
i | P a g e

SigSent
Autonomous Sentinel and Patrol Robot

Department of Electrical and Computer Engineering

University of Central Florida

Group 11

Joshua Lee Franco, CpE, EE, ME

John Millner, CpE, & EE

Jeff Strange Jr., EE

Richard Wales, CpE

Sponsor: Vision Land Service

Significant Contributors: Robotics Club, TI Innovation Lab

ii | P a g e

TABLE OF CONTENTS
1 Executive Summary ... 1

2 Project Narrative... 2
2.1.1 Goals and Objectives ... 2
2.1.2 Requirements Specifications .. 3
2.1.3 House of Quality .. 5

3 Design Constraints and Standards ... 6

3.1 Design Constraints .. 6
3.1.1 Economic .. 6
3.1.2 Environmental ... 6
3.1.3 Social .. 7
3.1.4 Political / Ethical .. 7
3.1.5 Health & Safety.. 7
3.1.6 Manufacturability ... 8
3.1.7 Sustainability ... 8

3.2 Hardware Standards .. 8
3.2.1 Soldering Standards .. 8
3.2.2 PCB Design Standards .. 9
3.2.3 IEEE 802.11g .. 10
3.2.4 Inter-Integrated Circuit (I2C) Version 6 ... 10
3.2.5 Universal Serial Bus (USB) .. 11

3.3 Software Standards ... 11
3.3.1 Programming Languages ... 11
3.3.2 Naming Conventions ... 12
3.3.3 Build Environments .. 12
3.3.4 IEEE 802.11i-2004 .. 13
3.3.5 National Marine Electronics Association (NMEA) Message 13

4 Research and Background information ... 14

4.1 Similar Projects .. 14
4.1.1 Knightscope... 14
4.1.2 ATHLETE (All-Terrain Hex-Legged Extra-Terrestrial Explorer) 17

4.2 Software Research .. 18
4.2.1 Operating Systems .. 18
4.2.2 OpenCV .. 18
4.2.3 SLAM .. 19
4.2.4 State Machine ... 19
4.2.5 ROS .. 20
4.2.6 Intelligent Systems .. 23
4.2.7 Gazebo Simulation .. 31

4.3 Hardware Research ... 32
4.3.1 Microcomputer ... 32
4.3.2 Microcontroller ... 36
4.3.3 GPIO extenders ... 39

iii | P a g e

4.3.4 Force/Pressure Sensor .. 41
4.3.5 Lidar .. 43
4.3.6 Camera .. 44
4.3.7 IMU .. 49
4.3.8 GPS ... 51
4.3.9 Servo motors ... 54
4.3.10 Motors .. 59
4.3.11 Electronic Speed Controller (ESC) .. 61
4.3.12 Fuel Gauge .. 62
4.3.13 Battery ... 62
4.3.14 Audio Amplifier ... 64
4.3.15 Speaker ... 65
4.3.16 Microphone .. 66
4.3.17 Lighting System .. 67
4.3.18 Power System .. 68
4.3.19 Signals Protection System .. 70
4.3.20 Base Station ... 73
4.3.21 SigSent’s Sensors and Non-Mechanical Parts .. 76

5 Design ...77

5.1 Design Summary ..77

5.2 Hardware Design ..77
5.2.1 High Level Hardware Block Diagram .. 77
5.2.2 Hardware Design Overview .. 77
5.2.3 Pi Hat PCB... 78
5.2.4 MCU PCB .. 79
5.2.5 Servo Regulator PCB ... 79
5.2.6 IMU Module PCB ... 80
5.2.7 Battery Fuel Gauge PCB .. 81

5.3 Modular Layout ..81

5.4 Software Design ...82
5.4.1 High Level Software Block Diagram.. 82
5.4.2 Software Design Overview ... 83
5.4.3 State Machine .. 89
5.4.4 Base Station .. 90
5.4.5 SPI Communication ... 90
5.4.6 NEAT ... 92
5.4.7 Kinematics of Movement .. 93

5.5 Mechanical Design ... 109

6 Prototyping ... 110

6.1 Schematic ... 110

6.2 Printed Circuit Boards ... 110
6.2.1 PCB Design Considerations ... 110
6.2.2 Breadboard Test .. 110
6.2.3 PCB Designs ... 110
6.2.4 PCB Fabrication and Assembly .. 111

iv | P a g e

6.3 GUI .. 111

6.4 Prototype Expectations ... 112
6.4.1 Potential Hardware Issues ... 112
6.4.2 Potential Software Issues .. 113

7 Testing .. 115

7.1 Hardware Testing ... 115
7.1.1 Raspberry Pi 3 Microcomputer Testing .. 115
7.1.2 Microcontroller Testing... 115
7.1.3 Lidar Testing.. 116
7.1.4 Camera Testing ... 117
7.1.5 IMU Testing ... 117
7.1.6 GPS Testing .. 117
7.1.7 Servo motor Testing .. 118
7.1.8 Motor and ESC Testing.. 119
7.1.9 Battery Testing .. 119
7.1.10 Speaker and Amplifier Testing ... 119
7.1.11 Microphone Testing ... 119
7.1.12 Lighting System Testing ... 119
7.1.13 Power System Testing ... 120
7.1.14 Signal Protection System Testing ... 120
7.1.15 Base Station Testing .. 120

7.2 Software Testing .. 121
7.2.1 Software Testing Overview .. 121
7.2.2 Simulated Testing .. 121
7.2.3 Physical Testing .. 121

7.3 Testing Platform .. 122

7.4 Finished Prototype .. 123

8 Administrative Content .. 123

8.1 Software Tools ... 124
8.1.1 Communication.. 124
8.1.2 Development ... 124
8.1.3 Documentation .. 126

8.2 Division of Labor ... 127

8.3 Project Milestones ... 127

8.4 Budget and Finance .. 129

8.5 Stretch Goals ... 131

9 Conclusion .. 133

Appendix A: References .. a

Appendix B: Permissions .. g

v | P a g e

LIST OF FIGURES

Figure 1: House of Quality ..5
Figure 2 NASA Soldering Standard: Lead Height (Public Domain NASA)9
Figure 3 I2C example with one master, three slaves (CC license from
https://upload.wikimedia.org/wikipedia/commons/3/3e/I2C.svg)11
Figure 4: Stationary Knightscope K1 set outside of an office building [21]14
Figure 5: Knightscope K3 in an indoor environment [21]15
Figure 6: The Knightscope K5 patrolling a parking lot [21]16
Figure 7: The K7 model in an outdoor environment [21]16
Figure 8: ATHLETE navigating rough terrain with wheels installed. Courtesy
NASA/JPL-Caltech. ...17
Figure 9: ROS Key Concepts ..20
Figure 10: Example of a publisher and subscriber relationship in ROS [26]21
Figure 11: Visualization of Multiple Nodes and topics interacting through messages
in ROS [27]..21
Figure 12: Representation of Gmapping and Lidar Data (highlighted in red) [28]
 ..22
Figure 13: A Visualization of a SMACH State Machine [30]23
Figure 14: Supervised and unsupervised classification performed for Dr. Sommer’s
research on using machine learning for phenotype recognition26
Figure 15: Representation of Reinforcement Learning (Under CC license at [36])
 ..28
Figure 16: An Example of a Gazebo Simulation [40] ...31
Figure 17: Representation of Lidar output compared to Image [45]44
Figure 18: Moment arm for stationary extended position at 1350(degree) position
 ..56
Figure 19: Moment arm in 105o degree angle position ..57
Figure 20: Moment arm in 90o degree angle position ..57
Figure 21: Power Flow Diagram ..68
Figure 22: Example of i2c ESD Protection [47] ...70
Figure 23: Example of GPIO ESD Protection [47] ...71
Figure 24: Example of TTL Serial ESD Protection [47]71
Figure 25: Example of USB ESD Protection [47] ..72
Figure 26: PMOS FET in Power Path for Reverse Circuit Protection [48]72
Figure 27: List of Parts with Annotations ...76
Figure 28: High Level Hardware Block Diagram ...77
Figure 29 Pi Hat Diptrace layout and physical board ..78
Figure 30 MCU Diptrace layout and physical board ..79
Figure 31 Servo regulator Diptrace layout and physical board80
Figure 32 IMU Diptrace layout and physical board..81

vi | P a g e

Figure 33 Fuel gauge Diptrace layout and physical board 81
Figure 34 Modular design layout ... 82
Figure 35: High Level Software Block Diagram .. 83
Figure 36 Singleton example. Public Domain,
https://commons.wikimedia.org/w/index.php?curid=1484985 84
Figure 37 Sample diagram representing basic Pub-Sub 85
Figure 38 TerrainClassifier Class Diagram ... 86
Figure 39 NEAT Class Diagram .. 87
Figure 40 UML Use Case diagram on User, Base Station, SigSent interaction .. 89
Figure 41: Base Station GUI Diagram... 90
Figure 42 Bitmask header example .. 91
Figure 43: NEAT ANN Diagram .. 92
Figure 44: Example Generated Neural Network ... 92
Figure 45: Fitness of the Example Network .. 93
Figure 46: Diagram of a single leg of SigSent Robot demonstrating three jointed
members. .. 94
Figure 47: Kinematic diagram of two degree of freedom linkage system 95
Figure 48: Trigonometric kinematic diagram of two degree of freedom linkage
system .. 95
Figure 49: Representational kinematic diagram for Forward Kinematic Denavit-
Hartenberg parameters definition ... 96
Figure 50: Representational kinematic diagram for Inverse Kinematic Denavit-
Hartenberg parameters ... 101
Figure 51: 2D planar view of the joints of SigSent’s leg [56]. 104
Figure 52:Gait path diagram [57] .. 105
Figure 53: Genetic Algorithm Model [58]... 107
Figure 54: Model of GA-Fuzzy Algorithm [59] ... 108
Figure 55: Rendering of SigSent in Wheeled Mode .. 109
Figure 56: Rendering of SigSent in Terrain Mode ... 109
Figure 57 Breadboard test with Raspberry Pi microcomputer connected to GPS
and IMU sensors ... 110
Figure 58 Basestation GUI .. 111
Figure 59 Ubuntu MATE low disk space error .. 113
Figure 60: Screenshot of successful login of SSH over Wifi from a base station
computer to SigSent's microcomputer .. 115
Figure 61: Visualization of Lidar Data in RVIZ .. 116
Figure 62: Raw Lidar data echo'd from the ROS topic /scan 116
Figure 63 Camera test indoors in low-light .. 117
Figure 64: Testing output of NMEA GPS data from GPS Unit 118
Figure 65: Confirming accuracy of GPS data by placing GPS coordinates into
Google Maps [60] ... 118
Figure 66: Picture of Turtlebot equipped with several of our sensors in anticipation
of testing ... 122

vii | P a g e

Figure 67 Finalized SigSent Prototype .. 123
Figure 68: Representation of Diptrace’s Schematic Capture and PCB Design
applications [63] .. 125

LIST OF TABLES

Table 1: Requirement Specifications ...3
Table 2 Microcomputer Comparison ...35
Table 3: Operating speeds at voltage ranges ...36
Table 4: Operating speeds at voltage ranges ...37
Table 5: Comparison of Cameras ...48
Table 6: IMU Comparison Table and Score Output ..51
Table 7: GPS Comparison Table and Score Output ...53
Table 8: Specification Comparison of Servo Motors ...58
Table 9: Specification Comparison of Motors ..61
Table 10: Comparison of ESCs Under Consideration ...61
Table 11: Comparison of Gauges Under Consideration62
Table 12: Comparison of Battery Chemistries [46] ..63
Table 13: Estimated Electrical Loads ..63
Table 14: Battery Comparison...64
Table 15: Comparison of Amplifiers Under Consideration64
Table 16 Comparison of Speakers Under Consideration65
Table 17 Microphone Comparison ..66
Table 18 Comparison of Light Sources Under Consideration67
Table 19 Solar Panel Comparison ..69
Table 20 Walking SPI messages ..91
Table 21 Driving SPI messages ..91
Table 22 Mobility change SPI messages ..92
Table 23: List of Forward Kinematic Denavit-Hartenberg parameters97
Table 24: List of Inverse Kinematic Denavit-Hartenberg parameters 101
Table 25 Initial Budget .. 129

viii | P a g e

LIST OF EQUATIONS

Equation 1: Formula for Microcomputer Comparison Score 35
Equation 2: Formula for IMU Comparison Score .. 51
Equation 3: Score for calculating optimal GPS unit selection 53
Equation 4: Score for Servo Motors .. 58
Equation 5: Score for Motors .. 60
Equation 6: Estimated SPL at 10 meters from the unit. 66
Equation 7: Foward Kinematic Denavit-Hartenberg Matrices 98
Equation 8: Derivation of the T Matrices ... 98
Equation 9: Position of the End-Effector in relation to Base Frame 98
Equation 10: General Transformation matrix for the forward kinematics three-
linkage system .. 99
Equation 11: Position equations solutions from the Forward kinematics
implementation ... 99
Equation 12: Transformation Matrix .. 100
Equation 13: Transformation Matrix based on Rotation Elements 100
Equation 14: Transformation Matrices for each Joint .. 102
Equation 15: General Solution of Transformation Matrices of each Joint 102
Equation 16: Partially Solved Transformation Matrix .. 102
Equation 17: Algebraic Manipulation of Transformation Matrices 102
Equation 18: Solution for θ2 .. 103
Equation 19: Partial Solution for θ1 ... 103
Equation 20: Solution for θ1 .. 103
Equation 21: Solution for θ1 .. 104
Equation 22: Angle equations solutions from the Inverse kinematics
implementation ... 104

1 | P a g e

1 EXECUTIVE SUMMARY
The project explores a field of robotics, patrol and sentry duty, which has only

recently become tractable through modern technological and scientific
advancements. With its novel hardware platform and intelligent software, SigSent
can assume a unique role in the field.

Producing a useful end product required developing new or implementing
existing solutions for multi-terrain travel, efficient power and time management,
and simple Human to Robot Interaction (HRI) for both the robot’s supervisor and
other people encountered during its operation. Improvements in battery storage
density and computational power have lowered the cost of major components
driving the design of such a robot.

SigSent demonstrated a capable platform which could substitute for a human
in conducting routine patrol and sentry duties. These duties included following
predefined paths in either smooth or rough terrains, reliably alerting the robot’s
supervisor to a potential intruder, and instructing a potential intruder on how to
proceed.

The security services industry is a prime candidate for growth through human-
robot cooperation. The Three Ds of Robotics: Dull, Dirty, and Dangerous, are
applicable to security services due to the repetition of tasks, need for assured
surveillance, and potential for hostile situations.

This document contains an analysis of the goals for this system, the
requirements defining those goals, constraints imposed on accomplishment of
those goals, research investigating avenues for the implementation of this project,
design decisions which shaped our proposed solution, and the final prototype of
SigSent. Additionally, possible future work is outlined.

2 | P a g e

2 PROJECT NARRATIVE
2.1.1 Goals and Objectives

The goal of SigSent is to prototype a robot capable of intelligently patrolling
a predefined area and reducing the risk of harm to human sentries. SigSent can
also enable security professionals to enact a more proactive security policy by
freeing security guards from repetitive tasks.

By learning to work in a mixed terrain environment, the robot can effectively
perform its job as a sentinel irrespective of the landscape in which it is placed.

With teleoperation functionality, operators can manually control the robot or
direct it to enter an automatic sentry mode. The SigSent bot can stream a video
feed of its perspective, enabling remote surveillance. With multiple SigSent units,
a single operator could surveil a much larger area alone. When in sentry or patrol
mode, SigSent can also alert the operator upon detecting activity of potential
interest. This reduces the workload on security guards by freeing them from
simultaneous supervision of multiple locations throughout the entirety of their shift.
The SigSent robot should match the speed of an average person jogging so that it
may pursue an intruder if deemed necessary. SigSent should be able to deter
trespassers with vocal commands and also be able to record video of trespassers
or events for later action by law enforcement.

In conclusion, SigSent should replace the main duties of a security guard
and allow guards to perform higher-level tasks with less occupational hazard.

3 | P a g e

2.1.2 Requirements Specifications

Table 1: Requirement Specifications

Specification Value Units Rationale Ref.

Sentry Robot Specifications

Weight 25 kg OSHA limit of safe
weight to lift

[1]

Durability 0.5 m Survive a 0.5m fall.
Internal benchmark to
reach.

Reliability 1 yrs Based on Life cycle of
parts (Servo motors,
motors, etc.)

Availability 75 % Robot will need 25%
availability for
maintenance and repair.

Speed Characteristics

Wheel Top
speed

12 mph Average speed of a male
human running ranges
from 10 to 15 mph

[2]

Rough Terrain
Top speed

1 mph ⅓ the normal walking
speed of a male human.
Internal benchmark to
reach.

Battery Life

Static Monitoring
Span

3 hrs To be competitively
better than our
competitors, iPatrol, with
a battery life of 1.5 hours

[3]

4 | P a g e

Walking
Lifespan

(3mph smooth)

30 mins For basic, reasonable
operation of the sentry
bot. Internal benchmark
to reach

Jogging
Lifespan

(6mph smooth)

10 mins Internal benchmark to
reach

Running
Lifespan

(12mph smooth)

3 mins Internal benchmark to
reach

Rough Terrain
Lifespan

(1 mph)

15 mins Internal benchmark to
reach

Accuracy Specifications

GPS waypoint
finding

5 m Based on standard
accuracy of smartphone
GPS modules under
open sky conditions

[4]

Communication
distance

32 m Based on the signal
power limit allowed by
FCC regulation for WiFi.

[5]

[6]

Bandwidth 5 Mb/s Based on industry
accepted requirements
for high definition video
streaming.

[7]

2.1.2.1 Movement Specifications
The robot must have certain movement capabilities to be considered a

multi-terrain and accessible device. This means the robot must be able to fit in
common areas to do its functions. To satisfy this requirement the robot must be
able to pass through a standard door size opening of 36 inches. This also includes
the ability to travel across different smooth and rough surfaces/terrain.

5 | P a g e

Our definition of a smooth surface is: “Any continuous surface with no more
than a 10-degree incline/decline”. This definition was created with reference from
the National Highway Traffic Safety Administration and their road regulations for
paved highways. The list of example smooth surfaces are tile, asphalt, and carpet.

Our definition of a rough surface is: “Any non-continuous surface with
instantaneous raises/lower no greater than 6 inches and a max incline/decline of
15 degrees”. This definition was created with reference from the creation of the
smooth surface definition. The list of example rough surfaces are forest, rocks,
stairs, and sand.

2.1.2.2 Security Functionality
Being a sentry bot, this robot will require multiple security capabilities.

• Robot should be able to transmit full quality video to the base station upon
request.

• Robot should be able to detect human movement from 10 meters away.
• Robot should be able to sound a siren heard at 60 dB from 10 meters away.
• Robot should be able to reliably operate during night. (at full moon, 0.01

ftcd, lighting)
• Robot should be able to be teleoperated from the base station.
• Robot should be able to have a path programmed into it.

2.1.3 House of Quality
Below in Figure 1: House of Quality is our house of quality with demo-able

technical characteristics and their correlation to the characteristics seen by the
user as important.

Figure 1: House of Quality

6 | P a g e

3 DESIGN CONSTRAINTS AND STANDARDS

3.1 DESIGN CONSTRAINTS
The constraints outlined below guided decisions on the overall design and

marketing direction of the SigSent project.

3.1.1 Economic
In its final marketable configuration, SigSent will be strongly constrained by

its total annual cost per unit. SigSent’s value proposition is that it can supplement
the utility of existing security personnel, and multiply their presence through a
networked set of units. SigSent will only be a successful commercial product if it
offers comparable surveillance capability as a conventional security guard at
smaller recurring cost.

The median pay for a security guard in 2016 was $25,840 [8]. This is
conceivably the uppermost constraint on the annual price an organization would
pay per SigSent unit. If a SigSent unit were to cost greater than a guard for the
same capability, the organization would likely hire the additionally employee
instead. A SigSent unit’s value should be comparable to that of a full-time security
guard, since the unit offers additional capabilities that a conventional guard
doesn’t, such as the ready availability of a unit to record all of its visual and auditory
observations. Additionally, SigSent units may be able to patrol a larger area than
a conventional guard in the same time due to their greater speed in drive mode.
SigSent must also match the scheduling availability of a guard as well, with full-
time guards only working 40 hours out of 168 hours in a week, or ~ 24% availability.

With multiple SigSent units networked to one basestation, a single operator
should be able to simultaneously monitor many areas of interest and respond to
events as appropriate. The displaced cost of the potential additional guards
enables businesses to afford SigSent units out of their current budgets.

By 2026, 70,000 more security guards are projected to be employed. These
additional employees alone would cost $1.75 billion dollars annually [8].

3.1.2 Environmental
Because it is unable to open doors, SigSent is poorly-suited to operation in

most indoor environments. Facilities with automatic doors could be suitable for
SigSent’s operation if the doors’ trigger mechanisms were sensitive enough to
detect the unit and open autonomously. Additionally, remotely-operated doors
could be either intentionally triggered by a security professional. Networked door
could communicate with a SigSent unit, enabling the unit to request the doors to
open autonomously.

SigSent is not intended for use in environments lacking firm surfaces, such
as swamps or soft snow. If a unit were to sink into a surface instead of walking
atop it, it may not be able to remove itself. Additionally, SigSent is not intended for

7 | P a g e

use on slippery surfaces, such as ice, because a unit may lose traction and then
find itself stuck in isolation.

SigSent is not intended for use in weather producing poor visibility. Heavy
rain, snow, or fog would limit an operator’s ability to see the environment
surrounding a unit and may prevent the unit from successfully completing its
mission.

For long-term survivability outdoors, SigSent’s final marketable design will
need to be waterproof, protecting the electronics housed in its abdomen from
ingress of water and its sensors from contact with moisture.

3.1.3 Social
For SigSent to be generally accepted for use in public spaces, its final

marketable design will need to appear nonthreatening. This is especially critical in
retail and hospitality environments where customers or clients should feel
comfortable and willing to return.

SigSent’s final marketable design should look intentionally dissimilar from
insects in order to avoid the uncanny valley which would diminish likability of the
product to both customers and the general public [9]. Additionally, those suffering
from entomophobia would be especially distressed by a unit highly similar to an
insect [10].

Units should be reasonably quiet in order to prevent disturbing people
nearby.

3.1.4 Political / Ethical
SigSent is not intended to be used as an offensive surveillance tool.

Customers should be informed accordingly and reminded not to use the device for
illegal recording activities.

With SigSent being a product tailored to the defense and security industry,
it could potentially be subject to export control restrictions. Care would need to be
taken to ensure relevant governmental agencies approve of foreign sale.

At least initially, SigSent’s customer base should be carefully examined to
ensure any potential purchasers would not use the system for illegal or
objectionable activities. Greater market acceptance may be hindered if any early
adopter is shown using the system for a negative purpose.

3.1.5 Health & Safety
SigSent incorporates a high-capacity lithium-ion battery which could pose

significant risk of harm to those nearby if handled incorrectly. Only appropriate
chargers should be used with the system to ensure the battery is not overcharged.

SigSent’s limb joints could pose pinching hazards, and the system should
not be handled by children.

8 | P a g e

At full speed, SigSent will possess considerable momentum and should not
be directed into an obstructed path. A collision could incur significant damage to
the SigSent unit, in addition to causing property damage or bodily harm.

To preclude any chance of optical damage, SigSent’s LIDAR unit should be
no greater than a class 1 laser device [11].

3.1.6 Manufacturability
SigSent is designed to leverage digital fabrication practices, enabling

flexible lead times and manufacturing run scheduling. Fabrication techniques
include 3D printing and laser cutting. These common techniques minimize
overhead costs due to underutilized or specialized manufacturing equipment. Each
unit is also fairly symmetrical, reducing the number of unique design elements, and
enabling larger quantity production of the appendages.

Tolerances are not incredibly exacting, enabling high yield production rates
for fabricated components.

Scaling SigSent larger would be relatively straightforward, with none of its
structural components approaching typical limits of a readily-available workshop
scale cutter or printer. SigSent could likely be scaled twice as large, but at greater
material cost.

SigSent may not be able to scale down significantly without major design
changes due to the demands for abdomen space and due to the relatively poor
tolerance of the digital fabrication tools on market.

3.1.7 Sustainability
SigSent operates on electricity, which can be provided by renewable energy

sources. SigSent can be manufactured from sustainable plastics and polymers. Its
battery should be carefully disposed to prevent environmental degradation. If
possible, the batteries should be recycled.

3.2 HARDWARE STANDARDS
In the creation of SigSent, hardware standards used in the industry were

followed to minimize possible error. These strict standards, set by large, successful
companies, will force our team to work at the highest quality.

3.2.1 Soldering Standards
Soldering is a critical skill required to ensure that all electrical connections

are electrically connected and have minimal impedance. Equally important for the
system is that soldering creates a secure mechanical attachment of a component
onto a PCB.

To ensure that our soldering techniques and processes are trustworthy, we
will be loosely following Standard J-STD-001F [12] created by the National
Aeronautics and Space Administration (NASA). This document goes over various
soldering materials, supplies, definitions, preheating procedures, reflow

9 | P a g e

procedures, what defines a good solder connection, and how to verify a proper
soldering connection.

Notable sections that will be strictly followed are those in section 4.18:
Solder Connection which defines and discusses the characteristics of a proper
solder connection defined by wetting, angle, slope, and surface finish. Also defined
in the report are the characteristics of an improper solder connection in section:
4.18.2: Solder Connection Defects which details how to identify bad solder
connections. In Section 5.1: Wire and Cable Preparation the standard defines how
to identify bad insulation and when a wire should be deemed unfit for use. Section
7.5.7 Flat Gull Wing Leads defines acceptable soldering dimension criteria on
placement and solder fillet radii.

Figure 2 NASA Soldering Standard: Lead Height (Public Domain NASA)

3.2.2 PCB Design Standards
Proper printed circuit board (PCB) design is critical for ensuring that the PCB

introduces only minimal noise and impedance to the circuits that the PCB holds
and that the circuits work as expected. Outlined in the standard IPC-221A by the
Association Connecting Electronics Industries (IPC) [13] these standards cover
design and fabrication practices related to PCB design. This standard also

10 | P a g e

highlights common problems and solutions that will help the SigSent team create
a functional board. Key sections of the report that will be followed strictly are found
in section 3.6.1 Board Layout Design, the entire chapter 6: Electrical Properties,
and Section 7.2: Heat Dissipation Considerations. Following the standards set
forth by IPC will better ensure that our circuit boards will work as expected and will
be considered good craftsmanship.

3.2.3 IEEE 802.11g
802.11 Wi-Fi comprises multiple iterations of a standard that has evolved

over time. The standard used in the implementation of SigSent is 802.11g. The
802.11g standard for Wi-Fi is an older standard from 2003. It utilizes the 2.4GHz
band. Its average throughput is 22 Mbit/s with a maximum of 54 Mbit/s for forward
error correction codes. 802.11g is backward compatible with 802.11b. 802.11g
was quickly adopted by the market due to its increased speeds at the time of its
release. We are using this standard as it is integrated with the router we are using
on-hand. Without budget constraints, a higher fidelity router with a better resolution
or signal strength could be used [14].

3.2.4 Inter-Integrated Circuit (I2C) Version 6
I2C (I-two-C), also known as I2C (I-squared-C), is the communication

standard we will have to abide by when connecting our various sensors to the
microcomputer device. I2C stands for Inter-Integrated Circuit. It has multiple
masters and slaves. It was invented in 1982 by Philips Semiconductor. I2C is used
for connecting ICs to microcontrollers/computers with a close relative locality.
There are no licensing fees to use I2C. The only fee that you need to pay is for
access to slave addresses that NXP (the new name for Philips Semiconductor)
assigns. I2C is a design where there is a clock (labeled as SCL) and data line
(SDA) with 7 bits of addressing. The master nodes generate the clock and start
the communication process. The slaves receive the clock and respond to the
master’s requests. There can be any number of masters present. Masters and
slaves can change places at will after a message transmission session has ended
with a stop signal. The master kicks off the process by sending a start signal with
the 7-bit address of the slave that it wants to work with. The master then sends a
bit that specifies what mode it wants to enter with the slave (read/write). The slave
responds to the master if it is on the bus and received the message. The signal
that the slave sends is known as the ACK signal (acknowledgement). The bits are
sent with the most significant bit first. The start of the bit stream is notated by a
“high-to-low transition of SDA with SCL high” [15]. When the master is reading from
the slave, it sends an ACK signal after every bit except for the last one, signaling
that it is done receiving. Multiple messages can also be sent in I2C. A new start bit
can be sent to signal a new message.

There are three formats for I2C messages: single message (master to slave),
single message (slave to master), and combined (master has two reads/writes for
each one for the slave). These dynamic formats make I2C a welcome solution for

11 | P a g e

peripheral communication. We will primarily be operating under the slave-to-
master single message format, where the microcomputer will request data from
the sensors.

Figure 3 I2C example with one master, three slaves (CC license from

https://upload.wikimedia.org/wikipedia/commons/3/3e/I2C.svg)

3.2.5 Universal Serial Bus (USB)
SigSent’s design incorporates multiple USB peripherals communicating with

its microcomputer. In order to troubleshoot potential communication errors,
understanding the family of USB specifications is necessary.

The Universal Serial Bus (USB) set of specifications detail the protocol and
physical hardware enabling interdevice communication [16]. Implementation of the
specification is ubiquitous, and enables data and power transfer for many
computer peripherals. The specifications define the physical form factor of
connectors, parameters for reliable cabling, and the protocol for data transfer.

USB relies on a star topology with a host servicing multiple endpoint devices.
USB permits branching hubs relaying host information further down line, allowing
up to 127 devices to connect to a single host.

Over time, USB has received revisions increasing its bandwidth, with the
most recent version, USB 3.2, boasting up to 20 Gb/s of data transfer. Additionally,
the USB Implementers Forum, the organization governing the specification, has
developed various different physical interfaces to connect USB devices. USB ports
and their accompanying connectors come in multiple shapes and sizes as
appropriate to the device’s form factor.

3.3 SOFTWARE STANDARDS
In the software field, standards keep code readable and maintainable. To aid

in the development of our software components, and expose our team to
professional-grade development standards, we have outlined the following criteria.

