeter. A stopwatch will 
engage when a 10 A constant current dummy load is first attached to the battery’s 
terminals and will stop when the voltage across the terminals measures 13.6 V 
with a multimeter. To be considered minimally successful, the time must be greater 
than or equal to 1 hour.   

7.1.10 Speaker and Amplifier Testing 
Test tones at various frequencies within the voiceband will be played from 

the speaker system at maximum volume, and will be measured with a sound level 
meter from 10 meters away. At minimum, the test will be considered successful if 
the meter reads a level greater than 60 dB for a 4 kHz test tone. Human hearing 
is typically most sensitive near this frequency [61], which makes it suitable for use 
in a siren. 

The utility of the speaker system would be further validated with sound level 
measurements significantly greater than 60 dB across the voiceband. Additionally, 
reliable comprehension of vocal instructions 10 meters from the speaker system 
would demonstrate full success of the audio system design. 

7.1.11 Microphone Testing 
To test the microphone being used on the robot for basic operational 

situations, it will be connected to the Raspberry Pi microcomputer and debugged 
in Ubuntu Mate for proper feedback. If the operating system’s audio manager 
cannot receive input from the microphone, it will need to be debugged. If the 
microphone interfaces correctly, it will be successfully tested. Its specifications for 
recording were known through the hardware research and further testing on these 
parameters is unnecessary if the operation of the device and its integration goes 
smoothly. 

7.1.12 Lighting System Testing 
The lighting system will be tested for sufficient illumination and operating 

times. A light meter is used to capture how much light is being output by the 
system. The lighting system must provide the illumination specified by the 
requirements in section 4.3.17.1. The lighting system will be run for two hours to 
verify that it is still operational after a long duration. The operational time is meant 
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to test if the lighting system can reliably operate for the entire duration of the robot’s 
battery life. Two hours is much higher than the upper-bounds given in the 
requirements section: 4.3.13.3. If it lasts two hours without any issues, it will be 
decided to be sufficient.  

7.1.13 Power System Testing 
All components need sufficient power to turn on and operate. The voltage 

and current at each node for a component will be tested such that each component 
is receiving the correct amount for operation. Incorrectly delivering the wrong 
values could damage our components. After testing that everything is under the 
correct operating constraints, the components will be tested for correct 
functionality. 

7.1.14 Signal Protection System Testing 
To test the Protection System we will purposefully introduce ESD and 

transients events into signals lines while measuring with an oscilloscope and 
ensure that the various Zener diode clamps properly clamp those events.  

To test reverse circuit protection, we will reverse the power input to SigSent 
with all vulnerable devices removed and check that the reverse current does not 
pass through the protection method, this will be checked via a multimeter.  

To test overcurrent protection, a fuse will be hooked up to a battery with 
high power low ohm resistors to create an overcurrent event with the fuse inline, 
the circuit will be closed creating the overcurrent event and the event timed to 
ensure that the fuse opens at the expected time. 

7.1.15 Base Station Testing 
The base station testing encompassed testing that the computer is working 

as well as the GUI program that communicates with the robot. The computer was 
booted up and verified that it is functional. The base station’s GUI program was 
launched to verify that it is able to correctly communicate with the SigSent robot. 
With the robot able to be controlled from the base station, the testing was marked 
as successful. 

The peripherals for the base station will need to be tested in conjunction with 
the laptop as well. The joystick will be tested in the Windows Joysticks tool, where 
inputs can be shown as being received by the operating system. If the joystick has 
been correctly installed to work with the OS, then it will be tested in the base 
station’s GUI program for correctly controlling the SigSent robot in TeleOp mode. 
The headset used for listening and vocally communicating through the robot will 
be tested as well. The default Windows playback/recording devices menu will be 
used to ensure that the operating system is receiving input and producing output 
through the headset device. The GUI program will then be run as well to test if the 
headset is receiving audio from SigSent and also outputting audio from the 
microphone through the robot’s speaker. 
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7.2 SOFTWARE TESTING 
The software developed for SigSent must be rigorously tested in modular unit 

tests, in a simulated environment, as well as in the actual physical environment. 
The procedures to facilitate the testing are notated below. 