3.3.1 Programming Languages
Python was used for the majority of SigSent’s software modules. Python

allows for quick prototyping and fast iterations due to its simple syntax and
extensive standard library included in its distribution. ROS has full Python support

12 | P a g e

and NEAT has a Python implementation that we have used in alternative projects
before. With both the artificial intelligence and robotic system using the same back-
end, they can work together with little alterations.

The Graphical User Interface (GUI) for the base station unit was built with
Python and Pyside, a Python wrapper for Qt. Qt is a popular framework for GUI
development, with an interface designer that features native components for the
respective OS that it is run on, and a massive amount of documentation available.
Qt is available for “student/academic purposes, ...[and] internal research projects
without external distribution” under the GPL and LGPLv3 open source licenses
[17]. When used commercially, Qt licenses can be fairly expensive.

Our project’s website was built using a framework more abstracted so that
development time is not wasted building a comprehensive site that could instead
be spent on bettering SigSent. Bootstrap templating was used to quickly produce
a website where the project’s documents and progress can be publicly viewable.
Python could be used to make a site using the Django framework, however this is
not necessary, as the powerful templating engine from a dynamic backend
language will not make much of a difference for a website as basic as ours.

3.3.2 Naming Conventions
The naming conventions we use follow the PEP8 Python Style Guide written

by Python’s creator (and Benevolent Dictator) Guido van Rossum. Classes use
PascalCasing. Functions and variables are underscore separated like_this.
PEP8’s style guide is used commonly in other companies and projects as it has
set itself as a standard for software engineers. We followed this standard to be
consistent within our own project, and to better fit in with other software teams
utilizing Python. We also used a linter, Pylint to enforce these design decisions.
The code will emit warnings and fail to properly build when the code style
guidelines are not followed.

ROS has a style guide where they suggest best practices and auto
formatting techniques to easily set the aesthetic of the C++ portion of the ROS
code. ROS is fairly popular among professionals and enthusiasts alike. Many
programmers host their code as open source projects on repository websites for
other robotics community members to improve upon and utilize in their own works.
SigSent’s code fit this design criteria to have an equal contribution in the field while
not disrupting the standard already set in the community.

3.3.3 Build Environments
SigSent’s software was built on the Raspberry Pi microcomputer under the

Ubuntu Mate 16.04 distribution. The Jessie Raspbian distribution is available as
well, however Ubuntu Mate has more support at this time. ROS officially supports
this setup. Catkin is the build system made for ROS similar to CMake, with added
support for distributed sets of packages that ROS projects have. The Python
scripts unrelated to ROS will not need to be built under a specific regime as they
are dynamically interpreted by a Python interpreter at runtime. This lowers

13 | P a g e

performance, however the tradeoff for Python’s portability and speedy
development is worth it.

The code was developed and tested on Ubuntu 16.04 VM and desktop
platforms. Programming on an environment other than an ARM Linux distribution
brings some inconsistencies, however using Python and ROS, there will be no
issues, as each platform we develop for is officially supported by each module we
use in development. Python itself has built-in cross platform support. Unit tests and
frequent testing on our build environment will ensure that our software is always
functional on our microcomputer. Debugging will be done regularly manually as
well as automatically with our own build scripts we will use in our development
pipeline.

3.3.4 IEEE 802.11i-2004
In order to ensure the privacy and integrity of communication between a

SigSent unit and its corresponding base station, WPA2 security was applied to the
shared Wi-Fi network. IEEE 802.11i-2004 is the technical name for the standard
implemented by the WPA2 protocol [18]. 802.11i relies on the Advanced
Encryption Standard (AES).

In 2004, WPA2 superseded the earlier Wired Equivalent Privacy (WEP)
mechanism which had been proven insecure by Fluhrer, Mantin, and Shamir [19].

WPA2 dictates a handshake procedure between an access point and its
supplicant which relies on exchanging messages encrypted with a common key,
but not the key itself. Mutually successful decryption of shared messages confirms
that both participants know the password and should be trusted.

3.3.5 National Marine Electronics Association (NMEA) Message
SigSent relies on the Global Positioning System to help locate itself globally.

After determining its coordinates, SigSent logs its position according to a
standardized structure developed by the National Marine Electronics Association
(NMEA) [20]. All GPS Fix data messages are stored in adherence with the
following format:

1. $GPGGA, the sentence identifier for fix data
2. Time Stamp, in Coordinated Universal Time
3. Latitude
4. Longitude
5. Quality Indicator, a value between 1 and 5
6. Number of Satellites in view and used in localization
7. Horizontal Dilution of Precision
8. Altitude of the antenna
9. Altitude unit of measure
10. Geoidal Separation
11. Age of Correction
12. Correction Station

14 | P a g e

4 RESEARCH AND BACKGROUND INFORMATION

4.1 SIMILAR PROJECTS
Below are two projects that follow our use-case and robot design.

Knightscope has a product line, all advertised for autonomous sentry work.
Although their robots do not have a similar build as ours, they seek to solve the
same patrolling problem. NASA’s ATHLETE robot is detailed due to its similar
hexapod platform.

4.1.1 Knightscope
Knightscope is an up and coming company manufacturing patrol robots that

are large, functional, and aesthetically pleasing. Their products are being
distributed in subscription based packages to clients that request demos at their
location. Knightscope has two models that are releasing and being tested in 2018,
being the K1 and K7 respectively [21].

The K1 model is a stationary product with a large array of sensors at its
disposal. It is even able to detect weapons and radiation levels. The K1 has a
weight of 150 lbs and dimensions of 62.4in x 28.8in x 11.2in. Until the product is
released, this is the limited amount of information provided to the public as of now.

Figure 4: Stationary Knightscope K1 set outside of an office building [21]

The K3 is a mobile model that can move at up to 3mph. It is meant to be
used indoors, “patrolling the interiors of businesses like sporting arenas, shopping

15 | P a g e

malls, and warehouses” [21]. Its dimensions are 51in x 24in x 33in and it has a
weight of 340lbs. The K3 sports a 360-degree high definition video feed that can
be viewed by anyone with the proper permissions. Two-way audio allows
communication from security personnel and people nearby the actual robot.
Messages can be recorded beforehand as well to be played from any fleet of K3
robots. A thermal camera on the K3 allows thermal imaging on temperature critical
devices at your location. The K3 can be used to alert the users if a predetermined
temperature is reached to prevent damage or dangerous scenarios from playing
out.

Figure 5: Knightscope K3 in an indoor environment [21]

 The K5 is used to patrol outdoor areas. Knightscope says that it should be
paired with a human element “to keep areas such as parking lots, corporate
campuses and hospitals safe autonomously”. The K5 appears to be a more
durable, robust iteration of the K3. Its dimensions are 62.5in x 33.5in x 36in with a
weight of 398 lbs. One of the selling points is its intimidating appearance.
Knightscope compares it to having a marked police car sitting outside your location
to deter criminals. The K5 can read up to 300 license plates per minute, checking
for trespassers, blacklisted plates, and to track the usage of parking lots that it is
supervising. The Knightscope K5 can also detect signals coming from routers and
mobile devices to be aware of possible security penetrators in the nearby area
[21].

16 | P a g e

Figure 6: The Knightscope K5 patrolling a parking lot [21]

 The final, and arguably most impressive Knightscope model, is the
unreleased K7. This model has yet to enter a beta deployment, anticipated for
2018. The K7 is in the shape of a futuristic looking car. Its speed has not been
announced, however it will most definitely exceed the current maximum speeds of
the other Knightscope models. The K7 is a multi-terrain robot that has dimensions
of 57.5in x 63.9in x 116in, weighing 770 lbs [21].

Figure 7: The K7 model in an outdoor environment [21]

17 | P a g e

4.1.2 ATHLETE (All-Terrain Hex-Legged Extra-Terrestrial Explorer)
NASA’s ATHLETE rover is a wheeled hexapod platform proposed for use

during extraterrestrial missions [22]. ATHLETE differs from SigSent in scale and
form but shares the same principle of integrating motorized wheels with walking
legs to efficiently navigate mixed-terrain. ATHLETE is 4 meters in diameter, stands
at 4 meters, and can carry a load of 450 kg on Earth. In contrast with SigSent’s
combination of wheeled and wheel-less legs, all of ATHLETE’s legs have wheels.

Figure 8: ATHLETE navigating rough terrain with wheels installed. Courtesy NASA/JPL-Caltech.

ATHLETE is designed to operate at up to 10 km / hr on smooth terrain,
which is 100 times faster than its predecessor rovers on Mars. This would allow
ATHLETE to survey a much larger area in the same length of time. It also makes
ATHLETE useful as a cargo transporter in addition to basic observational roles.

 ATHLETE is also able to perform various missions through the attachment
of modules to its highly-maneuverable legs, offering a more generally useful
platform than specialized rovers of the past.

18 | P a g e

4.2 SOFTWARE RESEARCH
In deciding the entire software platform for SigSent, research was done for

components at every level of development, starting with the microcomputer
board’s OS, and ending with the high-level artificial intelligence framework on
which SigSent learns to act.

4.2.1 Operating Systems
The microcomputer and necessary software ran on SigSent added

constraints to the operating system that was chosen. It had to support each
framework and library used and be able to be run on a minimal, low-cost
microcomputer.

4.2.1.1 Raspbian
Raspbian is a Linux distribution based on Debian, another popular flavor of

Linux. Raspbian has been endorsed and provided by the makers of the Raspberry
Pi (Raspberry Pi Foundation). This OS is directly made for use on the Raspberry
Pi, meaning it has been stripped down to only contain what the Pi needs and can
use. It uses a lightweight desktop environment called PIXEL (Pi Improved
Xwindows Environment Lightweight) for optimized performance on the
microcomputer. Raspbian is also supported for use with ROS, although with the
newer tutorials on recent ROS distributions, they recommend that Ubuntu MATE
is used, due to its more extensive package list for use on the Pi.

4.2.1.2 Ubuntu MATE
Ubuntu MATE is a FOSS version of Ubuntu that is able to run on popular

architectures such as IA-32, x86-64, PowerPC, and ARMv7 (which the Raspberry
Pi features). Ubuntu MATE was a possible candidate for our main OS that SigSent
runs due to its support for the ARM architecture. Ubuntu MATE is a fully featured
OS and has the support of Canonical’s powerful Ubuntu system. Ubuntu MATE
has better ROS support for newer distributions that Raspbian, and was so chosent
to serve as our main OS for SigSent.

4.2.2 OpenCV
OpenCV is a widely used open source computer vision (hence the name) library.
It has been ported over to many languages, including Python, the primary
language used for our project. OpenCV was initially created by Intel to create a
free framework that developers could read and use to build upon for advanced
vision infrastructure. It was originally released publicly at the 2000 IEEE
Conference on Computer Vision and Pattern Recognition. OpenCV has since been
taken over by a non-profit organization at OpenCV.org. Now, OpenCV contains
much more than a simple vision-based recognition system. They provide additional
support for decision tree learning, Naïve Bayes classifiers, artificial neural
networks, and deep neural networks (used extensively in frameworks such as
TensorFlow, a deep learning framework made by Google).

OpenCV is commonly used in facial recognition, gesture recognition,
robotics, object identification, motion tracking, and augmented reality applications.

19 | P a g e

OpenCV is written in C++. To spread the framework to multiple platforms,
wrappers have been made in several languages so that developers in almost any
project can utilize it in some way. Popular languages using OpenCV are Python,
Java, MATLAB, and C#. OpenCV is also supported on most operating systems,
including: Windows, Linux, macOS, FreeBSD, NetBSD, OpenBSD, Android, iOS,
Maemo, and even Blackberry 10.

 To increase performance, OpenCV has added support for GPU
acceleration in the image processing pipeline. CUDA support was added so that
NVIDIA based cards can take advantage of GPU rendering speeds. OpenCL has
been added as well, which is open source, but not as performant as CUDA in
graphical applications. With embedded applications, using an NVIDIA board would
enable higher performance under any vision-based project.

 OpenCV was used for SigSent to recognize anomalies during its sentry
routes. There are a myriad of built-in classifiers for object detection already. By
simply enabling a classifier to detect people or movement, we can simply alert the
user monitoring the SigSent unit, and highlight the activity on the video feed being
streamed to the base station computer. The Histogram of Oriented Gradients
(HOG) detector is used for pedestrian detection as it is already implemented in
OpenCV. The Raspberry Pi that the SigSent is running off of does not perform the
computer vision computation. The base station does the actual vision detection on
the images transmitted from the Raspberry Pi’s ROS node. If a connection to the
base station is lost, the robot is still be able to capture images, but does not attempt
realtime CV on them. The Raspberry Pi is powerful, but a microcomputer with
better hardware, namely a GPU, would be necessary to do local computation. The
NVIDIA Jetson is a pricier alternative.

4.2.3 SLAM
Simultaneous localization and mapping (SLAM) is a process which

combines mapping an unknown area with localization. First created by R.C. Smith
and P. Cheeseman in 1986, SLAM combines the creation of topological maps
created from sensor data and Advanced Monte Carlo Localization (AMCL) to
create an accurate relative map that is constantly expanded and refined as a robot
moves around its environment. As the robot moves around sensor data is collected
and creates a relative “frame” of a map, this frame is then matched with the robots
last known location through AMCL to determine the robots new position within the
map and the two maps stitched together to create a seamless map that the robot
can later use for obstacle avoidance and object-based navigation goals.

4.2.4 State Machine
A finite state machine (FSM) is defined as “a mathematical model of

computation. It is an abstract machine that can be in exactly one of a finite number
of states at any given time. The FSM can change from one state to another in
response to some external inputs; the change from one state to another is called
a transition. An FSM is defined by a list of its states, its initial state, and the
conditions for each transition.” [23] FSM’s are often used in robotics as a way to

20 | P a g e

place the robot into a state of operation based on some number of inputs, A state
might be something as simple as “sleep” or as complex as “search for ‘x’”.

4.2.5 ROS
The Robot Operating System (ROS) features new distributions on a

constant release cycle of “Long Term Support” (LTS) on even numbered years and
then short-term releases with a shorter lifespan on odd numbered years. LTS
releases are recommended for mission critical applications. We will be using the
ROS Kinetic Kame distribution released on May 23rd, 2016 with an End-of-Life
(EOL) date of April, 2021.

“…[ROS] is a flexible framework for writing robot software. It is a collection
of tools, libraries, and conventions that aim to simplify the task of creating complex
and robust robot behavior across a wide variety of robotic platforms.” [24]. ROS is
designed around four key concepts, Plumbing, Tools, Capabilities, and
Ecosystem: [25]

Figure 9: ROS Key Concepts

 The core usefulness of ROS is that it provides a standardized messaging
and monitoring system where programs can easily and generically interact with
other programs allowing for easy communication and modularization between high
and low-level software’s with each other. This standardized messaging also allows
for software’s to be genericized from individual hardware’s, where only the low
level driver wraps a sensors output or a actors input in a ROS compatible message.
This standardized messaging and monitoring allows for ROS to be very powerful
by allowing programs to become very modular, and also allows for distributed
computing natively by design.

 ROS has a hierarchy where there is a ROS MASTER which is the main
program that executes and manages all interactions and keeps track of everything
happening within ROS. Individual programs are called nodes, nodes can be a
publisher or/and a subscriber which sends or receives messages to/from a topic.
A topic is a bus of messages and work as an abstracted message handler
controlled by ROS MASTER. The general process is that you have a PUBLISHER
which sends a MESSAGE to a TOPIC, a SUBSCRIBER is listening to the TOPIC
and then receives the MESSAGE.

21 | P a g e

Figure 10: Example of a publisher and subscriber relationship in ROS [26]

Figure 11: Visualization of Multiple Nodes and topics interacting through messages in ROS [27]

4.2.5.1 Gmapping
Gmapping is a Package that contains the node that runs SLAM (4.2.3).

Gmapping uses lidar (4.3.3) data along with camera, IMU (4.3.7) and GPS (4.3.8)
data to construct a map of its surroundings on the fly. Gmapping enables the robot
to map its surrounding area and localize itself so that SigSent can quickly
understand its local area and avoid obstacles and path itself along GPS waypoints.

22 | P a g e

Figure 12: Representation of Gmapping and Lidar Data (highlighted in red) [28]

4.2.5.2 SMACH
SMACH or State MACHine, is “…a task-level architecture for rapidly

creating complex robot behavior. At its core, SMACH is a ROS-independent
Python library to build hierarchical state machines. SMACH is a new library that
takes advantage of very old concepts in order to quickly create robust robot
behavior with maintainable and modular code.” [29]

SMACH allows for a streamlined and integrated way to create a state
machine within ROS which efficiently directs SigSent to its short and long term
goals as well as switch states quickly on the detection of an intruder or human
controlled teleoperation.

23 | P a g e

Figure 13: A Visualization of a SMACH State Machine [30]

4.2.6 Intelligent Systems
Before implementing the artificial intelligence portion of SigSent, extensive

research was done on the various learning methods available to us. After reviewing
their advantages and disadvantages, we settled on using reinforcement learning.
Reinforcement learning is used in a variety of algorithms. We researched some of
the most popular algorithms and decided to use NEAT (NeuroEvolution of
Augmenting Topologies) due to its impressive track record and presence at the
University of Central Florida, as well as prior knowledge of the algorithm’s inner
workings and extensive work in genetic algorithms by the team’s artificial
intelligence programmer, Richie Wales.

4.2.6.1 Learning Methods
In AI, there are diverse ways a system can artificially “learn” to perform a

task. Research was done on the three main methods so that the most optimal one
would be further explored and then used for SigSent’s intelligence platform.

24 | P a g e

4.2.6.1.1 Supervised Learning
When the desired output is known to the programmer, supervised learning

is used to push the intelligent system to provide the necessary function that results
in this output. The output necessary for a given input is sometimes called the
supervisory signal. Supervised learning is useful when there is a clear behavior
that should be propagate.

 The learning takes place on a training set of data. This set is handpicked by
the programmer. An additional data set is necessary to test the derived function
after learning. This test set determines how effective the training period was. This
test set must contain unique elements in it that were not included in the training
period to provide sufficient evidence of a generally learned behavior. This tests
how general the learned function has become. The test set needs to be broad
enough to represent the data fairly as it occurs naturally.

 The inputs into the function should be minimized to lower the complexity on
the learning process. Having too many inputs will require optimizations of all of
those attributes. A common phenomenon is the “curse of dimensionality” [31]. This
issue refers to having too many dimensions of data to optimize for, where the
search space grows much too large. With every added dimension, the number of
enumerations possible for each parameter increases by a multiplicative of each
additional input. For machine learning, this means you need to have an even
greater number of training data points such that you fairly represent the desired
output for a large region of the search space. If you do not have enough data to
represent each parameter’s changes, the function will not learn how to process
each variation effectively. The Hughes Phenomenon is a relative of the curse of
dimensionality specifically targeted towards pattern recognition described by
Gordon F. Hughes in his paper, “On the Mean Accuracy of Statistical Pattern
Recognizers” [32]. In his conclusions, he states that there is a maximum
acceptable complexity associated with a problem domain. In his pattern
recognition experiment, he found that after some threshold, the increase in input
dimensionality did not lead to a significant improvement in creating his classifier.
Hughes presents ideas on how to accurately predict the necessary input size. He
suggests using statistical techniques, like “Shannons’ information measure” or
“Kullbacks’ divergence measure” to prune the number of possible input sizes. He
finishes his paper stating that further work must be done on these ideas to develop
a better idea on how an optimal search space can be decided.

 The learning algorithm that is chosen for the task should be problem
specific. If the data can be easily represented in a specific data structure or
programmatic manner, the algorithm should be chosen to fit that domain. If the
hardware that the learning algorithm is taking place on is optimized for a specific
data representation, that should also be considered. Embedded machines with
limited memory would have to utilize a method that takes this into account.
Perhaps the execution time is more important than the space complexity; This
would lead the programmer to seek an algorithm optimizing for speed by sacrificing
memory usage. A humorous theorem in mathematics known as the “No free lunch
theorem” [33] covers this problem. No algorithm will be able to solve every function.

25 | P a g e

There is always a tradeoff associated with it. Because machine learning and
artificial intelligence has become a more matured field over time, there is no
shortage in possibilities though.

 Supervised learning, while effective, is all about curve fitting. Sometimes
however, there is no “desired” behavior that we hope to elicit. In the case of
SigSent, we have a type of behavior that we hope to see propagate, however there
is no exact functionality that we want to impose on the robot’s mechanics. If we
knew exactly how its movement should be performed for very specific terrain
environments, the training set could encompass what moving mechanism and
mobility methods are used for very specific conditions. In the case of our arachnid
inspired device, the movement type and behavior is complex. The learning
algorithm finds some optimal, or at the very least, well-performing functionality that
solves the problem of mixed mobility that we present to it. Instead, we choose a
learning method that strives to achieve the programmed goal by whatever means
available to the software/hardware. In this case, an unsupervised learning method
is used.

4.2.6.1.2 Unsupervised Learning
In unsupervised learning, the machine learning algorithm attempts to find a

function that classifies the given data with no direct comparison between objective,
desired outputs. The algorithm has no guidance during the training, however it
must find a way to group the data presented to it. The data is known as being
“unlabeled”. They are strictly discrete values that have no classification or
association given to the algorithm. Two popular domains that this style of algorithm
is used for hope to solve classification and association problems. Clustering
involves grouping data through some sort of classifier where data points share
similar attributes. Associations are found through relationships between input
parameters.

26 | P a g e

Figure 14: Supervised and unsupervised classification performed for Dr. Sommer’s research on using

machine learning for phenotype recognition

In the figure above, Dr. Sommer shows how supervised and unsupervised
learning methods took place on labeled and unlabeled data respectively. In
subfigures A-C, the colored data points show that they are labeled. In subfigure B,
the data was classified to some decent sense of accuracy as most of the green
points are clearly sectioned away from the red. This classifier was done with
somewhat linearly separable data, as a single divider was able to separate most
of the data. In subfigure C, using a Gaussian kernel, the data was able to be
classified more accurately in a circular region. Additional extensions like this to the
classic classifier allow for more accurate separations of classified regions to more
accurately model the desired function. Subfigures D-F show data being classified
under an unsupervised algorithm as they are unlabeled (shown as black data
points). Subfigure E shows the data being grouped by analyzing the properties of
the data. This is problem specific and can be as simple or complex as the use case
it is performed on. In figure F, the grouped data is then classified by the
unsupervised learning algorithm very easily, as the grouping that was performed
before has easily separated the data into two distinct groups [34].

4.2.6.1.3 Reinforcement Learning
Like its name suggests, reinforcement learning uses the idea of a reward

system to reinforce behaviors that are performing as desired. The reward is
decided by the programmer, but should follow the problem statement closely. In

27 | P a g e

the case of SigSent, this reward could be based on the distance the robot travels,
the speed of its mobility, and/or the smoothness of the journey. This reward is
tracked throughout the learning trial, taking sensor data as inputs to decide how
well the device’s mobility mechanism performed. Reinforcement learning is used
in a broad range of fields due to its easy extensibility. All the programmer has to
modify is its reward mechanism and how its data is represented in the learning
algorithm. Since the desired behavior is not exactly known, but the overall results
that the programmer seeks is known, simply rewarding functionality that meets
those requirements can cause any sort of behavior to propagate that meets them.
This allows the computer to discover methods that were either not thought
possible, or not initially envisioned. Giving the device that freedom can lead to
interesting results. Markov Decision Processes (MDPs) are popular in machine
learning practices.

Since reinforcement learning hopes to optimize some functionality without
a direct input/output to compare to, there is a direct trade-off between the
exploration of the search space and the exploitation of the current knowledge that
the algorithm has discovered. This dichotomy has been researched heavily in
learning algorithms to help optimize their performances. The multi-armed bandit
problem is a prime example of this issue. In casinos, slot machines can be referred
to as one-armed bandits, given it has a single arm and seeks to steal all of your
money. The multi-armed bandit problem states, if you are given a slot machine
with multiple arms that award different payouts and you have a limited amount of
lever pulls available to you, how do you maximize your gains? You must explore
the search space by trying out the levers presented to you, figuring out their
probabilities as best as you can. The problem is, this exploratory period means
that you are spending lever pulls on sub-optimal machines that will not net you the
highest gain, but you must do this so you can discover which machine has the best
reward. After some time, it is in your best interest to commit to the lever that you
believe has the highest payoff. There are many modified versions of this problem
and suggested solutions to it as well. The most optimal solution has been proposed
in the paper, “Asymptotically efficient adaptive allocation rules” [35].

Depending on the problem and the environment that the agent is operating
in, the learning agent will be given either complete or partial visibility of its
surroundings. In the case of an agent implemented completely in software, its
vision is boundless. There are no physical restrictions on what information is
provided to it. The only reason to limit its vision would be to lower computation time
and dimensionality of the domain. In the case of SigSent, and other physical
implementations, the amount of information given to the device is limited by sensor
specifications, data latency, and what is actually visible or present in the physical
environment. The actions of the agent are measured in some sort of time tick
decided by the programmer and the algorithm. Realistically, there would be some
sort of loop executed in some discrete time step where the environment’s state is
passed to the agent, the agent takes some action based on this information, and
the algorithm/programmer interprets its action to provide the necessary reward to
promote or discourage the behavior it saw. Depending on the implementation of

28 | P a g e

the algorithm, the agent can attempt to maximize or minimize this reward. If the
agent continuously performs some action that tends to be a boon to its reward,
then it will continue to exhibit similar behaviors. It may do something radically
different to explore more of the search space, but if that change was not helpful,
the agent can easily fall back on the previous, performant action. This is where the
exploration versus exploitation problem comes into effect. This search can be
dynamic as well to offer better search optimizations. In the beginning of the
learning process, exploration is very important. In a higher order function, there
can be many hills and valleys in its search space to throw off the algorithm. In a
hill climbing exercise for optimization, the algorithm should not settle for one simple
curve with a positive gradient. The top of that hill could be suboptimal, local
extrema. The exploitative part of the algorithm will continue to climb this hill,
however in the later stages of the algorithm, exploration should still be possible to
search for global maxima present in the space.

Figure 15: Representation of Reinforcement Learning (Under CC license at [36])

4.2.6.2 Reinforcement Learning Implementations
Of the three learning methodologies, reinforcement learning techniques

were the natural choice for SigSent. True intelligence stems from the robot making
the best decisions on its own. If we were to give it training data for very specific
environments and expect certain mobility responses, we would be better off
programming detailed sensor thresholds to trigger the mobility changes. The
learning method would be cumbersome for little additional gains. Furthermore, the
large input size from SigSent’s sensor array would make the learning process very
complex. We hope to enable SigSent to adequately learn optimal movement
techniques by discovering it on its own, undefined by our team. Having a unique
robot with several limbs, and limbs of different types, defining the proper movement

29 | P a g e

method would be difficult anyway. When dealing with something radically different,
letting the computer explore the different options available to it will provide a much
clearer picture on what works and what does not, unbeknownst to us [36].

4.2.6.2.1 Q-Learning
Q-Learning is a policy-based learning algorithm that decides what action

should be taken to result in the best utility value. An “action-value” function is
learned by the learning method such that for any inputs, the highest scoring action
is chosen to be enacted. A major disadvantage to using Q-Learning is that all of
the states and actions must be known beforehand [37]. Since our robot will be used
in many different environments, there is no way we can accurately model every
single possible location as a designed state. Before the learning takes place, an
exhaustive search of all of the various possible states would need to be found
experimentally, which is infeasible for SigSent.

4.2.6.2.2 Genetic Algorithms
 Genetic Algorithms (GA) take techniques from Darwin’s method of natural
selection to effectively search through a space for optimal solutions. A population
of individuals are randomly created initially, where each individual is essentially a
“solution” to the problem. These individuals are tested in some environment,
specific to the problem, and have a fitness score assigned to them. The fitness is
the same reward mechanic in any reinforcement learning mechanism. The most fit
individuals are then used to generate a new population through crossover and
mutation operators. Crossover takes parts of two solutions and combines them
into one. Mutation has a rarer occurrence, selecting pieces of a solution and
randomly modifying them with no regard for the consequence of the change. This
mutation is used to increase exploration of the search space. The specific
operators, and how the individuals are selected for reproduction, are up to the
implementation of the genetic algorithm. GAs are a way to speed up an exhaustive
search by adding a sort of “implicit parallelism” by having individuals tackle the
search space at many different angles (dependent on the size of the population),
honing in on regions that have high fitness values.

 Genetic algorithms can fall flat when the search space, or the relationship
between the inputs and outputs, are not suited for the GA. If the search space
contains many hills, the GA will have a difficult time trying to find the most optimal
value as it will get stuck in local optima. The genetic operators (crossover/mutation)
assume that solutions that are adjacent in the search space have similar fitness
values such that small movements around those solutions will provide an
increasing fitness. If there is no such relationship, the GA will be about just as
effective as a random, exhaustive search throughout the space. Also, as is the
case with our robot, there is a high order of dimensionality, which causes the
search space to be absurdly large. Representing the solution in the GA can also
be a major concern. Binary strings are the easiest items to manipulate in a GA,
however with all of the sensors and motors utilized by SigSent, these could not be
easily represented.

30 | P a g e

4.2.6.2.3 Neuroevolution
Neuroevolution uses a GA to evolve a neural network to solve a problem.

Neural networks act as black boxes. You pass some inputs to them, they provide
some hidden computation in the background, and then you retrieve the outputs
and use them for your problem. Neural networks are able to find meaning from
complex data that humans can not intuitively find. Neuroevolution provides this
technique while also evolving the neural network with a GA such that the
programmer’s involvement in the learning process is very minimal. Normally, you
must write some sort of methodology to change the weights on the neural network
(where the topology is constant), or somehow change the structure of the network
over time. Using a neuroevolution algorithm takes care of this work for you, altering
the network based on its performance (as it is assigned a fitness).

4.2.6.3 NEAT
NEAT (NeuroEvolution of Augmenting Topologies) is a direct

implementation of neuroevolution by Dr. Kenneth Stanley [38]. He found that
starting with a minimally structured network and having a GA add complexity over
time resulted in a simple network that had an optimal performance value. NEAT
uses speciation to continue with exploration, while also not sacrificing exploitation
by keeping networks grouped by similar topologies so that if one network structure
was performing well, others were not discounted for further investigation. There
are several new versions of NEAT that have been released as extensions for
different use cases as well, so the community is very active. Dr. Stanley’s lab, the
Evolutionary Complexity (EPlex) lab, is housed at the University of Central Florida,
giving us access to possible mentoring opportunities for the project.

The NEAT module for SigSent was not able to be implemented in its final
form due to the limitations on robot walking experienced. The servos that were
selected did not meet their torque requirements as advertised and the material that
the robot was constructed out of was not strong enough to keep SigSent walking
correctly without ripping itself apart. To prevent damage to the robot, SigSent had
its gait and movement functionality demoed while suspended in their on a platform.
Due to this limitation, SigSent could not gather IMU data to train the NEAT ANN.
The research and code is still provided for a future implementation of SigSent if
the reader chooses to do so.

 SigSent would ideally use NEAT in a training phase in both simulation and
physical environments. The simulation period will be used to refine the parameters
for the algorithm as it relates to NEAT’s GA values and the initial neural network’s
starting structure. The input and output representations need to also be modified
into some optimal format, which is only known through empirical study. The
simulations will be done in Gazebo, a test environment created to interface easily
with ROS. If the tests in Gazebo run well, we will transfer that knowledge over into
the training phase when working with the actual robot in real location settings. The
studies done in the simulation may not have a direct application in the physical
tests, however it gives us a good starting point and also allows us to code up the
algorithm’s implementation while parts are arriving, and the robot is still being built.

31 | P a g e

 Our inputs into NEAT would be the angular velocity and linear acceleration
from the IMU as well as the current mode of transportation (0/1). An artificial neural
network would be trained to be able to classify the terrain type that is currently
being traveled over depending on the current movement mode and the IMU data
being supplied. Data would be collected that has the movement type used and
IMU values labeled as being rough or smooth. After training the classifier to
correctly identify the terrain, this ANN would be used in operation to tell the
operator if they are using the correct mobility type for what terrain they are moving
over. It would alert them to change if necessary.

4.2.7 Gazebo Simulation
 To test the robot’s mobility mechanisms in a realistic environment, and
begin debugging the ROS code before the robot is built, a proper test simulation
was needed. Gazebo is a popular robot simulation tool that is free to use and
boasts a well-designed environment to “rapidly test algorithms, design robots,
perform regression testing, and train AI system using realistic scenarios” [39].

A model of a robot, designed in the SDF file format, can be imported into
the simulation, describing every detail of the vehicle needed for simulation. ROS
is easily integrated with Gazebo to allow for ROS message passing and processing
within the simulation. The test environment that the robot simulation runs on can
feature different types of terrain to validate the functionality of the mobility switching
of the intelligent system. Through the various tests that the simulation is put under,
the algorithms could be tuned and perfected to meet the criteria of the desired
product.

Figure 16: An Example of a Gazebo Simulation [40]

Work on the simulation was done up to creating a base environment in
Gazebo from a drawn heightmap, however it was pruned from the project as too
much work to have a fully functional hexapod robot simulated was necessary. The
goal of the Gazebo simulation was to parallelize the work being done on the
software and the hardware, but to work on the simulation, the hardware model

32 | P a g e

needed to be completed to be imported into the simulation. Since the actual
hardware model was a significant portion of the project, too much time was spent
waiting on its completion and other key software tools were being put on hold. Due
to this, the simulation was neglected and full attention was given to implementing
code on the physical robot instead as it became available.

4.3 HARDWARE RESEARCH
In addition to the hardware constraints and standards outlined in section 0,

every piece of hardware involved in the development of SigSent had particular part
considerations necessitating research to find the best choice in each category.
Some parts had scores created to evaluate their objective value to our project.
Other parts have clearly defined specifications that were used to decide which part
was the most optimal for SigSent.

4.3.1 Microcomputer
A microcomputer in the generic sense was chosen over a microcontroller

due to the complexity of the robot. SigSent has to manage computer vision, LIDAR
data, SLAM, state machine, control system, wireless communications, and
diagnostic information constantly in order to properly complete its goal. Completing
these goals on a microcontroller, while feasible, was determined to not be a time
efficient solution since an operating system capable of handling multitasking would
complete much of the juggling required to complete all those tasks simultaneously,
in the same stroke there are many programs which could be used on an operating
system (OS), most likely a linux derivative, that will also streamline the
development of the project within our time scope. Libraries and programs such as
OpenCV, ROS, i2c-tools, bash, ssh, and python allowed for the SigSent team to
quickly develop the novel features of our robot while not reinventing the wheel,
spending precious time developing and testing already heavily standardized
features and libraries.

4.3.1.1 Microcomputer under consideration
The microcomputers defined below were serious considerations due to their

popularity and computing power. Their strengths and weaknesses are displayed
in the scoring table: Table 2 Microcomputer Comparison.

4.3.1.1.1 Raspberry Pi 3
The Raspberry Pi 3+ was under consideration for this project due to its low

price, impressive computing power, number of USB ports, and its significant
community support and documentation.

4.3.1.1.2 Raspberry Pi Zero W
The Raspberry Pi Zero W was under consideration for this project due to its

extremely low price, low power consumption, and the significant community
support and documentation

33 | P a g e

4.3.1.1.3 Beaglebone Black
The Beaglebone Black was under consideration for this project due to its

good community support, and impressive amount of GPIO pins, and its efficient
use of power.

4.3.1.1.4 Gumstix DuoVero™ Zephyr COM
The GimStix DueVero Zephyr COM was under consideration for its

professional, more industrial design approach outside of the hobby/maker market
like the above microcomputers. Where the gumstix lacks in other specifications
and price point, it makes up for in customer service and reliability through tested
development.

4.3.1.1.5 Nvidia Jerson MK1
The Nvidia Jetson MK1 was under consideration for this project on the

possibility receiving sponsorship for the microcomputer. The Jetson MK1 has one
of the most powerful GPU’s in the embedded computer market which would enable
the robot to crunch through the heavy math calculations easily where other
microcomputers would struggle.

4.3.1.2 Specifications
To compare each microcomputer objectively, important specifications were

decided upon which the highest scoring in total would be decided to be used.

4.3.1.2.1 Price
Price is a self-explanatory constraint, as the price of the microcomputer

increases this relates linearly with the team’s will to implement it due to our limited
sponsored budget.

4.3.1.2.2 Frequency
The faster the clock cycle is on a RISC processor (all microcomputers under

consideration are ARM based) we could safely assume that the more instructions
will be executed per second. Being able to crunch those numbers more time
efficiently means that our robot is not be bottlenecked by the CPU and allows for
near continuous operation of the robot.

4.3.1.2.3 Cores
The more cores there are in the CPU the more threads our robot can run,

once again allowing for a more continuous, less bottlenecked operation of the
robot.

4.3.1.2.4 RAM
RAM is very important for our robot as processing images through OpenCV

can be very memory intensive as multiple images need to be loaded, processed,
and acted upon as soon as possible for our robot to operate functionally, the more
RAM that is available to us, the lower the risk of SigSent being RAM bottlenecked
is.

34 | P a g e

4.3.1.2.5 Average Power Consumption
Power Consumption is of critical importance to the vehicle overall, the less

power the microcomputer consumes or wastes the longer the vehicle can move,
patrol, and report.

4.3.1.2.6 USB, GPIO, I2C, WiFi
USB Ports, GPIO, I2C, and WIFI functionality are crucially important to the

vehicle since our sensors require USB and I2C, our simple outputs and simple
transducers rely on GPIO, and our communication with SigSent’s base station
relies on WiFi (pending change). A valid board would require all of these features.

35 | P a g e

4.3.1.3 Score
A score was calculated based on a formula that maximizes the value for

specifications that are positively valuable and minimizes over specifications that
undesirable.

4.3.1.3.1 Formula
In order to quantifiably determine the relevance of one microcontroller over

another a simple formula was devised after analyzing the available specifications
found in the documentation for each of the microcontrollers.

𝑅𝑒𝑙𝑎𝑣𝑒𝑛𝑐𝑒 =
𝑆𝑝𝑒𝑒𝑑 ∗ 𝐶𝑜𝑟𝑒𝑠 ∗ 𝑅𝐴𝑀 ∗ 𝑈𝑆𝐵	𝑃𝑜𝑟𝑡𝑠 ∗ 𝐺𝑃𝐼𝑂	𝑃𝑖𝑛𝑠

𝐶𝑜𝑠𝑡 ∗ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑃𝑜𝑤𝑒𝑟	𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

Equation 1: Formula for Microcomputer Comparison Score

4.3.1.3.2 Specification Comparison and Score Output
Table 2 Microcomputer Comparison

Name

price
(USD
) Processor

Spee
d
(GHz)

Core
s

RA
M
(kB)

Avg
PW
R
(mW
)

#US
B

#GPI
O

I2
C

WiF
I

Scor
e

rPi 3+ 35 BCM2837 1.2 4
102
4 5120 4 40 T T 4.39

rPi
Zero
W 10 BCM2835 1 1 512 900 0.5 28 T T 0.8

BBB 68.75
AM3358
Sitara 1 1 512 2500 1 92 T T 0.27

Zephy
r 200

OMAP443
0 1 2

102
4 3960 1.5 70 T T 0.27

Jetso
n 129

Quad
ARM®
A57/2 MB
L2 1.9 4

409
6 4700 1 20 T T 1.03

4.3.1.3.3 Selection Rationale
Going from the score, and corroborated with group consensus, chose the

Raspberry Pi 3 Model B. We chose this microcomputer due to its combination of
low cost, high CPU performance, low power consumption, large amount of USB
ports, and reputable amount of GPIO pins allowing for easy expandability should

36 | P a g e

the project have required unforeseen changes. The Raspberry Pi 3 also has native
support for USB, I2C, GPIO, and Wifi, as well as some other nice options such as
an ethernet port, speaker output, and HDMI output and USB output. And above
almost all else, the Raspberry Pi organization has a significant amount of
documentation, support, and community driven forums that aided in quickly being
able to understand, develop, and troubleshoot any problems or questions that our
team had about using this specific microcomputer.

4.3.2 Microcontroller
A microcontroller was used to complement the microcomputer on the robot.

The two systems are on two separate discrete boards to reduce load on the system
and provide a more reliable system that controls the actual robot’s movement. If
the artificial intelligence and control systems logic were placed on a single board,
the AI latency could cause the movement scheme to suffer, and vice versa. A
microcontroller being used to interface with the physical robot needs to be cheap,
low-power, have enough input and output ports to interface with the necessary
sensors, and have enough computational power to reduce delays in processing
the movement of the robot. These three parameters will be discussed for the
popular architectures and implementations below.

4.3.2.1 Atmel megaAVR
Atmel chips are popular for hobbyist projects and for low-power needs.

Arduino boards which are ubiquitous in the embedded world today use the Atmel
Atmega IC. This chip can be taken off of the development board and placed in a
PCB very easily. For prototyping purposes, the chip can remain on the Arduino (or
third party) board until the PCB has been created and the functionality has been
verified to be correct. Below are discussions on the major Atmel chips used today.

4.3.2.1.1 ATmega328
This Atmel chip is 8-bit with 32KB of ISP flash memory that can “read-while-

write”. It also has 1KB EEPROM, 2KB SRAM, 23 General Purpose Input/Output
(GPIO) lines, 32 General Purpose Registers (GPRs), three timer/counters,
internal/external interrupts, USART serial programming, SPI serial port, 6-channel
10-bit ADC, watchdog timer, and power saving modes. The ATmega328 has an
operating voltage of 1.8-5.5V. From this operating voltage range, a range of clock
speeds can be achieved as seen in the table below.

Table 3: Operating speeds at voltage ranges

Clock Speed Operating Voltage
0-4MHz 1.8-5.5V

0-10MHz 2.7-5.5V
0-20MHz 4.5-5.5V

4.3.2.1.2 ATmega1280
The Atmega1280 is a higher performance Atmel chip that is still low-power.

It has 128KB ISP flash memory, 8KB SRAM, 4KB EEPROM, 86 GPIO lines, 32
GPRs, real time counter, six timer/counters, PWM, 4 USARTs, SPI, 16-channel

37 | P a g e

10-bit ADC, and a JTAG interface. The ATmega1280 has a performance of 16
MIPS at 16 MHz with an operating voltage of 2.7-5.5V.

Table 4: Operating speeds at voltage ranges

Clock Speed Operating Voltage
0-8MHz 2.7-5.5V

0-16MHz 4.5-5.5V

4.3.2.1.3 ATmega2560
The ATmega2560 chip employs a larger 256KB ISP flash memory, 8KB

SRAM, 4KB EEPROM, 86 GPIO lines, 32 GPRs, six timer/counters, PWM, 4
USARTs, SPI, 16-channel 10-bit ADC, and a JTAG interface. It has similar
specifications to the ATmega1280, however has double the flash memory. Its
operating voltage is a narrower range of 4.5-5.5V with a clock speed ranging from
0-16MHz.

4.3.2.2 MSP430
The MSP430 is produced by Texas Instruments (TI). It is a group of 16-bit

CPUs that are built for low power and are sold at cheap prices. As noted by the
different families of chip implementations below, TI follows a naming pattern for
each group of MSP430 chips. MSP430 signifies that it belongs to that specific
architecture. The next letter indicates the memory type or its specific application.
Flash memory chips use a “F” to identify themselves. A “G” is used to denote items
used for medical instrumentation. One chip that does not follow this naming
convention though is the MSP430FG2xx family. Below are some popular
implementations of the MSP430 architecture produced by TI that we researched
for use as the primary microcontroller in SigSent.

4.3.2.2.1 MSP430x1xx
This series of MSP430 chips is very basic, not including an embedded LCD

controller. They can use flash (1-60KB) or ROM (1-16KB) based memory, and 128
B -10KB of RAM. They have a performance score of 8 MIPS. They have an
operating voltage of 1.8-3.6V. The x1xx series includes 14/22/48 GPIO lines,
10/12-bit SAR (Successive Approximation) ADC. They have several integrated
peripherals. To name a few key items (and similar ones to the Atmel chips), two
16-bit timers, a watchdog timer, brown-out reset, USART, 16x16 multiplier, and a
temperature sensor. These chips have three different operating modes that have
low levels of current draw. In order from least to greatest current draw: RAM
retention mode (0.1 μA), real-time clock mode (0.7 μA), and MIPS active (200 μA).
The x1xx chips have a wake-up time from standby under 6 μs.

4.3.2.2.2 MSP430F2xx
The F2xx series adds more performance at a lower power usage than the

x1xx series. It includes a very-low power oscillator (called the VLO). The F2xx
chips feature 1-120KB of flash, 128B-8KB of RAM, 10/11/16/24/32/48 GPIO lines,
10/12-bit SAR ADC, and 16/24-bit Sigma Delta ADC. In addition to the peripherals
from the x1xx series of chips, the F2xx family has I2C support and operational

38 | P a g e

amplifiers. Its power modes from least to greatest current draw are: RAM retention
(0.1 μA), standby using the VLO (0.3 μA), real-time clock (0.7 μA), MIPS active
(220 μA). These chips have a wake-up from standby time under 1 μs.

4.3.2.2.3 MSP430G2xx
The G2xx series are considered “Ultra-Low Power”. They feature the same

16 MIPS performance, VLO, 1.8-3.6V, and I2C in a smaller package, with less
GPIO pins. The power modes are similar to the F2xx series, except the VLO mode
draws 0.4 μA instead of 0.3 μA. The device specifications are as follows: 0.5-56
KB flash, 128 B – 4 KB RAM, 10/16/24/32 GPIO lines, and 10-bit SAR ADC. The
differing peripherals are: three 16-bit timers (one higher than the other series) and
capacitive touch I/O.

4.3.2.2.4 MSP430x3xx
The x3xx series includes an LCD controller, increasing its portability.

EEPROM memory was not included in this series, instead using one-time
programmable EPROM. They operate from 2.5-5.5 V. The x3xx specifications
include: 2 – 32 KB ROM, 512 B – 1 KB RAM, 14/40 GPIO lines, 14-bit SAR ADC,
and an integrated LCD. Their power modes are: RAM retention (0.1 μA), real-time
clock (0.9 μA), and MIPS active (160 μA), and a wake-up time of under 6 μs.

4.3.2.2.5 MSP430x4xx
This series is said to be “ideal for low power metering and medical

applications” [41]. It has a low operating voltage of 1.8-3.6V. These chips include
Frequency Locked Loop (FLL) and Supply Voltage Supervisor (SVS) for better
clock synchronization. Its specifications are: 4 – 120 KB flash/ROM, 256 B – 8 KB
RAM, 14/32/48/56/68/72/80 GPIO lines, 10 – 12-bit SAR ADC, and 16-bit Sigma
Delta ADC. The x4xx chips have a CPU speed of 8 MIPS. Its unique peripherals
unavailable in the aforementioned series are a 32x32 multiplier, ESP430, and
SCAN_IF.

4.3.2.2.6 MSP430x5xx
The x5xx series chips have a higher maximum clock rate of 25 MHz while

still operating with low-power constraints and putting out 25 MIPS. It has an
operating voltage of 1.8 – 3.6V. Its specifications are: up to 512 KB flash, up to 66
KB RAM, 10/12-bit SAR ADC, 29/31/47/48/63/67/74/87 GPIO lines, high resolution
PWM, and a backup battery switch among other similar peripherals from its sister
families. Its power modes are: RAM retention (0.1 μA), real-time clock (2.5 μA),
and MIPS active (165 μA). The wake-up time is less than 5 μs.

4.3.2.2.7 MSP430x6xx
The x6xx series chips can also run up to 25MHz with 25 MIPS. It operates

at 1.8 – 3.6V as well. It features a special power management module for better
power consumption and the USB integrated in it. Its specifications are: up to 512
KB flash, up to 66 KB RAM, 12-bit SAR ADC, 74 GPIO lines, USB, LCD, power
management module, and real-time clock (RTC). Its power modes are: RAM
retention (0.1 μA), real-time clock mode (2.5 μA), and MIPS active (165 μA). It has
a wake-up time of under 5 μs.

39 | P a g e

4.3.2.2.8 RF SoC (CC430)
The RF SoC board integrates an RF transceiver at under 1 GHz, with a 1.8

– 3.6V. Its specifications are: 20MHz, up to 32 KB flash, up to 4 KB RAM, 12-bit
SAR ADC, 30/44 GPIO lines, and peripherals similar to the previous models (LCD,
power management module, RTC, etc.). The power modes are: RAM retention (1
μA), real-time clock (1.7 μA), MIPS active (180 μA).

4.3.2.2.9 FRAM Series
This series of chips features memory access speeds that are 100 times

faster than the traditional flash memory times. FRAM does not require power for
writes, so if power is lost, writes can still be finished. FRAM can be written over
100 trillion cycles. EEPROM is not needed because of this resilience. Its
specifications are: 8 – 24 MHz speed, 4 – 128 KB FRAM, 0.5 – 2 KB RAM, 10 or
12-bit SAR ADC, 17 – 83 GPIO lines. It features peripherals rom its lower level
sister series and also a new Extended Scan Interface, AES (Advanced Encryption
Standard), and IR modulation. Its power modes are: RAM retention (.320 μA), real-
time clock (0.35 μA), and MIPS active (82 μA).

4.3.2.2.10 Low Voltage Series
There are two microcontrollers in the Low Voltage Series. They are the

MSP430C09X and MSP430L092. Their low operating voltage range is 0.9 – 1.65V.
Its specifications are: 4 MHz speed, 1 – 2 KB ROM, 2 KB SRAM, 8-bit SAR ADC,
11 GPIO lines, two 16-bit timers, SVS, comparator, and the other basic peripherals
available to all MSP430 implementations. Its power modes are: RAM retention (1
μA), real-time clock (1.7 μA), and MIPS active (180 μA).

4.3.2.3 Selection Rationale
From the microcontrollers to consider and their features enumerated in

4.3.2.1 & 4.3.2.2, the best choice for our microcontroller, considering the different
characteristics of memory on the chips, GPIO, PWM outputs, USART pins, and
I2C pins available, as well as the critical feature of ease of use and integration into
the project with the microcomputer selection in mind, then the choice was clearly
the ATmega328 chip. This has enough output ports and memory to handle the
code size needed without providing too much over head on the project for this sub-
system. The availability to integrate the Arduino framework into the project also
made for a very easy way integrate the sub-system into the other systems with the
needed outputs and inputs.

This microcontroller allowed us to quickly, cheapy, and easily integrate a
controls sub-system onto our robot and allowed more time and money to focus on
developing new and novel concepts that this robot is attempting to accomplish
without reinventing the microcontroller system since the Arduino framework has
become ubiquitous in the amateur hobbyist community.

4.3.3 GPIO extenders
Since SigSent has numerous input and output devices connected to the

microcontroller it is a wise decision to make use of a GPIO extender/extension.

40 | P a g e

This would be an IC chip that would interface with the microcontroller over some
communication protocol and handle commanding a portion of the outputs. This
frees up the GPIO pins on the microcontroller allowing for less computation or
processing by the microcontroller and more focus on commanding of the I/O
devices.

4.3.3.1 Pulse width modulation extender
The majority of the I/O devices that interface with the microcontroller are the

servo motors that drive the movement of the system. This can really hinder our
performance as the microcontroller is much slower in comparison to the clock
speeds that the microcomputer runs at. This means efficiency and latency is of the
utmost of importance when new commands from the microcomputer are being sent
to the microcontroller. To ensure a clean command of the 18 servo motors, a pulse
width modulation (PWM) extension integrated circuit (IC) is used. This frees up
commands and allows for more inputs if they are necessary.

4.3.3.1.1 PCA9685
This is a 16 channel LED controller, with each channel having a 4096-step

PWM brightness control. The PCA9685 has a programmable frequency output
from 24Hz to 1526Hz. This chip uses I2C as a communication protocol. The
PCA9685 has an operating voltage of 2.3-5.5V with inputs and outputs being 5.5V
tolerant. This chip has a driving current capability of up to 25mA. This IC also a
fast-mode that allows it to 1MHz on the I2C bus. It also has the option for an
external clock input that will accept up to 50MHz, instead of the internal 25MHz
oscillator, allowing for synchronization of multiple devices.

4.3.3.1.2 TLC5940
This is a 16 channel LED driver, with each channel having a 4096-step

grayscale PWM brightness control. It uses serial communication and has a data
transfer rate of 30MHz. The TLC5940 has an operating voltage of 3-5.5V. This chip
has a driving current capability of up to 60mA on less than 3.6V and up to 120mA
on greater than 3.6V. This IC also has thermal protection in the form of an error
flag that is thrown out the error handling pin. This does need a clock signal to shift
incoming serial data for output.

4.3.3.1.3 TLC5947
This is a 24 channel LED driver, with each channel having a 4096-step

grayscale PWM brightness control. It uses serial communication and has a data
transfer rate of 30MHz. The TLC5947 has an operating voltage of 3-5.5V. his has
a driving current capability of up to 30mA. This IC also has thermal protection in
the form of an automatic shutdown at over temperatures and restarts under normal
temperatures again. This does need a clock signal to shift incoming serial data for
output. This chip has an internal oscillator of 4MHz.

41 | P a g e

4.3.3.1.4 SN3218
This is an 18 channel LED driver, with each channel having a 256-step

PWM brightness control. This chip uses I2C as a communication protocol with a
maximum clock frequency of 400kHz. The SN3218 has an operating voltage of
2.7-5.5V. his has a driving current capability of up to 23mA. This IC also has
thermal protection in the form of an error flag that is thrown out the error handling
pin.

4.3.3.2 Selection Rationale
From the pulse width modulation extenders to consider and their features

enumerated in 4.3.3.1, the best choice for our pulse width modulation extenders,
considering the distinctive characteristics of number of available channels, step
size, output frequencies, communication protocols, operating voltage and output
current for each channel, then the choice was clearly the TLC5947 chip. This has
enough output ports channels to handle the amount of servo motors needed
without providing too much overhead on the project for this sub-system. While this
has the largest number of channels from the chips put under comparison, it does
have enough channels for all the leg movements on SigSent while leaving some
available to add a pan and tilt to the camera onboard if need be. Also with this
amount of PWM outputs all control commands can be sent to this single chip from
the microcontroller allowing for slimming of code sizes and the need for only one
command to be sent to this board to begin movements of the servo motors.

This pulse width modulation extender allowed us to quickly, cheapy, and
easily integrate extended output to the controls sub-system for the microcontroller
onto our robot and allowed us more time and money to focus on developing new
and novel concepts that this robot is attempting to accomplish without reinventing
the output capabilities for microcontrollers or having a niche microcontroller with
extended PWM capabilities but risk the ease of use and integration into the system
for it.

4.3.4 Force/Pressure Sensor
In order for SigSent to have an active suspension system, the system would

need to know whether it is touching the ground or not and if it is, how planted or
hard is the leg pressing into the ground. This would give a relatively accurate
reading from all the legs to be able to tell if SigSent has a good stance/footing at
the current moment.

This especially becomes vital when the system is traversing over rough
terrain that is bumpy in nature. SigSent needs some feedback as to whether it is
touching the ground and if it is currently holding itself up on the current legs that
are touching the ground or is off balance and is about to become unstable. The
plan for the force/pressure sensor would be to place it on the end effectors of the
two middle legs and also in between the bearing and the holder that the motors
are mounted to. This would give an accurate reading on the end effectors and their

42 | P a g e

contribution to stability as well as the other four legs. This coupled with the inertia
measurement unit reading would show what the system needs to do to remain
stable or to actively stabilize itself from a position. Due to the proposed
locations/placements of the force sensors, it is a requirement that the force sensors
are as thin/flat as possible, above most other specification, to not hinder the design
or the solutions to the kinematics equations by adding size to the end effector, etc.

4.3.4.1 Force Sensors under consideration
The following force sensors are those that have properties viable to our

project and will be objectively compared such that the best option under our
constraints is chosen for use in SigSent’s development.

4.3.4.1.1 SingleTact Capacitor force sensors
This force sensor is capable of measuring up to 100lbs of force while being

0.35mm thick. This force sensor is capable of being three times more sensitive
than a resistive force sensor. The sensing area of this sensor is 8mm or 15mm in
diameter. It has an I2C interface making it easy to set up with microcontrollers. The
SingleTact can also operate in temperatures up to 200oC with a temperature
sensitivity of 0.2%/oC. This sensor has a repeatability performance of less than
±2.5%, response time of less than 1 millisecond, and drift of less than 2% per
logarithmic time scale. This is only an analog sensor and would require an
amplifying circuit and analog to digital converter to properly measure the reading
from the force sensor. This product family does have an accompanying electronic
circuit that amplifies and outputs it as a voltage signal or converts the signal to an
I2C signal for direct reading of the measurement.

4.3.4.1.2 Interlink electronics FSR 400 Series
This force sensor is capable of measuring up to approximately 5lbs of force

while being 0.3mm thick. The sensing area of this sensor is 5 to 13mm in diameter.
The FlexiForce can also operate in temperatures up to 85oC. This force sensor is
also flexible and relatively easy to implement only needing an op amp circuit to get
the output. This sensor has a repeatability performance of less than ± 2%,
response time of less than 3 microseconds. This is only an analog sensor and
would require an amplifying circuit and analog to digital converter to properly
measure the reading from the force sensor.

4.3.4.1.3 Tekscan FlexiForce ESS301
This force sensor is capable of measuring up to 100lbs of force while being

0.203mm thick. The sensing area of this sensor is 9.53mm in diameter. The
FlexiForce can also operate in temperatures up to 85oC with a relative humidity of
up to 95%. This force sensor is also flexible and relatively easy to implement only
needing an op amp circuit to get the output. This sensor has a repeatability
performance of less than ±2.5%, response time of less than 5 microseconds, and
drift of less than 3.8% per logarithmic time scale. This is only an analog sensor

43 | P a g e

and would require an amplifying circuit and analog to digital converter to properly
measure the reading from the force sensor.

4.3.4.2 Selection Rationale
From the force sensors to consider and their features enumerated in

4.3.4.14.3.3.1, the best choice for our force sensor, considering the distinctive
characteristics of capable weight able to be measured, sensor size, sensor
thickness, communication protocol, operating temperature and humidity, and
sensor measurement repeatability, then the choice is clearly the SingleTact
Capcaitor Force sensors. This force sensor, while very similar to the other force
sensors, has one clear advantage of coming with the amplification circuit already
set up and ready to output data. As well as the added advantage of the ability of
outputting I2C data directly to a microcontroller. This would save a lot of overhead
and possible wasted hours calibrating the amplification circuitry to try and get a
readable and reliable output.

This force sensor would allow us to quickly and easily integrate a feedback
input for the controls sub-system to the microcontroller onto our robot and allow us
more time to focus on developing new and novel concepts that this robot is
attempting to accomplish without reinventing the amplification circuits needed for
the proper outputs. Due to limited budgeting and higher priorities in sensors or
actuators, this sensor was tabled for a later date to integrate into the controls sub-
system with the microcontroller, if time and money allowed for it.

4.3.5 Lidar
Lidar or Light Imaging, Detection, And Ranging or LIght raDAR is a

“surveying method that measures distance to a target by illuminating that target
with a pulsed laser light, and measuring the reflected pulses with a sensor.
Differences in laser return times and wavelengths can then be used to make digital
3D-representations of the target.” [42]. In our robot we used a 2D lidar supplied by
the Robotics Club at the University of Central Florida [43]. This Lidar is a Hokuyo
UTM-30LX lidar which is capable of seeing 30 meters in day or night with a 270*
view. The Lidar outputs a long vector of measurements in millimeters for each
individual point, having a data point once every .25* for a total of 1440 steps per
full revolution of the laser assembly. [44] This data could be easily represented as
an absolute depth data that can be input into Gmapping (4.2.5.1)

44 | P a g e

Figure 17: Representation of Lidar output compared to Image [45]

4.3.6 Camera
To facilitate the computer vision in SigSent, a camera that is versatile

independent on the time of day, has a resolution that is high enough for performant
image classification, and meets our pricing standards was chosen.