7.2.1 Software Testing Overview 
Testing is a necessary and important part of any software development 

lifecycle. Before code can pushed into a production environment, especially in a 
mission critical application, testing can be done to prevent errors from making it 
into a release. When working with physical hardware, where real harm can be done 
due to software mistakes, testing is very important. We will be employing a variety 
of techniques and frameworks discussed below to ensure that human faults do not 
lead to significant failures, or unexpected results. The unit tests will be done using 
Python’s included unit test library. Tests can be written to verify that every 
function returns the exact values that it is expected to. Edge cases can be easily 
tested in this method by calling each individual function with these obscure 
situations to check that they are functioning correctly. Integration tests are then run 
that combine modules of the software environment together to verify that the many 
software components still function as expected when working together. Integration 
testing will ensure that as new features are added, the overall quality of the 
SigSent’s performance is constant. 

7.2.2 Simulated Testing 
Gazebo can be used as a software solution for testing the ROS control 

systems code, the movement and gait generation algorithms, as well as the basic 
neuroevolution artificial intelligence work. The artificial intelligence can be run in a 
simulated environment; however, it must be used with caution as the data gathered 
in this way will not be accurate, or at least cannot be depended on. The simulation 
testing is to ensure that after each individual function and module has been testing 
in isolation and integration, that the robot as a whole works as intended. The 
artificial intelligence can only be tested for validation in the full simulated Gazebo 
environment and in the physical testing process. 

In Gazebo, a sample environment consisting of varying terrains for smooth 
and rough surfaces will be used to test SigSent in each of its possible operating 
conditions. Testing in a simulated environment, while not completely accurate in 
modeling true physical performance, allows for quick iterations in different locales. 
Obstacles can be added and removed as necessary to provide SigSent with a 
comprehensive setting for testing. As testing is done, the software can be modified 
as needed. The NEAT learning platform will be under the most scrutiny throughout 
the testing, as the training and neural network parameters are modified to produce 
the best possible results. 

7.2.3 Physical Testing 
After completing a successful iteration in each testing environment listed 

above, the software was tested on the physical robot. Because of the physical 
limitations of the simulation not being achieved, the software was modified for 
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usage in tests with the actual SigSent robot. Parameters were modified in the code 
pertaining to the movement to have the best performance. Changes were quickly 
made and re-uploaded to the robot to test in the physical environment until an 
acceptable performance is achieved. The base station GUI was the most helpful 
throughout the physical testing process as it provides real-time updates on the 
robot’s sensor values and how it pertains to the intelligent systems’ artificial 
intelligence software modules. 

7.3 TESTING PLATFORM 
In order for our team to work in parallel while the mechanical system and 

control systems are being developed we are using the Clear Path Robotics 
Turtlebot 2 supplied by the Robotics Club at UCF to test the software and hardware 
that does not rely on our movement systems in a physical model. The Turtlebot is 
a simplistic framework of a robot that has a controllable base based off the 
Kobuki/Roomba platform and is designed specifically to be ideal for testing robotics 
with many mounting points and an easy interface to control with.  

On the Turtlebot we tested our lidar, IMU, GPS, and camera as well as our 
power and protection systems as a complete system on the Turtlebot using the 
state machine with GPS waypoint navigation and human detection. Once we had 
SigSent’s chassis and control system ready, we migrated all the systems being 
tested on the Turtlebot over to SigSent’s chassis for further testing.  

 
Figure 66: Picture of Turtlebot equipped with several of our sensors in anticipation of testing 
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7.4 FINISHED PROTOTYPE 
The finished, working prototype is detailed below. SigSent went through three 

rounds of renders before we arrived at the finalized build. 

 
Figure 67 Finalized SigSent Prototype 

7.5 OPERATING SIGSENT 
To operate SigSent, the user needs to only plug in the battery to the nearby 

Anderson Powerpole connector. After the Raspberry Pi is done booting up (which 
can be confirmed by pinging the Pi’s IP address, which is set to be a static 
192.168.1.101), the user can launch the ROS nodes necessary for use. These 
ROS nodes need to be built beforehand. The user can clone our code’s repository, 
install the necessary dependencies displayed in the repo, and then run 
catkin_make in the code’s workspace directory titled catkin_ws. Source the new 
bash file, devel/setup.bash, to add the ROS packages to the bash path, and 
roslaunch the launch file with roslaunch sigsent sigsent.launch. This launch file will 
launch everything needed to run SigSent locally, except the GUI, and will also SSH 
into the Raspberry Pi to launch the nodes for the robot’s hardware.  