4.3.6.1 CCD v CMOS
There is an important distinction to be noted between CCD and CMOS

based camera sensors, while CMOS has become popular in consumer cameras
due to its very low price and small size, it is at the price of a significantly higher
noise in image quality. CCS, while an order of magnitude more expensive than
CMOS sensors has a much lower noise, creating significantly more reliable images
that will lead to less errors in the robot’s computer vision.

4.3.6.2 Day Vision versus Night Vision
Since SigSent is designed to be operated during both daytime and nighttime

operations, care must be taken into how SigSent’s cameras will take in light both
during the daytime, where the Sun could easily wash out images, and the nighttime
where there could be very minimal lighting. This allows for three options for the
robot to operate in both daytime and nighttime operations without human
intervention. The first is to have a normal camera and equip the robot with a
powerful light to flood the area in front of the camera with enough light for the robot
to gain enough data to determine if there is a human out of place - however this
makes the robot's position very easily known and the robot easier to avoid. The
second is to have an IR camera that can detect IR wavelengths, giving the camera
a form of night vision, however this means that the cameras would be at a
disadvantage during daytimes as some colors would be washed out due to the sun
broadcasting IR light. The third option is to have a camera similar to the prior option
but with an automated IR-CUT filter that could operate during the daytime, allowing
the camera to filter out IR light during daytime and remove that filter during
nighttime allowing the camera to detect the IR light again. Each camera has some
combination of these features and each could theoretically be modified to work in
both day or night (by adding or removing an IR-CUT filter) or adding a flashlight,

45 | P a g e

depending on the features and their determined usefulness one of the above
options had to be chosen.

4.3.6.3 Cameras Under Consideration
The following cameras are those that we considered due to their

compatibility and performance.

4.3.6.3.1 Raspberry Pi Cameras
As the Raspberry Pi serves as our robot’s microcomputer, cameras

designed to work with the hardware are important to distinguish.

4.3.6.3.1.1 Infrared 500W Focus Adjustable Night Vision Camera
Module - BLACK

This CMOS cameras has a dubious claim of having a 500 watt IR LED to
light its surrounding, capability of detecting IR light, and a significant lack of
documentation. This camera coming with an IR led built in is a significant feature
which reduces the amount of modification needed for the camera to operate at
night, however the lack of documentation for this camera significantly increases
the risk of this product being unreliable and hard to integrate into the system.

4.3.6.3.1.2 Raspberry Pi Infrared Camera Module (NoIR) V2
This is a CMOS camera developed by Raspberry Pi and thus has workable

amount of documentation associated with it as well as a more trustable brand to
trust in. This camera uses the Sony IMX 219 PQ CMOS sensor with its IR Blocking
filter removed allowing it to see at night when IR led’s are present, however with
the IR filter removed images during the daytime may be washed out, requiring the
team to modify a IR filter to cover the lens during daytime operations. This camera
has a high resolution and a high FPS as well as automatic exposure control,
automatic white balance and automatic black level calibration allowing for us to
easily retrieve more color accurate and more up-to-date images from the sensor.
This camera however lacks an option to adjust focus which means that the camera
may be blurry if an object of interest is too close or too far away from the camera.

4.3.6.3.1.3 Raspberry Pi Camera Module w/ Adjustable Focus and Night Vision
This CMOS camera developed by Waveshare comes with an adjustable

focus an am Omnivision OV5647 sensor with its IR filter removed. This sensor can
capture 720p images at 60FPS or 640p images at 90FPS which is ideal so that we
are always processing the most up to date images for SigSent. This camera also
comes equipped with IR LED’s to help see at night, however there is no IR-CUT
filter on it so we would need to modify that filter on to prevent images being washed
out during the daytime.

4.3.6.3.1.4 Raspberry Pi Camera Module w/ Fisheye Lens and Night Vision
This CMOS Camera with the same sensor as in 4.3.6.3.1.3. Is fitted with a

fisheye lens with its IR filter removed. However this camera is not equipped with
IR leds. These LED’s will need to be mounted with the camera, and the an IR filter
installed to activate during daytime operations. The Fisheye lens will be very useful

46 | P a g e

as it will allow the robot to see more of its surroundings while moving less,
conserving overall system energy.

4.3.6.3.1.5 Raspberry Pi Camera Module w/ IR Cut Filter
This CMOS Camera with the same sensor as in 4.3.6.3.1.3. Is fitted with an

IR-CUT filter that we can use to automatically switch between nighttime and
daytime activity without need for modification or human interaction. This camera
also includes IR LEDs allowing for the camera to see during night without
additional LEDs needing to be installed.

4.3.6.3.2 BlackBird 2 3D FPV Camera
This 3D camera created by FPV3DCAM uses a custom onboard IC that can

send 680p images at 60hz in a variety of standard 3D formats. This camera has
an impressive field of view and a high signal to noise ration for a CMOS sensor
(45db). The camera also uses low power at 1.8W. According to the camera's
documentation, we may need to install a heatsink on the camera to prevent
overheating. This camera has an IR filter installed by default and does not appear
to be modifiable, therefore for this camera to operate at night we would have to
install a large flood light on the vehicle.

4.3.6.3.3 Pixy CMUcam5 Image Sensor
The Pixy CMUcam5 has a large community support and uses the

Omnivision OV9715 CMOS sensor, outputting 720p at 30fps or 640p at 60fps.
What distinguishes this camera from the others is that it has an onboard
microcontroller which can handle basic image recognition, outsourcing some of the
computational power from the microcomputer controlling the robot to within the
camera module itself. This camera comes with a significant amount of
documentation and community support reducing risk if there is an error or problem
with the board or in our attempts to integrate it into our system. This camera does
come with a non-modifiable IR filter installed, so in order for this camera to
accomplish SigSent’s goals, we would need to install a large flood light on the
vehicle.

4.3.6.3.4 Logitech C920
The Logitech C920 is a COTS web camera designed for video calling, while

this camera is not specifically the best choice for this project on paper, this camera
has by far the easiest implementation since it uses generic USB drivers that work
immediately with Linux being used on our microcomputer. Another benefit of the
Logitech C920 is that the camera has a significant amount of community support
both in the general market and in the hobbyist fields.

4.3.6.3.5 FLIR Point Gray: Firefly MV 0.3 MP Color USB 2.0 (Aptina MT9V022)
This CCD camera is a professional grade camera designed specifically for

computer vision in an industrial environment. It captures images at 752x480 at
60FPS and uses a standardized CS-mount lens allowing for a custom (yet pricey)
ideal lens to be selected in the future. This camera will be able to sense IR
wavelengths since there is no internal IR filter built into it. However, it would require
IR LEDs to illuminate an object of interest and an IR-CUT filter added for daytime

47 | P a g e

and nighttime operation. This camera has by far the best documentation and
sensor sensitivity compared to the other sensors in folds and uses, like the
Logitech c920 in 4.3.6.3.4. A generic USB driver that is easy to integrate into a
Linux environment on SigSent’s microcomputer.

4.3.6.4 Specifications
The important specifications encompassed by a computer vision camera

are outlined below to be compared among each candidate camera.

4.3.6.4.1 Price
Price is a self-explanatory constraint, as the price of the camera increases

this relates linearly with the team’s will to implement it due to our limited sponsored
budget.

4.3.6.4.2 Image Quality
Image Quality is an almost qualitative measurement between these

cameras since there is a significant variability between each of the camera’s
reported specification and how they choose to both measure (or not measure)
them. Due to this image quality is an amalgamation of the resolution, the number
of megapixels, the Signal to Noise Ratio, Field of View, and focal length of each
camera. Unfortunately, assigning some number to the above would never be an
accurate representation.

4.3.6.4.3 Frames Per Second
Frames per second is a crucially important specification because this both

determines how quickly our cameras are able to capture a situation but also can
help make up for poorer image quality. The higher the FPS is, the more likely we
should choose that camera.

4.3.6.4.4 Night Vision
Since the goal of SigSent is to be able to effectively work in both nighttime

and daytime environments, it is important to weight into the decision on whether or
not the camera has the ability to natively see IR light (the easiest/cheapest way to
achieve night vision). If the cameras can see IR light then the camera will need a
way to block IR light during the daytime to prevent the camera’s images being
washed out by the sun, while if the camera cannot see IR, the robot will need to
have a flood light installed on it so that that visible wavelengths can be seen at
night.

4.3.6.5 Results
The results obtained below helped determine which camera was chosen for

the SigSent. They are outlined in tabular form to be easily compared.

48 | P a g e

4.3.6.5.1 Comparison
Table 5: Comparison of Cameras

Name
Cost
(USD) Resolution Megapixel

S/N
(db)

Frame
Rate

IR
(bool)

Docs
(bool)

PiCam IR Adj
w/ LED 18.67 NA 5 NA NA T F

PiCam IR Adj
Official 24.99 720 5 44.56 60 T T

PiCam IR Adj 21.59 1080 5 36 30-120 T F

PiCam IR
Fisheye 32.99 1080 5 36 30-121 T F

PiCam IR Adj
Cut w/ LED 27.99 1080 5 36 30-122 T F

Blackbird 2 3D 179
3d =
680*512 NA 45 60 F T

Pixy
CMUcam5 67 1280x800 NA 39 50 F T

Logitech C920 55.68 1920x1080 3 NA 30 F T

Firefly 275 752x480 0.3 52 60 T T

4.3.6.5.2 Selection Rationale
 From the cameras to consider and their features enumerated in 4.3.6.3 and
in the comparisons in the table aboe, the best choice for our camera, considering
price, image quality, frames per second, signal to noise ration, modifications to
work in night and day, and the amount of documentation/support for each product
there is a decently clear winning of 4.3.6.3.1.5 (PiCam IR Adj Cut w/ LED) which
has an IR-Cut filter and LEDs already installed, uses the Raspberry Pi dedicated
camera point, and the well documented Omnivision OV5647 sensor. This sensor
has the modest price of $26.29 and requires the fewest modifications to work with
our scenario while capitalizing on Raspberry Pi’s hardware (decided in 4.3.1.3.3)
and all the documentation and community support that is associated with
Raspberry Pi. This Camera allowed us to quickly, cheapy, and easily integrate
vision onto our robot and allowed us more time and money to focus on developing
new and novel concepts that this robot is attempting to accomplish without
reinventing the wheel on already established technology.

49 | P a g e

4.3.6.5.3 Prototype Changes
While assembling all of the hardware for SigSent, the Raspberry Pi was

swapped out for a newer model that did not support the kernel module for the
PiCam we selected. For our prototype build, we instead went with the integrated
camera on the Playstation Eye which was being used for its microphone. This
meant we did not have to purchase a new component and did not add anymore
weight to the build. Future builds should use the PiCam if possible for the
integrated selectable IR filter.

4.3.7 IMU
An IMU is used to detect the rotational acceleration of the SigSent robot

and also keeping track of the vehicle’s orientation. Various IMU units are detailed
below to be compared and scored such that the most optimal was selected for the
SigSent.

4.3.7.1 IMU’s under consideration
The IMU’s that were researched below were under consideration for use in

SigSent. There specifications were then found and compared.

4.3.7.1.1 MPU-9250
This IMU excels in power efficiency and a very high refresh rate. This IMU

has an average sensor stability in its price range but at its high refresh rate this
IMU shines above others.

4.3.7.1.2 LSM9DS1TR
 This IMU has one of the best gyroscope sensors within its price range, and
very detailed documentation, however with its refresh rate being far below average
even with its price range this sensor is almost nonviable.

4.3.7.1.3 Sparton AHRS-8
 This is a complete Attitude and heading reference system (AHRS) unit with
extremely accurate sensors, however its price makes this sensor cost prohibitive,
however the company that makes these sensors has been known to sponsor
projects.

4.3.7.1.4 VectorNav VN-100
 The VectorNav VN-100 boast an extremely high refresh rate of 400hz and
sensors comparable or even better than the AHRS-8, however once again its price
makes this sensor cost prohibitive, however the company that makes these
sensors has been known to sponsor projects.

4.3.7.2 Specs
Specifications important in choosing an IMU for SigSent’s use are detailed

below such that each different unit can be objectively compared so that the best
use-case for our project would be chosen that meets our demands and fits within
our constraints.

50 | P a g e

4.3.7.2.1 Price
Price is a self-explanatory constraint, as the price of the IMU increases this

relates linearly with the team’s will to implement it due to our limited sponsored
budget.

4.3.7.2.2 Degrees of Freedom
 IMU’s are incredibly important for autonomous navigation and control
systems since they measure vital information such as absolute heading,
acceleration in the 3 linear dimensions and acceleration in the 3 rotational
dimensions. This totals to 9 degrees of freedom (absolute X,Y,Z rotational
directions from the magnetometer, the X,Y,Z linear accelerations, and roll, pitch,
and yaw with the gyroscope.) Additionally there can sometimes be an added 10th
degree of freedom in the implementation of an absolute or relative altimeter. For
our platform to operate as expected we will need the 9 degrees of freedom to keep
our vehicle autonomous and functioning appropriately.

4.3.7.2.3 Average Power Consumption
Power consumption is of utmost importance within the project as a whole

since the less powered used overall increases the overall lifetime of the robot on
a singular charge.

4.3.7.2.4 Accelerometer Stability Scale Factor
 Accelerometer Stability Scale Factor (SSF) is a quantifiable way to measure
the accuracy of a Accelerometer by way of measuring the ratio of the sensors
output compared to the input (placing the sensor under various linear G Forces),
as the input and output is changed the linearity of this is measured as SSF.

4.3.7.2.5 Gyroscope Stability Scale Factor
 GyroScope Stability Scale Factor (SSF) is a quantifiable way to measure
the accuracy of a gyroscope by way of measuring the ratio of the sensors output
compared to the input (placing the sensor under various rotational G Forces), as
the input and output is changed the linearity of this is measured as SSF.

4.3.7.2.6 Refresh Rate
 Refresh rate for the IMU is critical to the usefulness of an IMU as the more
measurements that the IMU is able to produce, the more data we can provide to
our sensor integration algorithm (potentially a Kalman Filter) with the GPS to get
more and more accurate results that will help our navigation and path planning
algorithms.

4.3.7.3 Scores
The scores were calculated such that the positive value of refresh rate

boosted the unit’s score, and the undesirable specifications would lower a unit’s
score. Based on the final values, the highest performing unit was chosen for use
in the project.

51 | P a g e

4.3.7.3.1 Formula
 In order to quantifiably determine the relevance of one GPS Unit over
another a simple formula was devised after analyzing the available specifications
found in the documentation for each of the microcontrollers.

Equation 2: Formula for IMU Comparison Score

𝑅𝑒𝑙𝑎𝑣𝑒𝑛𝑐𝑒

=
𝑅𝑒𝑓𝑟𝑒𝑠ℎ	𝑅𝑎𝑡𝑒C

𝐶𝑜𝑠𝑡 ∗ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑃𝑜𝑤𝑒𝑟	𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 ∗ 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑜𝑚𝑒𝑡𝑒𝑟	𝑆𝑆𝐹 ∗ 𝐺𝑦𝑟𝑜𝑠𝑐𝑜𝑝𝑒	𝑆𝑆𝐹 	

4.3.7.3.2 Specification Comparison and Score Results
Table 6: IMU Comparison Table and Score Output

Name Cost
DO
F

Comm
protoc
ol

Voltag
e

AVG
Powe
r

Gyr
o
SSF

Acceleromet
er SSF

Sampl
e Rate

Overa
ll
Score

MPU-9250
10.6
3 9 i2c 3.3 3.7 16.4 0.061 200

1016.
6

LSM9DS1T
R 6.33 9 i2c 3.3 4.6 8.75 0.061 80

411.7
9

AHRS-8 1350 10 USB 5 82.5 0.18 0.023 100 21.69

VN-100 800 10 USB 3.3 45 0.16 0.04 400
694.4
4

4.3.7.3.3 Selection Rationale
From the consensus of the score and the team, the MPU-9250 is the best

option for SigSent based on its excellent refresh to cost, terrific power efficiency
and acceptable sensor errors.

4.3.8 GPS
A GPS is necessary to keep track of the absolute position of the SigSent

vehicle as it navigates its route. Research had to be done on hardware that would
provide the best performance under the constraints allotted to us.

4.3.8.1 GPS’s under consideration
The GPS units below were possible considerations for use in the SigSent

vehicle. They have their specifications described below to be objectively
compared.

4.3.8.1.1 SkyTraq Venus638FLPx
 This GPS unit has the best GPS refresh rate of all GPS units under
consideration at 20hz. That refresh rate is key because of inherent flaws to the

52 | P a g e

IMU the GPS having a fast refresh rate means that navigation and mapping errors
will be reduced significantly. This sensor however has a lower sensitivity at -165dB
meaning that obstructions in the way such as buildings or atmospheric events will
have an impact on performance.

4.3.8.1.2 LocoSys LS20031
 This sensor has lackluster documentation and a higher cost but with the
benefit of using less power than the SkyTraq Venus638FLPx.

4.3.8.1.3 Maestro A2135-H
 This GPS unit has a significant amount of documentation, and has the
lowest price by far while also having the highest sensitivity of the bunch. However,
it has a below average refresh rate of only 5hz and uses the SPI bus while most
sensors are using either I2C or USB.

4.3.8.1.4 Linx RXM-GNSS-TM-B
 This GPS unit uses a UART interface and has a respectable refresh time
with a high sensitivity receiver like in the SkyTraq Venus638FLPx.

4.3.8.2 Specifications
The specifications below encompass the necessary items we value in the

performance of the SigSent vehicle. Each of the GPS units that were under
consideration have had their details listed out such that the specifications below
could be easily compared between each one.

4.3.8.2.1 Price
Price is a self-explanatory constraint, as the price of the GPS increases this

relates linearly with the team’s will to implement it due to our limited sponsored
budget.

4.3.8.2.2 Refresh Rate
 The Refresh rate of a GPS unit is how often it is able to contact, calculate,
and send out a stable GPS coordinate. This is a critical specification because as
the refresh increases the inaccuracies inherently introduced to our navigation and
path planning by the IMU are reduced significantly.

4.3.8.2.3 Average Power Consumption
 Power consumption is of utmost importance within the project as a whole
since the less powered used overall increases the overall lifetime of the robot on
a singular charge.

4.3.8.2.4 Sensitivity
 Sensitivity is another critical specification, this is the ability of the GPS unit
to properly detect and receive the packets of information coming from the GPS
satellites around Earth. Measured in decibels, a single unit increase in the positive
direction is equivalent to a significant increase in sensitivity.

53 | P a g e

4.3.8.2.5 Accuracy
 Accuracy is a measurement of average tolerance for the GPS device
measured in meters. Accuracy says: given a GPS coordinate the true position of
the device is within the accuracy given. For all of the GPS units under
consideration, the accuracy is given as 2.5m, this is a fairly standard unit and is
more of a limitation of the satellites than of the sensors.

4.3.8.3 Scores
To choose the best fitting GPS, they were scored positively based mostly

on their refresh rate, as well as their sensitivity, and had their scores negatively
affected by their cost, power consumption, and accuracy error.

4.3.8.3.1 Formula
In order to quantifiably determine the relevance of one GPS Unit over

another a simple formula was devised after analyzing the available specifications
found in the documentation for each of the microcontrollers.

Equation 3: Score for calculating optimal GPS unit selection

𝑆𝑐𝑜𝑟𝑒 =
𝑅𝑒𝑓𝑟𝑒𝑠ℎ	𝑅𝑎𝑡𝑒C ∗ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦	𝑎𝑠	𝑎	𝑙𝑖𝑛𝑒𝑎𝑟	𝑟𝑎𝑡𝑖𝑜
𝐶𝑜𝑠𝑡 ∗ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑃𝑜𝑤𝑒𝑟	𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 ∗ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	

Table 7: GPS Comparison Table and Score Output

4.3.8.3.2 Specification Comparison and Score Results

Name Cost Refresh Voltage Power Comm Sensitivity
(Linear
Ratio) Accuracy

Total
Score

Venus638FLPx 49.95 20 3.3 60 I2C -165 562.34 2.5 30.02

LS20031 60 5 3.3 41 TTL -165 562.34 2.5 2.29

A2135-H 20.9 5 3.3 31 SPI -163 707.95 2.5 10.93
Linx RXM-
GNSS-TM-B 34.33 10 3.3 30 UART -165 562.34 2.5 21.84

4.3.8.3.3 Selection Rationale
From the Score which sums up that the Venus638FLPx is the best option

due to its extremely high refresh rate alone. The Venus638FLPx despite its higher
power consumption, slightly lower sensitivity, and slightly higher price is the best
decision for the team because a high refresh rate for the GPS will ensure that our
robot can more accurately keep track of its position and accurately follow a GPS
weight point and map its surroundings.

After significant tested after selecting the Venus638FLPx we learned that it
may have been niave for us to have placed such a high weight on refresh time and
instead to have more heavily weighted or considered the device’s sensitivity as

54 | P a g e

SigSent had significant trouble gaining an accurate GPS lock, especially indoors,
and struggled meeting its 2.5m accuracy outdoor, sometimes being as inaccurate
as over 10m. A more accurate system with higher sensitivity, or one that has DPGS
or some version of a ground based GPS would yield significantly better and more
reliable results.

4.3.9 Servo motors
Servo motors will be in control of the legs of SigSent. Precisely a set of three

servo motors will be used to operate the movements of each leg with control
signals sent to it by the main processor in SigSent’s architecture. Various servo
motor units are detailed below to be compared and scored such that the most
optimal is selected for the control SigSent.

4.3.9.1 Servo motors Under Consideration
The servos motors that were researched below were under consideration

for use in SigSent. There specifications were then found and compared.

4.3.9.1.1 HS-755HB Servo
This servo motor is priced at $27.99 – 47.99, depending on the features

included at the time of purchase (if increased rotation or continuous rotation is
wanted). The operating voltage of this is 4.8-6.0V with the stall torque being 183oz-
in(13.2kg-cm) at the max voltage of 6.0V. This servo motor has a speed of 0.23sec
per 60o at the max voltage of 6.0V. Lastly the gear material of the servo motor is
made up of Karbonite, with the weight being 3.88oz (110g)

4.3.9.1.2 HS-755MG Servo
This servo motor is priced at $39.99 – 59.99, depending on the features

included at the time of purchase (if increased rotation or continuous rotation is
wanted). The operating voltage of this is 4.8-6.0V with the stall torque being 200oz-
in(14kg-cm) at the max voltage of 6.0V. This servo motor has a speed of 0.23sec
per 60o at the max voltage of 6.0V. Lastly, the gear material of the servo motor is
made up of metal, with the weight being 4.12oz (117g).

4.3.9.1.3 HS-765HB Servo
This servo motor is priced at $39.99 – 59.99, depending on the features

included at the time of purchase (if increased rotation or continuous rotation is
wanted). The operating voltage of this is 4.8-6.0V with the stall torque being
183.31oz-in(13.2kg-cm) at the max voltage of 6.0V. This servo motor has a speed
of 0.23sec per 60o at the max voltage of 6.0V. Lastly, the gear material of the servo
motor is made up of Karbonite, with the weight being 3.6oz (102g).

4.3.9.1.4 HS-5646WP Servo
This servo motor is priced at $54.99 – 74.99, depending on the features

included at the time of purchase (if increased rotation or continuous rotation is
wanted). The operating voltage of this is 6.0-7.4V with the stall torque being 179oz-
in(12.9kg-cm) at the max voltage of 7.4V. This servo motor has a speed of 0.18sec
per 60o at the max voltage of 7.4V. Lastly, the gear material of the servo motor is

55 | P a g e

made up of three Metal Gears and one Nylon Gear, with the weight being 2.15oz
(61g).

4.3.9.1.5 D645MW Servo
This servo motor is priced at $39.99 – 59.99, depending on the features

included at the time of purchase (if increased rotation or continuous rotation is
wanted). The operating voltage of this is 4.8-7.4V with the stall torque being
180.1oz-in(12.9kg-cm) at the max voltage of 7.4V. This servo motor has a speed
of 0.17sec per 60o at the max voltage of 7.4V. Lastly, the gear material of the servo
motor is made up of metal, with the weight being 2.11oz (60g).

4.3.9.1.6 S9470SV Servo
This servo motor is priced at $99.99, depending on the features included at

the time of purchase (if increased rotation or continuous rotation is wanted). The
operating voltage of this is 6.0-7.4V with the stall torque being 191.7oz-in(13.8kg-
cm) at the max voltage of 7.4V. This servo motor has a speed of 0.09sec per 60o
at the max voltage of 7.4V. Lastly, the gear material of the servo motor is made up
of metal, with the weight being 1.90oz (54g).

4.3.9.1.7 HS-8330SH Servo
This servo motor is priced at $89.99, depending on the features included at

the time of purchase (if increased rotation oranime continuous rotation is wanted).
The operating voltage of this is 6.0-7.4V with the stall torque being 180.53oz-
in(13kg-cm) at the max voltage of 7.4V. This servo motor has a speed of 0.07sec
per 60o at the max voltage of 7.4V. Lastly, the gear material of the servo motor is
made up of steel, with the weight being 2.32oz (66g)

4.3.9.1.8 DynaMixel AX-12A
This servo motor is priced at $44.99, depending on the features included at

the time of purchase (if increased rotation or continuous rotation is wanted). The
operating voltage of this is 9.0-12V with the stall torque being 212.41 oz-in(15.296
kg-cm) at the max voltage of 12.0V. This servo motor has a speed of 0.07sec per
60o at the max voltage of 12.0V. Lastly, the gear material of the servo motor is
made up of steel, with the weight being 1.88oz (54.6g)

4.3.9.1.9 DynaMixel AX-18A
This servo motor is priced at $94.89, depending on the features included at

the time of purchase (if increased rotation or continuous rotation is wanted). The
operating voltage of this is 9.0-12V with the stall torque being 254.90oz-in(18.355
kg-cm) at the max voltage of 12.0V. This servo motor has a speed of 0.07sec per
60o at the max voltage of 12.0V. Lastly, the gear material of the servo motor is
made up of steel, with the weight being 1.88oz (54.6g)

4.3.9.2 Specifications
The specifications below encompass general constraints on servo motors.

The price, operating voltage, torque performance at these voltages, and speed are
all items to consider in comparing the servos.

56 | P a g e

4.3.9.2.1 Price
Price is a self-explanatory constraint, as the price of the servo increases

this relates linearly with the team’s will to implement it due to our limited sponsored
budget.

4.3.9.2.2 Max Voltage
The maximum voltage of the servos is an important consideration, ideally

the servos would be able to be run directly off the batteries, which are 4s (12V-
16.8v) however that is not the industry standard, most consumers off the shelf
(COTS) servos are between 4.8V-6V with some capable of going up to 7.4V. With
this consideration in fact, we want to choose a servo with a higher voltage because
that will lead to less losses when regulating the DC power of the batteries down to
the voltage required by the servo.

4.3.9.2.3 Torque at Max Voltage
The toque at max voltage is the critical spec for the servos as a large

amount of torque will be required to properly move the legs of SigSent, the higher
the torque the better, we choose to compare the torque at max voltage over the
minimum voltage since the voltage being sent to the servos will be regulated, and
regulated at the maximum compatible voltage the servos can take. This also allows
us to more accurately anticipate the amount of torque that the servos can provide
as torque varies with voltage.

4.3.9.2.3.1 Minimum Required Torque
Due to the design of the legs of the robot, SigSent will have a critical

requirement of minimum required torque in order for the hexapod legs to carry the
weight of the robot in a stationary position but also in an active suspension or
walking configuration. To calculate the stationary position a free body diagram
needs to be constructed to calculate the moment arm from the main body to the
joints of the legs on sig sent. As seen below in Figure 18 & Figure 19 & Figure 20:

Figure 18: Moment arm for stationary extended position at 1350(degree) position

57 | P a g e

Figure 19: Moment arm in 105o degree angle position

Figure 20: Moment arm in 90o degree angle position

Since a model of the current mechanical design has already be created
pulling the measurements from the design configuration to calculate the toque on
the joints created from the robot’s body/weight. From this it was determined in the
standard stationary configuration shown in Figure 18: Moment arm for stationary
extended position at 1350(degree) position that the minimum torque needed for
movement of the body is 217.75 oz-in with an approximation of total weight of the
system at 4kg. This makes the leg configuration shown in Figure 18 to be not viable
as this leaves no margin of safety for the servo motors to operate. Thus, making a
need for a different leg configuration, this make the configuration in Figure 19:
Moment arm in 105o degree angle position more viable as the required torque for

58 | P a g e

this position is 157.087 oz-in. This leaves a margin of safety of approximately 35%
making the configuration very feasible. The last configuration in Figure 20: Moment
arm in 90o degree angle position makes a required torque of 122.75oz-in. This
leaves a margin of safety of approximately 73%, which allows SigSent to have a
range of motion within its minimum required torque for certain configurations.

4.3.9.2.4 Speed at Max Voltage
The speed at max voltage is a measurement of the amount of time it takes

for a servo to move 60 degrees under no load, we need the speed of the servos to
be as high as possible so that the legs can move in a quick and responsive fashion
to properly support SigSent and the various multi-terrain environments that it must
operate in.

4.3.9.2.5 Weight
Since the servos are within the legs, the servo weight must be a minimum

to reduce the amount of torque required for the servos to push and pull while in
walking mode or in suspension during driving.

4.3.9.3 Scores
The scores below give a positive weight to better torque and speed. A

negative weight is given to cost and weight of each servo.

4.3.9.3.1 Formula
In order to quantifiably determine the relevance of one motor over another

a simple formula was devised after analyzing the available specifications found in
the documentation for each of the motors.