Launch the GUI next. To do so, install the Python dependencies by running a 
simple pip install -r requirements.txt when in the main directory of the code’s 
repository. Change directory into the folder named GUI and run the PyQt script, 
python gui_test.py. This will launch the graphical application and will automatically 
connect to the ROS topics necessary if the machines have been setup on the 
network correctly. The ROS wiki has information to meet any potential issues that 
may arise when setting up the networking. 
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8 ADMINISTRATIVE CONTENT 

8.1 SOFTWARE TOOLS 
In working on SigSent, several software tools were used for communicating 

between team members, developing the software/hardware implementations for 
the robot, and also in documenting the project. Each tool was essential in reaching 
our goals in developing and documenting SigSent. 

8.1.1 Communication 
Communication between team members is important to provide the best 

working environment. Being able to quickly get in contact with each other for 
meetings, to make ad-hoc design decisions, and working remotely was necessary 
for the tight deadlines we had to meet. The tools below encouraged this 
communicative process. 

8.1.1.1 Discord 
To foster better communication, our group used Discord. Using Discord, we 

were able to easily get updated information on everyone’s progress, as well as 
share useful links or images related to the project’s research. Our group had its 
own “server” that we could connect to, containing voice and text channels to 
communicate through. We utilized the voice chats during remote meetings when 
we could not meet physically. The biggest advantage to using Discord was that it 
featured this powerful communication platform for free. Slack, another free 
communication tool, does not feature the same rich, low latency voice connection 
as does Discord. 

8.1.2 Development 
The development of SigSent for both the software and hardware was 

achieved with the assistance of high-level software tools. Each tool used is listed 
below with a brief summary on its working purpose and why it was chosen for use 
in the SigSent project. 

8.1.2.1 MatLab 
 Used for computation of the Inverse and Forward kinematics of the 
hexapods movements for each individual leg. As well as used for the gait 
generation of the hexapod for normal movement patterns. With its multiple different 
library sets and use of the online community forum, the modeling of the kinematics 
was made simple and straight forward. Through the ease of matrix manipulations, 
function definitions, implementation of algorithms and interfacing with multiple 
other language sets, MatLab remains one of the best multi-paradigm numerical 
computing environments available to the public. For initial testing, MatLab also 
offers interfacing with hardware, that allows for testing with hardware out and in of 
the loop to test efficiency, accuracy, and feasibility in the system. The MatLab 
software is able to interface with the Raspberry Pi and various microcontrollers as 
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well, which allows for simulation and testing on the overall systems or each sub-
system individually. 

8.1.2.2 PyCharm 
PyCharm features plugins for use with ROS and the Raspberry Pi, making 

Python development on our platform easy to scaffold out. Although PyCharm is a 
commercial product made by the company JetBrains, they offer a free account for 
students, as well as free community editions of some of their IDEs (including 
PyCharm). The ROS plugin for PyCharm includes support for packages, code 
execution with roslaunch, node debugging, unit test execution and debugging, and 
custom message/service creation. The Raspberry Pi support is not via a direct 
plugin, however PyCharm features exceptional SSH and tunneling support to write 
code on a local machine and simply execute it over on the remote device, as well 
as the ability to connect to local database solutions running on the microcomputer. 
The neuroevolution and ROS modules were written in Python, making PyCharm 
the obvious choice of IDE for our software development. 

8.1.2.3 DipTrace 
Used for PCB design, DipTrace is a software suite for creating schematics 

and PCB design as well as 3D visualization and 3D file exporting completed board 
with component representation. This software was provided by the Robotics Club 
at the University of Central Florida [43] and DipTrace [62].  DipTrace has an 
intuitive and quick UI/UX that allows for rapid development of hardware.  

 
Figure 68: Representation of Diptrace’s Schematic Capture and PCB Design applications [63] 

8.1.2.4 Git 
In the world of version control systems (VCS), Git reigns supreme in 

popularity. In 2016, RhodeCode did a study on VCS interest by reviewing their 
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presence in Google search trends. Git comprised 70% of searches compared to 
other systems, including (in descending order of search significance) Subversion 
(SVN), Mercurial, Perforce, and Concurrent Version Systems (CVS) [31]. We used 
Git as our VCS due to its obvious preference by developers, and previous 
experience that our group had with using it. Using Git, changes are tracked 
between the local files and the last committed changes to the repository. A commit 
essentially is a state in the Git graph that holds the exact version of every file in 
the repository, backed by a checksum to ensure that nothing differs from exactly 
what was saved by the user. Branches can be created as well, allowing specific 
tasks to be implemented in their own state, not interfering with the main master 
branch. The code added to the other branches can then be cherry picked over into 
the main branch by their commit hash. Git is also much faster when juxtaposed 
with performances of similar commands on competing other version control 
systems. Git is a free and open source software solution, released under the GNU 
GPL, open source license. 

8.1.3 Documentation 
The documentation for the project is all saved in in the cloud, but is 

maintained across multiple websites that provide tools for each type of document. 

8.1.3.1 Google Drive/Docs 
Google Drive is where every file, excluding the source code and CAD 

documents, were stored. Google Drive also includes a web-based document editor 
via Google Docs. Google Docs also includes an editor for excel spreadsheets that 
we used to document part specifications and comparisons. Google Docs is where 
the project’s documentation was written collaboratively in the cloud. Our shared 
folder also acted as a remote backup for our documents for higher availability and 
reliability using a free solution. 

8.1.3.2 Draw.IO 
Most of the flowcharts and diagrams that we created were done with 

Draw.IO’s editor. They have seamless integration with Google Drive which made 
synchronization and collaboration easy. Draw.IO includes templates for many 
popular types of documentation diagrams. For the software class diagrams and 
other UML documentation figures, we were able to take advantage of Draw.IO’s 
handy pre-built blocks that conform to UML specifications. The class diagrams 
were essential to our development process to properly plan our architecture prior 
to actually implementing our ideas. Draw.IO improved our project’s scalability by 
keeping us focused on the big-picture overarching design such that we did not 
have to waste time refactoring code as the project grew in number of features. 

8.1.3.3 Microsoft Word SharePoint Document 
To increase the readability of our document, Microsoft Word’s shared 

collaborative environment was utilized for its powerful document editing tools (with 
automatic table of contents for tables and figures, and automated bibliography 
generation for citation references). Google Drive is a safe way to save all of our 
documents in one cloud-based storage solution, however Google Docs does not 
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have the rich editing environment that Microsoft Word offers. When used in 
conjunction with our other documentation tools, we have created a streamlined, 
effective workflow for writing. 

8.2 DIVISION OF LABOR 
The division of labor between each group member can be more clearly seen 

in the block diagrams for both the hardware and software components from Figure 
28 and Figure 35. The milestones in 8.3 also outline each group member’s primary 
responsibilities and secondary responsibilities with defined deadlines. These 
deadlines were set-up into phases (Phase 1 – Phase 3) These deadlines were 
subject to change relative to the progress along the project timeline. 

 Throughout development, the deadlines were heavily shifted as hardware 
acquisition and fabrication took longer than anticipated. Most of the main goals 
were met in the late months of the semester. 

8.3 PROJECT MILESTONES 
 

Phase 
1 

Due 
11/30/2017 John Millner Josh Franco Jeff Strange Richie Wales 

Primary 
Goal 

Mechanical Design & 
Physical Creation 

Control System 
Legs (Sim) 

Power System 
Design 

Simulation 
Creation 

Backup 
Goal Simulation Creation Power System 

Design 
Mech Design & 

Creation 
Control System 

Legs (Sim) 

Tasks 

Complete Laser Cut 
Design 

Kinematic 
modeling of 

movement/legs 
Confirm sensor 

selection Setup VCS 

Create Laser Cut Model 
Kinematic 

modeling of whole 
body 

Calculate 
power & energy 

needs 
Familiarize with 

Gazebo 

Sponsorships/Discounts 
Input/feedback 
data for closed 

loop 
Design 

schematic 
Create basic sim 

environment 

Order Parts Movement pattern 
for different terrain 

Find Primary 
Source 

Components 
Move model SDF 
from Solidworks 

Wire Management Familiarize with 
Gazebo 

Find 
Redundant 

Sources 

Add necessary 
ROS connections 
to moving parts 
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Complete 3D Printed 
Design 

Get necessary 
inputs for 
simulation 

Create BOM Follow ROS 
turtlesim docs 

Create 3D Printed Model  Determine wire 
routing 

Implement code 
to move robot 

Have Complete Platform  Order Parts Test/Debug 

 