Equation 4: Score for Servo Motors

𝑆𝑐𝑜𝑟𝑒 =
𝑇𝑜𝑟𝑞𝑢𝑒 ∗ 𝑆𝑝𝑒𝑒𝑑
𝐶𝑜𝑠𝑡 ∗ 𝑊𝑒𝑖𝑔ℎ𝑡

4.3.9.3.2 Comparison and Score Results
Table 8: Specification Comparison of Servo Motors

Description Weight Stall
Torque

Speed Price Score

HS-755HB 3.88oz (110g) 183 0.23 $28.00 $0.00
HS-765HB 3.6oz (102g) 183 0.23 $40.00 $0.00
HS-755MG 4.12oz (117g) 200 0.23 $40.00 $0.00

HS-5646WP 2.15oz (61g) 179 0.18 $55.00 $0.27
D645MW 2.11oz (60g) 180 0.17 $40.00 $0.36
S9470SV 1.90 oz. (54g) 191.7 0.09 $100.00 $0.09

HS-8330SH 2.32oz (66g) 180 0.07 $90.00 $0.06
DynaMixel AX-12A 2.32oz (66g) 180 0.1695 $45.00 $0.29
DynaMixel AX-18A 2.32oz (66g) 180 0.1031 $95.00 $0.08

59 | P a g e

4.3.9.3.3 Selection Rationale
From the servo motors to consider and their features enumerated in 4.3.9.1,

the best choice for our servo motors, considering the distinctive characteristics of
weight, stall torque, speed, and price, then the choice is the DynaMixel AX-12A.
This component needed major consideration and comparison as it is a critical
requirement for the hexapod to even move its legs in a walking configuration let
alone standing upright under its own weight. The weight of this servo compared to
its stall torque puts it in a league above most others. The final reasoning was that
DynaMixel sells these servo motors in bulk orders allowing for a massive price
reduction that fall within our projected budget without putting that component at its
limits of pricing.

This servo motor will allow us to quickly, cheapy, and easily create and
integrate the controls sub-system for the microcontroller onto our robot and allow
us more time and money to focus on developing new and novel concepts that this
robot is attempting to accomplish without reinventing or redesigning the whole leg
system and its movement scheme.

4.3.10 Motors
The Motors act as SigSent’s end effector and source that powers the rotation of
the wheels moving SigSent forwardly while in driving mode efficiently. Motor
selection is important to both minimize weight and maximize speed.

4.3.10.1 Motors Under Consideration
• AX-4114C 330KV
• 4114-320KV Turnigy Multistar
• Turnigy Aerodrive SK3 - 4250-410KV
• Turnigy Aerodrive SK3 - 4250-350KV
• Quanum MT Series 4012 400KV

4.3.10.2 Specifications
The specifications below encompass the necessary items we value in the

performance of the SigSent vehicle. Each of the motor units that were under
consideration have had their details listed out such that the specifications below
could be easily compared between each one.

4.3.10.2.1 Price
Price is a self-explanatory constraint, as the price of the motor increases

this relates linearly with the team’s will to implement it due to our limited sponsored
budget.

4.3.10.2.2 Max Voltage
The maximum voltage the motors is an important consideration to take note

of as it will impact both the amount of power the motors can output, the resultant
RPM of the wheel, and the choice of battery and ESC. The choice was made to
have a motor voltage to be compatible with a 4S battery (12-16.8) as that was

60 | P a g e

considered a viable compromise between power efficiency, the RPM needed to
spin the wheels (as a function of kV) without needed a gear ratio.

4.3.10.2.3 KV
KV is a measurement of torque that relates to the number of windings within

the number, generally speaking the lower the KV the higher the torque, the lower
the RPM the motor can produce. To reduce simplicity SigSent is intended to have
the wheel directly attached to the motor in a 1:1 gearing ratio, so a motor that has
a low KV (and thus high torque) is necessary. KV also relates to RPM per volt
under no load. Since SigSent is intended to be able to run at 15mph in wheeled
mode, we set a very liberal safety factor of finding the RPM at 25 MPH to account
for when the vehicle is under load, with our wheels at a 2” diameter the motor
would need to spin at roughly 4000 RPM, with the motor running at worst case 12V
and best case 16.8V, we would need a KV rating of around between 300-400.

4.3.10.2.4 Max Current
The maximum current that the motor can handle is important to consider to

ensure that the motor will not stall when attempting to move the vehicle, and for
calculating the current rating required for the ESC, and the C rating for the battery
along with general infrastructure requirements such as wire gauge to supply the
power and trace widths through a PCB.

4.3.10.2.5 Weight
Since the motors are at the ends of the legs, the motor weight must be a

minimum to reduce the amount of torque required for the servos to push and pull
while in walking mode or in suspension during driving.

4.3.10.3 Scores
To determine the best motor to be used for SigSent, the max current of each

one positively increased a motor’s score while the cost and weight negatively
affected its score.

4.3.10.3.1 Formula
In order to quantifiably determine the relevance of one motor over another

a simple formula was devised after analyzing the available specifications found in
the documentation for each of the motors. Since kV and voltage must be those
values, they more filter out incompatible motors rather than effect the score of any
motor over another.

Equation 5: Score for Motors

𝑆𝑐𝑜𝑟𝑒 =
𝑀𝑎𝑥	𝐶𝑢𝑟𝑟𝑒𝑛𝑡
𝐶𝑜𝑠𝑡 ∗ 𝑊𝑒𝑖𝑔ℎ𝑡

61 | P a g e

4.3.10.3.1.1 Comparison and Score Results
Table 9: Specification Comparison of Motors

Description Weight Kv Max
current

Price Score

AX-4114C 330KV 180 330 28 16.6 9.37
4114-320KV Turnigy

Multistar
217 320 30 25.8 5.37

Turnigy Aerodrive SK3 -
4250-410KV

415 410 55 36.8 3.6

Turnigy Aerodrive SK3 -
4250-350KV

423 350 53 36.9 3.39

Quanum MT Series 4012
400KV

266 400 16 20 3.01

4.3.10.3.2 Selection Rationale
Based off of the overall score and the low mass of the motor and low cost,

we have chosen to use the AX-4114C 330KV. This motor will give us the necessary
torque required to move the vehicle at the speeds we need it to with some
additional overhead while being very cost effective.

4.3.11 Electronic Speed Controller (ESC)
SigSent utilizes ESCs to drive its motorized wheels at precisely controlled

speeds. Differential drive of the wheels enables steering of the unit and is
accomplished through setting the various wheels to rotate at dissimilar speeds.

4.3.11.1 ESC Requirements
• Each speed controller needed to be able to supply a constant output of 28

amps to enable the full power range of the motor it’s driving.
• Needs to be able to handle a 4s lipoly voltage input.

4.3.11.2 ESCs Under Consideration
• Turnigy MultiStar 32bit 30A Race Spec ESC 2~4S Naked
• Turnigy K-Force 30A Brushless ESC
• Hobby King 30A ESC 3A UBEC

Table 10: Comparison of ESCs Under Consideration

Part # MultiStar K-Force Hobby King
of Cells 2 – 4 2 – 6 2 – 4
Size 28 x 14 x 5 mm 59 x 24 x 7mm 54 x 26 x 11mm
Weight 9 g 38 g 32 g

4.3.11.3 ESC Selection
The Turnigy MultiStar 30A Race Spec ESC iwas the most appropriate

choice for SigSent’s speed controllers due to its small size and low weight. The

62 | P a g e

size and weight advantage stems from the ESC’s exclusion of a battery elimination
circuit, which is unnecessary with a 5V power supply already present on SigSent.
Additionally, the ESC can be purchased without any connectors installed, allowing
easier adaptation for use in SigSent.

4.3.12 Fuel Gauge
The fuel gauge is used to determine the remaining battery charge available

for the robot so that the user operating the unit will know its limits on distance to
travel and available remaining surveillance times.

4.3.12.1 Fuel Gauge Requirements
• Communicate with the microcomputer via I2C.
• Accurately measure a 4s LiPoly battery.

4.3.12.2 Gauges under consideration
• TI BQ34Z100-G1
• LT LTC2943
• Maxim Integrated MAX17205

Table 11: Comparison of Gauges Under Consideration

Part # BQ34Z100-G1 LTC2943 MAX17205
Communication
Protocol

I2C, HDQ I2C, SMBus I2C

Quiescent
Current

145 µA 80 µA 25 µA

Voltage Input 3 – 65 V 3.6 – 20 V 4.2 – 20 V
Packaging 14-Pin TSSOP 8-lead DFN 14 TDFN-EP or 15

WLP

4.3.12.3 Fuel Gauge Selection
The Maxim Integrated MAX17205 was initially selected as the most

appropriate fuel gauge for SigSent due to its low quiescent current and ease of
use. It boasts the lowest supply current while active, and unlike the BQ34Z100-
G1, requires no additional voltage regulators.

During the design of the fuel gauge PCB, the LTC2943 was instead
incorporated due to prior experience and comfort which enabled a quicker design
time.

4.3.13 Battery
SigSent’s mobile operation is enabled by a high-capacity battery. It needs

to have a large enough capacity to meet the operating time requirements specified.
Below are different battery types, estimated loads from our whole system, and
specific batteries we considered for use. One battery was chosen after objectively
comparing them all together.

63 | P a g e

4.3.13.1 Battery Chemistries Under Consideration
• Nickel-Metal Hydride (NiMH)
• Lithium-Ion
• Lithium Polymer (Lipo)

Table 12: Comparison of Battery Chemistries [46]

Chemistry NiMH Lithium Ion Lipo
Nominal Cell
Voltage

1.25 V 3.6 V 3.6 V

Gravimetric
Energy Density

60 – 120 110 – 160 100-130

Discharge Rate 0.5 C 1 C 1 C
Cycle Life 300 – 500 500 – 1000 300 – 500
Charging Rate 0.5 C 0.5 C 0.5 C

Lithium based batteries are most appropriate for SigSent due to their significantly
higher energy density.

4.3.13.2 Estimated Electrical Loads
Table 13: Estimated Electrical Loads

Part Typical
Current
Draw (A)

Max
Current
Draw

Typical
Operating
Voltage
(V)

Typical
Power
Draw
(W)

Qty Duty
Cycle
(% of
hour)

Typical
Hourly
Energy
(WH)

Servo 0.5 1.5 12 6 18 25 27
Motor 14 28 14.8 207.2 4 25 207.2
Microcomputer 1.5 2.5 5 12.5 1 100 12.5
Microcontroller 0.2 0.5 5 1 1 100 1
IMU 0.004 3.3 0.02 1 100 0.02
GPS 0.068 3.3 0.2 1 100 0.2
Speaker/Amplifier 1 1.6 5 5 1 5 0.25
Lidar 0.7 1 12 8.4 1 100 10
Light Source 0.9 14.8 10 1 100 10

4.3.13.3 Battery Requirements
• Must be able to supply 100 A of current continuously to support the highest

power mode.
• Must be able to fit inside SigSent’s abdomen.
• Must have a relatively high energy density and specific energy.
• Must be a single pack battery solution to maximize energy density and

minimize power system complexity.

64 | P a g e

4.3.13.4 Batteries Under Consideration
• MultiStar 912700006-0
• L&E Battery LND3S956
• Turnigy 9171001348-0

Table 14: Battery Comparison

Part # 912700006-0 LND3S956 9171001348-0
Capacity 10000 mAh 9500 mAh 6400 mAh
Nominal Voltage 14.8 V 11.1 V 11.1 V
Dimensions 160 x 65 x 36mm 155.0 x 44.5 x 41.0 mm 135 x 45 x 42 mm
Weight 804g 588g 485g
Discharge Rate 10 C / 100 A 65 C / 617.5 A 30 C / 192 A
Energy Capacity 148 W 105 W 71 W
Charging Rate 1 C 1 C 2 C

4.3.13.5 Battery Selection
The MultiStar High Capacity 10000mAh 4S Lipo pack (912700006-0) is the

most appropriate battery for SigSent due to its impressive specific energy, energy
density, and relatively low cost. Although its discharge rate is significantly lower
than that of the LND3S956 and 9171001348-0, the MultiStar can supply sufficient
current at an ample margin, and at a higher voltage.

4.3.14 Audio Amplifier
The audio amplifier was intended to boost the signal of the microcomputer’s

audio output and directly power the unit’s speakers.

4.3.14.1 Amplifier Requirements
• Needs to integrate with SigSent’s microcontroller. If discrete audio outputs

are not included in the microcontroller, functionality can be achieved with a
USB Audio Adapter: https://www.adafruit.com/product/1475

• Needs to be relatively power-efficient, using a Class-D amplifier.

• Needs to provide 8 watts output to a 4 Ohm impedance load.

• Needs to output sound with minimal harmonic distortion to ensure
comprehension of vocal commands provided through the speaker.

4.3.14.2 Amplifiers Under Consideration
• TI TAS5411-Q1
• Rohm Semiconductor BD28412MUV
• Maxim Integrated MAX9736B

Table 15: Comparison of Amplifiers Under Consideration

Part # TAS5411-Q1 BD28412MUV MAX9736B
Power Output 8 W @ 4 W 2x 8 W @ 8 W 12 W @ 4 W

65 | P a g e

Voltage Supply 4.5 – 18 V 4.5 – 13 V 8 – 28 V
Quiescent
Current

16 mA 32 45 mA

I/O I2C Boolean Boolean

4.3.14.3 Amplifier Selection
The TAS5411-Q1 was determined to be the most appropriate amplifier for

SigSent with its minimal quiescent current draw and design-friendly I2C control
architecture.

During the design stages of SigSent, an off the shelf USB speaker was
chosen for use instead of a component speaker. This eliminated the need for an
audio amplifier.

4.3.15 Speaker
A speaker is used to relay commands from SigSent’s operator to individuals

that the unit encounters. Additionally, the speaker can be used to play a siren to
deter trespassers or animals.

4.3.15.1 Speaker Requirements
• Suitable for environmental exposure. Water resistant, 0º C - 50º C in high

humidity.

• Responsive across the voiceband (300 hz - 3.4 khz).

• Relatively small so that it may be mounted on top of SigSent and directed
in its field of view.

• High efficiency so that the need for power amplification is minimized.

4.3.15.2 Speakers Under Consideration
• PUI Inc.’s AS07104PO-WR-R
• PUI Inc.’s AS07708PS-2-WR-R
• PUI Inc.’s AS06608PS-WR-R

Table 16 Comparison of Speakers Under Consideration

Part # AS07104PO-WR-
R

AS07708PS-2-
WR-R

AS06608PS-WR-
R

Frequency
Response

100Hz~20kHz 250Hz~10kHz 230Hz~12kHz

Dimensions 2.795" L x 1.614"
W x 0.984" H

3.032" L x 3.032"
W x 1.063" H

2.610" L x 2.610"
W x 1.142" H

Sensitivity 86.00 dBa @ 1W
/ 1 m ~= 92.00

dBa @ 1W / 0.5m

90.00 dBa @ 1W /
0.5 m

95.00 dBa @ 1W /
0.5 m

Rated Power 3 W @ 4 Ohm 4 W @ 8 Ohm 4 W @ 8 Ohm
Environmental
Envelope

-20º C ~ 60º C,
Water resistant

-40º C ~ 85º C,
Water resistant

-20º C ~ 50º C,
Water resistant

66 | P a g e

4.3.15.3 Speaker Selection
The AS07708PS-2-WR-R is the most appropriate speaker for SigSent due

to its sufficient frequency response, suitable form factor, sensitivity, and rated
power. It’s considerable environmental testing provides the most confidence for its
long-term reliability during operation outdoors.

Equation 6: Estimated SPL at 10 meters from the unit.

𝑆𝑃𝐿@MNO = 90 + 10(log4) − 	20 \log
0.5
10	_ ≈ 70𝑑𝐵	

With an appropriately matched amplifier powering the speaker at its rated
wattage, the speaker should output sound at 70 dB, well above the required 60
dB.

For the prototype build completed, we swapped out the desired
AS07708PS-2-WR-R with an actual USB speaker to reduce the number of PCBs
we needed to create and to minimize potential error. The USHONK USB Mini
Speaker was used in its place as it had seamless integration into the Raspberry
Pi’s workflow in Ubuntu MATE.

4.3.16 Microphone
A microphone is used for communicating vocal responses through the

SigSent robot. The human operator can speak into their microphone at their base
station which will then be projected from the robot’s attached speaker. Audio can
also be transmitted from the robot to the base station by a microphone mounted
on the vehicle so that the operator can communicate with agents nearby the robot.

4.3.16.1 Microphone Requirements
• Needs to integrate with SigSent’s microcomputer.
• Needs to minimize background noise in order to hear a subject’s speech

outdoors.
• Needs to survive outdoor environmental use.
• Needs to be relatively small.

4.3.16.2 Microphones Under Consideration
• MicW iShotgun
• PlayStation Eye
• Rode VideoMic Me

Table 17 Microphone Comparison

Part # iShotgun PlayStation Eye VideoMic Me
Frequency
Response

100Hz~18kHz ? 100 Hz – 20 kHz

Dimensions 136 l x 8 d mm 80 x 56 x 65 38 x 21 x 80 mm
Sensitivity -42 dB ? -33 dB
Cost $200 $7 $60

67 | P a g e

4.3.16.3 Microphone Selection
The PlayStation Eye’s incorporated microphone array is the most

appropriate device for SigSent based on testimony of users utilizing the device for
similar project goals. The device is appropriately sized, easily integrated through
its USB connection, and designed for speech recognition.

4.3.17 Lighting System
The lighting system is used to provide adequate lighting for the SigSent’s

vision-based operations at night. It was mounted on the robot to light up the area
around the robot. The computer vision modules rely on visibility, and the human
operating the unit will need enough light to get a proper image from the robot to
view the area it is surveilling.

4.3.17.1 Requirements
• Suitable for exposure to the expected area of operation, meaning at least

IP67 certified with an operating temperatures of 0º C - 50º C.
• DC powered.
• Efficient.
• Light weight.
• Appreciably bright to light the area in front of SigSent for acceptable color

vision from the camera

4.3.17.2 Light Sources Under Consideration
• superbrightleds.com AUX-6W-RE120

• superbrightleds.com AUX-20W-Dx

• superbrightleds.com WL-17W-RE60
Table 18 Comparison of Light Sources Under Consideration

Part # AUX-6W-RE120 AUX-20W-Dx WL-17W-RE60
Dimensions 3.67” L x 0.92” W

x 2.05” H
3.95” L x 2.1” W x
2.39” H

6.3” L x 2.2” W x
1.78” H

Weight 0.27 kg 0.43 kg 0.41 kg
Brightness (L) 725 1800 1300
Beam Angle 120º 60º 60º
Power (W) 6 20 13
Environmental
Envelope

IP67 IP68 IP67, -40º C ~ 56º
C

4.3.17.3 Selection
For a light source mounted on the front facing surface of SigSent’s

abdomen, the WL-17W-RE60 light bar is most appropriate, with relatively good
power efficiency, an appropriate beam angle which isn’t dispersing the light too
much and sufficient environmental protection.

68 | P a g e

4.3.18 Power System
Figure 21: Power Flow Diagram

4.3.18.1 Solar Panels
A solar panel was explored as a potential candidate to provide an extended

period of life for the SigSent robot while it undergoes outside surveillance during
the day. The solar panel would need to take weight and power into account to
provide any significant benefit to the SigSent’s operation.

4.3.18.1.1 Potential Options
• DFRobot FIT0333
• Seeed Technology Co. 3W Solar Panel 138*160

4.3.18.1.2 Requirements
• Surface area smaller than the robot’s abdomen, where it’ll be mounted. If

As many units as possible will be arranged to fit on the surface.
• Suitable for area of operations temperature range.
• Relatively efficient.

69 | P a g e

4.3.18.1.3 Comparison Table
Table 19 Solar Panel Comparison

Part # FIT0333 3W Solar Panel 138*160
Environmental
Envelope

-40º C ~ 80º C,
“Performance: corrosion,
moisture”

"Robust sealing for out
door applications”

Dimensions 6.500" L x 1.496" W x
0.020" H

5.43” L x 6.3” W x 0.060”
H

Power Density 60 W / m2 135 W / m2

4.3.18.1.4 Selection
The 3W Solar Panel would be the more suitable option for our purposes

because of its significantly higher power density, which will enable it to provide
more energy to SigSent throughout the day.

In order to reduce design complexity, cost, and weight, the solar charging
system was not implemented.

4.3.18.2 Solar Charger
If a solar panel were included in SigSent’s final design, a solar charger

would have been necessary to handle the charge produced by the solar panel, and
distribute the current produced between the battery and spontaneous load.

4.3.18.2.1 Requirements
• Needs to be able to charge a 4 cell LiPo battery.
• Needs to be able to handle at least 3 W of solar power.

4.3.18.3 3.3 V Regulator
• Needs to provide at least 100 mA of current.
• Needs to have mild ripple.
• Needs to accept at least 16.8 V input.

4.3.18.4 5 V Regulator
• Needs to provide at least 30 A of current.
• Needs to have at most mild ripple.
• Needs to accept at least 16.8 V input.
• Needs to be highly-efficient to minimize heat dissipation

4.3.18.5 12 V Regulator
• Needs to provide at least 20 A of current.
• Needs to have at most mild ripple.
• Needs to accept at least 16.8 V input.

4.3.18.6 Light Switching Transistor
• Needs to be able to switch at least 2 A at 16.8 V or more.

70 | P a g e

4.3.19 Signals Protection System
A signals protection system is wanted, especially on any signals going into

or coming out of the Raspberry Pi since the GPIO pins are very sensitive to
transients and overvoltage’s. Since this platform is a prototype where lots of
manual interactions will be going on, chance of an ESD event or a miss-wiring are
high which means that the protection PCB will be significantly useful in
safeguarding our project.

To protect SigSent from ESD events and transients a very common and
well-respected system is to use Zener clamp diodes in a way specified by NXP for
i2c:

Figure 22: Example of i2c ESD Protection [47]

To protect general GPIO Ports from ESD and overvoltage events is to use
normal Zener diodes in a pair for bi-directional communication:

71 | P a g e

Figure 23: Example of GPIO ESD Protection [47]

To Protect our TTL Serial buses, NXP Recommends similar Zener Clamping
Diodes explained in the below diagram:

Figure 24: Example of TTL Serial ESD Protection [47]

72 | P a g e

And Finally to protect our USB Lines from ESD Events, NXP Recommends the
following array of Zenner clamping diodes.

Figure 25: Example of USB ESD Protection [47]

Beyond ESD Protection it is important to protect the power lines of our
devices to prevent things such as miss-wiring the boards or plugging in a power
source in the wrong direction. A common a method to efficiently prevent reverse
polarity events is to use a PMOS connection like described in the figure below
created by Texas Instruments:

Figure 26: PMOS FET in Power Path for Reverse Circuit Protection [48]

73 | P a g e

To Prevent an overcurrent situation, fuses will strategically and minimally be
placed on all power buses to prevent an overcurrent event either damaging the
battery, destroying sub systems, or causing an electrical fire.

4.3.20 Base Station
The base station computer will encompass the hardware necessary to

communicate with the SigSent unit. Any item necessary in the remote operation of
the robot by the user will be listed below with its relevant requirements and final
selections.

4.3.20.1 Laptop
The laptop is where the GUI program will be run that communicates with

the SigSent robot. The program is not computationally expensive. It allows for a
connection to the robot over Wi-Fi, a video feed from the robot, remote operation
through a joystick, and debugging over the air. The actual computation and
calculations performed for the operation of the robot’s autonomous intelligent
systems and control systems are all being done on the actual robot’s
microcomputer, not the base station laptop.

4.3.20.1.1 Requirements
• Bright enough screen to be easily visible outdoors so that the operator can

stay close to SigSent if necessary.
• Man portable so that a user can easily bring it with them to the area of

operation.
• Can reliably run ROS Kinetic Kame and rqt, the software used to

communicate instructions to SigSent.
• Can connect to the same Wi-Fi network as SigSent.
• Enough battery life on one charge to last as long as SigSent does on one

charge, so that SigSent isn’t left stranded because its controller is unable to
communicate instructions to it.

• Contains a USB port compatible with the joystick.
• Outputs headset audio and receives microphone input.

4.3.20.1.2 Selection
A Lenovo ThinkPad laptop on hand will be utilized as the base station. It

meets the requirements listed above and will reduce the cost of the unit for our
development.

4.3.20.2 Headset
A headset is necessary for listening and communicating through the

SigSent robot. The base station allows for the user to listen to audio being received
by the robot’s speaker. The microphone on the headset will be used as an audio
input into the base station GUI program that will be outputted from the SigSent
speakers so that vocal responses can be projected from the robot.

74 | P a g e

4.3.20.2.1 Requirements
• Ergonomic and comfortable to wear outdoors for an extended period of

time.
• Contains a microphone so that the operator may communicate vocal

commands over SigSent’s speaker.

4.3.20.2.2 Selection
Basic iPhone headphones were used on a Macbook Pro running Ubuntu

16.04 in a VM to communicate with SigSent over ROS audio_common packages
that were responsible for relaying audio between the two machines.

4.3.20.3 Joystick
A joystick is used to facilitate the remote operation procedures through the

base station GUI program. The joystick brings an intuitive method of moving the
robot by the human operator. By simply tilting the joystick, the robot will move
accordingly, as controlled by its control system and AI intelligent system.

4.3.20.3.1 Requirements
• Ergonomic so the robot can operate by the same user daily without strain

from repeated use.
• Intuitive operation and translation of control inputs into XY motion so that

operators can begin using SigSent with minimal training.
• Interfaces with the base station via USB cable.

4.3.20.3.2 Selection
A joystick on hand, the Logitech Extreme 3D Pro Joystick will be used. It

contains more than enough usability for our project with multiple axes of rotation
(pitch, yaw, roll).

4.3.20.4 Router
In order to communicate with the SigSent unit at distances greater than

possible with an ad-hoc network from the basestation, a wireless router can be
connected to the base station laptop. A router on hand, a Linksys WRT54GC, was
initially utilized to minimize project cost. To maximize range and throughput of the
router, it should utilize its fastest available protocol, 802.11g, and a channel on the
2.4 GHz band. Power for the router will be provided through a USB cable from the
base station’s laptop. With this configuration, bandwidth should be sufficient to
support streaming of video, audio, and diagnostics, estimated to be approximately
5 Mb/s [7]. The router will utilize WPA2 Personal (AES) security to ensure
confidentiality and integrity of communication between the base station laptop and
SigSent unit.

The router was swapped out with the Tenda AC1200 near the end of the
SigSent development period. The Tenda featured longer range and the ability to
easily bridge its connection from the UCF Guest network. This allowed SigSent to
have network access anywhere on campus that the UCF Guest network was

75 | P a g e

available. One of the machines on the network simply had to authenticate the
Guest settings and each machine connected to the bridged network would have a
connection from there on out. This bridging capability was not initially accounted
for as we intended on wiring the router to a nearby ethernet port, but it came in
handy upon discovering the functionality a few days prior to finishing the project.

76 | P a g e

4.3.21 SigSent’s Sensors and Non-Mechanical Parts

Figure 27: List of Parts with Annotations

77 | P a g e

5 DESIGN

5.1 DESIGN SUMMARY
After researching the potential parts for consideration in section 4, each

sensor and individual component was objectively scored/compared such that the
most fitting option under our design constraints was chosen. These modules will
be used in the design of SigSent. Below are high level overviews on the hardware
and software in block diagrams that denote each module and its division of labor
among each team member according to their individual specifications. The
hardware schematics are designed and discussed below in their respective PCB
sections. The software design decisions are discussed and followed by UML class
diagrams and use case diagrams to scaffold out the individual, complex modules
for SigSent’s code.

5.2 HARDWARE DESIGN
Because of the immense amount of components involved in SigSent’s

operation, the hardware design includes schematics on the integration of each
sensor and its supporting hardware in the robot. The design of each schematic
follows our design constraints and standards previously mentioned, and the
schematics include each relevant component that was selected in our hardware
research.

5.2.1 High Level Hardware Block Diagram

Figure 28: High Level Hardware Block Diagram

5.2.2 Hardware Design Overview
Hardware Design is split into five main section: wheels, legs, power source,

main sensors, and base station.

78 | P a g e

 The Wheels and Legs sections closely mirror each other, in the motor
section, we have four high torque brushless motors each connected to an
Electronic Speed Controller (ESC) which inputs a PWM and outputs the proper
phasing required to drive the DC brushless motor, and with the servo we input a
PWM signal and the servo motor then rotates to a predefined angle attached to
that PWM value. There is also a current sensor monitoring the amount of current
going to the motor or servo motor to detect whether or not the motor or servo motor
is completing its desired task. Both the PWM signal and the current sensor output
are converted into an I2C Signal which passes through protection circuitry and
goes to the microcomputer which will input and output data to and from the motors
and servo motors.

In the power source section, we have the battery which sends data through
a Fuel Gauge which then outputs the status of the battery (voltage, current,
coulombs consumed) through the I2C interface, passing through I2C protection
circuitry and then to the microcomputer which uses the battery data to send alerts
or modify its path to be more energy efficient focused.

For the main sensors section, we have a USB hub connected to the
microcomputer which connects most of the sensors together such as the camera,
lidar, the wireless network, IMU, and GPS.

The base station section is separate from the robot and acts as a control
point for the robot’s supervisor to access, control, or receive alerts from the robot
- the base station stays in near continuous communication with the robot through
a wireless connection.

5.2.3 Pi Hat PCB

Figure 29 Pi Hat Diptrace layout and physical board

The Pi Hat as shown in Figure 29 is a custom circuit board that directly connects
onto the Raspberry Pi’s main stack connector. The purpose of the board is to
create an easy to use “unifying” board where all sensors and devices are
connected that need to interact with the Raspberry Pi. Inside the board contains

79 | P a g e

an EEPROM that identifies the board connected to the Pi as an official PiHat [49]
as defined in the Raspberry Pi Documentation. There is reverse voltage protection
on all input power lines to ensure that devices downstream of the hat are protected
against a mis-pinned cable or bad power supply. There are low capacitance ESD
protections on all signal lines going to the pi to prevent any ESD events, which
could be common on a prototype project such as this. The device also has several
test points designed to work well with oscilloscope probes – specifically on the I2C
nets to help diagnose any communication troubles. The decision was also made
to expose an extra 8 GPIO pins from the Pi for future proofing or backups in the
event the scope or understanding of the project changed once the board had been
made. Partly because of the design of this board, there we’re no sensors or other
devices lost from ESD events, and even after a slight change which required an
extra GPIO pin, this board was still able to be easily and effectively used.

5.2.4 MCU PCB
The MCU PCB allows for direct communication to the transportation layer

from the sensor layer. This board features an ATmega2560, headers to connect
to the Raspberry PI over SPI, for ICSP to program the MCU via another Arduino
Mega, and to connect to the motor ESCs. The PCB features all of the additional
hardware needed for the ATmega chip, like the 16MHz oscillator crystal. A reset
button is also implemented for ease of use.