Phase 
2 

Due 
1/31/2017 John Millner Josh Franco Jeff Strange Richie Wales 

Primary 
Goal ROS Integration 

Control System 
Active Suspension 

on Robot 
Communications Working on ML on 

Sim 

Backup 
Goal Communications Working on ML on 

Sim 
Control System 

Active Suspension 
on Robot 

ROS Sensor 
Integration 

Tasks 

Create/find 
Packages-nodes-

publishers for each 
sensor 

Design active 
suspension 

implementations 

Design Base 
Station radio 

system 
Research potential 
computers/MCUs 

Create state 
machine for different 

modes 
Choose optimal 
designs for AS 

Design robot radio 
system 

Seek NEAT 
advising (Dr. Wu/Dr. 

Stanley) 

 Input/Feedback 
from AS included 

in control 

Implement 
messaging 

framework from 
ROS 

Run small-scale 
NEAT tests without 

all sensors 

 Implement AS in 
control simulation 

Implement 
basestation 

command line 
client 

Use sensors from 
John's 

implementation 

  Test connectivity in 
various 

environments 
Modify parameters 

and re-run 

 

Phase 
3 

Due 
2/28/2017 John Millner Josh Franco Jeff Strange Richie Wales 

Primary 
Goal ROS Path Planning Polishing Control 

Systems Teleop Control Neat on the Robot 
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Backup 
Goal Teleop Control Neat on the Robot ROS Path 

Planning 
Polishing Control 

Systems 

Tasks 

Create local path 
planning for legs 

Results from 
Control Sim 

Design base 
station controller 

Run NEAT on 
robot 

Robot must avoid 
obstacles 

Test on different 
terrains 

Design base 
station GUI 

Seek advising on 
inevitable failures 

robot must path around 
obstacles on a global 

goal 
Test movement 

abilities from Sim 
Implement video 

stream 
Re-run training 

until viable result 

robot must be able to 
move to a GPS 

Waypoint 
Optimize Control 

Systems Test, test, test Train for longer 
duration (TBD) 

robot must take goal 
vectors  

  Save best 
resulting ANNs 

 

8.4 BUDGET AND FINANCE 
 

Table 25 Initial Budget 

Part Number Description 
Unit Price 

($)* 
Total 

Quantity 
Total Price 

($)* 

244000083-0 Motor 18.99 6 113.94 

FUTM0043 Servo motor 22.99 18 413.82 

595711 Wheel 1.995 6 11.97 

57155K383 Bearing 6.42 6 38.52 

92775A106 Shaft Set Screw 0.3476 12 4.1712 

91292A015 Motor Screws 0.218 24 5.232 

92290A474 servo motor horn screws 0.78 72 56.16 

98511A300 Wheel Screws 0.841 24 20.184 

91292A116 Servo motor Screws 0.0641 72 4.6152 



130 | P a g e  
 

91854A101 Servo motor Nuts 0.1296 72 9.3312 

N/A Custom 3D Leg Prints 80 1 80 

N/A Custom 3D Abdomen Print 65 1 65 

3100 Camera 29.99 1 29.99 

3055 Microcontroller 35 1 35 

Z50003S-25 Battery 25.38 1 25.38 

9192000310-0 ESC 10.53 4 42.12 

VN-200 IMU / GPS 2600 1 N/A 

GF0876 Speaker 5.02 1 5.02 

TS4962IQT Audio Amplifier 0.99 1 0.99 

URG-04LX-UG01 Lidar 4800 1 N/A 

 PCB Fabrication 89.2 N/A 89.2 

 Misc. Replacements 12.61 N/A 12.61 

 DigiKey BOM 295.22 N/A 295.22 

 Robot Communications On-hand 1 N/A 

 Basestation Communications On-hand 1 N/A 

 Laptop On-hand 1 N/A 

 
Servo motor Controller 

Board 50 1 50 

 Power Distribution Board 50 1 50 

 Logitech Flight Stick On-hand 1 N/A 

 SD Memory Card On-hand 1 N/A 

   
Total Cost: 1458.03 
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*note discounts and shipping costs not applied 

8.5 STRETCH GOALS 
In order to expand SigSent’s suitability to additional use cases, providing 

additional methods for human machine interface would make valuable stretch 
goals. Adding basic gesture recognition to SigSent’s computer vision system could 
enable SigSent to be a more valuable partner in a human machine pairing. An 
operator in the immediate view of a unit could wield quick and intuitive control over 
the robot. Gesture-based interaction with the unit could prove useful for stealthy 
operations or could enable interaction with nonverbal individuals. 