Figure 30 MCU Diptrace layout and physical board

5.2.5 Servo Regulator PCB
The Servo Regulator PCB shown below provides a stable 12V output for

the 3 servomotors of a corresponding leg. Each of SigSent’s six leg necessitated
a separate regulator board. The boards also passed the serial command line from
the microcontroller through to the servomotors of the leg. Input power is provided

80 | P a g e

by the battery, and reverse voltage protection is provided by an N-channel
MOSFET, the AO4411, and overcurrent protection is provided by a 7.5A fuse.

The regulator is a buck converter incorporating TI’s LM25116 controller.
Two MOSFETs, the n-channel IRF8714TRPBF and the n-channel CSD18542KTT
were used to switch output current.

The regulator design was developed through the use of TI’s WEBENCH
software.

Figure 31 Servo regulator Diptrace layout and physical board

5.2.6 IMU Module PCB
The IMU module PCB covers the connection between the IMU and the

microcomputer such that its values can be read by the intelligent systems software
modules to aid in the terrain classification based on the vehicle’s orientation and
angular acceleration (movement due to rough terrain).

81 | P a g e

Figure 32 IMU Diptrace layout and physical board

5.2.7 Battery Fuel Gauge PCB
An LTC2943 fuel gauge IC is used to monitor SigSent’s battery, measuring

its voltage, calculating its current draw, and estimating its remaining charge.
Electrical measurements are made across a 300µW shunt resistor. Measurements
are communicated to the Raspberry Pi through I2C, which can be toggled by an
included TCA9617B level-translator.

Figure 33 Fuel gauge Diptrace layout and physical board

5.3 MODULAR LAYOUT
SigSent’s hardware layout was done modularly such that each layer would

have its own role in operation and could be easily maintained. Additionally, the top
sensor layer is easily removable, secured by Velcro, allowing the user to move the
brains of the robot to any unit that they would like. The power distribution layer sits
below the sensor layer and is responsible for connecting the regulator boards and
the devices to the bus bars adjacent to the battery. The locomotion layer holds the

82 | P a g e

hardware that moves SigSent. The MCU board sits here where it is then connected
to the servo daisy chain as well as the four ESCs.

Figure 34 Modular design layout

5.4 SOFTWARE DESIGN
SigSent’s software will be organized modularly for each discrete system. The

high-level planning of the software is discussed with accompanying block
diagrams, and UML for class diagrams and use case diagrams. The software is
designed with the highest usability and maintainability in mind. Design principles
and architectures are compared and selected based on their strengths for SigSent.

5.4.1 High Level Software Block Diagram
The software block diagram in Figure 35: High Level Software Block

Diagram displays the modular design of the software. The division of labor is also
visible by the colors denoted in each block.

83 | P a g e

Figure 35: High Level Software Block Diagram

5.4.2 Software Design Overview
The software encompasses the code for the autonomous performances on

the robot. The design processes for development are discussed below. Each
development procedure was chosen for the most streamlined development
process.

5.4.2.1 Design Methodologies
Our team used the Scrum framework for agile software development. It is

used commonly in small teams of rapid development cycles. While developing,
daily 15-minute meetings are conducted where each developer discusses their
progress from the day prior as well as what tasks they plan to tackle on that current
day. Every two weeks, a sprint planning meeting is conducted so that a new set of
tasks can be allotted for the two-week development cycle. These sprints are
exactly as they sound, a fast, brief time span, where each developer takes a task
from the remaining list of those allotted and tries to complete them all before the
end of the two-week period. A Scrum Master, who acts as the manager of sorts,
keeps the group on track and focuses on improving the team’s velocity over the
development time. At the sprint planning meeting, a retrospective is performed on
the previous two weeks where the Scrum Master will help guide the team in a
discussion on the main events of the sprint. If the velocity of the team was low, the
team must figure out why that occurred and what can be changed to improve that
in the future. The sprint retrospective can then be demonstrated to the product

84 | P a g e

owner or stakeholder if necessary, however for our time, that will not be needed.
Although there will only even be a couple programmers working on a part of the
project at once, having a design methodology outlined will keep the team on track
and will also expose everyone to a real software engineering environment and
show how useful agile methodologies are in the workplace [50].

5.4.2.2 Technology
The intelligent system technologies used in SigSent’s software backbone

will consist of the artificial intelligence software suite provided by NEAT’s
neuroevolution on an artificial neural network, as well as the terrain classification
used to define the nearby landscape that the robot is navigating across. OpenCV
will be used as well in the stack to provide detection of movement of intruders to
alert the user monitoring the SigSent robot. ROS will be used to manage the control
signals to and from the robot’s sensors and motors. The High-Level Software Block
Diagram in 0 demonstrates how each technology is associated with the other
significant modules to our project. There are some extensions viewable in the block
diagram that are not essential to the project at this time. The Path Planner module
will be used for future work. It relies on the success of the control systems and
NEAT AI modules and can only be integrated when they are fully functional.

5.4.2.3 Architecture
The software architecture follows a singleton design pattern for each

intelligent system. The NEAT system is managed by a single overarching class
that will do the evolutionary computation work as well as communicate with the
ROS modules. In Singleton’s, if a reference does not exist, it is created and
returned to the user. If a single static reference already has been created, then a
new one is not created; The single reference is returned instead. By following the
singleton design pattern, we ensure that only one single reference to the ANN will
be used everywhere in the code. Singletons are necessary when the programmer
must enforce this idea. Design patterns like this can strictly followed by forcing it
upon the code rather than on the developers and users. The machine learning
system that handles the terrain classification will also feature a singleton for the
same advantages.

Figure 36 Singleton example. Public Domain, https://commons.wikimedia.org/w/index.php?curid=1484985

85 | P a g e

The publish-subscribe (also informally called pub-sub) model is used
heavily as well as it pertains to ROS. In ROS, there are nodes that publish topics
that others can subscribe to. In this case, data from SigSent’s sensors and
intelligent systems can be easily passed between fragments of code by simply
“subscribing” to the whichever information is needed by that node/class. The
publish-subscribe design pattern is very scalable. In the case that new, more
intelligent systems are provided, or additional data inputs are necessary, new
nodes in the dependency/usage graph can be added. There can also be additional
complexity in how the data is used and filtered by the subscribers. If many nodes
need to strip the sensor data to a new, parsed format, a new node can be added
that performs that filtering and then publishes this new data for others to take
advantage of.

Figure 37 Sample diagram representing basic Pub-Sub

5.4.2.4 Class Diagrams
Class diagrams help visualize a lower level of the program’s structure (while

still at some high level of abstraction). In the planning stages of software
development, it is important to plan out what classes will be necessary and how
they will be managed. Inheritance and OOP concepts like polymorphism can be
discussed in this stage such that the program can be developed in the most
readable/usable manner. Below are the two intelligent systems modules with plans
for their possible methods and instance variables.

5.4.2.4.1 Terrain Classifier Class Diagram
The terrain classification system was intended to be much simpler than the

neuroevolution performed in the mobility mechanism decision process. A simple
Artificial Neural Network (ANN) is created and trained against a test set of data
(sample or artificially created data mimicking that from the LIDAR unit and camera)
with outputs for what type of terrain those inputs should be classified as. By running
a backpropagation algorithm, described in a former research section, the ANN has
its weights updated such that training set of data passed to the train_classifier
method is accurately classified. Backpropagation updates the ANN’s weights by
calling the update_weight method in the ANN’s data structure class. After training
the classifier, the classify_terrain method should be able to precisely decide what
terrain is being imaged by the inputted LIDAR and camera data. These inputs are
passed to the ANN housed within this class where the output is given by the
compute_output method. The main classifier class must take the int output from

86 | P a g e

this method and choose one of the enum values for TerrainType, whichever one
corresponds to the ANN’s output.

For SigSent, this approach was not taken in its prototype build, however its
layout is displayed below.

Figure 38 TerrainClassifier Class Diagram

5.4.2.4.2 NEATManager Class Diagram
The NEATManager class is used to communicate between the ROS

backbone and with the multi-terrain NEAT classifier. There are three main ways to
run the manager, as a training session with a provided list of sample data (like
when being run OFF of the robot, in a simulation), with live data streamed from
ROS containing information about what is happening at discrete ticks in real time,
or as a normal run where one-time step’s input is sent and run through the ANN,
with a single output being returned to enable or disable to multi-terrain setting. The
ROS nodes responsible for this knowledge transfer will carry sensor data and
mobility classifications to and from the NEATManager.

There are also useful methods for outputting data on the current
feedforward ANN that exists in the manager. The ANN can be outputted as an svg
image, displaying the nodes and weighted connections in a graph. The average
speciation of the last training session can be shown as well. This will display how
significantly different network topologies propagated throughout the search so that
we can decide if the search space was properly explored to find the current best
network. The statistics of the latest training session can be viewed as well. The
output_stats method can be used to display this information, regarding best
fitness values discovered, at what iteration they were found in, and training rates
for the improved learning that took place over time. This can be helpful in seeing if
the training was effective in improving over time, if suboptimal (local maxima)
solutions were found and escaped from, and depending on the concavity of the
fitness scores, whether our number of generations in training the NEAT ANN was
long enough. If the fitness was still continuously improving, training time can be
added such that we do not finish running the session until some horizontal
asymptote is found and the fitness has leveled off. Positive concavity would show

87 | P a g e

that the fitness is increasing more over time and that there is still a lot of hill
climbing for the intelligent system to complete to find the best-fit ANN topology and
weight combination.

Due to the items outlined above in 4.2.6.3, the NEAT code discussed was
not implemented, but is still referenced here for future work.

Figure 39 NEAT Class Diagram

5.4.2.5 Use Case Diagrams
UML Use Case diagrams are a high-level representation on who will interact

with the software (known as actors) and which features they will be able to access
and enable within the program’s bounds. The interactions between the human
user, base station controller, and the SigSent robot are noted below. In most UML
use case diagrams, relationships for “include” and “extend” are shown in the actor
associations. Since our actors have many single actions with little association
necessary to denote, our use case diagram showing each module’s abilities and
program responsibilities does not include this extraneous relationship [51].

The user’s actions are displayed as what steps they can take through the
GUI program to interact with the base station, and through that, the SigSent robot.
Their first action necessary to work with the robot is to launch the base station
program (assuming that the base station is turned on and fully operational through

88 | P a g e

testing). The user can speak into their microphone and listen from their speaker
with the headset peripheral to use the audio communication capabilities. The user
can also use the GUI to view the camera feed from the robot. This is the user’s
main source of sentry abilities. They will be able to do surveillance remotely with
the robot in this manner.

The base station program is responsible for being the effective middle man
medium through which the user communicates with the robot. The base station is
connected to the robot through Wi-Fi from which it gains the necessary statistics
and diagnostics from the robot’s sensors. These diagnostics are shown visually in
the GUI mockup in the prototyping section 0. The diagnostics include information
on remaining battery life, IMU values, terrain classification by the terrain classifier
class shown above in its class diagram in section 5.4.2.4.1. The base station will
transfer the joystick inputs coming from the joystick to the robot to be used in
moving the unit according to the direction of the joystick.

Finally, the SigSent robot has its own level of interaction with its features.
Each action it is associated with is related with its high-level feature list described
from the requirements and objectives. The SigSent robot will send audio using its
local microphone mounted on the robot to the base station. The audio will be sent
over the Wi-Fi connection it has established with the base station. The robot will
output audio from the user’s microphone on the base station headset via the
robot’s speakers. The robot will be moved through the TeleOp feature whenever
the user is using their joystick and enabled the TeleOp mode, rather than the
Sentry mode, in the base station’s GUI program. Only when these conditionals are
made true will the robot be moveable from the base station’s joystick commands.
The robot’s sensor information is sent to the base station in real-time for active
debugging and for ease of use. Without information like the battery life, the user
would not be able to effectively operate the robot without worrying about the robot
becoming stranded or failing while at work in a mission critical situation. The
SigSent robot will be sending raw values for its sensors to the base station to lower
the computational load on the robot’s microcomputer and microcontroller operating
environment. The base station GUI program will handle any necessary sanitization
of inputs and beautifying the outputs to be as readable as possible. Finally, the
SigSent unit will be changing its mobility mechanism dependent on the NEAT
artificial intelligence module in the intelligent systems section. This is the main,
sophisticated operation of the robot featured in SigSent.

While these actions associated with each operating actor seems minimal,
the infrastructure supporting each miniscule action contains significant overhead
in discrete calculations and CPU computation, and code supporting it all. The class
diagrams outline the software’s high-level plan as “code” while the use case
diagrams note what each system’s level of interaction is and their possible actions
they may take.

89 | P a g e

Figure 40 UML Use Case diagram on User, Base Station, SigSent interaction

5.4.3 State Machine
SigSent has three main states: Sentry State, Patrol (Walk Path) State, and

Interface State. There are also be several other meta states such as Alert, and
Status.

In Sentry State, SigSent stays motionless in a designated spot and stands
watch while processing camera and lidar data looking for anomalies and unknown
behavior. Upon detection of any unknown behavior the state will exit and change
to the alert state.

In the Patrol (Walk Path) State, SigSent walks along a preprogrammed path
(a set of GPS waypoints previously programmed) and sends those goals to the
path planner which determines the ideal path for SigSent to take depending on
priority between time, energy, and risk to robot. Once the path planner determines
the ideal path it will send a vector to the Active Suspension Program which will
then calculate the ideal values to send to its motors and suspension system based
on various sensor data and the output of a NEAT ANN trained to determine which
terrain mode the robot should use. Upon detection of any unknown behavior the
state will exit and change to the alert state.

90 | P a g e

In Interface State, SigSent can send status and telemetry to the base station
containing information such as battery percentage, live streaming the camera on
SigSent, and viewing the current state of the NEAT ANN. In Interface State the
robot can also be programmed with a new GPS waypoint path, teleoperated, or
have the operator's voice transferred to output on the robot’s speaker.

the Alert State is only entered when either the sentry or patrol state detect
a human presence. When this happens, the robot will send an “ALERT” signal to
the base station where the base station will be alerted to the unknown behavior.

The Status state is only entered when the robot has been placed in a
situation that the robot deems needs human intervention but is not an alert. Things
such as low battery, stuck in terrain, or otherwise unknown or diagnostic mode. In
this state GPS beacons are sent to the base station to better help humans find the
robot.

5.4.4 Base Station

Figure 41: Base Station GUI Diagram

A base station is used to communicate with and remotely operate the robot.
Alerts and warnings from the robot encompassing low battery levels and motion
detection will always appear on the main screen of the GUI. The GUI is accessed
by a single administrator log-in manually created when setting up the system to
prevent prying eyes. The user can selectively view the status of the vehicle
(including battery levels, raw sensor data, and the current CPU load), watch a
streamed video feed from the robot’s camera, and remotely control the robot with
a Logitech Flight Stick (Extreme 3D Pro Joystick). The TeleOp control also allows
for the user to speak into a microphone at the base station that will then project the
audio from the robot’s attached speaker.

5.4.5 SPI Communication
The Raspberry Pi communicates with the MCU over SPI. A header byte

message is sent that details what commands will follow. The header is necessary
so that the MCU knows what bitmasks to use to parse the bytes.

91 | P a g e

Figure 42 Bitmask header example

 As shown in Figure 42 Bitmask header example, the byte will have two of
its eight bits set to a value of 1 to signify what kind of message will be following the
header. Two of the most significant bits were left unused for future proofing our
design. This allows us to add another possible command in the future without
changing our existing message structure while also keeping a hamming distance
of four among the entire code set of the three different message types.

 The hamming distance should be maximized to preserve functionality in the
case of errors in the data transmission. Although errors are not anticipated in a
wired SPI network as we are using, errors should be minimized to avoid damaging
the robot or nearby pedestrians if an incorrect command is parsed and run. With a
hamming distance of four, an error of three bits can be detected and avoided. A
one bit error could be corrected, though correction was not necessary for our
application [52].

 The messages that follow use a similar convention, using set bitmasks to
define some command while also maximizing the hamming distance among the
set. The tables below outline what each command’s message sequence
contained.

Table 20 Walking SPI messages

Walk Header (Byte one) 00001100
Forward (Byte two) 00000000
Left (Byte two) 00001111
Right (Byte two) 11110000

Table 21 Driving SPI messages

Drive Header (Byte one) 00000011
Forward (Byte two) 00000000
Left (Byte two) 00001111
Right (Byte two) 11110000
Backward (Byte two) 11111111
Speed (Byte three) 00000000 -> 11111111 (Range)

92 | P a g e

Table 22 Mobility change SPI messages

Change Mode Header (Byte one) 00110000
Enter Driving Mode (Byte two) 00000000
Enter Walking Mode (Byte two) 11111111

5.4.6 NEAT

Figure 43: NEAT ANN Diagram

 Using the NeuroEvolution of Augmenting Topologies (NEAT) library, the
robot could learn to alternate between mobility types based on the environment it
is traversing. Throughout the learning phase, NEAT will create Artificial Neural
Networks (ANNs) that a Genetic Algorithm (GA) will use and score based on their
performances. Each ANN is used in a test environment where sensor values are
passed as inputs into the network to receive some desired output values. A camera
and LIDAR will be used to identify what kind of terrain the robot is moving over,
which is then sent as an input into the network. The IMU will pass its rotational
acceleration values as a second input. The output is a binary value of what type of
mobility mechanism to engage. The best ANNs are used to create a new
population of networks, using popular genetic operators from biology, including
crossover and mutation. Crossover occurs more frequently, moving values from
performant networks to create successful offspring. Mutation continues to add
diversity to the population so that NEAT properly explores the domain’s search
space.

Figure 44: Example Generated Neural Network

93 | P a g e

In the example above, the gray squares are the input nodes and the blue
circles are the output nodes. This minimal example was performed in a command-
line environment using a 2D grid as the environment, where a robot is an object
on the map (with a location designated by its x and y coordinate on the grid) and
has access via “sensors” to its four neighboring cells in each compass direction in
a non-toroidal map. The four neighboring cells are inputs into the ANN. Four of the
five outputs correspond to the future direction the robot will be headed in, where
the node with the highest output value decides what direction the robot takes. The
final output node chooses what mobility type the robot will enter prior to moving. If
the robot attempts to move onto a cell labeled as being a “rocky” environment, it
must have the proper mobility mechanism engaged before it can actually move
onto the new cell. A fitness score is assigned based on how far the robot travels,
as well as how many unique cells it visits. Based on this fitness, this ANN can be
compared to the performances of the other ANNs in the GA’s population to decide
on what network topologies will continue to proliferate and what search directions
should be pruned.

As shown in the graph to the right Figure 45: Fitness of the Example
Network, the average fitness is steadily growing while the best seen fitness value
makes jumps whenever a new, well-performing ANN is discovered. A better ANN
results in a better “brain” controlling the robot. Higher fitness values can be
achieved by modifying the NEAT parameters to be more optimal for this specific
use case. The generation limit should be increased until the fitness levels off at an
acceptable value. Additional time should also be considered to account for the GA
struggling to break away from suboptimal extrema.

Figure 45: Fitness of the Example Network

5.4.7 Kinematics of Movement
In order for the robot to know how to walk, an algorithm is needed so the

robot can figure out how to move its legs. The robot can’t just flop its legs around
in a random fashion as this would not guarantee a stable movement for the main

94 | P a g e

body of the robot. It also can’t have hard coded movements for its legs as this
would not allow for a robust and adaptive mode of mobility, and would spell disaster
as the robot would hit rough terrain with heights and obstacles unknown and
inevitably fall over. The way to solve this is with kinematics of movement/rotation.
With techniques in this field, a model and algorithm for an individual leg, then for
the chassis with all the legs can be created. This would be converted into code for
the on-board computer to handle the desired movements. This algorithm will then
be tested and validated in Gazebo until it is tuned for the Ideal movement scheme
for the robot.

These models and algorithms of the kinematic system of the robot will be
created using two concepts called forward kinematics and inverse kinematics.

5.4.7.1 General Set-Up
Our robot’s system is comprised of six legs, each with three degrees of

freedom. This ends with a total of 18 degrees of freedom for our system. To start
the calculations, we need to simplify the system down to its non-
redundant/irreducible state. That is one leg with three joints or three degrees of
freedom as shown in the figure below: Figure 46: Diagram of a single leg of SigSent
Robot demonstrating three jointed members.

Figure 46: Diagram of a single leg of SigSent Robot demonstrating three jointed members.

To simplify it even further we can look at the outer two joints of the leg
excluding the joint connecting directly to the chassis, which makes for a problem
with only two degrees of freedom as shown in the figure below: Figure 47:
Kinematic diagram of two degree of freedom linkage system [53]. The paper
reference for the figures below were modeling a robotic arm but the it still applies
to our robot leg if you think of the first joint as the origin instead of the base of the
system.

95 | P a g e

Figure 47: Kinematic diagram of two degree of freedom linkage system

This system can now be reduced down to a representation linkage system with
linkage members as lines and joints as connecting nodes. From there the simple
linkage dimensions can be derived from simple geometry and trigonometry in an
XY cartesian coordinate system or even a radial/circular coordinate system. From
this we are able to visually see and represent the end point or the robot’s end
effector for the linkage system as point, P. We also label all measurements such
as the lengths of the linkages, l, and angles of the of the linkages with respect to
our frame of reference and relating the subsequent dimensions of all linkage’s end
effects that cause the position of the final end effector. This is shown in the figure
below: Figure 48: Trigonometric kinematic diagram of two degree of freedom
linkage system [53].

Figure 48: Trigonometric kinematic diagram of two degree of freedom linkage system

Our reasoning for this simplification is that the joint that we are excluding
only deals with rotation in a purely z-axis motion, while the other two joints dictate
the extension of our legs and where they will fall on the ground. Thus, making it
that these two joints are responsible for the contact with the ground to ensure a

96 | P a g e

firm foot hold and in the end balance of the overall system, the excluded joint ends
up contributing more to the directional movement of the system. While these
assumptions previously stated for the simplification do hold true in the case
presented, they will not always hold true when moving the robot over rough and
rugged terrain, but for the fundamental derivations we will be looking at the
simplified two degree of freedom model to start. This model allows us to solve for
our scenario via trigonometry.

A common method that is used represent and solve for these linkage
measurements is the Denavit-Hartenberg parameters. “These are four parameters
that are associated with a particular convention for attaching reference frames to
linkages of a spatial kinematic chain. [54]” The four parameters that define the
Denavit-Hartenberg model are the link length (ai), link angle(αi), link offset(di), and
joint angle(θi). These four parameters relate the next link to the current link with
their respective frames of reference. This is shown in the below figure: Figure 49:
Representational kinematic diagram for Forward Kinematic Denavit-Hartenberg
parameters definition [55].

Figure 49: Representational kinematic diagram for Forward Kinematic Denavit-Hartenberg parameters
definition

These parameters can be simplified for our scenario down to the joint angle
and the link length. This only holds true since the axis of rotation for the joints are
parallel for this scenario.

Both Forward and Inverse kinematics solutions can be solved for using either a
trigonometry or Denavit-Hartenberg parameters.

97 | P a g e

5.4.7.2 Forward/Direct Kinematics
One of the techniques used that is to create the control algorithms in each

of the legs and joints of SigSent is forward or direct kinematics. This
implementation and derivation will be discussed below for a simplified version of
the leg (two-linkage system) and then the true arm (three-linkage system) for
algorithm simplification in certain case and scenarios for the rough terrain
movement.

5.4.7.2.1.1 Forward Kinematics Two-Linkage Implementation
The concept of forward kinematics is very similar to most problems solved

in math courses and the one people will be most familiar with. Forward kinematics
is a solution to the model of a system given all the inputs of that system. So given
the system from the general setup section, if we wanted to know where the end
effector of our leg would land then we would simply need to give the system some
inputs for the length of the linkages and angles of rotation provided by the servo
motors once they are calibrated and the final coordinate of the end effector for the
system can be solved for as the desired next position. From this desired position
in space, we can solve for the resulting heights and widths of the linkages and
determine from the boundary condition discussed before to verify if this desired
position is possible given our environment and current position or if our joints will
end up reaching a limiting angle of rotation.

This the forward kinematics algorithm for movement is simple and
straightforward but if the system doesn’t have quite a few sensors available on
them a lot of the resulting effects on the system's stability of the desired next
position will remain unknown unless tested. Additional if the wrong inputs are
chosen and calculated to cause an issue with the system then a whole new set of
inputs will have to be selected and the end effector recalculated. This has the
potential to pull a lot of resources from the on-board computer and could end up
delaying other system responses, if the operations take too long to solve for a
viable solution. This makes higher degrees of freedom models too costly to control.

 This method will be a good for and implemented for solving the simple and
quick movements over a relatively smooth or flat surface but would not do so well
for us under rough terrain that requires precise placement of footing for the stability
of the system.

 The derivations for the two-arm linkage system starts with the derivation of
the Denavit-Hartenberg parameters. Shown above in the general set-up section.

Table 23: List of Forward Kinematic Denavit-Hartenberg parameters

Link 𝜃c 𝛼ceM 𝑎ceM 𝑑c
1 𝜃M 0 𝑎M 0
2 𝜃C 0 𝑎C 0

98 | P a g e

From this the matrices that define the system can be created. With the
shorthand notation of ci & si being equal to cos θi & sin θi respectively, θ1 + θ2 by θ12,
and cos(θ1 + θ2) as c12, we obtain the matrices shown below [55].

𝐴M = 	 f

𝑐M −𝑠M 0 𝑎M𝑐M
𝑠M 𝑐M 0 𝑎M𝑠M
0
0

0
0

1 0
1 1

g

𝐴C = 	 f

𝑐C −𝑠C 0 𝑎C𝑐C
𝑠C 𝑐C 0 𝑎C𝑠C
0
0

0
0

1 0
0 1

g

Equation 7: Foward Kinematic Denavit-Hartenberg Matrices

This then leads to the derivation of the T matrices which yields:

𝑇MN = 𝐴M

𝑇CN = 𝐴M𝐴C = 	 f

𝑐MC −𝑠MC 0 𝑎M𝑐M + 𝑎C𝑐MC
𝑠MC 𝑐MC 0 𝑎M𝑠M + 𝑎C𝑠MC
0
0

0
0

1 0
0 1

g

Equation 8: Derivation of the T Matrices

From these matrices the position of the end-effector in relation to the base
frame is given by the first two elements in the last column of T20. This is shown
below [55].

𝑥 = 	𝑎M𝑐M + 𝑎C𝑐MC

𝑦 =	𝑎M𝑠M + 𝑎C𝑠MC
Equation 9: Position of the End-Effector in relation to Base Frame

99 | P a g e

5.4.7.2.2 Forward Kinematics Three-Linkage Implementation
Similarly, to the derivation above in the inverse kinematic for the two-linkage

system, we can solve for the three-linkage system of the whole leg. For this we will
use the Denavit-Hartenberg parameters again this time with the values for alpha
and d not equal to zero since the axis orientation from the first joint to the second
aren’t parallel. Thus, ending up with this general form of a transformation matrix
from linkage I to linkage i-1 [56].

𝑇CN = 	 f

𝑐𝑜𝑠𝜃c −𝑠𝑖𝑛𝜃c𝑐𝑜𝑠𝛼c 𝑠𝑖𝑛𝜃c𝑠𝑖𝑛𝛼c 𝑎c𝑐𝑜𝑠𝛼c
𝑠𝑖𝑛𝜃c 𝑐𝑜𝑠𝜃c𝑐𝑜𝑠𝛼c −𝑐𝑜𝑠𝜃c𝑐𝑜𝑠𝛼c 𝑎c𝑠𝑖𝑛𝜃c
0
0

𝑠𝑖𝑛𝛼c
0

𝑐𝑜𝑠𝛼c 𝑑c
0 1

g

Equation 10: General Transformation matrix for the forward kinematics three-linkage system

The resulting coordinates for the end effector can be solved for which
results in the equations below. [56].

𝑥 = 	𝑐𝑜𝑠𝜃M(𝐿M + 𝐿C𝑐𝑜𝑠𝜃C + 𝐿hcos	(𝜃C − 𝜃h))
𝑦 = 	𝑠𝑖𝑛𝜃M(𝐿M + 𝐿C𝑐𝑜𝑠𝜃C + 𝐿hcos	(𝜃C − 𝜃h))

𝑧 = 	𝑑M + 𝐿C𝑠𝑖𝑛𝜃C + 𝐿hsin(𝜃C − 𝜃h)
Equation 11: Position equations solutions from the Forward kinematics implementation

From this derivation the position equations (x, y, z) for the end effector has
been solved for. This allows us to put in values for the linkage lengths and angles
of the servo motors to get a resulting position. These equations will be a step
toward the gait generation method.

5.4.7.3 Inverse Kinematics
One of the other techniques that is used to create the control algorithms in

each of the legs and joints of SigSent is inverse kinematics. This implementation
and derivation will be discussed below for a simplified version of the leg (two-
linkage system) and then the true arm (three-linkage system) for algorithm
simplification in certain case and scenarios for the rough terrain movement.

5.4.7.3.1.1 Inverse Kinematics Two-Linkage Implementation
The concept of inverse kinematics is the opposite of forward kinematics. We

need to solve for the inputs/angles of the joints of the system that would result in
a desired end effector position. While it is more versatile and popular in a lot of
applications, can be quite difficult to solve and may not even have a solution or a
unique one either. The solution can be solved analytically but some cases require
a numerical solution as the equations might not be directly solvable. This make

100 | P a g e

boundary conditions, initial inputs, and the very dimensions/structure of the linkage
system is very important to include to the derivation and solution.

 While it is costly to compute via this method it can deal with higher degrees
of freedom and give precise desired movement once finally solved. This method
will be a good for and implemented for solving the complex movement needed for
traversing over rough uneven terrain. A simple distance sensor is needed to find
approximate distance from the robot chassis to the ground and then the equations
can be solved to get the desired position of the robot's legs that would keep stability
in the system.

The derivations for the two-arm linkage system starts with the derivation of
the Denavit-Hartenberg parameters to solve for the known general solution of the
system. This equation relates the base frame of reference to the frame of reference
of the end effector. This transformation matrix can be described by the
multiplication of the reference frames of every joint down to the end effector in
series [53].

𝑇nop	nqqnrstu
vwxn = 𝑇MN ∗ 𝑇CM ∗ … ∗ 𝑇ooeM
Equation 12: Transformation Matrix

The base transformation matrix can also be defined as the matrix
representing the rotation elements of the system as well as the position of the end
effector. Shown below [53].

𝑇nop	nqqnrstu
vwxn = 	 z

𝑟MM 𝑟MC 𝑟Mh 𝑝{
𝑟CM 𝑟CC 𝑟Ch 𝑝|
𝑟hM
0

𝑟hC
0

𝑟hh 𝑝}
0 1

~

Equation 13: Transformation Matrix based on Rotation Elements

Definition of the Denavit-Hartenberg parameters are shown below in the
figure and table below: Figure 50: Representational kinematic diagram for Inverse
Kinematic Denavit-Hartenberg parameters and Table 24: List of Inverse Kinematic
Denavit-Hartenberg parameters [53].

101 | P a g e

Figure 50: Representational kinematic diagram for Inverse Kinematic Denavit-Hartenberg parameters

Table 24: List of Inverse Kinematic Denavit-Hartenberg parameters

Link 𝜃c 𝛼ceM 𝑎ceM 𝑑c
1 𝜃M 0 0 0
2 𝜃C 0 𝑙M 0
3 0 0 𝑙C 0

From this, the linkage transformation matrices that define the system can
be created. With the shorthand notation of cθi & sθi being equal to cos θi & sin θi
respectively, we obtain the matrices shown below [53].

𝑇MN = 	 f

𝑐𝜃M −𝑠𝜃M 0 0
𝑠𝜃M 𝑐𝜃M 0 0
0
0

0
0

1 0
0 1

g

𝑇CM = 	 f

𝑐𝜃M −𝑠𝜃C 0 𝑙M
𝑠𝜃C 𝑐𝜃C 0 0
0
0

0
0

1 0
0 1

g

102 | P a g e

𝑇hC = 	 f
1 0 0 𝑙C
0 1 0 0
0
0

0
0

1 0
0 1

g

Equation 14: Transformation Matrices for each Joint

From a general solution described above and simple matrix manipulation
we can obtain the equation shown below [53].

𝑇MN eM ∗ 𝑇hN = 𝑇CM ∗ 𝑇hC
Equation 15: General Solution of Transformation Matrices of each Joint

After the multiplication of the defined matrices we obtain the partial solved
equation of [53].:

f
. . . 𝑐𝜃M𝑝{ + 𝑠𝜃M𝑝|
. . . −𝑠𝜃M𝑝{ + 𝑐𝜃M𝑝|
.
.
.
.

. 𝑝}

. 1

g = f

. . . 𝑙C𝑐𝜃C + 𝑙M

. . . 𝑙C𝑠𝜃C

.
0

.
0

. 0
0 1

g

Equation 16: Partially Solved Transformation Matrix

This will result in solutions for θ1 & θ2. Starting with θ2 we can square both
matrices and set the elements [1,4] and [2,4] of both matrices equal to each other.
After some simple algebraic manipulation, a solution for θ2 arises shown below
[53].

Equation 17: Algebraic Manipulation of Transformation Matrices

103 | P a g e

For θ2 we can derive a solution from Table 2 in Reference [53]. This leads
to a solution of:

𝜃C = 𝐴𝑡𝑎𝑛2�∓�1− �
𝑝{C + 𝑝|C − 𝑙MC − 𝑙CC

2𝑙M𝑙C
�
C

,
𝑝{C + 𝑝|C − 𝑙MC − 𝑙CC

2𝑙M𝑙C
�

Equation 18: Solution for θ2

For θ1 we can use elements [2,4] of both matrices and set them equal to
each other [53].

Equation 19: Partial Solution for θ1

We can then derive a solution from Table 2 in Reference [53]. This leads to
a solution of:

𝜃M = 𝐴𝑡𝑎𝑛2(𝑝|, 𝑝{)

∓ 𝐴𝑡𝑎𝑛2(�𝑝|C + 𝑝{ − (𝑙C𝑐𝜃C + 𝑙M)C, 𝑙C𝑐𝜃C + 𝑙M

Equation 20: Solution for θ1

With the two joint angles solved for we have a completed solution for the
inverse kinematic algorithm for our legs. As stated above we the inverse kinematic
solution will need boundary/limiting condition to avoid unwanted behavior in the
leg movements as this derivation leads to multiple solutions for our desired
positions.

5.4.7.3.1.2 Inverse Kinematics Three-Linkage Implementation
Similarly, to the derivation above in the inverse kinematic for the two-linkage

system, we can solve for the three-linkage system of the whole leg. For this we will
use the Denavit-Hartenberg parameters again this time with the values for alpha
and d not equal to zero since the axis orientation from the first joint to the second
aren’t parallel. Through basic trigonometry some angle values can be solved given
the figure shown below [56].

104 | P a g e

Figure 51: 2D planar view of the joints of SigSent’s leg [56].

𝜃M = 𝑎𝑡𝑎𝑛2(𝑦M, 𝑥M)
Equation 21: Solution for θ1

 With use of a transformation matrix to convert the end effector coordinates
to the coxa frame. A solution for the remaining angles was derived. [56]

𝜑M = 𝑎𝑡𝑎𝑛2(𝑦h, 𝑥h)

𝜃C = 𝜑C = 𝑎𝑐𝑜𝑠 �
𝐿CC + 𝑎C − 𝐿hC

2𝐿C𝑎
� + 	𝑎𝑡𝑎𝑛2(𝑦h, 𝑥h)

Where 𝑎 = 	�𝑥hC + 𝑦hC from law of cosines

𝜑h = 	𝑎𝑐𝑜𝑠 �
𝐿CC + 𝐿hC − 𝑎C

2𝐿C𝐿h
�

𝜃h = 𝜋 − 𝜑h
Equation 22: Angle equations solutions from the Inverse kinematics implementation

From this derivation the angle equations for the joints of the leg have been
solved for. This allows us to put in a desired coordinate for the leg to move to and
the required servo angles to achieve that coordinate can be solved for. These
equations are will be a step toward the gait generation method, just as the forward
kinematics solution would be.

5.4.7.4 Gait Generation
One of the concepts that is used to create the control algorithms of

movement for each of the legs and joints of SigSent is Gait Generation. The

105 | P a g e

different possible techniques that will be used in an effort to generate the different
gaits will be discussed below.

5.4.7.4.1 What is Gait?
In reference to SigSent, gait refers to the style or manner that the hexapod

will walk, this inherently refers to the line of motion in 3D space the legs make for
the hexapod to move in any direction as shown in Figure 52:Gait path diagram
below [57]. Gait usually is designed to emulate insectoids already in nature to
attempt to maintain efficiency and natural looking movements. They are usually
modeled after sinusoidal wave forms to attempt to match a natural arching curve
in the stride forward. There are multiple methods to solve and model for gait, those
are the attempts made to find the best method and solution to a gait generator for
SigSent.

Figure 52:Gait path diagram [57]

5.4.7.4.2 Gait Generation via Kinematics modeling
This method involves modeling the exact path the legs will take to perform

its gait. This is usually done path planning with a polynomial function of sorts to
create a known value that the leg is desired to reach. Then the path is broken up
into important key frames that the legs must reach. The values of the key frames
are then put through the forward or inverse kinematic equations to get the
subsequent values needed for the servo motors to reach the desired values.

In order to generate the commands needed to reach the key frames that
are defined the kinematics modeling of forward and inverse kinematics must be
already done as to find the coordinate locations of the desired configuration or joint
angles must be definable or solvable. This method involves a more brute force

106 | P a g e

technique in order to generate the desired gaits of the hexapod’s legs. While this
is the case, this method still does provide appropriate solutions for the gaits.

5.4.7.4.3 Gait Generation via Neural Networks
This method of gait generation follows the same principle that is defined in

the sections 4.2.6.2 about reinforcement learning & 5.4.6 about NEAT. A random
set of gaits will be generated and populate the system. The gaits will then be tested
in simulation and given fitness values based on the performance of the different
gaits. From the results, based on known outputs or targets the weights for the
Neural Networks are recalculated in either a forward or back propagation fashion
and the new gaits are tested on the system for a new set of outputs.

5.4.7.4.4 Gait Generation via Genetic Algorithm
Once the kinematic models of the system are derived and defined, the set-

up for the Genetic algorithm can take way. Gait, for this method, can be defined as
a sequence of consequent steps where every following step is a derivative of the
state of legs from the previous step. The state of each leg can be defined in terms
of three angles from the three joints [58]. These three joints are put into a
vector/matrix format to represent each leg and its current state. Each step of the
system can then be modeled as the six states of the legs or 18 angles values in
total. A gait can then be seen as the number of states/steps that it takes to
complete the motion and repeat all over again. So, gait is a vector holding N
number of steps. Each step holds 18 state values that define the position of the
servo motor at that consequent step. The genetic algorithm is used in an attempt
to find the optimal values for the states to have a walking mechanism that follows
the modeled used for the ideal gait.

The genetic algorithm starts with a random generation and population of
gaits. The gait’s performance is then tested and simulated, then based on its
performance from criteria we determine we can assign it a fitness value. This is
done until the most optimal gaits for this generation are produced. Then
“offspring”/children for the next generation of gaits are produced from those optimal
gaits of the previous generation/parents in an attempt to find a stable optimal
generation better than the previous generation. This process of testing, simulation,
and reproducing is repeated until the most optimal gaits for our design is produced.
This process model can be seen in the Figure 53: Genetic Algorithm Model below.

107 | P a g e

Figure 53: Genetic Algorithm Model [58]

This method will be modeled following the paper: “Adaptive Gait Generation
for Hexapod Robot using Genetic Algorithm” [58], that was published in the IEEE
international conference paper on Power Electronics, Intelligent Control and
Energy Systems.

5.4.7.4.5 Gait Generation via fuzzy algorithms
Once the kinematic models of the system are derived and defined, the set-

up for the fuzzy algorithm can take place. Fuzzy logic is method that closely
emulates the thinking process of natural human brains. It is also a way of mapping
the input states to the output states of the defined system. This is done with
computers by creating in-between values to the 0 and 1 or false and true paradigm
that is implemented with systems. So, in the case of SigSent, instead of exact
coordinates/joint angles generated or desired by the system, states of distance
defined as very near (VN), near (N), far (F), and very far (VF) are created. Similarly,
five different fuzzy values are assigned for both angle and deviation, namely left
(LT), ahead left (AL), ahead (A), ahead right (AR), and right (R) [59]. This process
of fuzzy logic definitions in turn is creating regions of position for the hexapod to
follow. This creates a scenario where the hexapod robot can “understand” if it is
accomplishing the goal of, for example, moving forward.

This “fuzzy algorithm” is then created with the foundation of fuzzy logic
implemented on the different states of the legs on the hexapod robot and genetic
population and modification of generations from Genetic algorithms. The model for
this algorithm can be see below in Figure 54: Model of GA-Fuzzy Algorithm. From
this figure it can be seen that the input is made up of states of the environment that
are known and states of the robot that are known as well. This gets processed
through the Fuzzy Logic Controller and produces an output. These outputs are
then put through a genetic algorithm to process crossover and mutate to create
the next generation of gaits and paths. The system is ran again until the tuning
from the genetic algorithm has converged on an optimal gait and path

108 | P a g e

Figure 54: Model of GA-Fuzzy Algorithm [59]

This method, in all, creates optimal path and gaits generated by using fuzzy
logic controllers and generic algorithms to find optimized fuzzy logic controllers that
are then used to maneuver and manipulate the hexapod robot in test-case
scenarios [59].

This method will be modeled following the paper: “Optimal path and gait
generations simultaneously of a six-legged robot using a GA-fuzzy approach” [59],
that was published in the Elsevier journal on Rob0tics and Autonomous Systems
[59].

5.4.7.5 Open-Source Kinematic Tools
For basic simulation and testing there is a forum of community of creators

around the Trossen Robotics that have some test programs and open source
calculation tables to help with certain types of hexapods and crawling robots.
MatLab’s community based forum also has quite a few tools available to the public
from Mathworks themselves and from community creators that are sharing their
projects with everyone else. The fundamental understanding of kinematics is
necessary for navigation of these tools that are available to the community. These
tools though only help with simple derivation of some kinematic characteristics for
the robot.

For final, simulation, testing, and verification Gazebo should be used. This
would put the algorithm through a test of various conditions to verify if the algorithm
produced is sufficient to control the robot’s movements.

109 | P a g e

5.5 MECHANICAL DESIGN
The mechanical design of SigSent is based on the hexapod robot design found

common in many commercially available multi-terrain robots today with the
addition of motorized wheels to four of its six legs. This allows SigSent to use its
hexapod movement method across rough terrain or move through smoother
surfaces efficiently in a traditional wheeled configuration.

Figure 55: Rendering of SigSent in Wheeled Mode

Figure 56: Rendering of SigSent in Terrain Mode

110 | P a g e

6 PROTOTYPING

6.1 SCHEMATIC
Schematics are produced for each module’s PCB layout to plan out the

overall design of the circuit.

6.2 PRINTED CIRCUIT BOARDS
SigSent features several printed circuit boards to accomplish the level

functionality of the robot including system protection, signals transfer, and power
transfer as well as a platform for some sensors and actors. Below are the designed
printed circuit boards including figures and some rational of the design for that
specific board.

6.2.1 PCB Design Considerations
While designing the PCB boards, special consideration was made to keep

decoupling capacitors and charge pump capacitors as close to the IC’s they were
operating on as possible to reduce impedance.

6.2.2 Breadboard Test
Before proceeding with the final PCB design, a test was done with the

components on a breadboard to verify that the microcomputer was working
correctly with the sensors that it will be interfacing with in the PCB. The results
from testing the sensors for valid output are shown in sections 7.1.5 and 7.1.6.

Figure 57 Breadboard test with Raspberry Pi microcomputer connected to GPS and IMU sensors

6.2.3 PCB Designs
Each PCB is specified and shown in 5.2 with its Diptrace layout and physical

assembly boards.

111 | P a g e

6.2.4 PCB Fabrication and Assembly
OSH park and JLCPCB were used to fabricate the PCBs. To assemble the

boards, the boards will be soldered on location within the Robotics Club at UCF
laboratory. Techniques to create proper solder bonds will use a combination of
hand soldering and hot-air reflow soldering depending on the specific package
being soldered.

6.3 GUI

Figure 58 Basestation GUI

The graphical user interface (GUI) features a live video feed, streaming from
the SigSent robot. The GPS location is featured on an interactive map applet.
There are buttons that the operator will use to interact with the robot. A radio button
section is used to switch between the sentry and TeleOp movement modes of the
robot. The battery level of the robot is shown as well to give a better idea on the
estimated time remaining for operation. The GUI was developed with an
educational/open-source Qt license with Python.

The top-left image view is a camera feed coming from the SigSent robot.
Underneath the video feed are radio buttons for changing the operating mode of
the robot. Sentry mode and TeleOp mode are the two main operations for SigSent.
In Sentry mode, the robot will remain in a single position as an active video input.
In TeleOp mode, the operator will be controlling the robot with their joystick that is
plugged into the base station.

The map view on the top right will be using the GPS signal from the SigSent
to give a fairly accurate location of the robot. A marker is placed to display the

112 | P a g e

robot among the map’s visual representation. Since the battery level is related to
its travel, the estimated remaining battery life is displayed in a filled bar below the
map. This information comes from the robot’s “fuel gauge” sensors. Based on the
remaining battery life and the location of the robot, the user will know how much
farther they can travel without stranding their unit.

To aid in debugging the intelligent systems, a table is displayed underneath
both visuals that display the terrain classification, IMU values, and the final NEAT
output from the artificial neural network. Seeing the SigSent sensor values and
intelligent systems output will ensure that the system is functioning correctly.
Without a visual aid for this, it is hard to be sure that the system is being used at
all, especially if the mobility mechanism is not switching (either due to a hardware
failure or due to the ANN simply not outputting a new value as its been trained).

The GUI program will be built with a Python module, PyInstaller, that will allow
it to be compiled into a native executable for Windows, macOS, and Linux
operating systems. This means that changing base stations to communicate with
the robot will be a painless process if the desired computer is not on-hand. The
base station’s computational requirements are not very heavy, so any computer
should be usable for this process.

6.4 PROTOTYPE EXPECTATIONS
The prototypes for the hardware and software components were made to test

components and to demo component and code functionality. The prototypes were
used to ensure that the hardware and software is functioning so that the real
integration testing on the physical system could be put into place. Below are issues
that could occur with the prototyping and some consistent errors that were
experienced.

6.4.1 Potential Hardware Issues
There are several potential issues to worry about as far as the hardware is

concerned. There are the obvious faults such as poor design of the circuit boards,
designing boards that introduce impedance or create unacceptable EMI, the same
thing holds for improper wiring. Improper Soldering could create intermittent
problems that could be hard to diagnose – it will be very important to properly
inspect each solder joint and ensure to check solder joints again if intermittent
issues appear during testing and application. Other issues that might arise are
overheating issues as the leg subassemblies each consume a considerable
amount of power and could generate enough heat to potentially damage some
control components in Florida’s hot weather, especially since the robot operates
outside. Beyond design issues for hardware there is the human to consider, we as
imperfect being can cause significant problems even in a well-designed system
(that does not account for human interaction). Proper case to ESD harden
sensitive circuitry such as the GPIO pins on the Raspberry Pi, and to properly and
visibly label the connectors that go into SigSent will be very important. Beyond

113 | P a g e

things that will be interacted in normal operation, proper labeling and color code
standards will need to be enforced uniformly throughout the construction of the
vehicle to prevent human errors such as miss wiring a connector or plugging a
connector into the wrong port. With proper design and training these issues should
be minimized but will still always be an ever-present risk.

6.4.2 Potential Software Issues
Potential software issues included the obvious bugs that could be present

in the code leading to faults. Running unit tests attempts to capture these errors
before running everything in production. Every sensor and communication device
needs to be set to use a constant address space or IP address identifier such that
the code can be statically coded and work every time.

A common error that was occurring in Ubuntu MATE with the Raspberry Pi
was a disk space error as the microcomputer was running low on available
memory. Initially, an 8GB SD card was used in the Pi. After running into numerous
disk space issues, it was upgraded to a 64GB card. All of the necessary libraries
and frameworks being used (ROS, OpenCV, NEAT, etc.) required several
gigabytes of storage each. Since most of the space needed to run SigSent is
allocated before runtime, there should not be a high risk of reaching a disk space
error in operation.

Figure 59 Ubuntu MATE low disk space error

A potential issue in the intelligent systems module pertains to how well it is
trained. If the robot is trained with a terrain type and is then placed in an
environment radically different from its training data, it will not perform optimally.
In some situations, the operating location can change quickly without warning,
especially in some critical application where there is no time to retrain the robot
(e.g. military applications). In this case, the robot would not operate correctly and
could possibly cause harm to the people relying on the successful function of the
robot. To avoid this issue as best as possible, the robot should be trained in a
variety of locations. Since Florida, the host location of SigSent, is not varied in
terrain types, small demoable environments should be recreated for small-scale
training sessions. These should be sufficient for our operations, however for

114 | P a g e

something more significant, extensive testing and training would need to be
performed in real locations that closely resemble those of the places the robot will
be actively used in.

115 | P a g e

7 TESTING

7.1 HARDWARE TESTING
The hardware components that were selected and purchased for use were

tested according to their procedures listed below. Images corroborating the
successful tests’ results accompany the procedures’ outlines.

7.1.1 Raspberry Pi 3 Microcomputer Testing
The Raspberry Pi 3 will be tested for being operational. It will be assumed

to be working as intended if boot-up and an SSH connection has been established.
Its complete functionality will be decided by the correct operation and
communication between its sensors and miscellaneous connected components.

To further test the Raspberry Pi, we conducted a test of SSH using a local
network and what will be our base computer. This is a simple test and allows for
us to work remotely on SigSent without having to directly plug into the vehicle. This
also allows for the vehicle to roam wirelessly while we monitor the vehicle through
SSH without becoming tangled or unplugged as the robot moves around.

Figure 60: Screenshot of successful login of SSH over Wifi from a base station computer to SigSent's
microcomputer

7.1.2 Microcontroller Testing
The microcontroller was assumed to be operating correctly based on its

working functionality in integration with the robot’s control systems. Signals will be
sent to each joint’s respective servo to move in 10-degree angle increments. If
each motor is correctly accessed and moved with the necessary measured
precision, the microcontroller was marked as testing successfully.

116 | P a g e

7.1.3 Lidar Testing
To test the lidar, which using serial communication through the ACM0

protocol we used a ROS node called URG_NODE which is specifically designed
to interact with the Hokuyo brand of lidar sensors including our UTM-30LX.
URG_NODE reads in the sensor data and reformats it into the standardized ROS
message named laser_scan in the topic /scan. From there we both visualize and
confirm the relative accuracy of the Lidar data in RVIZ compared to what we are
seeing and we can view the raw data by echo’ing the rostopic /scan in the
Command Line Interface (CLI).

Figure 61: Visualization of Lidar Data in RVIZ

Figure 62: Raw Lidar data echo'd from the ROS topic /scan

117 | P a g e

7.1.4 Camera Testing
The camera was connected to the Raspberry Pi and a basic image was

captured indoors in a low-light environment. Even with suboptimal conditions for
lighting, the image was still captured at an acceptable quality. SigSent will be
operating outside. As such, daytime sunlight will provide more than enough lighting
for basic sentry operations and surveillance capture. During its nightly patrols, the
powerful LED light bar mounted on the robot will illuminate the area in front of the
camera’s field of view. Below, in Figure 63 Camera test indoors in low-light, clear
colors, contrast, and sufficient optical quality are seen. Highlights are overblown in
the ceiling lights, however this is normal for a low-light scenario to compensate for
the poor illumination throughout the laboratory room. The camera adjusts its
exposure settings as such to provide an average normal exposure that is viewable
in bright and dimly lit environments. The tests provided showcase that the camera
will be acceptable for the minimal computer vision computations we will be doing
for terrain classification and basic human/anomaly detection.

Figure 63 Camera test indoors in low-light

7.1.5 IMU Testing
IMU Testing for the MPU-9250 was conducted by hooking up the sensor

and reading its values through serial in Linux and confirming that they changed
logically as we moved and rotated the sensor around. Once we have the robot fully
assembled more in-depth tests can be made, however to simply confirm that the
sensor is outputting data in the expected fashion this test was proved successful.

7.1.6 GPS Testing
GPS Testing for the Venus 638FLPL was conducted at UCF’s Partnership

II and III campus. The testing process was to bring the GPS unit outside hooked
up the Raspberry Pi 3 through a TTL serial feed. The GPS outputs a constant

118 | P a g e

stream of NMEA GPS data which we then parsed into to standard GPS
coordinates, which we then fed into Google Maps to confirm that the GPS points
were accurate. We found that the GPS points were very accurate outside and
confirmed its location on Google Maps to well within the specified 2.5 meters of
stated accuracy. We also found that indoors the GPS did not perform well and
often was not able to contact enough satellites to output a valid GPS point. Since
the vehicle will be outside this is considered a non-issue, but may present
problems during presentations and demos if conducted indoors.

Figure 64: Testing output of NMEA GPS data from GPS Unit

Figure 65: Confirming accuracy of GPS data by placing GPS coordinates into Google Maps [60]

7.1.7 Servo motor Testing
The servo motor characteristics of stall torque, stall current and weight will

be measured and tested. To test the stall torque characteristic of the servo motor
a known weight on a cantilever at a set(adjustable) and known distance will be put
on the servo motor. The servo motor will then be commanded to rotate with
increasing distances applied to the weight up to create increasing torques on the
servo motor. This will be done until the known stall torque has been reached or a
smaller stall torque has been reached. The stall current will be measured and
tested during the testing of the stall torque by actively measuring the current
applied to the servo motor at the time of testing. A fuse, or emergency stop will be
implemented to ensure no damage to the servo motor when stall has been

119 | P a g e

reached. The weight of the servo motor will also be measured to ensure the proper
product within design has been obtained.

7.1.8 Motor and ESC Testing
A tachometer will be used to measure the RPM of the motor to determine if

it meets the specifications required by the robot and as notated in its datasheet.
The motors will be run using their standard operating voltage. If the motors reach
the necessary speed, the testing will be determined as successful.

7.1.9 Battery Testing
The battery’s capacity will be tested by measuring the time it takes for the

battery to “die” while under a predefined load. The battery will be charged until the
voltage across its terminals reads 16.8 V with a multimeter. A stopwatch will
engage when a 10 A constant current dummy load is first attached to the battery’s
terminals and will stop when the voltage across the terminals measures 13.6 V
with a multimeter. To be considered minimally successful, the time must be greater
than or equal to 1 hour.

7.1.10 Speaker and Amplifier Testing
Test tones at various frequencies within the voiceband will be played from

the speaker system at maximum volume, and will be measured with a sound level
meter from 10 meters away. At minimum, the test will be considered successful if
the meter reads a level greater than 60 dB for a 4 kHz test tone. Human hearing
is typically most sensitive near this frequency [61], which makes it suitable for use
in a siren.

The utility of the speaker system would be further validated with sound level
measurements significantly greater than 60 dB across the voiceband. Additionally,
reliable comprehension of vocal instructions 10 meters from the speaker system
would demonstrate full success of the audio system design.

7.1.11 Microphone Testing
To test the microphone being used on the robot for basic operational

situations, it will be connected to the Raspberry Pi microcomputer and debugged
in Ubuntu Mate for proper feedback. If the operating system’s audio manager
cannot receive input from the microphone, it will need to be debugged. If the
microphone interfaces correctly, it will be successfully tested. Its specifications for
recording were known through the hardware research and further testing on these
parameters is unnecessary if the operation of the device and its integration goes
smoothly.

7.1.12 Lighting System Testing
The lighting system will be tested for sufficient illumination and operating

times. A light meter is used to capture how much light is being output by the
system. The lighting system must provide the illumination specified by the
requirements in section 4.3.17.1. The lighting system will be run for two hours to
verify that it is still operational after a long duration. The operational time is meant

120 | P a g e

to test if the lighting system can reliably operate for the entire duration of the robot’s
battery life. Two hours is much higher than the upper-bounds given in the
requirements section: 4.3.13.3. If it lasts two hours without any issues, it will be
decided to be sufficient.

7.1.13 Power System Testing
All components need sufficient power to turn on and operate. The voltage

and current at each node for a component will be tested such that each component
is receiving the correct amount for operation. Incorrectly delivering the wrong
values could damage our components. After testing that everything is under the
correct operating constraints, the components will be tested for correct
functionality.

7.1.14 Signal Protection System Testing
To test the Protection System we will purposefully introduce ESD and

transients events into signals lines while measuring with an oscilloscope and
ensure that the various Zener diode clamps properly clamp those events.

To test reverse circuit protection, we will reverse the power input to SigSent
with all vulnerable devices removed and check that the reverse current does not
pass through the protection method, this will be checked via a multimeter.

To test overcurrent protection, a fuse will be hooked up to a battery with
high power low ohm resistors to create an overcurrent event with the fuse inline,
the circuit will be closed creating the overcurrent event and the event timed to
ensure that the fuse opens at the expected time.

7.1.15 Base Station Testing
The base station testing encompassed testing that the computer is working

as well as the GUI program that communicates with the robot. The computer was
booted up and verified that it is functional. The base station’s GUI program was
launched to verify that it is able to correctly communicate with the SigSent robot.
With the robot able to be controlled from the base station, the testing was marked
as successful.

The peripherals for the base station will need to be tested in conjunction with
the laptop as well. The joystick will be tested in the Windows Joysticks tool, where
inputs can be shown as being received by the operating system. If the joystick has
been correctly installed to work with the OS, then it will be tested in the base
station’s GUI program for correctly controlling the SigSent robot in TeleOp mode.
The headset used for listening and vocally communicating through the robot will
be tested as well. The default Windows playback/recording devices menu will be
used to ensure that the operating system is receiving input and producing output
through the headset device. The GUI program will then be run as well to test if the
headset is receiving audio from SigSent and also outputting audio from the
microphone through the robot’s speaker.

121 | P a g e

7.2 SOFTWARE TESTING
The software developed for SigSent must be rigorously tested in modular unit

tests, in a simulated environment, as well as in the actual physical environment.
The procedures to facilitate the testing are notated below.

7.2.1 Software Testing Overview
Testing is a necessary and important part of any software development

lifecycle. Before code can pushed into a production environment, especially in a
mission critical application, testing can be done to prevent errors from making it
into a release. When working with physical hardware, where real harm can be done
due to software mistakes, testing is very important. We will be employing a variety
of techniques and frameworks discussed below to ensure that human faults do not
lead to significant failures, or unexpected results. The unit tests will be done using
Python’s included unit test library. Tests can be written to verify that every
function returns the exact values that it is expected to. Edge cases can be easily
tested in this method by calling each individual function with these obscure
situations to check that they are functioning correctly. Integration tests are then run
that combine modules of the software environment together to verify that the many
software components still function as expected when working together. Integration
testing will ensure that as new features are added, the overall quality of the
SigSent’s performance is constant.

7.2.2 Simulated Testing
Gazebo can be used as a software solution for testing the ROS control

systems code, the movement and gait generation algorithms, as well as the basic
neuroevolution artificial intelligence work. The artificial intelligence can be run in a
simulated environment; however, it must be used with caution as the data gathered
in this way will not be accurate, or at least cannot be depended on. The simulation
testing is to ensure that after each individual function and module has been testing
in isolation and integration, that the robot as a whole works as intended. The
artificial intelligence can only be tested for validation in the full simulated Gazebo
environment and in the physical testing process.

In Gazebo, a sample environment consisting of varying terrains for smooth
and rough surfaces will be used to test SigSent in each of its possible operating
conditions. Testing in a simulated environment, while not completely accurate in
modeling true physical performance, allows for quick iterations in different locales.
Obstacles can be added and removed as necessary to provide SigSent with a
comprehensive setting for testing. As testing is done, the software can be modified
as needed. The NEAT learning platform will be under the most scrutiny throughout
the testing, as the training and neural network parameters are modified to produce
the best possible results.