 Similarly, adding in additional voice commands would serve a similar 
purpose, albeit less stealthy. Voice commands could likely be more verbose, 
offering greater specificity for an operator to provide commands, using a grammar-
based approach. 

 A mobile app would enable an operator to issue commands to a unit or to 
receive the audio/visual feed another unit when not in the immediate area. A 
mobile app could provide similar functionality to a base station in a lighter weight, 
more mobile package. A mobile app could be designed to operate on both 
smartphones and tablets to leverage the devices many potential operators would 
already possess. 

Follow the Leader, cost analyses on paths to take, and autonomous 
investigation are all items that are considerations for future work. The follow the 
leader strategy has direct implications in the field of patrol and sentry surveillance. 
If a human security officer could walk their usual route while accompanied by the 
SigSent robot, the exact pathing could be saved by the robot and then executed 
for future patrols without the human’s assistance. This would mean that the human 
operator would not have to use the teleopoeration feature to control the robot’s 
movements while attempting to do surveillance along a path. Another alternative 
to the follow the leader strategy would be to define a path on a GPS map that the 
robot then follows. The GPS technology is still necessary in either approach to 
maintain the desired path, however the human operator would have to be aware 
of the obstacles present along the defined path that they draw. While walking with 
the follow the leader mode enabled, the human operator would be able to steer the 
robot away from any obstacles that would interfere with the robot’s patrol. Added 
automation means lower operating costs for a security company and for less man-
hours spent maintaining the robot’s functionality 

Having a cost analysis on the pathing would mean that the shortest paths could 
be taken by the robot. Shortest path computations would be effective in rough 
terrain where taking a shorter path has a significant effect on how much energy is 
expended by the robot. If the computer vision and terrain classification system is 
sophisticated enough, then its roughness could be used in the movement costs as 
well. It could be that a longer path with a smoother terrain is the better travel option 
to save energy and to keep the robot from entering dangerously risky areas that 
could prove too difficult to traverse. 
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Autonomous investigation functionality would mean that the human operator 
could step away from monitoring the patrol route taken by the robot and allow it to 
encounter anomalies on its own. Currently, the robot can alert the operator of 
detected movement so that the human can manually investigate. This still requires 
a human operator to be vigilant in watching the surveillance from the robot. 
Automating this feature reduces the chance of human faults. A human could miss 
something anomalous on the surveillance. The robot could detect movement and 
alert the user, however the user could be oblivious to the warning. Having the 
system operate intelligently on its own reduces the human interaction element 
(where the human element adds to the risk of errors). 
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9 CONCLUSION 
SigSent’s novel multi-modal terrain navigation methodology can provide 

significant gains in energy efficiency of locomotion while maintaining the all-terrain 
capabilities that a traditional hexapod platform offers. 

SigSent offers security professionals additional capability to complement and 
supplement their traditional organizational structure and roles. A network of 
SigSent’s can multiply the effectiveness of a single security guard and enable 
quicker response over larger distances. 

SigSent relies on a wireless control architecture which incorporates a base 
station for an operator’s use.  Although this adds a constraint on the operation of 
the robot, wireless communication with Wi-Fi is ubiquitous in today’s modern 
society, where the Internet of Things (IoT) has dominated every market.  

Currently, Knightscope is the largest company producing autonomous 
sentry/patrol robots. Their products are aesthetically pleasing and seem to have 
feature-rich devices. Their systems, while featuring intelligent autonomous bots, 
do not break the mold in multi-modal terrain traversal. Our project hopes to expand 
on that aspect. The hexapod design lends itself to the ability to cross over rough 
terrains without the weakness of wheels. The neuroevolution system creates an 
ever-changing robot that continuously learns from its environments. SigSent 
boasts a robustness that not many platforms can offer. A robot that can adapt over 
time without the need for human intervention lowers operating costs and lowers 
the risk of obsolescence. 

As demonstrated by the design planning and development recorded in this 
document, SigSent’s road to completion is well on its way as an affordable option 
for security. We believe we have created not only a functional prototype, but also 
a beautiful, unique design unlike anything currently on the market. We have 
challenged ourselves as engineers and also as innovators.
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