7.2.3 Physical Testing
After completing a successful iteration in each testing environment listed

above, the software was tested on the physical robot. Because of the physical
limitations of the simulation not being achieved, the software was modified for

122 | P a g e

usage in tests with the actual SigSent robot. Parameters were modified in the code
pertaining to the movement to have the best performance. Changes were quickly
made and re-uploaded to the robot to test in the physical environment until an
acceptable performance is achieved. The base station GUI was the most helpful
throughout the physical testing process as it provides real-time updates on the
robot’s sensor values and how it pertains to the intelligent systems’ artificial
intelligence software modules.

7.3 TESTING PLATFORM
In order for our team to work in parallel while the mechanical system and

control systems are being developed we are using the Clear Path Robotics
Turtlebot 2 supplied by the Robotics Club at UCF to test the software and hardware
that does not rely on our movement systems in a physical model. The Turtlebot is
a simplistic framework of a robot that has a controllable base based off the
Kobuki/Roomba platform and is designed specifically to be ideal for testing robotics
with many mounting points and an easy interface to control with.

On the Turtlebot we tested our lidar, IMU, GPS, and camera as well as our
power and protection systems as a complete system on the Turtlebot using the
state machine with GPS waypoint navigation and human detection. Once we had
SigSent’s chassis and control system ready, we migrated all the systems being
tested on the Turtlebot over to SigSent’s chassis for further testing.

Figure 66: Picture of Turtlebot equipped with several of our sensors in anticipation of testing

123 | P a g e

7.4 FINISHED PROTOTYPE
The finished, working prototype is detailed below. SigSent went through three

rounds of renders before we arrived at the finalized build.

Figure 67 Finalized SigSent Prototype

7.5 OPERATING SIGSENT
To operate SigSent, the user needs to only plug in the battery to the nearby

Anderson Powerpole connector. After the Raspberry Pi is done booting up (which
can be confirmed by pinging the Pi’s IP address, which is set to be a static
192.168.1.101), the user can launch the ROS nodes necessary for use. These
ROS nodes need to be built beforehand. The user can clone our code’s repository,
install the necessary dependencies displayed in the repo, and then run
catkin_make in the code’s workspace directory titled catkin_ws. Source the new
bash file, devel/setup.bash, to add the ROS packages to the bash path, and
roslaunch the launch file with roslaunch sigsent sigsent.launch. This launch file will
launch everything needed to run SigSent locally, except the GUI, and will also SSH
into the Raspberry Pi to launch the nodes for the robot’s hardware.

Launch the GUI next. To do so, install the Python dependencies by running a
simple pip install -r requirements.txt when in the main directory of the code’s
repository. Change directory into the folder named GUI and run the PyQt script,
python gui_test.py. This will launch the graphical application and will automatically
connect to the ROS topics necessary if the machines have been setup on the
network correctly. The ROS wiki has information to meet any potential issues that
may arise when setting up the networking.

124 | P a g e

8 ADMINISTRATIVE CONTENT

8.1 SOFTWARE TOOLS
In working on SigSent, several software tools were used for communicating

between team members, developing the software/hardware implementations for
the robot, and also in documenting the project. Each tool was essential in reaching
our goals in developing and documenting SigSent.

8.1.1 Communication
Communication between team members is important to provide the best

working environment. Being able to quickly get in contact with each other for
meetings, to make ad-hoc design decisions, and working remotely was necessary
for the tight deadlines we had to meet. The tools below encouraged this
communicative process.

8.1.1.1 Discord
To foster better communication, our group used Discord. Using Discord, we

were able to easily get updated information on everyone’s progress, as well as
share useful links or images related to the project’s research. Our group had its
own “server” that we could connect to, containing voice and text channels to
communicate through. We utilized the voice chats during remote meetings when
we could not meet physically. The biggest advantage to using Discord was that it
featured this powerful communication platform for free. Slack, another free
communication tool, does not feature the same rich, low latency voice connection
as does Discord.

8.1.2 Development
The development of SigSent for both the software and hardware was

achieved with the assistance of high-level software tools. Each tool used is listed
below with a brief summary on its working purpose and why it was chosen for use
in the SigSent project.

8.1.2.1 MatLab
 Used for computation of the Inverse and Forward kinematics of the
hexapods movements for each individual leg. As well as used for the gait
generation of the hexapod for normal movement patterns. With its multiple different
library sets and use of the online community forum, the modeling of the kinematics
was made simple and straight forward. Through the ease of matrix manipulations,
function definitions, implementation of algorithms and interfacing with multiple
other language sets, MatLab remains one of the best multi-paradigm numerical
computing environments available to the public. For initial testing, MatLab also
offers interfacing with hardware, that allows for testing with hardware out and in of
the loop to test efficiency, accuracy, and feasibility in the system. The MatLab
software is able to interface with the Raspberry Pi and various microcontrollers as

125 | P a g e

well, which allows for simulation and testing on the overall systems or each sub-
system individually.

8.1.2.2 PyCharm
PyCharm features plugins for use with ROS and the Raspberry Pi, making

Python development on our platform easy to scaffold out. Although PyCharm is a
commercial product made by the company JetBrains, they offer a free account for
students, as well as free community editions of some of their IDEs (including
PyCharm). The ROS plugin for PyCharm includes support for packages, code
execution with roslaunch, node debugging, unit test execution and debugging, and
custom message/service creation. The Raspberry Pi support is not via a direct
plugin, however PyCharm features exceptional SSH and tunneling support to write
code on a local machine and simply execute it over on the remote device, as well
as the ability to connect to local database solutions running on the microcomputer.
The neuroevolution and ROS modules were written in Python, making PyCharm
the obvious choice of IDE for our software development.

8.1.2.3 DipTrace
Used for PCB design, DipTrace is a software suite for creating schematics

and PCB design as well as 3D visualization and 3D file exporting completed board
with component representation. This software was provided by the Robotics Club
at the University of Central Florida [43] and DipTrace [62]. DipTrace has an
intuitive and quick UI/UX that allows for rapid development of hardware.

Figure 68: Representation of Diptrace’s Schematic Capture and PCB Design applications [63]

8.1.2.4 Git
In the world of version control systems (VCS), Git reigns supreme in

popularity. In 2016, RhodeCode did a study on VCS interest by reviewing their

126 | P a g e

presence in Google search trends. Git comprised 70% of searches compared to
other systems, including (in descending order of search significance) Subversion
(SVN), Mercurial, Perforce, and Concurrent Version Systems (CVS) [31]. We used
Git as our VCS due to its obvious preference by developers, and previous
experience that our group had with using it. Using Git, changes are tracked
between the local files and the last committed changes to the repository. A commit
essentially is a state in the Git graph that holds the exact version of every file in
the repository, backed by a checksum to ensure that nothing differs from exactly
what was saved by the user. Branches can be created as well, allowing specific
tasks to be implemented in their own state, not interfering with the main master
branch. The code added to the other branches can then be cherry picked over into
the main branch by their commit hash. Git is also much faster when juxtaposed
with performances of similar commands on competing other version control
systems. Git is a free and open source software solution, released under the GNU
GPL, open source license.

8.1.3 Documentation
The documentation for the project is all saved in in the cloud, but is

maintained across multiple websites that provide tools for each type of document.

8.1.3.1 Google Drive/Docs
Google Drive is where every file, excluding the source code and CAD

documents, were stored. Google Drive also includes a web-based document editor
via Google Docs. Google Docs also includes an editor for excel spreadsheets that
we used to document part specifications and comparisons. Google Docs is where
the project’s documentation was written collaboratively in the cloud. Our shared
folder also acted as a remote backup for our documents for higher availability and
reliability using a free solution.

8.1.3.2 Draw.IO
Most of the flowcharts and diagrams that we created were done with

Draw.IO’s editor. They have seamless integration with Google Drive which made
synchronization and collaboration easy. Draw.IO includes templates for many
popular types of documentation diagrams. For the software class diagrams and
other UML documentation figures, we were able to take advantage of Draw.IO’s
handy pre-built blocks that conform to UML specifications. The class diagrams
were essential to our development process to properly plan our architecture prior
to actually implementing our ideas. Draw.IO improved our project’s scalability by
keeping us focused on the big-picture overarching design such that we did not
have to waste time refactoring code as the project grew in number of features.

8.1.3.3 Microsoft Word SharePoint Document
To increase the readability of our document, Microsoft Word’s shared

collaborative environment was utilized for its powerful document editing tools (with
automatic table of contents for tables and figures, and automated bibliography
generation for citation references). Google Drive is a safe way to save all of our
documents in one cloud-based storage solution, however Google Docs does not

127 | P a g e

have the rich editing environment that Microsoft Word offers. When used in
conjunction with our other documentation tools, we have created a streamlined,
effective workflow for writing.

8.2 DIVISION OF LABOR
The division of labor between each group member can be more clearly seen

in the block diagrams for both the hardware and software components from Figure
28 and Figure 35. The milestones in 8.3 also outline each group member’s primary
responsibilities and secondary responsibilities with defined deadlines. These
deadlines were set-up into phases (Phase 1 – Phase 3) These deadlines were
subject to change relative to the progress along the project timeline.

 Throughout development, the deadlines were heavily shifted as hardware
acquisition and fabrication took longer than anticipated. Most of the main goals
were met in the late months of the semester.

8.3 PROJECT MILESTONES

Phase
1

Due
11/30/2017 John Millner Josh Franco Jeff Strange Richie Wales

Primary
Goal

Mechanical Design &
Physical Creation

Control System
Legs (Sim)

Power System
Design

Simulation
Creation

Backup
Goal Simulation Creation Power System

Design
Mech Design &

Creation
Control System

Legs (Sim)

Tasks

Complete Laser Cut
Design

Kinematic
modeling of

movement/legs
Confirm sensor

selection Setup VCS

Create Laser Cut Model
Kinematic

modeling of whole
body

Calculate
power & energy

needs
Familiarize with

Gazebo

Sponsorships/Discounts
Input/feedback
data for closed

loop
Design

schematic
Create basic sim

environment

Order Parts Movement pattern
for different terrain

Find Primary
Source

Components
Move model SDF
from Solidworks

Wire Management Familiarize with
Gazebo

Find
Redundant

Sources

Add necessary
ROS connections
to moving parts

128 | P a g e

Complete 3D Printed
Design

Get necessary
inputs for
simulation

Create BOM Follow ROS
turtlesim docs

Create 3D Printed Model Determine wire
routing

Implement code
to move robot

Have Complete Platform Order Parts Test/Debug

Phase
2

Due
1/31/2017 John Millner Josh Franco Jeff Strange Richie Wales

Primary
Goal ROS Integration

Control System
Active Suspension

on Robot
Communications Working on ML on

Sim

Backup
Goal Communications Working on ML on

Sim
Control System

Active Suspension
on Robot

ROS Sensor
Integration

Tasks

Create/find
Packages-nodes-

publishers for each
sensor

Design active
suspension

implementations

Design Base
Station radio

system
Research potential
computers/MCUs

Create state
machine for different

modes
Choose optimal
designs for AS

Design robot radio
system

Seek NEAT
advising (Dr. Wu/Dr.

Stanley)

 Input/Feedback
from AS included

in control

Implement
messaging

framework from
ROS

Run small-scale
NEAT tests without

all sensors

 Implement AS in
control simulation

Implement
basestation

command line
client

Use sensors from
John's

implementation

 Test connectivity in
various

environments
Modify parameters

and re-run

Phase
3

Due
2/28/2017 John Millner Josh Franco Jeff Strange Richie Wales

Primary
Goal ROS Path Planning Polishing Control

Systems Teleop Control Neat on the Robot

129 | P a g e

Backup
Goal Teleop Control Neat on the Robot ROS Path

Planning
Polishing Control

Systems

Tasks

Create local path
planning for legs

Results from
Control Sim

Design base
station controller

Run NEAT on
robot

Robot must avoid
obstacles

Test on different
terrains

Design base
station GUI

Seek advising on
inevitable failures

robot must path around
obstacles on a global

goal
Test movement

abilities from Sim
Implement video

stream
Re-run training

until viable result

robot must be able to
move to a GPS

Waypoint
Optimize Control

Systems Test, test, test Train for longer
duration (TBD)

robot must take goal
vectors

 Save best
resulting ANNs

8.4 BUDGET AND FINANCE

Table 25 Initial Budget

Part Number Description
Unit Price

($)*
Total

Quantity
Total Price

($)*

244000083-0 Motor 18.99 6 113.94

FUTM0043 Servo motor 22.99 18 413.82

595711 Wheel 1.995 6 11.97

57155K383 Bearing 6.42 6 38.52

92775A106 Shaft Set Screw 0.3476 12 4.1712

91292A015 Motor Screws 0.218 24 5.232

92290A474 servo motor horn screws 0.78 72 56.16

98511A300 Wheel Screws 0.841 24 20.184

91292A116 Servo motor Screws 0.0641 72 4.6152

130 | P a g e

91854A101 Servo motor Nuts 0.1296 72 9.3312

N/A Custom 3D Leg Prints 80 1 80

N/A Custom 3D Abdomen Print 65 1 65

3100 Camera 29.99 1 29.99

3055 Microcontroller 35 1 35

Z50003S-25 Battery 25.38 1 25.38

9192000310-0 ESC 10.53 4 42.12

VN-200 IMU / GPS 2600 1 N/A

GF0876 Speaker 5.02 1 5.02

TS4962IQT Audio Amplifier 0.99 1 0.99

URG-04LX-UG01 Lidar 4800 1 N/A

 PCB Fabrication 89.2 N/A 89.2

 Misc. Replacements 12.61 N/A 12.61

 DigiKey BOM 295.22 N/A 295.22

 Robot Communications On-hand 1 N/A

 Basestation Communications On-hand 1 N/A

 Laptop On-hand 1 N/A

Servo motor Controller

Board 50 1 50

 Power Distribution Board 50 1 50

 Logitech Flight Stick On-hand 1 N/A

 SD Memory Card On-hand 1 N/A

Total Cost: 1458.03

131 | P a g e

*note discounts and shipping costs not applied

8.5 STRETCH GOALS
In order to expand SigSent’s suitability to additional use cases, providing

additional methods for human machine interface would make valuable stretch
goals. Adding basic gesture recognition to SigSent’s computer vision system could
enable SigSent to be a more valuable partner in a human machine pairing. An
operator in the immediate view of a unit could wield quick and intuitive control over
the robot. Gesture-based interaction with the unit could prove useful for stealthy
operations or could enable interaction with nonverbal individuals.

 Similarly, adding in additional voice commands would serve a similar
purpose, albeit less stealthy. Voice commands could likely be more verbose,
offering greater specificity for an operator to provide commands, using a grammar-
based approach.

 A mobile app would enable an operator to issue commands to a unit or to
receive the audio/visual feed another unit when not in the immediate area. A
mobile app could provide similar functionality to a base station in a lighter weight,
more mobile package. A mobile app could be designed to operate on both
smartphones and tablets to leverage the devices many potential operators would
already possess.

Follow the Leader, cost analyses on paths to take, and autonomous
investigation are all items that are considerations for future work. The follow the
leader strategy has direct implications in the field of patrol and sentry surveillance.
If a human security officer could walk their usual route while accompanied by the
SigSent robot, the exact pathing could be saved by the robot and then executed
for future patrols without the human’s assistance. This would mean that the human
operator would not have to use the teleopoeration feature to control the robot’s
movements while attempting to do surveillance along a path. Another alternative
to the follow the leader strategy would be to define a path on a GPS map that the
robot then follows. The GPS technology is still necessary in either approach to
maintain the desired path, however the human operator would have to be aware
of the obstacles present along the defined path that they draw. While walking with
the follow the leader mode enabled, the human operator would be able to steer the
robot away from any obstacles that would interfere with the robot’s patrol. Added
automation means lower operating costs for a security company and for less man-
hours spent maintaining the robot’s functionality

Having a cost analysis on the pathing would mean that the shortest paths could
be taken by the robot. Shortest path computations would be effective in rough
terrain where taking a shorter path has a significant effect on how much energy is
expended by the robot. If the computer vision and terrain classification system is
sophisticated enough, then its roughness could be used in the movement costs as
well. It could be that a longer path with a smoother terrain is the better travel option
to save energy and to keep the robot from entering dangerously risky areas that
could prove too difficult to traverse.

132 | P a g e

Autonomous investigation functionality would mean that the human operator
could step away from monitoring the patrol route taken by the robot and allow it to
encounter anomalies on its own. Currently, the robot can alert the operator of
detected movement so that the human can manually investigate. This still requires
a human operator to be vigilant in watching the surveillance from the robot.
Automating this feature reduces the chance of human faults. A human could miss
something anomalous on the surveillance. The robot could detect movement and
alert the user, however the user could be oblivious to the warning. Having the
system operate intelligently on its own reduces the human interaction element
(where the human element adds to the risk of errors).

133 | P a g e

9 CONCLUSION
SigSent’s novel multi-modal terrain navigation methodology can provide

significant gains in energy efficiency of locomotion while maintaining the all-terrain
capabilities that a traditional hexapod platform offers.

SigSent offers security professionals additional capability to complement and
supplement their traditional organizational structure and roles. A network of
SigSent’s can multiply the effectiveness of a single security guard and enable
quicker response over larger distances.

SigSent relies on a wireless control architecture which incorporates a base
station for an operator’s use. Although this adds a constraint on the operation of
the robot, wireless communication with Wi-Fi is ubiquitous in today’s modern
society, where the Internet of Things (IoT) has dominated every market.

Currently, Knightscope is the largest company producing autonomous
sentry/patrol robots. Their products are aesthetically pleasing and seem to have
feature-rich devices. Their systems, while featuring intelligent autonomous bots,
do not break the mold in multi-modal terrain traversal. Our project hopes to expand
on that aspect. The hexapod design lends itself to the ability to cross over rough
terrains without the weakness of wheels. The neuroevolution system creates an
ever-changing robot that continuously learns from its environments. SigSent
boasts a robustness that not many platforms can offer. A robot that can adapt over
time without the need for human intervention lowers operating costs and lowers
the risk of obsolescence.

As demonstrated by the design planning and development recorded in this
document, SigSent’s road to completion is well on its way as an affordable option
for security. We believe we have created not only a functional prototype, but also
a beautiful, unique design unlike anything currently on the market. We have
challenged ourselves as engineers and also as innovators.

a | P a g e

APPENDIX A: REFERENCES

[1] "Materials Handling: Heavy Lifting," [Online]. Available:
https://www.osha.gov/SLTC/etools/electricalcontractors/materials/heavy.html
. [Accessed 21 September 2017].

[2] "The Limits of Human Speed," OSHA, [Online]. Available:
https://www.ncsf.org/enew/articles/articles-limitsofhumanspeed.aspx.
[Accessed 21 September 2017].

[3] "iPatrol Product Questions," [Online]. Available: https://www.ipatrol.net/faq/.
[Accessed 21 September 2017].

[4] "GOV GPS Accuracy," [Online]. Available:
http://www.gps.gov/systems/gps/performance/accuracy/. [Accessed 21
September 2017].

[5] "Air 802 FCC Regulations," [Online]. Available:
https://www.air802.com/files/FCC-Rules-and-Regulations.pdf. [Accessed 21
September 2017].

[6] "Understanding the FCC Regulations for Low-Power, Non-Licensed
Transmitters," [Online]. Available:
https://transition.fcc.gov/Bureaus/Engineering_Technology/Documents/bulleti
ns/oet63/oet63rev.pdf. [Accessed 21 September 2017].

[7] "Sound and Vision Bandwidth," [Online]. Available:
https://www.soundandvision.com/content/how-much-bandwidth-do-you-
need-streaming-video. [Accessed 21 September 2017].

[8] "Security Guards and Gaming Surveillance Officers," 24 October 2017.
[Online]. Available: https://www.bls.gov/ooh/protective-service/security-
guards.htm. [Accessed 10 November 2017].

[9] M. Mori, K. F. MacDorman and N. Kageki, "The Uncanny Valley [From the
Field]," IEEE Robotics & Automation Magazine, pp. 98-100, 06 June 2012.

[1
0]

T. Turpin, "Who's Afraid of the Big, Bad Bugs?," Purdue University, 23
February 1990. [Online]. Available:
https://www.agriculture.purdue.edu/agcomm/newscolumns/archives/OSL/199
0/February/022390OSL.html. [Accessed 11 November 2017].

b | P a g e

[1
1]

Safe Use Of Lasers, 2014.

[1
2]

NASA, "Requirements for Soldered Electrical and," National Aeronautics and
Space Administration, 2012.

[1
3]

IPC, "Generic Standard on Printed Board Design," IPC, Northbrook, IL, 2003.

[1
4]

W. contributors, "IEEE 802.11," Wikipedia, 27 November 2017. [Online].
Available:
https://en.wikipedia.org/w/index.php?title=IEEE_802.11&oldid=812312401.

[1
5]

W. contributors, "I2C," Wikipedia, 3 December 2017. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=I%C2%B2C&oldid=813373339.

[1
6]

Specification, Universal Serial Bus, 2000.

[1
7]

The Qt Company, "Licensing," [Online]. Available:
https://www1.qt.io/licensing/.

[1
8]

Telecommunications and information exchange between systems-Local and
metropolitan area networks, 2004.

[1
9]

S. Fluhrer, I. Mantin and A. Shamir, "Weaknesses in the Key Scheduling
Algorithm of RC4," in Selected Areas in Cryptography, Toronto, 2001.

[2
0]

E. Gakstatter, "What Exactly Is GPS NMEA Data?," GPS World, 4 2 2015.
[Online]. Available: http://gpsworld.com/what-exactly-is-gps-nmea-data/.
[Accessed 20 11 2017].

[2
1]

Knightscope, Inc., [Online]. Available: www.knightscope.com.

[2
2]

E. R. Volpe, "The ATHLETE Rover," Jet Propulsion Laboratory, 3 November
2017. [Online]. Available: https://www-
robotics.jpl.nasa.gov/systems/system.cfm?System=11.

[2
3]

Contributers, "Finite-State Machine," Wikipedia, [Online]. Available:
https://en.wikipedia.org/wiki/Finite-state_machine. [Accessed 16 November
2017].

[2
4]

Open Source Robotics Foundation, "About ROS," ROS, [Online]. Available:
http://www.ros.org/about-ros/. [Accessed 17 11 2017].

c | P a g e

[2
5]

B. Gerkey, "What is ROS exactly? Middleware, Framework, Operating
System?," ROS, 6 December 2011. [Online]. Available:
https://answers.ros.org/question/12230/what-is-ros-exactly-middleware-
framework-operating-system/#18055. [Accessed 16 November 2017].

[2
6]

Y. Tawil, "An Introduction to Robot Operating System (ROS)," All About
Circuits, 26 June 2017. [Online]. Available:
https://www.allaboutcircuits.com/technical-articles/an-introduction-to-robot-
operating-system-ros/. [Accessed 16 Novemeber 2017].

[2
7]

A. Ghatak, "ROS: Can you control the ROS Turtle and make your first ROS
System?," MieRobot, 11 May 2017. [Online]. Available:
https://www.mierobot.com/single-post/ROS-Turtle. [Accessed 16 Novemeber
2017].

[2
8]

P. Goebel, "Robot Cartography: ROS + SLAM," pi Robot, 26 November 2010.
[Online]. Available: http://www.pirobot.org/blog/0015/. [Accessed 16
November 2017].

[2
9]

J. Bohren, "SMACH," ROS, 20 February 2017. [Online]. Available:
http://wiki.ros.org/smach. [Accessed 16 November 2017].

[3
0]

J. Bohren, "smach_viewer," Institute for Systems and Robotics, 19 November
2011. [Online]. Available:
http://library.isr.ist.utl.pt/docs/roswiki/smach_viewer.html. [Accessed 16
November 2017].

[3
1]

W. contributors, "Supervised learning," 25 September 2017. [Online].

[3
2]

G. Hughes, "On the mean accuracy of statistical pattern recognizers," IEEE
transactions on information theory, pp. 55-63, 1968.

[3
3]

W. contributors, "No free lunch in search and optimization," 9 July 2017.
[Online].

[3
4]

D. W. G. Christoph Sommer, "Machine learning in cell biology–teaching
computers to recognize phenotypes," J Cell Sci, vol. 126, pp. 5529-5539,
2013.

[3
5]

T. L. Lai and H. Robbins, "Asymptotically efficient adaptive allocation rules,"
Advances in applied mathematics, vol. 6.1, pp. 4-22, 1985.

[3
6]

W. contributors, "Reinforcement Learning," Wikipedia, 3 December 2017.
[Online]. Available: https://en.wikipedia.org/wiki/Reinforcement_learning.

d | P a g e

[3
7]

G. Cybenko, R. Gray and K. Moizumi, "Q-learning: a tutorial and extensions,"
Mathematics of Neural Networks, pp. 24-33, 1997.

[3
8]

K. O. Stanley and R. Miikkulainen, "Evolving neural networks through
augmenting topologies," Evolutionary Computation, vol. 10, no. 2, pp. 99-127,
2002.

[3
9]

Gazebo, "Why Gazebo?," Osrf, [Online]. Available: www.gazebosim.org.

[4
0]

P. Goebel, "SV-ROS, Pi Robot win 1st place in IROS 2014 Microsoft Kinect
Challenge," Patrick Goebel, 29 September 2014. [Online]. Available:
http://robohub.org/sv-ros-pi-robot-win-1st-place-in-iros-2014-microsoft-
connect-challenge/. [Accessed 16 November 2017].

[4
1]

W. contributors, "TI MSP430," 15 November 2017. [Online].

[4
2]

Contributers, "Lidar," Wikipedia, [Online]. Available:
https://en.wikipedia.org/wiki/Lidar. [Accessed 16 November 2017].

[4
3]

J. Millner, "Robotics Club at UCF," Robotics Club at UCF, [Online]. Available:
robotics.ucf.edu. [Accessed 16 November 2017].

[4
4]

Hokuyo, "Distance Data Output/UTM-30LX," Hokuyo, [Online]. Available:
https://www.hokuyo-aut.jp/search/single.php?serial=169. [Accessed 16
November 2017].

[4
5]

SuperDroid Robots, "Hokuyo UTM-30LX-EW Scanning Laser Rangefinder,"
SuperDroid Robots, [Online]. Available:
https://www.superdroidrobots.com/shop/item.aspx/hokuyo-utm-30lx-ew-
scanning-laser-rangefinder/2252/. [Accessed 2017 November 2017].

[4
6]

"What's the Best Battery?," Battery University, 21 3 2017. [Online]. Available:
http://batteryuniversity.com/learn/archive/whats_the_best_battery. [Accessed
22 11 2017].

[4
7]

NXP, "Application guide: ESD protection," 07 2015. [Online]. Available:
https://assets.nexperia.com/documents/leaflet/75017664.pdf. [Accessed 3 12
2017].

[4
8]

J. Falin, "Reverse Current/Battery Protection Circuits," June 2003. [Online].
Available: http://www.ti.com/lit/an/slva139/slva139.pdf. [Accessed 03 12
2017].

e | P a g e

[4
9]

Raspberry Pi, "ADD-ON BOARDS AND HAT's," [Online]. Available:
https://github.com/raspberrypi/hats. [Accessed 27 4 2018].

[5
0]

W. contributors, "Scrum (software development)," Wikipedia, 27 November
2017. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Scrum_(software_development)&ol
did=812385432.

[5
1]

K. Fakhroutdinov, "UML Use Case Diagrams," uml-diagrams, [Online].
Available: https://www.uml-diagrams.org/use-case-diagrams.html.

[5
2]

Hamming, "Error detecting and error correcting codes," Bell Labs Technical
Journal, pp. 147-160, 1950.

[5
3]

Z. Bingul and S. Kucuk, "Robot Kinematics: Forward and Inverse Kinematics,"
2006. [Online]. Available: http://cdn.intechweb.org/pdfs/379.pdf.

[5
4]

"Denavit - Hartenberg parameters," 2017. [Online]. Available:
https://en.wikipedia.org/wiki/Denavit%E2%80%93Hartenberg_parameters#Ki
nematics.

[5
5]

Forward Kinematics: The Denavit-Hartenberg Convention, Duke University.

[5
6]

S. Mănoiu-Olaru and M. Niţulescu, "Basic Walking Simulations and
Gravitational Stability Analysis for a Hexapod Robot Using Matlab," 2017.

[5
7]

C. S. Gurel, "Hackaday.io," 29 06 2017. [Online]. Available:
https://hackaday.io/project/21904-hexapod-modelling-path-planning-and-
control/log/62326-3-fundamentals-of-hexapod-robot#header. [Accessed 3 12
2017].

[5
8]

A. Manglik, K. Gupta and S. Bhanoe, "Adaptive Gait Generation for Hexapod
Robot using Genetic Algorithm," IEEE International Conference on Power
Electronics, Intelligent Control and Energy Systems, 2016.

[5
9]

D. K. Pratihar, K. Deb and A. Ghosh, "Optimal path and gait generations
simultaneously of a six-legged robot using a GA-fuzzy approach," Elsevier -
Robotics and Autonomous Systems, no. 41, 2002.

[6
0]

"GPS-Coordinated," [Online]. Available: www.gps-coordinates.net. [Accessed
3 12 2017].

f | P a g e

[6
1]

R. Nave, "Frequencies for maximum sensitivity of human hearing," [Online].
Available: http://hyperphysics.phy-astr.gsu.edu/hbase/Sound/maxsens.html.
[Accessed 11 November 2017].

[6
2]

Diptrace, "Diptrace," Diptrace, [Online]. Available: https://diptrace.com/.
[Accessed 16 Novemeber 2017].

[6
3]

BadDevices, "From Eagle to Diptrace," BadDevices, 5 July 2013. [Online].
Available: https://baddevices.wordpress.com/2013/05/07/from-eagle-to-
diptrace/. [Accessed 16 Novemeber 2017].

[6
4]

R. Barraquand, "fOSSa2012," Github, 4 December 2012. [Online]. Available:
https://github.com/barraq/fOSSa2012/tree/master/media. [Accessed 16
November 2017].

g | P a g e

APPENDIX B: PERMISSIONS

h | P a g e

i | P a g e

j | P a g e

k | P a g e

